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Abstract

CASPeR - Cardiac surgery prediction tool, an application that facilitates risk
stratification for heart valve surgeries is presented. CASPeR utilizes a machine
learning pipeline that trains a random forest classifier to predict the mortality
after a certain amount of days after the surgery. The training is done with the R
package ’randomForest’. Prediction is done using out-of-bag samples only. Based
on the prediction, a survival analysis is carried out and visualized with a Kaplan-
Meier plot. A log-rank test is used to test for statistical significance. The R package
’survival’ is utilized to carry out the survival analysis as well as the log-rank test.
To identify potential risk factors, random forests feature selection is used, which
is displayed in a variable importance plot. Instead of using the mean decrease
in accuracy and the mean decrease in Gini impurity to rank the importance of a
variable for the model, it was deduced that the mean decrease in Gini impurity
holds more information. The R package Shiny, which offers a web framework to
develop data analysis visualizations is used to build a user interface that guides
doctors through each step of the pipeline. CASPeR is designed to be a local
desktop application that can be run offline, to avoid the necessity of large dataset
uploads as well as to offer online usability. It comes with a Microsoft Windows
compatible installer and a detailed Manual. Additionally, CASPeR was tested on
a large dataset containing data obtained from 2,229 cardiac valve surgery patients.
The data contained features such as age, weight, height, ASA, parameters obtained
from A-IQI Austrian Inpatient Quality Indicators, and preoperative laboratory
parameters. 37% of the data were missing values, which were taken care of by a
sophisticated preprocessing step implementated in CASPeR. The initial mortality
determined from the data was 3.848%. The random forest obtained with CASPeR
achieved an AUC of 0.8399, optimized for accuracy, and 0.804 when optimized for
balanced accuracy. The mortality for the high-risk group, i.e. patients predicted as
dead after 30 days after the surgery, was found to increase from 3.858% (observed)
to 13.89% (predicted). CASPeR can be downloaded from www.dropbox.com/sh/

9b47s66d0mjny1.
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Chapter 1

Introduction

Over the course of nearly 100 years, heart valve surgery developed from being un-
known to a highly standardized procedure, with comparatively low mortality rates.
Although, many different risk factors are known and well researched, assessing the
risk profile of an individual heart surgery patient remains a highly difficult task.
Nowadays different scoring systems are used to allow doctors the determination
of the risk profile. These systems, usually are based on regression models, which
were trained on risk factors that were found to be indicative for predicting the
outcome.

One such system and the most prominent one is the EuroSCORE - European
System for Cardiac Operative Risk Evaluation [18, 19]. The original model Eu-
roSCORE I is based on 17 variables, while the updated version EuroSCORE II is
based on 19 variables. These variables were all identified by a regression model
[26]. However, such models might misrepresent the importance of other variables
or even more so neglect the importance that bears with the influence of one vari-
able on another in a given circumstance. The latter is completely neglected in
both EuroSCORE systems because the risk score is calculated by adding weight
to the 17/19 factors and sum them up. The resulting score yields the approximate
percent predicted mortality. Moreover, it has been shown that systems like Eu-
roSCORE I and II cannot be used to predict the risk of an individual patient and
are limited when used on certain subgroups which were not taken into account
during the development of the system. A field that gained a lot of traction over
the past couple of years, and could solve the drawbacks traditional risk assessment
systems have, is machine learning. A technique that has shown good results in a
recent study [34], is the random forest technique (short RF) [6]. It could overcome
the drawbacks of the traditional system, since it does not work with the assump-
tion of a linear relationship but rather work in a nonlinear way, which might be
able to represent the relationship between risk factors better. Currently work is
done to investigate if machine learning algorithms indeed perform better in risk
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stratification than traditional systems.
RF consists of an ensemble of decision trees and is nonparametric, i.e the data

points themselves are the parameters which make up the model. It naturally in-
corporates feature selection in the learning process and has a high prediction accu-
racy.Additionally, RF can deal with highly imbalanced class distributions such as
the observed mortality rate of heart valve surgeries (3.992% [17]). Unfortunately,
machine learning methods require a high level of expertise to produce meaningful
results. Usually, clinicians do not reach this level of expertise and would not be
able to apply the potentially superior system to their data. Although, through the
recent release of the R package Shiny [7] by Rstudio, it is now possible for develop-
ers to create application that allow the use of data analysis pipelines even without
knowledge about R. The aim of this work was to provide a Shiny application that
would allow a user to use machine learning packages, such as randomForest [14],
ROCR,..., to train a random forest classifier. Furthermore, this classifier would
be used in combination with a Kaplan-Meier survival analysis to investigate the
mortality an arbitrary number of days after the surgery. The natural feature se-
lection, the randomForest technique provides, offers a perfect tool to assess the
most important risk factors for the model. The application should be distributed
as a local standalone application, which brought the challenge of wrapping the R
environment and all the necessary packages into a Microsoft Windows compatible
installer.

This report will give an introduction to machine learning and the random forest
technique, i.e from decision trees to random forests and the attributes that make
this technique so viable. In addition, an explanation of how machine learning
models are evaluated as well as how a Kaplan-Meier analysis works is given. The
second half of the report consists of the architecture and implementation details.
Moreover, distribution aspects of a Shiny application are discussed. Finally, a short
description of the analysis workflow, as well as a description of the user interface
elements, is given. To round everything up, a case study will be discussed.
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Chapter 2

Machine Learning

In the past years, machine learning became an increasingly important field /tool
for many different applications, be it speech and handwriting recognition, online
advertisements, bioinformatics, medicine or one of many more. This manifold ap-
plicability of machine learning comes from its ability to construct algorithms that
learn and make predictions from data. Machine learning evolved from the study of
pattern recognition and computational learning theory in artificial intelligence. It
is also closely related to computational statistics and borrows many methods, the-
ories and application domains from mathematical optimization. While machine
learning has a lot of similarities with data mining, it is more about predictive
analyses and not so much about exploratory data analysis.

Machine learning consists of 3 different subfields: supervised, unsupervised,
and reinforcement learning. The goal of supervised learning is to map inputs to
labeled outputs, which results in two tasks: Classification (when the output vari-
able takes class labels) and Regression (when the output variable takes continuous
values). On the other hand with unsupervised learning one tries to find structures
in the input data, which can be achieved in many different ways. Some examples
are Clustering (grouping inputs), Projection Methods (reducing dimensionality of
the input data), Generative Models, etc. Reinforcement learning instructs the
computer to perform a certain goal in a dynamic environment and is provided
with feedback in terms of rewards and punishments as the algorithm tries to move
through the problem space.

A lot of different learning algorithms already exist, with the most prominent
being Artificial neural networks and the extension Deep learning. Furthermore,
Support Vector Machines or Decision Trees and its extension random forests, to
name a few, have shown their versatility in many fields. The general workflow for
training a classifier can be described in 3 main steps: preprocessing, model training,
model evaluation. While those 3 steps summarize the workflow pretty well, in
reality, a few more steps are necessary to successfully train a robust classifier
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(Figure 2.1). Those include the selection of meaningful features and to choose the
most fitting machine learning algorithm for the data at hand.

