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Abstract

In the practical part of the diploma thesis, the task of identifying the manufacturer and
model of a vehicle (VMMR) was implemented. In the first part, a dataset of vehicles
was compiled for machine learning purposes that consists of images from the Internet.
This resulted in over 6 million images of cars, buses, motorbikes and trucks usable for the
VMMR task. Next, as part of the experiments, a standard classification was used on a part
of the dataset, when the encoder is followed by a classification layer implemented using a
neural network. Also an approach with a supervised contrastive learning method, clustering
embeddings from encoder for easier classification, was used. Since the first mentioned
approach returned more accurate results, it was used in the further experiments. There, a
larger portion of images from our dataset was used for training a classifier for the VMMR
task. Other classifiers were trained on the Stanford Cars and Comprehensive cars datasets.
Lastly, when comparing the functionality of the classifiers on different datasets we have
found that the classifier trained on our dataset performed the best.

Abstrakt

V praktické casti diplomové prace byla realizovana tloha ozpoznani vyrobce a modelu
vozidla (VMMR). V prvni ¢asti byla pro tucely strojového uceni sestavena datovd sada
vozidel sestavajici se z obrazkt z Internetu. Takto bylo ziskdno pfes 6 miliond obrazkt
aut, autobusi, motorek a dodavek, pouzitelnych pro dlohu VMMR. Daéle byla v ramci ex-
perimentt na Cast datové sady pouzita standardni klasifikace, kdy na enkodér navazuje
klasifika¢ni vrstva realizovanad pouzitim neuronové sité, a pristup, kdy za pomoci metody
supervised contrastive learning byly embeddingy z enkodért shlukovany za tcelem snazsi
klasifikace. Jelikoz prvni uvedeny pristup vracel presnéjsi vysledky, byl pouzit v dalsich
experimentech. V nich se pouzilo vétsi mnozstvi obrazkl z nasi datové sady k natrénovani
klasifikatoru pro VMMR. Dalsi klasifikatory byly natrénovany na datovych sadach Stan-
ford Cars a Comprehensive cars. Posléze bylo pfi porovnavani funkcénosti klasifikatorti na
riznych datovych sadach shledano, ze klasifikdtor trénovany na nasi datové sadé si vedl
nejlépe.
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Chapter 1

Introduction

Vehicle classification (VC) is a scientific discipline focused on the transformation of input
vehicle information, into a discrete set of classes to which the vehicle belongs. The ap-
proaches and hardware used in the VC differ based on the task. These may be various,
from detection of the vehicle’s presence through classification of whether a vehicle is over-
weight to an estimation of its orientation or manufacturer recognition. The most commonly
used hardware is a camera as it is capable of covering most of the desirable information.
As well as many other fields of computer science, vehicle classification underwent a huge
progression over the last decades. The ongoing increase of hardware’s computational power
together with the rapid progression in the field of machine learning (especially in deep-
learning) allows for the creation of models which would not be possible to create in the
past. Due to this, many VC applications are used in the modern world - automatic toll
gates, parking space management, traffic security cameras or self-driving cars.

The main focus of this thesis is to perform a vehicle manufacturer and model recognition
(VMMR) task. This is, unlike a simple detection of a vehicle, a fine-grained classification
problem requiring a thorough knowledge of the vehicle’s attributes. To succeed, it is neces-
sary to get acquainted with different approaches of VC and select the correct approach to
vehicle observation. It was also needed to collect a new dataset of vehicles as the existing
ones are not comprehensive enough. We have hence collected the largest dataset of vehicles
we are aware of. To train a model on such a dataset, we have experimented with classifi-
cation approaches. Based on our findings, we have created a model outperforming models
trained on other datasets.

In Chapter 2, VC methodologies are overviewed to find the best approach to the VMMR
task. Chapter 3 focuses on vehicle datasets. The topic discussed in Chapter 4 is convo-
lutional neural networks. In Chapter 5 a new vehicle dataset is created. In Chapter 6
experiments are performed on a subset of the dataset to find the best approach to the
VMMR task. Finally, in chapter 7 a model is trained on a big portion of data from our
dataset and compared with models trained on different datasets.



Chapter 2

Vehicle Classification Systems

In the modern world, vehicle classification is used in many places. It is an underlying
approach for applications such as traffic flow monitoring, surveillance, parking systems or
autonomous cars systems. Because of the great variety of applications, the VC tasks differ
in their required outputs as well as the way of obtaining them. For example, while a parking
system works only with information about a vehicle’s presence in a given parking spot, an
autonomous co-pilot works with information on the vehicle’s speed, trajectory, position,
etc.

In this chapter, we will focus on different methodologies used to capture vehicle at-
tributes for the task of VC. We take a look at their principles, sensors they use and list of
VC tasks for which they may be used. At the end of the chapter, approaches are compared
against each other and the most suitable one is chosen for our task of VMMR.

2.1 Vehicle Classification Approaches

The methods of VC approaches can be classified by types of sensors used to obtain the input
information. Based on the required input information and application type, corresponding
sensor (or a set of sensors) is used, as each sensor provides different attributes which can
be measured using it. Sensors also differ in the quality of measurement, setup and price.
Based on used sensors, the methods can be divided as displayed in Fig. 2.1.

In Fig. 2.1, methods are divided into three main groups: non-intrusive, intrusive and
off-roadway based on the installation process of their sensor:

o Non-intrusive methods use sensors positioned near the place of interest and may
sometimes be used for several lanes (as with cameras). These sensors are generally
easier to install and maintain and are unaffected by the quality of the road.

o Intrusive sensors are installed in the road of interest. This may be done by placing
sensors into holes in the road, into tunnels underneath it or by placing them in a form
of an anchor. This makes the installation and maintenance process more difficult.

e The last group of sensors are off-roadway sensors. While intrusive and non-intrusive
sensors have local nature (they can be used only for the one place they were installed
on), these sensors are mobile, which is making them global nature methods. Off-
roadway methods usually make use of satellites, for example in a form of aerial view
images or GPS module data.
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Figure 2.1: Categorization of vehicle detection methods. Image based on Shokravi et al.
[30].

In the next sections, we take a closer look at some classes of methods based on their
used sensors. The group of GPS-based methods is omitted, as their off-roadway nature is
rendering them inappropriate for our task of vehicle and model classification for vehicles.

2.2 Image-Based Methods

This class of VC stands on processing a single or a sequence of images taken from the place of
interest. Sensors capturing the images may be surveillance video cameras, omnidirectional
cameras, aerial cameras, Closed-Circuit Television (CCTV) or normal cameras.

According to a review of available literature on VC made by Shorkavi et al. [30] and
Sundaravalli et al. [28], most VC research focuses on image-based methods. This may be
given by the increasing computational power of computers together with the amount of
information that can be received from a single image or a sequence of images. From one
image the information may be on the number of vehicles in the observed place, the vehicle’s
direction or the type and model of the observed vehicle. From several images, even the
vehicle’s speed can be calculated.

This wide spectrum of received information makes this class of methods suitable for
many applications. Images taken for different applications may look like in Fig. 2.2. Note
that while the sensor is the same, i.e. camera of some sort, the views of vehicles are different.
The position between the vehicle and the camera is a crucial design part of applications
using images and has to be set the way the application needs it to be. For example, in Fig.
2.2 a) we can get more information on the vehicle such as its direction, registration number
etc. at the cost of having less area covered by the camera, making the produced images
suitable for highway surveillance, for example. In Fig. 2.2 b) the situation is different as less
information can be retrieved on individual vehicles. This decrease in information is however
substituted by an increase in scope. Such image can be, for example, used by a parking
management system as the information on the vehicle’s presence can still be obtained.



Figure 2.2: A comparison of different images used in image-based methods. Image a) taken
from Maryam [25] b) taken from Amato et al. [1].

Image-based methods generally compose of pre-processing, feature extraction and se-
lection and classification:

1. The purpose of pre-processing step is to enhance the quality of the input image
to improve the accuracy of the classification. Some of the most commonly used
techniques are:

o Image segmentation — is used to locate the objects of interest in the image on
which the classification is performed. The output masks of the object can also be
used for background subtraction. An example of image semantic segmentation
can be seen in Fig. 2.3.

e Shadow removal — The object of interest may be detected together with its
shadow as seen in Fig. 2.4. To acquire sufficient results from the classifier, it is
necessary to separate them.

e Occlusion handling — This pre-processing step manages to keep track of the
object of interest even when it is in an occluded position.

2. In the feature extraction step, suitable features are extracted from the image to be
further used in the detector. SIFT, ORB and SURF algorithms are often used to ac-
quire feature vectors. Another used source of features is texture. Its feature extraction
methods may be of first or second order, depending on how much information from
the texture they utilize. Methods of first order do not use any structural information
from the texture and an example of such method output is a histogram of the tex-
ture. Methods of second order utilize structural information and an example of such
features may be angular and radial features of the texture’s power spectrum. Another
feature extraction approach is using neural networks as discussed in chapter 4.



Figure 2.3: An example of image segmentation. Every class of object (e.g. person, road,
and traffic sign) is coloured by its assigned colour. Image taken from Kanan [14].

Figure 2.4: On the upper row, vehicles were incorrectly detected with their shadows, on
the bottom row shadow removal was applied which corrected the detection. Image taken
from Taha et al. [34].

3. The classification is the final step of the VC using image-based methods. According to
Shorkavi et al. [30], the most commonly used algorithms are neural networks (NN) and
support vector machines (SVN) for classification and recognition tasks and Gaussian
mixture models (GMM) for image segmentation. Other algorithms mentioned are
forest tree, nearest neighbour, decision tree learning, genetic fuzzy classifier, principal
component classifier and Bayesian networks.

In Sundaravalli et al. [28], many of the compared VC methods were image-based,
however, none of the classifications were used for the VMMR task. The finest classification
granularity the algorithms provided was a classification of vehicles into groups based on
their size. Other solutions that focus on VMMR task, such as Carnet' or Platerecognizer?,

are commercial. This means that no reference solution is available.

2.3 Other Vision-Based Methods

Other sensors that may be used for VC that are vision-based are radar, LIDAR and infrared
cameras.

https://carnet.ai
“https://platerecognizer.com
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Radars are built on transmission of radio waves in predetermined directions. These
radio waves are then reflected, scattered and absorbed by objects on contact. The reflected
part of the transmitted signal is then received again by the radar, strengthened and may
be further analysed. Besides using radar only for general detection of vehicles, the Doppler
Effect may be utilised to detect the vehicle’s speed, acceleration and direction. The Doppler
Effect describes a change in a signal’s frequency and wavelength based on the relative speed
between the transmitter and receiver. Radars are insensitive to bad weather and offer a
non-intrusive form of measurement.

LiDAR (Light Detection and Ranging), similarly to radar, emits a signal in predeter-

mined directions which is then partially reflected, received and analysed. Instead of radar’s
radio waves, LIDAR emits laser rays. The distance of points that reflected the emitted laser
ray is calculated using the time between laser ray emission and its retrieval as depicted in
Eq. (2.1):
c-t
2
where Ad is the distance between LiDAR and the observed point, ¢ is the speed of light
and t is the time between signal emission and retrieval. Retrieved points from measure-
ment form a cloud point, that can be further modified, for example, to interpolate missing
points or to eliminate outliners. LiDARs possess the same VC possibilities as radars, with
increased vulnerability to bad weather conditions, as snowflakes or raindrops interfere with
the emitted laser ray. LiDAR systems are generally less expensive than radar systems and
offer easier application than radar systems.

The last vision-based methodology utilizes infrared light using infrared cameras. In-
frared light possesses a higher wavelength than visible light (760 nm) and lower than mi-
crowave light (1 mm). The infrared images received by infrared cameras, sometimes called
thermal, display the amount of energy produced by objects in them. This technology is
expensive, sensitive to environmental conditions and provides a low quality of acquired
images. It is most often used for night vision and battlefield vehicle classification.

Ad = (2.1)

2.4 Magnetic Sensor-Based Methods

Magnetic sensors detect distortion of the Earth’s magnetic field when a vehicle is passing
over it. The setup of magnetic sensors most commonly used for the task of VC is as part
of single and dual-loop detectors.

These methodologies use one or two consecutive inductive loops intrusively placed in
the road. When a vehicle rides over those loops a ferromagnetic effect is used for vehicle
detection. As it is explained in Klein et al. [17]: “The ferromagnetic effect produced by the
iron mass of the engine, transmission, or differential does not create a presence or passage
indication by the controller. When the heavy ferrous engine enters the inductive loop’s
detection area, it increases the inductance of the wire loop. This effect occurs because the
insertion of any iron core into the field of any inductor reduces the reluctance (i.e., a term
that corresponds to the resistance of a magnetic circuit) of the flux path and, therefore,
increases the net inductance. However, the peripheral metal of the vehicle has an opposite
effect on the inductance due to eddy currents that are produced. The decrease in inductance
from the eddy currents more than offsets the increase from the ferrous mass of the engine,
and the net effect is an overall reduction in the inductance of the wire loop.*

10



The advantage of using a double loop detector instead of a single loop detector is, that
the speed of the vehicle can be calculated with a higher precision, as it can be calculated
using times of vehicle detection.

