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Abstract
This thesis investigates the use of large language models (LLMs) enhanced with Retrieval-
Augmented Generation (RAG) techniques to analyze malware behaviors effectively. Start-
ing with an overview of malware analysis methods, both static and dynamic, the study
delves into the use of the MITRE ATT&CK framework to understand and categorize mal-
ware strategies.

The core of the research focuses on the architecture and implementation of a malware
behavior analysis tool that integrates RAG with LLMs. This tool aims to aid security
professionals leveraging generative AI’s capabilities to interpret complex malware behaviors.

Additionally, the research includes a practical deployment of the Security Information
and Events Management (SIEM) system, using the Wazuh platform to detect simulated
adversarial behaviors. The deployment and testing are done in a controlled virtual envi-
ronment, highlighting the potential of LLMs in enhancing cyber security measures.

The thesis concludes with recommendations for future enhancements and the potential
expansion of generative AI applications in cyber security.

Abstrakt
Táto práca skúma využitie veľkých jazykových modelov (LLMs) vylepšených technikou
Retrieval-Augmented Generation (RAG) pre efektívnu analýzu správania malvéru. Začína
prehľadom metód analýzy malvéru, ako statických tak dynamických. Štúdia sa zameriava
na využitie rámca MITRE ATT&CK na pochopenie správania malvéru veľkým jazykovým
modelom.

Jadro výskumu sa zameriava na architektúru a implementáciu nástroja na analýzu sprá-
vania malvéru, ktorý implementuje RAG s využitím LLMs. Tento nástroj má za cieľ pomôcť
profesionálom v oblasti bezpečnosti využívať možnosti generatívnej AI na interpretáciu
komplexného správania malvéru.

Okrem toho, výskum zahŕňa praktické nasadenie systému pre správu bezpečnostných
informácií a udalostí (SIEM), pričom využíva platformu Wazuh na detekciu simulovaných
útokov. Nasadenie a testovanie prebiehajú v kontrolovanom virtuálnom prostredí. Práca
poukazuje na potenciál LLM modelov pri zlepšovaní opatrení v kybernetickej bezpečnosti.

Práca končí diskusiou o možných vylepšeniach implementovaného nástroja.
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Chapter 1

Introduction

Information technologies are becoming increasingly interwoven with our everyday work
duties as well as free time. The crime is part of our society since time out of mind and
electronic environment is not an exception. Therefore, it is as important to secure our
digital world as it is to have a safe lock on our home door.

An undisputed part of computer criminal’s arsenal is malicious software, which is ever
evolving. This creates a challenging task for improving defense mechanisms to prevent any
possible financial or emotional damage and data loss.

A widely used category of defense mechanisms are Intrusion Detection Systems. Specif-
ically Host-Based Intrusion Detection Systems are of the interest in this thesis. These
systems provide comprehensive way of analyzing the impacts of malware on the endpoint
devices. However, in constantly changing environment of cyber security, it is a necessity to
posses an even more efficient ways of combating malware.

This thesis aims to explore the possibilities of utilizing a current state of the art tech-
nology in never ending battle with malware. This technology is Large Language Models,
which has exploded in popularity in the recent years. Large Language Models have a seem-
ingly unlimited range of possible applications in numerous areas. A successful employment
of such technology requires thorough review of the current solutions and analysis of their
feasible improvements or additions.

One of the ways to engage Large Language Models into Host-Based Intrusion Detection
Systems could be to generate human readable insights about malware activities on the
host. These insights would be of tremendous help to overwhelmed information security
analysts trying to “decipher” system logs. With such insights the analysts would be able
to effectively prioritize their focus on important events, alerts and detections. However,
such insights are not the only feature that large language models could offer. It is possible
that these models would be a great addition to decision making at incident response. If
a sufficient reliability of such implementation is proven, it could be used for automated
intrusion reaction.

The thesis will cover analysis of requirements for such tool or integration, its architecture
and implementation details. A summary of the results and conclusion will be conducted at
the end of the thesis.
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Chapter 2

Malware Analysis

This chapter covers an overview of malware analysis fundamentals and reviews existing
approaches to malware detection and analysis. Furthermore it describes methodologies of
behavioral analysis.

Malware analysis is a vital part of computer security activities as it serves a crucial
role in developing effective defense mechanisms. From business perspective, when a se-
curity incident occurs, cyber security analysts and incident response team members need
to understand the nature of the threat and how it affects system resources and business
continuity. It helps them more efficiently identify and measure damages.

