
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PARAMETRIC CONTRACTS FOR CONCURRENCY
IN JAVA PROGRAMS
INSTRUMENTACE JAVA PROGRAMŮ, KONTRAKTY PRO PARALELISMUS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. JAN ŽÁRSKÝ
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Vysoké učení technické v Brně
Fakulta informačních technologií

Ústav inteligentních systémů (UITS) Akademický rok 2020/2021

Zadání diplomové práce |||||||||||||||||||||||||
23103

Student: Žárský Jan, Bc.
Program: Informační technologie a umělá inteligence Specializace: Bezpečnost informačních

technologií
Název: Instrumentace Java programů, kontrakty pro paralelismus

Parametric Contracts for Concurrency in Java Programs
Kategorie: Analýza a testování softwaru
Zadání:

1. Nastudujte testování a dynamickou analýzu programů v jazyce Java. Nastudujte
inštrumentační framework RoadRunner pro dynamickou analýzu programů v jazyce Java.
Seznamte se s kontrakty pro paralelismus.

2. Navrhněte nástroj pro jednoduchou instrumentaci testovaných programů. Navrhněte
dynamický analyzátor pro sledování parametrických kontraktů.

3. Implementujte analyzátor v rámci RoadRunner.
4. Vytvořte testovací případy pro ověření hlavní funkcionality.

Literatura:
• DIAS Ricardo J., FERREIRA Carla, FIEDOR Jan, LOURENCO Joao, SMRČKA Aleš,

SOUSA Diogo J. a VOJNAR Tomáš. Verifying Concurrent Programs Using Contracts. In:
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST).
doi: 10.1109/ICST.2017.25

• Repozitář projektu RoadRunner Extended, https://pajda.fit.vutbr.cz/jct/roadrunnerX
Při obhajobě semestrální části projektu je požadováno:

• Studium a návrh analyzátoru
Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
Vedoucí práce: Smrčka Aleš, Ing., Ph.D.
Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
Datum zadání: 1. listopadu 2020
Datum odevzdání: 19. května 2021
Datum schválení: 11. listopadu 2020

Zadání diplomové práce/23103/2020/xzarsk03 Strana 1 z 1

https://pajda.fit.vutbr.cz/jct/roadrunnerX
https://www.fit.vut.cz/study/theses/

Abstract
Contracts for concurrency describe required atomici ty of method sequences i n concurrent
programs. This work proposes a dynamic analyzer to verify programs wri t ten i n Java
against contracts for concurrency. The analyzer was designed to detect violations of para­
metric contracts w i t h spoilers. The proposed analyzer was implemented as an extension to
the RoadRunner framework. Support for accessing the method arguments and return values
was added to RoadRunner as a part of the solution. The analyzer was fully implemented
and verified on a set of testing programs.

Abstrakt
Kont rak ty pro paralelismus slouží k vy jád řen í p o t ř e b n é atomici ty sekvencí metod ve vícevlá-
knových programech. Tato p r á c e se zaměřu je na implementaci d y n a m i c k é h o a n a l y z á t o r u ,
k t e r ý verifikuje programy n a p s a n é v jazyce Java vůči k o n t r a k t ů m . P o d p o r o v á n y jsou para­
met r i cké kontrakty se spojlery. A n a l y z á t o r je i m p l e m e n t o v á n jako rozší ření frameworku
RoadRunner . V r á m c i implementace a n a l y z á t o r u byla do frameworku RoadRunner p ř i d á n a
podpora pro z ískávání a r g u m e n t ů metod a jejich n á v r a t o v ý c h hodnot. A n a l y z á t o r by l p lně
i m p l e m e n t o v á n a jeho funkčnost by la ověřena na s adě tes tovac ích p r o g r a m ů .

Keywords
software verification, dynamic analysis, Java, contracts for concurrency, RoadRunner , in ­
strumentation, Java bytecode, concurrent programming

Klíčová slova
verifikace softwaru, d y n a m i c k á ana lýza , Java, kontrakty pro paralelismus, RoadRunner ,
instrumentace, Java b a j t k ó d , v ícevláknové p r o g r a m o v á n í

Reference
Z Ä R S K Y , Jan . Parametric Contracts for Concurrency in Java Programs. Brno , 2021.
Master 's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Super­
visor Ing. Ales Smrcka, P h . D .

Rozšířený abstrakt
P ř i vývoj i softwaru se b ě ž n ě využívaj í knihovny nebo moduly v y v i n u t é j i nými vývojář i .
P ř i jejich integraci je z a p o t ř e b í d o d r ž e t pravidla s t a n o v e n á autorem knihovny. P rav id l a
zahrnu j í syntaxi a s é m a n t i k u ope rac í p o s k y t o v a n ý c h knihovnou. Ve v ícev láknovém p r o s t ř e d í
je ale z a p o t ř e b í d o d r ž e t d o d a t e č n é p o ž a d a v k y na synchronizaci v láken , k t e r á p rovád í ope­
race p o s k y t o v a n é danou knihovnou.

Kont rak ty pro paralelismus slouží ke specifikaci omezen í pro p rác i s knihovnou ve
v ícev láknových programech. Kon t rak ty specifikují, k t e r é sekvence ope rac í m u s í bý t vy­
konávány atomicky, tedy bez toho, aby j iné v l ákno provádě lo souběžně j inou operaci. Ex i s ­
tu j í dvě rozšíření , k t e r á upřesňuj í , za j a k ý c h p o d m í n e k je n u t n é d o d r ž e t a tomic i tu operac í .
P a r a m e t r i c k é kontrakty reflektují d a t o v ý tok mezi operacemi. Umožňu j í tak n a p ř í k l a d
vy jádř i t , že dvě operace m u s í bý t p rováděny atomicky pouze tehdy, pokud modifikují stej­
n á data. Kon t r ak ty se spojlery dovolují n ě k t e r ý m o p e r a c í m p r o b í h a t souběžně , n a p ř í k l a d
pokud operace p rovád í pouze č ten í sdí lených dat. Kon t rak ty pro paralelismus lze sledovat
za b ě h u programu a existuje metoda pro kontrolu jejich dodržován í .

Cí lem t é t o p r á c e je vy tvo ř i t d y n a m i c k ý a n a l y z á t o r , k t e r ý sleduje dod ržován í paramet­
r ických k o n t r a k t ů se spojlery. A n a l y z á t o r pracuje s v í cev láknovými programy v jazyce
Java. Využívá frameworku RoadRunner , k t e r ý p rovád í instrumentaci p r o g r a m ů pro zkou­
m á n í chování p r o g r a m ů za b ě h u . RoadRunner v k l á d á instrukce do b a j t k ó d u programu,
k t e r é pak za b ě h u zasílají a n a l y z á t o r u udá los t i o volaných m e t o d á c h , p ř í s t u p e c h do p a m ě t i ,
synchronizaci v láken a p o d o b n ě .

Vs tupem a n a l y z á t o r u je konf igurační soubor s definicí kontraktu, k t e r ý určuje sekvence,
k t e r é budou de t ekované a n a l y z á t o r e m . Sledovaný program je n á s l e d n ě i n s t r u m e n t o v á n
frameworkem RoadRunner . Instrumentace volání metod byla v r á m c i p r á c e rozš í řena
o z ískávání a r g u m e n t ů metod a jejich n á v r a t o v ý c h hodnot. I n s t r u m e n t o v a n ý program je
nás l edně s p u š t ě n . A n a l y z á t o r pro s ledování k o n t r a k t ů pro paralelismus konzumuje udá los t i
spo jené s vo l án ím metod a synchron izac í v láken . N a zák l adě t ěch to udá los t í jsou de tekovány
sekvence metod a p ř í p a d n á p o r u š e n í kontraktu. A n a l y z á t o r si pro k a ž d é v l á k n o programu
udržu je naposledy de t ekované sekvence metod. P ro k a ž d é v l á k n o a z á m e k si t a k é udržu je
vek torové hodiny nesouc í informace o v z á j e m n é synchronizaci v láken . Jakmile je de t ekována
celá sekvence, a n a l y z á t o r na zák l adě n e d á v n ý c h sekvencí v j iných v láknech a vek to rových
h o d i n á c h v y h o d n o t í , zda nedoš lo k pro ložení sekvencí tak, aby b y l p o r u š e n kontrakt. D íky
využ i t í vek to rových hodin dokáže a n a l y z á t o r odhali t p ro ložení metod, ke k t e r é m u nedoš lo
p ř í m o v d a n é m b ě h u , ale m ů ž e k n ě m u doj í t v p o d o b n ý c h bězích.

P ř i n á v r h u a n a l y z á t o r u byly zoh ledněny výs ledky existuj ících p r o t o t y p o v ý c h implemen­
t ac í a schopnosti a n a l y z á t o r u byly z á m ě r n ě omezeny. A n a l y z á t o r tak klade d o d a t e č n é po­
ž a d a v k y jak na kontrakty, tak na programy, k t e r é dokáže sledovat. Kon t rak ty mus í splňo­
vat následuj íc í p o d m í n k u : hodnoty všech p a r a m e t r ů kontraktu jsou u r č e n y vo l án ím p r v n í
metody kontraktu. Tato p o d m í n k a z a b r a ň u j e zby tečné dupl ikaci s ledovaných sekvencí .
Ana lyzované programy n e s m í obsahovat z a n o ř e n á volání metod s ledovaných v r á m c i kon­
t raktu .

P ř i implementaci byly využ i t y pr incipy funkcionáln ího p r o g r a m o v á n í , ze jména n e m ě n n é
(immutable) objekty p o s t a v e n é na k n ih o v n ě Vavr nebo funkce vyšš ího ř á d u . J e d n o t l i v é čás t i
a n a l y z á t o r u byly o t e s továny p o m o c í j e d n o t k o v ý c h t e s t ů , a n a l y z á t o r jako celek p o m o c í Bash
sk r ip tů .

Výs ledkem p r á c e je p lně funkční a n a l y z á t o r p a r a m e t r i c k ý c h k o n t r a k t ů se spojlery. Z m ě n y
v instrumentaci mohou bý t využ i t y da l š ími a n a l y z á t o r y vyžaduj íc ími argumenty metod
a n á v r a t o v é hodnoty. J edno t l i vé čás t i a n a l y z á t o r u mohou bý t v budoucnu op t ima l i zovány

s ohledem na rychlost. Funkc ioná ln í implementace a n a l y z á t o r u umožňu je snadnou paraleli-
zaci kontroly k o n t r a k t ů . Dalš ího z lepšení výkonu lze d o s á h n o u t lepší definicí p o d m í n e k , za
k t e rých lze zahazovat de t ekované sekvence metod. A n a l y z á t o r lze rozšíř i t o v k l á d á n í š u m u
pro detekci m é n ě obvyklých chyb.

Parametric Contracts for Concurrency in Java
Programs

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Ing. Ales Smrcka, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this project.

Jan Zarsky
M a y 17, 2021

Acknowledgements
I would like to thank Ing. Ales Smrcka, P h . D . , for valuable advice that helped me w i t h the
implementation and wr i t ing of this thesis.

Contents

1 Introduction 3

2 Dynamic Analysis of Mult i - threaded Programs in Java 4
2.1 Approaches to Software Verification 4
2.2 Safety Errors in Mul t i - threaded Programs 5
2.3 Mul t i - threaded Programming i n Java 6
2.4 Java M e m o r y M o d e l 7
2.5 Instrumentation of Java Bytecode 9

2.5.1 Java Bytecode Overview 10
2.5.2 The A S M framework 11

2.6 Dynamic Analys is using RoadRunner 13
2.6.1 The RoadRunner Programming Interface 13
2.6.2 RoadRunner Synchronization Models 14
2.6.3 Instrumentation Performed by RoadRunner 14

3 Contracts for Concurrency 17
3.1 Basic Contracts 17
3.2 Parametr ic Contracts 18
3.3 Contracts w i th Spoilers 18
3.4 Dynamic Contract Val ida t ion 19

3.4.1 Mul t i - threaded Program Traces 19
3.4.2 Contract V i o l a t i o n 20
3.4.3 On-the-fly Contract Va l ida t ion 20
3.4.4 Vector Clocks 21

3.5 Previous Work 22

4 Design of a Dynamic Analyzer for Parametric Contracts with Spoilers 23
4.1 Overview of the Contract Analyzer 23
4.2 Constraining Analyzer Capabil i t ies 24

4.2.1 Avoid ing Clon ing of Target and Spoiler Instances 24
4.2.2 Invalidating Instances 24
4.2.3 Kleene Star in Contract Defini t ion 25
4.2.4 Nested M e t h o d Cal ls 25

4.3 Changes to Instrumentation Performed by RoadRunner 26
4.3.1 Parameter Match ing 26

4.4 Contracts Definit ion and Parsing 26
4.4.1 Contract Defini t ion Syntax 27
4.4.2 Contract Representation 27

1

4.5 Contract Analyzer 28
4.5.1 Tracking of Target and Spoiler Instances 29
4.5.2 Detection of Contract Viola t ions 29

4.6 A Contract Analyzer Tool 31

5 Implementation and Testing 33
5.1 General Approaches 33

5.1.1 Funct ional Programming 33
5.1.2 Immutable D a t a Structures 34
5.1.3 Dependency Inversion Pr inc ip le 34

5.2 A S M 7.0 and Java 11 35
5.3 Contract F i le Parsing 35
5.4 Changes in Instrumentation 36
5.5 Testing 36

5.5.1 Overview of Integration Tests 38

5.6 Performance 39

6 Conclusion 40

Bibl iography 41

A Storage M e d i u m 43

B M a n u a l 44

C Contract Definition G r a m m a r 45

D Class D iagram of the Contract Analyzer 46

2

Chapter 1

Introduction

W h e n developing software, one commonly relies on software libraries wri t ten by other de­
velopers. To avoid introducing defects into the software, one has to follow rules stated
by the l ibrary developer. This includes the syntax and semantics of operations provided
by the library. In a concurrent environment, a new set of problems related to the proper
synchronization of threads is introduced.