Magnetic sensors-based methods can be used to detect a vehicle’s presence, speed, ac-
celeration and direction.

2.5 Load and Vibration Sensors-Based Methods

The last group of methodologies that can be used for VC is one using sensors utilizing the
movement and the mass of the vehicle.

A pneumatic tube is a sensor placed onto the inspected road and attached to it by
some fixture (e.g. nails). When a vehicle rides over the pneumatic tube, a rubber pipe
is quickly interrupted, producing a burst of air pressure. This burst is detected by the
controller located by the side of the road and handled appropriately. Pneumatic tubes can
cover several lanes of the road. A single pneumatic tube can be used to count vehicles and
measure their weight, based on the strength of air pressure. When several tubes are used,
speed and orientation can be measured as well.

Piezoelectric sensors generate a voltage on deformation. They are placed under the
observed road and when a vehicle goes on the road above the sensor, its pressure on the
road is recorded by a piezoelectric sensor underneath and an electric signal is sent to a
control box near to it. Piezoelectric sensors are sensitive to temperature variations. They
may be used for vehicle counting and further extended to be used for measuring of vehicle’s
speed, and orientation when placed in two subsequent places.

A strain gauge is a passive electronic sensor used for measuring the strain of the attached
surface using the dependency between conductance and the conductor’s geometry. An
image of a strain gauge is depicted in Fig. 2.5. The strain gauge sensor may be used for
the VC task by embedding it into the observed pavement and detecting the strain response
caused by vehicles. This kind of sensor may be even used for a low-grain type of vehicle
classification (motorcycle, bus, car etc.) as different vehicles cause different strain responses
on the road. Strain gauge sensors may be used for the same measurements as piezoelectric
sensors.

Figure 2.5: Strain gauge. Relative positions of conductive paths change the conductance of
the sensor and hence allow for a strain response of attached surface detection. The image
is taken from Wikipedia®.

Shttps://en.wikipedia.org/wiki/Strain_gauge
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The last types of sensors addressed in this chapter are seismic sensors. These sensors
detect and measure the motion of the observed road when it is shaken by a passing vehicle.
Similarly to gauge sensors, different types of vehicles have a different seismic footprints
and hence, seismic sensors could be used for vehicle type classification. Their calibration
is, however, problematic and so seismic sensors are most commonly used only for vehicle
counting.

2.6 Summary

In this chapter, a wide range of approaches to VC was covered. In the first part of this
chapter, we have listed those approaches into groups based on the technology they are based
on and these groups were further merged according to the intrusion of the road, they are
installed on.

The first groups of focus were the ones based on visual contact with the observed vehicle.
Those approaches were based on cameras, radars, LIDARs and ultra-red sensors. There,
we have discovered, that while the amount of information acquirable in poor conditions
(i.e. snow, rain) goes as in Fig. 2.6 a), with a camera being able to capture the biggest
amount of information, the price of the sensors is almost the opposite as depicted in Fig.
2.6 b) with the capable infra-red sensor being the most expensive.

b)

Camera

LiDAR LiDAR

[T\ e\
[T\ T\

Amount of information Price of sensor

Figure 2.6: Comparison of vision-based sensors: a) the amount of information observable
by the sensor in harsh environment b) sensor’s price.

Then, we discussed the groups of sensors based on magnetism, load and vibration. All
the possible uses of covered sensors are put in Table 2.1. This table is based on Shorkavi
et al. [30] and together with information in Section 2.2 renders that for the VMMR task,
it is necessary to use an image-based classification using NNs.

12



Method Cnt | Speed | Acc | Dir | Wght | Axle cfg | Type/Model
Image-based yes yes yes | yes no no yes
Radar yes yes yes | yes no no no
LiDAR yes yes yes | yes no no no
Infrared yes yes yes | yes no no no
Inductive Loops | yes no yes | yes no no no
Pneumatic yes yes yes | yes yes yes no
Piezoelectric yes yes yes | yes no yes no
Strain Gauge yes yes yes | yes no yes no
Seismic yes no no no no no no

Table 2.1: Comparison of VC methodologies. C'nt stands for vehicle counting, Speed for
speed measuring, Acc for acceleration, Wght for weigh measuring, Dir for direction recog-
nition, Axle cfg for axle configuration and Type/Model for recognition of vehicle’s type and
model.

13



Chapter 3

Available Vehicle Datasets

As we have concluded in the last chapter, for our task of vehicle manufacturer and model
classification, we are going to use NNs. To train a neural network, we need a dataset. In
this chapter, we take a closer look at several different vehicle datasets. At the end of the
chapter, a comparison of the datasets is performed and is decided whether any of them is
usable for our task.

3.1 Stanford Cars Dataset

Stanford Cars dataset [19] is a collection of images and annotations of cars that was compiled
by Stanford University in the year 2013. It contains 16 185 images of 196 classes of cars.
Photos of the dataset capture the cars from various, mostly frontal, angles with the camera
never being too high above the ground as in the case of surveillance cameras. Classes take
the form of the car’s manufacturer, its model name and the year of production, e.g. Tesla,
Model S, 2012. Besides the classes, each dataset’s entry possesses a bounding box denoting
the car’s precise position.

The dataset is split into two parts. The first, training part contains 8 144 images, while
the second, the testing part, contains 8 041 images.

Stanford Cars dataset is widely used in computer vision research, particularly for tasks
such as object recognition and classification. The dataset is public-available for non-
commercial purposes. An example of the dataset’s entries is displayed in Fig. 3.1.

Figure 3.1: Four examples from the Stanford Cars dataset [19].
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3.2 Comprehensive Cars

The next dataset is the Comprehensive Cars dataset [37], shortly called CompCars. It is a
public-available dataset introduced in the year 2015.

The dataset is composed of two parts - a web-based part and a surveillance-based part.
The web-based part contains images downloaded from the Internet (e.g. forums, public
websites) and consists of 136 727 images covering 163 mostly Chinese car manufacturers
and 1 716 car models from the years 2005 — 2015. Images of cars from this section are taken
from various viewpoints. The surveillance-based part is made of 44 481 frontal images of cars
obtained using surveillance cameras. This part of the dataset is annotated with bounding
boxes of detected cars and their colour.

Entries of the dataset are annotated with the manufacturer’s name, model, year of pro-
duction and viewpoint of the image. Besides, each manufacturer-model-year triplet of the
dataset (in the paper called just model), is labelled with five attributes — maximum speed,
displacement, number of doors, number of seats and type of car (e.g. SUV or hatchback).
These are present for various computer vision tasks and experiments on them are conducted
in the paper. Lastly, for each of the previously mentioned triplets, 8 additional images of
the car’s details are provided. Four exterior parts (i.e. headlight, taillight, fog light and air
intake) and four interior parts (i.e. console, steering wheel, dashboard and gear lever). An
image of details is presented in Fig. 3.2. The dataset contains 27 618 images of details of
cars. An example of the dataset’s entries is displayed in Fig. 3.3.

Figure 3.2: The CompCars dataset contains detail images for each model containded. From
top to bottom - headlight, taillight, fog light and air intake, console, steering wheel, dash-
board and gear lever.
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Figure 3.3: Four examples from the Comprehensive Cars dataset [37]. In the left colomn
are surveillance-based entries, in the right on web-based ones.

3.3 VMMRdb

The VMMRdb car dataset [33] was presented in 2016 and is publicly available. It is assem-
bled from 291 752 images labelled into 9 170 unique manufacturer-model-production year
classes, mostly covering the years 1950 — 2016.

The dataset contains web-searched images and hence it covers a huge variety of acqui-
sition devices, viewpoints of captured cars and light conditions. The main source of images
were U.S. online shops and the annotation for each entry was generated automatically based
on the title and description of each offer. An example of the dataset’s entries is displayed
in Fig. 3.4.

Figure 3.4: Four examples from the VMMRdb dataset [33].
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3.4 Vehicle-1M Dataset

This dataset [11] was created in 2018 to provide a sufficient amount of data for the vehicle
re-identification task experiments.

It was created from videos captured by surveillance cameras in different places and
during different times of day. In the videos, frames containing vehicles were detected,
annotated and used in the dataset. The dataset contains 936 051 images of 55 527 vehicles,
captured from various angles.

Fach image of the dataset is annotated with a vehicle ID label and the vehicle’s manu-
facturer, its model name and the year of production. There are 400 models present in the
dataset. Unlike the previous datasets, the Vehicle-1M dataset is not publicly available and
for the acquisition, a form' must be filled and turned in.

3.5 BoxCarsl116K

The BoxCars116K [32] dataset from 2019 was introduced as a successor to the original
BoxCars21k dataset [31]. It is a publicly available dataset consisting of vehicle images
taken from 137 surveillance cameras from different places in Brno, Czechia, mounted near
streets with a view of roads. As many cameras were used, it contains various view angles.

The dataset consists of two parts. The first part is the original BoxCars21k dataset
improved by corrections of wrongly annotated entries. The second part contains new images
taken from the videos obtained by the surveillance cameras on which vehicle detection was
performed. Detected vehicles were then annotated by several annotators who assigned them
manufacturer, model name, submodel and year of production (as in the original dataset).
While the original BoxCars21k contains precisely three images per track, the new part
contains an arbitrary number of images per track.

Both parts contain 27 496 vehicles located in 116 286 images. Totally, 45 different man-
ufacturers were registered, forming 693 unique manufacturer-model-submodel-year quater-
nions. An example of the dataset’s entries is displayed in Fig. 3.5.

Figure 3.5: Four examples from the BoxCars116K dataset [32]. Every captured image (left
column) has its mask of the vehicle (right column).

http://www.nlpr.ia.ac.cn/iva/homepage/jqwang/assets/pdf/Vehicle- 1MAGREEMENT.pdf
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3.6 Summary

In this chapter, we have seen five vehicle datasets. Based on the information provided for
each of them, we can observe that there are two general approaches to data retrieval. The
first approach collects data directly from cameras, usually using surveillance cameras. This
approach leads to smaller well-labelled datasets. The annotations tend to be human-made.
The other approach utilizes the Internet as a source of data. These datasets are generally
larger and contain wider variability of their entries. Their annotations are usually created
automatically, which may result in incorrect annotations.

In Tables 3.1 and 3.2, several attributes of discussed datasets are shown. Also the
dataset collected in chapter 5 is present (under Our Dataset name) to show its properties
compared to the other datasets. Only unique manufacurer/model pairs are counted in Our
Dataset’s ## images field. The attributes displayed are year of release, number of images
in the dataset, number of classes, a country in which vehicles were observed, source of
data (as discussed in the previous paragraph), variety of viewpoints from which images
are taken and types of vehicles in the datasets (e.g. motorcycles or cars). In the table,
insufficient parameters are underscored. It is evident that no dataset discussed in this
chapter is sufficient for our task of VMMR, on vehicles, including new ones, which would
cover vehicles from all over the world. Hence, a new dataset, that would allow for such a
task had to be created. It had to be created using the Internet available data as the sheer
amount of vehicles would not be coverable by a manual acquisition.

Name Year | # images | # classes | Vehicle country
Our Dataset 2022 6 124 103 9 064 Various
Stanford Cars | 2013 16 185 196 U.S.
CompCars 2015 181 208 1 716+ China
VMMRdb 2016 291 752 9170 U.S.
Vehicle-1M 2018 936 051 400 China
BoxCars116K | 2019 116 286 639 Czechia

Table 3.1: Information on vehicle datasets. Underlined values denote insufficient properties.
Insufficient properties are: too old datasets (5 years or older), too few images/classes and
focus on vehicles from one country only
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Name Data source Viewpoints Vehicles
. cars, buses,
Our Dataset Internet Various trucks, motorbikes
Stanford Cars Unknown Most is frontal cars
Internet part
Internet and unknown,
CompCars . . cars
surveillance cam | surveillance part
frontal
VMMRdb Internet Various, onh'ne cars
shops-like
ill
Vehicle-1M Surveillance cams Survei ar.lce Unknown
cams-like
ill
BoxCars116K | Surveillance cams Survei ar'lce cars
cams-like

Table 3.2: Information on vehicle datasets. Underlined values denote insufficient properties.
Insufficient properties are: unknown source of images, invariant viewpoints and inclusion
of only cars in the dataset and hence omitting other vehicles like motorcycles.
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Chapter 4

Image Classification Using Neural
Networks

To perform the VMMR task with satisfying results, we have to choose the correct method-
ology for NN’s application. As Convolutional neural networks (CNNs) were already used
for fine-grained classification in several vehicle-based tasks (Tafazzoli et al. [33], Yang et
al. [37] and Sochor et al. [32]) , it is reasonable to think that their usage for our task can
lead to good results. In this chapter, we discuss the principles of CNNs and concepts of
embeddings, self-attention and transformers.

