BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

PARAMETRIC CONTRACTS FOR CONCURRENCY
IN JAVA PROGRAMS

INSTRUMENTACE JAVA PROGRAMU, KONTRAKTY PRO PARALELISMUS

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAN ZARSKY
AUTOR PRACE
SUPERVISOR Ing. ALES SMRCKA, Ph.D.

VEDOUCI PRACE

BRNO 2021

Vysoké uéeni technické v Brné
Fakulta informacnich technologii

Ustav inteligentnich systémi (UITS) Akademicky rok 2020/2021
Zadani diplomové prace |[|[[[[1Hl 11
23103
Student: Zarsky Jan, Bc.
Program: Informacni technologie a uméla inteligence Specializace: Bezpe¢nost informacénich
technologii
Nazev: Instrumentace Java programil, kontrakty pro paralelismus

Parametric Contracts for Concurrency in Java Programs
Kategorie: Analyza a testovani softwaru
Zadani:

1. Nastuduijte testovani a dynamickou analyzu programd v jazyce Java. Nastuduijte
instrumentaéni framework RoadRunner pro dynamickou analyzu programi v jazyce Java.
Seznamte se s kontrakty pro paralelismus.

2. Navrhnéte nastroj pro jednoduchou instrumentaci testovanych programd. Navrhnéte
dynamicky analyzator pro sledovani parametrickych kontraktd.

3. Implementujte analyzator v ramci RoadRunner.

4. Vytvorte testovaci pfipady pro ovéfeni hlavni funkcionality.

Literatura:
* DIAS Ricardo J., FERREIRA Carla, FIEDOR Jan, LOURENCO Joao, SMRCKA Ales,
SOUSA Diogo J. a VOJNAR Tomas. Verifying Concurrent Programs Using Contracts. In:
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST).
doi: 10.1109/ICST.2017.25
¢ Repozitaf projektu RoadRunner Extended, https://pajda.fit.vutbr.cz/jct/roadrunnerX
Pfi obhajobé semestralni ¢asti projektu je pozadovano:
e Studium a navrh analyzatoru
Podrobné zavazné pokyny pro vypracovani prace viz https://www.fit.vut.cz/study/theses/
Vedouci prace: Smrcka Ales, Ing., Ph.D.
Vedouci Ustavu: Hanacek Petr, doc. Dr. Ing.
Datum zadani: 1. listopadu 2020
Datum odevzdani: 19. kvétna 2021
Datum schvaleni: 11. listopadu 2020

Zadani diplomové prace/23103/2020/xzarsk03 Strana 1z 1

https://pajda.fit.vutbr.cz/jct/roadrunnerX
https://www.fit.vut.cz/study/theses/

Abstract

Contracts for concurrency describe required atomicity of method sequences in concurrent
programs. This work proposes a dynamic analyzer to verify programs written in Java
against contracts for concurrency. The analyzer was designed to detect violations of para-
metric contracts with spoilers. The proposed analyzer was implemented as an extension to
the RoadRunner framework. Support for accessing the method arguments and return values
was added to RoadRunner as a part of the solution. The analyzer was fully implemented
and verified on a set of testing programs.

Abstrakt

Kontrakty pro paralelismus slouzi k vyjadieni potfebné atomicity sekvenci metod ve vicevla-
knovych programech. Tato prace se zaméruje na implementaci dynamického analyzatoru,
ktery verifikuje programy napsané v jazyce Java vaci kontraktim. Podporovany jsou para-
metrické kontrakty se spojlery. Analyzator je implementovan jako rozsireni frameworku
RoadRunner. V ramci implementace analyzatoru byla do frameworku RoadRunner pridana
podpora pro ziskavani argumenttt metod a jejich navratovych hodnot. Analyzator byl plné
implementovan a jeho funkénost byla ovérena na sadé testovacich programd.

Keywords

software verification, dynamic analysis, Java, contracts for concurrency, RoadRunner, in-
strumentation, Java bytecode, concurrent programming

Klicova slova

verifikace softwaru, dynamicka analyza, Java, kontrakty pro paralelismus, RoadRunner,
instrumentace, Java bajtkod, vicevlaknové programovani

Reference

ZARSKY, Jan. Parametric Contracts for Concurrency in Java Programs. Brno, 2021.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Ales Smrcka, Ph.D.

Rozsireny abstrakt

Pri vyvoji softwaru se bézné vyuzivaji knihovny nebo moduly vyvinuté jinymi vyvojari.
P1i jejich integraci je zapotifebi dodrzet pravidla stanovend autorem knihovny. Pravidla
zahrnuji syntaxi a sémantiku operaci poskytovanych knihovnou. Ve vicevldknovém prostiedi
je ale zapotfebi dodrzet dodateéné pozadavky na synchronizaci vlaken, kterd provadi ope-
race poskytované danou knihovnou.

Kontrakty pro paralelismus slouzi ke specifikaci omezeni pro praci s knihovnou ve
vicevlaknovych programech. Kontrakty specifikuji, které sekvence operaci musi byt vy-
konavany atomicky, tedy bez toho, aby jiné vlakno provadélo soubézné jinou operaci. Exis-
tuji dvé rozsiteni, kterd upresnuji, za jakych podminek je nutné dodrzet atomicitu operaci.
Parametrické kontrakty reflektuji datovy tok mezi operacemi. Umoznuji tak napiiklad
vyjadrit, ze dvé operace musi byt provadény atomicky pouze tehdy, pokud modifikuji stej-
na data. Kontrakty se spojlery dovoluji nékterym operacim probihat soubézné, napriklad
pokud operace provadi pouze ¢teni sdilenych dat. Kontrakty pro paralelismus lze sledovat
za béhu programu a existuje metoda pro kontrolu jejich dodrzovani.

Cilem této prace je vytvorit dynamicky analyzator, ktery sleduje dodrzovani paramet-
rickych kontraktt se spojlery. Analyzator pracuje s vicevlaknovymi programy v jazyce
Java. Vyuziva frameworku RoadRunner, ktery provadi instrumentaci programu pro zkou-
mani chovani programu za béhu. RoadRunner vklada instrukce do bajtkédu programu,
které pak za béhu zasilaji analyzatoru udalosti o volanych metodach, pristupech do pameéti,
synchronizaci vldken a podobné.

Vstupem analyzatoru je konfiguracni soubor s definici kontraktu, ktery urcuje sekvence,
které budou detekované analyzatorem. Sledovany program je néasledné instrumentovan
frameworkem RoadRunner. Instrumentace volani metod byla v ramci prace rozsitena
o ziskdvani argumenti metod a jejich navratovych hodnot. Instrumentovany program je
nasledné spustén. Analyzator pro sledovani kontraktd pro paralelismus konzumuje udélosti
spojené s volanim metod a synchronizaci vlaken. Na zakladé téchto udalosti jsou detekovany
sekvence metod a pripadna poruseni kontraktu. Analyzator si pro kazdé vlakno programu
udrzuje naposledy detekované sekvence metod. Pro kazdé vlakno a zdmek si také udrzuje
vektorové hodiny nesouci informace o vzajemné synchronizaci vlaken. Jakmile je detekovana
celd sekvence, analyzator na zdkladé neddvnych sekvenci v jinych vldknech a vektorovych
hodinach vyhodnoti, zda nedoslo k prolozeni sekvenci tak, aby byl porusen kontrakt. Diky
vyuziti vektorovych hodin dokaze analyzator odhalit prolozeni metod, ke kterému nedoslo
pfimo v daném béhu, ale mtze k nému dojit v podobnych bézich.

Pri navrhu analyzatoru byly zohlednény vysledky existujicich prototypovych implemen-
taci a schopnosti analyzatoru byly zamérné omezeny. Analyzator tak klade dodatecné po-
zadavky jak na kontrakty, tak na programy, které dokaze sledovat. Kontrakty musi splio-
vat nasledujici podminku: hodnoty vSech parametri kontraktu jsou uréeny volanim prvni
metody kontraktu. Tato podminka zabranuje zbytecné duplikaci sledovanych sekvenci.
Analyzované programy nesmi obsahovat zanorend volani metod sledovanych v ramci kon-
traktu.

P1i implementaci byly vyuzity principy funkcionalniho programovani, zejména neménné
(immutable) objekty postavené na knihovné Vavr nebo funkce vyssiho fadu. Jednotlivé ¢asti
analyzatoru byly otestovany pomoci jednotkovych testi, analyzator jako celek pomoci Bash
skriptu.

Vysledkem prace je plné funkéni analyzator parametrickych kontrakti se spojlery. Zmény
v instrumentaci mohou byt vyuzity dal$imi analyzatory vyzadujicimi argumenty metod
a navratové hodnoty. Jednotlivé ¢asti analyzatoru mohou byt v budoucnu optimalizovany

s ohledem na rychlost. Funkcionalni implementace analyzatoru umoznuje snadnou paraleli-
zaci kontroly kontraktd. Dalstho zlepseni vykonu lze dosdhnout lepsi definici podminek, za
kterych lze zahazovat detekované sekvence metod. Analyzator 1ze rozsitit o vkladani sumu
pro detekci méné obvyklych chyb.

Parametric Contracts for Concurrency in Java
Programs

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Ales Smrcka, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this project.

Jan Zarsky
May 17, 2021

Acknowledgements

I would like to thank Ing. Ales Smrcka, Ph.D., for valuable advice that helped me with the
implementation and writing of this thesis.

Contents

1 Introduction

2 Dynamic Analysis of Multi-threaded Programs in Java
2.1 Approaches to Software Verification
2.2 Safety Errors in Multi-threaded Programs
2.3 Multi-threaded Programming in Java
2.4 Java Memory Modelo
2.5 Instrumentation of Java Bytecode
2.5.1 Java Bytecode Overview
2.5.2 The ASM framework oo
2.6 Dynamic Analysis using RoadRunner
2.6.1 The RoadRunner Programming Interface
2.6.2 RoadRunner Synchronization Models
2.6.3 Instrumentation Performed by RoadRunner

3 Contracts for Concurrency
3.1 Basic Contracts e e
3.2 Parametric Contracts. e
3.3 Contracts with Spoilers L o
3.4 Dynamic Contract Validation
3.4.1 Multi-threaded Program Traces
3.4.2 Contract Violation
3.4.3 On-the-fly Contract Validation
3.44 Vector Clocks e
3.5 Previous Work

4 Design of a Dynamic Analyzer for Parametric Contracts with Spoilers
4.1 Overview of the Contract Analyzer
4.2 Constraining Analyzer Capabilities

4.2.1 Avoiding Cloning of Target and Spoiler Instances
4.2.2 Invalidating Instances
4.2.3 Kleene Star in Contract Definition
4.2.4 Nested Method Calls
4.3 Changes to Instrumentation Performed by RoadRunner
4.3.1 Parameter Matching Lo
4.4 Contracts Definition and Parsing
4.4.1 Contract Definition Syntax
4.4.2 Contract Representation

NoREN B IS, BTSN

23

4.5 Contract Analyzer
4.5.1 Tracking of Target and Spoiler Instances
4.5.2 Detection of Contract Violations

4.6 A Contract Analyzer Tool

5 Implementation and Testing
5.1 General Approaches o
5.1.1 Functional Programming
5.1.2 Immutable Data Structures
5.1.3 Dependency Inversion Principle
5.2 ASM 7.0and Java 11.
5.3 Contract File Parsing
5.4 Changes in Instrumentationo oL
5.5 Testing o
5.5.1 Overview of Integration Tests
5.6 Performance

6 Conclusion

Bibliography

A Storage Medium

B Manual

C Contract Definition Grammar

D Class Diagram of the Contract Analyzer

33
33
33
34
34
35
35
36
36
38
39

40

41

43

44

45

46

Chapter 1

Introduction

When developing software, one commonly relies on software libraries written by other de-
velopers. To avoid introducing defects into the software, one has to follow rules stated
by the library developer. This includes the syntax and semantics of operations provided
by the library. In a concurrent environment, a new set of problems related to the proper
synchronization of threads is introduced.