Malware often targets sensitive data, such as personal information, financial records,
or intellectual property. Effective malware analysis helps to identify, whether such data is
targeted by specific malware or not.

Malware analysis can help trace the threat actor behind an attack by distinguishing
similarities in malware’s methodologies and techniques.

In the context of this paper the most important purpose of malware analysis is under-
standing the behavior of malware. It is essential for developing intrusion detection systems,
that are capable of real time malware detection.

2.1 Static Malware Analysis
Static analysis is a malware analysis method without executing the analyzed program. It
involves review of either source code or binary code of the analyzed software. Source code
of a software is usually not available, therefore it requires reverse engineering techniques
including disassembly. Part of static analysis is extraction of metadata from the program.
The extracted metadata such as version numbers or embedded information, could help to
gain insights into the software’s origin or purpose.

The binary of the analyzed program can contain useful indicators of compromise(IOC)
in form of strings. The strings found in program’s binary could include:

• IP addresses to connect to.

• Domains or URL addresses to download additional malicious software.

• Scripts in different programming language to be dropped and executed on the ma-
chine.

• Other strings found in known malware.
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However, static analysis alone is nowadays insufficient. Common static analysis tech-
niques can be easily deceived by various techniques such as code packing, anti debugging
features, instruction virtualization, control-flow obfuscation and others. One of the ad-
vanced techniques is anti-disassembly technique. It uses specially crafted code or data in
order to let disassembly tools to produce validly appearing, however incorrect program
listing [20].

2.2 Dynamic Malware Analysis
Dynamic malware analysis is a methodology performed during the runtime of the analyzed
program. The execution of the program is done in controlled environment, such as a sandbox
or virtual machine, that is restricted from connection to outside world.

There are two approaches to dynamic analysis:

• Capturing the system state image before malware execution to explore how it changes
after the malware is executed.

• Executing the malware and observing its actions and behavior directly during the
runtime.

The first approach only captures the end result of malware execution. It does not capture
all the dynamic changes, in granular enough level, which occur during the execution of the
analyzed malware. For this approach there are different system snapshot taking tools. These
tools are capable of recording changes to file system such as the files created, downloaded
or deleted before its termination. Some of the tools can create more complex picture of
the hosting system, such as directory structure, file properties, registries, and other system
files.

The second approach, where the program and its associated processes are observed
during the runtime, provides more in-depth behavior properties. In this methodology,
the analyst monitors interaction with the file system, the registry, and the network using
various monitoring tools. These interactions with the file system, registries, and the network
can be monitored using tools such as Process Monitor, Process Explorer, TCPView, and
Wireshark. Process Explorer and Process Monitor are used to monitor file system and
registry changes. TCPView and Wireshark network activity monitoring tools. The result
of such monitoring is the behavioral analysis of the whole system, rather than the behavior
of a single malicious program. The ordinary, expected background activities, which are not
related to the malware process, have to be ruled out of the results of the behavioral analysis
[32].

2.3 MITRE ATT&CK Framework
The MITRE ATT&CK framework is a comprehensive knowledge base that consists of
detailed tactics, techniques, and procedures (TTPs) used by cyber attackers based on real-
world observations. It stands for Adversarial Tactics, Techniques, and Common Knowledge.
This framework helps cybersecurity professionals understand how attackers operate and
provides a common language to describe these activities [6].

This framework is undoubtedly an important tool for implementing security solutions to
better and more efficiently defend against various threats. As the objective of this work is to
design and implement a solution that is capable of describing malware behavior using large
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language models, MITRE framework will be very helpful in providing context information
to the large language model. The following is a brief overview of its core components:

• Tactics are the high-level goals that attackers aim to achieve during a cyber attack.
It explains the ”why“ of the attackers action and aims to describe, what an attacker
is trying to accomplish. Examples include initial access to a network, execution of
malicious code, credential access [6].

• Techniques are the specific methods used by attackers to achieve their goals. The
techniques explain a way, in which attackers try to accomplish their tactical goals.
These include reconnaissance, Initial Access, Persistence, Privilege Escalation and
more. Techniques then consist of several sub-techniques [6].

• Sub-techniques are more specific lower level descriptions of adversarial behavior.
These include terms such as Startup Items, Windows Service, Bypass User Account
Control or Credential Stuffing [6].

• Procedures refer to the specific implementations or real-world methods employed
by adversaries for executing techniques or sub-techniques [6].