PRIOR KNOWLEDGE

TASK + DATA

PREPROCESSING

CHOOSE FEATURES

CHOOSE MODEL CLASS

TRAIN MODEL

EVALUATE MODEL

FINAL MODEL

Figure 2.1: Basic data analysis work-flow

2.1 Decision Trees

Decision trees are a natural and intuitive way to classify data because they are
analyzing patterns by asking a sequence of questions in which the next question
depends on the answer of the current. The answer to these questions is usually
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binary, i.e. true/false. In a so-called directed decision tree, the root node represents
the first question and is at the top, which is connected via branches to other nodes
until a terminal node is reached.

Decision tree learning algorithms are recursive depth first search algorithm that
performs hierarchal splits in such a way that leaf nodes are homogeneous (pure)
in terms of their target class. Three major question define a decision tree learning
algorithm, Which splits should we choose?, When should we stop? How to reduce
complexity?.

2.1.1 Splitting Criterion

As a splitting criterion for classification, different kinds of measurements are used,
information impurity (information gain) Gini impurity (Gini impurity gain), Vari-
ance impurity and misclassification impurity. Let’s say i(N) is the impurity of a
node N, that means we want i(N) to be 0, if all samples at node N have the same
class label and be large if the class labels are uniformly distributed.

The entropy impurity of node N is then defined as [25, Chapter 8]:

i(N) = −
∑

j P̂ (x ∈ wj|N)log2P̂ (x ∈ wj|N)

Where P̂ (x ∈ wj|N) denotes the fraction of training samples x at node N that
are in the category wj, given that they survived all previous decisions that led to
node N. Now the entropy impurity will be 0 if all the samples at node N belong
to the same class and positive if otherwise, with the maximum if all samples are
uniformly distributed.
For a given set of training samples T in the form (x, y) = (x1, x2, ..., xn, y) where
y is the class label the information gain is then defined as:

IG(T, a) = i(T )−
∑

v∈vals(a)
|{x∈T |xa=v}|

|T | · i({x ∈ T |xa = v})

Usually, all possible splits in each step are considered and the one with the
highest information gain is selected. This is the standard measurement used in
the tree learning algorithms, ID3 [22] and C4.5 [27].

Apart from the entropy impurity, the Gini impurity is also widely used and is
defined as [25, Chapter 8]:

i(N) =
∑

i 6=j P̂ (x ∈ wi|N)P̂ (x ∈ wj|N) = 1−
∑

j P̂
2(x ∈ wj|N)

The Gini impurity is then just the expected error rate at node N if the category
is selected randomly from the class distribution at N. Now the Gini impurity gain
for a given dataset T will be in the same form as the information gain, we just use
the Gini impurity instead of the entropy impurity.

Lastly, the misclassification impurity can be written as [25, Chapter 8]:
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i(N) = 1−maxj P̂ (x ∈ wj|N)

Which represents the measurement of the minimum probability that a training
pattern would be misclassified at node N.

Gini impurity, Entropy impurity and misclassification impurity are similar to
each other, but Gini impurity and Entropy impurity are differentiable and hence
more accessible for numerical optimization. Additionally, they are both more sen-
sitive to changes in the node probability compared to the misclassification entropy.

2.1.2 Stopped Splitting

Now that we have seen how decisions are made during the learning phase it is
important to know when to stop splitting. On one hand, a full-grown tree cannot
be expected to generalize well in a problem having a high irreducible error, and
on the other hand, a small tree, i.e. splitting is stopped too early, the error on the
training set will be too low, thus the performance might get worse. In other words,
deciding when to stop splitting is concerned with finding the best complexity (i.e.
under-fitting vs over-fitting).

To solve this problem of finding the right complexity, one can use the traditional
approach to parameter tuning, i.e. cross-validation, and continue splitting until
the error on the validation data is minimized. Furthermore, one can set a threshold
value for the reduction in impurity, i.e. if the best split candidate at a given node
reduces the impurity by less than the set threshold. This method bears two major
advantages over cross-validation. First, all training samples are directly used for
training the tree and second, leaf nodes can be in different levels of the tree, which
is preferable. Another simple method is to stop splitting when a node represents
fewer than some set threshold of points or some set percentage of all training
samples.

2.1.3 Pruning

As an alternative to stopped splitting, pruning can be used. In this approach, the
tree is fully grown until the leaf nodes have reached minimum impurity. Now all
pairs of neighboring leaf nodes are considered for elimination, and whose elimi-
nation yield a (small) increase in impurity is eliminated. Two different pruning
methods are typically used, cost-complexity pruning and reduced error pruning.

2.2 Tree bagging and random forest

Although Decision trees have many aspects that would make them the most suit-
able learning method for data mining, e.g. being invariant under scaling and/
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or more general transformations, immunity to predictor outliers as well as their
inbuilt feature selection, they suffer under one major drawback, their inaccuracy.
[11, p.352]

To overcome this drawback, we can make use of the so-called bagging technique
or bootstrap aggregation. Such ensemble methods are very common techniques in
machine learning since their goal is to reduce inaccuracy, i.e. make more robust
models. Bagging draws random samples with replacement (B-times) from a train-
ing set and and fits a model to these samples, it averages the prediction over the
collection of bootstrap samples, and by that reducing the variance. [11, p.246]

Algorithm 1 Random forest for Regression and Classification [11]

1. For b = 1 to B:

(a) Draw bootstrap sample Z* of size N from training data

(b) Grow a tree Tb to the bootstrap sample and repeat the following steps
for each terminal node until the minimum node size is reached:

i. Select m variables at random from the p variables

ii. Pick the best variable among the m

iii. Split the node into 2 daughter nodes

2. Output the ensemble of trees

As it turns out, trees are well suited for the bagging technique, since they are
able to catch complex structures as well as having low bias if grown deeply enough.
In addition, each tree generated by bagging is identically distributed so that the
bias of bagged trees is identical to that of individual trees and in order to improve
the model the variance has to be reduced [11, p.587-588].

Now the idea of random forest (Algorithm 1) is to further improve the vari-
ance reduction by de-correlating the grown trees. Correlation between trees in
a bootstrap sample can be due to strong predictors, or in other words, if one or
more features are very strong predictors for the target, many trees will select these
features, causing the trees to be correlated. In order to reduce the correlation of
the trees and still have a minimum variance, a method called random subspace
method is used at each split to randomly select input variables (subset of features).
More specific, for p input variables: Before each split, select m < p of the input
variables at random as candidates for splitting [11, p.588] Commonly,

√
p (rounded

down) or even 1 are used as values for m in a classification problem [11, p.588].
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2.2.1 Attributes of random forests

Random forests incorporate many attributes that make them extremely viable for
data mining and machine learning. These include Out-of-Bag Samples, Variable
Importance, their resistance against over-fitting and how they can deal with highly
imbalanced class distributions.