Contracts for concurrency enable library developers to define restrictions on the usage
of the library in a concurrent environment. In its basic form, it specifies which method
sequences must be executed atomically. There are two extensions for contracts for con-
currency. Parametric contracts allow to better identify methods that need to be executed
atomically. Contracts with spoilers allow finer control over which thread interleavings vi-
olate the contract. To verify that a program satisfies the restrictions given by contracts
for concurrency, one may use either static or dynamic analysis, both providing different
advantages.

The main goal of this thesis is to design a dynamic analyzer that detects violations of
parametric contracts with spoilers in programs written in the Java programming language.
The analyzer is built using the RoadRunner framework. RoadRunner instruments pro-
grams under analysis and reports actions taken by the program via a simple interface. The
proposed analyzer extends the instrumentation done by RoadRunner to extract additional
information about the program under analysis. Apart from the analyzer itself, a parser for
contract definitions is created.

The thesis is structured as follows. Chapter 2 describes the specifics of multi-threaded
programming in Java, the Java memory model, and an overview of software errors related
to concurrency. Approaches to the dynamic analysis of Java programs and instrumentation
techniques are described. Two important frameworks are presented, the ASM framework for
byte code instrumentation, and the RoadRunner framework for writing dynamic analyzers.
Chapter 3 introduces contracts for concurrency, their modified versions, and a method for
dynamic detection of contract violations. In Chapter 4, a dynamic analyzer for contracts
is designed. Chapter 5 provides implementation details and testing approaches.

Chapter 2

Dynamic Analysis of
Multi-threaded Programs in Java

This chapter focuses on a dynamic analysis that detects errors related to improper synchro-
nization between threads in multi-threaded Java programs. In the first section, dynamic
analysis is compared with other approaches to software verification. Then the most com-
mon types of errors found in multi-threaded programs are presented. The following section
explains the basics of multi-threaded programming in Java. Then the most important
concepts from the Java memory model are described.

The second part of this chapter deals with the techniques used for dynamic analysis of
Java programs. The ASM framework for Java bytecode manipulation is introduced along
with brief overview of the Java virtual machine. Finally, the RoadRunner framework is
described in detail, as it is the basis for implementation of the contract analyzer.

2.1 Approaches to Software Verification

The goal of software verification is to make sure that the software meets all requirements [7].
There are several approaches to software verification, each of them having its own advan-
tages and disadvantages. This section provides a summary of testing, dynamic and static
analysis, abstract interpretation, theorem proving, and model checking.

Testing Testing consists of running the software under different conditions and checking
the results of the computation (or observing other behavior of the software). To gain enough
confidence that the software operates correctly in all conditions, a suitable set of test cases
must be found, which is difficult, and sometimes impossible. Testing is best suited for
confirming the presence of defects in software, not for proving their absence [7].

An important property of test cases is their repeatability, meaning that a certain test
case will always yield the same result. When testing multi-threaded programs, this property
does not hold because of the nondeterminism introduced by the thread scheduler. Threads
are interleaved differently on each execution which means that errors may or may not
appear. This makes discovering defects in multi-threaded programs difficult.

Dynamic Analysis Dynamic analysis works with information gathered during an execu-
tion of a program. The information may be analyzed during program execution (on-the-fly
analysis) or at the end (post-mortem analysis). Even though the analysis works with in-

formation from a single execution, it can in some cases find errors that were not observed
during the execution but may demonstrate themselves in similar executions [10]. The dy-
namic analysis also suffers from nondeterministic scheduling. The program under analysis
may also behave differently due to being observed by the analyzer.

The analyzer proposed in this thesis performs on-the-fly dynamic analysis of contracts
for concurrency and detects contract violations that occurred not only in the given run but
also those that may have occurred in similar runs.

Static Analysis Static analysis is performed at compile time and it does not require the
program to be running. The analysis is theoretically able to cover all possible executions
of a program. In practice, it is limited by the fact that the number of thread interleavings
in multi-threaded programs grows exponentially [10].

Abstract Interpretation Abstract interpretation takes the source code and symbolically
executes it line by line, approximating the semantics of the program without performing
all the calculations. It suffers from similar problems as static analysis.

Model Checking Model checking is a technique for checking whether a system satisfies
certain correctness specification [10]. It is based on systematic or heuristic exploration of
the state space. The drawback of this technique is that the state space of the program
model can be huge.

Theorem Proving Theorem proving is a semi-automated approach to proving that cer-
tain facts are satisfied in the system. It is based on assumptions and general theorems
about the system and uses mathematical reasoning [7].

2.2 Safety Errors in Multi-threaded Programs

Contracts for concurrency specify rules on using a set of methods in a concurrent setting.
They aim at discovering errors specific to a concurrent environment. When compared to
single-threaded programs, multi-threaded programs may encounter a whole new class of
errors related to memory sharing between threads. Errors presented in this section are
classified as safety errors in [10] as these are usually checked in various dynamic analyses.

Data Race A data race occurs when there are two unsynchronized accesses to a shared
variable and at least one of them is a write access.

Atomicity Violation When a code block is required to be atomic, all program executions
must be equivalent to an execution where the block is executed serially. Contract for
concurrency primarily focus on atomicity violations [3].

Order Violation When certain operations are required to be executed in a certain order,
and the order is not met in a given program execution, an order violation occurs. Contracts
for concurrency can also detect order violations [3].

Deadlock General definition of a deadlock is presented in [10]. A program state contains
a set S of deadlocked threads if, and only if each thread in S is blocked and waiting for
some event that could unblock it, but such an event could only be generated by a thread
from S.

Missed Signal A missed signal is present in a program execution when one or more
threads are waiting for a signal, and the signal is never delivered.

2.3 Multi-threaded Programming in Java

Java provides built-in support for multi-threaded programming. This section describes
a typical thread life cycle, synchronization of threads, and inter-thread communication, as
these are important in dynamic analysis using contracts for concurrency.

A thread in Java is represented by a Thread instance. There are two ways to create
a thread: by extending the Thread class, or by implementing the Runnable interface. Both
approaches produce a Thread instance that executes the run method in a new thread
when started.

To start a thread, the start method must be called (which will in turn call the run
method). The thread will terminate upon returning from the run method. The join
method is used in other threads to wait for a thread to terminate [12]. Listing 2.1 shows
a thread creation example by extending the Thread class, Listing 2.2 shows the same
example achieved by implementing the Runnable interface.

class MyThread extends Thread {
@0verride
public void run() {
System.out.println("This is executed in a new thread.");

3

public static void main(String args([]) {
MyThread t = new MyThread();
t.start();
t.join();
}
}

Listing 2.1: A simple program that creates a thread by extending the Thread class.

When accessing a shared resource from multiple threads, proper synchronization is
usually required. In Java, every object gets an implicit monitor, which can be owned by only
one thread at a given time. To enter the monitor, one must use either synchronized methods
or synchronized statements. Synchronized statements are code blocks with an explicitly
specified object whose monitor is entered before executing the block. Synchronized methods
enter the monitor of the instance they are called upon [12]. Listing 2.3 shows examples of
synchronized blocks and synchronized methods.

Communication between threads is achieved using the following methods: wait, notify,
and notifyAll. All methods must be called within a synchronized context. Calling wait
will suspend the calling thread until some other thread enters the same monitor and calls
either notify or notifyAll [12].

class MyRunnable implements Runnable {
public void run() {
System.out.println("This is executed in a new thread.");

3

public static void main(String args([]) {
Thread t = new Thread(new MyRunnable());
t.start();
t.join();
}
}
Listing 2.2: A simple program that creates a thread by implementing the Runnable inter-
face.

class Example {
private int a = 0;

public synchronized void incl1() {
at++;

}

public void inc2() {
synchronized (this) {

}
}
}
Listing 2.3: A program with synchronized methods and statements. The inc1l method is
synchronized, on each call, the Example instance’s monitor is entered. The inc2 method
is not synchronized but contains a synchronized block with an explicitly specified monitor
(this).

Multi-threaded programs may use the volatile type modifier. It tells the compiler
that the variable may be modified outside of the current thread.

2.4 Java Memory Model

Java memory model describes how threads in Java interact with each other using shared
memory. The model defines several relations that are used by the dynamic analysis of
contracts for concurrency, most notably the happens-before relation and the synchronizes-
with relation.

Java memory model takes a program and an execution trace, and for each read operation
decides if it is valid or not. The decision depends on the write operation that modified the
data before the read operation. The compiler, runtime, and hardware must ensure that all
executions of a program produce execution traces that are valid according to the model [8].

In a single-threaded program, it is only required that the program produces the same
result as if it was run serially. The compiler is free to reorder instructions when it does

not affect the result of the computation. In multi-threaded programs, the reordering of
instructions has to be limited when the threads interact with each other.

In the model, only certain program actions are considered. There are several orders
defined over the actions which are used by the dynamic contract analysis: program order,
synchronization order, and happens-before order.

The actions can be either intra- or inter-thread. An inter-thread action can be detected
or influenced by another thread. An intra-thread action is for example adding two local
variables and it is not important to the model. Nonvolatile reading or writing of a shared
variable is an inter-thread action. Synchronization actions are inter-thread actions that
include volatile reading or writing of variables, locking and unlocking of monitors, and
starting and stopping of a thread [8]. Listing 2.4 shows examples of different kinds of
actions.

class MySharedData {
int mySharedVar = 0;

public synchronized void MyMethod() {
// synchronization action (entering a monitor)
// intra-thread action (writing a local variable)
int a = 42;
// 2 inter-thread actions (reading and writing a shared variable)
mySharedVar += a;
// synchronization action (leaving a monitor)
}
}
Listing 2.4: Various program actions classified from the Java memory model point of view.
Entering and leaving MyMethod produces synchronization actions. Accessing mySharedVar
is considered as an inter-thread action, but not as a synchronization action because
mySharedVar is not declared as volatile.

Program order is a total order over all inter-thread actions from a given thread. It
reflects the order in which these actions would be executed if run by the intra-thread
semantics.

Synchronization order is a total order over all synchronization actions of an execution.
Within each thread, the synchronization order is consistent with the program order. The
synchronized-with relation is defined on certain actions. For example: starting a thread is
synchronized-with the first action in the new thread.

Happens-before order is a partial order. If an action happens-before another, the first
action is visible to and ordered before the second action. If actions z and y belong to
the same thread and z comes before y in program order, then z happens-before y. If
z synchronizes-with y, then = happens-before y. Figures 2.1 and 2.2 illustrates the happens-
before relation in simple programs.

A data race occurs, when there are two accesses to the same variable, at least one of
which is write, and these accesses are not ordered by happens-before [8]. This situation is
illustrated in Figure 2.2.

t1 to
synchronized(obj) {

a = 42;

synchronized(obj) {

print(a);

"

Figure 2.1: Happens-before relations in a correctly synchronized program consisting of
threads #; and to. Each arrow represents a happens-before relation. The red arrows rep-
resent the program order, the blue arrow represents the synchronizes-with relation. Grey
arrows complete the transitive closure. The conflicting accesses to variable a are not data
races, because they are ordered by happens-before (the black arrow).

t1 to

synchronized(obj) {
a = 42;

print(a)

synchronized(obj) {

print(a);

Figure 2.2: Happens-before relations in an incorrectly synchronized program (each solid
arrow represents a happens-before relation). There is no happens-before relation between
conflicting accesses a=42 and print(a) (the dashed line), creating a data race.

2.5 Instrumentation of Java Bytecode

Instrumentation is the act of inserting instructions into an existing program to extract useful
information at runtime. Instrumentation can be used to measure performance, log events,
or perform dynamic analysis. The running program should not be aware that it is being
instrumented and the result of the computation should remain the same. Instrumentation
may add significant overhead to the program. For example, programs instrumented by the
RoadRunner framework are roughly ten times slower [6].

In Java, the instrumentation is done by changing the bytecode. There are several
general-purpose frameworks for modifying the Java bytecode. In this section, the ASM
framework is described as it is used by the RoadRunner framework, which is the basis of
this Master’s thesis.

2.5.1 Java Bytecode Overview

Programs written in Java are compiled into Java bytecode which is executed by the Java
Virtual Machine. Every class gets compiled into a Java class file containing the following
sections [2]:

e A section with information about the class itself, such as the name of the class, the
super class, implemented interfaces, and class annotations.

e One section per field, containing the field name, type, modifiers, and annotations.

e One section per method (and constructor), containing the name of the method, the
return type, type of parameters, annotations, and compiled code of the method.