The notation of MITRE framework techniques and sub-techniques is quite simple. The
technique code name begins with letter ’T’ followed by four digit number, for example
T1557 which would refer to ”Adversary-in-the-Middle,“ followed by dot separating sub-
technique’s numeric identifier T1557.002 which refers to ”ARP Cache Poisoning [6].“

The MITRE Corporation also provides a list of software that is used during the attacks,
that is used in this work alongside the techniques to provide a contextual information to
the model.
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Chapter 3

Host Based Intrusion Detection
Systems

This chapter explores host-based intrusion detection systems (HIDS). Initially, the intru-
sion detection and prevention concept is explained, followed by a comparison of host-based
intrusion detection systems with network-based intrusion detection systems (NIDS). The
most widely used open-source implementations of HIDS are introduced and evaluated. Fur-
thermore, an examination of the data retrieved from these systems is conducted to select
relevant and usable information for analysis with large language models.

3.1 Intrusion Detection and Prevention
An intrusion occurs when an adversary attempts to gain entry into information system or
to disrupt its normal operations. The motivation of such action is usually to do harm. Such
attacks could be self-propagating, as in the case of viruses and distributed denial-of-service
attacks, nonetheless they are still initiated with the purpose to harm targeted organization.

The series of activities including information security policies, installing network fire-
walls and intrusion detection systems, and effective and measurable employee training is
called intrusion prevention.

Intrusion detection is set of procedures and systems capable of identifying system in-
trusion. A successful intrusion detection should lead to intrusion reaction, which defines
actions necessary to be taken by company or individuals when an intrusion occurs. These
actions aim to soften the impact of an intrusion, to enumerate exposed data and to return
the system to its usual operational standard.

Intrusion correction activities, strive to find the source of the attack, tactics and tech-
niques used to perform it, in order to implement countermeasure to prevent such attacks
from happening in the future [31].

3.2 HIDS and NIDS Comparison
This section contains overview of network-based intrusion detection systems in compari-
son with host-based intrusion detection systems. It is important to establish the crucial
differences and advantages of HIDS over NIDS, for better comprehension of the chosen
architecture in chapter 5.
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3.2.1 Network-Based Intrusion Detection Systems

The Network-Based Intrusion Detection System (NIDS) is deployed to monitor network
traffic using a network interface card (NIC) directly connected into network. For an attack
to be detected a signature or pattern is used to match specific events. If the traffic seen on
the network matches one or more pre-defined IDS signatures, an alert is generated. The
details of an alert are usually stored in form of logs. It is possible to tie actions with such
alerts, which could include notifying a person responsible for the system or even adding a
firewall rule to block the future traffic [8].

Although NIDS is useful, there are certain limitations to its usage:

• The communications between two endpoints can be encrypted, which disables the
readability of the packets.

• Packets sent by adversaries could be encrypted and signatures built to detect them
could be unsuccessful in catching them.

• Various evasion techniques exist to bypass NIDS.

Plenty of evasion techniques exist to bypass, or sidestep NIDS solutions. Most network
intrusion detection systems today have mechanisms of mitigating such techniques, for ex-
ample by reassembling the traffic contents in their memory. This method can potentially
exhaust system resources, in case of improper tuning. Some of the common NIDS evasion
techniques are:

• String matching weaknesses, which are result of poorly constructed signatures.
This applies to NIDS, that are signature-based. This weakness occurs, when the
adversary is able to get to know, either publicly available signature, or gets hands on
customized signature. In case the signature is incorrectly addressing the information
indicating the attack, the attacker can hide the attack with adjustments to not trigger
the signature [8].

• Session splicing utilizes the session splicing mechanism of data by TCP. The data
stream is not reassembled until it reaches its final destination. Adversary can split
the attack data into multiple packets that contain payload in pieces. This splicing
could cause signature not to trigger as it does not match the pattern. Some network
intrusion detection systems reassemble the TCP stream in order to detect such eva-
sion. However, this technique increases the processing load of the respective NIDS
[8].

• Fragmentation attacks are more advanced than session splicing attacks. These
include fragmentation overlap attacks and fragmentation time-out attacks. The first
works on instructing the host to reassemble the packets and to overwrite or overlap
some of the received packets at specific offsets. Fragmentation time-out attacks exploit
the NIDS fragmentation timers flushing the reassembly cashes after time-out.

• Denial of Service technique simply overloads the NIDS in order for it to crash [8].