Contracts for concurrency enable l ibrary developers to define restrictions on the usage
of the l ibrary i n a concurrent environment. In its basic form, it specifies which method
sequences must be executed atomically. There are two extensions for contracts for con­
currency. Parametric contracts allow to better identify methods that need to be executed
atomically. Contracts w i t h spoilers allow finer control over which thread interleavings v i ­
olate the contract. To verify that a program satisfies the restrictions given by contracts
for concurrency, one may use either static or dynamic analysis, bo th providing different
advantages.

The main goal of this thesis is to design a dynamic analyzer that detects violations of
parametric contracts w i th spoilers i n programs wri t ten in the Java programming language.
The analyzer is buil t using the RoadRunner framework. RoadRunner instruments pro­
grams under analysis and reports actions taken by the program v i a a simple interface. The
proposed analyzer extends the instrumentation done by RoadRunner to extract addi t ional
information about the program under analysis. A p a r t from the analyzer itself, a parser for
contract definitions is created.

The thesis is structured as follows. Chapter 2 describes the specifics of multi-threaded
programming in Java, the Java memory model, and an overview of software errors related
to concurrency. Approaches to the dynamic analysis of Java programs and instrumentation
techniques are described. Two important frameworks are presented, the A S M framework for
byte code instrumentation, and the RoadRunner framework for wr i t ing dynamic analyzers.
Chapter 3 introduces contracts for concurrency, their modified versions, and a method for
dynamic detection of contract violations. In Chapter 4, a dynamic analyzer for contracts
is designed. Chapter 5 provides implementat ion details and testing approaches.

3

Chapter 2

Dynamic Analysis of
Multi-threaded Programs in Java

This chapter focuses on a dynamic analysis that detects errors related to improper synchro­
nizat ion between threads i n multi-threaded Java programs. In the first section, dynamic
analysis is compared wi th other approaches to software verification. Then the most com­
mon types of errors found in multi-threaded programs are presented. The following section
explains the basics of multi-threaded programming i n Java. Then the most important
concepts from the Java memory model are described.

The second part of this chapter deals w i t h the techniques used for dynamic analysis of
Java programs. The A S M framework for Java bytecode manipula t ion is introduced along
wi th brief overview of the Java v i r tua l machine. F ina l ly , the RoadRunner framework is
described i n detail , as it is the basis for implementat ion of the contract analyzer.

2.1 Approaches to Software Verification

The goal of software verification is to make sure that the software meets a l l requirements [7].
There are several approaches to software verification, each of them having its own advan­
tages and disadvantages. Th is section provides a summary of testing, dynamic and static
analysis, abstract interpretation, theorem proving, and model checking.

Testing Testing consists of running the software under different conditions and checking
the results of the computat ion (or observing other behavior of the software). To gain enough
confidence that the software operates correctly i n a l l conditions, a suitable set of test cases
must be found, which is difficult, and sometimes impossible. Testing is best suited for
confirming the presence of defects i n software, not for proving their absence [7].

A n important property of test cases is their repeatability, meaning that a certain test
case w i l l always yie ld the same result. W h e n testing multi-threaded programs, this property
does not hold because of the nondeterminism introduced by the thread scheduler. Threads
are interleaved differently on each execution which means that errors may or may not
appear. Th is makes discovering defects in multi-threaded programs difficult.

Dynamic Analysis Dynamic analysis works w i t h information gathered during an execu­
t ion of a program. The information may be analyzed during program execution {on-the-fly
analysis) or at the end {post-mortem analysis). Even though the analysis works w i th in -

4

formation from a single execution, it can in some cases find errors that were not observed
during the execution but may demonstrate themselves i n similar executions [10]. The dy­
namic analysis also suffers from nondeterministic scheduling. The program under analysis
may also behave differently due to being observed by the analyzer.

The analyzer proposed in this thesis performs on-the-fly dynamic analysis of contracts
for concurrency and detects contract violations that occurred not only i n the given run but
also those that may have occurred i n s imilar runs.

Static Analysis Static analysis is performed at compile t ime and it does not require the
program to be running. The analysis is theoretically able to cover a l l possible executions
of a program. In practice, it is l imi ted by the fact that the number of thread interleavings
in multi-threaded programs grows exponentially [10].

Abstract Interpretation Abstract interpretation takes the source code and symbolical ly
executes it line by line, approximating the semantics of the program without performing
al l the calculations. It suffers from similar problems as static analysis.

M o d e l Checking Model checking is a technique for checking whether a system satisfies
certain correctness specification [10]. It is based on systematic or heuristic exploration of
the state space. The drawback of this technique is that the state space of the program
model can be huge.

Theorem Proving Theorem proving is a semi-automated approach to proving that cer­
ta in facts are satisfied in the system. It is based on assumptions and general theorems
about the system and uses mathematical reasoning [7].

2.2 Safety Errors in Multi-threaded Programs

Contracts for concurrency specify rules on using a set of methods in a concurrent setting.
They a im at discovering errors specific to a concurrent environment. W h e n compared to
single-threaded programs, multi-threaded programs may encounter a whole new class of
errors related to memory sharing between threads. Errors presented i n this section are
classified as safety errors i n [10] as these are usually checked i n various dynamic analyses.

D a t a Race A data race occurs when there are two unsynchronized accesses to a shared
variable and at least one of them is a write access.

Atomic i ty Vio lat ion W h e n a code block is required to be atomic, a l l program executions
must be equivalent to an execution where the block is executed serially. Contract for
concurrency pr imar i ly focus on atomici ty violations [3].

Order Vio lat ion W h e n certain operations are required to be executed in a certain order,
and the order is not met in a given program execution, an order violation occurs. Contracts
for concurrency can also detect order violations [3].

5

Deadlock General definition of a deadlock is presented in [10]. A program state contains
a set S of deadlocked threads if, and only i f each thread in S is blocked and wai t ing for
some event that could unblock i t , but such an event could only be generated by a thread
from S.

Missed Signal A missed signal is present i n a program execution when one or more
threads are wait ing for a signal, and the signal is never delivered.

2.3 Multi-threaded Programming in Java

Java provides bui l t - in support for multi-threaded programming. This section describes
a typ ica l thread life cycle, synchronization of threads, and inter-thread communicat ion, as
these are important i n dynamic analysis using contracts for concurrency.

A thread i n Java is represented by a Thread instance. There are two ways to create
a thread: by extending the Thread class, or by implementing the Runnable interface. B o t h
approaches produce a Thread instance that executes the run method i n a new thread
when started.

To start a thread, the start method must be called (which w i l l in turn ca l l the run
method). The thread w i l l terminate upon returning from the run method. The j o i n
method is used i n other threads to wait for a thread to terminate [12]. L i s t ing 2.1 shows
a thread creation example by extending the Thread class, L i s t i ng 2.2 shows the same
example achieved by implementing the Runnable interface.

class MyThread extends Thread {
QOverride
public void run() {

System.out.printlnC'This i s executed i n a new thread.");
}

public s t a t i c void main(String args[]) {
MyThread t = new MyThread();
t . s t a r t () ;
t . j o i n Q ;

}

}

Lis t ing 2.1: A simple program that creates a thread by extending the Thread class.

W h e n accessing a shared resource from mult iple threads, proper synchronization is
usually required. In Java, every object gets an impl ic i t monitor, which can be owned by only
one thread at a given time. To enter the monitor, one must use either synchronized methods
or synchronized statements. Synchronized statements are code blocks wi th an expl ic i t ly
specified object whose monitor is entered before executing the block. Synchronized methods
enter the monitor of the instance they are called upon [12]. L i s t ing 2.3 shows examples of
synchronized blocks and synchronized methods.

Communica t ion between threads is achieved using the following methods: wait, notify,
and n o t i f y A l l . A l l methods must be called wi th in a synchronized context. Ca l l i ng wait
w i l l suspend the cal l ing thread un t i l some other thread enters the same monitor and calls
either notify or notif y A l l [12].

G

class MyRunnable implements Runnable {
public void run() {

System.out.printlnC'This i s executed i n a new thread.");
}

public s t a t i c void main(String args[]) {
Thread t = new Thread(new MyRunnable());
t . s t a r t () ;
t . j o i n Q ;

}

}

Lis t ing 2.2: A simple program that creates a thread by implementing the Runnable inter­
face.

class Example {
private i n t a = 0 ;

public synchronized void i n c l () {
a++;

}

public void inc2() {
synchronized (this) {
a++;

}

}
}

Lis t ing 2.3: A program wi th synchronized methods and statements. The i n c l method is
synchronized, on each cal l , the Example instance's monitor is entered. The i n c 2 method
is not synchronized but contains a synchronized block w i t h an expl ic i t ly specified monitor
(this).

Mult i - threaded programs may use the v o l a t i l e type modifier. It tells the compiler
that the variable may be modified outside of the current thread.

2.4 Java Memory Model

Java memory model describes how threads i n Java interact w i t h each other using shared
memory. The model defines several relations that are used by the dynamic analysis of
contracts for concurrency, most notably the happens-before relation and the synchronizes-
with relation.

Java memory model takes a program and an execution trace, and for each read operation
decides i f it is val id or not. The decision depends on the write operation that modified the
data before the read operation. The compiler, runtime, and hardware must ensure that a l l
executions of a program produce execution traces that are va l id according to the model [8].

In a single-threaded program, it is only required that the program produces the same
result as i f it was run serially. The compiler is free to reorder instructions when it does

7

not affect the result of the computat ion. In multi-threaded programs, the reordering of
instructions has to be l imi ted when the threads interact w i th each other.

In the model, only certain program actions are considered. There are several orders
defined over the actions which are used by the dynamic contract analysis: program order,
synchronization order, and happens-before order.

The actions can be either intra- or inter-thread. A n inter-thread action can be detected
or influenced by another thread. A n intra-thread action is for example adding two local
variables and it is not important to the model . Nonvolati le reading or wr i t ing of a shared
variable is an inter-thread action. Synchronization actions are inter-thread actions that
include volatile reading or wr i t ing of variables, locking and unlocking of monitors, and
starting and stopping of a thread [8]. L i s t ing 2.4 shows examples of different kinds of
actions.

class MySharedData {
int mySharedVar = 0;

public synchronized void MyMethodO {
// synchronization action (entering a monitor)
// intra-thread action (writing a l o c a l variable)
in t a = 42;
/ / 2 inter-thread actions (reading and writing a shared variable)
mySharedVar += a;
// synchronization action (leaving a monitor)

}
}

Lis t ing 2.4: Various program actions classified from the Java memory model point of view.
Enter ing and leaving MyMethod produces synchronization actions. Accessing mySharedVar
is considered as an inter-thread action, but not as a synchronization action because
mySharedVar is not declared as v o l a t i l e .

Program order is a to ta l order over a l l inter-thread actions from a given thread. It
reflects the order i n which these actions would be executed i f run by the intra-thread
semantics.

Synchronization order is a to ta l order over a l l synchronization actions of an execution.
W i t h i n each thread, the synchronization order is consistent w i th the program order. The
synchronized-with relation is defined on certain actions. For example: starting a thread is
synchronized-with the first action in the new thread.

Happens-before order is a par t ia l order. If an action happens-before another, the first
action is visible to and ordered before the second action. If actions x and y belong to
the same thread and x comes before y i n program order, then x happens-before y. If
x synchronizes-with y, then x happens-before y. Figures 2.1 and 2.2 illustrates the happens-
before relation i n simple programs.

A data race occurs, when there are two accesses to the same variable, at least one of
which is write, and these accesses are not ordered by happens-before [8]. Th is si tuation is
i l lustrated in Figure 2.2.

8

tl t2

Figure 2.1: Happens-before relations in a correctly synchronized program consisting of
threads t\ and ti. Each arrow represents a happens-before relation. The red arrows rep­
resent the program order, the blue arrow represents the synchronizes-with relation. Grey
arrows complete the transitive closure. The conflicting accesses to variable a are not data
races, because they are ordered by happens-before (the black arrow).

Figure 2.2: Happens-before relations i n an incorrectly synchronized program (each solid
arrow represents a happens-before relation). There is no happens-before relation between
conflicting accesses a=42 and print (a) (the dashed line), creating a data race.