Java class files also contain a constant pool section that holds all numeric, type, and
string constants which are then referenced from other sections of the file. The whole struc-
ture is shown in Table 2.1. The Java class file format is described in detail in the Java
Virtual Machine Specification [11].

Modifiers, name, super class, interfaces

Constant pool

Annotations
Attributes

Modifiers, name, type

Fields Annotations

Attributes

Modifiers, name, return and parameter types
Methods | Annotations

Attributes

Code

Table 2.1: Structure of the Java class file. Adapted from [2], simplified.

The Java Virtual Machine operates on two kinds of types: primitive types and reference
types. Examples of primitive types are int, long, boolean, or double. There are three
kinds of reference types: class types, array types, and interface types. The array type
consists of a component type which can also be an array type. For example, int [] represents
an array type with component type of int. All reference types may hold a special null
reference, which is also the default value of reference types.

Compiled classes do not contain any package or import statements, so all type names
must be fully qualified. Internally, class files use slashes instead of dots in type names, so for
example java.lang.0Object becomes java/lang/Object. In most places, Java types are
represented with type descriptors. Each primitive type is assigned a single character: I for
int, D for Double, and so on. Classes and interfaces are written with prefix L and semicolon
at the end, so String becomes Ljava/lang/String;. Arrays are represented using a [and
the element type, so an array of integers is [I, an array of strings is [Ljava/lang/String;.
Similarly, method descriptors are used to represent the return type of a method and types
of all method parameters. For example, a method declared as double m(int i, String
s) would be represented as (ILjava/lang/String;)D. In method descriptors, V is used
when the method returns void.

10

When executing, on each method invocation, the Java Virtual Machine creates a new
frame. Each frame contains its own local variables and an operand stack. When the method
invocation is completed, the frame is destroyed.

Local variables are addressed by indexing. Each variable can hold a single value of
a primitive or reference type with the exception of long and double which require a pair
of variables. At index 0, there is a reference to the object the method was invoked on (the
value of this in Java). Class methods (marked as static in Java) do not use this index.
Starting at index 1 (or 0 in case of class methods), method parameters are stored. After
the parameters, local variables may be stored.

Each frame contains an operand stack, which is initially empty. Various instructions are
used to load values onto the stack, either from local variables or fields. Other instructions
take operands from the stack and push the result back. When calling other methods, the
parameters are also prepared on the stack.

Java Virtual Machine instructions can be divided into several categories. Load and
store instructions move values between local variables and the operand stack. For example,
the iload_3 instruction pushes the value (which is of type int) from the local variable
at index 3 to the operand stack. Arithmetic instructions usually take two values from the
operand stack, compute the result, and store it back on the stack. For example, the fmul
instruction will multiply two values of type float. Type conversion instructions convert
the value on the top of the stack. Control transfer instructions, such as ifeq or goto, cause
the execution of instruction other then the immediately following.

To create new arrays and objects, instructions new, newarray, and anewarray are used.
Methods are invoked using these five instructions: invokevirtual, invokeinterface,
invokespecial, invokestatic, and invokedynamic, each used in slightly different cir-
cumstances. Exceptions are thrown using the athrow instruction. Entering a monitor
is achieved by monitorenter and monitorexit instructions, which are used by synchro-
nized statements in Java. An example of a method represented by bytecode is shown in
Listing 2.5.

2.5.2 The ASM framework

The ASM framework allows generating and modifying Java classes directly in bytecode.
It can be used both statically (for example during compilation) or dynamically (to create
classes at runtime). The ASM framework provides an interface for loading and storing the
bytecode using higher-level abstractions, such as constants, identifiers, methods, fields, and
others [2].

There are two interfaces available: the core API with an event-based representation
of classes, and the tree API with an object-based representation. The core API processes
classes sequentially. When parsing a class, the ASM parser will produce an event for each
element of the class. When writing a class, the writer creates the class based on a sequence
of events. The tree API loads the whole class and creates a tree of objects representing
the class. The core API is faster and requires less memory, however, it is not practical for
complex transformations [2]. The RoadRunner framework uses the core API.

The core API is based on the ClassVisitor abstract class. The class contains meth-
ods for visiting different sections of a class, for example, visitAttribute, visitMethod,
or visitField. Complex sections, such as methods or fields, have their visitor classes.
For example, the MethodVisitor class contains methods such as visitLocalVariable,
visitCode, or visitParameter [2].

11

public void foo(java.io.FileWriter, int, int)
descriptor: (Ljava/io/FileWriter;II)V
flags: (0x0001) ACC_PUBLIC

Code:
stack=2, locals=5, args_size=4

0: iload_2

1: iload_3

2: iadd

3: istore 4

5: aload_1

6: iload 4

8: invokevirtual #2 // Method java/io/FileWriter.write:(I)V
11: aload_1

12: invokevirtual #3 // Method java/io/FileWriter.close:()V

15: return
Listing 2.5: An example of a method bytecode viewed using the javap command. The
method takes three parameters: a file writer and two integers. There are 5 local variables:
the object the method was called on (index 0), method parameters (indexes 1-3), and
a local variable (index 5). On lines 0-3, the two integers are loaded on to the operand
stack, added together, and the result is stored in a local variable. Lines 57 calls the write
method on the file writer, lines 11-12 calls the close method. Operands on lines 8 and 12
are indexes to the constant pool section.

To generate a new class, one has to create a ClassWriter instance, which is a subclass
of ClassVisitor. Then a sequence of visit methods must be called, such as visitField or
visitMethod. The ClassWriter instance will generate appropriate bytecode on each call.

To read and parse a class, one has to create a ClassReader instance. The reader
will produce a sequence of events for each section of the class. To consume those events,
a ClassVisitor instance must be given to the reader. The reader will then call appropriate
visit methods on the visitor as it is parsing the class. To demonstrate this, one can create
a ClassReader and connect it to a ClassWriter (which is a subclass of ClassVisitor).
The reader will call visit methods on the writer, effectively copying the class. The typical
class transformation is shown in Figure 2.3.

.class file
ClassReader —} ClassVisitor — ClassVisitor — --- —f ClassWriter
.class file

Figure 2.3: The typical architecture for a class transformation using the ASM framework.
A ClassReader instance reads the class, then one or more ClassVisitor instances modify
the class, and then a ClassWriter instance writes the modified class back to a file.

12

2.6 Dynamic Analysis using RoadRunner

The RoadRunner framework is used for the dynamic analysis of concurrent programs writ-
ten in Java. RoadRunner instruments programs to obtain a stream of events that are useful
for dynamic analysis, such as memory accesses, synchronizing on a lock, forking or joining
of threads, and so on. This event stream is then available to various analysis tools. Multi-
ple tools can be chained together, each tool acting as a filter over the events. This allows
complex analyses to be built from simpler, modular tools [6].

RoadRunner aims to simplify writing dynamic analysis tools. A RoadRunner analysis
tool only needs to handle events of interest. RoadRunner will ensure that the event is prop-
erly detected and the event handler is called. To store the state of the analysis, RoadRunner
provides support for associating data with memory locations, locks, or threads.

2.6.1 The RoadRunner Programming Interface

Every analyzer in RoadRunner is based on the Tool class. Listing 2.6 contains the most
important methods of Tool. During the analysis, every time an action is detected, the
appropriate method in Tool is called, along with an Event object that contains information
about the event. The following events are detected by the RoadRunner framework:

e method entry and exit,

o memory accesses (reads and writes to fields and variables),
e lock acquires and releases,

« synchronization signals (wait and notify),

e thread forking and joining.

There are several subclasses of the Event class with specific information about events.

public abstract class Tool {
// event handlers for accessing a memory location
public void access(AccessEvent fae) { }
public void volatileAccess(VolatileAccessEvent fae) { }
// event handlers for entering and exiting methods
public void enter(MethodEvent me) { }
public void exit(MethodEvent me) { }
// event handlers for locking
public void acquire(AcquireEvent ae) { }
public void release(ReleaseEvent re) { }
// event handlers for thread events
public void preJoin(JoinEvent je) { }
public void postJoin(JoinEvent je) { }
public void preStart(StartEvent se) { }
public void postStart(StartEvent se) { }
// shadow location initialization
public ShadowVar makeShadowVar(AccessEvent ae) { }

Listing 2.6: The abstract class Tool. Only selected public methods are shown.

13

RoadRunner allows associating data with objects from the program under analysis. For
each thread, a ShadowThread object is created which contains a reference to the under-
lying thread. Similarly, for each lock, a ShadowLock object is created. Both extend the
Decoratable class that allows storing of arbitrary information. For associating data with
memory locations, a shadow location is created when the location is first accessed.

Multiple tools can be chained together. Each event handler method forwards the Event
instance to the next tool in the chain by default. If the event is not forwarded, the tool
becomes a filter over the event stream. This can be used to filter out events that are not
interesting to a particular analysis and then performing the analysis in the next tool [6].

2.6.2 RoadRunner Synchronization Models

In RoadRunner, all threads of the program under analysis generate events. The events
are also handled by the same thread that generated them which means that several event
handlers may be running concurrently. Tools written for RoadRunner must provide inter-
nal synchronization to ensure that no concurrency-related errors occur in the tool itself.
RoadRunner contains an option to serialize all events. In this mode, there is only one event
handler running at a time [6].

2.6.3 Instrumentation Performed by RoadRunner

RoadRunner uses a modified version of the ASM framework to instrument the program
under analysis. Before a class is loaded, it is instrumented. The instrumented code will
then produce events that will be sent to the tool chain for an analysis. Three important
kinds of actions are instrumented: field accesses, method invocations, and monitor entries
and exits.

Field accesses are instrumented by adding two new methods for each field: one for
reading and one for writing to the field. In these methods, write and read events are
generated. In the rest of the code, all getfield and putfield instructions are replaced
with calls to the corresponding access methods. RoadRunner allows tools to store arbitrary
data related to a field in shadow wvariables. For each field, a new field of the ShadowVar
type is created to store the data. Listings 2.7 and 2.8 shows a simple class before and after
field instrumentation.

private int bar;

public void foo();
0: aload_O
aload_0O
getfield #2 // Field bar:I
bipush 42
iadd
putfield #2 // Field bar:I
return

= 00 N 0N =

Listing 2.7: An example class bytecode viewed using the javap tool, simplified.

Method invocations are tracked by creating a wrapper method for each method. The
original method is renamed, but otherwise left intact (the code may however be further
instrumented to obtain other information, such as field accesses). Then a wrapper method

14

public int bar;
public transient rr.state.ShadowVar __$rr_bar;

public void __$rr_put_bar(int, int, rr.state.ShadowThread)
(code omitted)

public int __$rr_get_bar(int, rr.state.ShadowThread)
(code omitted)

public void foo();
0: invokestatic #51 // Method rr/state/ShadowThread
// .getCurrentShadowThread: ()Lrr/state/ShadowThread;

3: astore_2

4: aload_O

5: aload_0O

6: iconst_1

7: aload_2

8: invokespecial #56 // Method __$rr_get_bar: (ILrr/state/ShadowThread;)I
11: bipush 42

13: iadd

14: iconst_2

15: aload_2

16: invokespecial #53 // Method __$rr_put_bar: (IILrr/state/ShadowThread;)V

19: return
Listing 2.8: Code from Listing 2.7 instrumented by RoadRunner. For the bar field,
two access methods are added and a new field of type ShadowVar. In the foo method,
the bar field is accessed using methods __$rr_get_bar and __$rr_put_bar. These
methods take the current shadow thread as an argument which is obtained by calling
getCurrentShadowThread.

with the same name as the original one is created. The wrapper method generates enter and
exit events. In order to detect abnormal method exits that are caused by an exception being
thrown, the call to the original method is wrapped in a try block. When an exception is
caught, the exit event is generated and the exception is re-thrown. An example of a method
instrumented by RoadRunner is shown in Listing 2.9.