4.1 Convolutional Neural Networks

Convolutional neural networks, originally proposed and implemented by LeCun et al. [20],
are a type of NNs containing convolutional layers. They are suitable for processing grid-like
data of any dimensionality where related information pieces are located close to each other.
Such data are mostly images in 2D, sound in 1D or medical volumetric data in 3D.

Convolutional layers are usually composed of 3 x 3, 5 x 5 or 7 x 7 learnable kernels
performing convolution to extract features from the input data. The feature extraction
using convolutional layers is translation invariant. After the feature extraction, the features
form a feature map which is the layer’s output. The kernels are applied to the input data
in a sliding window fashion where the distance between appliances of kernels is called a
stride. Convolution for 2D is defined in Eq. (4.1):

S(i,§) = (I« K)(@i,5)=>_ > I(m,n)K(i—m,j—n). (4.1)

There, I is the input image, K is a convolutional kernel, i, j are coordinates of a pixel in
I and m, n are sizes of a kernel. A graphical representation of 2D convolution is depicted
in Fig. 4.1.

After convolutional layers, pooling layers often take place to merge several values from
the feature map into one, reducing its size and hence the number of parameters needed for
further layers. The most commonly used size of a convolutional filter is a 2 x 2, reducing
the input data by 75%. There are two commonly used policies for merging. The first one is
called max-pooling, outputting the highest number from the filter. The second one is called
average pooling. This policy outputs the average of the number within the filter. Pooling
layers are applied to the input data in a sliding window fashion. A graphical representation
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Figure 4.1: A graphical representation of 2D convolution using a 3 x 3 kernel.

of a pooling-layer is shown in Fig. 4.2. A general topology of CNNs for classification can
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Figure 4.2: A graphical representation of pooling operation. In a) 2 x 2 max-pooling, b)
2 x 2 average pooling.

be divided into two parts. In the first part, convolutional layers are placed together with
other layer types (e.g. pooling layers) to extract features from the input image. The second
part contains fully-connected layers to use the previously extracted feature map as a feature
vector and perform the classification based on it. An example of such network architecture
is the ImageNet displayed in Fig. 4.3.

J Convolution + Rel.l
‘ Max pooling

Fully connected + ReLU

Softmax

Figure 4.3: An ImageNet architecture of CNN. Convolutional layers are located in the first
part while the second part consists of fully-connected layers. Image taken from Sharma
[29].

4.2 Embeddings

As defined by Koershen [18], “An embedding is a mapping of a discrete - categorical -
variable to a vector of continuous numbers®“. The mapping may be done in several ways.
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One method of mapping the variable, not using NNs is called one-hot encoding. This
approach encodes the categorical value into a vector v € B, where B = {0,1} and N is
the number of values, the variable may acquire. All values of the vector v are zero-valued,
except one, which is set to one. The position of this set value is different for each value and
hence every category is mapped into a unique vector.

This method has two major issues. The first issue is the length of the embedding. As
stated above, the length of the embedding corresponds to the length of the list of possible
values and for long lists (e.g., list of vehicle models, movies, songs etc.) the dimensionality of
embeddings becomes unmanageable. The other issue is a lack of any information contained
within the embedding, except an index of the element. Embeddings hence cannot be anyhow
compared.

Both of these drawbacks are absent when using the second approach to embedding
retrieval. This way, the embeddings are obtained as weights of a NN supervisory taught
to process the categorical values (encoded e.g., using one-hot encoding) to retrieve results
based on deeper knowledge of the input values (e.g., similarity or genre). This way, the NN
is trained to ‘understand’ its inputs and to create embeddings that would contain semantic
information. These embeddings are retrieved from the NN as weights of edges comming
into the embedding layer. The process of embedding retrieval is depicted in Fig. 4.4.

Neural network perespective Graphical perespective of
of embeddings embeddings

Input layer

Embedding
layer

Other hidden
layers

Output layer

Figure 4.4: From one-hot encoding, embeddings acquired from NN are acquired as weights
of edges connecting embedding layer to a corresponding input layer element.

As the embeddings obtained from NN contain semantic information, this leads to several
possible applications.

One such is a embedding vectors comparison. The comparison is based on a similarity
coming from the task the NN was trained for. To measure the similarity, a cosine similarity
or a dot product may be used.

Another application is their usage as an input into NNs. As they usually have lower
dimensionality than the original encodings of the categorical values, they can be more
easily processed by new NNs. Also, as they possess the semantics information, they are
often suitable for a wider spectrum of tasks than the original encodings.

The last usage mentioned here is visualization. As similar values are close to each other,
different groups of values and their relations to other groups can be observed, when the
dimensionality of the embeddings is reduced into 2 or 3 dimensions. This can be achieved
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using a t-SNE algorithm. The t-SNE is a method for visualizing high-dimensional data.
An example of such visualization of book genre is shown in Fig. 4.5.

TSNE Visualization of Book Embeddings Genre

IC rime novel

‘Science fiction novel

60

40 Fantasy novel
2 Children's novel
~ Fantasy
i
= 0
o Historical novel

-20 Fiction
Non-fiction
Novel

Science fiction

TSNE 1

Figure 4.5: Usage of t-SNE algorithm on embeddings creates clusters of classes. Image
taken from Koershen [18].

4.3 Attention

Attention, in the context of NNs, is a mechanism providing contextual information on
processed input sequences, allowing the network to ‘focus’ on related pieces of data. This
results in more effective usage of computational power.

Attention was originally as described by Bahdanau et al. [2], used in natural language
processing to improve translations between languages as translators often lost context of
the first part of the processed sentence when translating the later part of it. This was done
by building a matrix of context between the source text and the output text (so-called
cross-attention). When applied to computer vision, it is usually searched for a context
within the sequences (feature maps/feature vectors) and hence the same sequence is used
twice in the matrix (so called self-attention). In other words, the sequence is the input and
the goal is to compute weights of context between every pair of its features. Using this, the
original sequence may be updated to contain the context.

There are many ways to incorporate attention mechanism into a network. Three popular
existing attention modules are Multi-Head Attention [35], Bottleneck Attention Module [26]
and Convolutional Block Attention Module [36].

The multi-head attention, often called just self-attention layer, was designed as a part
of a transformer network and is also used in some of its variations for image processing
(e.g. Vision Transformers [9]). It is based on scaled dot-product attention, which calculates
attention values for two sets of sequences by converting the input sequences into so-called
Value, Key and Query vectors. The principle of this metric will not be further discussed
in this thesis as it exceeds its scope.

Using only one scaled dot-product block, it would only be possible for a feature (as
a unit of input sequence), to pay attention to one other feature, which is not desirable.
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Hence, a multi-headed attention block is used. It contains multiple scaled dot-product
attention layers that work in parallel and do not share any weights. Their number is a
hyperparameter of the model. The results of the parallel layers are concatenated and fed
into a fully connected layer. Graphical visualization of the multi-head attention layer is
shown in Fig. 4.6.

Multi-Head Attention

Scaled Dot-Product y .
Attention

TR

Figure 4.6: Illustration of a multi-head attention layer. Input vectors Value, Key, Query
calculated from the analyzed sequence. The layer is composed of several parallel scale dot-
product attentions. Image taken from Vaswani et al. [35].

4.4 Transformers

Another state-of-the-art principle used in NNs are transformers models. The original trans-
former described in A. Vaswani et al. [35], is a network relying solely on attention, elimi-
nating the usage of expensive convolutional or recurrent layers while maintaining the per-
formance.

While the original transformer network was designed for natural language processing,
several other variations of the transformer were created for the task of image process-
ing. Examples of these variations are Vision Transformer [9], Image Trasnformer [27] or
DETR [3].

Vision transformer (ViT) was proposed to follow the architecture of the original trans-
former as much as possible. A scheme of the networks is shown in Fig. 4.7.

The inputs are images € RF*XWXC that are split into square patches of size Tp €
RN* (P Q'C), where H is height of the image, W is its width and C' number of its channels.
P is a length of patch and N is the total number of patches (N = HW/P?).

Firstly, the patches are converted into D dimensional patch embeddings, by feeding
them in flattened form into a trainable linear projector.

To the beginning of the sequence of embeddings, a learnable embedding is added. It is
called 28 = Xlass, Where upper index indicates position within sequence and the bottom one
the number of transformer encoder layers it was processed by, 0 meaning none, L meaning
every. The state of this embedding at the output of the transformer encoder (z%) then
serves as feature vector y which is used for classification by prediction head (Eq. 4.5).
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Figure 4.7: A scheme of ViT network. Image is parsed into patches and projected into
patch embeddings. To them, x.,ss embending is concatenated and positioning embedding
is added. These sequences are then processed by layers of Transformer Encoder. Image
taken from Dosovitskiy et al. [9].

Before the initial sequence is fed into the transformer encoder, positional embeddings
are added to the patch embeddings to keep information on locality. The resulting sequence,
described in Eq. 4.2 is used as input of the encoder.

The transformer encoder consists of two alternating parts — multi-head attention (MHA,
Eq. 4.3) and MLP blocks (MLP, Eq. 4.4). The encoder consists of L pairs of MHA and
MLP block. Layernorm (LN) is performed before every block and residual connection after
every block.

20 = [Tejass; LB 02E; .2V E; |Epog,  E e ROXP E e RVIDXD (49)
z; = MHA(LN(z;_1)) + 21, l=1...L (4.3)
z; = MLP(LN(z})) + z, l=1...L (4.4)
y = LN(z) (4.5)

As noted in Dosovitskiy et al. [9], when ViT is trained on mid-sized datasets (up to
millions of entries), the results do not reach the performance of ResNet of comparable size.
This happens due to the absence of convolutional layers, which offer translation invariant
feature extraction and locality. These shortages are compensated when training on larger
datasets (14M — 300M images). In these scenarios, ViTs are able to outperform image
recognition benchmarks.

The ViT network is standardly trained on a large dataset and afterwards fine-tuned
for smaller tasks. This is done by the replacement of the prediction head, consisting of
MLP with one hidden block, with a new one, consisting of untrained fully-connected layer
outputting K values, where K is the number of classes.
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4.5 Summary

In this chapter, we have decided to use convolutional neural networks for our VMMR task.
We have discussed their mechanism, what layers they use, and the standard topology of
CNN. Next, we examined the attention mechanism in NNs and looked at the principle of
multi-head attention. Finally, we have seen transformers, state-of-the-art networks relying
only on attention mechanism and discussed how vision transformer translates the original
model from natural language processing into computer vision.
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Chapter 5

Dataset Acquisition

At the end of Chapter 3, we found that no available vehicle dataset is suitable for our VMMR
task and therefore we will have to create one of our own. Besides, we have concluded that
this dataset has to be based on data from the Internet, as we want to cover the widest
range of vehicles possible.

For the purpose of the VMMR task, it is sufficient to contain only manufacturers,
models and years of production of the vehicles in the dataset. However, as the dataset
may be further used for different tasks, additional information should not be automatically
omitted.

In this chapter, the methodology of this dataset creation is discussed.

5.1 The Dataset Acquisition Pipeline

When creating the new dataset, we followed pipeline as depicted in Fig. 5.1. The whole
pipeline can be split into three phases:

1. The first phase (red) covers the creation of a list of vehicles which are to be contained
in the dataset. As there was no list of vehicles, manufacturers and models to be
covered in the beginning, one had to be made.

2. The second phase (yellow) focuses on obtaining of entries that are contained in the
dataset. Using the lists from the previous phase, queries were created and passed
to an internet search engine to obtain desired images of vehicles. The downloaded
images were afterwards examined using NNs to ensure that a vehicle is present in
them and to get its bounding boxes.

3. The third phase (green) then finishes the pipeline by splitting the dataset’s entry list.
This was done in order to know which entries are usable for training, validating and
testing.

In the following sections, every step of the pipeline is explained in detail. The pipeline
was implemented in Python 3.10. Additional modules and packages used were Python’s
re module for work with regular expressions, request for downloading HTML websites,
pandas for local database operations, Beautiful Soup for processing downloaded HTML
files, duckduckgo_ search for interaction with the Duck Duck Go search engine and
imhdr for image format inspection.
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Figure 5.1: A scheme of dataset acquisition pipeline.

5.2 Semi-Manual Vehicle Acquisition

The first attempt to acquire a list of vehicles for our dataset was based on a semi-manual
approach, which was built on the idea that it would be manually chosen from which webpage
information should be extracted and how to obtain the information.

This approach used regular expressions to communicate which data to look for in the
code of the downloaded webpages. As it only collected information on the vehicle’s man-
ufacturer, model and year it was produced in, it was possible to use named groups in the
regular expression to assign the correct value to the corresponding attribute in the matched
pattern. Such regular expression could look like:<1i>(?P<man>[\S]*) (?P<mod>.*)</1i>,
where man and mod are named groups for manufacturer and model. If the information on
the manufacturer or year of production was not available on the website, it was possible to
set one statically for every vehicle found on it.