It is apparent that NIDS have its limitations that need to be addresses at the final des-
tination of the inspected data. This introduces the need for host-based intrusion detection
systems.
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3.2.2 Host-Based Intrusion Detection

A host-based intrusion detection system is installed directly on the endpoint host, whether
it is a server or workstation. It detects events and generates alerts similar to an NIDS. The
main difference is that HIDS can inspect full communication stream. The reassembled data
received by operating system are accessible by HIDS installed on the system. Due to this
insight, the previously discussed NIDS evasion techniques do not work for HIDS. Addition-
ally, HIDS is capable of system level checks such as log analysis, registry monitoring. file
integrity checking, rootkit detection, and active response [8].

It is important to review HIDS capabilities to comprehend the ways of utilizing HIDS
as a source of the data for analysis of malware behavior. The aspect of active response is
not necessary for the scope of the needs of this paper.

3.2.3 File Integrity Check

It is possible to generate a unique digital fingerprint out of every file on an operating system.
This fingerprint is computed as cryptographic hash. It is generated based on the content
and the name of the file using various mathematical operations. One of the capabilities
of HIDS is to check the integrity of the files stored on the file system based on the hash
comparison [8]. This provides the ability to detect alteration or whole replacement of files
by the analyzed malware. It is an important aspect to monitor as the file modification
is an often effect of malware activities. The highest volume of file modifications could be
attributed to malware category ransomware. These large quantities of file replacement could
indicate that the file system is being compromised and that the files are being replaced by
their encrypted versions.

3.2.4 Registry Monitoring

Another important operating system’s component, that needs to be closely monitored is
the system registry. It is a directory listing of all hardware and software settings, operating
system configurations. Additionally, on Microsoft Windows, these include users settings,
users, groups and other preferences.

It is common for malware to make changes to the system registry keys. An HIDS
monitor for such changes as they might be an indication of establishing a persistence within
a system. The registry key changes are also a subject for analysis to reveal true capabilities
of newly installed software. Signatures of an HIDS should be able to distinguish patterns of
suspicious registry changes leading to successful intrusion detection. A malware can often
change registries of existing installations of legitimate programs in order to exploit them
for its needs or to replace them with malicious copy. The registry also provide a view at
how the system kernel interacts with hardware and software [8].

3.2.5 Rootkit Detection

Rootkits modify the internal functionality of the operating system in order to take over
them. The modifications include hiding files, processes, network connections, ports, ser-
vices and other resources, making them invisible by other running programs. This makes
discovering malicious activity by security software or personnel difficult [20].

There are several types of rootkits:
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• A firmware rootkit is installed with firmware. This type of rootkit is difficult to
detect as for its detection, one has to inspect their compiled installation package prior
to installing it on endpoints or network devices.

• A virtualized rootkit is installed to intercept system calls between the system hard-
ware and its operating system. It is loaded at boot time and is eligible of altering the
interactions with operating system in the favor of the rootkit.

• A kernel level rootkit is usually deployed through loadable kernel modules or hard-
ware drivers. These rootkits are difficult to detect as they advertise themselves to the
operating system as ordinary software components.

• A library level rootkit utilizes system calls to hide any information about the ad-
versary from the system.

• An application level rootkit being one of the most common types of rootkits. It
replaces a known, legitimate application binary with its malicious copy. This copy
then serves slightly different purpose than intended [8].

3.2.6 Data Outputs of HIDS

In this part there will be provided a description of any other data that can HIDS provide as
an output. In combination with the previously described, monitored data, it will provide a
possibility for training data for large language models.

3.3 OSSEC and Wazuh Comparison
In this section there is a brief comparison between two popular HIDS open source solutions.
After the evaluation of the advantages and disadvantages of each other, for the purposes of
this work, there will be a brief explanatory of the chosen option.

3.4 Wazuh Host-Based Intrusion Detection System
The chosen Host-Based Intrusion Detection system, used in this work, is Wazuh, which
is an Extended Detection and Response (XDR) platform. It is an open source platform
providing XDR and Security Information and Event Management (SIEM) features [26].

The features relevant to this work include log data analysis, intrusion and malware
detection and file integrity monitoring.

3.4.1 Architecture and Components of Wazuh

The Wazuh architecture is based on three main components, the Wazuh server, the Wazuh
indexer, and the Wazuh dashboard. The Wazuh agent is then deployed on the monitored
endpoints and forwards security data to a central server [26].