Monitor entries and exits are handled differently for synchronized statements and syn-
chronized methods. Synchronized statements in Java are represented by monitorenter and
monitorexit instructions. RoadRunner extends all occurrences of these instructions with
calls to methods that generate acquire and release events. Synchronized methods in Java do
not need monitorenter and monitorexit instructions, the locking is performed implicitly
by the Java Virtual Machine. In RoadRunner, synchronized methods are replaced with syn-
chronized statements that are then instrumented as described above. For each synchronized
method, a wrapper method is created. The original method’s synchronized flag is cleared.
The wrapper method, which is also not synchronized, contains a synchronized statement
with call to the original method. Synchronized methods are in the end wrapped twice,
the first wrapper generates synchronization events and the second one generates method
invocation events.

15

public int __$rr_foo__$rr__Original_(int);
0: invokestatic #20 // Method rr/state/ShadowThread
// .getCurrentShadowThread: ()Lrr/state/ShadowThread;
3: astore_3
4: iload_1
5: ireturn

public int foo(int);
0: invokestatic #20 // Method rr/state/ShadowThread
// .getCurrentShadowThread: ()Lrr/state/ShadowThread;
astore_3
aload_0O
sipush 508
aload_3
invokestatic #27 // Method rr/tool/RREventGenerator
// .enter:(Ljava/lang/Object;ILrr/state/ShadowThread;)V

© 0 O W

12: aload_0

13: iload_1

14: invokespecial #29 // Method __$rr_foo__$rr__Original_:(I)I

17: aload_3

18: invokestatic #33 // Method rr/tool/RREventGenerator
// .exit:(Lrr/state/ShadowThread;)V

21: goto 29

24: aload_3

25: invokestatic #33 // Method rr/tool/RREventGenerator
// .exit:(Lrr/state/ShadowThread;)V

28: athrow

29: ireturn

Listing 2.9: Method int foo(int a) instrumented by RoadRunner. The original method
was renamed to __$rr_foo__$rr__Original_ and a new method with the original name
was created. This method generates enter and exit events and calls the original method.

16

Chapter 3

Contracts for Concurrency

When developing software, one frequently uses modules created by someone else via its
programming interface. For example, in object-oriented programming, the interface consists
of public methods of a given class. Accessing the interface requires one to follow a protocol
consisting of: (i) syntax, i.e. types of parameters and return values, (ii) semantics, i.e.
the expected behavior for given input parameters, and (iii) access restrictions. Access
restrictions include the domain of valid values, dependencies on other services, and atomicity
violations [3].

Contracts for concurrency [4], [13], are a case of a software protocol that expresses access
restrictions in a concurrent setting. In its basic form, they specify sequences of methods
that must be executed atomically. Contracts for concurrency help detect high-level data
races in a program. A high-level data race occurs on a higher abstraction layer. Program
that is free of data races as defined by the Java memory model can still contain high-level
data races when modifying complex data structures [1]. As an example, consider an object
that represents a pair of coordinates with two synchronized methods: setX and setY.
Even though both methods are executed atomically, there is a window between setting the
first and the second coordinate where the object is in an inconsistent state, allowing for
a high-level data race.

The contracts can be extended with parameters to reflect the data flow between the
methods (so that only methods manipulating the same data must be executed atomically).
Another extension adds so-called spoilers (so that given sequence must be executed atomi-
cally only with respect to only certain sequences). Both extensions can be combined. This
chapter defines basic contracts, as well as both extensions to them. Then a method for
dynamic validation of contracts for concurrency is presented. The analyzer, implemented
in this thesis, is based on this method.

3.1 Basic Contracts

A contract is formally defined in [4] as follows. Let X1 be a set of all public method names
(the API) of a module or a library. A contract is a set R of clauses. Each clause o € R
is a regular expression over Y. A contract violation occurs when any of the sequences in
a contract is interleaved with an execution of a method from >y over the same object.

17

Ezample. Consider a map implementation with the following operations: put (key, value),
get (key), remove (key), and contains(key). Then a contract for this class may contain
the following clauses:

(e1) put get
(02) contains (put|get|remove)

Clause p; states that when an element is put into the map and then retrieved, it should be
executed atomically (because the element may be removed between the calls). Clause g2
states that when the program modifies the map based on the result of the contains call,
it should be atomic.

3.2 Parametric Contracts

In some situations, the definition of contracts may be too restrictive, producing false alarms.
In [3], contracts are extended with parameters to reflect the data flow between methods.
Consider the following example:

if (q.contains(42)) q.remove(42);

These two calls must be executed atomically only if they share the same argument. This
dependency can be expressed using meta-variables placed as the parameters or return values
of methods. Parameters that should not be taken into account are marked with free meta-
variable (denoted with an underscore).

Ezample. The example from Section 3.1 can be extended with parameters:

(01) put (X,) _=get(X)
(02) _=contains(X) (put(X,_) | _=get(X) | remove(X))

Clause g1 cares about calls to put and get that operate on the same key (the X meta-
variable) but it is not concerned with the value that is put or retrieved (the _ meta-variable).
Similarly, in clause g2, only method calls operating with the same key must be atomic.

The basic definition of contracts contains one implicit parameter, the object that the
method was called upon (this in Java) [4]. The atomicity is required only on methods
called upon the same object (as these method calls usually modify the same data). To
better illustrate this, the example can be rewritten as:

(1) X.put (Y,) _=X.get(Y)
(02) _=X.contains(Y) (X.put(Y,_) | _=X.get(Y) | X.remove(Y))

3.3 Contracts with Spoilers

In [3], contracts are extended with contextual information to distinguish which method
sequences violate the contract. Each clause of the basic contract is called a target and is
assigned a set of so-called spoilers. A spoiler is a set of method sequences that may violate
its target.

Consider clause g1 from the example in Section 3.1. If the element that was put into the
map is concurrently removed or updated before the get call, a contract violation should be

18

detected. However, calling contains or get on the element will not affect the computation
and should not be marked as a contract violation. In this example, methods put and remove
are spoilers for a target o1, denoted as put get «~ put|remove.

Formally, as defined in [3], let R be the set of target clauses where each target o € R
is a regular expression over Y. Let S be the set of spoilers where each spoiler o € S is
a regular expression over Y. A contract is a relation C € R x S defining for each target,
which spoilers may cause atomicity violation.

Contract violation is observed when a target sequence ¢ € R is fully interleaved by
a spoiler sequence o € C(p) and the sequences are executed on the same object.

Ezample. The example from section 3.1 can be extended with spoilers:

(01) put get «~ put|remove

(02) contains (put|get|remove) «~~ put|remove

When combining parametric contracts with spoilers, the spoilers may also contain param-
eters. Then a contract violation is detected only when spoiler arguments match target
arguments.

Ezample. Examples from sections 3.2 and 3.3 combined together:
(01) X.put(Y,_) _ = X.get(Y) «~ X.put(Y,_)|X.remove(Y)

(02) _ = X.contains(Y) (X.put(Y,_) | _ = X.get(Y) | X.remove(Y))
«~ X.put (Y,) |X.remove(Y)

3.4 Dynamic Contract Validation

In [3], a dynamic contract validation method is proposed for contracts with spoilers. Para-
metric contracts are not included in the method. This section provides an overview of
the method. The analyzer designed in Chapter 4 uses this method and extends it with
parameters.

3.4.1 Multi-threaded Program Traces

In the context of the dynamic on-the-fly contract validation, multi-threaded program trace
consists of events of the following types:

e thread forking or joining another thread,
e thread entering or exiting a method,
e thread acquiring or releasing a lock.

All events in a trace are indexed by their position in the trace. Let T be a set of threads,
R a set of targets, S a set of spoilers, C € R x S a set of contracts, and L a set of locks.
The set of all events that can be generated by a thread ¢ € T is then denoted as E;. Let
E = (J;ep Ei. A trace is then a sequence 7 =e;...e, € ET [3].

Given a trace 7 = e;...e, € E1, we call its subsequence r = ¢;,€;,...¢;,, 1 <k <mn,
an instance of a target p € R if, and only if:

1. r consists of well-paired method enter and exit events,

19

2. all enter events of r match the regular expression of g,

3. apart from events e;,,...,e;, , there is no event from the alphabet of p executed by ¢
between events e;; and e;, .

Ezample. Given target o = abc, and a trace 7 = adbdc, there is a target instance r = ejegeq.
In trace ™ = acbdc, there is no target instance.

A spoiler instance s of a spoiler o € S is defined similarly. We let start(r) = e;, and
end(r) = e;, denote the first and last events of a target, respectively. Likewise, start(s)
and end(s) denote the first and last events of a spoiler, respectively [3].

3.4.2 Contract Violation

A contract is violated when there is a target instance that is fully interleaved with a spoiler
instance from another thread. The interleaving is defined using a happens-before relation,
which is in the context of contracts defined as follows [3]. A happens-before relation <y,
over a trace T = e1 ...e, € ET is the smallest transitively closed relation on the set of events
from 7 such that e; <, e; holds when j < k and one of the following holds:

1. both e; and ey are executed by the same thread,
2. both e; and ey acquire or release the same lock,

3. one of e; and e, is a fork or a join performed by thread ¢, and the other is executed
by thread w.

A contract (p,0) € C is violated in a trace 7 if, and only if there is a target instance r
in the trace and a spoiler instance s in the trace such that:

start(s) Knp start(r) A end(r) €pp end(s)

The violation occurs when the spoiler may have started after the target started and it may
have ended before the target ended. When given a complete program execution trace, all
target and spoiler instances can be detected, the happens-before relation can be deduced,
and all contracts can be easily checked for violations. The trace, however, can get large
and make this approach unpractical. For this reason, several optimizations are introduced
in [3], which are presented in the next section. An example of a program trace containing
a contract violation is shown in Figure 3.1.

3.4.3 On-the-fly Contract Validation

To check contract validations, it is not required to keep the entire program execution trace.
A trace window is kept instead. Events are moved to the trace window as soon as they
become available and are removed under certain conditions. The goal is to keep the window
as small as possible.

Spoiler instances can be safely removed from the window whenever a contract violation
that would be detected with the spoiler can be detected without it. A spoiler instance can
be removed from the window whenever a newer instance of the same spoiler is detected [3].

A target instance r can be safely removed with respect to a spoiler instance s whenever
a contract violation that would be detected between r and s, can be detected between s and

20

fork
a(1)

b(42) c(D)

Figure 3.1: An example of a program trace containing a contract violation. Consider
a target a(X) b(_) and a spoiler c(X). In thread ¢, a target instance r is detected with
X = 1. In thread u, a spoiler instance s is detected with X = 1. The parameters match in
both instances. The instances are not synchronized, so start(s) <y start(r) A end(r) np
end(s) holds, which means that there is a contract violation.

another target instance too. Note that target instances may be removed only with respect
to a given spoiler, not in general [3].

To further reduce the required information about the trace, vector clocks are used.
Vector clocks are described in the next section. For each target and spoiler instance in the
trace window, only vector clocks of their beginning and end need to be kept.

The method for on-the-fly contract validation does the following. At method entry
events, target and spoiler sequences are detected. At method exit events, it is detected
whether a target or a spoiler instance has ended. When a target instance ends, spoiler
instances from the trace window are checked if they violate the target. When a spoiler
instance ends, target instances from the trace window are checked if they are violated by
the spoiler. At method exit, target and spoiler instances are also discarded when no longer
needed [3].

3.4.4 Vector Clocks

The on-the-fly dynamic analysis of contracts uses vector clocks and the happens-before
relation the same way it is used in the FastTrack algorithm [5]. A wvector clock VC : T — N
consists of clock values for each thread ¢t € T. Vector clocks are partially ordered with &,
can be joined with u, and contain a minimal element 1y . The t-component of a vector
clock is incremented using the inc; function.

Vic Ve iff VEVI() < Va(D)
Vi u Vo = At.maz(Vi(t), Va(t))
Ly = A0
inc(V) = Au.ifu = tthen V(u) + lelse V(u)

Ezample. Consider threads t1, t2, t3, and two vector clocks: Vi = (1,0,2), Vo = (1,0,5).
Then Vi C Vs is true, Vi u Vo = (1,0,5), and inc, (V1) = (1,1, 2).

