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Abstract 
Contracts for concurrency describe required atomici ty of method sequences i n concurrent 
programs. This work proposes a dynamic analyzer to verify programs wri t ten i n Java 
against contracts for concurrency. The analyzer was designed to detect violations of para­
metric contracts w i t h spoilers. The proposed analyzer was implemented as an extension to 
the RoadRunner framework. Support for accessing the method arguments and return values 
was added to RoadRunner as a part of the solution. The analyzer was fully implemented 
and verified on a set of testing programs. 

Abstrakt 
Kont rak ty pro paralelismus slouží k vy jád řen í p o t ř e b n é atomici ty sekvencí metod ve vícevlá-
knových programech. Tato p r á c e se zaměřu je na implementaci d y n a m i c k é h o a n a l y z á t o r u , 
k t e r ý verifikuje programy n a p s a n é v jazyce Java vůči k o n t r a k t ů m . P o d p o r o v á n y jsou para­
met r i cké kontrakty se spojlery. A n a l y z á t o r je i m p l e m e n t o v á n jako rozší ření frameworku 
RoadRunner . V r á m c i implementace a n a l y z á t o r u byla do frameworku RoadRunner p ř i d á n a 
podpora pro z ískávání a r g u m e n t ů metod a jejich n á v r a t o v ý c h hodnot. A n a l y z á t o r by l p lně 
i m p l e m e n t o v á n a jeho funkčnost by la ověřena na s adě tes tovac ích p r o g r a m ů . 
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Rozšířený abstrakt 
P ř i vývoj i softwaru se b ě ž n ě využívaj í knihovny nebo moduly v y v i n u t é j i nými vývojář i . 
P ř i jejich integraci je z a p o t ř e b í d o d r ž e t pravidla s t a n o v e n á autorem knihovny. P rav id l a 
zahrnu j í syntaxi a s é m a n t i k u ope rac í p o s k y t o v a n ý c h knihovnou. Ve v ícev láknovém p r o s t ř e d í 
je ale z a p o t ř e b í d o d r ž e t d o d a t e č n é p o ž a d a v k y na synchronizaci v láken , k t e r á p rovád í ope­
race p o s k y t o v a n é danou knihovnou. 

Kont rak ty pro paralelismus slouží ke specifikaci omezen í pro p rác i s knihovnou ve 
v ícev láknových programech. Kon t rak ty specifikují, k t e r é sekvence ope rac í m u s í bý t vy­
konávány atomicky, tedy bez toho, aby j iné v l ákno provádě lo souběžně j inou operaci. Ex i s ­
tu j í dvě rozšíření , k t e r á upřesňuj í , za j a k ý c h p o d m í n e k je n u t n é d o d r ž e t a tomic i tu operac í . 
P a r a m e t r i c k é kontrakty reflektují d a t o v ý tok mezi operacemi. Umožňu j í tak n a p ř í k l a d 
vy jádř i t , že dvě operace m u s í bý t p rováděny atomicky pouze tehdy, pokud modifikují stej­
n á data. Kon t r ak ty se spojlery dovolují n ě k t e r ý m o p e r a c í m p r o b í h a t souběžně , n a p ř í k l a d 
pokud operace p rovád í pouze č ten í sdí lených dat. Kon t rak ty pro paralelismus lze sledovat 
za b ě h u programu a existuje metoda pro kontrolu jejich dodržován í . 

Cí lem t é t o p r á c e je vy tvo ř i t d y n a m i c k ý a n a l y z á t o r , k t e r ý sleduje dod ržován í paramet­
r ických k o n t r a k t ů se spojlery. A n a l y z á t o r pracuje s v í cev láknovými programy v jazyce 
Java. Využívá frameworku RoadRunner , k t e r ý p rovád í instrumentaci p r o g r a m ů pro zkou­
m á n í chování p r o g r a m ů za b ě h u . RoadRunner v k l á d á instrukce do b a j t k ó d u programu, 
k t e r é pak za b ě h u zasílají a n a l y z á t o r u udá los t i o volaných m e t o d á c h , p ř í s t u p e c h do p a m ě t i , 
synchronizaci v láken a p o d o b n ě . 

Vs tupem a n a l y z á t o r u je konf igurační soubor s definicí kontraktu, k t e r ý určuje sekvence, 
k t e r é budou de t ekované a n a l y z á t o r e m . Sledovaný program je n á s l e d n ě i n s t r u m e n t o v á n 
frameworkem RoadRunner . Instrumentace volání metod byla v r á m c i p r á c e rozš í řena 
o z ískávání a r g u m e n t ů metod a jejich n á v r a t o v ý c h hodnot. I n s t r u m e n t o v a n ý program je 
nás l edně s p u š t ě n . A n a l y z á t o r pro s ledování k o n t r a k t ů pro paralelismus konzumuje udá los t i 
spo jené s vo l án ím metod a synchron izac í v láken . N a zák l adě t ěch to udá los t í jsou de tekovány 
sekvence metod a p ř í p a d n á p o r u š e n í kontraktu. A n a l y z á t o r si pro k a ž d é v l á k n o programu 
udržu je naposledy de t ekované sekvence metod. P ro k a ž d é v l á k n o a z á m e k si t a k é udržu je 
vek torové hodiny nesouc í informace o v z á j e m n é synchronizaci v láken . Jakmile je de t ekována 
celá sekvence, a n a l y z á t o r na zák l adě n e d á v n ý c h sekvencí v j iných v láknech a vek to rových 
h o d i n á c h v y h o d n o t í , zda nedoš lo k pro ložení sekvencí tak, aby b y l p o r u š e n kontrakt. D íky 
využ i t í vek to rových hodin dokáže a n a l y z á t o r odhali t p ro ložení metod, ke k t e r é m u nedoš lo 
p ř í m o v d a n é m b ě h u , ale m ů ž e k n ě m u doj í t v p o d o b n ý c h bězích. 

P ř i n á v r h u a n a l y z á t o r u byly zoh ledněny výs ledky existuj ících p r o t o t y p o v ý c h implemen­
t ac í a schopnosti a n a l y z á t o r u byly z á m ě r n ě omezeny. A n a l y z á t o r tak klade d o d a t e č n é po­
ž a d a v k y jak na kontrakty, tak na programy, k t e r é dokáže sledovat. Kon t rak ty mus í splňo­
vat následuj íc í p o d m í n k u : hodnoty všech p a r a m e t r ů kontraktu jsou u r č e n y vo l án ím p r v n í 
metody kontraktu. Tato p o d m í n k a z a b r a ň u j e zby tečné dupl ikaci s ledovaných sekvencí . 
Ana lyzované programy n e s m í obsahovat z a n o ř e n á volání metod s ledovaných v r á m c i kon­
t raktu . 

P ř i implementaci byly využ i t y pr incipy funkcionáln ího p r o g r a m o v á n í , ze jména n e m ě n n é 
(immutable) objekty p o s t a v e n é na k n ih o v n ě Vavr nebo funkce vyšš ího ř á d u . J e d n o t l i v é čás t i 
a n a l y z á t o r u byly o t e s továny p o m o c í j e d n o t k o v ý c h t e s t ů , a n a l y z á t o r jako celek p o m o c í Bash 
sk r ip tů . 

Výs ledkem p r á c e je p lně funkční a n a l y z á t o r p a r a m e t r i c k ý c h k o n t r a k t ů se spojlery. Z m ě n y 
v instrumentaci mohou bý t využ i t y da l š ími a n a l y z á t o r y vyžaduj íc ími argumenty metod 
a n á v r a t o v é hodnoty. J edno t l i vé čás t i a n a l y z á t o r u mohou bý t v budoucnu op t ima l i zovány 



s ohledem na rychlost. Funkc ioná ln í implementace a n a l y z á t o r u umožňu je snadnou paraleli-
zaci kontroly k o n t r a k t ů . Dalš ího z lepšení výkonu lze d o s á h n o u t lepší definicí p o d m í n e k , za 
k t e rých lze zahazovat de t ekované sekvence metod. A n a l y z á t o r lze rozšíř i t o v k l á d á n í š u m u 
pro detekci m é n ě obvyklých chyb. 
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Chapter 1 

Introduction 

W h e n developing software, one commonly relies on software libraries wri t ten by other de­
velopers. To avoid introducing defects into the software, one has to follow rules stated 
by the l ibrary developer. This includes the syntax and semantics of operations provided 
by the library. In a concurrent environment, a new set of problems related to the proper 
synchronization of threads is introduced. 

Contracts for concurrency enable l ibrary developers to define restrictions on the usage 
of the l ibrary i n a concurrent environment. In its basic form, it specifies which method 
sequences must be executed atomically. There are two extensions for contracts for con­
currency. Parametric contracts allow to better identify methods that need to be executed 
atomically. Contracts w i t h spoilers allow finer control over which thread interleavings v i ­
olate the contract. To verify that a program satisfies the restrictions given by contracts 
for concurrency, one may use either static or dynamic analysis, bo th providing different 
advantages. 

The main goal of this thesis is to design a dynamic analyzer that detects violations of 
parametric contracts w i th spoilers i n programs wri t ten in the Java programming language. 
The analyzer is buil t using the RoadRunner framework. RoadRunner instruments pro­
grams under analysis and reports actions taken by the program v i a a simple interface. The 
proposed analyzer extends the instrumentation done by RoadRunner to extract addi t ional 
information about the program under analysis. A p a r t from the analyzer itself, a parser for 
contract definitions is created. 

The thesis is structured as follows. Chapter 2 describes the specifics of multi-threaded 
programming in Java, the Java memory model, and an overview of software errors related 
to concurrency. Approaches to the dynamic analysis of Java programs and instrumentation 
techniques are described. Two important frameworks are presented, the A S M framework for 
byte code instrumentation, and the RoadRunner framework for wr i t ing dynamic analyzers. 
Chapter 3 introduces contracts for concurrency, their modified versions, and a method for 
dynamic detection of contract violations. In Chapter 4, a dynamic analyzer for contracts 
is designed. Chapter 5 provides implementat ion details and testing approaches. 
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Chapter 2 

Dynamic Analysis of 
Multi-threaded Programs in Java 

This chapter focuses on a dynamic analysis that detects errors related to improper synchro­
nizat ion between threads i n multi-threaded Java programs. In the first section, dynamic 
analysis is compared wi th other approaches to software verification. Then the most com­
mon types of errors found in multi-threaded programs are presented. The following section 
explains the basics of multi-threaded programming i n Java. Then the most important 
concepts from the Java memory model are described. 

The second part of this chapter deals w i t h the techniques used for dynamic analysis of 
Java programs. The A S M framework for Java bytecode manipula t ion is introduced along 
wi th brief overview of the Java v i r tua l machine. F ina l ly , the RoadRunner framework is 
described i n detail , as it is the basis for implementat ion of the contract analyzer. 

2.1 Approaches to Software Verification 

The goal of software verification is to make sure that the software meets a l l requirements [7]. 
There are several approaches to software verification, each of them having its own advan­
tages and disadvantages. Th is section provides a summary of testing, dynamic and static 
analysis, abstract interpretation, theorem proving, and model checking. 

Testing Testing consists of running the software under different conditions and checking 
the results of the computat ion (or observing other behavior of the software). To gain enough 
confidence that the software operates correctly i n a l l conditions, a suitable set of test cases 
must be found, which is difficult, and sometimes impossible. Testing is best suited for 
confirming the presence of defects i n software, not for proving their absence [7]. 

A n important property of test cases is their repeatability, meaning that a certain test 
case w i l l always yie ld the same result. W h e n testing multi-threaded programs, this property 
does not hold because of the nondeterminism introduced by the thread scheduler. Threads 
are interleaved differently on each execution which means that errors may or may not 
appear. Th is makes discovering defects in multi-threaded programs difficult. 

Dynamic Analysis Dynamic analysis works w i t h information gathered during an execu­
t ion of a program. The information may be analyzed during program execution {on-the-fly 
analysis) or at the end {post-mortem analysis). Even though the analysis works w i th in -
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formation from a single execution, it can in some cases find errors that were not observed 
during the execution but may demonstrate themselves i n similar executions [10]. The dy­
namic analysis also suffers from nondeterministic scheduling. The program under analysis 
may also behave differently due to being observed by the analyzer. 

The analyzer proposed in this thesis performs on-the-fly dynamic analysis of contracts 
for concurrency and detects contract violations that occurred not only i n the given run but 
also those that may have occurred i n s imilar runs. 