Once the analysis of the searched webpage was done, a proposal of entries found was
available in a file generated by the script. There, it was possible to make modifications
before the entries were permanently added to the database of all vehicles.

The problem with this approach became apparent when data were scrapped from
Wikipedia - one webpage may contain several structures to store data (e.g. in the case
of Audi' the webpage stores information on vehicles in 4 kinds of table and a list). This
way, the correction of proposed results becomes unreasonably time demanding and building
a huge dataset of vehicles would not be possible. Hence, in order to obtain a huge amount
of data, a fully-automatic approach to data collection had to be applied, since omission of
Wikipedia would lead to a reduction of obtained data.

5.3 Automatic Vehicle Acquisition

The other approach used automatic processing of web pages without any intervention from
human to obtain the largest possible list of vehicles. For this purpose a high-level web
scrapping was used where data were pulled out of HTML files automatically.

This solution is based on data retrieval purely from Wikipedia, specifically from tables
appearing in wiki pages of models (see Fig. 5.2). In addition to the minimal viable infor-
mation needed for the VMMR task, these tables also often offer other information, that
could be used for different tasks. For this reason, not only manufacturer, model and years
of production (if available) were saved for each entry. Entries also contain URLs of man-
ufacturer and model and, mostly in case of cars, information on generations of the model
and its body styles. Each table converts into one entry as discussed further in the chapter.

"https://en.wikipedia.org/wiki/List_of_Audi_vehicles
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Figure 5.2: An example of information table on vehicle model found on Wikipedia. Image
was split in the place of black rectangle.

This focus on tables at wiki pages of models is possible due to the existence of pages
aggregating wiki pages of manufacturers. These contain lists of wiki pages of models they
manufactured. The manufacturer-aggregating pages are always focused on a certain type of
vehicle. Eight vehicle types are covered this way — military vehicles, rolling stock, sailboats,
aircraft, buses, motorcycles, trucks and cars. We used all of them for scrapping information
on vehicles.

The scrapping consisted of 2 phases:

In the first phase, the goal was to obtain a list of manufacturers and URLs of their
wiki pages. Upon manufacturer’s name retrieval, it was passed to a function stripping it of
supportive parts on names (e.g. changing name Buses manufactured by Karosa to Karosa
or Volvo wvehicles to Volvo). Also, as some of the aggregation-pages contained too many
manufacturers to fit on a single page, they were spanned across several pages and were
accessible by a next page button. The function collecting names of manufacturers had to
be able to detect this situation and recursively scrape the other pages as well. At the end
of this phase, lists of manufacturers and URLs of their wiki pages were available for all the
vehicle types.

In the second phase, each manufacturer’s wiki page was processed. There, it was ob-
served whether references to subcategories are present (as in Fig. 5.3) as they possess other
lists of vehicles. In case of their presence, the function processing wiki pages of manufac-
turers was recursively called on them. Then, each model wiki page available was visited
and scraped.

On the wiki page of the model, it was tested whether it was already scrapped (e.g., the
model was listed under several manufacturers, or several links led to the same page). This
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Figure 5.3: An example of a wiki page of a vehicle manufacturer. Beside a list of models
manufactured it may also contain a list of subcategories leading to other lists of models.

had to be decided using MD5 coding of the page’s content as Wikipedia did not change
URL address when redirecting at the time of data scraping (see Volvo 200 series” and Volvo
240%) and the library used for HTML downloading was not able to detect such situations.
If the page was visited for the first time, its MD5 code was inserted into a list of visited
pages and it was searched for tables with information.

The processing of tables found began with their headers. It was used either as name
of the model or as name of the model’s generation, based on the order of the table within
the wiki page as the first tables on the wiki pages contain information on models while the
next ones on generations of the model (see Chevrolet Bel Air'). From the header’s text,
the name of the manufacturer was removed if present. If the header was used as a name of
generation, its model name was inherited from the first table on the wiki page. The entry
based on the first table of the page hence never had information on the generation as it
covered the model. Next, the entry’s other attributes were determined based on the table:

e Manufacturer — If it was not available in the table, the name of the manufacturer on
which’s wiki page the processed model was located was used.

o Years of production - The scrapping script had to handle various formats (e.g., 1988—
89 or 2003 to present). If production years were not available, the field was left
empty.

e Body types — For non-car vehicles, it was the type of vehicle. For cars, 41 body types
were registered. If none of them was present, the field was left empty. If the car was
manufactured in several body types, they were concatenated.

For every manufacturer from the aggregation pages, one CSV file was created and
entries that were acquired from the manufacturer’s list of models were saved into it. The

*https://en.wikipedia.org/wiki/Volvo_200_Series
3https://en.wikipedia.org/wiki/Volvo_240
‘https://en.wikipedia.org/wiki/Chevrolet_Bel_Air
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manufacturers files were placed into folders based on the vehicle type. While military
vehicles, rolling stock, sailboats and aircraft have their individual folder, buses, motorcycles,
trucks and cars share their folder as they are all road vehicles.

The scheme of entries within the CSV files is manufacturer, model, generation,
years of production, body types, wiki of model, wiki of manufacturer. Entries
example is

ford, fusion, , 2005-2020, sedan, wikil, wiki2

ford, fusion, first generation, 2005-2012, , wikil, wikiZ2

ford, fusion, second generation, 2012-2020, , wikil, wiki2

ford, fusion hybrid, , 2008-2020, sedan, wikil, wiki2

ford, fusion hybrid, first generation, 2008-2012, , wikil, wiki2
ford, fusion hybrid, second generation, 2012-2020, , wikil, wiki2
ford, fusion hybrid, fusion energi, 2013-2020, sedan, wikil, wiki2

with wikil being substitute for URLs of models pages (/wiki/Ford_Fusion_(Americas)
and /wiki/Ford_Fusion_Hybrid) and wiki2 being a substitute for URL of manufacturer
(/wiki/Category:Ford_Mondeo).

The number of unique extracted entries is shown in Table 5.1. It is important to note
that not all entries of aircraft are valid since there exist wiki pages of aircraft crashes that
contain tables similar to the ones the scrapper script aimed for (see Tajik National Guard
Mi-8 crash”). These were, however, also added into the list of models by the script.

Vehicle type # of manufacturer pages | # of entries
Road vehicles 364 14 080
Aircraft 1320 10 957
Military vehicles 10 90
Ships 95 4 337
Rolling Stock 20 1023
Total 1 809 30 489

Table 5.1: Numbers of manufacturers visited per vehicle types and number of entries
scraped.

Overall, the result of the automatic acquisition of vehicles list was a huge success, as
not only a huge amount of road vehicles was covered, which would not be possible using the
semi-automatic approach from the previous section, but also additional information was
retrieved and other types of vehicles were covered.

5.4 Generating Vehicles Database

Once the information on vehicle data was extracted, it was scattered across several folders
and hundreds of files. For better manipulation, it was found suitable to merge the collected
data into just a few files with a format that would restrict the redundancy of information.

As the focus of the thesis is a VMMR task on road vehicles, we found it reasonable
to split the data into files by type of vehicle — aircraft, military, ships, rail stock and road
vehicles. YAML was chosen as a sufficient format as it does not repeat information and

5https ://en.wikipedia.org/wiki/2010_Tajik_National_Guard_Mi-8_crash
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remains human readable unlike many other formats (e.g., JSON). The scheme of YAML
record for a single manufacturer was designed as depicted in Fig. 5.4. It can be seen that
the whole file is made of a list of manufacturers. Those contain a list of countries, they
manufacture in®, their wiki page and a list of models they manufacture. A single model
consists of a list of generations of the model (‘None’ is assigned to entries without any
known generation). Finally, a generation consists of body types it was created in (e.g.
sedan, pick-up, hatchback), its wiki page and a list of years in which it was produced.

- manufacturer_name:
country:
- country_name
wiki: manufacturer_url
models:
- model_name:

- generation_name:
bodyClass: body class
wiki: model_wiki
years:

- from-to

Figure 5.4: A scheme of YAML entry of a manufacturer. Variables manufacturer _name
stands for the name of manufacturer, country name for the name of country it manufac-
tures in, manufacturer__url for address of its wiki page, model _name for the name of model,
generation_name for the name of the model’s generation, body class for the type of body
it was manufactured in case of cars, for other vehicles this field contains a type of vehicle.
The model__wiki stands for the address of the model’s wiki page and from-to stands for
years between which the generation of the model was made.

As names of manufacturers for the YAML files were taken from the CSV entries, where
data from the information tables were contained, the list of manufacturers changed, com-
pared to Table 5.1 as the information tables sometimes listed different manufacturers than
the ones, which wiki page led to the model page. The amounts of manufacturers, models
and generations in YAML files are in Table 5.2. To be counted, generation had to be differ-
ent from ‘None’ (as discussed above). Between types of vehicles in the road vehicles group,
the number of models is distributed as follows: cars — 7 000, motorcycles — 1 173, trucks —
505 and buses — 486.

Although this step was correct as it utilized information directly from pages of models,
it also introduced a new problem: some of the different names of manufacturers address
the same manufacturer (e.g. ford motor company and ford). This situation emerged since
on Wikipedia, several models by the same manufacturer used different names.

This problem was addresed by manually creating a CSV table file, with scheme of name,
merge. Here every manufacturer present in Road vehicles category would appear under its
name present in the YAML in the name column and in the merge column, its merged name
would appear. If merging occurred, this merged name would be in capital letters. If not,

6https ://en.wikipedia.org/wiki/List_of_car_brands
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Vehicle type # of manufacturers | # of models | # of generations
Road vehicles 757 9 064 4671
Aircraft 1 828 10 956 18
Military vehicles 19 92 0
Ships 95 4 337 2
Rolling Stock 47 955 85
Total 2 746 25 404 4776

Table 5.2: Numbers of manufacturers, models and generations contained in YAML files per
vehicle type.

this merged name would be the same as the original name. An example of entries in this
file is:

alvis, alvis

a.l.f.a., ALFA ROMEO
alfa, ALFA ROMEO

alfa romeo, ALFA ROMEO

It can be seen that while the alvis manufactuter was not merged with any other manufac-
turer, the a.l.f.a., alfa and alfa romeo were united under one manufacturer (as a.l.f.a. and
alfa refer to the original name of the manufacturer).

Except for the historic names of the manufacturers, other most common reasons for
merging were different names (e.g. Volvo and Volvo cars), manufacturer being a racing
team under a different manufacturer (e.g. M-Sport is merged to FORD), and, mostly for
Asian manufacturers, manufacturers being a marque of a bigger manufacturer (e.g. Senova
is merged to BAIC).

This way, the original 757 road vehicles manufacturers were reduced to 399 entries. No
changes were however applied to data themselves as these merges only appear in the CSV
table from where they can be applied during experiments and can be changed if needed.

This part of the pipeline reduced the number of files to work with from 1 809 to 5 and
changed the format of saved data from CSV to YAML to improve readability and lower the
amount of redundancy.

5.5 Entries List for Downloading Creation

The last step before image acquisition was the creation of lists of models to be followed
during the process of dataset downloading. These lists were obtained by reduction of
information present in road vehicles YAML file and its serialization.

Only road vehicles file was processed because they are the main focus of this thesis.
The serialization was done into files in CSV format. There were created 4 files, one for
each type of vehicle in road vehicles — buses, cars, motorcycles and trucks. This was done
in order to logically split the dataset and to be able to perform downloading in parallel on
several machines.

Each entry of the CSV file consisted of name of the manufacturer, model name and year
of production. There was an entry created for each year in years interval in the YAML
file. Hence, a model produced between the years 1989 — 1998 would make for 10 entries. If
no value was available for the model, any Year value was set. If model consisted of several
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generations, the first was used as it usually described the whole model. The sizes of the
lists are shown in Table 5.3.

Vehicle type | # of entries
Cars 53 845
Buses 5 225
Motorcycle 9 292
Trucks 6 830
Total 75 192

Table 5.3: Numbers of entries to be downloaded per type of road vehicles.

5.6 Image Downloading

After obtaining lists of vehicles to download, the next step was the automatic download of
images which would make the backbone of our dataset.

Firstly, the means of image acquisition had to be chosen. A DuckDuckGo was found
suitable as a search engine because it does not personalize the results of the search. Two
approaches were tested for its utilization. The first approach used a search of images
to retrieve their metadata based on a query. The metadata were then tested on their
suitability (as discussed below) and the satisfactory images were downloaded serially. This
approach will be addressed as ddg_serial from now on. In the second approach all images
were downloaded in parallel and tested afterwards. This approach will be addressed as
ddg_parallel from now on. Durations of these approaches for the acquisition of the
first 100 images obtained from a query are displayed in Table 5.4. As it can be seen, the
ddg_parallel, despite downloading images that are not used, outperforms the ddg_serial
approach more than 4 times and hence was selected to be used.

ddg_ serial | ddg_ parallel
T1 70.68s 14.35s
T2 69.22s 15.43s
T3 66.74s 17.08s
Average 68.88s 15.62s
Relative 1 0.23

Table 5.4: A comparison of two image retrieval approaches on acquisition of 100 images in
three runs.

