Software using random forest for risk prediction of heart valve surgery patients – Georg HERMANUTZ
Georg HERMANUTZ
Bachelor's thesis
Software using random forest for risk prediction of heart valve surgery patients
Software using random forest for risk prediction of heart valve surgery patients
Abstract:
CASPeR - Cardiac surgery prediction tool for risk stratification of heart valve surgeries is presented. The base builds a machine learning pipeline for training a random forest classifier which predicts the mortality after a certain amount of days after the surgery was performed. The classifier also offers a list of potential risk factors through its in build feature selection. With a survival analysis …moreAbstract:
CASPeR - Cardiac surgery prediction tool for risk stratification of heart valve surgeries is presented. The base builds a machine learning pipeline for training a random forest classifier which predicts the mortality after a certain amount of days after the surgery was performed. The classifier also offers a list of potential risk factors through its in build feature selection. With a survival analysis …more
Language used: English
Date on which the thesis was submitted / produced: 21. 7. 2017
Thesis defence
- Supervisor: doc. Dr. Ulrich Bodenhofer
Citation record
ISO 690-compliant citation record:
HERMANUTZ, Georg. \textit{Software using random forest for risk prediction of heart valve surgery patients} [online]. České Budějovice, 2017 [cit. 2021-04-16]. Available from: https://theses.cz/id/nq957c/. Bachelor's thesis. University of South Bohemia in České Budějovice, Faculty of Science. Thesis supervisor doc. Dr. Ulrich Bodenhofer.
The right form of listing the thesis as a source quoted
HERMANUTZ, Georg. Software using random forest for risk prediction of heart valve surgery patients. Č. Budějovice, 2017. bakalářská práce (Bc.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH, Přírodovědecká fakultaUNIVERSITY OF SOUTH BOHEMIA IN ČESKÉ BUDĚJOVICE
Faculty of ScienceBachelor programme / field:
Applied Informatics / Bioinformatics
Theses on a related topic
-
Fiscal multipliers through machine learning
Juraj Szitás -
Machine Learning for Phishing URL Detection
Juraj Smeriga -
Supervised and Unsupervised Machine Learning Methods for System Log Anomaly Detection
Júlia Ščensná -
Prezentace výsledků a vizualizace algoritmů v prostředí R s využitím balíčků knitr a Shiny
Vladimír CTIBOR -
R Shiny - využití webového prostředí pro vizualizaci statistických dat
Tomáš Jirků -
Využitý Shiny, grafického nástroje pro R, ve statistické praxi
Jakub Petráček
Name
Posted by
Uploaded/Created
Rights