Static Analysis Static analysis is performed at compile t ime and it does not require the 
program to be running. The analysis is theoretically able to cover a l l possible executions 
of a program. In practice, it is l imi ted by the fact that the number of thread interleavings 
in multi-threaded programs grows exponentially [10]. 

Abstract Interpretation Abstract interpretation takes the source code and symbolical ly 
executes it line by line, approximating the semantics of the program without performing 
al l the calculations. It suffers from similar problems as static analysis. 

M o d e l Checking Model checking is a technique for checking whether a system satisfies 
certain correctness specification [10]. It is based on systematic or heuristic exploration of 
the state space. The drawback of this technique is that the state space of the program 
model can be huge. 

Theorem Proving Theorem proving is a semi-automated approach to proving that cer­
ta in facts are satisfied in the system. It is based on assumptions and general theorems 
about the system and uses mathematical reasoning [7]. 

2.2 Safety Errors in Multi-threaded Programs 

Contracts for concurrency specify rules on using a set of methods in a concurrent setting. 
They a im at discovering errors specific to a concurrent environment. W h e n compared to 
single-threaded programs, multi-threaded programs may encounter a whole new class of 
errors related to memory sharing between threads. Errors presented i n this section are 
classified as safety errors i n [10] as these are usually checked i n various dynamic analyses. 

D a t a Race A data race occurs when there are two unsynchronized accesses to a shared 
variable and at least one of them is a write access. 

Atomic i ty Vio lat ion W h e n a code block is required to be atomic, a l l program executions 
must be equivalent to an execution where the block is executed serially. Contract for 
concurrency pr imar i ly focus on atomici ty violations [3]. 

Order Vio lat ion W h e n certain operations are required to be executed in a certain order, 
and the order is not met in a given program execution, an order violation occurs. Contracts 
for concurrency can also detect order violations [3]. 

5 



Deadlock General definition of a deadlock is presented in [10]. A program state contains 
a set S of deadlocked threads if, and only i f each thread in S is blocked and wai t ing for 
some event that could unblock i t , but such an event could only be generated by a thread 
from S. 

Missed Signal A missed signal is present i n a program execution when one or more 
threads are wait ing for a signal, and the signal is never delivered. 

2.3 Multi-threaded Programming in Java 

Java provides bui l t - in support for multi-threaded programming. This section describes 
a typ ica l thread life cycle, synchronization of threads, and inter-thread communicat ion, as 
these are important i n dynamic analysis using contracts for concurrency. 

A thread i n Java is represented by a Thread instance. There are two ways to create 
a thread: by extending the Thread class, or by implementing the Runnable interface. B o t h 
approaches produce a Thread instance that executes the run method i n a new thread 
when started. 

To start a thread, the start method must be called (which w i l l in turn ca l l the run 
method). The thread w i l l terminate upon returning from the run method. The j o i n 
method is used i n other threads to wait for a thread to terminate [12]. L i s t ing 2.1 shows 
a thread creation example by extending the Thread class, L i s t i ng 2.2 shows the same 
example achieved by implementing the Runnable interface. 

class MyThread extends Thread { 
QOverride 
public void run() { 

System.out.printlnC'This i s executed i n a new thread."); 
} 

public s t a t i c void main(String args[]) { 
MyThread t = new MyThread(); 
t . s t a r t ( ) ; 
t . j o i n Q ; 

} 

} 

Lis t ing 2.1: A simple program that creates a thread by extending the Thread class. 

W h e n accessing a shared resource from mult iple threads, proper synchronization is 
usually required. In Java, every object gets an impl ic i t monitor, which can be owned by only 
one thread at a given time. To enter the monitor, one must use either synchronized methods 
or synchronized statements. Synchronized statements are code blocks wi th an expl ic i t ly 
specified object whose monitor is entered before executing the block. Synchronized methods 
enter the monitor of the instance they are called upon [12]. L i s t ing 2.3 shows examples of 
synchronized blocks and synchronized methods. 

Communica t ion between threads is achieved using the following methods: wait, notify, 
and n o t i f y A l l . A l l methods must be called wi th in a synchronized context. Ca l l i ng wait 
w i l l suspend the cal l ing thread un t i l some other thread enters the same monitor and calls 
either notify or notif y A l l [12]. 
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class MyRunnable implements Runnable { 
public void run() { 

System.out.printlnC'This i s executed i n a new thread."); 
} 

public s t a t i c void main(String args[]) { 
Thread t = new Thread(new MyRunnable()); 
t . s t a r t ( ) ; 
t . j o i n Q ; 

} 

} 

Lis t ing 2.2: A simple program that creates a thread by implementing the Runnable inter­
face. 

class Example { 
private i n t a = 0 ; 

public synchronized void i n c l ( ) { 
a++; 

} 

public void inc2() { 
synchronized (this) { 
a++; 

} 

} 
} 

Lis t ing 2.3: A program wi th synchronized methods and statements. The i n c l method is 
synchronized, on each cal l , the Example instance's monitor is entered. The i n c 2 method 
is not synchronized but contains a synchronized block w i t h an expl ic i t ly specified monitor 
(this). 

Mult i - threaded programs may use the v o l a t i l e type modifier. It tells the compiler 
that the variable may be modified outside of the current thread. 

2.4 Java Memory Model 

Java memory model describes how threads i n Java interact w i t h each other using shared 
memory. The model defines several relations that are used by the dynamic analysis of 
contracts for concurrency, most notably the happens-before relation and the synchronizes-
with relation. 

Java memory model takes a program and an execution trace, and for each read operation 
decides i f it is val id or not. The decision depends on the write operation that modified the 
data before the read operation. The compiler, runtime, and hardware must ensure that a l l 
executions of a program produce execution traces that are va l id according to the model [8]. 

In a single-threaded program, it is only required that the program produces the same 
result as i f it was run serially. The compiler is free to reorder instructions when it does 
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not affect the result of the computat ion. In multi-threaded programs, the reordering of 
instructions has to be l imi ted when the threads interact w i th each other. 

In the model, only certain program actions are considered. There are several orders 
defined over the actions which are used by the dynamic contract analysis: program order, 
synchronization order, and happens-before order. 

The actions can be either intra- or inter-thread. A n inter-thread action can be detected 
or influenced by another thread. A n intra-thread action is for example adding two local 
variables and it is not important to the model . Nonvolati le reading or wr i t ing of a shared 
variable is an inter-thread action. Synchronization actions are inter-thread actions that 
include volatile reading or wr i t ing of variables, locking and unlocking of monitors, and 
starting and stopping of a thread [8]. L i s t ing 2.4 shows examples of different kinds of 
actions. 

class MySharedData { 
int mySharedVar = 0; 

public synchronized void MyMethodO { 
// synchronization action (entering a monitor) 
// intra-thread action (writing a l o c a l variable) 
in t a = 42; 
/ / 2 inter-thread actions (reading and writing a shared variable) 
mySharedVar += a; 
// synchronization action (leaving a monitor) 

} 
} 

Lis t ing 2.4: Various program actions classified from the Java memory model point of view. 
Enter ing and leaving MyMethod produces synchronization actions. Accessing mySharedVar 
is considered as an inter-thread action, but not as a synchronization action because 
mySharedVar is not declared as v o l a t i l e . 

Program order is a to ta l order over a l l inter-thread actions from a given thread. It 
reflects the order i n which these actions would be executed i f run by the intra-thread 
semantics. 

Synchronization order is a to ta l order over a l l synchronization actions of an execution. 
W i t h i n each thread, the synchronization order is consistent w i th the program order. The 
synchronized-with relation is defined on certain actions. For example: starting a thread is 
synchronized-with the first action in the new thread. 

Happens-before order is a par t ia l order. If an action happens-before another, the first 
action is visible to and ordered before the second action. If actions x and y belong to 
the same thread and x comes before y i n program order, then x happens-before y. If 
x synchronizes-with y, then x happens-before y. Figures 2.1 and 2.2 illustrates the happens-
before relation i n simple programs. 

A data race occurs, when there are two accesses to the same variable, at least one of 
which is write, and these accesses are not ordered by happens-before [8]. Th is si tuation is 
i l lustrated in Figure 2.2. 

8 



tl t2 

Figure 2.1: Happens-before relations in a correctly synchronized program consisting of 
threads t\ and ti. Each arrow represents a happens-before relation. The red arrows rep­
resent the program order, the blue arrow represents the synchronizes-with relation. Grey 
arrows complete the transitive closure. The conflicting accesses to variable a are not data 
races, because they are ordered by happens-before (the black arrow). 

Figure 2.2: Happens-before relations i n an incorrectly synchronized program (each solid 
arrow represents a happens-before relation). There is no happens-before relation between 
conflicting accesses a=42 and print (a) (the dashed line), creating a data race. 

2.5 Instrumentation of Java Bytecode 

Instrumentation is the act of inserting instructions into an existing program to extract useful 
information at runtime. Instrumentation can be used to measure performance, log events, 
or perform dynamic analysis. The running program should not be aware that it is being 
instrumented and the result of the computat ion should remain the same. Instrumentation 
may add significant overhead to the program. For example, programs instrumented by the 
RoadRunner framework are roughly ten times slower [6]. 

In Java, the instrumentation is done by changing the bytecode. There are several 
general-purpose frameworks for modifying the Java bytecode. In this section, the A S M 
framework is described as it is used by the RoadRunner framework, which is the basis of 
this Master 's thesis. 
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2.5.1 J a v a B y t e c o d e O v e r v i e w 

Programs wri t ten i n Java are compiled into Java bytecode which is executed by the Java 
V i r t u a l Machine. Every class gets compiled into a Java class file containing the following 
sections [2]: 

• A section wi th information about the class itself, such as the name of the class, the 
super class, implemented interfaces, and class annotations. 

• One section per field, containing the field name, type, modifiers, and annotations. 

• One section per method (and constructor), containing the name of the method, the 
return type, type of parameters, annotations, and compiled code of the method. 

Java class files also contain a constant pool section that holds a l l numeric, type, and 
string constants which are then referenced from other sections of the file. The whole struc­
ture is shown i n Table 2.1. The Java class file format is described i n detai l i n the Java 
V i r t u a l Machine Specification [11]. 

Modifiers, name, super class, interfaces 
Constant pool 
Annotat ions 
At t r ibutes 

Modifiers, name, type 
Fields Annotat ions 

At t r ibutes 
Modifiers, name, return and parameter types 

Methods Annotat ions 
At t r ibutes 
Code 

Table 2.1: Structure of the Java class file. Adap ted from [2], simplified. 

The Java V i r t u a l Machine operates on two kinds of types: primitive types and reference 
types. Examples of pr imit ive types are int, long, boolean, or double. There are three 
kinds of reference types: class types, array types, and interface types. The array type 
consists of a component type which can also be an array type. For example, int [] represents 
an array type wi th component type of int. A l l reference types may hold a special nul l 
reference, which is also the default value of reference types. 

Compi led classes do not contain any package or import statements, so a l l type names 
must be fully qualified. Internally, class files use slashes instead of dots i n type names, so for 
example Java.lang.Object becomes java/lang/Object. In most places, Java types are 
represented wi th type descriptors. E a c h pr imit ive type is assigned a single character: I for 
int, D for Double, and so on. Classes and interfaces are wri t ten wi th prefix L and semicolon 
at the end, so String becomes Ljava/lang/String; . Ar rays are represented using a [ and 
the element type, so an array of integers is [ I , an array of strings is [Ljava/lang/String;. 
Similarly, method descriptors are used to represent the return type of a method and types 
of a l l method parameters. For example, a method declared as double m(int i , String 
s) would be represented as (ILjava/lang/String; )D. In method descriptors, V is used 
when the method returns void. 
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W h e n executing, on each method invocation, the Java V i r t u a l Machine creates a new 
frame. Each frame contains its own local variables and an operand stack. W h e n the method 
invocation is completed, the frame is destroyed. 

L o c a l variables are addressed by indexing. E a c h variable can hold a single value of 
a pr imit ive or reference type wi th the exception of long and double which require a pair 
of variables. A t index 0, there is a reference to the object the method was invoked on (the 
value of this i n Java). Class methods (marked as s t a t i c i n Java) do not use this index. 
Start ing at index 1 (or 0 i n case of class methods), method parameters are stored. After 
the parameters, local variables may be stored. 

Each frame contains an operand stack, which is in i t ia l ly empty. Various instructions are 
used to load values onto the stack, either from local variables or fields. Other instructions 
take operands from the stack and push the result back. W h e n cal l ing other methods, the 
parameters are also prepared on the stack. 