2.5 Instrumentation of Java Bytecode

Instrumentation is the act of inserting instructions into an existing program to extract useful
information at runtime. Instrumentation can be used to measure performance, log events,
or perform dynamic analysis. The running program should not be aware that it is being
instrumented and the result of the computat ion should remain the same. Instrumentation
may add significant overhead to the program. For example, programs instrumented by the
RoadRunner framework are roughly ten times slower [6].

In Java, the instrumentation is done by changing the bytecode. There are several
general-purpose frameworks for modifying the Java bytecode. In this section, the A S M
framework is described as it is used by the RoadRunner framework, which is the basis of
this Master 's thesis.

9

2.5.1 J a v a B y t e c o d e O v e r v i e w

Programs wri t ten i n Java are compiled into Java bytecode which is executed by the Java
V i r t u a l Machine. Every class gets compiled into a Java class file containing the following
sections [2]:

• A section wi th information about the class itself, such as the name of the class, the
super class, implemented interfaces, and class annotations.

• One section per field, containing the field name, type, modifiers, and annotations.

• One section per method (and constructor), containing the name of the method, the
return type, type of parameters, annotations, and compiled code of the method.

Java class files also contain a constant pool section that holds a l l numeric, type, and
string constants which are then referenced from other sections of the file. The whole struc­
ture is shown i n Table 2.1. The Java class file format is described i n detai l i n the Java
V i r t u a l Machine Specification [11].

Modifiers, name, super class, interfaces
Constant pool
Annotat ions
At t r ibutes

Modifiers, name, type
Fields Annotat ions

At t r ibutes
Modifiers, name, return and parameter types

Methods Annotat ions
At t r ibutes
Code

Table 2.1: Structure of the Java class file. Adap ted from [2], simplified.

The Java V i r t u a l Machine operates on two kinds of types: primitive types and reference
types. Examples of pr imit ive types are int, long, boolean, or double. There are three
kinds of reference types: class types, array types, and interface types. The array type
consists of a component type which can also be an array type. For example, int [] represents
an array type wi th component type of int. A l l reference types may hold a special nul l
reference, which is also the default value of reference types.

Compi led classes do not contain any package or import statements, so a l l type names
must be fully qualified. Internally, class files use slashes instead of dots i n type names, so for
example Java.lang.Object becomes java/lang/Object. In most places, Java types are
represented wi th type descriptors. E a c h pr imit ive type is assigned a single character: I for
int, D for Double, and so on. Classes and interfaces are wri t ten wi th prefix L and semicolon
at the end, so String becomes Ljava/lang/String; . Ar rays are represented using a [and
the element type, so an array of integers is [I , an array of strings is [Ljava/lang/String;.
Similarly, method descriptors are used to represent the return type of a method and types
of a l l method parameters. For example, a method declared as double m(int i , String
s) would be represented as (ILjava/lang/String;)D. In method descriptors, V is used
when the method returns void.

10

W h e n executing, on each method invocation, the Java V i r t u a l Machine creates a new
frame. Each frame contains its own local variables and an operand stack. W h e n the method
invocation is completed, the frame is destroyed.

L o c a l variables are addressed by indexing. E a c h variable can hold a single value of
a pr imit ive or reference type wi th the exception of long and double which require a pair
of variables. A t index 0, there is a reference to the object the method was invoked on (the
value of this i n Java). Class methods (marked as s t a t i c i n Java) do not use this index.
Start ing at index 1 (or 0 i n case of class methods), method parameters are stored. After
the parameters, local variables may be stored.

Each frame contains an operand stack, which is in i t ia l ly empty. Various instructions are
used to load values onto the stack, either from local variables or fields. Other instructions
take operands from the stack and push the result back. W h e n cal l ing other methods, the
parameters are also prepared on the stack.

Java V i r t u a l Machine instructions can be divided into several categories. L o a d and
store instructions move values between local variables and the operand stack. For example,
the iload_ 3 instruct ion pushes the value (which is of type int) from the local variable
at index 3 to the operand stack. Ar i thme t i c instructions usually take two values from the
operand stack, compute the result, and store it back on the stack. For example, the fmul
instruction w i l l mul t ip ly two values of type float. Type conversion instructions convert
the value on the top of the stack. Con t ro l transfer instructions, such as i f e q or goto, cause
the execution of instruct ion other then the immediately following.

To create new arrays and objects, instructions new, newarray, and anewarray are used.
Methods are invoked using these five instructions: invokevirtual, invokeinterface,
invoke special, invokestatic, and invokedynamic, each used in slightly different cir­
cumstances. Exceptions are thrown using the athrow instruction. Enter ing a monitor
is achieved by monitorenter and monitorexit instructions, which are used by synchro­
nized statements in Java. A n example of a method represented by bytecode is shown in
L i s t ing 2.5.

2.5.2 T h e A S M framework

The A S M framework allows generating and modifying Java classes direct ly i n bytecode.
It can be used both stat ically (for example during compilation) or dynamical ly (to create
classes at runtime). The A S M framework provides an interface for loading and storing the
bytecode using higher-level abstractions, such as constants, identifiers, methods, fields, and
others [2].

There are two interfaces available: the core API w i th an event-based representation
of classes, and the tree API w i th an object-based representation. The core A P I processes
classes sequentially. W h e n parsing a class, the A S M parser w i l l produce an event for each
element of the class. W h e n wr i t ing a class, the writer creates the class based on a sequence
of events. The tree A P I loads the whole class and creates a tree of objects representing
the class. The core A P I is faster and requires less memory, however, it is not pract ical for
complex transformations [2]. The RoadRunner framework uses the core A P I .

The core A P I is based on the ClassVisitor abstract class. The class contains meth­
ods for vis i t ing different sections of a class, for example, v i s i t A t t r i b u t e , visitMethod,
or v i s i t F i e l d . Complex sections, such as methods or fields, have their visitor classes.
For example, the MethodVisitor class contains methods such as visitLocalVariable,
visitCode, or visitParameter [2].

11

public void foo(java.io.FileWriter, i n t , int)
descriptor: (Ljava/io/FileWriter;II)V
f l a g s : (0x0001) ACC_PUBLIC
Code:

stack=2, locals=5, args_size=4
0: iload_2
1: iload_3
2: iadd
3: i s t o r e 4
5: aload_l
6: i l o a d 4
8: invokevirtual #2 // Method java/io/FileWriter.write:(I)V

11: aload_l
12: invokevirtual #3 // Method java/io/FileWriter.close:()V
15: return

Lis t ing 2.5: A n example of a method bytecode viewed using the javap command. The
method takes three parameters: a file writer and two integers. There are 5 local variables:
the object the method was called on (index 0), method parameters (indexes 1-3), and
a local variable (index 5). O n lines 0-3, the two integers are loaded on to the operand
stack, added together, and the result is stored i n a local variable. Lines 5-7 calls the write
method on the file writer, lines 11-12 calls the close method. Operands on lines 8 and 12
are indexes to the constant poo l section.

To generate a new class, one has to create a ClassWriter instance, which is a subclass
of ClassVisitor. Then a sequence of visit methods must be called, such as v i s i t F i e l d or
visitMethod. The ClassWriter instance w i l l generate appropriate bytecode on each cal l .

To read and parse a class, one has to create a ClassReader instance. The reader
w i l l produce a sequence of events for each section of the class. To consume those events,
a ClassVisitor instance must be given to the reader. The reader w i l l then ca l l appropriate
visit methods on the visi tor as it is parsing the class. To demonstrate this, one can create
a ClassReader and connect it to a ClassWriter (which is a subclass of ClassVisitor).
The reader w i l l cal l visit methods on the writer, effectively copying the class. The typical
class transformation is shown in Figure 2.3.

. class file

1
ClassReader —> ClassVisitor —> ClassVisitor ClassWriter

.class file

Figure 2.3: The typica l architecture for a class transformation using the A S M framework.
A ClassReader instance reads the class, then one or more ClassVisitor instances modify
the class, and then a ClassWriter instance writes the modified class back to a file.

12

2.6 Dynamic Analysis using RoadRunner

The RoadRunner framework is used for the dynamic analysis of concurrent programs writ­
ten in Java. RoadRunner instruments programs to obtain a stream of events that are useful
for dynamic analysis, such as memory accesses, synchronizing on a lock, forking or jo ining
of threads, and so on. Th is event stream is then available to various analysis tools. M u l t i ­
ple tools can be chained together, each tool act ing as a filter over the events. Th is allows
complex analyses to be buil t from simpler, modular tools [6].

RoadRunner aims to simplify wr i t ing dynamic analysis tools. A RoadRunner analysis
tool only needs to handle events of interest. RoadRunner w i l l ensure that the event is prop­
erly detected and the event handler is called. To store the state of the analysis, RoadRunner
provides support for associating data w i th memory locations, locks, or threads.

2.6.1 T h e R o a d R u n n e r P r o g r a m m i n g Interface

Every analyzer i n RoadRunner is based on the Tool class. L i s t ing 2.6 contains the most
important methods of Tool. D u r i n g the analysis, every t ime an action is detected, the
appropriate method i n Tool is called, along wi th an Event object that contains information
about the event. The following events are detected by the RoadRunner framework:

• method entry and exit,

• memory accesses (reads and writes to fields and variables),

• lock acquires and releases,

• synchronization signals (wait and notify),

• thread forking and joining.

There are several subclasses of the Event class w i t h specific information about events.

public abstract class Tool {
// event handlers for accessing a memory location
public void access(AccessEvent fae) { }
public void volatileAccess(VolatileAccessEvent fae) { }
// event handlers for entering and e x i t i n g methods
public void enter(MethodEvent me) { }
public void exit(MethodEvent me) { }
// event handlers for locking
public void acquire(AcquireEvent ae) { }
public void release(ReleaseEvent re) { }
// event handlers for thread events
public void preJoin(JoinEvent je) { }
public void postJoin(JoinEvent je) { }
public void preStart(StartEvent se) { }
public void postStart(StartEvent se) { }
// shadow loca t i o n i n i t i a l i z a t i o n
public ShadowVar makeShadowVar(AccessEvent ae) { }

}

Lis t ing 2.6: The abstract class Tool. O n l y selected public methods are shown.

13

RoadRunner allows associating data w i th objects from the program under analysis. For
each thread, a ShadowThread object is created which contains a reference to the under­
ly ing thread. Similarly, for each lock, a ShadowLock object is created. B o t h extend the
Decoratable class that allows storing of arbi t rary information. For associating data w i th
memory locations, a shadow location is created when the locat ion is first accessed.

Mul t ip l e tools can be chained together. E a c h event handler method forwards the Event
instance to the next tool i n the chain by default. If the event is not forwarded, the tool
becomes a filter over the event stream. This can be used to filter out events that are not
interesting to a part icular analysis and then performing the analysis i n the next tool [6].

2.6.2 RoadRunner Synchronization Models

In RoadRunner , a l l threads of the program under analysis generate events. The events
are also handled by the same thread that generated them which means that several event
handlers may be running concurrently. Tools wri t ten for RoadRunner must provide inter­
nal synchronization to ensure that no concurrency-related errors occur i n the tool itself.
RoadRunner contains an opt ion to serialize a l l events. In this mode, there is only one event
handler running at a t ime [6].

2.6.3 Instrumentation Performed by RoadRunner

RoadRunner uses a modified version of the A S M framework to instrument the program
under analysis. Before a class is loaded, it is instrumented. The instrumented code w i l l
then produce events that w i l l be sent to the tool chain for an analysis. Three important
kinds of actions are instrumented: field accesses, method invocations, and monitor entries
and exits.

F i e ld accesses are instrumented by adding two new methods for each field: one for
reading and one for wr i t ing to the field. In these methods, write and read events are
generated. In the rest of the code, a l l getf i e l d and putf i e l d instructions are replaced
wi th calls to the corresponding access methods. RoadRunner allows tools to store arbi trary
data related to a field i n shadow variables. For each field, a new field of the ShadowVar
type is created to store the data. List ings 2.7 and 2.8 shows a simple class before and after
field instrumentation.

private i n t bar;

public void foo();
0 aload_0
1 aload_0
2 g e t f i e l d #2 // F i e l d bar I
5 bipush 42
7 iadd
8 p u t f i e l d #2 // F i e l d bar I
11 return

Lis t ing 2.7: A n example class bytecode viewed using the javap tool , simplified.

M e t h o d invocations are tracked by creating a wrapper method for each method. The
original method is renamed, but otherwise left intact (the code may however be further
instrumented to obtain other information, such as field accesses). Then a wrapper method

14

public i n t bar;

public transient rr.state.ShadowVar $rr_bar;

public void $rr_put_bar(int, i n t , rr.state.ShadowThread)
(code omitted)

public i n t $rr_get_bar(int, rr.state.ShadowThread)
(code omitted)

public void foo();
0: invokestatic #51 // Method rr/state/ShadowThread

// .getCurrentShadowThread:()Lrr/state/ShadowThread;
3: astore_2
4: aload_0
5: aload_0
6: i c o n s t _ l
7: aload_2
8: invokespecial #56 // Method $rr_get_bar:(ILrr/state/ShadowThread;)I
11: bipush 42
13: iadd
14: iconst_2
15: aload_2
16: invokespecial #53 // Method $rr_put_bar:(IILrr/state/ShadowThread;)V
19: return

Lis t ing 2.8: Code from L i s t i ng 2.7 instrumented by RoadRunner . For the bar field,
two access methods are added and a new field of type ShadowVar. In the foo method,
the bar field is accessed using methods $rr_get_bar and $rr_put_bar. These
methods take the current shadow thread as an argument which is obtained by call ing
getCurrentShadowThread.

wi th the same name as the original one is created. The wrapper method generates enter and
exit events. In order to detect abnormal method exits that are caused by an exception being
thrown, the ca l l to the original method is wrapped i n a t ry block. W h e n an exception is
caught, the exit event is generated and the exception is re-thrown. A n example of a method
instrumented by RoadRunner is shown in L i s t ing 2.9.