For each entry of the lists generated in the previous section a query for the search
engine was generated as a concatenation of vehicle, manufacturer, model and year (e.g., car
chevrolet bel air 1963). If an entry contained any Year value of year, this part of the query
was omitted. For every entry, up to 100 images were downloaded and processed.

The validation process consisted of a size check and a format check. The size check
controlled whether the width and height of image are above 256 pixels. This was done to
ensure that images will be usable for the VMMR task. A format check then subsequently
inspected the input image to determine its format. Thirteeen formats’ were recognized.

"https://docs.python.org/3/1library/imghdr.html
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This control was performed to discard images of unknown or corrupted formats and to unify
the names of the formats so that the same formats are expressed uniformly (e.g., files of
JPEG format may have extensions .jpg, .jpeg, .JPEG etc.). Insufficient images weren’t
used any further.

The images that passed the process were renamed to subsequent numbers, with each
set of images downloaded from a single query starting from 0, and ending at N — 1, where
N is the number of images that passed the testing. The images were then moved into the
hierarchical structure of the dataset in format: vehicle/manufacturer/model/year as
displayed further, in Fig. 5.5. To prevent conflicts with the filesystem, slashes and ending
dots were removed from names of manufacturers and models.

Besides images saving, for each image a file containing metadata was generated. These
files holds the same name as the image and have a .meta extension and contain the following
key:value information:

e image_url — a URL of the downloaded image

e width — width of the image in pixels

e height — height of the image in pixels

e url — a URL of web page containing the image

e title — title of the web page

e query — a query based on which the image was found

o source — a source from which the DuckDuckGo received results (usually Bing)

o format — the format of the image. In case of reference (see below), ref value is present
e timestamp — timestamp of the time of download

e md5 — md5 code of the image

Lastly, as it was often searched for models in subsequent years, where no facelift was
done, this led to repeated appearance of a single image in the dataset. To prevent the
unnecessary usage of disk space, we have employed a reference mechanism. URL address
of every downloaded image was kept and for every newly downloaded image, its URL was
checked against the set of URLs in the dataset. If its URL was already present, instead
of moving the image into the dataset, only a small file with .ref extension was generated
containing the path within the dataset to the already-present image. This set of URLs
was generated for each vehicle type individually, so the individual parts could be used
independently as stand-alone datasets. The overall scheme of the dataset is depicted in
Fig. 5.5. The numbers of acquired images are shown in the Table 5.5.

In this step we acquired a huge number of images from the Internet that would be the
backbone of our dataset. These images then needed to be further processed based on their
content.

5.7 Vehicle Detection

The previous step of the pipeline produced a dataset of vehicles. However, we did not
acquire any information on which entries were usable, as some of the entries did not possess
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Other entry

vehice|  (ecary 7 > reference
Manufacturer @
Model (bel air)
Year 1963
Entry | 0.meta 1.meta 1.jpeg ‘47.meta 47.png

Figure 5.5: A hierarchical scheme of dataset structure. Vehicle, manufacturer, model, year
and enty levels are present. One entry may refer to another. This follows both the logical
structure of the dataset and the way the files are stored on disk as there are four layers of
folders after which entries are stored.

Vehicle type | # of images | # of references | Total

Cars 3 046 120 1616 230 | 4 662 350
Buses 175 189 259 449 434 638
Trucks 288 567 277 333 565 900
Motorcycles 530 413 308 427 838 840
Total 4 040 289 2 461 439 | 6 501 728

Table 5.5: Number of images downloaded for each type of road vehicle.

images of vehicles (e.g., contained only the motor of the vehicle) and even if they did, the
information on their position was missing. To address this problem, we used a pre-trained
neural network to locate vehicles in the image and extract their bounding boxes.

The first task was to choose a convenient pre-trained model providing suitable results.
For this task, four models provided by mmDetection® were chosen, each trained on the
COCO dataset [21]. Three of the networks performed instance segmentation: Maskformer
[5], Mask__RCNN [12] and Panoptic_ FPN [16]. The last performed only detection: TOOD
[10]. Their empirical evaluation on a small data subset is presented in Table 5.6. Compar-
ison of results from the networks is displayed in Fig. 5.6.

Network Note

Maskformer Tends to ‘pour out’ of the real boundaries of the vehicle
Mask_RCNN Better than the Maskformer, still sometimes pours out
Panoptic_ FPN | May perform cut-offs from vehicles

TOOD Precise bounding boxes even in cases where previous networks failed

Table 5.6: Notes on different tested networks used for object detection.

The TOOD network provided the best results, hence it was used for further tests on
images containing difficult light conditions, nonstandard colour palettes and peculiar vehi-

8https://mmdetection.readthedocs.io/en/latest/
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(n) OK | (o) OK (p) OK

Figure 5.6: A comparison of vehicle detecting NNs. Maskformer (first row) tends to ’spill’
the detection outside the vehicle (a, d). Mask_ RCNN (second row) a Panoptic FPN (third
row) sometetimes cut off parts of vehicles (f, g and 1). TOOD (fourth row) performs good
on all the figures the other networks failed on. Original images taken from the Internet.

cles. As the TOOD network was able to manage them (examples in Fig. 5.7), it was chosen
to be the network used for detection of vehicles and their bounding boxes extraction.

The vehicle detection and bounding box extraction was performed on resized images so
that no dimension was greater than 800 pixels. This was done to improve the performance
of the network. Next, the inference was obtained from the network. All the detected objects
within the image were saved. Then, a detection of the main vehicle (the object that would
match the query provided to the search engine) was performed.

From the set of detected objects, every object with a low confidence was removed. This
was done due to the observation that such objects were often badly detected or labeled. As
a threshold, a confidence of 0.3 was used. Removed were also all objects too small to be
used for the VMMR task. Objects with a width lower than 128px or a height lower than
90px were considered as such.
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Figure 5.7: The TOOD model was able to perform well on a) blurred, night time images,
b) atypical vehicles ¢) images with non-standard colour spectrum. Original images taken
from the Internet.

Then, to handle cases, when several vehicles were found in the image, every remaining
entry was evaluated based on its score which was calculated using its size, detection’s
confidence and a relevance of the entry’s class. The score was calculated according to Eq.
5.1:

P=R-W-H-C, (5.1)
where W and H are dimensions of the evaluated bounding box and C' is the confidence of
the detection. The value R is calculated according to Eq. 5.2:

L ifVa=Y,
R=<0.75 ifVy€e s, (5.2)

0, otherwise.

There, V; is the class of the bounding box (from the COCO dataset), V), is the class of
vehicle being processed, and 5, a set of classes similar to the processed type of vehicle
with which it may have been swapped. The S, for motorcycles and buses is S, = (), for
cars S, = {truck} and for trucks S, = {car, bus}. The values were set so that the detected
vehicles are always preferred, but in case of their absence, similar vehicles may be also used.
After each remaining entry was evaluated, the main vehicle was selected as:

e If no non-zero valued entry is present, the image has no main vehicle

o If one non-zero value is present, it is the main vehicle of the image
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e If more than one non-zero value is present, the two vehicles with the highest values
(Py, P») and bounding boxes (Bj, B2) are compared. If P; > 1.2- P, the highest score
is significantly higher, and the vehicle with the highest score is the main vehicle. Also,
when IoU”(B1, Ba) > 0.85, they are the same vehicle and the vehicle with bounding
box Bj is the main vehicle

e Otherwise, the image has no main vehicle

This way, it was possible to use images even in cases when several vehicles were detected
within.

Results of the detection were then saved into files of the same name as the input
image with a .bbox extension. There, each detected object was saved in COCO class,
confidence, left_offset, top_offset, right_offset, bottom_offset format. An
example of an entry is:

motorcycle,0.73,79,398,767,812
person,0.86,747,407,945,720
person,0.84,328,236,622,701
person,0.76,100,331,318,530
motorcycle,0.63,721,549,1063,803
motorcycle,0.54,0,483,166,770

The offsets were upscaled based on the resizing ratio of the image, as the values from
inference were produced for the downsampled version of the image. The first row of the
file contains the main vehicle of the image. If no main vehicle for the image was found, the
first row contains value 0. For our experiments, the main vehicles of images are used.

At this point of the pipeline, every image of the dataset had a file containing list of ob-
jects located within the image. It contained its classes, their confidence and their bounding
boxes. The first row of this file contained the main vehicle of the image.

5.8 List of Dataset’s Entries Creation

The last step of the dataset acquisition pipeline was the creation of entries lists and their
division into training, validating and testing subsets. These are needed for the creation of
models further in the thesis.

To acquire such subsets, a list of all usable entries for every type of vehicle was created
first. There, every image containing a main vehicle was located, as well as every reference
file referencing an image containing a main vehicle. These lists are composed of two CSV
files vehicle__available and wvehicle _meta, where vehicle is replaced with a specific vehicle
type (e.g., cars_available and cars_meta), with scheme of the vehicle _available being in
the order of appearance:

e IDX denotes the order of entry in the list

e VEH, MAN, MOD, YR, ID are parsed way to the entry. This information can be used
as a ground truth for the VMMR task

e« IM_VEH, IM_MAN, IM_MOD, IM_YR, IM_ID are parsed way to the referred entry. In
case of images the values are the same as in the previous point

9ntersection over Union

39



e IM_FORM is the format of referred image. When joined with the previous bullet point
using the ’/’ character, it provides path to the referred image

e CLASS, CONV, BB_L, BB_T, BB_R, BB_B are the same values as in first lines of .bbxs
files

o COMBINED is join of VEH, MAN, MOD, YR, ID using the ’/’ character

The scheme of vehicle metais IMG_URL, ORIG_W, ORIG_H, URL, TITLE, QUERY, SE,
FORMAT, TIMESTAMP, MD5, which copies the information in meta files discussed in Section
5.6. An entry from wehicle_available may be connected to its metadata using the IDX
attribute. The whole list is split into two files as the vehicle meta files take up a lot of
space and there is no need to load them into memory for our task. The numbers of entries
are displayed in Table 5.7.

Vehicle type | # of usable entries | # of entries in total
Cars 4 428 419 4 662 350
Buses 331 500 434 638
Trucks 543 835 565 900
Motorcycles 820 349 838 840
Total 6 124 103 6 501 728

Table 5.7: Numbers of usable entries in the dataset per vehicle type.

Finally, the lists were split into training, validating and testing sets. As a splitting ratio,
we chose 0.7/0.15/0.15. Each vehicle type list was processed separately. This splitting was
done in three steps:

o In the first step, the vehicle available list was shuffled and split in the given ratio.

e As the list contained images and references, it may happen that a reference entry
ended in a different subset than the image. This had to be dealt with, otherwise,
the validation and testing of models could be performed on the same images they
were trained on. In this step, reference entries with their referred images in different
subsets are found and removed from subsets.

o Lastly, these reference entries are put into the same subsets as their referred images.

This way, the final subsets are not precisely in the given ratio.
sufficiently close as can be seen in Table 5.8.

They are, however,

Vehicle type | Train size | Val size | Test size | Exact 70% | Exact 15%
Cars 3099 972 | 663 621 664 826 3 099 893 664 263
Buses 233 508 48 573 49 419 232 050 49 725
Trucks 382 015 80 578 81 242 380 684 81 575
Motorcycles 574 227 | 123 001 123 121 574 224 123 052
Total 4289 722 | 915 773 | 918 608 | 4 286 851 918 615

Table 5.8: A sizes of individual subsets for each type of road vehicles.




5.9 Summary

In this chapter, we have explained the data acquisition pipeline, which was followed to
obtain a new vehicle dataset. The dataset is based on information found on Wikipedia and
contains public available images. For the information retrieval, two approaches were tested:
semi-automatic and automatic. As the first one was not able to effectively collect data in
the scope desired, the latter was used.

With over 4 milions of unique entries, it surpasses every dataset from Chapter 3 in size
and variety of covered vehicles. However, evaluation of trained models needs to take place
in order to confirm its usability and possible superiority to existing datasets.
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Chapter 6

Algorithm Selection

Before experimenting on a large dataset, several experiments were performed on a small
subset of the acquired data to find the best possible approach to the VMMR task. Two
approaches to the classification were evaluated: a standard classification and an approach
using embeddings. In this chapter, it is described how the subset was acquired and how
the experiments were performed. Also, an evaluation of the experiments is presented.

6.1 Subset Acquisition

For the purpose of the approach-deciding experiments, it is important to obtain a small
dataset (further referred to as the subset) that would be both compact, to allow for a
fast evaluation of experiments, and robust to include a sufficient number of entries per each
model and manufacturer present in it.