Java V i r t u a l Machine instructions can be divided into several categories. L o a d and 
store instructions move values between local variables and the operand stack. For example, 
the iload_ 3 instruct ion pushes the value (which is of type int) from the local variable 
at index 3 to the operand stack. Ar i thme t i c instructions usually take two values from the 
operand stack, compute the result, and store it back on the stack. For example, the fmul 
instruction w i l l mul t ip ly two values of type float. Type conversion instructions convert 
the value on the top of the stack. Con t ro l transfer instructions, such as i f e q or goto, cause 
the execution of instruct ion other then the immediately following. 

To create new arrays and objects, instructions new, newarray, and anewarray are used. 
Methods are invoked using these five instructions: invokevirtual, invokeinterface, 
invoke special, invokestatic, and invokedynamic, each used in slightly different cir­
cumstances. Exceptions are thrown using the athrow instruction. Enter ing a monitor 
is achieved by monitorenter and monitorexit instructions, which are used by synchro­
nized statements in Java. A n example of a method represented by bytecode is shown in 
L i s t ing 2.5. 

2.5.2 T h e A S M framework 

The A S M framework allows generating and modifying Java classes direct ly i n bytecode. 
It can be used both stat ically (for example during compilation) or dynamical ly (to create 
classes at runtime). The A S M framework provides an interface for loading and storing the 
bytecode using higher-level abstractions, such as constants, identifiers, methods, fields, and 
others [2]. 

There are two interfaces available: the core API w i th an event-based representation 
of classes, and the tree API w i th an object-based representation. The core A P I processes 
classes sequentially. W h e n parsing a class, the A S M parser w i l l produce an event for each 
element of the class. W h e n wr i t ing a class, the writer creates the class based on a sequence 
of events. The tree A P I loads the whole class and creates a tree of objects representing 
the class. The core A P I is faster and requires less memory, however, it is not pract ical for 
complex transformations [2]. The RoadRunner framework uses the core A P I . 

The core A P I is based on the ClassVisitor abstract class. The class contains meth­
ods for vis i t ing different sections of a class, for example, v i s i t A t t r i b u t e , visitMethod, 
or v i s i t F i e l d . Complex sections, such as methods or fields, have their visitor classes. 
For example, the MethodVisitor class contains methods such as visitLocalVariable, 
visitCode, or visitParameter [2]. 
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public void foo(java.io.FileWriter, i n t , int) 
descriptor: (Ljava/io/FileWriter;II)V 
f l a g s : (0x0001) ACC_PUBLIC 
Code: 

stack=2, locals=5, args_size=4 
0: iload_2 
1: iload_3 
2: iadd 
3: i s t o r e 4 
5: aload_l 
6: i l o a d 4 
8: invokevirtual #2 // Method java/io/FileWriter.write:(I)V 

11: aload_l 
12: invokevirtual #3 // Method java/io/FileWriter.close:()V 
15: return 

Lis t ing 2.5: A n example of a method bytecode viewed using the javap command. The 
method takes three parameters: a file writer and two integers. There are 5 local variables: 
the object the method was called on (index 0), method parameters (indexes 1-3), and 
a local variable (index 5). O n lines 0-3, the two integers are loaded on to the operand 
stack, added together, and the result is stored i n a local variable. Lines 5-7 calls the write 
method on the file writer, lines 11-12 calls the close method. Operands on lines 8 and 12 
are indexes to the constant poo l section. 

To generate a new class, one has to create a ClassWriter instance, which is a subclass 
of ClassVisitor. Then a sequence of visit methods must be called, such as v i s i t F i e l d or 
visitMethod. The ClassWriter instance w i l l generate appropriate bytecode on each cal l . 

To read and parse a class, one has to create a ClassReader instance. The reader 
w i l l produce a sequence of events for each section of the class. To consume those events, 
a ClassVisitor instance must be given to the reader. The reader w i l l then ca l l appropriate 
visit methods on the visi tor as it is parsing the class. To demonstrate this, one can create 
a ClassReader and connect it to a ClassWriter (which is a subclass of ClassVisitor). 
The reader w i l l cal l visit methods on the writer, effectively copying the class. The typical 
class transformation is shown in Figure 2.3. 

. class file 

1 
ClassReader —> ClassVisitor —> ClassVisitor ClassWriter 

.class file 

Figure 2.3: The typica l architecture for a class transformation using the A S M framework. 
A ClassReader instance reads the class, then one or more ClassVisitor instances modify 
the class, and then a ClassWriter instance writes the modified class back to a file. 
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2.6 Dynamic Analysis using RoadRunner 

The RoadRunner framework is used for the dynamic analysis of concurrent programs writ­
ten in Java. RoadRunner instruments programs to obtain a stream of events that are useful 
for dynamic analysis, such as memory accesses, synchronizing on a lock, forking or jo ining 
of threads, and so on. Th is event stream is then available to various analysis tools. M u l t i ­
ple tools can be chained together, each tool act ing as a filter over the events. Th is allows 
complex analyses to be buil t from simpler, modular tools [6]. 

RoadRunner aims to simplify wr i t ing dynamic analysis tools. A RoadRunner analysis 
tool only needs to handle events of interest. RoadRunner w i l l ensure that the event is prop­
erly detected and the event handler is called. To store the state of the analysis, RoadRunner 
provides support for associating data w i th memory locations, locks, or threads. 

2.6.1 T h e R o a d R u n n e r P r o g r a m m i n g Interface 

Every analyzer i n RoadRunner is based on the Tool class. L i s t ing 2.6 contains the most 
important methods of Tool. D u r i n g the analysis, every t ime an action is detected, the 
appropriate method i n Tool is called, along wi th an Event object that contains information 
about the event. The following events are detected by the RoadRunner framework: 

• method entry and exit, 

• memory accesses (reads and writes to fields and variables), 

• lock acquires and releases, 

• synchronization signals (wait and notify), 

• thread forking and joining. 

There are several subclasses of the Event class w i t h specific information about events. 

public abstract class Tool { 
// event handlers for accessing a memory location 
public void access(AccessEvent fae) { } 
public void volatileAccess(VolatileAccessEvent fae) { } 
// event handlers for entering and e x i t i n g methods 
public void enter(MethodEvent me) { } 
public void exit(MethodEvent me) { } 
// event handlers for locking 
public void acquire(AcquireEvent ae) { } 
public void release(ReleaseEvent re) { } 
// event handlers for thread events 
public void preJoin(JoinEvent je) { } 
public void postJoin(JoinEvent je) { } 
public void preStart(StartEvent se) { } 
public void postStart(StartEvent se) { } 
// shadow loca t i o n i n i t i a l i z a t i o n 
public ShadowVar makeShadowVar(AccessEvent ae) { } 

} 

Lis t ing 2.6: The abstract class Tool. O n l y selected public methods are shown. 
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RoadRunner allows associating data w i th objects from the program under analysis. For 
each thread, a ShadowThread object is created which contains a reference to the under­
ly ing thread. Similarly, for each lock, a ShadowLock object is created. B o t h extend the 
Decoratable class that allows storing of arbi t rary information. For associating data w i th 
memory locations, a shadow location is created when the locat ion is first accessed. 

Mul t ip l e tools can be chained together. E a c h event handler method forwards the Event 
instance to the next tool i n the chain by default. If the event is not forwarded, the tool 
becomes a filter over the event stream. This can be used to filter out events that are not 
interesting to a part icular analysis and then performing the analysis i n the next tool [6]. 

2.6.2 RoadRunner Synchronization Models 

In RoadRunner , a l l threads of the program under analysis generate events. The events 
are also handled by the same thread that generated them which means that several event 
handlers may be running concurrently. Tools wri t ten for RoadRunner must provide inter­
nal synchronization to ensure that no concurrency-related errors occur i n the tool itself. 
RoadRunner contains an opt ion to serialize a l l events. In this mode, there is only one event 
handler running at a t ime [6]. 

2.6.3 Instrumentation Performed by RoadRunner 

RoadRunner uses a modified version of the A S M framework to instrument the program 
under analysis. Before a class is loaded, it is instrumented. The instrumented code w i l l 
then produce events that w i l l be sent to the tool chain for an analysis. Three important 
kinds of actions are instrumented: field accesses, method invocations, and monitor entries 
and exits. 

F i e ld accesses are instrumented by adding two new methods for each field: one for 
reading and one for wr i t ing to the field. In these methods, write and read events are 
generated. In the rest of the code, a l l getf i e l d and putf i e l d instructions are replaced 
wi th calls to the corresponding access methods. RoadRunner allows tools to store arbi trary 
data related to a field i n shadow variables. For each field, a new field of the ShadowVar 
type is created to store the data. List ings 2.7 and 2.8 shows a simple class before and after 
field instrumentation. 

private i n t bar; 

public void foo(); 
0 aload_0 
1 aload_0 
2 g e t f i e l d #2 // F i e l d bar I 
5 bipush 42 
7 iadd 
8 p u t f i e l d #2 // F i e l d bar I 
11 return 

Lis t ing 2.7: A n example class bytecode viewed using the javap tool , simplified. 

M e t h o d invocations are tracked by creating a wrapper method for each method. The 
original method is renamed, but otherwise left intact (the code may however be further 
instrumented to obtain other information, such as field accesses). Then a wrapper method 
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public i n t bar; 

public transient rr.state.ShadowVar $rr_bar; 

public void $rr_put_bar(int, i n t , rr.state.ShadowThread) 
(code omitted) 

public i n t $rr_get_bar(int, rr.state.ShadowThread) 
(code omitted) 

public void foo(); 
0: invokestatic #51 // Method rr/state/ShadowThread 

// .getCurrentShadowThread:()Lrr/state/ShadowThread; 
3: astore_2 
4: aload_0 
5: aload_0 
6: i c o n s t _ l 
7: aload_2 
8: invokespecial #56 // Method $rr_get_bar:(ILrr/state/ShadowThread; )I 
11: bipush 42 
13: iadd 
14: iconst_2 
15: aload_2 
16: invokespecial #53 // Method $rr_put_bar:(IILrr/state/ShadowThread;)V 
19: return 

Lis t ing 2.8: Code from L i s t i ng 2.7 instrumented by RoadRunner . For the bar field, 
two access methods are added and a new field of type ShadowVar. In the foo method, 
the bar field is accessed using methods $rr_get_bar and $rr_put_bar. These 
methods take the current shadow thread as an argument which is obtained by call ing 
getCurrentShadowThread. 

wi th the same name as the original one is created. The wrapper method generates enter and 
exit events. In order to detect abnormal method exits that are caused by an exception being 
thrown, the ca l l to the original method is wrapped i n a t ry block. W h e n an exception is 
caught, the exit event is generated and the exception is re-thrown. A n example of a method 
instrumented by RoadRunner is shown in L i s t ing 2.9. 

Moni to r entries and exits are handled differently for synchronized statements and syn­
chronized methods. Synchronized statements in Java are represented by monitor enter and 
monitorexit instructions. RoadRunner extends a l l occurrences of these instructions wi th 
calls to methods that generate acquire and release events. Synchronized methods i n Java do 
not need monitorenter and monitorexit instructions, the locking is performed impl ic i t ly 
by the Java V i r t u a l Machine. In RoadRunner , synchronized methods are replaced wi th syn­
chronized statements that are then instrumented as described above. For each synchronized 
method, a wrapper method is created. The original method's synchronized flag is cleared. 
The wrapper method, which is also not synchronized, contains a synchronized statement 
wi th ca l l to the original method. Synchronized methods are in the end wrapped twice, 
the first wrapper generates synchronization events and the second one generates method 
invocation events. 
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public i n t $rr_foo $rr O r i g i n a l _ ( i n t ) ; 
0: invokestatic #20 // Method rr/state/ShadowThread 

// .getCurrentShadowThread:()Lrr/state/ShadowThread; 
astore_3 
i l o a d _ l 
i return 

public i n t f o o ( i n t ) ; 
0: invokestatic #20 // Method rr/state/ShadowThread 

// .getCurrentShadowThread:()Lrr/state/ShadowThread; 
astore_3 
aload_0 
sipush 508 
aload_3 
invokestatic #27 // Method rr/tool/RREventGenerator 

// .enter:(Ljava/lang/Object;ILrr/state/ShadowThread;)V 
aload_0 
i l o a d _ l 
invokespecial #29 // Method __$rr_foo__$rr__0riginal_:(1)1 
aload_3 
invokestatic #33 // Method rr/tool/RREventGenerator 

// .exit:(Lrr/state/ShadowThread;)V 
goto 29 
aload_3 
invokestatic #33 // Method rr/tool/RREventGenerator 

// .exit:(Lrr/state/ShadowThread;)V 

12 
13 
14 
17 
18 

21 
24 
25 

28: athrow 
29: ir e t u r n 

Lis t ing 2.9: M e t h o d int foo(int a) instrumented by RoadRunner . The original method 

was renamed to $rr_foo $rr 0r i g i n a l _ and a new method w i t h the original name 

was created. This method generates enter and exit events and calls the original method. 
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Chapter 3 

Contracts for Concurrency 

W h e n developing software, one frequently uses modules created by someone else v ia its 
programming interface. For example, in object-oriented programming, the interface consists 
of public methods of a given class. Accessing the interface requires one to follow a protocol 
consisting of: (i) syntax, i.e. types of parameters and return values, (ii) semantics, i.e. 
the expected behavior for given input parameters, and (iii) access restrictions. Access 
restrictions include the domain of val id values, dependencies on other services, and atomici ty 
violations [3]. 