2.2.1.1 Out-of-Bag Samples

An attribute that comes with the use of bagging is that it can be used to give
estimates of the generalization error. These estimates are done OUT-OF-BAG
(OOB). Consider a bootstrap training set formed from one specific training set
consisting of observations Zi = (xi, yi). A random forest predictor that is con-
structed by averaging over only those trees corresponding to bootstrap samples in
which Zi did not appear, is considered the out-of-bag classifier. Thus, the OOB
estimate for the generalization error is the error rate of the OOB classifier on the
training set [6]. A study by Breiman [5] showed that OOB estimate is as accurate
as using a test set equal in size to the training set. Hence, using said estimate
removes the need of a set aside test set.

2.2.1.2 Variable Importance

Random forest can rank the importance of a feature in a classification problem
in a natural way, since the underlying basis are decision trees, which are easily
interpretable. However, since random forests rely on bagging, it is hard to see
which variables are important and which are not. Although the interpretability in
the sense of a single decision tree is lost, we can still obtain the importance of a
single predictor through the summation of the Gini impurity.

As defined above, the Gini impurity measures the impurity of the samples
assigned to a certain node (Node purity). Every time a split is made, using a
certain feature the Gini-Index for the descendant node is less than the parents
one. By measuring how much the Gini-Index decreases in a single tree over all
nodes that used that exact feature, one can calculate the importance of the features
in that tree. In order to calculate the overall importance of a feature in a forest,
just average over the importance value among all trees. Another way of measuring
the importance of a variable is the following technique as described in Breimans
original paper [6]. During the fitting process of a random forest to the data the
OOB error for each data point is recorded and averaged over the whole forest. Now
to measure the importance of a certain feature variable, the values of this feature
are permuted among the training data and the OOB error is again computed
on this new permuted set. The importance is then defined as the average of
the difference between the OOB errors before and after the permutation over all
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trees. Furthermore, this score is normalized by the standard deviation of the OOB
differences. A large score indicates high importance of a certain feature variable.
However, both methods of determining variable importance have some drawbacks,
as pointed out by Carolin et.al. [31]. If data includes categorical variables with a
variety of different levels, random forest tends to be biased in favor of those having
more levels.

2.2.1.3 Random forest and imbalanced data

Learning from an imbalanced class distribution can be an issue for a lot of machine
learning techniques. Random forest is not an exception to that, since it is designed
to minimize the overall error rate, and so it will tend to focus the prediction on the
majority class which leads to a poor performance when predicting the minority
class. As studies have shown ([15], [12], [9]) one way to counter this issue is to make
class priors equal, either by down-sampling the majority class or over-sampling the
minority class. Down-sampling seems to have the edge over over-sampling, because
over-sampling prunes less and therefore generalizes less than under-sampling [9].
Furthermore, Breiman proposed in a paper [13] 2 new techniques, e.g. Balanced
Random Forest and Weighted Random Forest. Balanced Random Forest is inspired
by the down-sampling idea and works the following way [13]:

1. Per iteration in random forest, draw a bootstrap sample form the minority
class. Then draw the same number of samples from the majority class (with
replacement)

2. Produce a classification tree from the data with maximum size, without
pruning. The tree is produced with the CART algorithm, except instead
of searching through all possible variables only search through a set of m
randomly selected variables.

3. Repeat the steps above for a number of times desired and aggregate the
predictions of the ensemble and output the final prediction.

Weighted Random Forest essentially follows the idea of cost sensitive learning. RF
classifier as well as other machine learning classifiers tend to be biased towards the
majority class, hence misclassifying the minority class results in a heavy penalty
[13]. That means, each class is given a weight, with the minority class having the
larger weight (i.e. higher misclassification cost). The weights are then used to
weight the Gini criterion for finding splits and in the terminal node to create a
’weighted majority vote’. The latter means that the weighted vote for a class is
the weight for that class times the number of samples for that class at the terminal
node. The final prediction is then determined by aggregating the weighted vote
from each individual tree.
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2.3 Evaluation of Classifiers

When doing classification, objects are classified by a classifier using different fea-
tures. Usually the classifier is not perfect and makes mistakes, i.e he puts objects
into the wrong class. From the relative amount of such miss-classifications one
can assess the general performance of a classifier. To do so, the ’true’ class has to
be known, i.e. we need to know if the prediction was correct or not. An example
would be a labor test, where the test subject could be tested positive and it is
true, positive and it is false, negative and it’s true, negative and it’s false. Those
four measurements are called, true positive, false positive, true negative and false
negative. They are usually represented by a confusion matrix.

From the confusion matrix, two measurements, Sensitivity or True-positive-
rate and Specificity or True-negative-rate can be extracted, they are defined as
follows:

Sensitivity =
#True Positives

#True Positives + #False Negatives

Specificity =
#True Negatives

#True Negatives + #False Positives

Different classifiers require different trade-offs between Sensitivity and Speci-
ficity. For example, we would want to have a Spam filter to not classify good
emails as Spam, or in other words, we would want the Specificity very high. A
common tool to asses the trade-off between Sensitivity and Specificity is the re-
ceiver operator characteristics curve - ROC.

2.3.1 The ROC - curve and the AUC

The ROC graph is a graph in which the true positive rate against the false negative
rate is plotted. Hence, a ROC plot illustrates the relative trade-off between benefits
(TP) and costs (FP).

The point (0,0) in the lower left corner of the ROC space describes the strategy
of never issuing a positive classification. On the other hand, the point (1,1) in
the upper right corner represents the strategy of unconditionally issuing positive
classifications. Hence, the point (0,1) represents perfect classification. Naturally,
one point is better than another if its TP rate is high and FP rate is low, i.e. if it
appears in the upper left of the ROC space.

The diagonal that can be drawn between the points (0,0) and (1,1) describes
the strategy of randomly guessing, a class. The lower left triangle is usually empty
since it would require a classifier that is worse than random guessing. However,
the decision space is symmetrical about the diagonal, therefore negating a classifier
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would turn all true positives into false negatives and all false negatives into true
positives. Hence, any classifier producing a point in the lower right can be negated
to produce a point in the upper left.

In order to compare a classifiers performance it is necessary to reduce the
two-dimensional illustration (ROC graph) into a single scalar value. A common
method is to compute the area under the ROC curve, in short - AUC. The AUC
will always have a value between 0 and 1 since it is a part of the unit square.
However, no realistic classifier would produce an AUC less than 0.5, because that
would make the classifier worse than randomly guessing.