In the first step of the subset retrieval, we studied the whole dataset from the perspective
of the reuse of images in different models/manufacturers classes. Fig. 6.1 and Table 6.1 show
how many images were used under several models (e.g. the same image was used as Skoda
Octavia and Skoda Fabia or Ford Mondeo) for each vehicle type. The values are written
for images with ten or fewer uses, as listing all the values would be spatially demanding.
Fig. 6.2 and Table 6.2 show the amounts of images used under different manufacturers
(e.g. an image was used both as a model produced by Skoda and as a model produced
by Ford). As can be seen, with the number of reuses between models/manufacturers, the
amount of images decreases rapidly. For the subset creation, only images belonging to a
single model/manufacturer were used to prevent using a single image in several classes.

From this section of the dataset, it was needed to select images from different manufac-
turers and models so that there was a lesser number of classes of manufacturers than the
number of classes of models, while at the same time preventing from having too few classes
of manufacturers. This was addressed by a search for models with at least 100 images.
Such a model’s manufacturer was then searched for other models with at least 100 images.
If the manufacturer contained at least 3 such models, these models with 100 images were
added into the subset. From one manufacturer, no more than 5 models were added to
the subset. The 100 images were divided into training/validating/testing part in a ratio of
0.7/0.15/0.15.

This process was performed for every vehicle type and the results were merged. This
way, a subset for experiments in this chapter was created. It contains 25 300 images of
vehicles belonging to 249 classes of models and 47 classes of manufacturers. The number of
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Figure 6.1: Graph depicting number of usages of images in different models.

Number of uses 1 2 3 4 5

# of car images 2 501 595 | 200 009 | 48 584 | 17 154 7 548
# of motorcycle images 441 519 | 43912 | 10382 | 3 841 1603
# of trucks images 243 931 18958 | 4031 | 1026 277
# of buses images 98 629 | 11395 | 3200 1273 507
Number of usages 6 7 8 9 >=10
# of car images 3 602 1914 1052 578 922
# of motorcycle images 651 287 134 58 44
# of trucks images 87 34 23 22 7
# of buses images 188 66 42 24 56

Table 6.1: Numbers of images used in ten or fewer different models.
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Figure 6.2: Graph depicting number of usages of images in different manufacturers.
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Number of uses 1 2 3 4 5
# of car images 2731569 | 65203 | 4932 | 1114 | 103
# of motorcycle images 499 544 | 2 796 83 7 0
# of trucks images 263 533 | 4618 218 21 5
# of buses images 112 189 | 3013 168 8 2
Number of usage 6 7 8

# of car images 28 7 1

# of motorcycle images 1 0 0

# of trucks images 1 0 0

# of buses images 0 0 0

Table 6.2: Numbers of images used different manufacturers.

manufacturers classes is stated after the merging of manufacturers as discussed in Section
5.4.

Lastly, all images in the subset were cropped according to their bounding box to speed
up their loading time. This process, together with samples of images from the subset is
present in Fig. 6.3.

Image of vehicle # Bounding box of
& vehicle Cropped image

A Y LA

[51,27,976,710] [66,87,731,469]

Figure 6.3: Before images are added to the subset, they are cropped based on the bounding
box of their main vehicle.
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6.2 Classifier Training Experiments

The first utilization of the subset acquired in the previous section was to train neural
networks for the classification task. This was done using a mmClassification [6] toolkit on
a computer equipped with Nvidia GeForce RTX 3060 with 12 GB VRAM.

The mmClassification is an open-source image classification toolbox based on PyTorch'.
Together with training and testing of networks, it contains visualization options and detailed
logging information. It provides a large amount of already implemented networks, for which
it is possible to download weights and fine tune them or use them to acquire inference.

The models used for the experiments are listed in Table 6.3 together with the number
of parameters they operate with and the size of their input. As can be seen, both con-
volutional (Resnet and ConvNext) and transformer based networks (VisionTransformer,
Swin-Transformer, Swin-Transformer 2) were used. From now on, VisionTransformer will
be abbreviated to ViT, Swin-Transformer to Swin and Swin-Transformer 2 to Swin2. The
models were pretrained on the ImageNet 1K dataset and fine tuned. This was done to
decrease the time needed for training and to increase the performance of transformer-based
networks (according to Section 4.4). Except for the Swin2, we have used networks that
take images of size 224 x 224 as input.”

Name # of parameters (M) | Input size
Resnet 50 [13] 25.56 224 x 224
ConvNext [24] (base) 88.59 | 224 x 224
VisionTransformer [9] (base) 86.86 | 224 x 224

Swin-Transformer [23] (base,
window size =7)

87.77 224 x 224

Swin-Transformer 2 [22] (base,

window size = 16) 87.92 256 x 256

Table 6.3: List of networks used for experiments in this section. Together with their name,
number of parameters and input size is shown.

Every experiment took 100 epochs. The batch size was 32. The optimizer used was
Adam, with 8; = 0.9, B2 = 0.999 and eps = 1 x 1078, Learning rate was modified during
the training using a warmup and a learning rate decay mechanisms. A linear warmup was
used for the first 20 epochs, starting with learning rate lrg = 0.0, going to lreg = 9 x 1074,
where Ir, means learning rate at the x* epoch. From the 20" epoch, the learning rate
was decreased using a cosine policy, ending at Irjpp = 1 x 107°. The whole course of the
learning rate during an experiment is displayed in Fig. 6.4. During the experiment accuracy
evaluation was performed after every epoch.

Before batches of data were put into the networks during the training, they were aug-
mented to increase their variability. The augmentation steps were the following:

1. Images at the input were horizontally flipped with probability p = 0.5. This was
possible as in the case of vehicles the horizontal flip (unlike a vertical one) does not
change the nature of the image.

"https://pytorch.org/

2The reason the Swin2 network takes a larger input is the the different sizes of its window (8 or 16 instead
of 7).
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Figure 6.4: Learning rate during experiments in this section.

2. Images were reshaped into a square and resized according to the size expected by
network. This means that images were reshaped into squares with an edge size of 224
or 256 pixels.

3. From the squared image, another squared image was randomly cut out and resized
to the size of the original squared image. This cut-out square covered from 0.7 to 1.0
of the area of the original squared image. This was performed to slightly change the
viewed part of the vehicle, while preventing from focusing on small parts of vehicles
from which, the model would not be distinguishable (as with a handle or a side
window).

4. The next step was adding a colour jitter to emulate different cameras, lenses and
environmental conditions. Brightness and contrast factors of the jitter were taken
from interval (0.6;1.4). The saturation factor was taken from interval (0.9;1.1). A
factor of 1.0 means keeping the current state, while lower values means toning down
and higher values toning up.

5. Afterwards, normalization was performed. The ImageNet dataset’s mean = (123.678,
116.280, 103.530) and std = (58.395,57.120,57.375) values were used as the networks
were pretrained on this dataset.

6. Lastly, transformation to grayscale was applied with probability p = 0.2 to emulate
grayscale filters.

A visualization of this augmentation is depicted in Fig. 6.5. For batches used during
validating and testing, only resize and normalization (i.e. steps 2 and 5) were applied.

Table 6.4, displays the results of the experiments. Besides model classification (listed
under mod in the table), each network was also trained for a manufacturer (listed under
man in the table) classification task. The values presented in the table were achieved on the
testing part of the subset using a checkpoint of the network that achieved the highest Topl
accuracy during validation.

It can be seen that the best results were achieved using the ConvNext network, closely
followed by Swin2 network. Please note that the models with the best results are the ones
with the highest number of parameters. This may imply that for a complex task such as a
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Figure 6.5: Visualization of subsequent steps of the data augmentation.

Name Topl mod(%) | Top5 mod(%) | Topl man(%) | Top5 man(%)
Resnet 50 51.10 77.04 70.20 90.10
ConvNext 65.19 86.78 81.30 95.01
ViT 37.85 64.03 48.93 82.13
Swin 64.53 85.93 79.78 93.80
Swin2 65.10 86.43 81.23 94.82

Table 6.4: Results of the classification experiments on the networks. For each type of
network, its Topl and Top5 performance are displayed for both model (mod) and manu-
facturer(man) classification tasks.

VMMR, large networks are needed as the result depends on many factors (e.g. the overall
shape of the vehicle, its size, colour and shape of individual components that have to be
understood and found in advance).

Despite none of the two best models performing above 70% on Top 1 accuracy on
models, both of them achieved above 85% at Top 5 accuracy. When taking into account
that the networks were trained on 17 710 images belonging to 249 classes, resulting in only
71 images per model on average, the experiments proved the capabilities of the networks
used.

From the point of view of model and manufacturer classification, every network per-
formed 10 — 15% better when the task was to classify a manufacturer instead of the model.
These results prove that the experiments were executed well and the subset used was well
assembled.

The accuracy of the ConvNext and Swin2 networks on model recognition during training
is shown in Fig. 6.6.
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Figure 6.6: Graphs of accuracy of ConvNext and Swin2 networks during training. While
for the ConvNext grew the accuracy rather slowly, for the Swin2 it increased rapidly. The
ConvNext results also do not contain fluctuations of the accuracy, unlike the Swin2.

6.3 Embedding Utilization Experiments

Another set of experiments utilizing the subset of the dataset explored a classification
without the need of having a fully-connected classification head (i.e. realized using a one
or several fully connected layers). This effort was carried out because with many classes,
this fully-connected classification head takes a huge amount of resources. Instead, we
have decided to utilize the embeddings vector taken from the encoder part of the network
differently.

In Chen et al. [4], a self-supervised contrastive learning method is discussed, that uses a
loss function which, in embedding vector space, pulls together members of the same classes
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and pulls away all other samples, effectively creating clusters of classes in the embedding
space. This is done by duplication of processed batches, which are then independently aug-
mented. The two batches are then merged and fed into the encoder network to retrieve their
embeddings (as embeddings are the outputs of the encoder network). These embeddings
are further passed into two subsequent fully connected layers with a ReLU nonlinearity in
between them. The shapes of their input and outputs are Iy = (es,e5) and lo = (es, 128),
where [, denotes the layer so that [ precedes lo, first of the tuple denotes the input size,
the second its output and eg the size of the embedding. Finally, the loss function then
pulls together the pairs of embeddings originating from the same image, while pulling away
every other embedding. A disadvantage of this self-supervised approach is that it repels
every other embedding from the batch even in case of belonging to the same class. This
issue is addressed by Khosla et al. [15] where a Supervised Contrastive learning method is
introduced. This new method uses a new loss function which utilizes labels of the images
to manage that all the embedding on the output of the encoder network belonging to the
same class are pulled together. As the method uses labels, it becomes a supervised learning
method instead of self-supervised. A schematic comparison of the two methods is depicted
in Fig. 6.7.
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Figure 6.7: A comparison between Self-Supervised and Supervised contrastive learning.
While in the Self-Supervised approach embedings of images from the same classes are
repelled as no labels are known, in the supervised scenario only images from different
classes are repelled. Image taken from Khosla et al. [15].

As we possess labels for the images, we have decided to use the supervised contrastive
learning method to train an encoder, which would output class-clustered embeddings of
input images. The classes are in our case the individual models of vehicles. On such
embeddings, a non-neural network classifier (e.g. Gaussian mixture model or K-means
clustering) would be trainable with lesser resources needed than using the fully-connected
classification head.

All experiments described in this section were performed on metacetrum. It is a vir-
tual organization providing computational and software resources freely for the academic
community. There, GPU nVidia Tesla T4 with 16GB VRAM was used. It allows for run-
ning multiple experiments in parallel and provides GPUs with higher memory and hence
increasing the possible batch size.
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The PyTorch implementation of supervised contrastive learning was taken from the
GitHub of Yonglong Tian® , one of the co-authors of the Supervised Contrastive learning
paper.

During the experiments, we followed the paper as closely as possible. The networks were
trained from scratch. Every experiment took 200 epochs, as suggested in the paper. For
the batch size, we have experimentally found that 100 images is the highest size the GPU
can handle (meaning 200 images goes to the network, as the batch is doubled). The batch
size is important since in the loss function all elements on the output of the network are
considered when calculating the loss value for each of them. For this reason, it is important
to have a batch large enough. We found the batch size of 100 suitable, as in the paper a
batch size of 256 was used for ImageNet with 1000 classes, while our subset only has 249
classes. Mixed precision training and gradient clipping were used to achieve this batch size.
The optimizer used was SGD as in the paper. We used the initial learning rate Irg = 0.05
with cosine decay. The course of learning rate during the experiment is shown in Fig. 6.8.
The temperature value used by the loss function was 7 = 0.1 as in the paper.

Course of learning rate

learning rate
o
o
&

epoch

Figure 6.8: Course of learning rate during experiments in this section.

The biggest deviation from the paper was the size of the input images. While in the
implementation the size of input images was 32 x 32, we did not find this suitable for our
task of vehicle model recognition so we have increased the size to 224 x 224. We have also
changed the implementation of ResNet networks provided in the implementation provided
by Aladdin Persson” as the original version did omit the 3 x 3 max pooling layer at the
beginning of the network resulting in higher memory requirements and limiting the maximal
batch size at 8. If not specified otherwise, the data augmentation policy used was the same
as in the previous section.