Contracts for concurrency [4], [13], are a case of a software protocol that expresses access 
restrictions i n a concurrent setting. In its basic form, they specify sequences of methods 
that must be executed atomically. Contracts for concurrency help detect high-level data 
races i n a program. A high-level data race occurs on a higher abstraction layer. P rogram 
that is free of data races as defined by the Java memory model can s t i l l contain high-level 
data races when modifying complex data structures [1]. A s an example, consider an object 
that represents a pair of coordinates w i t h two synchronized methods: setX and setY. 
Even though both methods are executed atomically, there is a window between setting the 
first and the second coordinate where the object is i n an inconsistent state, al lowing for 
a high-level data race. 

The contracts can be extended wi th parameters to reflect the data flow between the 
methods (so that only methods manipula t ing the same data must be executed atomical ly) . 
Another extension adds so-called spoilers (so that given sequence must be executed atomi­
cally only wi th respect to only certain sequences). B o t h extensions can be combined. This 
chapter defines basic contracts, as well as bo th extensions to them. T h e n a method for 
dynamic val idat ion of contracts for concurrency is presented. The analyzer, implemented 
in this thesis, is based on this method. 

3.1 Basic Contracts 

A contract is formally defined i n [4] as follows. Let E M be a set of a l l public method names 
(the A P I ) of a module or a library. A contract is a set M of clauses. E a c h clause Q e K 
is a regular expression over E M - A contract violat ion occurs when any of the sequences in 
a contract is interleaved w i t h an execution of a method from E M over the same object. 
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Example. Consider a map implementat ion wi th the following operations: put (key, value), 
get (key), remove (key), and contains (key) . Then a contract for this class may contain 
the following clauses: 

(Qi) P u t get 
( £ 2 ) contains (put|get|remove) 

Clause Q\ states that when an element is put into the map and then retrieved, it should be 
executed atomical ly (because the element may be removed between the calls). Clause Q2 

states that when the program modifies the map based on the result of the contains cal l , 
it should be atomic. 

3.2 Parametric Contracts 

In some situations, the definition of contracts may be too restrictive, producing false alarms. 
In [3], contracts are extended wi th parameters to reflect the data flow between methods. 
Consider the following example: 

i f (q.contains(42)) q.remove(42); 

These two calls must be executed atomical ly only if they share the same argument. This 
dependency can be expressed using meta-variables placed as the parameters or return values 
of methods. Parameters that should not be taken into account are marked w i t h free meta­
variable (denoted wi th an underscore). 

Example. The example from Section 3.1 can be extended wi th parameters: 

(pi) put(X,_) _=get(X) 
( £ 2 ) _=contains(X) ( put(X,_) | _=get(X) | remove(X) ) 

Clause QI cares about calls to put and get that operate on the same key (the X meta­
variable) but it is not concerned w i t h the value that is put or retrieved (the _ meta-variable). 
Similarly, i n clause Q2, only method calls operating wi th the same key must be atomic. 

The basic definition of contracts contains one impl ic i t parameter, the object that the 
method was called upon (this i n Java) [4]. The atomici ty is required only on methods 
called upon the same object (as these method calls usually modify the same data). To 
better il lustrate this, the example can be rewrit ten as: 

( £ 1 ) X.put(Y,_) _=X.get(Y) 
(g2) _=X.contains(Y) ( X.put(Y,_) | _=X.get(Y) | X.remove(Y) ) 

3.3 Contracts with Spoilers 

In [3], contracts are extended w i t h contextual information to distinguish which method 
sequences violate the contract. Each clause of the basic contract is called a target and is 
assigned a set of so-called spoilers. A spoiler is a set of method sequences that may violate 
its target. 

Consider clause £1 from the example i n Section 3.1. If the element that was put into the 
map is concurrently removed or updated before the get ca l l , a contract violat ion should be 
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detected. However, cal l ing contains or get on the element w i l l not affect the computat ion 
and should not be marked as a contract violat ion. In this example, methods put and remove 
are spoilers for a target g\, denoted as put get put I remove. 

Formally, as defined i n [3], let M be the set of target clauses where each target g e R 
is a regular expression over E M - Let § be the set of spoilers where each spoiler a e S is 
a regular expression over E M - A contract is a relation C c | x § defining for each target, 
which spoilers may cause atomici ty violat ion. 

Contract viola t ion is observed when a target sequence g e M is fully interleaved by 
a spoiler sequence a e C(g) and the sequences are executed on the same object. 

Example. The example from section 3.1 can be extended wi th spoilers: 

(gi) put get put | remove 
( £ 2 ) contains (put|get|remove) put|remove 

W h e n combining parametric contracts w i th spoilers, the spoilers may also contain param­
eters. Then a contract viola t ion is detected only when spoiler arguments match target 
arguments. 

Example. Examples from sections 3.2 and 3.3 combined together: 

(gi) X.put(Y,_) _ = X.get(Y) X.put(Y,_)|X.remove(Y) 
(g2) _ = X.contains(Y) ( X.put(Y,_) | _ = X.get(Y) | X.remove(Y) ) 

X.put(Y,_)IX.remove(Y) 

3.4 Dynamic Contract Validation 

In [3], a dynamic contract val idat ion method is proposed for contracts w i th spoilers. Para­
metric contracts are not included i n the method. This section provides an overview of 
the method. The analyzer designed i n Chapter 4 uses this method and extends it w i th 
parameters. 

3.4.1 Multi-threaded Program Traces 

In the context of the dynamic on-the-fly contract validation, multi-threaded program trace 
consists of events of the following types: 

• thread forking or jo in ing another thread, 

• thread entering or exit ing a method, 

• thread acquiring or releasing a lock. 

A l l events i n a trace are indexed by their posi t ion i n the trace. Let T be a set of threads, 
M a set of targets, § a set of spoilers, C Q 1 x § a set of contracts, and L a set of locks. 
The set of a l l events that can be generated by a thread t e T is then denoted as E$. Let 
IE = | J < g T E ( . A trace is then a sequence T = e\... en e E + [3]. 

Given a trace T = e\... en e E + , we cal l its subsequence r = e^e^ . . . eik, 1 < k n , 
an instance of a target g e M if, and only if: 

1. r consists of well-paired method enter and exit events, 
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2. a l l enter events of r match the regular expression of g, 

3. apart from events e%x,..., eik, there is no event from the alphabet of g executed by t 
between events and eik. 

Example. G iven target g = abc, and a trace t\ = adbdc, there is a target instance r = eie^e^. 
In trace T2 = acbdc, there is no target instance. 

A spoiler instance s of a spoiler a e S is defined similarly. We let start(r) = e%x and 
end(r) = eik denote the first and last events of a target, respectively. Likewise, start(s) 
and end(s) denote the first and last events of a spoiler, respectively [3]. 

3.4.2 Contract Violation 

A contract is violated when there is a target instance that is fully interleaved w i t h a spoiler 
instance from another thread. The interleaving is defined using a happens-before relation, 
which is i n the context of contracts defined as follows [3]. A happens-before relation <hb 
over a trace T = e\... en e E + is the smallest transit ively closed relation on the set of events 
from r such that ej <hb £k holds when j < k and one of the following holds: 

1. bo th ej and are executed by the same thread, 

2. bo th ej and acquire or release the same lock, 

3. one of ej and e& is a fork or a jo in performed by thread t, and the other is executed 
by thread u. 

A contract (g, a) e C is violated in a trace r if, and only if there is a target instance r 
in the trace and a spoiler instance s i n the trace such that: 

start(s) -^hb start(r) A end(r) -)c^6 end(s) 

The viola t ion occurs when the spoiler may have started after the target started and it may 
have ended before the target ended. W h e n given a complete program execution trace, a l l 
target and spoiler instances can be detected, the happens-before relation can be deduced, 
and a l l contracts can be easily checked for violations. The trace, however, can get large 
and make this approach unpract ical . For this reason, several optimizations are introduced 
in [3], which are presented i n the next section. A n example of a program trace containing 
a contract viola t ion is shown in Figure 3.1. 

3.4.3 On-the-fly Contract Validation 

To check contract validations, it is not required to keep the entire program execution trace. 
A trace window is kept instead. Events are moved to the trace window as soon as they 
become available and are removed under certain conditions. The goal is to keep the window 
as smal l as possible. 

Spoiler instances can be safely removed from the window whenever a contract violat ion 
that would be detected wi th the spoiler can be detected without i t . A spoiler instance can 
be removed from the window whenever a newer instance of the same spoiler is detected [3]. 

A target instance r can be safely removed wi th respect to a spoiler instance s whenever 
a contract viola t ion that would be detected between r and s, can be detected between s and 
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Figure 3.1: A n example of a program trace containing a contract violat ion. Consider 
a target a (X) b(_) and a spoiler c ( X ) . In thread t, a target instance r is detected wi th 
X = 1. In thread it, a spoiler instance s is detected wi th X = 1. The parameters match in 
both instances. The instances are not synchronized, so start(s) start{r) a end(r) -^hb 
end{s) holds, which means that there is a contract violat ion. 

another target instance too. Note that target instances may be removed only wi th respect 
to a given spoiler, not i n general [3]. 

To further reduce the required information about the trace, vector clocks are used. 
Vector clocks are described in the next section. For each target and spoiler instance in the 
trace window, only vector clocks of their beginning and end need to be kept. 

The method for on-the-fly contract val idat ion does the following. A t method entry 
events, target and spoiler sequences are detected. A t method exit events, it is detected 
whether a target or a spoiler instance has ended. W h e n a target instance ends, spoiler 
instances from the trace window are checked if they violate the target. W h e n a spoiler 
instance ends, target instances from the trace window are checked i f they are violated by 
the spoiler. A t method exit, target and spoiler instances are also discarded when no longer 
needed [3]. 

3.4.4 Vector Clocks 

The on-the-fly dynamic analysis of contracts uses vector clocks and the happens-before 
relation the same way it is used in the Fast Track algori thm [5]. A vector clock VC : T —> N 
consists of clock values for each thread t e l . Vector clocks are par t ia l ly ordered w i t h E , 
can be joined wi th u , and contain a min ima l element _Ly. The t-component of a vector 
clock is incremented using the inct function. 

Example. Consider threads ti, t2, £3, and two vector clocks: V\ = (1,0,2), V2 = (1,0,5). 
Then Vx E V2 is true, V1uV2 = (1, 0, 5), and inct2{V{) = (1,1, 2). 

Dur ing the analysis, three kinds of clocks are kept. For each thread t e T , a vector clock Ct 

stores information about the last synchronization wi th other threads. For each lock I e L , 
a vector clock L ; holds information about the last thread that released the lock. For each 
event e e r , a vector clock VCe is kept [3]. 

V\ != V2 iff V i . V i ( i ) < V2(t) 

ViuV2 = Xt.max(V1(t),V2(t)) 

± v = At. 0 
inct(V) = A u . i f it = t then V (u) + l e l s e V ( w ) 
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The happens-before relation is defined using vector clocks. For an event e% from a thread 
t and an event eu from a thread u, et <hb e u when VCet(t) < VCeu(t). The clocks are 
updated on the following actions: 

• Fork — when a thread t creates a new thread u: 

Cu «- Cu u Ct 

Ct <- inct(Ct) 

The new thread w i l l get a l l happens-before relations from the parent thread. T h e n the 
parent thread is updated so that events coming after the fork w i l l not happen-before 
events i n the new thread. 