Moni to r entries and exits are handled differently for synchronized statements and syn­
chronized methods. Synchronized statements in Java are represented by monitor enter and
monitorexit instructions. RoadRunner extends a l l occurrences of these instructions wi th
calls to methods that generate acquire and release events. Synchronized methods i n Java do
not need monitorenter and monitorexit instructions, the locking is performed impl ic i t ly
by the Java V i r t u a l Machine. In RoadRunner , synchronized methods are replaced wi th syn­
chronized statements that are then instrumented as described above. For each synchronized
method, a wrapper method is created. The original method's synchronized flag is cleared.
The wrapper method, which is also not synchronized, contains a synchronized statement
wi th ca l l to the original method. Synchronized methods are in the end wrapped twice,
the first wrapper generates synchronization events and the second one generates method
invocation events.

15

public i n t $rr_foo $rr O r i g i n a l _ (i n t) ;
0: invokestatic #20 // Method rr/state/ShadowThread

// .getCurrentShadowThread:()Lrr/state/ShadowThread;
astore_3
i l o a d _ l
i return

public i n t f o o (i n t) ;
0: invokestatic #20 // Method rr/state/ShadowThread

// .getCurrentShadowThread:()Lrr/state/ShadowThread;
astore_3
aload_0
sipush 508
aload_3
invokestatic #27 // Method rr/tool/RREventGenerator

// .enter:(Ljava/lang/Object;ILrr/state/ShadowThread;)V
aload_0
i l o a d _ l
invokespecial #29 // Method __$rr_foo__$rr__0riginal_:(1)1
aload_3
invokestatic #33 // Method rr/tool/RREventGenerator

// .exit:(Lrr/state/ShadowThread;)V
goto 29
aload_3
invokestatic #33 // Method rr/tool/RREventGenerator

// .exit:(Lrr/state/ShadowThread;)V

12
13
14
17
18

21
24
25

28: athrow
29: ir e t u r n

Lis t ing 2.9: M e t h o d int foo(int a) instrumented by RoadRunner . The original method

was renamed to $rr_foo $rr 0r i g i n a l _ and a new method w i t h the original name

was created. This method generates enter and exit events and calls the original method.

16

Chapter 3

Contracts for Concurrency

W h e n developing software, one frequently uses modules created by someone else v ia its
programming interface. For example, in object-oriented programming, the interface consists
of public methods of a given class. Accessing the interface requires one to follow a protocol
consisting of: (i) syntax, i.e. types of parameters and return values, (ii) semantics, i.e.
the expected behavior for given input parameters, and (iii) access restrictions. Access
restrictions include the domain of val id values, dependencies on other services, and atomici ty
violations [3].

Contracts for concurrency [4], [13], are a case of a software protocol that expresses access
restrictions i n a concurrent setting. In its basic form, they specify sequences of methods
that must be executed atomically. Contracts for concurrency help detect high-level data
races i n a program. A high-level data race occurs on a higher abstraction layer. P rogram
that is free of data races as defined by the Java memory model can s t i l l contain high-level
data races when modifying complex data structures [1]. A s an example, consider an object
that represents a pair of coordinates w i t h two synchronized methods: setX and setY.
Even though both methods are executed atomically, there is a window between setting the
first and the second coordinate where the object is i n an inconsistent state, al lowing for
a high-level data race.

The contracts can be extended wi th parameters to reflect the data flow between the
methods (so that only methods manipula t ing the same data must be executed atomical ly) .
Another extension adds so-called spoilers (so that given sequence must be executed atomi­
cally only wi th respect to only certain sequences). B o t h extensions can be combined. This
chapter defines basic contracts, as well as bo th extensions to them. T h e n a method for
dynamic val idat ion of contracts for concurrency is presented. The analyzer, implemented
in this thesis, is based on this method.

3.1 Basic Contracts

A contract is formally defined i n [4] as follows. Let E M be a set of a l l public method names
(the A P I) of a module or a library. A contract is a set M of clauses. E a c h clause Q e K
is a regular expression over E M - A contract violat ion occurs when any of the sequences in
a contract is interleaved w i t h an execution of a method from E M over the same object.

17

Example. Consider a map implementat ion wi th the following operations: put (key, value),
get (key), remove (key), and contains (key) . Then a contract for this class may contain
the following clauses:

(Qi) P u t get
(£ 2) contains (put|get|remove)

Clause Q\ states that when an element is put into the map and then retrieved, it should be
executed atomical ly (because the element may be removed between the calls). Clause Q2

states that when the program modifies the map based on the result of the contains cal l ,
it should be atomic.

3.2 Parametric Contracts

In some situations, the definition of contracts may be too restrictive, producing false alarms.
In [3], contracts are extended wi th parameters to reflect the data flow between methods.
Consider the following example:

i f (q.contains(42)) q.remove(42);

These two calls must be executed atomical ly only if they share the same argument. This
dependency can be expressed using meta-variables placed as the parameters or return values
of methods. Parameters that should not be taken into account are marked w i t h free meta­
variable (denoted wi th an underscore).

Example. The example from Section 3.1 can be extended wi th parameters:

(pi) put(X,_) _=get(X)
(£ 2) _=contains(X) (put(X,_) | _=get(X) | remove(X))

Clause QI cares about calls to put and get that operate on the same key (the X meta­
variable) but it is not concerned w i t h the value that is put or retrieved (the _ meta-variable).
Similarly, i n clause Q2, only method calls operating wi th the same key must be atomic.

The basic definition of contracts contains one impl ic i t parameter, the object that the
method was called upon (this i n Java) [4]. The atomici ty is required only on methods
called upon the same object (as these method calls usually modify the same data). To
better il lustrate this, the example can be rewrit ten as:

(£ 1) X.put(Y,_) _=X.get(Y)
(g2) _=X.contains(Y) (X.put(Y,_) | _=X.get(Y) | X.remove(Y))

3.3 Contracts with Spoilers

In [3], contracts are extended w i t h contextual information to distinguish which method
sequences violate the contract. Each clause of the basic contract is called a target and is
assigned a set of so-called spoilers. A spoiler is a set of method sequences that may violate
its target.

Consider clause £1 from the example i n Section 3.1. If the element that was put into the
map is concurrently removed or updated before the get ca l l , a contract violat ion should be

18

detected. However, cal l ing contains or get on the element w i l l not affect the computat ion
and should not be marked as a contract violat ion. In this example, methods put and remove
are spoilers for a target g\, denoted as put get put I remove.

Formally, as defined i n [3], let M be the set of target clauses where each target g e R
is a regular expression over E M - Let § be the set of spoilers where each spoiler a e S is
a regular expression over E M - A contract is a relation C c | x § defining for each target,
which spoilers may cause atomici ty violat ion.

Contract viola t ion is observed when a target sequence g e M is fully interleaved by
a spoiler sequence a e C(g) and the sequences are executed on the same object.

Example. The example from section 3.1 can be extended wi th spoilers:

(gi) put get put | remove
(£ 2) contains (put|get|remove) put|remove

W h e n combining parametric contracts w i th spoilers, the spoilers may also contain param­
eters. Then a contract viola t ion is detected only when spoiler arguments match target
arguments.

Example. Examples from sections 3.2 and 3.3 combined together:

(gi) X.put(Y,_) _ = X.get(Y) X.put(Y,_)|X.remove(Y)
(g2) _ = X.contains(Y) (X.put(Y,_) | _ = X.get(Y) | X.remove(Y))

X.put(Y,_)IX.remove(Y)

3.4 Dynamic Contract Validation

In [3], a dynamic contract val idat ion method is proposed for contracts w i th spoilers. Para­
metric contracts are not included i n the method. This section provides an overview of
the method. The analyzer designed i n Chapter 4 uses this method and extends it w i th
parameters.

3.4.1 Multi-threaded Program Traces

In the context of the dynamic on-the-fly contract validation, multi-threaded program trace
consists of events of the following types:

• thread forking or jo in ing another thread,

• thread entering or exit ing a method,

• thread acquiring or releasing a lock.

A l l events i n a trace are indexed by their posi t ion i n the trace. Let T be a set of threads,
M a set of targets, § a set of spoilers, C Q 1 x § a set of contracts, and L a set of locks.
The set of a l l events that can be generated by a thread t e T is then denoted as E$. Let
IE = | J < g T E (. A trace is then a sequence T = e\... en e E + [3].

Given a trace T = e\... en e E + , we cal l its subsequence r = e^e^ . . . eik, 1 < k n ,
an instance of a target g e M if, and only if:

1. r consists of well-paired method enter and exit events,

19

2. a l l enter events of r match the regular expression of g,

3. apart from events e%x,..., eik, there is no event from the alphabet of g executed by t
between events and eik.

Example. G iven target g = abc, and a trace t\ = adbdc, there is a target instance r = eie^e^.
In trace T2 = acbdc, there is no target instance.

A spoiler instance s of a spoiler a e S is defined similarly. We let start(r) = e%x and
end(r) = eik denote the first and last events of a target, respectively. Likewise, start(s)
and end(s) denote the first and last events of a spoiler, respectively [3].

3.4.2 Contract Violation

A contract is violated when there is a target instance that is fully interleaved w i t h a spoiler
instance from another thread. The interleaving is defined using a happens-before relation,
which is i n the context of contracts defined as follows [3]. A happens-before relation <hb
over a trace T = e\... en e E + is the smallest transit ively closed relation on the set of events
from r such that ej <hb £k holds when j < k and one of the following holds:

1. bo th ej and are executed by the same thread,

2. bo th ej and acquire or release the same lock,

3. one of ej and e& is a fork or a jo in performed by thread t, and the other is executed
by thread u.

A contract (g, a) e C is violated in a trace r if, and only if there is a target instance r
in the trace and a spoiler instance s i n the trace such that:

start(s) -^hb start(r) A end(r) -)c^6 end(s)

The viola t ion occurs when the spoiler may have started after the target started and it may
have ended before the target ended. W h e n given a complete program execution trace, a l l
target and spoiler instances can be detected, the happens-before relation can be deduced,
and a l l contracts can be easily checked for violations. The trace, however, can get large
and make this approach unpract ical . For this reason, several optimizations are introduced
in [3], which are presented i n the next section. A n example of a program trace containing
a contract viola t ion is shown in Figure 3.1.

3.4.3 On-the-fly Contract Validation

To check contract validations, it is not required to keep the entire program execution trace.
A trace window is kept instead. Events are moved to the trace window as soon as they
become available and are removed under certain conditions. The goal is to keep the window
as smal l as possible.

Spoiler instances can be safely removed from the window whenever a contract violat ion
that would be detected wi th the spoiler can be detected without i t . A spoiler instance can
be removed from the window whenever a newer instance of the same spoiler is detected [3].

A target instance r can be safely removed wi th respect to a spoiler instance s whenever
a contract viola t ion that would be detected between r and s, can be detected between s and

20

t

u
fork

a(l)

b(42) <» 11 c(l)

Figure 3.1: A n example of a program trace containing a contract violat ion. Consider
a target a (X) b(_) and a spoiler c (X) . In thread t, a target instance r is detected wi th
X = 1. In thread it, a spoiler instance s is detected wi th X = 1. The parameters match in
both instances. The instances are not synchronized, so start(s) start{r) a end(r) -^hb
end{s) holds, which means that there is a contract violat ion.

another target instance too. Note that target instances may be removed only wi th respect
to a given spoiler, not i n general [3].

To further reduce the required information about the trace, vector clocks are used.
Vector clocks are described in the next section. For each target and spoiler instance in the
trace window, only vector clocks of their beginning and end need to be kept.

The method for on-the-fly contract val idat ion does the following. A t method entry
events, target and spoiler sequences are detected. A t method exit events, it is detected
whether a target or a spoiler instance has ended. W h e n a target instance ends, spoiler
instances from the trace window are checked if they violate the target. W h e n a spoiler
instance ends, target instances from the trace window are checked i f they are violated by
the spoiler. A t method exit, target and spoiler instances are also discarded when no longer
needed [3].

3.4.4 Vector Clocks

The on-the-fly dynamic analysis of contracts uses vector clocks and the happens-before
relation the same way it is used in the Fast Track algori thm [5]. A vector clock VC : T —> N
consists of clock values for each thread t e l . Vector clocks are par t ia l ly ordered w i t h E ,
can be joined wi th u , and contain a min ima l element _Ly. The t-component of a vector
clock is incremented using the inct function.