As the encoder network, ResNet 50 was used, producing embeddings of size 2048 if not
stated otherwise. The ResNet models embeddings are linearized average pooled outputs of
the last residual blocks.

In the first experiment, we tried to apply the method using the described setup. The
course of the loss function is depicted in Fig. 6.9. While the loss on training data decreased
continually, the validation loss started to stagnate around the value of 8. To confirm or
reject the correctness of this behaviour, we applied a t-SNE algorithm to 2000 embeddings

*https://github.com/HobbitLong/SupContrast
“https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/
CNN_architectures/pytorch_resnet.py
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from which we selected several classes to display. The result is displayed in Fig. 6.10. From
the image is evident that no class-based clusters are created and hence the method does
not work properly. From now on we considered any similar loss values in the validation

phase as insufficient.
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Figure 6.9: A validation loss of standard ResNet50 model.
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Figure 6.10: Visualization of embeddings retrieved after the first experiment. Different
colour note different class. No signs of clustering are visible.

To fix this behaviour, we have reduced the size of the output embedding from 2048
to 256 as we have assumed a shorter vector may be easier to train as there are fewer
parameters to fine tune while still providing a suitable number of dimensions for encoding
249 classes. The embedding length reduction was performed in the last residual block of the
encoder, where the last 2D convolutional layer reduced the dimensionality to 256 instead of
increasing it back to 2048 as was the input. As the dimensionality of the input and output
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of the residual block differed, an identity downsample had to be used to create the residual
connection.

The result of the experiment with the embedding of size is shown in Fig. 6.11. As can
be seen, the results on the validation data are still not suitable for further experiments.

Validation loss

10

9.5

8.5

loss value

7.5

0 50 100 150 200

epoch

Figure 6.11: Validation loss of ResNet 50 model outputting embeddings of length 256.

In the next attempt to improve the results on validation data, we have tried to increase
the variability of the dataset by using a different, more distortive transformation. We chose
to use AutoAugment [7] augmentation with ImageNet policy. A comparison of images
augmented by the original augmentation policy and images augmented using AutoAugment
is displayed in Fig. 6.12. This step was chosen to eliminate overfitting that may occurred.

Original augmentation AutoAugment with imageNet policy

Figure 6.12: Comparison of the original augmentation policy (left) with images augmented
using the ImageNet AutoAugment policy(right).

We ran the experiment with both sizes of the embedding vectors. The results are
depicted in Fig. 6.13. It is evident that no change occurred and results are still unusable
for further classification. Also the loss is less continuous when using this augmentation
approach.

The last experiment we performed to improve the course of learning was the utilization
of a larger neural network. This decision was made based on an assumption that a larger
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Figure 6.13: Validation loss of ResNet 50 model using the AutoAugment. Both sizes of
vectors are used.

network would be able to generalize data easily which would lead to a further decrease of
loss value on validation data during training. The chosen network was Resnet 101 with its
44.5M parameters. On this network, we have run experiments including both shorter and
longer versions of embeddings and both the original data augmentation and AutoAugment.
The results are displayed in Fig. 6.14. It is visible that during all the experiments the loss
value of the validation stopped around the value of 8 again.
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Figure 6.14: Validation loss of Resnet 101 network. All types of augmentation and lengths
of vectors are used.

No other experiment aiming for the better embedding acquisition was run. As none
of the experiments met the expectations, no further experiments with non-neural network
classification were performed.

The reason for the failure of the experiments may be the nature of the task, where the
classification of generally similar vehicle models proved to be a more difficult task than the
classification of more distinguishable classes of the Cifar100 dataset and hence insufficient
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amount of training data. Another possible reason may be the huge increase in the size of
images as they may need a different size of the embedding vectors. Yet another option is
an unclear explanation in the paper/incorrect implementation (recall the missing pooling
layer at the beginning of the ResNet networks). This could be resolved by running further
experiments and obtaining more in-depth insight into the method and the implementation,
however as this is not the primary task of the thesis, it is out of its scope.

6.4 Summary

In this chapter, we have discussed the creation of a subset of our vehicle dataset, which
would be suitable for testing methodologies that could be used for the VMMR, task.

The first usage of the subset was on standard classification approaches using neural
networks. Several pretrained models were examined, both convolutional and transformer
based. The best results were achieved using the ConvNext network, closely followed by the
Swin2 network.

The next set of experiments tried to train an encoder network to output embeddings of
input images which would form clusters based on a class of the input. Several experiments
were conducted, however as the results were unsuitable for further processing, this idea was
abandoned.

For the VMMR task on a larger dataset was hence chosen a standard neural network
approach using large models.
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Chapter 7

VMMR Experiments

While in previous chapters we have discussed the acquisition of a large dataset of vehicles
and methodologies of utilizing it for the VMMR task, in this chapter we combine the two.

Firstly, we train a model on as much data as possible for the task of vehicle model
recognition. Then, we use other publicly available datasets to train other models and
lastly, we compare the accuracy of the models using images from all the datasets.

7.1 Large Scale Training

In the previous chapter, we discovered that for the task of vehicle model recognition, we will
have to use the standard approach by using classification networks. This however implies
usage of a huge classification head as the dataset we assembled is composed of several
thousands of models.

To be able to train such models, we have decided to perform the training using the
resources offered by metacentrum. There, we used nVidia A40 GPU for all the experiments
discussed in this chapter. The use of the metacentrum however also brings a limitation —
the brno 2 node of the metacentrum, which hosts the A40 GPUs, despite offering 4.29TB
of storage per user limits the maximum number of files to 2.5 million per user.

Due to this constraint, we were not able to use all the data we possess. We have de-
cided to only use the car part of our dataset further reduced to images that occur only
once in the dataset as the selection from Table 6.1 still exceeded the limitation on num-
ber of files. This led to a dataset containing 2 207 847 images split into train/val/test
subsets of 1 557 973/325 750/324 124 images. The subsets were based on the distribution
between subsets discussed in Section 5.8. This dataset contains 6 922 models from 318
manufacturers.

As the best results in the previous chapter were achieved using the ConvNext architec-
ture, closely followed by the Swin2 architecture, we have decided to use both of them for
the experiments. Both architectures were used in base and large versions. Specifications
of the networks are in Table 7.1. We used models pretrained on ImageNet 21K [8]. The
Swin2 models take inputs of size 192 x 192 as this was the only input size available for the
pretrained models and further finetuning for a higher input would be time and technically
demanding.

The augmentation of data and course of the experiments were mostly the same as in
section 6.2. The differences were that the number of epochs decreased to 5 as the amount
of data increased rapidly. Also, the batch size was set to 100. Lastly, the warmup of
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Name # of parameters (M) | Input size
ConvNext (base) 88.59 | 224 x 224
ConvNext (large) 197.77 | 224 x 224
Swin2 (base,

window size = 12)

87.92 192 x 192

Swin2 (large,
window size = 12)

196.74 192 x 192

Table 7.1: List of networks used for experiments in this section. Together with their name,
number of parameters and input size is shown.

the learning rate to its maximal value took 10 000 batches. After that, the learning rate
decreased with the cosine policy as before.

The results of models after the fifth epoch are displayed in Table 7.2. A graph of their
validation accuracy is displayed in Fig. 7.1. It can be seen that the ConvNext architectures
have beaten the Swin2 architectures in both versions. Furthermore, we can observe that the
large models performed better than the base ones. The best results were hence obtained
with the large ConvNext model and it will be used in further experiments. It is worth
mentioning that the results obtained are superior to the results in Section 6.2 by almost
10% despite having roughly 36 times more classes. The author assumes that this behaviour
confirms the validity of the dataset. For the best model, an experiment with recognition of
only the manufacturer was conducted. As can be seen, the accuracy increased compared
to the experiments on a smaller dataset.

Name Topl mod(%) | Top5 mod(%) | Topl man(%) | Top5 man(%)
ConvNext B 73.62 90.6 / /
ConvNext L 74.17 91.13 88.9 96.42
Swin2 B 68.75 88.36 / /
Swin2 L 70.59 89.68 / /

Table 7.2: L and B denote the version of the network (large/base). Results of the classifi-
cation experiments on the networks after the fifth epoch of training.

7.2 Training on Different Datasets

To be able to compare the results of the model trained on our dataset with models trained
on different datasets and to see the performance on images from outside of our dataset, we
have downloaded additional car datasets and trained the large ConvNext models on them.
To cover the widest possible range of manufacturers, we have decided to use the Stanford
Cars dataset (196 car models, 16 185 images) to represent western manufacturers and the
CompCars dataset (1 716 car models, 163 716 images) to represent eastern, mostly Chinese
manufacturers. The datasets were split into training and testing parts in a 0.7/0.3 ratio
per model.

All the images in the datasets were cropped according to the bounding boxes provided
by them. This was done to set the same conditions for the classification.

The course of training the large ConvNext models on each of the datasets was mostly
the same as in Section 6.2. The only difference was the number of epochs as to compensate
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Course of accuracy on validation set during training
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Figure 7.1: Validation loss of the networks discussed in this section after end of each training
epoch.

for the smaller amount of images, the number of training epochs was increased from 5 to
50.

The highest achieved accuracy during the validation phase is shown in Table 7.3. As can
be seen, the model trained on CompCars was able to reach high accuracy. This may be due
to the sufficient amount of data needed for generalization and hand labelling every image
within it (unlike for ours dataset), however, it may also be given by a low variety between
individual images and the absence of challenging samples in the validation subset. The
model trained on Stanford Cars dataset did not achieve such accuracy despite consisting of
fewer classes of models. This is, presumably, due to the small size of the dataset that was
not sufficient for training the large version of the ConvNext model.

Name Topl mod(%) | Top5 mod(%)
Stanford Cars model 40.76 74.75
CompCars model 93.52 98.52

Table 7.3: The best accuracy of models trained on different datasets.

7.3 Comparison of Accuracy on Different Datasets

The last experiment we conducted was focused on a comparison of the models from this
chapter when used on images from outside of the datasets they were trained on. As the car
models contained in the datasets used for training differ, it was not possible to make the
comparison quantitatively. Instead, they have to be performed qualitatively when a human
observer decides whether the classification was correct or not.

A set of images for the experiment was composed of samples from our dataset, CompCars
and Standford Cars by selecting 10 models of cars from each. For each model selected, 2
images of it were randomly taken. This lead to a set composed of 3 datasets, containing
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30 car models in 60 images. The images were taken from the test or validation parts of
datasets. All the selected images together with their labels are shown in Appendix A.

For every classification, it was primarily examined, if the vehicle’s model, according to
the label value, appears in the Top 1 or Top 5 classes on the output of the model. If not, it
was examined whether the manufacturer of the vehicle appeared in the results of the Top
1. It was also observed, if the model from the label appeared in the dataset the model was
trained on. The table with results is in Appendix B. An example is shown in Fig. 7.2.

Image

Label Subaru Rex VW Transporter VW Transporter Zastava Skala Zastava Skala
Our DS SUBARU Justy VW Type 2 VW Transporter ZASTAVA Skala FIAT 128
Stanford |VW Golf * VW Golf * M-Benz Sprint * Volvo C30* Volvo C30 *
ConvCars |Jiangnan TT * Jiabao V80 * VW Defender * FIAT 126P * FIAT 126P *

Figure 7.2: An example of evaluation of images from different subsets on different classifier
models. It consists of squared classified image, label and outputs from individual models
coloured according to its correctness.

The table confirms findings from the previous sections that the classification of the
images from the same dataset that was used for training results in labels appearing mostly
in the Top 1 or Top 5 values. However, as the source of images shifts to different datasets,
the results become less accurate. The main reason is the fact that the different datasets
contain new models of vehicles, the classifiers were not trained to recognize. As can be
seen, the highest number of entirely incorrectly (manufacturer was not in the Top 5 results)
classified car models comes from not having the target model in the training dataset. In
such cases the sheer number of models in the training datasets plays the key role — if we
order the models by the number of classifications the target was not in the training dataset,
we get the same sequence as if we ordered them by the number of classes in the training
dataset (i.e. our model > CompCars model > Stanford model). For this reason, the model
trained on our dataset outperforms the other models when used on images from other
datasets. Interestingly, the manufacturers may be classified correctly when other models
from them are present in the training dataset as in the case of Stanford model correctly
recognizes LaFerrari being manufactured by Ferrari despite not having it in the training
dataset.

We have observed that when using several images from the same class, the results of the
models may occasionally vary. This may be caused by a different appearance of the vehicle
(as in the case of the Chevrolet Fleetmaster samples) or by an absence of a significant
identification mark (as in the case of the Audi S5). The occurrence of the phenomenon
could be decreased by adding additional images to the training dataset.