• Jo in — when a thread t waits for a thread u to finish. 

Q <- Q u Cu 

Cu <- incu(Cu) 

The thread that waits for the jo ining thread w i l l get a l l happens-before relations from 
the jo in ing thread. Then the jo ining thread is updated so that events coming after 
the jo in w i l l not happen-before events i n the wai t ing thread. 

• Release — when a thread t releases a lock I. 

l , « - q 
Ct <- inct(Ct) 

The releasing thread w i l l be synchronized wi th the thread that w i l l acquire the lock 
in the future. The thread does not know wi th which thread, so the thread's vector 
clock is stored i n the lock. T h e n the thread is updated so that events coming after the 
release w i l l not be synchronized wi th the thread that acquires the lock in the future. 

• Acquire — when a thread t acquires a lock I. 

Ct <- C 4 u L j 

The acquiring thread w i l l get happens-before relations from the lock which holds the 
vector clock from last release operation. 

• Event clocks are set when an event enters the window trace. For an event e e r 
executed by a thread t e T : 

VC, - C , 

3.5 Previous Work 

There are several existing implementat ion of dynamic analyzers for contracts for concur­
rency. In [4], the I B M Concurrency Testing Too l is used for t racking the basic contracts in 
Java programs. In [3], the A N a C o n D A framework is used for t racking parametric contracts 
w i th spoilers i n programs wri t ten i n C / C + + . In [9], the RoadRunner framework is used to 
track parametric contracts w i th spoiler in Java programs. The prototype implementat ion 
in [9] served as a reference for this thesis. 
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Chapter 4 

Design of a Dynamic Analyzer for 
Parametric Contracts with Spoilers 

This chapter describes the proposed dynamic analyzer for parametric contracts w i th spoil­
ers. The analyzer follows the method for dynamic analysis of contracts described i n [3] and 
extends it to support parametric contracts. 

The analyzer is buil t as a new tool for the RoadRunner framework. The input is 
a program under analysis and a contract definition. The analyzer is then able to detect 
contract violations i n the program and report them. The RoadRunner framework was 
modified to support obtaining method arguments and return values. 

Section 4.1 provides an architectural overview of the analyzer itself. Section 1.2 describes 
several restrictions that were placed on the analyzer i n the design phase. In Section 4.3, 
necessary changes to RoadRunner itself are presented. Section 4.4 describes how a contract 
is defined and processed before the analysis is started. The core function of the analyzer is 
described in Section 4.5. Section 4.6 describes how the analyzer interacts w i th RoadRunner . 

4.1 Overview of the Contract Analyzer 

This section provides a high-level overview of the contract analyzer. The Contract Analyzer 
class is the core of the analyzer. It receives events from the program under analysis, detects 
target and spoiler instances, and looks for contract violations. It manages data stored wi th 
threads and locks, such as trace windows and vector clocks. The ContractAnalyzer class 
can be instantiated without any dependencies from the RoadRunner project, which is useful 
for testing purposes. Section 4.5 describes ContractAnalyzer in detail . 

The ContractTool class is a subclass of RoadRunner ' s Tool class. Dur ing the ini t ia l iza­
t ion of ContractTool, the contract definition file is parsed and ContractAnalyzer is cre­
ated. In ContractTool, relevant methods are overridden to receive events from RoadRun­
ner, such as lock acquire and release or method exit. These events are then processed and 
sent to ContractAnalyzer. Section 4.6 provides a detailed description of ContractTool 
and Section 4.4 describes the parsing and representation of contracts. 

For each thread, a Window instance is created by ContractAnalyzer. It stores infor­
mat ion about target and spoiler instances in a trace window. O n method exit, existing 
instances are advanced, new instances are started, and for a l l finished instances, contract 
violations are checked. 
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4.2 Constraining Analyzer Capabilities 

The analyzer is designed wi th several restrictions based on the previous work, such as [9] 
or [4], to improve its performance. F i r s t , a restriction is placed on the parameters i n contract 
definitions to reduce the number of instances i n a trace window. T h e n the conditions for 
removing instances from the trace window are discussed and a related contract restriction 
is introduced. Final ly , it is described how nested method calls should be handled. 

4.2.1 Avoiding Cloning of Target and Spoiler Instances 

The method for analyzing contracts described i n [9] produces an enormous number of 
instances being tracked at the same time. A lot of instances are created because of the 
necessity to clone target and spoiler instances before they are advanced. Consider the 
following target: a(X) b(Y) c(X,Y) and the following program trace: a(l) b(2) b (3) 
c ( l , 3 ) . W h e n a(l) enters the trace window, a new instance is created and the value of 
X is set to 1. B u t when processing b ( 2 ) , the analyzer cannot reliably decide whether the 
method cal l belongs to the instance or not (there might be c ( l , 2 ) later i n the trace). The 
only option is to keep the instance and create a duplicate instance which is then advanced 
(while setting Y to 2). 

To prevent dupl icat ion of instances, the following restriction was put on the contract 
definition. A l l target and spoiler parameters must be assigned i n the first cal l of a given 
target or spoiler. Th is ensures that there is no ambiguity i n deciding whether a given 
method cal l advances an instance or not. For example, the target from the previous example 
is inval id because the value of Y remains unknown after the first method cal l . 

4.2.2 Invalidating Instances 

A target or spoiler instance, as defined in Chapter 3, requires that no method belonging to 
the alphabet of a given target or spoiler may be called between the events that form the 
instance. In practice, it means that a running instance must be discarded when a method 
belonging to the target or spoiler is called. For example, consider a target abc and the 
following program trace: aa. After the first a, a new instance is created. After accepting 
the second a, the instance must be discarded. 

W h e n tracking parametric contracts, instances cannot be easily discarded. Consider 
a running instance of a target (or a spoiler), a l l of its parameters are assigned a value. 
W h e n a method is called that belongs to the alphabet of the instance's target, three kinds 
of situations can happen: 

1. The method matches the target definition and method arguments match the values 
of instance parameters. The instance is advanced wi th the method. 

2. The method matches the target definition but method arguments conflict w i th the 
values assigned to the instance. The instance cannot be advanced but it also should 
not be discarded. The method cal l most l ikely belongs to another instance. 

3. The method does not match the target definition. Accord ing to the definition in 
Chapter 3, the instance should be discarded. B u t the analyzer does not know if the 
method cal l is i n any way related to the instance. 

The second si tuation can be i l lustrated i n the following example. Consider a target a(X) 
b(X) and a program trace a(l) b(2) b ( l ) . After a ( l ) , an instance is created wi th X set 
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to 1. W h e n b(2) is called, the value of X conflicts w i th the value stored i n the instance. 
However, the instance should not be discarded as we can see that a matching cal l exists 
later i n the trace. 

A n example of the th i rd si tuation. Consider target a(X) b(X) and a program trace 
a ( l ) a(2) b ( l ) b(2). Intuitively, there should be two instances detected, one wi th X set 
to 1, and one wi th X set to 2. After a ( l ) , the first instance wi th X=l is created. W h e n 
a(2) is accepted, the instance cannot be discarded even though it belongs to the alphabet 
of the target. 

The problems described above mean that the analyzer w i l l never discard an already 
running instance, the only option is to advance i t . Another option is to modify the behavior 
in the th i rd si tuation so that the analyzer w i l l t ry to guess whether a method cal l belongs 
to the current instance or not. W i t h simple contracts, the decision can be easy. Consider 
the target from the previous paragraph: a(X) b(X) . In this case, every t ime a method b() 
is called, the analyzer can decide whether it belongs to the currently tracked instance or not 
based on the value of X. The decision is less clear when a target contains the same method 
mult iple times wi th different parameters. For example, consider target a(X,Y) b(X) b(Y) 
and a program trace containing two interleaved instances wi th different parameters: a ( l ,2) 
a(2,3) b(2) b ( l ) b(2) b(3) . After a ( l,2) , a new instance is created wi th X=l and Y=2. 
After a(2,3), another instance is created wi th X=2 and Y=3. W h e n b(2) is encountered, 
the second instance is advanced, because it matches the target. The analyzer may however 
discard the first instance because b(2) is contained in the target as b(Y) , but the expected 
method was b (X). It is not clear, what the proper behavior should be. The analyzer should 
therefore never discard running instances. 

4.2.3 Kleene Star in Contract Definition 

The analyzer never invalidates a running instance. Th is fact allows for opt imizat ion in 
contract definitions. A s defined i n Chapter 3, a target or a spoiler is a regular expression 
over methods. The analyzer should therefore recognize contracts defined using a l l three 
basic operations: concatenation (ab), alternation (a|b), and Kleene star (a*). Due to the 
fact, that no method cal l can invalidate a running instance, the Kleene star operation is not 
needed. A l l parts of an expression that are also operands of a Kleene star operation can 
be removed wi th no impact on the analysis. For example, a regular expression ab*c can 
be replaced wi th ac. Cal ls to method b w i l l be s imply ignored. These simplified regular 
expressions, when converted to a finite automaton, do not create any loops. This allows for 
simpler structures i n the implementat ion of the analyzer. 

4.2.4 Nested Method Calls 

The method described i n [3] is based on program traces where every method represents 
a single event i n the trace. However, the RoadRunner framework produces two events for 
every method: method entry and method exit. For parametric contracts, we need to obtain 
values of parameters and also the return value, which is available only on method exit. 
For convenience, the analyzer should use only the method exit event. Th is means that the 
analyzer may produce unexpected results when the program under analysis contains nested 
calls to methods that are part of the contract. Consider the following methods that are 
both parts of a contract: 

public void a() { b(); } 
public void b() { ... } 
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After cal l ing method a(), the trace recorded by the analyzer w i l l be b() a() instead of 
more intuit ive a() b(). 

4.3 Changes to Instrumentation Performed by RoadRunner 

The RoadRunner framework does not expose the method arguments or the return value 
through its A P I . For the t racking of parametric contracts, it is necessary to obtain method 
arguments and return values so that the contract parameters can be assigned values. 

The enter and exit of RoadRunner ' s Tool class methods both take a MethodEvent 
parameter containing the following information: 

• Target — n u l l for static methods, the value of t h i s for instance methods. 

• A Methodlnfo object — static information about the method definition (name, de­
scriptor, whether it is synchronized or static). 

• C a l l site locat ion — where was the method invoked. 

The MethodEvent class was extended for storing method arguments and the return value. 
The following methods were added: 

public Object[] getArgsO; 
public void setArgs(Object[] args); 
public Object getReturnValue(); 
public void setReturnValue(Object returnValue); 

Arguments and return values which are reference values (class instances or arrays) 
can be stored directly in the Object data type. P r imi t ive values (such as int or float) 
cannot be stored in Object directly, they must be wrapped i n a class instance. Each 
primit ive type has a corresponding object wrapper class, for example, int is wrapped in 
the Java. lang. Integer class. The getArgsO method should return an array of size 0 for 
a method that takes no arguments and it should return n u l l when the arguments are not 
available. The getReturnValue () should return n u l l when the value is not available (for 
example on method entry), when the method throws an exception, or when the method 
returns void. 

4.3.1 Parameter Matching 

W h e n t ry ing to advance a running instance, method arguments must be checked, i f they 
match the previously assigned parameters. For reference types, the equality operator (==) is 
used which compares the addresses of both objects. For pr imi t ive values that are wrapped 
in an object, the equals() method must be used. A s a result, the analyzer w i l l always 
compare instances of wrapper classes (such as Integer) by cal l ing the equals () method, 
even if the instance was created by the program under analysis. Th is may or may not be 
the intended behavior and the user of the analyzer should be aware of this. 

4.4 Contracts Definition and Parsing 

Before the start of the analysis, a contract must be specified. This section describes the 
syntax of a contract configuration file, how it is parsed, and how it is represented i n the 
analyzer. 
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Map.put(ID)V M(K,_) Map.get(I)D M(K) 
<- Map.put(ID)V M(K,_) | Map.remove(I)D M(K) ; 

Map.contains(I)Z M(K) 
( Map.put(ID)V M(K,_) I Map.get(I)D M(K) I Map.remove(I)D M(K) ) 
<- Map.put(ID)V M(K,_) I Map.remove(I)D M(K) ; 

Lis t ing 4.1: Contract from Chapter 3 wri t ten for a M a p wi th int keys and double values. 
The first target matches an inserting element to the map at a given key and then retrieving 
it. The target can be invalidated by cal l ing either put or get w i th the same key. The 
second target matches checking i f a key is present in the map and then modifying the value 
at the given key. The target can be invalidated by replacing the value or by removing it. 