During the analysis, three kinds of clocks are kept. For each thread ¢t € T, a vector clock C,
stores information about the last synchronization with other threads. For each lock [€ L,
a vector clock IL; holds information about the last thread that released the lock. For each
event e € 7, a vector clock VC, is kept [3].

21

The happens-before relation is defined using vector clocks. For an event e; from a thread
t and an event e, from a thread u, e; <pp €, when V¢, (t) < Ve, (t). The clocks are
updated on the following actions:

e Fork — when a thread t creates a new thread wu:

Cy —CuuCy
(Ct <« ’i?’LCt(Ct)
The new thread will get all happens-before relations from the parent thread. Then the

parent thread is updated so that events coming after the fork will not happen-before
events in the new thread.

e Join — when a thread ¢ waits for a thread u to finish.

(Ct <« (Ct [(Cu
Cy < incy(Cy)
The thread that waits for the joining thread will get all happens-before relations from

the joining thread. Then the joining thread is updated so that events coming after
the join will not happen-before events in the waiting thread.

o Release — when a thread t releases a lock .

L; G
(Ct <« ’i?’LCt(Ct)

The releasing thread will be synchronized with the thread that will acquire the lock
in the future. The thread does not know with which thread, so the thread’s vector
clock is stored in the lock. Then the thread is updated so that events coming after the
release will not be synchronized with the thread that acquires the lock in the future.

e Acquire — when a thread ¢ acquires a lock [.
(Ct <« (Ct [Ll

The acquiring thread will get happens-before relations from the lock which holds the
vector clock from last release operation.

o Event clocks are set when an event enters the window trace. For an event e € T
executed by a thread t € T:

VCe Al (Ct

3.5 Previous Work

There are several existing implementation of dynamic analyzers for contracts for concur-
rency. In [4], the IBM Concurrency Testing Tool is used for tracking the basic contracts in
Java programs. In [3], the ANaConDA framework is used for tracking parametric contracts
with spoilers in programs written in C/C++. In [9], the RoadRunner framework is used to
track parametric contracts with spoiler in Java programs. The prototype implementation
in [9] served as a reference for this thesis.

22

Chapter 4

Design of a Dynamic Analyzer for
Parametric Contracts with Spoilers

This chapter describes the proposed dynamic analyzer for parametric contracts with spoil-
ers. The analyzer follows the method for dynamic analysis of contracts described in [3] and
extends it to support parametric contracts.

The analyzer is built as a new tool for the RoadRunner framework. The input is
a program under analysis and a contract definition. The analyzer is then able to detect
contract violations in the program and report them. The RoadRunner framework was
modified to support obtaining method arguments and return values.

Section 4.1 provides an architectural overview of the analyzer itself. Section 4.2 describes
several restrictions that were placed on the analyzer in the design phase. In Section 4.3,
necessary changes to RoadRunner itself are presented. Section 4.4 describes how a contract
is defined and processed before the analysis is started. The core function of the analyzer is
described in Section 4.5. Section 4.6 describes how the analyzer interacts with RoadRunner.

4.1 Overview of the Contract Analyzer

This section provides a high-level overview of the contract analyzer. The ContractAnalyzer
class is the core of the analyzer. It receives events from the program under analysis, detects
target and spoiler instances, and looks for contract violations. It manages data stored with
threads and locks, such as trace windows and vector clocks. The ContractAnalyzer class
can be instantiated without any dependencies from the RoadRunner project, which is useful
for testing purposes. Section 4.5 describes ContractAnalyzer in detail.

The ContractTool class is a subclass of RoadRunner’s Tool class. During the initializa-
tion of ContractTool, the contract definition file is parsed and ContractAnalyzer is cre-
ated. In ContractTool, relevant methods are overridden to receive events from RoadRun-
ner, such as lock acquire and release or method exit. These events are then processed and
sent to ContractAnalyzer. Section 4.6 provides a detailed description of ContractTool
and Section 4.4 describes the parsing and representation of contracts.

For each thread, a Window instance is created by ContractAnalyzer. It stores infor-
mation about target and spoiler instances in a trace window. On method exit, existing
instances are advanced, new instances are started, and for all finished instances, contract
violations are checked.

23

4.2 Constraining Analyzer Capabilities

The analyzer is designed with several restrictions based on the previous work, such as [9]
or [4], to improve its performance. First, a restriction is placed on the parameters in contract
definitions to reduce the number of instances in a trace window. Then the conditions for
removing instances from the trace window are discussed and a related contract restriction
is introduced. Finally, it is described how nested method calls should be handled.

4.2.1 Avoiding Cloning of Target and Spoiler Instances

The method for analyzing contracts described in [9] produces an enormous number of
instances being tracked at the same time. A lot of instances are created because of the
necessity to clone target and spoiler instances before they are advanced. Consider the
following target: a(X) b(Y) c(X,Y) and the following program trace: a(1) b(2) b(3)
c(1,3). When a(1) enters the trace window, a new instance is created and the value of
X is set to 1. But when processing b(2), the analyzer cannot reliably decide whether the
method call belongs to the instance or not (there might be c(1,2) later in the trace). The
only option is to keep the instance and create a duplicate instance which is then advanced
(while setting Y to 2).

To prevent duplication of instances, the following restriction was put on the contract
definition. All target and spoiler parameters must be assigned in the first call of a given
target or spoiler. This ensures that there is no ambiguity in deciding whether a given
method call advances an instance or not. For example, the target from the previous example
is invalid because the value of Y remains unknown after the first method call.

4.2.2 Invalidating Instances

A target or spoiler instance, as defined in Chapter 3, requires that no method belonging to
the alphabet of a given target or spoiler may be called between the events that form the
instance. In practice, it means that a running instance must be discarded when a method
belonging to the target or spoiler is called. For example, consider a target abc and the
following program trace: aa. After the first a, a new instance is created. After accepting
the second a, the instance must be discarded.

When tracking parametric contracts, instances cannot be easily discarded. Consider
a running instance of a target (or a spoiler), all of its parameters are assigned a value.
When a method is called that belongs to the alphabet of the instance’s target, three kinds
of situations can happen:

1. The method matches the target definition and method arguments match the values
of instance parameters. The instance is advanced with the method.

2. The method matches the target definition but method arguments conflict with the
values assigned to the instance. The instance cannot be advanced but it also should
not be discarded. The method call most likely belongs to another instance.

3. The method does not match the target definition. According to the definition in
Chapter 3, the instance should be discarded. But the analyzer does not know if the
method call is in any way related to the instance.

The second situation can be illustrated in the following example. Consider a target a (X)
b(X) and a program trace a(1) b(2) b(1). After a(1), an instance is created with X set

24

to 1. When b(2) is called, the value of X conflicts with the value stored in the instance.
However, the instance should not be discarded as we can see that a matching call exists
later in the trace.

An example of the third situation. Consider target a(X) b(X) and a program trace
a(1) a(2) b(1) b(2). Intuitively, there should be two instances detected, one with X set
to 1, and one with X set to 2. After a(1), the first instance with X=1 is created. When
a(2) is accepted, the instance cannot be discarded even though it belongs to the alphabet
of the target.

The problems described above mean that the analyzer will never discard an already
running instance, the only option is to advance it. Another option is to modify the behavior
in the third situation so that the analyzer will try to guess whether a method call belongs
to the current instance or not. With simple contracts, the decision can be easy. Consider
the target from the previous paragraph: a(X) b(X). In this case, every time a method b()
is called, the analyzer can decide whether it belongs to the currently tracked instance or not
based on the value of X. The decision is less clear when a target contains the same method
multiple times with different parameters. For example, consider target a(X,Y) b(X) b(Y)
and a program trace containing two interleaved instances with different parameters: a(1,2)
a(2,3) b(2) b(1) b(2) b(3). After a(1,2), a new instance is created with X=1 and Y=2.
After a(2,3), another instance is created with X=2 and Y=3. When b(2) is encountered,
the second instance is advanced, because it matches the target. The analyzer may however
discard the first instance because b(2) is contained in the target as b(Y), but the expected
method was b(X). It is not clear, what the proper behavior should be. The analyzer should
therefore never discard running instances.

4.2.3 Kleene Star in Contract Definition

The analyzer never invalidates a running instance. This fact allows for optimization in
contract definitions. As defined in Chapter 3, a target or a spoiler is a regular expression
over methods. The analyzer should therefore recognize contracts defined using all three
basic operations: concatenation (ab), alternation (al|b), and Kleene star (a*). Due to the
fact, that no method call can invalidate a running instance, the Kleene star operation is not
needed. All parts of an expression that are also operands of a Kleene star operation can
be removed with no impact on the analysis. For example, a regular expression ab*c can
be replaced with ac. Calls to method b will be simply ignored. These simplified regular
expressions, when converted to a finite automaton, do not create any loops. This allows for
simpler structures in the implementation of the analyzer.

4.2.4 Nested Method Calls

The method described in [3] is based on program traces where every method represents
a single event in the trace. However, the RoadRunner framework produces two events for
every method: method entry and method exit. For parametric contracts, we need to obtain
values of parameters and also the return value, which is available only on method exit.
For convenience, the analyzer should use only the method exit event. This means that the
analyzer may produce unexpected results when the program under analysis contains nested
calls to methods that are part of the contract. Consider the following methods that are
both parts of a contract:

public void a() { b(O; }
public void b() { ... }

25

After calling method a(), the trace recorded by the analyzer will be b() a() instead of
more intuitive a() b().

4.3 Changes to Instrumentation Performed by RoadRunner

The RoadRunner framework does not expose the method arguments or the return value
through its API. For the tracking of parametric contracts, it is necessary to obtain method
arguments and return values so that the contract parameters can be assigned values.

The enter and exit of RoadRunner’s Tool class methods both take a MethodEvent
parameter containing the following information:

e Target — null for static methods, the value of this for instance methods.

o A MethodInfo object — static information about the method definition (name, de-
scriptor, whether it is synchronized or static).

e Call site location — where was the method invoked.

The MethodEvent class was extended for storing method arguments and the return value.
The following methods were added:

public Object[] getArgs();

public void setArgs(Object[] args);

public Object getReturnValue();

public void setReturnValue(Object returnValue);

Arguments and return values which are reference values (class instances or arrays)
can be stored directly in the Object data type. Primitive values (such as int or float)
cannot be stored in Object directly, they must be wrapped in a class instance. Each
primitive type has a corresponding object wrapper class, for example, int is wrapped in
the java.lang.Integer class. The getArgs () method should return an array of size 0 for
a method that takes no arguments and it should return null when the arguments are not
available. The getReturnValue () should return null when the value is not available (for
example on method entry), when the method throws an exception, or when the method
returns void.

4.3.1 Parameter Matching

When trying to advance a running instance, method arguments must be checked, if they
match the previously assigned parameters. For reference types, the equality operator (==) is
used which compares the addresses of both objects. For primitive values that are wrapped
in an object, the equals() method must be used. As a result, the analyzer will always
compare instances of wrapper classes (such as Integer) by calling the equals() method,
even if the instance was created by the program under analysis. This may or may not be
the intended behavior and the user of the analyzer should be aware of this.

4.4 Contracts Definition and Parsing

Before the start of the analysis, a contract must be specified. This section describes the
syntax of a contract configuration file, how it is parsed, and how it is represented in the
analyzer.

26

Map.put (ID)V M(K,_) Map.get(I)D M(K)
<- Map.put(ID)V M(K,_) | Map.remove(I)D M(K) ;

Map.contains(I)Z M(K)

(Map.put(ID)V M(K,_) | Map.get(I)D M(K) | Map.remove(I)D M(K))

<- Map.put(ID)V M(K,_) | Map.remove(I)D M(K) ;
Listing 4.1: Contract from Chapter 3 written for a Map with int keys and double values.
The first target matches an inserting element to the map at a given key and then retrieving
it. The target can be invalidated by calling either put or get with the same key. The
second target matches checking if a key is present in the map and then modifying the value
at the given key. The target can be invalidated by replacing the value or by removing it.

4.4.1 Contract Definition Syntax

The analyzer takes a contract definition as a parameter. At the top level, the definition
contains pairs of targets and spoilers. Each target and spoiler is represented by a regular
expression over methods. The on-the-fly dynamic analysis described in Chapter 3 expects
several spoilers to be assigned to a single target. In practice, the spoilers can be merged
into a single regular expression so that each target has exactly one spoiler. Each method is
parametrized, including arguments, return value, and the object it is called upon (this).