2.3.2 Performance and over-fitting of random forests

In general a random forest classifier is rather robust, but if we take a dataset with
a huge number of variables, where the majority of them are irrelevant, the random
forest classifier is likely to perform poorly. However, if the number of relevant
variables increases, the performance of random forest becomes notably robust to
an increase of noise variables [11, p.596]. Another claim made by Breiman et.al.
in his original paper [6] is that it is nearly impossible for random forests to over-fit
the data. While it is certainly true that it is very unlikely for random forest to
over-fit it is not impossible. The average of fully grown trees can end up in a
model that induces variance, i.e. the model over-fits [11, p.596]. As shown by
Segal [16], by controlling the depth of individual trees in a random forest, a minor
performance gain can be achieved. However, using fully grown trees cost merely
anything and result in less tuning parameters.
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Chapter 3

Survival Analysis

Assessing the effect of a certain intervention on a population is often very impor-
tant. In clinical trials, for example in heart surgery, where the goal is to find out
how many subjects are alive after a certain amount of time after the surgery. Or
in cancer therapy, where the goal might be to assess the time until cancer relapses.
This time, which starts at a certain point and ends at the occurrence of a given
event is called the survival time. The analysis of group data is then called survival
analysis [10]. It is widely used in medical/biological studies, or in engineering,
where it is used to estimate the lifetime of a machine.

Such analyses often suffer under so-called censored data, more precisely - right
censored data. Right censored observation are produced by study subjects who
refuse to participate any longer in a study or when a subject does not experience
the specified event until the end of the study. Those right-censored observations
provide partial information, i.e. the event occurred or will occur sometime after
the end of a study. On the other hand, subjects can become part of a study at a
later time, i.e. the observation time is much shorter and the specified event may
not occur in that short time span. Although censored data only provides partial
information, it cannot be omitted [10].

3.1 Kaplan-Meier estimator

The Kaplan-Meier estimator offers a way to analyze such data. The resulting
survival analysis is called the Kaplan-Meier survival curve and is defined as the
probability of surviving in a given length of time while considering time in many
small steps. The analysis used three major assumptions [10]:

1. Censored subjects have the same survival prospects as non-censored subjects
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2. Survival probabilities are the same for each subject, i.e. early and late re-
cruited subjects have the same survival probabilities as subjects who are part
of the study for the whole specified time.

3. The event happens at the specified time.

The Kaplan-Meier estimate, or product limit estimate, involves the successive
multiplication of probabilities that an event occurred at certain points in time. Let
NL be the number of subjects living at start and ND be the number of subjects
that died, then the survival probability at any point in time t is given as:

St =
NL−ND

NL
(3.1)

which means the survival probability is given as the number of surviving sub-
jects divided by the subjects at risk. Censored subjects are not counted in the
denominator. The total survival probability until a certain time interval is then
calculated by multiplying all survival probabilities at all times preceding that time,
i.e. calculating the cumulative probability. Although survival probabilities at any
time interval are inaccurate, the overall probability of surviving at each point is
more accurate.

3.2 Kaplan-Meier plot

To visualize the Kaplan-Meier estimates, they are plotted as a step function. Such
a plot is called Kaplan-Meier plot. On the y-axis, the survival probability is plotted
and on the x-axis, the time past after the entry to the study is plotted. The
reason a step function is plotted is that the proportions of surviving subjects stay
unchanged between the events. A Kaplan-Meier plot for only a single group, as the
one shown in Figure 3.1a, is somewhat informative. It is much more interesting to
compare survival curves of different groups, e.g. compare the survival percentages
of a newer therapy with the standard one (Figure 3.1b). When comparing 2 such
curves, one can inspect the vertical gaps or the horizontal gaps. A vertical gap
means that at time t one group had a greater fraction of subjects living and a
horizontal gap means that it took longer for one group to experience a certain
amount of deaths.

3.2.1 Log-Rank Test

It is possible to compare 2 survival curves by looking at the proportions surviving
at any given time point. But this approach is flawed, since it cannot provide a
comparison of the total survival experience, but instead provides a comparison at
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(a) Kaplan Meier plot with 1 group
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(b) Kaplan Meier plot with 2 groups

Figure 3.1: Kaplan Meier plots created with the lung dataset from the R - package
survival
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any arbitrary time point. The most common method to compare the survival of
groups is the log-rank test, or Mantel-Cox test, which takes the whole follow up
period into account. Moreover, it has the advantage that nothing about the shape
of the survival curve or the distribution of survival times has to be known [4]. The
log rank test statistic L is defined as [10]:

L =
(O1 − E1)

E1

+
(O2 − E2)

E2

(3.2)

where E1 and E2 are the expected number of events in the respective group
and O1 and O2 are the total number of observation in the respective group. The
total number of expected events in a group, e.g. E1, is the sum of expected events
at each the time of each event of any group. The expected number of events in
any group at the time of an event is given as the product of the risk of an event
and the total number of subjects alive at the start of the event in that group. If
the total number of events in one group is known, i.e. calculated as the sum of
expected events at different times, the total number of events in the other group
can be calculated by subtracting the known number of events from the total of
observed events in both groups.

The result of the log-rank test is a t-value. Generally speaking, a t-value or
t-statistic is a standardized value that is calculated from sample data during a
hypothesis test. A t-value of 0 indicates that the sample results exactly equal to
the Null hypothesis. But the t-value alone doesn’t say much, so in order to be
able to interpret the result, the t-value has to to be compared to a χ̃2 distribution,
which yields a P-value. Depending on the P-value, the Null hypothesis, which says
that the two curves are not different from each other can be either rejected or not.
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Chapter 4

CASPeR - A Shiny UI For Risk
Assessment Of Cardiac Surgeries

CASPeR - Cardiac Surgery Prediction tool, is an application to help doctors do
risk assessment of cardiac surgery patients. The tool is written with the R package
Shiny. It comes with a full Windows installer for easy installation and requires
no prior R or in depth machine learning knowledge. Its foundation is a five step
random forest analysis, which consists of loading the data, preprocessing, model
training, model evaluation and a survival analysis using a Kaplan-Meier plot. On
top sits a Shiny UI which guides the user through the single steps.

4.1 R and Shiny

R [23] is a programming language and environment for statistical computations and
graphics. R offers many statistical and graphical packages and is highly extensible.
It is often the go to language in statistical research. One of the strengths R
possess is the ability to create high-quality plots with ease and the inclusion of
mathematical formulas.

The R environment includes a variety of software that makes data manipula-
tion, calculation and displaying graphics easy. For example, it offers a suite of
operators for calculation on arrays, especially matrices. It comes with a collection
of integrated tool for data analysis as well as graphics facilities to display the data
analysis. Finally, the language itself is well developed, simple and effective.

4.1.1 Shiny

Shiny [7] is an open source R - package that provides a powerful web framework to
develop web applications using R. A Shiny application consists of two parts: the
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user-interface definition and the server logic. This framework is all about making
it easy to wire up input values from a web page and make them available for the
R code to process and output on the web page again. In consideration of the
interactivity that is provided by Shiny applications, the input can change at any
time and the output values must be updated immediately to reflect the changes.
To do so, Shiny comes with a reactive programming library. Using this library,
every time a value that is dependent on a reactive value, or the reactive value itself
is changed, the right parts of the code will be re-executed, which in return will
cause all depending outputs to update.