4.4.1 Contract Definition Syntax 

The analyzer takes a contract definition as a parameter. A t the top level, the definition 
contains pairs of targets and spoilers. Each target and spoiler is represented by a regular 
expression over methods. The on-the-fly dynamic analysis described i n Chapter 3 expects 
several spoilers to be assigned to a single target. In practice, the spoilers can be merged 
into a single regular expression so that each target has exactly one spoiler. E a c h method is 
parametrized, including arguments, return value, and the object it is called upon (this). 

To specify methods unambiguously, method names must be fully qualified (for example 
java/lang/Object .toString). Java allows method overloading, so to dist inguish methods 
wi th the same name but different number and type of their parameters, the contract defini­
t ion contains the method descriptor (for example (Ljava/lang/Object;) V. E a c h method 
in a contract definition consists of the enclosing class, the method name, the method de­
scriptor, and a list of meta-variables. For example: 

test/sanity/ArrayList.set(ILjava/lang/Object;)Ljava/lang/Object; X=Y(Z,_) 

This represents the set method called on an ArrayList from the test. sanity package. 
The first meta-variable X is the return value, Y is the ArrayList instance, and Z is the first 
parameter (integer). The second parameter (object) is marked wi th a free meta-variable 
(_) meaning that the analyzer w i l l ignore its value. The return value or the target of the 
method may be omitted, the parser w i l l treat them as free meta-variables. 

Targets and spoilers are defined using a l imi ted regular expression over methods. Con­
catenation is achieved s imply by wri t ing two methods, one after another, alternation is de­
noted by a vert ical bar (I) . The Kleene star operator (*) is not allowed (see Section 4.2.3). 
A n example of a target definition: 

Test.aOV X() ( Test.bQV X() I Test.cQV X() ) 

A contract clause is defined as two regular expressions over methods, separated by an 
arrow and a semicolon at the end. A contract is then a list of clauses. A n example of a full 
contract is shown in L i s t ing 4.1. The full grammar for contracts is shown i n A p p e n d i x C . 

4.4.2 Contract Representation 

A l l parts of a contract definition are parsed into a corresponding class instance. Each 
method i n a target or spoiler is represented by a Signature instance. It consists of a method 
name, a fully qualified name of the enclosing class, and a method descriptor. The method 
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descriptor contains information about parameter types. The main purpose of this class is 
to be compared w i t h method invocation events to determine i f the invoked method matches 
the method from a contract. Meta-variables are parsed into a MetaVars instance. 

Each target and spoiler is represented by a State instance that w i l l later be used to 
construct a finite automaton for detecting running target and spoiler instances. A target 
w i th a single method w i l l be represented by two states: one start ing state wi th a transi t ion 
to an accepting state. The transi t ion w i l l contain the method signature and meta-variables. 
Dur ing parsing of more complex targets and spoilers, these one-method state structures are 
combined. See Figure 4.1 for an example. Dur ing the analysis, State instances w i l l be used 
for checking whether a given method invocation can advance a given target or spoiler. 

Figure 4.1: A structure of states representing the following regular expression: a(b|cd)e. 

A contract is then made up of target-spoiler pairs. W h e n a contract is created, a set 
of a l l method signatures used i n the contract is extracted. D u r i n g the analysis, the set of 
signatures is used to filter method invocations so that only relevant methods are processed 
by the analyzer. 

4.5 Contract Analyzer 

The main class, ContractAnalyzer receives events from the program under analysis, detects 
target and spoiler instances in a l l threads, and looks for contract violations when a target 
or spoiler instance finishes. The ContractAnalyzer class provides the following interface: 

• A constructor that takes a Contract instance. 

• exit method that is called on method exit. It takes a thread identifier, a method 
signature, and method arguments (also containing the return value). W h e n a contract 
violat ion is detected, the exit method w i l l throw an exception. 

• acquire and release methods that are called when a synchronized block or a syn­
chronized method is entered and exited. The methods both take a thread identifier 
and a lock identifier. 

• create method that is called when a new thread is created. It takes a thread identifier. 

• fork and j o i n methods that take two thread identifiers. 

The ContractAnalyzer class manages data stored wi th threads and locks. W h e n cre­
ated by cal l ing create, each thread w i l l get a trace window and a vector clock. Methods 
acquire, release, fork, and j o i n only modify vector clocks of threads and locks. 

The exit method calls the trace window associated wi th a given thread. The trace 
window receives method signature and arguments so that it can t ry to advance a l l of its 
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target and spoiler instances. It also receives the current vector clock and references to trace 
windows of other threads so that it can look for contract violations. 

The ContractAnalyzer class is created and called by the ContractTool class which d i ­
rectly uses the RoadRunner A P I . The ContractTool class is described i n Section 4.6. The 
interface of the analyzer is made up of synchronized methods to ensure proper synchroniza­
t ion. Th is approach is not the same as the event serialization mentioned i n Chapter 2. A l l 
events that are not cal l ing analyzer's methods w i l l s t i l l be concurrent. 

4.5.1 Tracking of Target and Spoiler Instances 

For each thread, a Window object is kept dur ing the analysis. It contains target and spoiler 
instances present i n a trace window. W h e n a method invocation is detected i n a thread, 
al l target and spoiler instances are advanced (if possible) and new instances are started. 

A n instance is bound to a target or spoiler from the contract definition. The instance 
is created by encountering the first method signature in a target or spoiler. The instance 
is advanced to the next state and waits for the next method as defined in the given target 
or spoiler. Dur ing the first transit ion, values of a l l parameters are assigned. There can 
be mult iple instances of the same target or spoiler that vary only by the value of their 
parameters. E a c h instance remembers the vector clock of its beginning. 

W h e n an instance is advanced using the last method i n the target or spoiler definition, 
it reaches an accepting state. A t this point, the analyzer checks for contract violations (see 
Section 4.5.2). Then the instance is reset. That means that the instance again waits for the 
first method signature in a given target or spoiler. The value of parameters w i l l however 
stay unchanged. The vector clocks of the beginning and the end of the instance are saved. 
So when an instance is running for the second time, it has access to the vector clocks of 
a previously encountered instance. See Figure 4.2 for i l lustrat ion of an instance life cycle. 

W h e n a method cal l enters the trace window, a l l running instances (those wi th parame­
ters already assigned) are advanced. The method cal l may however also start a new instance 
that is not yet part of the trace window. The analyzer tries to create new instances from 
targets and spoilers from the contract. These new instances are added to the trace window 
only if there is no matching instance already present i n the trace window. Two instances 
are matching, if they are bound to the same target or spoiler, their parameters share the 
same values, and they both just started (they accepted the same first method). In practice, 
the only difference between these matching instances is that one contains information about 
the previously encountered instance while the other does not. 

Example. Consider target a(X) b(X) and a program trace a(l) b(l) a(2) b(2) a ( l ) . 
After a ( l ) , the analyzer adds a new instance i\ to the window wi th X = 1. After b ( l ) , 
i\ is advanced, accepted, and reset. N o new instance is started because there is no target 
starting wi th method b. After a(2), i\ cannot be advanced, because the parameters do 
not match. New instance ii w i t h X = 2 is added to the trace window. After b(2), ii is 
advanced, accepted, and reset. W h e n a(l) is encountered again, i\ is advanced but no new 
instance is added because i\ would match the newly created instance. 

4.5.2 Detection of Contract Violations 

Each t ime a target or a spoiler is fully recognized by the analyzer, it must be checked 
whether there are any contract violations. W h e n a method enters a trace window, there 
may be several instances from the same thread that w i l l be fully accepted by this method 
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Step 1: a (42) 
Target: a (X) b(_) 
Parameters: X=42 
Beginning: (1) 
Last instance: none 

Step 2: b ( l ) 
Target: a (X) b(_) 
Parameters: X=42 
Beginning: (1) 
Last instance: none 

Target: a (X) b(_) 
Parameters: X=42 
Beginning: none 
Last instance: ( l ) - (2) 

Step 3: a(42) 
Target: a (X) b(_) 
Parameters: X=42 
Beginning: (3) 
Last instance: ( l ) - (2) 

Figure 4.2: A n example of an instance life cycle. In the first step, the instance is created 
when a method cal l a (42) is encountered. The vector clock of the beginning is set and the 
parameters are assigned a value. In step 2, the instance is fully accepted. A t this point, 
the analyzer looks for contract violations. Then the instance is reset, the vector clock of 
the beginning is reset, and the vector clocks of the last instance are set. In step 3, method 
a is called wi th an argument that matches the value of X i n the instance. The instance is 
started again. 

cal l . For each accepted target and spoiler instance, the analyzer w i l l look for conflicting 
instances i n trace windows from other threads. 

W h e n an instance is fully accepted, the analyzer w i l l retrieve a l l conflicting instances 
from other threads. If the instance is a target instance, the analyzer w i l l retrieve instances of 
a spoiler that can invalidate the target, as specified i n the contract. Similarly, i f the instance 
is a spoiler instance, the analyzer w i l l look for instances of a target that can be invalidated 
by the spoiler. For each conflicting instance, it is checked whether the contract parameter 
values match. Then finally, the analyzer checks the vector clocks of each matching instance 
and decides i f the two instances interleave each other. 

The two instances may not actually interleave each other. The interleaving is decided 
based on the vector clocks of the beginnings and ends of the two instances. Vector clocks 
are only updated when threads synchronize themselves. So the analyzer w i l l mark the two 
instances as interleaving when there was not a synchronization between the threads that 
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would prevent them to interleave each other i n another run of the program under analysis. 
Figure 4.3 shows an example of a contract violat ion detected in a program. 

Figure 4.3: A n example of a contract viola t ion in a program. Consider a target a(X) b(X) 
and a spoiler c(_). In thread t, a target instance r\ w i th X = 1 is detected, it begins and 
ends at (1, 0). There is no spoiler instance accepted at this moment, so there is no contract 
violat ion. T h e n a thread u is created and a spoiler instance s\ is accepted, it begins and 
ends at (1 ,1) . The spoiler instance does not interleave the r\ because (1 ,0 ) E (1 ,1) . Then 
another target instance r2 is detected i n t w i th X = 2, it begins and ends at (2 ,0) . The 
instance interleaves w i t h spoiler instance s\ because (1 ,1) [J (2, 0). 

4.6 A Contract Analyzer Tool 

The ContractAnalyzer class described i n Section 4.5 is not meant to be called directly by 
RoadRunner because it contains only methods specific to the validat ion of contracts. The 
ContractTool class was created as a layer between RoadRunner and ContractAnalyzer. 
Its purpose is to load a contract from a file, create a ContractAnalyzer instance, and 
forward relevant events from RoadRunner to ContractAnalyzer. 

The ContractTool class is a subclass of the Tool class (see Section 2.6). The following 
methods are overridden: 

• i n i t , which is called before the analysis, after command-line options are processed: 

• exit, which is called when a method exits: 

• create, which is called when a new thread is created: 

• acquire and release(), which is called when a synchronized method or a synchro­
nized block is entered or exited: 

• preStart, which is called before a new thread is started (after a fork operation): 

• post Join, which is called after a thread is joined wi th another thread. 
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Methods for detecting memory accesses w i l l not be used by the tool , and also no data w i l l 
be stored i n shadow memory locations, except for vector clocks stored wi th locks. In its 
i n i t method, the too l loads a contract definition from a file and calls the contract parser. 
After the contract is parsed, it constructs ContractAnalyzer. 

The exit method extracts relevant data from MethodEvent that is supplied by Road­
Runner. T h e n it checks i f the method exists i n the contract, and if it does, the method cal l 
is forwarded to ContractAnalyzer. The method filtering happens i n ContractTool and 
not i n ContractAnalyzer because it is not essential to the analysis and also, there are sev­
eral filtering solutions available. In this Master 's thesis, the filtering is done by comparing 
method signatures during the analysis. A better approach, which might be implemented in 
the future, is to instrument only methods contained in a contract. In that case, no filtering 
during analysis is needed as it is guaranteed that each method event produced w i l l belong to 
a method i n the contract. The rest of the methods, create, acquire, release, preStart, 
and postJoin, just pick relevant information from events provided by RoadRunner and 
forward it to ContractAnalyzer. 
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Chapter 5 

Implementation and Testing 

The analyzer described i n Chapter 4 was successfully implemented. This chapter provides 
implementation details and clarifies decisions made during the implementation. Section 5.1 
describes approaches and principles that shaped the implementation. Before the imple­
mentation took place, several RoadRunner dependencies were upgraded, see Section 5.2. In 
Section 5.3, the contract file parser is described. Changes to the instrumentation performed 
by RoadRunner are described in detail i n Section 5.4. F ina l ly , Section 5.5 describes testing 
approaches. 