To specify methods unambiguously, method names must be fully qualified (for example
java/lang/0Object.toString). Java allows method overloading, so to distinguish methods
with the same name but different number and type of their parameters, the contract defini-
tion contains the method descriptor (for example (Ljava/lang/Object;)V. Each method
in a contract definition consists of the enclosing class, the method name, the method de-
scriptor, and a list of meta-variables. For example:

test/sanity/ArraylList.set(ILjava/lang/0Object;)Ljava/lang/0Object; X=Y(Z,)

This represents the set method called on an ArrayList from the test.sanity package.
The first meta-variable X is the return value, Y is the ArrayList instance, and Z is the first
parameter (integer). The second parameter (object) is marked with a free meta-variable
(_) meaning that the analyzer will ignore its value. The return value or the target of the
method may be omitted, the parser will treat them as free meta-variables.

Targets and spoilers are defined using a limited regular expression over methods. Con-
catenation is achieved simply by writing two methods, one after another, alternation is de-
noted by a vertical bar (|). The Kleene star operator (*) is not allowed (see Section 4.2.3).
An example of a target definition:

Test.aQV XO (Test.bOV X | Test.cOV X0)

A contract clause is defined as two regular expressions over methods, separated by an
arrow and a semicolon at the end. A contract is then a list of clauses. An example of a full
contract is shown in Listing 4.1. The full grammar for contracts is shown in Appendix C.

4.4.2 Contract Representation

All parts of a contract definition are parsed into a corresponding class instance. Each
method in a target or spoiler is represented by a Signature instance. It consists of a method
name, a fully qualified name of the enclosing class, and a method descriptor. The method

27

descriptor contains information about parameter types. The main purpose of this class is
to be compared with method invocation events to determine if the invoked method matches
the method from a contract. Meta-variables are parsed into a MetaVars instance.

Each target and spoiler is represented by a State instance that will later be used to
construct a finite automaton for detecting running target and spoiler instances. A target
with a single method will be represented by two states: one starting state with a transition
to an accepting state. The transition will contain the method signature and meta-variables.
During parsing of more complex targets and spoilers, these one-method state structures are
combined. See Figure 4.1 for an example. During the analysis, State instances will be used
for checking whether a given method invocation can advance a given target or spoiler.

_’Q al) N b() N €0 @

c() d()

Figure 4.1: A structure of states representing the following regular expression: a(blcd)e.

A contract is then made up of target—spoiler pairs. When a contract is created, a set
of all method signatures used in the contract is extracted. During the analysis, the set of
signatures is used to filter method invocations so that only relevant methods are processed
by the analyzer.

4.5 Contract Analyzer

The main class, ContractAnalyzer receives events from the program under analysis, detects
target and spoiler instances in all threads, and looks for contract violations when a target
or spoiler instance finishes. The ContractAnalyzer class provides the following interface:

e A constructor that takes a Contract instance.

e exit method that is called on method exit. It takes a thread identifier, a method
signature, and method arguments (also containing the return value). When a contract
violation is detected, the exit method will throw an exception.

e acquire and release methods that are called when a synchronized block or a syn-
chronized method is entered and exited. The methods both take a thread identifier
and a lock identifier.

o create method that is called when a new thread is created. It takes a thread identifier.
e fork and join methods that take two thread identifiers.

The ContractAnalyzer class manages data stored with threads and locks. When cre-
ated by calling create, each thread will get a trace window and a vector clock. Methods
acquire, release, fork, and join only modify vector clocks of threads and locks.

The exit method calls the trace window associated with a given thread. The trace
window receives method signature and arguments so that it can try to advance all of its

28

target and spoiler instances. It also receives the current vector clock and references to trace
windows of other threads so that it can look for contract violations.

The ContractAnalyzer class is created and called by the ContractTool class which di-
rectly uses the RoadRunner API. The ContractTool class is described in Section 4.6. The
interface of the analyzer is made up of synchronized methods to ensure proper synchroniza-
tion. This approach is not the same as the event serialization mentioned in Chapter 2. All
events that are not calling analyzer’s methods will still be concurrent.

4.5.1 Tracking of Target and Spoiler Instances

For each thread, a Window object is kept during the analysis. It contains target and spoiler
instances present in a trace window. When a method invocation is detected in a thread,
all target and spoiler instances are advanced (if possible) and new instances are started.

An instance is bound to a target or spoiler from the contract definition. The instance
is created by encountering the first method signature in a target or spoiler. The instance
is advanced to the next state and waits for the next method as defined in the given target
or spoiler. During the first transition, values of all parameters are assigned. There can
be multiple instances of the same target or spoiler that vary only by the value of their
parameters. Each instance remembers the vector clock of its beginning.

When an instance is advanced using the last method in the target or spoiler definition,
it reaches an accepting state. At this point, the analyzer checks for contract violations (see
Section 4.5.2). Then the instance is reset. That means that the instance again waits for the
first method signature in a given target or spoiler. The value of parameters will however
stay unchanged. The vector clocks of the beginning and the end of the instance are saved.
So when an instance is running for the second time, it has access to the vector clocks of
a previously encountered instance. See Figure 4.2 for illustration of an instance life cycle.

When a method call enters the trace window, all running instances (those with parame-
ters already assigned) are advanced. The method call may however also start a new instance
that is not yet part of the trace window. The analyzer tries to create new instances from
targets and spoilers from the contract. These new instances are added to the trace window
only if there is no matching instance already present in the trace window. Two instances
are matching, if they are bound to the same target or spoiler, their parameters share the
same values, and they both just started (they accepted the same first method). In practice,
the only difference between these matching instances is that one contains information about
the previously encountered instance while the other does not.

Ezample. Consider target a(X) b(X) and a program trace a(1) b(1) a(2) b(2) a(1).
After a(1), the analyzer adds a new instance i7 to the window with X = 1. After b(1),
i1 is advanced, accepted, and reset. No new instance is started because there is no target
starting with method b. After a(2), ¢; cannot be advanced, because the parameters do
not match. New instance io with X = 2 is added to the trace window. After b(2), ig is
advanced, accepted, and reset. When a(1) is encountered again, ¢; is advanced but no new
instance is added because i; would match the newly created instance.

4.5.2 Detection of Contract Violations

Each time a target or a spoiler is fully recognized by the analyzer, it must be checked
whether there are any contract violations. When a method enters a trace window, there
may be several instances from the same thread that will be fully accepted by this method

29

Step 1: a(42)
Target: a(X) b(_)
Parameters: X=42
Beginning: (1)

Last instance: none _>© 2(X))\/ pC) >©

Step 2: b(1)
Target: a(X) b(_)
Parameters: X=42
Beginning: (1)

Last instance: none @ a(x) >© LS Q

Target: a(X) b(_)
Parameters: X=42
Beginning: none

Last instance: (1)—(2) a®) >O Bl) >©

Step 3: a(42)
Target: a(X) b(_)
Parameters: X=42
Beginning: (3)

Last instance: (1)—(2) 4,0 a(®) \\/ b () >©

Figure 4.2: An example of an instance life cycle. In the first step, the instance is created
when a method call a(42) is encountered. The vector clock of the beginning is set and the
parameters are assigned a value. In step 2, the instance is fully accepted. At this point,
the analyzer looks for contract violations. Then the instance is reset, the vector clock of
the beginning is reset, and the vector clocks of the last instance are set. In step 3, method
a is called with an argument that matches the value of X in the instance. The instance is
started again.

current state

current state

current state

current state

call. For each accepted target and spoiler instance, the analyzer will look for conflicting
instances in trace windows from other threads.

When an instance is fully accepted, the analyzer will retrieve all conflicting instances
from other threads. If the instance is a target instance, the analyzer will retrieve instances of
a spoiler that can invalidate the target, as specified in the contract. Similarly, if the instance
is a spoiler instance, the analyzer will look for instances of a target that can be invalidated
by the spoiler. For each conflicting instance, it is checked whether the contract parameter
values match. Then finally, the analyzer checks the vector clocks of each matching instance
and decides if the two instances interleave each other.

The two instances may not actually interleave each other. The interleaving is decided
based on the vector clocks of the beginnings and ends of the two instances. Vector clocks
are only updated when threads synchronize themselves. So the analyzer will mark the two
instances as interleaving when there was not a synchronization between the threads that

30

would prevent them to interleave each other in another run of the program under analysis.
Figure 4.3 shows an example of a contract violation detected in a program.

t
1,0y
a(l) ¢
b(1) ®
) u
<2 0> fork <0’1>
SRV (42)
a(2) ®
b(2) ¢

V¥ £ 2

Figure 4.3: An example of a contract violation in a program. Consider a target a(X) b(X)
and a spoiler c(_). In thread ¢, a target instance 1 with X = 1 is detected, it begins and
ends at (1,0). There is no spoiler instance accepted at this moment, so there is no contract
violation. Then a thread u is created and a spoiler instance s; is accepted, it begins and
ends at (1,1). The spoiler instance does not interleave the 1 because (1,0) = (1,1). Then
another target instance ry is detected in ¢ with X = 2, it begins and ends at (2,0). The
instance interleaves with spoiler instance s; because (1, 1) & (2, 0).

4.6 A Contract Analyzer Tool

The ContractAnalyzer class described in Section 4.5 is not meant to be called directly by
RoadRunner because it contains only methods specific to the validation of contracts. The
ContractTool class was created as a layer between RoadRunner and ContractAnalyzer.
Its purpose is to load a contract from a file, create a ContractAnalyzer instance, and
forward relevant events from RoadRunner to ContractAnalyzer.

The ContractTool class is a subclass of the Tool class (see Section 2.6). The following
methods are overridden:

e init, which is called before the analysis, after command-line options are processed;
e exit, which is called when a method exits;
e create, which is called when a new thread is created;

e acquire and release(), which is called when a synchronized method or a synchro-
nized block is entered or exited;

o preStart, which is called before a new thread is started (after a fork operation);

e postJoin, which is called after a thread is joined with another thread.

31

Methods for detecting memory accesses will not be used by the tool, and also no data will
be stored in shadow memory locations, except for vector clocks stored with locks. In its
init method, the tool loads a contract definition from a file and calls the contract parser.
After the contract is parsed, it constructs ContractAnalyzer.

The exit method extracts relevant data from MethodEvent that is supplied by Road-
Runner. Then it checks if the method exists in the contract, and if it does, the method call
is forwarded to ContractAnalyzer. The method filtering happens in ContractTool and
not in ContractAnalyzer because it is not essential to the analysis and also, there are sev-
eral filtering solutions available. In this Master’s thesis, the filtering is done by comparing
method signatures during the analysis. A better approach, which might be implemented in
the future, is to instrument only methods contained in a contract. In that case, no filtering
during analysis is needed as it is guaranteed that each method event produced will belong to
a method in the contract. The rest of the methods, create, acquire, release, preStart,
and postJoin, just pick relevant information from events provided by RoadRunner and
forward it to ContractAnalyzer.

32

Chapter 5

Implementation and Testing

The analyzer described in Chapter 4 was successfully implemented. This chapter provides
implementation details and clarifies decisions made during the implementation. Section 5.1
describes approaches and principles that shaped the implementation. Before the imple-
mentation took place, several RoadRunner dependencies were upgraded, see Section 5.2. In
Section 5.3, the contract file parser is described. Changes to the instrumentation performed
by RoadRunner are described in detail in Section 5.4. Finally, Section 5.5 describes testing
approaches.

5.1 General Approaches

The implementation of the analyzer was guided by several principles or approaches that
are described in this section.

5.1.1 Functional Programming

The analyzer implementation uses several concepts from functional programming which are
briefly described in this section.

Immutable data structures All classes are immutable, except for ContractAnalyzer
and ContractTool. Once created, the internal state of objects does not change. All oper-
ations produce a new object instead of modifying the current one. See the next section for
more details.