Example. Consider threads ti, t2, £3, and two vector clocks: V\ = (1,0,2), V2 = (1,0,5).
Then Vx E V2 is true, V1uV2 = (1, 0, 5), and inct2{V{) = (1,1, 2).

Dur ing the analysis, three kinds of clocks are kept. For each thread t e T , a vector clock Ct

stores information about the last synchronization wi th other threads. For each lock I e L ,
a vector clock L ; holds information about the last thread that released the lock. For each
event e e r , a vector clock VCe is kept [3].

V\ != V2 iff V i . V i (i) < V2(t)

ViuV2 = Xt.max(V1(t),V2(t))

± v = At. 0
inct(V) = A u . i f it = t then V (u) + l e l s e V (w)

21

The happens-before relation is defined using vector clocks. For an event e% from a thread
t and an event eu from a thread u, et <hb e u when VCet(t) < VCeu(t). The clocks are
updated on the following actions:

• Fork — when a thread t creates a new thread u:

Cu «- Cu u Ct

Ct <- inct(Ct)

The new thread w i l l get a l l happens-before relations from the parent thread. T h e n the
parent thread is updated so that events coming after the fork w i l l not happen-before
events i n the new thread.

• Jo in — when a thread t waits for a thread u to finish.

Q <- Q u Cu

Cu <- incu(Cu)

The thread that waits for the jo ining thread w i l l get a l l happens-before relations from
the jo in ing thread. Then the jo ining thread is updated so that events coming after
the jo in w i l l not happen-before events i n the wai t ing thread.

• Release — when a thread t releases a lock I.

l , « - q
Ct <- inct(Ct)

The releasing thread w i l l be synchronized wi th the thread that w i l l acquire the lock
in the future. The thread does not know wi th which thread, so the thread's vector
clock is stored i n the lock. T h e n the thread is updated so that events coming after the
release w i l l not be synchronized wi th the thread that acquires the lock in the future.

• Acquire — when a thread t acquires a lock I.

Ct <- C 4 u L j

The acquiring thread w i l l get happens-before relations from the lock which holds the
vector clock from last release operation.

• Event clocks are set when an event enters the window trace. For an event e e r
executed by a thread t e T :

VC, - C ,

3.5 Previous Work

There are several existing implementat ion of dynamic analyzers for contracts for concur­
rency. In [4], the I B M Concurrency Testing Too l is used for t racking the basic contracts in
Java programs. In [3], the A N a C o n D A framework is used for t racking parametric contracts
w i th spoilers i n programs wri t ten i n C / C + + . In [9], the RoadRunner framework is used to
track parametric contracts w i th spoiler in Java programs. The prototype implementat ion
in [9] served as a reference for this thesis.

22

Chapter 4

Design of a Dynamic Analyzer for
Parametric Contracts with Spoilers

This chapter describes the proposed dynamic analyzer for parametric contracts w i th spoil­
ers. The analyzer follows the method for dynamic analysis of contracts described i n [3] and
extends it to support parametric contracts.

The analyzer is buil t as a new tool for the RoadRunner framework. The input is
a program under analysis and a contract definition. The analyzer is then able to detect
contract violations i n the program and report them. The RoadRunner framework was
modified to support obtaining method arguments and return values.

Section 4.1 provides an architectural overview of the analyzer itself. Section 1.2 describes
several restrictions that were placed on the analyzer i n the design phase. In Section 4.3,
necessary changes to RoadRunner itself are presented. Section 4.4 describes how a contract
is defined and processed before the analysis is started. The core function of the analyzer is
described in Section 4.5. Section 4.6 describes how the analyzer interacts w i th RoadRunner .

4.1 Overview of the Contract Analyzer

This section provides a high-level overview of the contract analyzer. The Contract Analyzer
class is the core of the analyzer. It receives events from the program under analysis, detects
target and spoiler instances, and looks for contract violations. It manages data stored wi th
threads and locks, such as trace windows and vector clocks. The ContractAnalyzer class
can be instantiated without any dependencies from the RoadRunner project, which is useful
for testing purposes. Section 4.5 describes ContractAnalyzer in detail .

The ContractTool class is a subclass of RoadRunner ' s Tool class. Dur ing the ini t ia l iza­
t ion of ContractTool, the contract definition file is parsed and ContractAnalyzer is cre­
ated. In ContractTool, relevant methods are overridden to receive events from RoadRun­
ner, such as lock acquire and release or method exit. These events are then processed and
sent to ContractAnalyzer. Section 4.6 provides a detailed description of ContractTool
and Section 4.4 describes the parsing and representation of contracts.

For each thread, a Window instance is created by ContractAnalyzer. It stores infor­
mat ion about target and spoiler instances in a trace window. O n method exit, existing
instances are advanced, new instances are started, and for a l l finished instances, contract
violations are checked.

23

4.2 Constraining Analyzer Capabilities

The analyzer is designed wi th several restrictions based on the previous work, such as [9]
or [4], to improve its performance. F i r s t , a restriction is placed on the parameters i n contract
definitions to reduce the number of instances i n a trace window. T h e n the conditions for
removing instances from the trace window are discussed and a related contract restriction
is introduced. Final ly , it is described how nested method calls should be handled.

4.2.1 Avoiding Cloning of Target and Spoiler Instances

The method for analyzing contracts described i n [9] produces an enormous number of
instances being tracked at the same time. A lot of instances are created because of the
necessity to clone target and spoiler instances before they are advanced. Consider the
following target: a(X) b(Y) c(X,Y) and the following program trace: a(l) b(2) b (3)
c (l , 3) . W h e n a(l) enters the trace window, a new instance is created and the value of
X is set to 1. B u t when processing b (2) , the analyzer cannot reliably decide whether the
method cal l belongs to the instance or not (there might be c (l , 2) later i n the trace). The
only option is to keep the instance and create a duplicate instance which is then advanced
(while setting Y to 2).

To prevent dupl icat ion of instances, the following restriction was put on the contract
definition. A l l target and spoiler parameters must be assigned i n the first cal l of a given
target or spoiler. Th is ensures that there is no ambiguity i n deciding whether a given
method cal l advances an instance or not. For example, the target from the previous example
is inval id because the value of Y remains unknown after the first method cal l .

4.2.2 Invalidating Instances

A target or spoiler instance, as defined in Chapter 3, requires that no method belonging to
the alphabet of a given target or spoiler may be called between the events that form the
instance. In practice, it means that a running instance must be discarded when a method
belonging to the target or spoiler is called. For example, consider a target abc and the
following program trace: aa. After the first a, a new instance is created. After accepting
the second a, the instance must be discarded.

W h e n tracking parametric contracts, instances cannot be easily discarded. Consider
a running instance of a target (or a spoiler), a l l of its parameters are assigned a value.
W h e n a method is called that belongs to the alphabet of the instance's target, three kinds
of situations can happen:

1. The method matches the target definition and method arguments match the values
of instance parameters. The instance is advanced wi th the method.

2. The method matches the target definition but method arguments conflict w i th the
values assigned to the instance. The instance cannot be advanced but it also should
not be discarded. The method cal l most l ikely belongs to another instance.

3. The method does not match the target definition. Accord ing to the definition in
Chapter 3, the instance should be discarded. B u t the analyzer does not know if the
method cal l is i n any way related to the instance.

The second si tuation can be i l lustrated i n the following example. Consider a target a(X)
b(X) and a program trace a(l) b(2) b (l) . After a (l) , an instance is created wi th X set

24

to 1. W h e n b(2) is called, the value of X conflicts w i th the value stored i n the instance.
However, the instance should not be discarded as we can see that a matching cal l exists
later i n the trace.

A n example of the th i rd si tuation. Consider target a(X) b(X) and a program trace
a (l) a(2) b (l) b(2). Intuitively, there should be two instances detected, one wi th X set
to 1, and one wi th X set to 2. After a (l) , the first instance wi th X=l is created. W h e n
a(2) is accepted, the instance cannot be discarded even though it belongs to the alphabet
of the target.

The problems described above mean that the analyzer w i l l never discard an already
running instance, the only option is to advance i t . Another option is to modify the behavior
in the th i rd si tuation so that the analyzer w i l l t ry to guess whether a method cal l belongs
to the current instance or not. W i t h simple contracts, the decision can be easy. Consider
the target from the previous paragraph: a(X) b(X) . In this case, every t ime a method b()
is called, the analyzer can decide whether it belongs to the currently tracked instance or not
based on the value of X. The decision is less clear when a target contains the same method
mult iple times wi th different parameters. For example, consider target a(X,Y) b(X) b(Y)
and a program trace containing two interleaved instances wi th different parameters: a (l ,2)
a(2,3) b(2) b (l) b(2) b(3) . After a (l,2) , a new instance is created wi th X=l and Y=2.
After a(2,3), another instance is created wi th X=2 and Y=3. W h e n b(2) is encountered,
the second instance is advanced, because it matches the target. The analyzer may however
discard the first instance because b(2) is contained in the target as b(Y) , but the expected
method was b (X). It is not clear, what the proper behavior should be. The analyzer should
therefore never discard running instances.

4.2.3 Kleene Star in Contract Definition

The analyzer never invalidates a running instance. Th is fact allows for opt imizat ion in
contract definitions. A s defined i n Chapter 3, a target or a spoiler is a regular expression
over methods. The analyzer should therefore recognize contracts defined using a l l three
basic operations: concatenation (ab), alternation (a|b), and Kleene star (a*). Due to the
fact, that no method cal l can invalidate a running instance, the Kleene star operation is not
needed. A l l parts of an expression that are also operands of a Kleene star operation can
be removed wi th no impact on the analysis. For example, a regular expression ab*c can
be replaced wi th ac. Cal ls to method b w i l l be s imply ignored. These simplified regular
expressions, when converted to a finite automaton, do not create any loops. This allows for
simpler structures i n the implementat ion of the analyzer.

4.2.4 Nested Method Calls

The method described i n [3] is based on program traces where every method represents
a single event i n the trace. However, the RoadRunner framework produces two events for
every method: method entry and method exit. For parametric contracts, we need to obtain
values of parameters and also the return value, which is available only on method exit.
For convenience, the analyzer should use only the method exit event. Th is means that the
analyzer may produce unexpected results when the program under analysis contains nested
calls to methods that are part of the contract. Consider the following methods that are
both parts of a contract:

public void a() { b(); }
public void b() { ... }

25

After cal l ing method a(), the trace recorded by the analyzer w i l l be b() a() instead of
more intuit ive a() b().

4.3 Changes to Instrumentation Performed by RoadRunner

The RoadRunner framework does not expose the method arguments or the return value
through its A P I . For the t racking of parametric contracts, it is necessary to obtain method
arguments and return values so that the contract parameters can be assigned values.

The enter and exit of RoadRunner ' s Tool class methods both take a MethodEvent
parameter containing the following information:

• Target — n u l l for static methods, the value of t h i s for instance methods.

• A Methodlnfo object — static information about the method definition (name, de­
scriptor, whether it is synchronized or static).

• C a l l site locat ion — where was the method invoked.

The MethodEvent class was extended for storing method arguments and the return value.
The following methods were added:

public Object[] getArgsO;
public void setArgs(Object[] args);
public Object getReturnValue();
public void setReturnValue(Object returnValue);

Arguments and return values which are reference values (class instances or arrays)
can be stored directly in the Object data type. P r imi t ive values (such as int or float)
cannot be stored in Object directly, they must be wrapped i n a class instance. Each
primit ive type has a corresponding object wrapper class, for example, int is wrapped in
the Java. lang. Integer class. The getArgsO method should return an array of size 0 for
a method that takes no arguments and it should return n u l l when the arguments are not
available. The getReturnValue () should return n u l l when the value is not available (for
example on method entry), when the method throws an exception, or when the method
returns void.

4.3.1 Parameter Matching

W h e n t ry ing to advance a running instance, method arguments must be checked, i f they
match the previously assigned parameters. For reference types, the equality operator (==) is
used which compares the addresses of both objects. For pr imi t ive values that are wrapped
in an object, the equals() method must be used. A s a result, the analyzer w i l l always
compare instances of wrapper classes (such as Integer) by cal l ing the equals () method,
even if the instance was created by the program under analysis. Th is may or may not be
the intended behavior and the user of the analyzer should be aware of this.

4.4 Contracts Definition and Parsing

Before the start of the analysis, a contract must be specified. This section describes the
syntax of a contract configuration file, how it is parsed, and how it is represented i n the
analyzer.

26

Map.put(ID)V M(K,_) Map.get(I)D M(K)
<- Map.put(ID)V M(K,_) | Map.remove(I)D M(K) ;

Map.contains(I)Z M(K)
(Map.put(ID)V M(K,_) I Map.get(I)D M(K) I Map.remove(I)D M(K))
<- Map.put(ID)V M(K,_) I Map.remove(I)D M(K) ;

Lis t ing 4.1: Contract from Chapter 3 wri t ten for a M a p wi th int keys and double values.
The first target matches an inserting element to the map at a given key and then retrieving
it. The target can be invalidated by cal l ing either put or get w i th the same key. The
second target matches checking i f a key is present in the map and then modifying the value
at the given key. The target can be invalidated by replacing the value or by removing it.