Another great feature of Shiny is its extensibility. A variety of packages exist
that enhance Shiny apps, e.g. DataTables [35], shinyFiles [21], shinyBS [3], to
name a few.

4.2 Architecture

The architecture strictly follows the Shiny framework, though it can be split into
four distinct parts, namely data loading, data preprocessing, model training and
the analysis of the model and survival curve. The parts resulted directly from
the basic machine learning and data analysis routine (Figure 2.1). While only the
data loading process consists of more than one action, i.e. loading, cleaning and
visualizing the data, the other steps do pretty much what their name suggests.
During preprocessing the data is prepared to be used in the model training step,
where a model is trained upon the processed data. Finally, the model is evaluated
and the resulting prediction is used for performing a Kaplan-Meier analysis.

Moreover, CASPeR is designed to be distributed as an offline standalone appli-
cation. To do so, Google Chrome Portable and R Portable are used and wrapped
together with the CASPeR files into a Microsoft Windows compatible installer.

4.2.1 Loading the data

In order to load data into CASPeR, the R package shinyFiles [21] is used. Shiny-
Files allows the user direct access to the file system without ’downloading’ the files
to a temporary location. To avoid inconsistencies between different file formats,
CASPeR is designed to only handle CSV files. Currently 2 different CSV formats
are widely used, one uses a comma as a separator between columns and a dot as
the decimal point while the other (European) format uses a semicolon as a sep-
arator and a comma as decimal point. The latter can be troublesome because R
handles commas as separators. By default, CASPeR is set to handle the European
CSV format, but this can be easily changed through the UI.
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Since CASPeR is limited to CSV files only, data stored in other files, such
as Microsoft Excel worksheets, must be converted before it can be used. Unfor-
tunately, the conversion from other formats into the CSV format can sometimes
lead to artifacts, which could cause the application to crash. To take care of such
artifacts, the data is cleaned before it is processed any further, e.g. whitespaces
can cause features to be misinterpreted and are removed.

After cleaning, the data will be checked if the EuroSCORE parameters are
included as features. If not, the application will lock itself so it cannot be misused.
Otherwise, a matrix of dimension n x 2 is formed, where n is the number of
features occurring in the dataset. This matrix will store each feature name and
the corresponding type, i.e. if a feature is numerical it will be saved as numerical in
this matrix. Throughout the report, this matrix will be refereed to as typeframe.
Once all the feature types are identified the typeframe will look something like
this:

Weight numerical
ASA ordinal
stationary retention period omit

Table 4.1: Typeframe

The matrix is used in two ways. While the typeframe is essential for pre-
processing, it goes hand in hand with the data summary. The data summary is
designed to help the user find features with falsely dedicated feature types. How-
ever the typeframe also serves the purpose of a filter for the data summary.If the
user requests a trimmed version of the data summary, the typeframe is used and
statistical summaries of relevant features only are displayed.

4.2.1.1 Feature type identification

Identifying each feature’s type is an 8 - step process shown in Figure 4.2. Firstly,
the EuroSCORE features are extracted and are stored in a separate matrix with
their corresponding feature types. Next, each feature is transformed into a factor
variable. It will be then checked if it has between 4 and 6 levels or if any value
contains a Roman numeral (e.g. II), which was found to be indicative for an ordi-
nal. After extracting and saving the found features, the remaining data is check
for binary values. This is a straight forward check, if the feature possesses only
2 levels when transformed into a factor, it can be assumed to a binary variable.
Again each found feature is extracted and saved temporarily. Furthermore, the
reduced data is checked for numerical features, by simply using the is.numerical
function from R. Additionally, a dictionary of units (e.g. mmol) is used to even
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find features which would be not found through the is.numerical function, due to
various reasons. Finally, the dataset is checked for categorical features, which is
done based on the assumption that categorical values will have a < or > some-
where, or that their name includes a buzzword like code or type. The remaining
features are marked to not be used in the analysis.

After identifying each features type, all that’s left to do is to merge the 5
individual matrices into one big one. Final modifications about the feature type
assignment through the user interface are done directly on this resulting matrix.
Additionally, the typeframe can be saved to a CSV file for later use.

4.2.1.2 Data inspection

Two different methods for inspecting the data are provided. The first one is
through the R - package DT [35], which provides an R interface to the JavaScript
library DataTables, i.e. R objects such as matrices or data frames can be displayed
as tables on HTML pages. Furthermore, the library provides filtering, paging
sorting, and many more features. Unfortunately, depending on the size of the
data frame rendering the table can be slow. Since Shiny refreshes the web page
every time a user input is issued, it can cause the application to become slow. To
avoid that, the table is only rendered if the user wants to inspect it, i.e. the user
has to press a submit button. In addition, the HTML table produced by DT, a
new HTML page can be rendered through an R Markdown [2] file, that offers basic
summary statistics of each feature.

Basically, the file takes the data and the currently assigned feature types as
inputs. Then checks every feature if it is numeric. If so a table is created, which has
to have at most 10 columns, otherwise a summary table of the feature is produced
using the summary function from R. If the feature is not numeric, a table is
created. In either way, the resulting table is converted into an HTML table using
the package pander [8]. Unfortunately, the usage of the package pander requires
Pandoc to be installed. Pandoc is a universal document converter and the version
1.19.2.1 is distributed with CASPeR.
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Figure 4.1: Data-Flow-Diagram for CASPeR: It starts with loading the raw dataset, undergoes various checks and
removals. Next checks for the different feature types are done and the corresponding information is shown to the
user. Then the data is once more processed and a random forest classifier is trained on the processed data. In
the end the ROC, AUC, Kaplan - Meier plot as well as the variable importances are shown to the user for further
interpretation.
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Figure 4.2: Data-Flow-Diagram for the creation of the typeframe: After retrieving the feature names and assigning
the EuroSCORE labels, the dataset is subsequently reduced by the check functions and subsets are created, which
are then merged into the final typeframe
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4.2.2 Preprocessing

Prior to training a model the data usually undergoes extensive preprocessing. Al-
though the data is partly cleaned directly after loading, a more specific algorithm
is used to handle missing values and out of range values. In addition, the prepro-
cessing step is used to calculate additional information from a patient entry.

In a first step, the evaluation date of the data entries is checked if they meet
the specified survival time, e.g. if the specified survival time is 30 days and the
time between the evaluation date and the date of surgery is not 30 than the entry
will be excluded from the analysis.

Moreover, the Body-Mass-Index and the postoperative retention period are
calculated from the data. The latter is used to calculate the date of surgery and
the survival time of an individual patient. If the dataset is missing any information
that is needed to perform these steps, and analysis is not possible.