Side effects and pure functions Most methods in the analyzer are pure functions,
which means that each call can be always replaced with a resulting value of the call. For
example, consider pure function int sum(int a, int b). Then the method call sum(2,3)
can be always replaced with 5 without changing program behavior. Pure functions perform
no side effects (such as writing to a file).

Higher-order function The analyzer contains and uses methods that take functions as
parameters.

33

5.1.2 Immutable Data Structures

The data structures used by the analyzer are immutable. An immutable object is an object
whose internal state remains constant after it has been created. This property brings
several benefits. The object can be shared among multiple threads without the need for
synchronization. Immutable objects are always in a consistent state. The public methods
of a given class will always behave the same way on an object. Immutable objects are also
easy to test and reason about.

In Java, immutability is achieved by following rules. Immutable classes should be final
to avoid overriding of methods. All fields of a class should be private and final. All fields
should reference only immutable objects or, if not possible, the fields should not be modified
in the class. All methods that would normally modify the object should return updated
object instead. See Listing 5.1 for an example. To use immutable objects effectively, the
Vavr collection library' was used. It provides immutable replacements for standard Java
collections.

public final class FiniteAutomaton {
private final State start;
private final State current;

public FiniteAutomaton(State start) { this(start, start); }

private FiniteAutomaton(State start, State current) {
this.start = start;
this.current = current;

3

public FiniteAutomaton advance(Signature sig, Args args) {
return new FiniteAutomaton(start, current.advance(sig, args));

3

public FiniteAutomaton reset() {
return new FiniteAutomaton(start, start);

3

public boolean isRunning() { return current != start; }
}
Listing 5.1: Simplified implementation of an immutable finite automaton. The automaton
consists of references to the starting state and the current state. The public constructor
allows creating automatons that are in their starting states, ensuring consistency. The
advance method does not update the current state but creates a new finite automaton with
an updated current state.

5.1.3 Dependency Inversion Principle

Several parts of the analyzer were designed with the dependency inversion principle in mind.
Classes holding low-level data, such as method signatures, method arguments, or contract

available at https://www.vavr.io/

34

https://www.vavr.io/

parameters, are not used directly by the analyzer but via interfaces. For example, there is
the JvmSignature class that implements the Signature interface.

The collection that stores target and spoiler instances in a trace window is abstracted
in the InstanceCollection interface. The MultimapInstanceCollection implements the
collection using Vavr’s Multimap data structure. This approach makes it easy to create
alternative implementations of the collection.

5.2 ASM 7.0 and Java 11

The analyzer was built on RoadRunner version 0.5 from 2017. It contains the following
dependencies: the ASM framework in version 5.0.2 with custom modifications, JFlex in
version 1.4.2, and CUP in version 11la. The project was written for Java 8 and was built
using Ant. For an easier implementation of the analyzer, several components were upgraded.

The ASM framework was upgraded to version 7.0 which supports Java 11. RoadRunner
can therefore analyze programs compiled for Java 11. Before the upgrade took place, the
custom modifications of the ASM framework were isolated to a series of patches against
the unmodified ASM version 5.0.2. Then, for each new version up to 7.0, the ASM was
always replaced with a newer version and the custom patches were reapplied and modified
if necessary. As a result, the ASM framework can be easily upgraded in the future by
reapplying the custom patch series. The RoadRunner itself was modified to be built for
Java 11.

5.3 Contract File Parsing

One of the inputs to the analyzer is a contract definition. The syntax of the definition is
described in Chapter 4. Due to its length, it is passed to the analyzer in a text file. The
file name is specified using a command-line option. RoadRunner allows tools to easily add
new command-line options. The options are then automatically parsed and made available
for the tool to use.

The file with contract definition is then scanned using a lexical analyzer and parsed
using a LALR parser. The lexical analyzer is generated using JFlex’? and the parser is
generated by CUP?. The primary reason for choosing these generators was that both of
them were already used in RoadRunner, so no new dependency was added to the project.

The lexical analyzer recognizes various symbols for delimiting the methods in a contract
but it does not split class names and method descriptors, they are passed to the parser as
a single string. For example, java/lang/Object or (Ljava/langString;II)V. The list of
terminals it produces is defined in the parser.

The parser takes the contract definition file contents, creates a lexical analyzer, and
parses the file. The result is a Contract instance or an exception. Each method in a contract
is parsed as a finite-state machine with a single state. The whole target or spoiler definition
is constructed either by concatenating or alternating two states from left to right.

The current implementation of the parser introduces a limitation to the range of allowed
regular expressions. When the alternation operation is used (denoted by |), the expressions
cannot start with the same method. For example, the regular expression (ablac) is not
allowed. The resulting finite automaton would be nondeterministic. The current imple-

2available at https://jflex.de/
Savailable at http://www2.cs.tum.edu/projects/cup/

35

https://jflex.de/
http://www2.cs.tum.edu/projects/cup/

mentation does not perform any conversion, all expressions must be converted by the user.
In the previous example, the expression would need to be converted to a(blc).

5.4 Changes in Instrumentation

RoadRunner was modified to obtain method arguments and return values during the analy-
sis. The implementation is based on changes described in [9], the final version however fixes
several major issues. The initial implementation adds new fields to the MethodEvent class
which holds information about a method invocation. These changes were taken without
modifications from [9].

The main instrumentation logic is contained in the SyncAndMethodThunkInserter class
from the rr.instrument.classes package, in the createMethodThunk method. The
method creates a new method that will generate enter and exit events and call the original
method. In the beginning, the values of method parameters need to be stored, at the end,
the return value must be stored. The initial implementation described in [9] contained sev-
eral issues. Static methods could not be instrumented because of incorrect indexing of local
variables. Methods with parameters of type double or long could not be instrumented,
because the implementation was not taking into account that these values occupy two local
variables. These issues have been fixed and an extensive test suite was created to verify the
final implementation.

Fach method is instrumented as follows. A new array of type Object is allocated with
the size equal to the number of parameters (taken from the method descriptor). Then for
each parameter, its value is loaded onto the operand stack. Reference values are stored
directly in the array. Primitive values are wrapped in an object by calling the valueOf ()
method in the corresponding class depending on the primitive type. For example, int
values are passed to the java.lang.Integer.valueOf () function. After processing all
arguments, the array is stored in a local variable.

The original method is then called in a try—catch block. On normal exit, the return
value is converted to an object, the same way parameters are converted. Then a method
exit event is generated, containing both the array of arguments and the return value. If an
exception is caught, the return value is set to null and an exit event is generated containing
the arguments. An example of a instrumented method is shown in Listing 5.2.

5.5 Testing

Each part of the analyzer was thoroughly tested using several different approaches. The core
analyzer functionality was tested using unit tests written in JUnit 5. The instrumentation
of method arguments and returns values was tested using a custom RoadRunner tool. The
integration of all parts was tested using Bash scripts that prepare contract files, programs
under analysis, and launch RoadRunner. This section describes approaches used for testing
different parts of the analyzer. See Appendix B for instructions for running the tests.

The analyzer was implemented so that there is almost no need to work with Road-
Runner’s internal structures when testing the analyzer. The ContractTool class serves as
a wrapper for ContractAnalyzer. All structures, such as MethodEvent, are transformed
into objects specific to the contract analyzer. In tests, ContractAnalyzer is used directly.

4available at https://junit.org/junit5/

36

https://junit.org/junit5/

public int foo(int, java.lang.String);

50:
53:
55:
56:
B7:

60:
61:

: invokestatic #20 // Method rr/state/ShadowThread

// .getCurrentShadowThread: ()Lrr/state/ShadowThread;

astore 5
aload_O

sipush 508
aload 5

invokestatic #27 // Method rr/tool/RREventGenerator
// .enter:(Ljava/lang/Object;ILrr/state/ShadowThread;)V

: iconst_2

: anewarray #3 // class java/lang/Object

: astore_3

: aload_3

: iconst_0O

: iload_1

: invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
. aastore

: aload_3

: icomnst_1

: aload_2

. aastore

: aload_O

: iload_1

: aload_2

: invokespecial #35 // Method __$rr_foo__$rr__Original_:(ILjava/lang/String;)I
: dup

: invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
: astore 4

: aload 5

: aload_3

: aload 4

: invokestatic #39 // Method rr/tool/RREventGenerator.exit:

// (Lrr/state/ShadowThread; [Ljava/lang/0Object;Ljava/lang/0Object;)V

goto 61
aload 5
aload_3

aconst_null
invokestatic #39 // Method rr/tool/RREventGenerator.exit:
// (Lrr/state/ShadowThread; [Ljava/lang/0Object;Ljava/lang/0Object;)V
athrow
ireturn

Listing 5.2: A method instrumented to obtain arguments and the return value. On lines
5-11, the enter event is generated. On lines 14-18, an array for arguments is created and
stored in a local variable. On lines 19-25, the first argument is wrapped in an object and
stored in the array on index 0. On lines 26—29, the second argument is stored directly in
the array on index 1. On lines 30-33, the original method is called. On lines 36-40, the
return value is wrapped and stored in a local variable. Lines 42-50 generate the exit event.
Lines 53-60 contain a catch block in case an exception is thrown in the original function.

37

RoadRunner is not executed, the events coming from the program under analysis are cre-
ated by tests, allowing for tests that do not rely on the thread scheduler and are very
fast.

The contract parser is tested using JUnit 5 tests. The contract definition is passed
to the parser and the produced Contract instance is compared with a Contract instance
constructed directly in code. The contract for comparison is constructed by creating ap-
propriate objects such as method signatures, meta-variables, and finite automaton states.

Changes to instrumentation were tested by preparing a custom subclass of RoadRun-
ner’s Tool class that overrides the exit method and prints arguments and the return value
to the standard output. A testing Java program was created that calls methods with vari-
ous numbers and types of parameters. The test consists of analyzing the testing program
with RoadRunner using the custom tool. The tool prints method arguments and return
values to the output and the values must match those in the testing program. The whole
process is automated using a Bash script.

The integration of all parts is again automated using Bash scripts. Testing programs and
files with contract definitions are prepared. The script compiles the testing program and
analyzes it with RoadRunner that is using the contract tool. Then it verifies if a contract
violation has been found.

5.5.1 Overview of Integration Tests

This section provides an overview of integration tests written for the analyzer.

Array list The contract in this test covers operations on an array list with the following
operations: add, get, set, contains, index0f, remove, and size. There are four programs
in this test, each violating one contract clause.

Account This test was taken from the test suite of the Gluon project’. The test simulates
a bank account with two operations: getBalance and setBalance. Even though the
operations are synchronized, there is a high-level data race where a thread reads the balance,
increments it, and writes it back.

Block allocation This test was taken from the test suite of the Gluon project. There is
a shared vector that for each block of a buffer stores whether it is free or occupied. When
allocating a block, a free block must be found and then it must be set as occupied. Between
finding a block and marking it as occupied, another thread may mark the same block as
occupied.

Arithmetic database This test was taken from the test suite of the Gluon project.
The test simulates a database with two tables. The first table contains a set of regular
expressions and the second holds the results of the expressions. Each table is accessed using
synchronized methods. There are several problems related to the absence of transactions
when accessing multiple tables or when performing several operations on the same table.

Connection test This test was taken from the test suite of the Gluon project. The
test simulates a chat application that uses a socket to send messages over the network.

Savailable at https://github.com/trxsys/gluon

38

https://github.com/trxsys/gluon

A message counter is associated with the socket that is incremented with each message
sent. When the socket is closed, there is an inconsistency when a thread may see a closed
socket but the counter is not yet zeroed. When a message is sent, it is checked that the
socket is still open before sending the message. However, the socket may be closed in the
meantime by another thread.

5.6 Performance

The performance of the analyzer was checked on the Account test case (see Section 5.5)

with several modifications. The high-level data race present in the test case was removed so
that the analyzer will not stop the program right after a contract violation is detected. The
number of operations performed on the account was added as a parameter. The Account
test case starts two threads and all tracked operations are performed on a single object, so
the number of tracked target and spoiler instances is constant.

The test case was run using the RoadRunner benchmark mode. The measured results do
not include the initialization of the analyzer. The Account test case was run three times:
without instrumentation, with instrumentation, and with instrumentation and contract
validation. The results are shown in Figure 5.1. As expected [6], the instrumented program
is approximately ten times slower than the original program. The analyzer is 10-100 times
slower than the instrumented program. To fully assess the performance of the analyzer,
more benchmarks would be needed.