5.1 General Approaches 

The implementat ion of the analyzer was guided by several principles or approaches that 
are described i n this section. 

5.1.1 Functional Programming 

The analyzer implementat ion uses several concepts from functional programming which are 
briefly described i n this section. 

Immutable data structures A l l classes are immutable, except for ContractAnalyzer 
and ContractTool. Once created, the internal state of objects does not change. A l l oper­
ations produce a new object instead of modifying the current one. See the next section for 
more details. 

Side effects and pure functions Most methods i n the analyzer are pure functions, 
which means that each ca l l can be always replaced wi th a resulting value of the ca l l . For 
example, consider pure function int sum(int a, int b). T h e n the method cal l sum(2,3) 
can be always replaced wi th 5 without changing program behavior. Pure functions perform 
no side effects (such as wr i t ing to a file). 

Higher-order function The analyzer contains and uses methods that take functions as 
parameters. 
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5.1.2 Immutable Data Structures 

The data structures used by the analyzer are immutable. A n immutable object is an object 
whose internal state remains constant after it has been created. This property brings 
several benefits. The object can be shared among mult iple threads without the need for 
synchronization. Immutable objects are always in a consistent state. The public methods 
of a given class w i l l always behave the same way on an object. Immutable objects are also 
easy to test and reason about. 

In Java, immutabi l i ty is achieved by following rules. Immutable classes should be f i n a l 
to avoid overriding of methods. A l l fields of a class should be private and f i n a l . A l l fields 
should reference only immutable objects or, i f not possible, the fields should not be modified 
in the class. A l l methods that would normal ly modify the object should return updated 
object instead. See L i s t i ng 5.1 for an example. To use immutable objects effectively, the 
Vavr collection l i b r a ry 1 was used. It provides immutable replacements for standard Java 
collections. 

public f i n a l class FiniteAutomaton { 
private f i n a l State sta r t ; 
private f i n a l State current; 

public FiniteAutomaton(State start) { t h i s ( s t a r t , s t a r t ) ; } 

private FiniteAutomaton(State s t a r t , State current) { 
t h i s . s t a r t = start; 
this.current = current; 

} 

public FiniteAutomaton advance(Signature s i g , Args args) { 
return new FiniteAutomaton(start, current.advance(sig, args)); 

} 

public FiniteAutomaton reset() { 
return new FiniteAutomaton(start, s t a r t ) ; 

} 

public boolean isRunningO { return current != st a r t ; } 
} 

Lis t ing 5.1: Simplified implementat ion of an immutable finite automaton. The automaton 
consists of references to the start ing state and the current state. The public constructor 
allows creating automatons that are i n their starting states, ensuring consistency. The 
advance method does not update the current state but creates a new finite automaton wi th 
an updated current state. 

5.1.3 Dependency Inversion Principle 

Several parts of the analyzer were designed wi th the dependency inversion principle in mind . 
Classes holding low-level data, such as method signatures, method arguments, or contract 

available at h t tps : / /www.vavr . io / 

34 

https://www.vavr.io/


parameters, are not used directly by the analyzer but v i a interfaces. For example, there is 
the JvmSignature class that implements the Signature interface. 

The collection that stores target and spoiler instances in a trace window is abstracted 
in the InstanceCollection interface. The MultimapInstanceCollection implements the 
collection using Vavr ' s Multimap data structure. Th is approach makes it easy to create 
alternative implementations of the collection. 

5.2 A S M 7.0 and Java 11 

The analyzer was buil t on RoadRunner version 0.5 from 2017. It contains the following 
dependencies: the A S M framework in version 5.0.2 wi th custom modifications, J F l e x in 
version 1.4.2, and C U P i n version 11a. The project was wri t ten for Java 8 and was buil t 
using A n t . For an easier implementat ion of the analyzer, several components were upgraded. 

The A S M framework was upgraded to version 7.0 which supports Java 11. RoadRunner 
can therefore analyze programs compiled for Java 11. Before the upgrade took place, the 
custom modifications of the A S M framework were isolated to a series of patches against 
the unmodified A S M version 5.0.2. Then , for each new version up to 7.0, the A S M was 
always replaced wi th a newer version and the custom patches were reapplied and modified 
if necessary. A s a result, the A S M framework can be easily upgraded i n the future by 
reapplying the custom patch series. The RoadRunner itself was modified to be buil t for 
Java 11. 

5.3 Contract File Parsing 

One of the inputs to the analyzer is a contract definition. The syntax of the definition is 
described in Chapter 4. Due to its length, it is passed to the analyzer in a text file. The 
file name is specified using a command-line option. RoadRunner allows tools to easily add 
new command-line options. The options are then automatical ly parsed and made available 
for the tool to use. 

The file w i th contract definition is then scanned using a lexical analyzer and parsed 
using a L A L R parser. The lexical analyzer is generated using J F l e x 2 and the parser is 
generated by C U P 3 . The pr imary reason for choosing these generators was that both of 
them were already used i n RoadRunner , so no new dependency was added to the project. 

The lexical analyzer recognizes various symbols for del imit ing the methods i n a contract 
but it does not split class names and method descriptors, they are passed to the parser as 
a single string. For example, java/lang/Object or (Ljava/langString; II) V. The list of 
terminals it produces is defined i n the parser. 

The parser takes the contract definition file contents, creates a lexical analyzer, and 
parses the file. The result is a Contract instance or an exception. Each method i n a contract 
is parsed as a finite-state machine w i t h a single state. The whole target or spoiler definition 
is constructed either by concatenating or alternating two states from left to right. 

The current implementat ion of the parser introduces a l imi ta t ion to the range of allowed 
regular expressions. W h e n the alternation operation is used (denoted by I), the expressions 
cannot start w i th the same method. For example, the regular expression (ab|ac) is not 
allowed. The resulting finite automaton would be nondeterministic. The current imple-

2available at h t t p s : / / j f l e x . d e / 
3available at ht tp ://www2 .cs . tum.edu/projects/cup/ 
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mentation does not perform any conversion, a l l expressions must be converted by the user. 
In the previous example, the expression would need to be converted to a(b|c). 

5.4 Changes in Instrumentation 

RoadRunner was modified to obtain method arguments and return values during the analy­
sis. The implementat ion is based on changes described i n [9], the final version however fixes 
several major issues. The in i t i a l implementat ion adds new fields to the MethodEvent class 
which holds information about a method invocation. These changes were taken without 
modifications from [9]. 

The main instrumentation logic is contained in the SyncAndMethodThunklnserter class 
from the r r . instrument. classes package, in the createMethodThunk method. The 
method creates a new method that w i l l generate enter and exit events and cal l the original 
method. In the beginning, the values of method parameters need to be stored, at the end, 
the return value must be stored. The in i t i a l implementat ion described in [9] contained sev­
eral issues. Static methods could not be instrumented because of incorrect indexing of local 
variables. Methods wi th parameters of type double or long could not be instrumented, 
because the implementation was not taking into account that these values occupy two local 
variables. These issues have been fixed and an extensive test suite was created to verify the 
final implementation. 

Each method is instrumented as follows. A new array of type Object is allocated wi th 
the size equal to the number of parameters (taken from the method descriptor). Then for 
each parameter, its value is loaded onto the operand stack. Reference values are stored 
directly i n the array. P r imi t ive values are wrapped i n an object by cal l ing the valueOf () 
method i n the corresponding class depending on the pr imit ive type. For example, int 
values are passed to the Java. lang. Integer .valueOf () function. After processing a l l 
arguments, the array is stored i n a local variable. 

The original method is then called i n a t ry -ca tch block. O n normal exit, the return 
value is converted to an object, the same way parameters are converted. Then a method 
exit event is generated, containing both the array of arguments and the return value. If an 
exception is caught, the return value is set to n u l l and an exit event is generated containing 
the arguments. A n example of a instrumented method is shown in L i s t ing 5.2. 

5.5 Testing 

Each part of the analyzer was thoroughly tested using several different approaches. The core 
analyzer functionality was tested using unit tests wri t ten in J U n i t 5 . The instrumentation 
of method arguments and returns values was tested using a custom RoadRunner tool . The 
integration of a l l parts was tested using Bash scripts that prepare contract files, programs 
under analysis, and launch RoadRunner . This section describes approaches used for testing 
different parts of the analyzer. See Append ix B for instructions for running the tests. 

The analyzer was implemented so that there is almost no need to work wi th Road­
Runner 's internal structures when testing the analyzer. The ContractTool class serves as 
a wrapper for Contract Analyzer. A l l structures, such as MethodEvent, are transformed 
into objects specific to the contract analyzer. In tests, ContractAnalyzer is used directly. 

4available at h t t p s : / / j u n i t . o r g / j u n i t 5 / 
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public i n t foo(int, java.lang.String); 
0 invokestatic #20 // Method rr/state/ShadowThread 

// .getCurrentShadowThread:()Lrr/state/ShadowThread; 
3 astore 5 
5 aload_0 
6 sipush 508 
9 aload 5 
11 invokestatic #27 // Method rr/tool/RREventGenerator 

// .enter: (Lj ava/lang/0bj ect;ILrr/state/ShadowThread;)V 
14 iconst_2 
15 anewarray #3 // class ; ava/lang/Object 
18 astore_3 
19 aload_3 
20 iconst_0 
21 i l o a d _ l 
22 invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer; 
25 aastore 
26 aload_3 
27 i c o n s t _ l 
28 aload_2 
29 aastore 
30 aload_0 
31 i l o a d _ l 
32 aload_2 
33 invokespecial #35 // Method $rr_foo $rr 0riginal_:(ILjava/lang/String;)I 
36 dup 
37 invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer; 
40 astore 4 
42 aload 5 
44 aload_3 
45 aload 4 
47 invokestatic #39 // Method rr/tool/RREventGenerator.exit: 

// (Lrr/state/ShadowThread;[Ljava/lang/Object;Ljava/lang/Object;)V 
50: goto 61 
53: aload 5 
55: aload_3 
56: aconst_null 
57: invokestatic #39 // Method rr/tool/RREventGenerator.exit: 

// (Lrr/state/ShadowThread;[Ljava/lang/0bject;Ljava/lang/0bject;)V 
60: athrow 
61: i r e t u r n 

Lis t ing 5.2: A method instrumented to obtain arguments and the return value. O n lines 

5-11, the enter event is generated. O n lines 14-18, an array for arguments is created and 

stored in a local variable. O n lines 19-25, the first argument is wrapped i n an object and 

stored in the array on index 0. O n lines 26-29, the second argument is stored direct ly in 

the array on index 1. O n lines 30-33, the original method is called. O n lines 36-40, the 

return value is wrapped and stored i n a local variable. Lines 42-50 generate the exit event. 

Lines 53-60 contain a catch block i n case an exception is thrown in the original function. 
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RoadRunner is not executed, the events coming from the program under analysis are cre­
ated by tests, al lowing for tests that do not rely on the thread scheduler and are very 
fast. 

The contract parser is tested using J U n i t 5 tests. The contract definition is passed 
to the parser and the produced Contract instance is compared wi th a Contract instance 
constructed directly in code. The contract for comparison is constructed by creating ap­
propriate objects such as method signatures, meta-variables, and finite automaton states. 

Changes to instrumentation were tested by preparing a custom subclass of R o a d R u n ­
ner's Tool class that overrides the exit method and prints arguments and the return value 
to the standard output. A testing Java program was created that calls methods w i t h vari­
ous numbers and types of parameters. The test consists of analyzing the testing program 
wi th RoadRunner using the custom tool . The too l prints method arguments and return 
values to the output and the values must match those i n the testing program. The whole 
process is automated using a Bash script. 

The integration of a l l parts is again automated using Bash scripts. Testing programs and 
files w i t h contract definitions are prepared. The script compiles the testing program and 
analyzes it w i th RoadRunner that is using the contract tool . Then it verifies if a contract 
viola t ion has been found. 

5.5.1 Overview of Integration Tests 

This section provides an overview of integration tests wri t ten for the analyzer. 