Once the additional information is calculated, the algorithm takes care of the
missing values and out of range values. If any feature consists of more than 25%
missing values it is excluded. Missing values of numerical features were imputed
with the median of non-missing values. Missing values of categorical, ordinal and
binary features were imputed with the most frequent values. Besides the treatment
of missing values censored numerical data is truncated, e.g. the ’< 0.1’ entry for
CRP is replaced by the limit 0.1.

In a final step, categorical features are encoded as binary features if they had
two possible values, and one-hot encoded if they have more than two possible
values. Ordinal features are transformed into positive integers.

4.2.3 Training and evaluation of the classifier

The random forest classifier is trained with the random forest implementation
in the R - package randomForest [14]. The parameter: survival time, nr. of
trees and sampling approach have to be chosen through the UI. The defaults
are, respectively, 30 days, 10001 trees and the standard sampling scheme used in
the random forest package. Furthermore, the possibility to run the training in a
parallelized mode exists. This is realized with the R packages doSNOW, foreach
and parallel. If the parallelized mode is selected the number of cores available is
detected and displayed to the user. He can then choose the desired number. In a
benchmark test, parallelization achieved a 63.54% time reduction using the default
sampling, 10001 trees and the dataset described in section 4.5.

However, the number of trees used to train the random forest classifier has to
be split by the number of cores used, i.e. the selected number of trees is not equal
to the actual number of trees used in the model. The actual number is the number
of trees selected divided by the number of cores used and rounded.
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In terms of variable importance, only the mean decrease in Gini impurity is
saved by the model, while the mean decrease in accuracy is discarded. This yields
the advantage of greatly reducing the computational effort. The performance of
the trained model as well as the predictiveness of the most important features are
given to the user via a ROC plot and the AUC. The computation of the ROC plot
and the area under the curve is done with the R - package ROCR [30]. Important to
mention is that the evaluation of the performance relies on the Out-of-Bag-Samples
(section 2.2.1.1). The use of OOB-Samples also reduces the computational effort
compared to N-fold cross-validation.

4.2.4 Survival Analysis

The Survival analysis is concerned with splitting the prediction resulting from the
trained random forest model into the target groups, i.e. alive and dead. Then a
survival curve is fitted to produce the Kaplan-Meier plot. The time axis of the
Kaplan-Meier plot is variable, which means the user can select what time frame he
wants to inspect. The survival analysis is done with the implementations provided
by the R - package survival [33].

To compare the 2 survival distributions, a log-rank test is done which is imple-
mented with the survdiff function in the R - package survival. Unfortunately, R
rounds numbers to 53 binary digits accuracy, which means that if a p-value reaches
this limit (1e-16) it is rounded to 0.

4.3 Distribution of the application

Having a Shiny application distributed as a desktop application bears two major
advantages:

• The user does not need any R knowledge to run the app

• The application installer can simply be downloaded

To make a Shiny app a local desktop application, a deployment skeleton is
needed. The backbone of this skeleton build R Portable (has all the necessary
packages installed), Google Chrome Portable. Chrome is run in app mode which
makes it look more like a native app. Finally, only two scripts are needed to
transform the Shiny app into a standalone application. More precisely, a script
that calls R portable non-interactively from where the second script is run to
actually launch the application. The final folder structure will look like this:

• C:\App\GoogleChromePortable
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• C:\App\RPortable

• C:\App\Shiny

– ui.R

– server.R

• C:\App\run.vbs

• C:\App\runShinyApp.R

Now, all that’s left to do is to compress it into a .zip archive and distribute
or for a more advanced solution InnoSetup [1] can be used. InnoSetup essentially
wraps the whole directory into a .exe file which acts as a setup wizard.

4.4 App Usage

When used for the first time it is advisable to set a working as well as a saving
directory. The latter is where the feature type matrix is saved to and loaded from,
in case the user wants to do so. Once the working and the saving directory are
chosen, the application must be restarted for the changes to take effect. The default
setting for the working directory and result directory is ’C:\’.After a working
directory and a result directory are specified the user can start with the analysis.
The general work flow consists of five steps:

1. Loading the data into the App and inspecting it either through the user
interface directly or through the summary method. Depending on the CSV
style the user can choose either one of the predefined ones (EU or Standard)
or select the loading options fitting the CSV file.

2. After the data is loaded the user can proceed and give the feature types a
finishing touch, i.e. he can reassign falsely assigned types of features through
the user interface. It is recommended to save the assignment from time to
time, to avoid losing the already done work in case of system failure or
application failure.

3. Once the user has assigned the correct type to each feature, he can proceed
to fill in the required fields, e.g. Weight, Height, etc. Once the user has filled
in the fields, the Train button will be unlocked and the user can proceed to
specify the number of trees, if the analysis should be parallelized (if yes, how
many cores should be used), which sampling scheme should be used and the
desired survival time.
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4. Subsequently to training the classifier the performance can be evaluated by
inspecting the ROC curve and the AUC value. Besides the performance, the
survival curve from the resulting prediction of the classifier is displayed for
inspection through the user. In addition, the log-rank test result is shown.

5. Lastly, the user can inspect the most important features according to the
mean decrease in Gini impurity displayed by a variable importance plot.
The 10 most important features as well as their predictiveness via a ROC
graph, are given.

4.4.1 UI - Description

The user interface of CASPeR consists of 4 main tabs, where three are concerned
with the analysis and one is concerned with the settings of the application. The
first tab, Data Overview, is used for loading the data and to gain some general
information about the data. The second tab, Data Preprocessing, is as the name
already indicates, concerned with handling the input necessary to preprocess the
data as described in section 4.2.2 and 4.2.2. In the third tab, Analysis, performance
evaluation, a Kaplan-Meier curve and the most important variables are shown to
the user.

4.4.1.1 Data Overview

The side panel of the Data Overview tab (Figure 4.3a) holds the option to load the
data file and the file indicating the feature types. When pressing the Input File
button the directory specified as the working directory is opened and all CSV files
in this directory are shown for selections. Once a file is selected it is loaded. To
inspect the data table the Show Data Table button must be pressed. Afterwards,
the table is presented, where each row corresponds to a complete patient record.
On the left side of the table, a green plus can be found. After invoking it the table
will expand and show all clinical parameters of the selected patient record (Figure
4.3b). To collapse the menu again, the red minus must be invoked. Moreover,
the user can select how many records should be displayed by using the Show 10
entries option in the top left corner of the table. If the user feels the need to
directly search for an entry, he can do so by using the Search function in the top
right corner (Figure 4.3a). Finally, to switch to next page of entries the slider at
the bottom of the table can be used.