4.4.1 Contract Definition Syntax

The analyzer takes a contract definition as a parameter. A t the top level, the definition
contains pairs of targets and spoilers. Each target and spoiler is represented by a regular
expression over methods. The on-the-fly dynamic analysis described i n Chapter 3 expects
several spoilers to be assigned to a single target. In practice, the spoilers can be merged
into a single regular expression so that each target has exactly one spoiler. E a c h method is
parametrized, including arguments, return value, and the object it is called upon (this).

To specify methods unambiguously, method names must be fully qualified (for example
java/lang/Object .toString). Java allows method overloading, so to dist inguish methods
wi th the same name but different number and type of their parameters, the contract defini­
t ion contains the method descriptor (for example (Ljava/lang/Object;) V. E a c h method
in a contract definition consists of the enclosing class, the method name, the method de­
scriptor, and a list of meta-variables. For example:

test/sanity/ArrayList.set(ILjava/lang/Object;)Ljava/lang/Object; X=Y(Z,_)

This represents the set method called on an ArrayList from the test. sanity package.
The first meta-variable X is the return value, Y is the ArrayList instance, and Z is the first
parameter (integer). The second parameter (object) is marked wi th a free meta-variable
(_) meaning that the analyzer w i l l ignore its value. The return value or the target of the
method may be omitted, the parser w i l l treat them as free meta-variables.

Targets and spoilers are defined using a l imi ted regular expression over methods. Con­
catenation is achieved s imply by wri t ing two methods, one after another, alternation is de­
noted by a vert ical bar (I) . The Kleene star operator (*) is not allowed (see Section 4.2.3).
A n example of a target definition:

Test.aOV X() (Test.bQV X() I Test.cQV X())

A contract clause is defined as two regular expressions over methods, separated by an
arrow and a semicolon at the end. A contract is then a list of clauses. A n example of a full
contract is shown in L i s t ing 4.1. The full grammar for contracts is shown i n A p p e n d i x C .

4.4.2 Contract Representation

A l l parts of a contract definition are parsed into a corresponding class instance. Each
method i n a target or spoiler is represented by a Signature instance. It consists of a method
name, a fully qualified name of the enclosing class, and a method descriptor. The method

27

descriptor contains information about parameter types. The main purpose of this class is
to be compared w i t h method invocation events to determine i f the invoked method matches
the method from a contract. Meta-variables are parsed into a MetaVars instance.

Each target and spoiler is represented by a State instance that w i l l later be used to
construct a finite automaton for detecting running target and spoiler instances. A target
w i th a single method w i l l be represented by two states: one start ing state wi th a transi t ion
to an accepting state. The transi t ion w i l l contain the method signature and meta-variables.
Dur ing parsing of more complex targets and spoilers, these one-method state structures are
combined. See Figure 4.1 for an example. Dur ing the analysis, State instances w i l l be used
for checking whether a given method invocation can advance a given target or spoiler.

Figure 4.1: A structure of states representing the following regular expression: a(b|cd)e.

A contract is then made up of target-spoiler pairs. W h e n a contract is created, a set
of a l l method signatures used i n the contract is extracted. D u r i n g the analysis, the set of
signatures is used to filter method invocations so that only relevant methods are processed
by the analyzer.

4.5 Contract Analyzer

The main class, ContractAnalyzer receives events from the program under analysis, detects
target and spoiler instances in a l l threads, and looks for contract violations when a target
or spoiler instance finishes. The ContractAnalyzer class provides the following interface:

• A constructor that takes a Contract instance.

• exit method that is called on method exit. It takes a thread identifier, a method
signature, and method arguments (also containing the return value). W h e n a contract
violat ion is detected, the exit method w i l l throw an exception.

• acquire and release methods that are called when a synchronized block or a syn­
chronized method is entered and exited. The methods both take a thread identifier
and a lock identifier.

• create method that is called when a new thread is created. It takes a thread identifier.

• fork and j o i n methods that take two thread identifiers.

The ContractAnalyzer class manages data stored wi th threads and locks. W h e n cre­
ated by cal l ing create, each thread w i l l get a trace window and a vector clock. Methods
acquire, release, fork, and j o i n only modify vector clocks of threads and locks.

The exit method calls the trace window associated wi th a given thread. The trace
window receives method signature and arguments so that it can t ry to advance a l l of its

28

target and spoiler instances. It also receives the current vector clock and references to trace
windows of other threads so that it can look for contract violations.

The ContractAnalyzer class is created and called by the ContractTool class which d i ­
rectly uses the RoadRunner A P I . The ContractTool class is described i n Section 4.6. The
interface of the analyzer is made up of synchronized methods to ensure proper synchroniza­
t ion. Th is approach is not the same as the event serialization mentioned i n Chapter 2. A l l
events that are not cal l ing analyzer's methods w i l l s t i l l be concurrent.

4.5.1 Tracking of Target and Spoiler Instances

For each thread, a Window object is kept dur ing the analysis. It contains target and spoiler
instances present i n a trace window. W h e n a method invocation is detected i n a thread,
al l target and spoiler instances are advanced (if possible) and new instances are started.

A n instance is bound to a target or spoiler from the contract definition. The instance
is created by encountering the first method signature in a target or spoiler. The instance
is advanced to the next state and waits for the next method as defined in the given target
or spoiler. Dur ing the first transit ion, values of a l l parameters are assigned. There can
be mult iple instances of the same target or spoiler that vary only by the value of their
parameters. E a c h instance remembers the vector clock of its beginning.

W h e n an instance is advanced using the last method i n the target or spoiler definition,
it reaches an accepting state. A t this point, the analyzer checks for contract violations (see
Section 4.5.2). Then the instance is reset. That means that the instance again waits for the
first method signature in a given target or spoiler. The value of parameters w i l l however
stay unchanged. The vector clocks of the beginning and the end of the instance are saved.
So when an instance is running for the second time, it has access to the vector clocks of
a previously encountered instance. See Figure 4.2 for i l lustrat ion of an instance life cycle.

W h e n a method cal l enters the trace window, a l l running instances (those wi th parame­
ters already assigned) are advanced. The method cal l may however also start a new instance
that is not yet part of the trace window. The analyzer tries to create new instances from
targets and spoilers from the contract. These new instances are added to the trace window
only if there is no matching instance already present i n the trace window. Two instances
are matching, if they are bound to the same target or spoiler, their parameters share the
same values, and they both just started (they accepted the same first method). In practice,
the only difference between these matching instances is that one contains information about
the previously encountered instance while the other does not.

Example. Consider target a(X) b(X) and a program trace a(l) b(l) a(2) b(2) a (l) .
After a (l) , the analyzer adds a new instance i\ to the window wi th X = 1. After b (l) ,
i\ is advanced, accepted, and reset. N o new instance is started because there is no target
starting wi th method b. After a(2), i\ cannot be advanced, because the parameters do
not match. New instance ii w i t h X = 2 is added to the trace window. After b(2), ii is
advanced, accepted, and reset. W h e n a(l) is encountered again, i\ is advanced but no new
instance is added because i\ would match the newly created instance.

4.5.2 Detection of Contract Violations

Each t ime a target or a spoiler is fully recognized by the analyzer, it must be checked
whether there are any contract violations. W h e n a method enters a trace window, there
may be several instances from the same thread that w i l l be fully accepted by this method

29

Step 1: a (42)
Target: a (X) b(_)
Parameters: X=42
Beginning: (1)
Last instance: none

Step 2: b (l)
Target: a (X) b(_)
Parameters: X=42
Beginning: (1)
Last instance: none

Target: a (X) b(_)
Parameters: X=42
Beginning: none
Last instance: (l) - (2)

Step 3: a(42)
Target: a (X) b(_)
Parameters: X=42
Beginning: (3)
Last instance: (l) - (2)

Figure 4.2: A n example of an instance life cycle. In the first step, the instance is created
when a method cal l a (42) is encountered. The vector clock of the beginning is set and the
parameters are assigned a value. In step 2, the instance is fully accepted. A t this point,
the analyzer looks for contract violations. Then the instance is reset, the vector clock of
the beginning is reset, and the vector clocks of the last instance are set. In step 3, method
a is called wi th an argument that matches the value of X i n the instance. The instance is
started again.

cal l . For each accepted target and spoiler instance, the analyzer w i l l look for conflicting
instances i n trace windows from other threads.

W h e n an instance is fully accepted, the analyzer w i l l retrieve a l l conflicting instances
from other threads. If the instance is a target instance, the analyzer w i l l retrieve instances of
a spoiler that can invalidate the target, as specified i n the contract. Similarly, i f the instance
is a spoiler instance, the analyzer w i l l look for instances of a target that can be invalidated
by the spoiler. For each conflicting instance, it is checked whether the contract parameter
values match. Then finally, the analyzer checks the vector clocks of each matching instance
and decides i f the two instances interleave each other.

The two instances may not actually interleave each other. The interleaving is decided
based on the vector clocks of the beginnings and ends of the two instances. Vector clocks
are only updated when threads synchronize themselves. So the analyzer w i l l mark the two
instances as interleaving when there was not a synchronization between the threads that

30

would prevent them to interleave each other i n another run of the program under analysis.
Figure 4.3 shows an example of a contract violat ion detected in a program.

Figure 4.3: A n example of a contract viola t ion in a program. Consider a target a(X) b(X)
and a spoiler c(_). In thread t, a target instance r\ w i th X = 1 is detected, it begins and
ends at (1, 0). There is no spoiler instance accepted at this moment, so there is no contract
violat ion. T h e n a thread u is created and a spoiler instance s\ is accepted, it begins and
ends at (1 ,1) . The spoiler instance does not interleave the r\ because (1 ,0) E (1 ,1) . Then
another target instance r2 is detected i n t w i th X = 2, it begins and ends at (2 ,0) . The
instance interleaves w i t h spoiler instance s\ because (1 ,1) [J (2, 0).

4.6 A Contract Analyzer Tool

The ContractAnalyzer class described i n Section 4.5 is not meant to be called directly by
RoadRunner because it contains only methods specific to the validat ion of contracts. The
ContractTool class was created as a layer between RoadRunner and ContractAnalyzer.
Its purpose is to load a contract from a file, create a ContractAnalyzer instance, and
forward relevant events from RoadRunner to ContractAnalyzer.

The ContractTool class is a subclass of the Tool class (see Section 2.6). The following
methods are overridden:

• i n i t , which is called before the analysis, after command-line options are processed:

• exit, which is called when a method exits:

• create, which is called when a new thread is created:

• acquire and release(), which is called when a synchronized method or a synchro­
nized block is entered or exited:

• preStart, which is called before a new thread is started (after a fork operation):

• post Join, which is called after a thread is joined wi th another thread.

31

Methods for detecting memory accesses w i l l not be used by the tool , and also no data w i l l
be stored i n shadow memory locations, except for vector clocks stored wi th locks. In its
i n i t method, the too l loads a contract definition from a file and calls the contract parser.
After the contract is parsed, it constructs ContractAnalyzer.

The exit method extracts relevant data from MethodEvent that is supplied by Road­
Runner. T h e n it checks i f the method exists i n the contract, and if it does, the method cal l
is forwarded to ContractAnalyzer. The method filtering happens i n ContractTool and
not i n ContractAnalyzer because it is not essential to the analysis and also, there are sev­
eral filtering solutions available. In this Master 's thesis, the filtering is done by comparing
method signatures during the analysis. A better approach, which might be implemented in
the future, is to instrument only methods contained in a contract. In that case, no filtering
during analysis is needed as it is guaranteed that each method event produced w i l l belong to
a method i n the contract. The rest of the methods, create, acquire, release, preStart,
and postJoin, just pick relevant information from events provided by RoadRunner and
forward it to ContractAnalyzer.

32

Chapter 5

Implementation and Testing

The analyzer described i n Chapter 4 was successfully implemented. This chapter provides
implementation details and clarifies decisions made during the implementation. Section 5.1
describes approaches and principles that shaped the implementation. Before the imple­
mentation took place, several RoadRunner dependencies were upgraded, see Section 5.2. In
Section 5.3, the contract file parser is described. Changes to the instrumentation performed
by RoadRunner are described in detail i n Section 5.4. F ina l ly , Section 5.5 describes testing
approaches.

5.1 General Approaches

The implementat ion of the analyzer was guided by several principles or approaches that
are described i n this section.

5.1.1 Functional Programming

The analyzer implementat ion uses several concepts from functional programming which are
briefly described i n this section.

Immutable data structures A l l classes are immutable, except for ContractAnalyzer
and ContractTool. Once created, the internal state of objects does not change. A l l oper­
ations produce a new object instead of modifying the current one. See the next section for
more details.

Side effects and pure functions Most methods i n the analyzer are pure functions,
which means that each ca l l can be always replaced wi th a resulting value of the ca l l . For
example, consider pure function int sum(int a, int b). T h e n the method cal l sum(2,3)
can be always replaced wi th 5 without changing program behavior. Pure functions perform
no side effects (such as wr i t ing to a file).