Array list The contract i n this test covers operations on an array list w i t h the following 
operations: add, get, set, contains, indexOf, remove, and size. There are four programs 
i n this test, each violat ing one contract clause. 

Account Th is test was taken from the test suite of the G l u o n project 5 . The test simulates 
a bank account w i th two operations: getBalance and setBalance. Even though the 
operations are synchronized, there is a high-level data race where a thread reads the balance, 
increments it , and writes it back. 

Block allocation This test was taken from the test suite of the G l u o n project. There is 
a shared vector that for each block of a buffer stores whether it is free or occupied. W h e n 
allocating a block, a free block must be found and then it must be set as occupied. Between 
finding a block and mark ing it as occupied, another thread may mark the same block as 
occupied. 

Arithmetic database Th i s test was taken from the test suite of the G l u o n project. 
The test simulates a database w i t h two tables. The first table contains a set of regular 
expressions and the second holds the results of the expressions. E a c h table is accessed using 
synchronized methods. There are several problems related to the absence of transactions 
when accessing mult iple tables or when performing several operations on the same table. 

Connection test This test was taken from the test suite of the G l u o n project. The 
test simulates a chat appl icat ion that uses a socket to send messages over the network. 

5available at h t t p s : / / g i t h u b . c o m / t r x s y s / g l u o n 
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A message counter is associated wi th the socket that is incremented wi th each message 
sent. W h e n the socket is closed, there is an inconsistency when a thread may see a closed 
socket but the counter is not yet zeroed. W h e n a message is sent, it is checked that the 
socket is s t i l l open before sending the message. However, the socket may be closed i n the 
meantime by another thread. 

5.6 Performance 

The performance of the analyzer was checked on the Account test case (see Section 5.5) 
w i th several modifications. The high-level data race present in the test case was removed so 
that the analyzer w i l l not stop the program right after a contract viola t ion is detected. The 
number of operations performed on the account was added as a parameter. The Account 
test case starts two threads and a l l tracked operations are performed on a single object, so 
the number of tracked target and spoiler instances is constant. 

The test case was run using the RoadRunner benchmark mode. The measured results do 
not include the in i t ia l iza t ion of the analyzer. The Account test case was run three times: 
without instrumentation, w i th instrumentation, and w i t h instrumentation and contract 
val idat ion. The results are shown i n Figure 5.1. A s expected [6], the instrumented program 
is approximately ten times slower than the original program. The analyzer is 10-100 times 
slower than the instrumented program. To fully assess the performance of the analyzer, 
more benchmarks would be needed. 

mil i I i i I i I i I i_3 

10 1 10 2 10 3 10 4 10 5 10 6 

number of operations 

no instrumentation—e—with ins t rumenta t ion—a—with instrumentation and contracts 

Figure 5.1: Results of the Account benchmark. The first series shows the runtime wi th­
out any instrumentation. T h e second series is run wi th RoadRunner instrumentation but 
without tracking of targets and spoilers. The last one shows the runtime of instrumented 
program wi th contract validation. 
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Chapter 6 

Conclusion 

The goal of this thesis was to design a dynamic analyzer for val idat ing parametric contracts 
w i th spoilers. The analyzer was fully implemented as an extension to the RoadRunner 
framework. 

The first part of this thesis provided the necessary background i n multi-threaded pro­
gramming i n Java, dynamic analysis, and instrumentation i n the RoadRunner framework. 
Contracts for parallel ism were then introduced together w i th an on-the-fly method for con­
tract analysis. A dynamic analyzer for t racking parametric contracts was proposed. Several 
restrictions were put on the analyzer i n the design phase to mitigate problems i n previous 
prototype implementations. The analyzer consists of the following parts: a parser for con­
tract definitions, modified instrumentation of methods, and the core analyzer that tracks 
target and spoiler instances and detects contract violations. A l l parts of the analyzer were 
implemented and their functionality was verified by an extensive test suite. The analyzer 
was able to detect a l l contract violations present i n the testing programs. 

The analyzer implementat ion provides a solid basis for contract val idat ion of programs 
wri t ten i n Java. There is an ongoing work on the formalization of parametric contracts and 
extending experiments on standard libraries. The analyzer can be used for those experi­
ments. The changes in method instrumentation are not t ied to the contract val idat ion and 
can be used by various other analyzers that may benefit from obtaining method arguments 
and return values. 

In the future, various parts of the analyzer may be tuned for better performance. The 
functional implementat ion allows easy parallel ization of checking contract violations. The 
instrumentation can be further reduced to obtain only program actions relevant to the 
contract val idat ion. Instance invalidat ion can be introduced by clarifying the conditions in 
the context of parametric contracts. The analyzer can be also combined wi th noise injection 
techniques for detecting more contract violations. 
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Appendix A 

Storage Medium 

The contents of the enclosed C D : 

RoadRunner/ The source code of the analyzer. 

RoadRunner-compiled/ Compi led analyzer. 

patches/ The source code of the analyzer, as patches against commit bl41616 i n the 
upstream RoadRunner reposi tory 1 . 

contracts-for-concurrency.pdf The text of the thesis. 

contracts-for-concurrency-print.pdf The text of the thesis, for color print ing, 

contracts-f or-concurrency/ The sources code of the text of the thesis. 

available at ht tps: / /gi thub.com/stephenfreund/RoadRunner 
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Appendix B 

Manual 

The analyzer requires a Java V i r t u a l Machine version 11 and A n t . For convenience, the 
analyzer should be compiled and run on L i n u x as there are several Bash scripts used in the 
process. A l l commands, such as ant or javac, that are run dur ing the compilat ion should 
belong to the same J V M installat ion. 

O n Fedora 34, insta l l Java 11 J D K and A n t by running: 

$ sudo dnf i n s t a l l java-ll-openjdk ant 

O n U b u n t u 21.04, run: 

$ sudo apt i n s t a l l openjdk-ll-jdk 

A n t must be installed locally from the project's website. To compile the project, run ant 
in the RoadRunner directory. The project should compile and print BUILD SUCCESSFUL at 
the end. The unit tests can be run at this step w i t h ant test. The tests should a l l pass. 

Before running RoadRunner , edit the msetup file. O n line 36, edit the path to the J V M 
installat ion. O n Fedora 34, /usr/lib/jvm/java -11 should be used. O n U b u n t u 21.04, 
/usr/lib/jvm/java-ll-openjdk-amd64 should be used. T h e n run source msetup. The 
environment variables should be properly exported. 

To verify the compilat ion, run rrrun -help. To instrument and run a testing program, 
run the following commands: 

$ javac test/Test.Java 
$ rrrun test.Test 

To launch the contract analyzer on a simple program, run the following commands: 

$ javac test/ContractTest.Java 
$ rrrun -tool=CT -contractFile=test/ContractTest.contract test.ContractTest 

The analyzer should find a contract violat ion. The integration tests are run by the following 
command: 

$ t e s t S c r i p t s / a l l . s h 

available at h t tp : / / an t . apache .org / 
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Appendix C 

Contract Definition Grammar 

The configuration files w i th contract definitions must follow the grammar presented below. 
The grammar is described in the B N F syntax. 

<contract> ::= <clause> I <contract> <clause> 

<clause> ::= <method_expr> "<-" <method_expr> ";" 

<method_expr> ::= <method> 
I " ( " <method_expr> " ) " 
I <method_expr> " I " <method_expr> 
I <method_expr> " ( " <method_expr> " ) " 
I <method_expr> <method> 

<method> ::= <class> <name> <descriptor> <metavars> 

<metavars> ::= <metavar> "=" <metavar> " ( " <metavars_list> " ) " 
I <metavar> "=" <metavar> " ( ) " 
I <metavar> "=(" <metavars_list> " ) " 
I <metavar> " ( " <metavars_list> " ) " 
I " ( " <metavars_list> " ) " 
I <metavar> " ( ) " 
I " ( ) " 

<metavars_list> ::= <metavar> | <metavars_list> "," <metavar> 

<metavar> ::= <letter> | "_" 

The terminals have the following definitions: 

• <class> is a class name i n the internal representation of the J V M specification, for 
example: java/lang/Object: 

• <name> is the method name, as defined by the J V M specification, for example: equals: 

• <descriptor> is the method descriptor, as defined by J V M specification, for example: 
(Ljava/lang/Object;)Z: 

• <letter> is a single letter, such as X. 
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Appendix D 

Class Diagram of the Contract 
Analyzer 

The following page contains a U M L diagram of the contract analyzer described i n Chapter 3. 
In the diagram, the following classes are omit ted for clarity: 

• the ContractTool class which connects ContractAnalyzer to RoadRunner , 

• the contract lexer and parser, 

• basic classes and interfaces used for holding simple data, such as Args, Signature, 
MetaVars, ImmutableVectorClock, and ContractParams. 

The ContractAnalyzer class is a generic class w i th two type parameters: T is a type 
representing a thread, L represents a lock. Dur ing the analysis, RoadRunner types are 
used: T is ShadowThread, L is ShadowLock. Collections and containers used i n the diagram 
are parts of the Vavr library. 
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T , L 

Contract Analyzer 

Contract 
Dccoration<T, Window> 
Dccoration<T, ImmutablcVcctorClock> 
Dccoration<L, ImmutablcVcctorClock> 
gctTid: Function<T, Intcgcr> 
threads: L i s t < T > 

+ exit(T, Signature, Args) 
+ crcate(T) 
+ acquirc(T, L) 
+ rclcasc(T, L) 
+ fork(T, T) 
+ join(T, T) 

C o n t r a c t 

- targets: Map<Statc, S t a t O 
- signatures: Sct<Signaturc> 

1 

- targets: Map<Statc, S t a t O 
- signatures: Sct<Signaturc> 

1 

+ Contract(Map<State, State>) 
+ contains (Signature): boolean 
+ gctTargcts(): Map<Statc, S t a t O 
+ mcrgc(Contract): Try<Contract> 

«intcrfacc» 
I n s t a n c e C o l l e c t i o n 

+ gctByStatc(Statc): Travcrsablc<Instance> 
+ advancc(Function<Instancc, Option< 

Eithcr<ViolationExccption, I n s t a n c O > > ) : 
Eithcr<ViolationExccption, InstanccCollcction> 

targets 

1 

spoilers 

Window 

tid: int 
targets: InstanceCollection 
spoilers: InstanceCollection 

+ Window(tid:int, Contract) 
+ exit (Signature, Args, Scq<Window>, 

ImmutablcVcctorClock): 
Eithcr<ViolationExccption, Window> 

MultimapInstanceCollection 

instances: Multimap<Statc, I n s t a n c O 

+ MultimapInstanccCollcction( 
states: Map<Statc, S t a t o ) 

Finite Automaton 

- start: State 
- current: State 
- params: Option<ContractParams> 

+ FinitcAutomaton(State) 
+ advancc(Signaturc, Args): 

Option<FinitcAutomaton> 
+ resct(): FinitcAutomaton 
+ paramsMatch(FinitcAutomaton): boolean 
+ isAcccptcd(): boolean 
+ isRunning(): boolean 
+ hasParams(): boolean 

Instance 

- fa: FinitcAutomaton 
- conflicting: State 
- lastBcgin: Option<ImmutablcVcctorClock> 
- lastEnd: Option<ImmutablcVcctorClock> 
- begin: Option<ImmutablcVcctorClock> 

+ Instancc(FinitcAutomaton, State) 
+ advancc(Signaturc, Args, ImmutablcVcctorClock, 

onAcccptcd: Function2<Instancc, State, 
Option< ViolationExccption> >): 
Option<Eithcr<ViolationExccption, Instance> > 

+ isViolatcdBySpoilcr(spoilcr: Instance, t id: int, 
targctTid: int, vc: ImmutablcVcctorClock) 

+ violatcsTargct(target: Instance, t id: int, 
targctTid: int, vc: ImmutablcVcctorClock) 

+ matchcs(Instancc): boolean 
+ isRunning(): boolean 
+ hasParamsQ: boolean 

1 conflicting 

current 

State 

- transitions: Map<Signaturc, 
Tuplc2<Statc, MctaVars>> 

+ last(): State 

+ of(transitions: Map<Signaturc, Tuplc2<State, 

MctaVars>>): Try<Stato> 
+ gctNcxtStatc(Signaturc, Args): Option<Tuplc2< 

State, ContractParams>> 
+ gctSignaturcs(): Sct<Signaturc> 
+ concatcnatc(Statc): State 
+ altcrnatc(Statc): Try<Statc> 
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