Directly below the buttons Input File and Column Type, loading options
for the dataset can be found. The user can choose between two predefined options
as well as the option for custom loading parameters. The predefined options are for
the European and Standard CSV style. The custom option gives the user access
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(a) Data Overview tab with data table

(b) Expanded data table

Figure 4.3: Input File & Column Types: Load data file into the application. EU-
Format, std-Format, Custom: Choose parameters for loading the data file. Show
Data Table: Display an overview of the data. Show Data Summary: Open a new
browser with a basic statistical summary of the data. Show only relevant features:
Exclude features not used in the analysis, from the statistical summary.
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to change the following parameters: Separator, Quote, Decimal Mark, headline or
not. Moreover, the user must tell the application if the date format uses dots or
not. He can do so through the checking or unchecking the box below the button for
custom loading parameters. The lower section of the side panel carries the buttons
Show Data Table and Show Data Summary as well as the option Show only
relevant feature. As described above the Show Data Table will display the data
table, but after invoking the Show Data Summary button and a short wait
time a browser window is opened with a web page displaying summary statistics
of each clinical parameter existent in the dataset (Figure 4.4). The user can decide,
whether he wants to show all summary statistics for all parameters or only the
relevant ones, i.e. all features which are initially assumed to be relevant for the
analysis.

Figure 4.4: Small part of the data summary

4.4.1.2 Data Preprocessing

The tab Data Preprocessing holds the input field for required input parameters,
e.g. the names of the weight and height column, number of days after which the
mortality should be predicted, etc. (Figure 4.5a). Each of those fields is required
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to be filled out or otherwise the classifier training is not possible. The Evaluation
Date refers to the date when the dataset was obtained from a database. The
input format has to be in the following format: YYYY-MM-DD. For the fields
Weight, Height, Stat.- Pre. Retention period, Discharge Date and Date of Death,
the corresponding column names in the dataset must be specified. Last a target
column can be specified. By default, it is set to the prediction of the mortality
after a specified amount of days. If all fields are filled in, the Train button will be
unlocked. After pressing a new window will appear which handles all parameters
of the model. Additionally, the user can specify if he wants to run the analysis in
parallel mode or serial mode (Figure 4.5b).

The main panel holds five fields corresponding to the five feature type ordi-
nal, binary, categorical, numerical, omit. Each field holds elements named after
features. To reassign one feature type, the user can select a field and type in the
name of the feature he wants to assign to the certain type. A drop down menu
will appear (Figure 4.5a). The selected feature name is then removed from the
field it before was and added to the selected field. If a feature element itself is
selected via mouse click and deleted via the Backspace key or the Delete key, it
is automatically moved to the omit field. The application will refresh the whole
page after each change, due to Shinys reactive programming library.

4.4.1.3 Analysis

The last section used for the analysis only consists of 2 main fields. Three radio
buttons located in the upper left, and a plot area in the main panel. Depending on
what is selected through the radio buttons, the according plot will be displayed,
i.e. if the Kaplan-Meier analysis is selected the Kaplan-Meier curve is displayed.

The ROC plot’s special feature is that if the user hovers the mouse pointer
over the plot, a small window will appear displaying the area under the curve
value (Figure 4.6a) If the selection is switched from ROC to Kaplan-Meier, the
plot will change and the Kaplan-Meier curve for the predicted samples is shown.
Besides the plot, a slider will appear in the side panel, which is used to scale the
time axis (Figure 4.6b). Finally, if the selection is switched from Kaplan-Meier to
Variable Importances, the plot will switch once again into a variable importance
plot regarding the mean decrease in Gini impurity. As described in section 2.2.1.2 a
useful variable will tend to split the mixed labels into rather pure classes, meaning
it will give a relatively large decrease in Gini impurity, i.e. the variable will be
ranked high in the plot. The 10 most useful features are displayed (Figure 4.6c).
The button Show predictiveness opens a new window which shows the ROC
curve for each important feature. If the the user hovers the mouse pointer over
the plot the AUC value will be displayed.

30



(a) Left: Selection fields for preprocessing parameters. Right: Feature type fields and
dropdown menu for selecting a feature to assign to a new type.

(b) Parameters for model training.
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(a) ROC curve with the according area under the
curve.

(b) Kaplan Meier plot with adjustable time axis +
log-rank test result.

(c) Variable importance according to mean decrease
in Gini impurity
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4.4.1.4 Settings

The settings tab fulfills the sole role of setting a working directory and directory for
saving. Two text fields will display the currently selected directory paths (Figure
4.7). Besides, a button is below each of them which opens a window similar to
the one opened by the Input Files button, but instead of files the user chooses a
directory. Unfortunately, the window responds quite slowly to user input.

Figure 4.7: Settings tab with the working and saving directory selection.

4.5 Case study

After showing the foundation of CASPeR, architecture and UI layout, we shall
now use CASPeR to experiment with a real world dataset. Over the course of 6
years (01.01.2008 - 31.12.2014) 2253 patients underwent heart valve surgery at the
Kepler University Clinic Linz. After excluding 24 record due to different exclu-
sion criteria like, re-operation of the same patient, patients that need anterograde
cerebral perfusion due to aortic arch surgery and patients with ’grown up congen-
ital heart disease’ (GUCH). From the remaining 2229 patients data was collected.
All patient data was merged from different subsets ’Crystal Reports’ (SAPTM)
and anonymized. The data included, age, weight, height, gender, ASA score, all
parameters obtained from A-IQI Austrian Impatient Quality Indicators, all preop-
erative laboratory values, and the EuroSCORE I. In total, each record contained
139 structural parameters. About 37% of the data consisted of missing values. A
small demographic overview, obtained from the data summary function is given
in 4.2.

The prediction target of this experiment was the 30-days mortality. The mor-
tality rate within the 30-days after the surgery was 3.86%.
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Age (years) 68
Height (cm) 169.2
Weight (kg) 78
Male (%) 60.8
Female (%) 39.2
patients with cerebrovascular disease (%) 11.6
patients with peripheral vascular disease (%) 8.0
patients with endocardities (%) 5.1
patients with angina pectoris (%) 26.6
patients with arrythmia (%) 22.7
glomerular filtration rate (ml/min/1.73m) 74
BUN (mg/dl) 21.7
Kreatin (mg/dl) 1.126

Table 4.2: Overview of preoperative data

After careful inspection of the data, 18 columns were omitted due to redun-
dancy or correspondence to intra-operative or post-operative features. The re-
maining 124 features were then used to train two random forest models. Model
A was trained using the standard sampling scheme, which takes the total number
of samples, but sampling is done with replacement. Therefore, Model A is op-
timized for accuracy, while Model B will be trained with the Balanced Random
Forest sampling scheme which optimizes for balanced accuracy. More details can
be found in Section 2.2.1.3. Each random forest was constructed as an ensemble
of 10.001 trees, which ensures relatively robust and accurate models.

Both models yield good results in terms of AUC. Model A did slightly better
than Model B with an AUC of 0.8399 vs. 0.804. Which is only logical because
Model A optimizes for accuracy. When investigating the importance of features
in the two models we observe the EuroSCORE I as either the highest (Model A)
or second highest (Model B) ranked. Other features both models include are the
Glomerular Giltration Rate (GFR), Creatine, Last Creatine Level Preoperative,
Calcium. If we consider the individual ranking performance, we see that even
though EuroSCORE I is ranked highest in Model A it performs worse than GFR
with an AUC of 0.7044 vs 0.7409. However, Model B produces the same AUC
values for both features but ranks them differently. Furthermore, we observe gen-
erally lower AUC values for the top 10 features in Model A than in Model B. The
AUC values for the individual features are given in Table 4.3.