Higher-order function The analyzer contains and uses methods that take functions as
parameters.

33

5.1.2 Immutable Data Structures

The data structures used by the analyzer are immutable. A n immutable object is an object
whose internal state remains constant after it has been created. This property brings
several benefits. The object can be shared among mult iple threads without the need for
synchronization. Immutable objects are always in a consistent state. The public methods
of a given class w i l l always behave the same way on an object. Immutable objects are also
easy to test and reason about.

In Java, immutabi l i ty is achieved by following rules. Immutable classes should be f i n a l
to avoid overriding of methods. A l l fields of a class should be private and f i n a l . A l l fields
should reference only immutable objects or, i f not possible, the fields should not be modified
in the class. A l l methods that would normal ly modify the object should return updated
object instead. See L i s t i ng 5.1 for an example. To use immutable objects effectively, the
Vavr collection l i b r a ry 1 was used. It provides immutable replacements for standard Java
collections.

public f i n a l class FiniteAutomaton {
private f i n a l State sta r t ;
private f i n a l State current;

public FiniteAutomaton(State start) { t h i s (s t a r t , s t a r t) ; }

private FiniteAutomaton(State s t a r t , State current) {
t h i s . s t a r t = start;
this.current = current;

}

public FiniteAutomaton advance(Signature s i g , Args args) {
return new FiniteAutomaton(start, current.advance(sig, args));

}

public FiniteAutomaton reset() {
return new FiniteAutomaton(start, s t a r t) ;

}

public boolean isRunningO { return current != st a r t ; }
}

Lis t ing 5.1: Simplified implementat ion of an immutable finite automaton. The automaton
consists of references to the start ing state and the current state. The public constructor
allows creating automatons that are i n their starting states, ensuring consistency. The
advance method does not update the current state but creates a new finite automaton wi th
an updated current state.

5.1.3 Dependency Inversion Principle

Several parts of the analyzer were designed wi th the dependency inversion principle in mind .
Classes holding low-level data, such as method signatures, method arguments, or contract

available at h t tps : / /www.vavr . io /

34

https://www.vavr.io/

parameters, are not used directly by the analyzer but v i a interfaces. For example, there is
the JvmSignature class that implements the Signature interface.

The collection that stores target and spoiler instances in a trace window is abstracted
in the InstanceCollection interface. The MultimapInstanceCollection implements the
collection using Vavr ' s Multimap data structure. Th is approach makes it easy to create
alternative implementations of the collection.

5.2 A S M 7.0 and Java 11

The analyzer was buil t on RoadRunner version 0.5 from 2017. It contains the following
dependencies: the A S M framework in version 5.0.2 wi th custom modifications, J F l e x in
version 1.4.2, and C U P i n version 11a. The project was wri t ten for Java 8 and was buil t
using A n t . For an easier implementat ion of the analyzer, several components were upgraded.

The A S M framework was upgraded to version 7.0 which supports Java 11. RoadRunner
can therefore analyze programs compiled for Java 11. Before the upgrade took place, the
custom modifications of the A S M framework were isolated to a series of patches against
the unmodified A S M version 5.0.2. Then , for each new version up to 7.0, the A S M was
always replaced wi th a newer version and the custom patches were reapplied and modified
if necessary. A s a result, the A S M framework can be easily upgraded i n the future by
reapplying the custom patch series. The RoadRunner itself was modified to be buil t for
Java 11.

5.3 Contract File Parsing

One of the inputs to the analyzer is a contract definition. The syntax of the definition is
described in Chapter 4. Due to its length, it is passed to the analyzer in a text file. The
file name is specified using a command-line option. RoadRunner allows tools to easily add
new command-line options. The options are then automatical ly parsed and made available
for the tool to use.

The file w i th contract definition is then scanned using a lexical analyzer and parsed
using a L A L R parser. The lexical analyzer is generated using J F l e x 2 and the parser is
generated by C U P 3 . The pr imary reason for choosing these generators was that both of
them were already used i n RoadRunner , so no new dependency was added to the project.

The lexical analyzer recognizes various symbols for del imit ing the methods i n a contract
but it does not split class names and method descriptors, they are passed to the parser as
a single string. For example, java/lang/Object or (Ljava/langString; II) V. The list of
terminals it produces is defined i n the parser.

The parser takes the contract definition file contents, creates a lexical analyzer, and
parses the file. The result is a Contract instance or an exception. Each method i n a contract
is parsed as a finite-state machine w i t h a single state. The whole target or spoiler definition
is constructed either by concatenating or alternating two states from left to right.

The current implementat ion of the parser introduces a l imi ta t ion to the range of allowed
regular expressions. W h e n the alternation operation is used (denoted by I), the expressions
cannot start w i th the same method. For example, the regular expression (ab|ac) is not
allowed. The resulting finite automaton would be nondeterministic. The current imple-

2available at h t t p s : / / j f l e x . d e /
3available at ht tp ://www2 .cs . tum.edu/projects/cup/

35

https://jflex.de/
http://www2.cs.tum.edu/projects/cup/

mentation does not perform any conversion, a l l expressions must be converted by the user.
In the previous example, the expression would need to be converted to a(b|c).

5.4 Changes in Instrumentation

RoadRunner was modified to obtain method arguments and return values during the analy­
sis. The implementat ion is based on changes described i n [9], the final version however fixes
several major issues. The in i t i a l implementat ion adds new fields to the MethodEvent class
which holds information about a method invocation. These changes were taken without
modifications from [9].

The main instrumentation logic is contained in the SyncAndMethodThunklnserter class
from the r r . instrument. classes package, in the createMethodThunk method. The
method creates a new method that w i l l generate enter and exit events and cal l the original
method. In the beginning, the values of method parameters need to be stored, at the end,
the return value must be stored. The in i t i a l implementat ion described in [9] contained sev­
eral issues. Static methods could not be instrumented because of incorrect indexing of local
variables. Methods wi th parameters of type double or long could not be instrumented,
because the implementation was not taking into account that these values occupy two local
variables. These issues have been fixed and an extensive test suite was created to verify the
final implementation.

Each method is instrumented as follows. A new array of type Object is allocated wi th
the size equal to the number of parameters (taken from the method descriptor). Then for
each parameter, its value is loaded onto the operand stack. Reference values are stored
directly i n the array. P r imi t ive values are wrapped i n an object by cal l ing the valueOf ()
method i n the corresponding class depending on the pr imit ive type. For example, int
values are passed to the Java. lang. Integer .valueOf () function. After processing a l l
arguments, the array is stored i n a local variable.

The original method is then called i n a t ry -ca tch block. O n normal exit, the return
value is converted to an object, the same way parameters are converted. Then a method
exit event is generated, containing both the array of arguments and the return value. If an
exception is caught, the return value is set to n u l l and an exit event is generated containing
the arguments. A n example of a instrumented method is shown in L i s t ing 5.2.

5.5 Testing

Each part of the analyzer was thoroughly tested using several different approaches. The core
analyzer functionality was tested using unit tests wri t ten in J U n i t 5 . The instrumentation
of method arguments and returns values was tested using a custom RoadRunner tool . The
integration of a l l parts was tested using Bash scripts that prepare contract files, programs
under analysis, and launch RoadRunner . This section describes approaches used for testing
different parts of the analyzer. See Append ix B for instructions for running the tests.

The analyzer was implemented so that there is almost no need to work wi th Road­
Runner 's internal structures when testing the analyzer. The ContractTool class serves as
a wrapper for Contract Analyzer. A l l structures, such as MethodEvent, are transformed
into objects specific to the contract analyzer. In tests, ContractAnalyzer is used directly.

4available at h t t p s : / / j u n i t . o r g / j u n i t 5 /

36

https://junit.org/junit5/

public i n t foo(int, java.lang.String);
0 invokestatic #20 // Method rr/state/ShadowThread

// .getCurrentShadowThread:()Lrr/state/ShadowThread;
3 astore 5
5 aload_0
6 sipush 508
9 aload 5
11 invokestatic #27 // Method rr/tool/RREventGenerator

// .enter: (Lj ava/lang/0bj ect;ILrr/state/ShadowThread;)V
14 iconst_2
15 anewarray #3 // class ; ava/lang/Object
18 astore_3
19 aload_3
20 iconst_0
21 i l o a d _ l
22 invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
25 aastore
26 aload_3
27 i c o n s t _ l
28 aload_2
29 aastore
30 aload_0
31 i l o a d _ l
32 aload_2
33 invokespecial #35 // Method $rr_foo $rr 0riginal_:(ILjava/lang/String;)I
36 dup
37 invokestatic #33 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
40 astore 4
42 aload 5
44 aload_3
45 aload 4
47 invokestatic #39 // Method rr/tool/RREventGenerator.exit:

// (Lrr/state/ShadowThread;[Ljava/lang/Object;Ljava/lang/Object;)V
50: goto 61
53: aload 5
55: aload_3
56: aconst_null
57: invokestatic #39 // Method rr/tool/RREventGenerator.exit:

// (Lrr/state/ShadowThread;[Ljava/lang/0bject;Ljava/lang/0bject;)V
60: athrow
61: i r e t u r n

Lis t ing 5.2: A method instrumented to obtain arguments and the return value. O n lines

5-11, the enter event is generated. O n lines 14-18, an array for arguments is created and

stored in a local variable. O n lines 19-25, the first argument is wrapped i n an object and

stored in the array on index 0. O n lines 26-29, the second argument is stored direct ly in

the array on index 1. O n lines 30-33, the original method is called. O n lines 36-40, the

return value is wrapped and stored i n a local variable. Lines 42-50 generate the exit event.

Lines 53-60 contain a catch block i n case an exception is thrown in the original function.

37

RoadRunner is not executed, the events coming from the program under analysis are cre­
ated by tests, al lowing for tests that do not rely on the thread scheduler and are very
fast.

The contract parser is tested using J U n i t 5 tests. The contract definition is passed
to the parser and the produced Contract instance is compared wi th a Contract instance
constructed directly in code. The contract for comparison is constructed by creating ap­
propriate objects such as method signatures, meta-variables, and finite automaton states.

Changes to instrumentation were tested by preparing a custom subclass of R o a d R u n ­
ner's Tool class that overrides the exit method and prints arguments and the return value
to the standard output. A testing Java program was created that calls methods w i t h vari­
ous numbers and types of parameters. The test consists of analyzing the testing program
wi th RoadRunner using the custom tool . The too l prints method arguments and return
values to the output and the values must match those i n the testing program. The whole
process is automated using a Bash script.

The integration of a l l parts is again automated using Bash scripts. Testing programs and
files w i t h contract definitions are prepared. The script compiles the testing program and
analyzes it w i th RoadRunner that is using the contract tool . Then it verifies if a contract
viola t ion has been found.

5.5.1 Overview of Integration Tests

This section provides an overview of integration tests wri t ten for the analyzer.

Array list The contract i n this test covers operations on an array list w i t h the following
operations: add, get, set, contains, indexOf, remove, and size. There are four programs
i n this test, each violat ing one contract clause.

Account Th is test was taken from the test suite of the G l u o n project 5 . The test simulates
a bank account w i th two operations: getBalance and setBalance. Even though the
operations are synchronized, there is a high-level data race where a thread reads the balance,
increments it , and writes it back.

Block allocation This test was taken from the test suite of the G l u o n project. There is
a shared vector that for each block of a buffer stores whether it is free or occupied. W h e n
allocating a block, a free block must be found and then it must be set as occupied. Between
finding a block and mark ing it as occupied, another thread may mark the same block as
occupied.

Arithmetic database Th i s test was taken from the test suite of the G l u o n project.
The test simulates a database w i t h two tables. The first table contains a set of regular
expressions and the second holds the results of the expressions. E a c h table is accessed using
synchronized methods. There are several problems related to the absence of transactions
when accessing mult iple tables or when performing several operations on the same table.

Connection test This test was taken from the test suite of the G l u o n project. The
test simulates a chat appl icat ion that uses a socket to send messages over the network.

5available at h t t p s : / / g i t h u b . c o m / t r x s y s / g l u o n

38

https://github.com/trxsys/gluon

A message counter is associated wi th the socket that is incremented wi th each message
sent. W h e n the socket is closed, there is an inconsistency when a thread may see a closed
socket but the counter is not yet zeroed. W h e n a message is sent, it is checked that the
socket is s t i l l open before sending the message. However, the socket may be closed i n the
meantime by another thread.

5.6 Performance

The performance of the analyzer was checked on the Account test case (see Section 5.5)
w i th several modifications. The high-level data race present in the test case was removed so
that the analyzer w i l l not stop the program right after a contract viola t ion is detected. The
number of operations performed on the account was added as a parameter. The Account
test case starts two threads and a l l tracked operations are performed on a single object, so
the number of tracked target and spoiler instances is constant.