When the second sample of the LaFerrari (displayed in Fig. 7.3) was classified using
the model trained on our dataset, it was recognized as a model FXXK by Ferrari. After
additional research, it was found to be the FXXK model, despite being incorrectly labelled
as a LaFerrari. The same happened for the second insance of Chevrolet FleetMaster.
These errors were caused by the nonsupervised nature of the creation of our dataset. This
automatic self-correction creates room for experiments on implementation of a mechanism
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that would automatically correct wrongly labelled images. It is, however, outside of the
scope of this thesis.

g

Figure 7.3: An image of Ferrari FXXK incorrectly labelled as Ferrari LaFerrari.

7.4 Summary

In this chapter, we have used unique images of cars from our dataset and trained a classifier
on them. We have also trained classifiers on CompCars and Stanford Cars datasets to
compare the performance of the models. When qualitatively compared, the classifier trained
on our dataset outperforms the other models when used on data from different sources as
covers the widest range of manufacturers and models.
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Chapter 8

Conclusion

8.1 Summary

While many types of methodologies may be utilized to perform vehicle detection of some
form (e.g., strain gauge for vehicle counting or LiDAR for detection of vehicle’s direction),
the only known approach used for the VMMR task is using image-processing and neural
networks.

We have inspected many available vehicle datasets, but none was suitable for our task
of a huge scale VMMR due to their outdated information, insufficient variability of models
or focus on cars only. Hence, it was concluded that a new dataset had to be created.

This new dataset was acquired using automatic data scraping of information found
on Wikipedia. The data were then processed and serialized into lists of vehicles which
were downloaded. The downloading was done using the automatic orchestration of the
DuckDuckGo search engine. More than 6.5M of images were downloaded and tested using
a TOOD neural network for vehicle detection. More than 6.1M images were found usable
and were put into the dataset, creating a dataset bigger than any of the inspected ones.
Besides cars, the dataset also contains motorcycles, buses and trucks. The dataset was
split into training, testing and validating subsets in order to be suitable for neural networks
training.

Next, we experimented with a small subset of the dataset to find the most efficient way
to use it for training a VMMR classifier. Two general approaches were tested. The first
used a standard classification head at the end of an NN-based encoder. Further experiments
discovered that the ConvNext network architecture performs the best in this case. The other
general approach tried to structure embeddings of encoders using a supervised contrastive
learning method to simplify the subsequent classification. Unfortunately, this approach did
not perform well on our data and the standard approach to classification was used, despite
being more resource-demanding.

Finally, a great part of our dataset (over 2M images) was used to train a classifier of
car models that achieved accuracy Top 1: 74.17% and Top 5: 91.13%. Similarly, we used
two other datasets (CompCars and Stanford Cars) to train other classifiers. The classifier
trained on the CompCars outperformed the classifier trained on our dataset in terms of
accuracy when experimenting on the datasets, they were trained on. However, when tested
on images from different datasets, the model trained on our dataset outperformed the other
models. This was due to the huge number of models present in the training dataset.

Overall, we have created a dataset which, despite being created mostly automatically
and containing some incorrectly labelled images, is usable for training a VMMR, classifier
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and that covers a huge variety of different models. As the accuracy of the classifiers trained
on it in its current form does not go above 75% for the Top 1 values, it is not suitable for
an industrial usage that would demand higher accuracy. As for the speed of the models
the classifiers produce inference on average under 0.05s on the nVidia A40, Tesla T4 and
RTX 3060 GPUs. However, it is important to keep in mind that the detection of vehicles
has to precede the classification and hence the total time may increase up to 0.1s, leading
to roughly 10 FPS when used in real-time applications. As for the hardware side of the
application, since the trained model can be used for evaluation on the author’s mid-tier
RTX 3060 GPU, it can be said that running any form of application on a workstation
would not be problematic. Using the model on a portable device (e.g. smartphone) would
however require the computational part to be executed on a server-side, which could further
decrease the system’s speed.

8.2 Short-Term Perespective

A great portion of time spent on this thesis was spent on data manipulation. Now, the
whole pipeline, beginning from the acquisition of existing vehicles and ending with the clas-
sification of vehicles in images, is complete, any further work should be less time demanding.
This may in the short-term perspective include experiments on other approaches to clas-
sification, extending sources of information to cover a larger portion of eastern (mostly
Chinese) manufacturers or merging models of manufacturers similarly to how we merged
the manufacturers, as a single model may now be present under several names (e.g. Volk-
swagen’s Transporter 2 and Type 2). Another short-term task would be finding a way to
overcome the limitations of the metacentrum and utilize more data during training, possibly
across all the vehicle types.

8.3 Long-Term Perspective

From the long-term point of view, the ultimate goal of such datasets is to contain every
possible model. This would require an automated process for scanning for newly manu-
factured models together with an expansion of present models to cover any new facelift.
Another long-term goal may be a self-correction mechanism that would be able to detect
wrongly-labelled images and correct them. Ultimately, a self-supervised dataset could au-
tomatically train new classifiers for every newly added model and offered it in the form of
an application that would utilize it, together with vehicle detection.
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Appendix A

Images Used for Comparison of
Models Trained on Different
Datasets

(a) Chevrolet Fleet- (b) Chevrolet Fleet- (¢) Dodge Hornet 1
Master 1 Master 2

; % e T

. (f) Bentley Flying (g) F \ LaFer-
e) Bentley Flyin ( g) Ferrari LaFer
(e) y Flying g7 o e

Spur 1

(h) Ferrari LaFer-
rari 2

(p) Subaru Rex 2

(n) Skoda Felicie 2 (o) Subaru Rex 1

(m) Skoda Felicie 1
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() Volkswagen (r) Volkswagen (s) Zastava Skala 1 (t) Zastava Skala 2
Transporter 1 Transporter 2

Figure A.1: Cars used for comparison taken from our dataset.

(a) Shouwang (b)

Shouwang 1 Shouwang

Shouwang 2

.(e) lChrysler Serb- (f) Chrysler Serbing (g) Futian Fengjing (h) Futian Fengjing
ing 1 2

(m) MG MG3 1 (n) MG MG3 2 (o) Mitsuoka Galue (p) Mitsuoka Galue

i
(t) Shan Fujia 2

(r) Quoros 3 2

(q) Quoros 3 1

(s) Shan Fujia 1

Figure A.2: Cars used for comparison taken from our CompCars dataset.
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(a) Audi S5 1 (b) Audi S5 2 (c) BMW M5 1

(e) Buick Regal 1 (f) Buick Regal 2 (g) Cadillac Es (h) Cadillac Es-
calade 2

calade 1

) "' 1) Fiat Abarth 500
j) Dodge Chal- (k) Fiat Abarth 500 é)
lenger 2 1

(i) Dodge Chal-(
lenger 1

(m) Ford Focus 1 (n) Ford Focus 2 (0)

S Rolls Royce
(q) MINI Cooper 1 (r) MINI Cooper 2 (Gil ogt 1 Y (t) Rolls Royce
Ghost 2

Figure A.3: Cars used for comparison taken from Stanford Cars dataset.
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Appendix B

Results of Model Comparison

Image

Label Bentley Spur Bentley Spur Dodge Hornet Dodge Hornet Ferrari LaFerrari
Our DS Bentley Spur Bentley Spur DODGE Hornet DODGE Hornet Ferrari Laferrari
Stanford |[Rolls Royce Ghost *  [Bentley Continent *  [Suzuki SX4 * Dodge Journey * Ferrari California *
ConvCars Bentley Spur Dodge Avenger * Dodge Avenger * Ferrari LaFerrari
Image

Label Ferrari LaFerrari Chvrlt. FleetMaster  |Chvrlt. FleetMaster [Lada Vesta Lada Vesta

Our DS Ferrari Fxxk ** CHVRLT Fleetmaster [CHVRLT Stylemstr ** |AVTOVAZ Vesta AVTOVAZ Vesta
Stanford |Ferrari California * Volvo C30 * Volvo C30 * Volvo C30 * Jeep Compass *
ConvCars |Ferrari LaFerrari BMW lIsetta * Zhinuo 1E * Nissan Navara * King Kong CROSS *
Image

Label Peugeot 5008 Peugeot 5008 Skoda Felicia Skoda Felicia Subaru Rex

Our DS Peugeot 5008 Peugeot 5008 SKODA Felicia SKODA Felicia SUBARU Rex
Stanford |Chrysler PT * Jepp Compass * Dodge CaravanVan* [Suzuku SX4 * Suzuki SX4 *
ConvCars |Grand Vitara * Grand Vitara * Skoda Yeti * Jiangnan TT * Jiangnan TT *
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Image

Label Subaru Rex VW Transporter VW Transporter Zastava Skala Zastava Skala
Our DS SUBARU Justy VW Type 2 VW Transporter ZASTAVA Skala FIAT 128
Stanford |VW Golf * VW Golf * M-Benz Sprint * Volvo C30* Volvo C30 *
ConvCars |Jiangnan TT * Jiabao V80 * VW Defender * FIAT 126P * FIAT 126P *
Image
Label BYD Quin BYD Quin Fujitan Fengjing Fujitan Fengjing HongQi H7
Our DS Byd Qin Byd Qin TOYOTA Hiace * TOYOTA Hiace * FAW H7
Stanford |[Acura TL Types-S * BMW M3 * M-Benz Sprinter * GMC Savana Van * BMW X6 *
ConvCars [BYD Quin BYD Quin Fujitan Fengjing Fujitan Fengjing HongQi H7
Image
Label HongQi H7 Chrysler Serbing Chrysler Serbing Lancia Stratos Lancia Stratos
Our DS FAW H7 CHRYSLER Serbing CHRYSLER Serbing PININFAR. Stratos PININFAR. Stratos
Stanford |[Acura RSX * Audi RS 4 Chrysler Serbing Ford GT Coupe * Fisker Karma *
ConvCars |HongQi H7 Chrysler Serbing Chrysler Serbing Lancia Stratos Lancia Stratos
—

Image I/ 1

> & -
Label MG MG3 MG MG3 Mitsuoka Galue Mitsuoka Galue Quoros 3
Our DS MG Mg3 SAIC Mg3 Mitsuoka Galue Mitsuoka Galue Quoros 3
Stanford |Suzuki SX4 * VW Golf * Ford Mustang * Chrysler PT Cruiser * |Acura TL Type-S *
ConvCars |[MG MG3 MG MG3 Mitsuoka Galue Mitsuoka Galue Quoros 3

70




Image

Label Quoros 3 Shan Fija Shan Fija Shouwan Shouwan Shouwan Shouwan
Our DS Quoros 3 GAC Saboo * DONGFENG Succe * |Joylong a-series * Hyundai Genesis *
Stanford |BMW M5 * M-Benz Sprinter * Suzuki SX4 * Audi TT * Hyundai Genesis *
ConvCars |Quoros 3 Shan Fija Shan Fija Shouwan Shouwan Shouwan Shouwan
Image

Label Audi S5 Audi S5 BMW M5 BMW M5 Buick Regal

Our DS Audi A5 Audi S5 BMW M5 BMW M5 BUICK Regal
Stanford |Audi S5 BMW M3 BMW M3
ConvCars Audi S5 BMW M5 BUICK Regal
Image

Label Buick Regal Cadillac Escalade Cadillac Escalade Dodge Challenger Dodge Challenger
Our DS BUICK regal GM Cadillac Escalade [GM Cadillac Escalade |Dodge Atitude Dodge Charger
Stanford Cadillac Escalade Dodge Challenger Dodge Challenger
ConvCars Cadillac Escalade Cadillac Escalade Dodge Challenger Dodge Challenger
Image

Label Fiat Abarth 500 Fiat Abarth 500 Ford Focus Ford Focus Jaguar XK

Our DS ABARTH 500 ABARTH 500 Ford Focus Ford Focus JAGUAR XK
Stanford |Fiat Abarth 500 Fiat Abarth 500 Ford Focus Ford Focus Bentley Continental
ConvCars |Fiat Abarth 500 Fiat Abarth 500 Ford New Focus Chrey A5 Gaugar XK
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Image

Label Jaguar XK Mini Cooper MINI Cooper Rolls Royce Gost Rolls Royce Ghost
Our DS JAGUAR xk Mini Coupé Mini Coupé ROLLS ROYCE Ghost |ROLLS ROYCE Ghost
Stanford Mini Cooper Mini Cooper Rolls Royce Ghost Rolls Royce Ghost

MINI ROADSTER

MINI ROADSTER

Rolls Royce Ghost

Rolls Royce Ghost

ConvCars |Gaugar XK

Table B.1: Results of comparisons of models trained on different datasets when clasifing
images from various datasets. Legend: Green/Orange — The label model was in the 1/5
outputs of model with highest confidence. Purpe — The output of model with the highest
confidence had the same manufacturer as the label model. Red — labeled model was not in
any previous cathegory. * — the label model was not in the training dataset of the VMMR
model. ** — the highest confidence value differed from the label model, however it was
correct (error in label).
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