Noticeably ABE is ranked as the most important feature after EuroSCORE
I, although having a much worse ranking performance than GFR for example.
This seems to contradict the fact that ABE is ranked so high by the model. The
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Model A AUC Model B AUC
EuroSCORE I 0.704 GFR 0.7409
ABE 0.5192 EuroSCORE I 0.704
GFR 0.7409 BUN 0.7024
Creatine 0.675 Creatine 0.675
Cholesterin 0.5535 proBNP 0.6553
alcalic phosphatase 0.5748 Last creatine level preop 0.6499
Last creatine level preop 0.6499 Erythrocytes 0.6595
Fibrinogen 0.5507 Weight 0.6241
Thrombocytes 0.5418 Height 0.6161
Calcium 0.6304 Hemoglobin 0.6664

Table 4.3: AUC for individual ranking performance of most important features.

ROC - curve clears up this contradiction: the straight incline of the ROC curve in
the bottom left corner (Figure 4.8) indicates that high ABE values are observed
for patients who die within the first 30 days after surgery. Hence, if we split of
these high values, we would correctly classify about 10% of the deceased patients.
All other risk parameters including the EuroSCORE I, can be understood as ’the
higher the score the higher the risk’.

(a) Survival curve for Model A (b) Survival curve for Model B

Figure 4.9: Survival curves for both Models

The question, what the mortality rate for a high-risk and low-risk is given our
experiment, remains open. To find an answer, we shall investigate the survival
curves (Figure 4.9). The survival curve for Model A is obviously much sharper,
because the model is much more precise/accurate and predicts 11 patients as de-
ceased while only 10 are actually dead. The survival curve for Model B on the
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Figure 4.8: ROC curve for the feature ABE. Notice the sharp incline in the lower
left corner.

other hand, can tell us much more about the mortality rate, since the model is
optimized for balanced accuracy. The mortality rate in the first 30-days after
surgery for patients in the high-risk group is 13.89% (46 out of 331). The ex-
periment showed some interesting result. On one hand it is not obvious which
sampling scheme would fit best, but both produce very good AUC values. On the
other hand, both models trained only had 1 EuroSCORE parameter as a param-
eter of importance (excluding EuroSCORE I). Moreover, the results shows that
kidney-related parameters are of high importance for the model. The Glomerular
Filtration Rate even showed a better prediction performance than EuroSCORE I.
Besides the highly interesting result, the experiment somewhat showed how sim-
ple it is to carry out the such an analysis. Although, the feature type assignment
spawns a rather inconvenient step during the analysis, once it is done, saving al-
lows reusing the assignment provided that the future dataset contains the same
features.
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Chapter 5

Conclusion

Adequate risk profiling and predicting the outcome of a surgery are necessary to
provide high-quality information for patient and doctors alike. In the context
of consent of the patient, it is of crucial importance to discriminate high-risk
patients from low-risk patients. Yet clinicians are provided with a collection of
different predictive models to choose from. The three most prominent ones are:
the EuroSCORE I and II [18, 19], the STS score [28, 20, 29] and the ACEF (Age,
Creatine Ejection Fraction) [24]. Each model comes with its own advantages and
disadvantages, although a meta-study has found that the EuroSCORE II and the
STS score outperform the ACEF score on discrimination [32].

Nonetheless, all three models yield on major disadvantage compared to machine
learning methods: when one of the models is used on data that differs from the one
that was used for development, the results will differ [32]. This could be overcome
with modern machine learning methods. Especially random forest, seems to be the
go-to choice, due to its integrated feature selection, immunity against over-fitting
and how it can deal with imbalanced class distributions. Moreover, a Kaplan-Meier
analysis offers a great way to analyze the resulting prediction.

Unfortunately, machine learning methods are usually hidden behind program-
ming languages like R or Python. Luckily, the R package Shiny makes it possible
to develop outstanding applications, that can offer statistical analysis procedures
to people without any background in R. Availability of great additional pack-
ages such as DT, shinyFiles, and the option to run the application locally with
R Portable and Google Chrome Portable, enhances the user experience further.
Although R does not possess the greatest computational performance compared to
other programming languages, a package like Shiny makes it the go-to choice for a
project like CASPeR. Moreover, the computational performance can be bettered
by parallelizing certain routines, like the model training procedure. The reactive
programming library which keeps the application updated upon each user input,
and the option to use CSS for customization, support the development of nice
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looking and interactive apps. By keeping the user interface of CASPeR closely to
the general workflow of data analysis, it gives the user a better feeling of what
is going on. Admittedly, the feature type assignment could be designed in a way
such that it doesn’t seem overwhelming if the number of features increases.

Moreover, by enforcing certain features, the improper use of CASPeR is pre-
vented. Although, after installing, the source code can be altered through a simple
text-editor but this would require in-depth knowledge about R and would render
the aim of this project pointless. Distributing the application as a standalone desk-
top app was the right choice since it facilitates offline use, i.e. no uploads of large
datasets to a server are required. On the other side, a desktop application written
in R that uses a browser to display the analysis brings a natural disadvantage:
cyber security software. For example, McAfeeTM has shown to greatly worsen the
performance or even hinder CASPeR from starting. Unfortunately, shutting down
the Firewall does not solve this problem, because it seems that some Validation
process which cannot be shut down, is causing the issue. Up to date, a solution to
this problem could not be found.

In conclusion, CASPeR offers a predictive analysis pipeline, that gives doctors
detailed information about patients risk profiles with the help of random forest.
CASPeR does not require any expertise in machine learning or statistics and is
simple to use, and yet produces high-quality results on real-world datasets (AUC:
0.8399). With more research, it might be possible to extend the use of CASPeR
to other surgical data.
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Appendix A

Installation

The installation under Windows 10 is as follows:

1. At first a prompt will ask if the installer should be executed.

2. Choose your preferred language (English/German).(A.1a)

3. Select the destination location where CASPeR should be installed.(A.1b)

4. Decide whether a shortcut should be created or not and if pandoc 1.19.2.1
should be installed. Preferable location: ’C:\CASPeR’. Any other location
than ’C\Program Files’ is fine.(A.2a)

5. The application is ready to install.(A.2b)

6. Installation progress.

7. The setup is now finished. Depending on whether you installed Pandoc or
not a system restart might be required.(A.3)

(a) Selecting a preferred language.

(b) Select Destination Location

Figure A.1: Language selection and installation destination
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(a) Creation of desktop shortcut and instal-
lation of pandoc.

(b) Installation is ready

Figure A.2: Final steps before installation

(a) Installation is finished (b) Restart is required. Click Finish

Figure A.3: Installation finish with and with pandoc installation
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