10° ¢ E

E 10°F
) g 1
2 10?¢ E
10!]

0L -

10 B v vl il T AT A

108 102 10® 10* 105 106
number of operations

——no instrumentation —e— with instrumentation —&— with instrumentation and contracts

Figure 5.1: Results of the Account benchmark. The first series shows the runtime with-
out any instrumentation. The second series is run with RoadRunner instrumentation but
without tracking of targets and spoilers. The last one shows the runtime of instrumented
program with contract validation.

Chapter 6

Conclusion

The goal of this thesis was to design a dynamic analyzer for validating parametric contracts
with spoilers. The analyzer was fully implemented as an extension to the RoadRunner
framework.

The first part of this thesis provided the necessary background in multi-threaded pro-
gramming in Java, dynamic analysis, and instrumentation in the RoadRunner framework.
Contracts for parallelism were then introduced together with an on-the-fly method for con-
tract analysis. A dynamic analyzer for tracking parametric contracts was proposed. Several
restrictions were put on the analyzer in the design phase to mitigate problems in previous
prototype implementations. The analyzer consists of the following parts: a parser for con-
tract definitions, modified instrumentation of methods, and the core analyzer that tracks
target and spoiler instances and detects contract violations. All parts of the analyzer were
implemented and their functionality was verified by an extensive test suite. The analyzer
was able to detect all contract violations present in the testing programs.

The analyzer implementation provides a solid basis for contract validation of programs
written in Java. There is an ongoing work on the formalization of parametric contracts and
extending experiments on standard libraries. The analyzer can be used for those experi-
ments. The changes in method instrumentation are not tied to the contract validation and
can be used by various other analyzers that may benefit from obtaining method arguments
and return values.

In the future, various parts of the analyzer may be tuned for better performance. The
functional implementation allows easy parallelization of checking contract violations. The
instrumentation can be further reduced to obtain only program actions relevant to the
contract validation. Instance invalidation can be introduced by clarifying the conditions in
the context of parametric contracts. The analyzer can be also combined with noise injection
techniques for detecting more contract violations.

40

Bibliography

1]

ARTHO, C., HAVELUND, K. and BIERE, A. High-level data races. Software Testing,
Verification and Reliability. 2003, vol. 13, no. 4, p. 207-227. DOI: 10.1002/stvr.281.

BRUNETON, E. ASM 4.0 A Java bytecode engineering library [online]. 2011 [cit.
2021-01-09]. Available at: https://asm.ow2.io/asm4-guide.pdf.

Dias, J. R., FERREIRA, C., FIEDOR, J., LOURENCO, J., SMRCKA, A. et al. Verifying
Concurrent Programs Using Contracts. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). Institute of Electrical and
Electronics Engineers, 2017, p. 196-206. DOI: 10.1109/ICST.2017.25. ISBN
978-1-5090-6032-0.

FIEDOR, J., LETKO, Z., LOURENCO, J. and VOJNAR, T. Dynamic Validation of
Contracts in Concurrent Code. In: Proceedings of the 15th International Conference
on Computer Aided Systems Theory. The Universidad de Las Palmas de Gran
Canaria, 2015, p. 177-178. ISBN 978-84-606-5438-4.

FranaAcaN, C. and FREUND, S. N. FastTrack: Efficient and Precise Dynamic Race
Detection. Commun. ACM. New York, NY, USA: Association for Computing
Machinery. november 2010, vol. 53, no. 11, p. 93-101. DOI:
10.1145/1839676.1839699. ISSN 0001-0782.

FranacaN, C. and FREUND, S. N. The RoadRunner Dynamic Analysis Framework
for Concurrent Programs. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. New York, NY,
USA: Association for Computing Machinery, 2010, p. 1-8. PASTE ’10. DOI:
10.1145/1806672.1806674. ISBN 9781450300827.

GHEZz1, C., JAZAYERI, M. and MANDRIOLI, D. Fundamentals of Sofware
Engineering. 2nd ed. Prentice Hall, 2003. 269-336 p. ISBN 0-13-099183-X.

GOSLING, J., Joy, B., STEELE, G. L., BRACHA, G. and BUCKLEY, A. The Java

Language Specification, Java SE 8 Edition. 1st ed. Addison-Wesley Professional,
2014. 645-659 p. ISBN 013390069X.

JANOUSEK, M. Dynamic Analyzers for SearchBestie Platform. Brno, CZ, 2017.
Master’s thesis. Brno University of Technology, Faculty of Information Technology.

LETKO, Z. Analysis and Testing of Concurrent Programs. Brno, CZ, 2012. Ph.D.
thesis. Brno University of Technology, Faculty of Information Technology.

41

https://asm.ow2.io/asm4-guide.pdf

[11] LinpHOLM, T., YELLIN, F., BRACHA, G. and BUCKLEY, A. The Java Virtual
Machine Specification, Java SE 8 Edition. 1st ed. Addison-Wesley Professional, 2014.
69-332 p. ISBN 013390590X.

[12] ScHILDT, H. Java: The Complete Reference, Eleventh Edition. 11th ed. New York:
McGraw-Hill Education, 2018. ISBN 1260440230.

[13] Sousa, D. G., Dias, R. J., FERREIRA, C. and LOURENQO, J. Preventing Atomicity
Violations with Contracts. CoRR. 2015, abs/1505.02951.

42

Appendix A

Storage Medium

The contents of the enclosed CD:
RoadRunner/ The source code of the analyzer.
RoadRunner-compiled/ Compiled analyzer.

patches/ The source code of the analyzer, as patches against commit b141616 in the
upstream RoadRunner repository'.

contracts-for-concurrency.pdf The text of the thesis.
contracts-for-concurrency-print.pdf The text of the thesis, for color printing.

contracts-for-concurrency/ The sources code of the text of the thesis.

available at https://github.com/stephenfreund/RoadRunner

43

https://github.com/stephenfreund/RoadRunner

Appendix B

Manual

The analyzer requires a Java Virtual Machine version 11 and Ant'. For convenience, the
analyzer should be compiled and run on Linux as there are several Bash scripts used in the
process. All commands, such as ant or javac, that are run during the compilation should
belong to the same JVM installation.

On Fedora 34, install Java 11 JDK and Ant by running:

$ sudo dnf install java-1l-openjdk ant

On Ubuntu 21.04, run:
$ sudo apt install openjdk-11-jdk

Ant must be installed locally from the project’s website. To compile the project, run ant
in the RoadRunner directory. The project should compile and print BUILD SUCCESSFUL at
the end. The unit tests can be run at this step with ant test. The tests should all pass.

Before running RoadRunner, edit the msetup file. On line 36, edit the path to the JVM
installation. On Fedora 34, /usr/1ib/jvm/java-11 should be used. On Ubuntu 21.04,
/usr/1ib/jvm/java-11-openjdk-amd64 should be used. Then run source msetup. The
environment variables should be properly exported.

To verify the compilation, run rrrun -help. To instrument and run a testing program,
run the following commands:

$ javac test/Test.java
$ rrrun test.Test

To launch the contract analyzer on a simple program, run the following commands:

$ javac test/ContractTest.java
$ rrrun -tool=CT -contractFile=test/ContractTest.contract test.ContractTest

The analyzer should find a contract violation. The integration tests are run by the following
command:

$ testScripts/all.sh

!available at http://ant.apache.org/

44

http://ant.apache.org/

Appendix C

Contract Definition Grammar

The configuration files with contract definitions must follow the grammar presented below.
The grammar is described in the BNF syntax.

<contract> ::= <clause> | <contract> <clause>
<clause> ::= <method_expr> "<-" <method_expr> ";"
<method_expr> <method>

"(" <method_expr> ")"

<method_expr> " (" <method_expr> ")"

I
| <method_expr> "|" <method_expr>
I
| <method_expr> <method>

<method> ::= <class> <name> <descriptor> <metavars>
<metavars> ::= <metavar> "=" <metavar> "(" <metavars_list> ")"
| <metavar> "=" <metavar> "()"

| <metavar> "=(" <metavars_list> ")"
| <metavar> " (" <metavars_list> ")"

| "(" <metavars_list> ")"

| <metavar> "()"

|

||()||
<metavars_list> ::= <metavar> | <metavars_list> "," <metavar>
<metavar> ::= <letter> | no

The terminals have the following definitions:

e <class> is a class name in the internal representation of the JVM specification, for
example: java/lang/Object;

e <name> is the method name, as defined by the JVM specification, for example: equals;

e <descriptor> is the method descriptor, as defined by JVM specification, for example:
(Ljava/lang/0bject;)Z;

e <letter> is a single letter, such as X.

45

Appendix D

Class Diagram of the Contract
Analyzer

The following page contains a UML diagram of the contract analyzer described in Chapter 3.
In the diagram, the following classes are omitted for clarity:

e the ContractTool class which connects ContractAnalyzer to RoadRunner,
o the contract lexer and parser,

e basic classes and interfaces used for holding simple data, such as Args, Signature,
MetaVars, ImmutableVectorClock, and ContractParams.

The ContractAnalyzer class is a generic class with two type parameters: T is a type
representing a thread, L represents a lock. During the analysis, RoadRunner types are
used: T is ShadowThread, L is ShadowLock. Collections and containers used in the diagram
are parts of the Vavr library.

46

ContractAnalyzer

— Contract

Contract

— targets: Map<State, State>

— Decoration<T, Window>

— Decoration<T, ImmutableVectorClock>
— Decoration<L, ImmutableVectorClock >
— getTid: Function<T, Integer>

— threads: List<T>

+ exit(T, Signature, Args)
+ create(T)
+ acquire(T, L)

— signatures: Set<Signature>

+ Contract(Map<State, State>)

+ contains(Signature): boolean

+ getTargets(): Map<State, State>
+ merge(Contract): Try<Contract>

Window

+ release(T, L)
+ fork(T, T)
+ join(T, T)

— tid: int
— targets: InstanceCollection
— spoilers: InstanceCollection

P, 1 + Window(tid:int, Contract)
interface Qs .
InstanceCollection tarfCtS + Cxﬁx(liﬁls::;ll;?c C‘igfgj’licl?)fwmdo‘”%
- > Either<ViolationException, Window>
+ getByState(State): Traversable<Instance> ppoilers
+ advance(Function<Instance, Option<
Either<ViolationException, Instance>>>): Instance
Either<ViolationException, InstanceCollection> >
Iy — fa: FiniteAutomaton
| — conflicting: State
L — lastBegin: Option<ImmutableVectorClock>
MultimapInstanceCollection —lastEnd: Option<ImmutableVectorClock>
— instances: Multimap<State, Instance> — egies OpatonelmmanzlaleieeioClinsie
bl + Instancc(EinitcAutomaton, State)
states: Map<State, State>) + advance(Signature, A.rgs, ImmutableVectorClock,
onAccepted: Function2<Instance, State,
Option<ViolationException>>):
Option<Either<ViolationException, Instance>>
+ isViolatedBySpoiler(spoiler: Instance, tid: int,
targetTid: int, ve: ImmutableVectorClock)
+ violatesTarget(target: Instance, tid: int,
targetTid: int, ve: ImmutableVectorClock)
+ matches(Instance): boolean
FiniteAutomaton 1 + isRunning(): boolean
+ hasParams(): boolean
— start: State
— current: State
— params: Option<ContractParams>
1 | conflicting
+ FiniteAutomaton(State) start
+ advance(Signature, Args): 1 State
Option<FiniteAutomaton> — transitions: Map<Signature
+ reset(): FiniteAutomaton current Tuple2<State MctaVars;>
+ paramsMatch(FiniteAutomaton): boolean 1 ’

+ isAccepted(): boolean
+ isRunning(): boolean
+ hasParams(): boolean

+ last(): State

+ of(transitions: Map<Signature, Tuple2<State,
MetaVars>>): Try<State>

+ getNextState(Signature, Args): Option<Tuple2<
State, ContractParams>>

+ getSignatures(): Set<Signature>

+ concatenate(State): State

+ alternate(State): Try<State>

47