The test case was run using the RoadRunner benchmark mode. The measured results do
not include the in i t ia l iza t ion of the analyzer. The Account test case was run three times:
without instrumentation, w i th instrumentation, and w i t h instrumentation and contract
val idat ion. The results are shown i n Figure 5.1. A s expected [6], the instrumented program
is approximately ten times slower than the original program. The analyzer is 10-100 times
slower than the instrumented program. To fully assess the performance of the analyzer,
more benchmarks would be needed.

mil i I i i I i I i I i_3

10 1 10 2 10 3 10 4 10 5 10 6

number of operations

no instrumentation—e—with ins t rumenta t ion—a—with instrumentation and contracts

Figure 5.1: Results of the Account benchmark. The first series shows the runtime wi th­
out any instrumentation. T h e second series is run wi th RoadRunner instrumentation but
without tracking of targets and spoilers. The last one shows the runtime of instrumented
program wi th contract validation.

39

Chapter 6

Conclusion

The goal of this thesis was to design a dynamic analyzer for val idat ing parametric contracts
w i th spoilers. The analyzer was fully implemented as an extension to the RoadRunner
framework.

The first part of this thesis provided the necessary background i n multi-threaded pro­
gramming i n Java, dynamic analysis, and instrumentation i n the RoadRunner framework.
Contracts for parallel ism were then introduced together w i th an on-the-fly method for con­
tract analysis. A dynamic analyzer for t racking parametric contracts was proposed. Several
restrictions were put on the analyzer i n the design phase to mitigate problems i n previous
prototype implementations. The analyzer consists of the following parts: a parser for con­
tract definitions, modified instrumentation of methods, and the core analyzer that tracks
target and spoiler instances and detects contract violations. A l l parts of the analyzer were
implemented and their functionality was verified by an extensive test suite. The analyzer
was able to detect a l l contract violations present i n the testing programs.

The analyzer implementat ion provides a solid basis for contract val idat ion of programs
wri t ten i n Java. There is an ongoing work on the formalization of parametric contracts and
extending experiments on standard libraries. The analyzer can be used for those experi­
ments. The changes in method instrumentation are not t ied to the contract val idat ion and
can be used by various other analyzers that may benefit from obtaining method arguments
and return values.

In the future, various parts of the analyzer may be tuned for better performance. The
functional implementat ion allows easy parallel ization of checking contract violations. The
instrumentation can be further reduced to obtain only program actions relevant to the
contract val idat ion. Instance invalidat ion can be introduced by clarifying the conditions in
the context of parametric contracts. The analyzer can be also combined wi th noise injection
techniques for detecting more contract violations.

40

Bibliography

[1] A R T H O , C , H A V E L U N D , K . and B I E R E , A . High-level data races. Software Testing,

Verification and Reliability. 2003, vol . 13, no. 4, p. 207-227. D O I : 10.1002/stvr.281.

[2] B R U N E T O N , E . ASM 4-0 A Java bytecode engineering library [online]. 2011 [cit.
2021-01-09]. Available at: https://asm.ow2.io/asm4-guide.pdf.

[3] D I A S , J . R . , F E R R E I R A , C , F I E D O R , J . , L O U R E N C O , J . , S M R C K A , A . et a l . Verifying

Concurrent Programs Using Contracts. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). Institute of Elec t r ica l and
Electronics Engineers, 2017, p. 196-206. D O I : 10.1109/ICST.2017.25. I S B N
978-1-5090-6032-0.

[4] F I E D O R , J . , L E T K O , Z . , L O U R E N C O , J . and V O J N A R , T . D y n a m i c Val ida t ion of

Contracts i n Concurrent Code. In: Proceedings of the 15th International Conference
on Computer Aided Systems Theory. The Univers idad de Las Palmas de G r a n
Canar ia , 2015, p . 177-178. I S B N 978-84-606-5438-4.

[5] F L A N A G A N , C . and F R E U N D , S. N . FastTrack: Efficient and Precise Dynamic Race
Detection. Commun. ACM. New York , N Y , U S A : Associat ion for Comput ing
Machinery, november 2010, vol . 53, no. 11, p. 93-101. D O I :
10.1145/1839676.1839699. I S S N 0001-0782.

[6] F L A N A G A N , C . and F R E U N D , S. N . The RoadRunner Dynamic Analys is Framework
for Concurrent Programs. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. New York , N Y ,
U S A : Associat ion for Comput ing Machinery, 2010, p. 1-8. P A S T E '10. D O I :
10.1145/1806672.1806674. I S B N 9781450300827.

[7] G H E Z Z I , C . , J A Z A Y E R I , M . and M A N D R I O L I , D . Fundamentals of S of ware

Engineering. 2nd ed. Prentice H a l l , 2003. 269-336 p. I S B N 0-13-099183-X.

[8] G O S L I N G , J . , J O Y , B . , S T E E L E , G . L . , B R A C H A , G . and B U C K L E Y , A . The Java

Language Specification, Java SE 8 Edition. 1st ed. Addison-Wesley Professional,
2014. 645-659 p. I S B N 013390069X.

[9] J A N O U S E K , M . Dynamic Analyzers for SearchBestie Platform. Brno , C Z , 2017.
Master 's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.

[10] L E T K O , Z . Analysis and Testing of Concurrent Programs. B rno , C Z , 2012. P h . D .
thesis. Brno Univers i ty of Technology, Facul ty of Information Technology.

41

https://asm.ow2.io/asm4-guide.pdf

[11] L I N D H O L M , T . , Y E L L I N , F . , B R A C H A , G . and B U C K L E Y , A . The Java Virtual

Machine Specification, Java SE 8 Edition. 1st ed. Addison-Wesley Professional, 2014.
69-332 p. I S B N 013390590X.

[12] S C H I L D T , H . Java: The Complete Reference, Eleventh Edition. 11th ed. New York :
M c G r a w - H i l l Educa t ion , 2018. I S B N 1260440230.

[13] S O U S A , D . G . , D I A S , R . J . , F E R R E I R A , C . and L O U R E N Q O , J . Preventing A t o m i c i t y

Viola t ions w i th Contracts. CoRR. 2015, abs/1505.02951.

42

Appendix A

Storage Medium

The contents of the enclosed C D :

RoadRunner/ The source code of the analyzer.

RoadRunner-compiled/ Compi led analyzer.

patches/ The source code of the analyzer, as patches against commit bl41616 i n the
upstream RoadRunner reposi tory 1 .

contracts-for-concurrency.pdf The text of the thesis.

contracts-for-concurrency-print.pdf The text of the thesis, for color print ing,

contracts-f or-concurrency/ The sources code of the text of the thesis.

available at ht tps: / /gi thub.com/stephenfreund/RoadRunner

43

https://github.com/stephenfreund/RoadRunner

Appendix B

Manual

The analyzer requires a Java V i r t u a l Machine version 11 and A n t . For convenience, the
analyzer should be compiled and run on L i n u x as there are several Bash scripts used in the
process. A l l commands, such as ant or javac, that are run dur ing the compilat ion should
belong to the same J V M installat ion.

O n Fedora 34, insta l l Java 11 J D K and A n t by running:

$ sudo dnf i n s t a l l java-ll-openjdk ant

O n U b u n t u 21.04, run:

$ sudo apt i n s t a l l openjdk-ll-jdk

A n t must be installed locally from the project's website. To compile the project, run ant
in the RoadRunner directory. The project should compile and print BUILD SUCCESSFUL at
the end. The unit tests can be run at this step w i t h ant test. The tests should a l l pass.

Before running RoadRunner , edit the msetup file. O n line 36, edit the path to the J V M
installat ion. O n Fedora 34, /usr/lib/jvm/java -11 should be used. O n U b u n t u 21.04,
/usr/lib/jvm/java-ll-openjdk-amd64 should be used. T h e n run source msetup. The
environment variables should be properly exported.

To verify the compilat ion, run rrrun -help. To instrument and run a testing program,
run the following commands:

$ javac test/Test.Java
$ rrrun test.Test

To launch the contract analyzer on a simple program, run the following commands:

$ javac test/ContractTest.Java
$ rrrun -tool=CT -contractFile=test/ContractTest.contract test.ContractTest

The analyzer should find a contract violat ion. The integration tests are run by the following
command:

$ t e s t S c r i p t s / a l l . s h

available at h t tp : / / an t . apache .org /

44

http://ant.apache.org/

Appendix C

Contract Definition Grammar

The configuration files w i th contract definitions must follow the grammar presented below.
The grammar is described in the B N F syntax.

<contract> ::= <clause> I <contract> <clause>

<clause> ::= <method_expr> "<-" <method_expr> ";"

<method_expr> ::= <method>
I " (" <method_expr> ") "
I <method_expr> " I " <method_expr>
I <method_expr> " (" <method_expr> ") "
I <method_expr> <method>

<method> ::= <class> <name> <descriptor> <metavars>

<metavars> ::= <metavar> "=" <metavar> " (" <metavars_list> ") "
I <metavar> "=" <metavar> " () "
I <metavar> "=(" <metavars_list> ") "
I <metavar> " (" <metavars_list> ") "
I " (" <metavars_list> ") "
I <metavar> " () "
I " () "

<metavars_list> ::= <metavar> | <metavars_list> "," <metavar>

<metavar> ::= <letter> | "_"

The terminals have the following definitions:

• <class> is a class name i n the internal representation of the J V M specification, for
example: java/lang/Object:

• <name> is the method name, as defined by the J V M specification, for example: equals:

• <descriptor> is the method descriptor, as defined by J V M specification, for example:
(Ljava/lang/Object;)Z:

• <letter> is a single letter, such as X.

45

Appendix D

Class Diagram of the Contract
Analyzer

The following page contains a U M L diagram of the contract analyzer described i n Chapter 3.
In the diagram, the following classes are omit ted for clarity:

• the ContractTool class which connects ContractAnalyzer to RoadRunner ,

• the contract lexer and parser,

• basic classes and interfaces used for holding simple data, such as Args, Signature,
MetaVars, ImmutableVectorClock, and ContractParams.

The ContractAnalyzer class is a generic class w i th two type parameters: T is a type
representing a thread, L represents a lock. Dur ing the analysis, RoadRunner types are
used: T is ShadowThread, L is ShadowLock. Collections and containers used i n the diagram
are parts of the Vavr library.

46

T , L

Contract Analyzer

Contract
Dccoration<T, Window>
Dccoration<T, ImmutablcVcctorClock>
Dccoration<L, ImmutablcVcctorClock>
gctTid: Function<T, Intcgcr>
threads: L i s t < T >

+ exit(T, Signature, Args)
+ crcate(T)
+ acquirc(T, L)
+ rclcasc(T, L)
+ fork(T, T)
+ join(T, T)

C o n t r a c t

- targets: Map<Statc, S t a t O
- signatures: Sct<Signaturc>

1

- targets: Map<Statc, S t a t O
- signatures: Sct<Signaturc>

1

+ Contract(Map<State, State>)
+ contains (Signature): boolean
+ gctTargcts(): Map<Statc, S t a t O
+ mcrgc(Contract): Try<Contract>

«intcrfacc»
I n s t a n c e C o l l e c t i o n

+ gctByStatc(Statc): Travcrsablc<Instance>
+ advancc(Function<Instancc, Option<

Eithcr<ViolationExccption, I n s t a n c O > >) :
Eithcr<ViolationExccption, InstanccCollcction>

targets

1

spoilers

Window

tid: int
targets: InstanceCollection
spoilers: InstanceCollection

+ Window(tid:int, Contract)
+ exit (Signature, Args, Scq<Window>,

ImmutablcVcctorClock):
Eithcr<ViolationExccption, Window>

MultimapInstanceCollection

instances: Multimap<Statc, I n s t a n c O

+ MultimapInstanccCollcction(
states: Map<Statc, S t a t o)

Finite Automaton

- start: State
- current: State
- params: Option<ContractParams>

+ FinitcAutomaton(State)
+ advancc(Signaturc, Args):

Option<FinitcAutomaton>
+ resct(): FinitcAutomaton
+ paramsMatch(FinitcAutomaton): boolean
+ isAcccptcd(): boolean
+ isRunning(): boolean
+ hasParams(): boolean

Instance

- fa: FinitcAutomaton
- conflicting: State
- lastBcgin: Option<ImmutablcVcctorClock>
- lastEnd: Option<ImmutablcVcctorClock>
- begin: Option<ImmutablcVcctorClock>

+ Instancc(FinitcAutomaton, State)
+ advancc(Signaturc, Args, ImmutablcVcctorClock,

onAcccptcd: Function2<Instancc, State,
Option< ViolationExccption> >):
Option<Eithcr<ViolationExccption, Instance> >

+ isViolatcdBySpoilcr(spoilcr: Instance, t id: int,
targctTid: int, vc: ImmutablcVcctorClock)

+ violatcsTargct(target: Instance, t id: int,
targctTid: int, vc: ImmutablcVcctorClock)

+ matchcs(Instancc): boolean
+ isRunning(): boolean
+ hasParamsQ: boolean

1 conflicting

current

State

- transitions: Map<Signaturc,
Tuplc2<Statc, MctaVars>>

+ last(): State

+ of(transitions: Map<Signaturc, Tuplc2<State,

MctaVars>>): Try<Stato>
+ gctNcxtStatc(Signaturc, Args): Option<Tuplc2<

State, ContractParams>>
+ gctSignaturcs(): Sct<Signaturc>
+ concatcnatc(Statc): State
+ altcrnatc(Statc): Try<Statc>

47