Wazuh supports data from agent-less devices such as firewalls, routers, switches, and
access points. The log data from such sources can be submitted via Syslog, SSH, or using
their API. The central server’s role is to decode and analyze the information received from
raw log sources, and to forward the information to the indexer for indexing and storage
purposes. The Wazuh indexer is then comprised of cluster of nodes communicating with
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each other. However, for the purpose of this work, only a single-node cluster would be
required as small Wazuh deployments do not require processing of large amount of data
[25].

3.4.2 Wazuh for Malware Detection

Wazuh does not rely solely on signature based approach. It has threat detection rules that
enable behavior-based malware detection. Wazuh aims to monitor and analyze anomalous
behavior within the system environment exhibited by malware. As an effect it it allows
for detection of previously unknown threats. Wazuh comes with out-of-the-box rule sets.
However, these rules can be customized and new rules can be created. According to Wazuh
documentation, Wazuh decodes and organizes logs from monitored endpoints into fields.
These can be used to create custom rules [27].

The predefined rule set is useful for detecting known malware, when there are indicators
of compromise (IOCs) that connect related malware activities. Wazuh provides a rule
description in form of easily digestible text, in its Security Events module. Many of the
rules are tightly connected to specific behavior of specific malware and are usually created
after the malware has been discovered. The conceptual idea of a malware analysis agent
using large language model, could allow for directing security analysts in such discoveries
and rule creation.

3.4.3 Integration Methods and Options for Wazuh

An important part of building the malware analysis agent is to efficiently retrieve the
security data that Wazuh agent collects from monitored endpoints. Wazuh server analyzes
this data and passes them to Wazuh indexer for indexation. The Wazuh indexer integration
forwards analyzed security data, using Logstash as a data forwarder to forward the alerts
to other security platforms [29]. In the case of this thesis the receiving end would be at first
training dataset collector, that would require a Logstash installation on dedicated server
or building an indexer. Once the sufficient model is trained the same forwarding could be
used for real time malware analysis. This could lead to increased resources consumption and
would be an insufficient way for the purposes of this paper’s objective of implementation.

Another option for Wazuh integration is an integration of Wazuh Server, which reads
out Wazuh’s alerts file, forwarding it using data forwarders. The Wazuh server integration
requires that a data forwarder has to be installed on the same system as the Wazuh server.
Choosing this option, the forwarder executes periodic queries to the Wazuh indexer. The
forwarder queries are performed in blocks with the set time range [29]. The delay of receiving
the data that could be caused by the periodic querying is not a concert for the purposes of
the data collection for future training. However, once the malware analysis agent is to be
built either integrated, or running on its own, such delays should be optimized.

Based on the recommendations for integration option and data forwarder selection in
[29], the most promising option is Elastic Logstash. It is a free, open server-side data
processing pipeline that is capable of ingesting data from multiple sources. Logstash trans-
forms the data and then sends it to the next destination. Logstash scheduling frequency is
in intervals of up to one second.
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Chapter 4

Large Language Models

Large Language Models (LLMs) are likely one of the most adopted technological advance-
ments witnessed by modern population during the past decades. It has exploded in pop-
ularity in recent years due to success of ChatGPT a Generative Pre-trained Transformers
(GPT) developed by research organization OpenAI. It has been adopted by many profes-
sionals to aid their daily tasks that require human-like content. One of the reasons of this
success could be the fact that its usage is simple in nature. Just provide the model with
a task or question and it is able to generate response in almost any subject. It is also
capable of producing a programming language outputs and can be useful for debugging of
the code. There is also a multitude of students using this product to help them fulfill their
assignments, which is rightfully concerning to their pedagogues.

On the other hand, such a powerful tool can be leveraged to implement various indus-
try specific tools tailored for individual problems. Cyber security is not an exception. The
following sections will discuss Generative Pre-trained Transformers and Large Language
Models, including existing solutions in the battle against adversaries and malware. Follow-
ing is the section introducing challenges of using these models and the section describing
their usage in this work.

4.1 Large Language Models and Generative Pre-trained Trans-
formers

This section briefly describes what the terms Generative Artificial Intelligence (Genera-
tive AI), Large Language Models (LLM) and Generative Pre-trained Transformers (GPT)
represent.

Generative Artificial Intelligence is a subset of Artificial Intelligence and Machine
Learning, which combines Deep Learning Strategies, Natural Language Processing and even
Computer Vision. It shifts its focus on data production rather than conventional tasks of
regression or classification. Generative AI is capable of generating data resembling real data
produced by humans by utilizing multiple machine learning techniques [19]. The figure 4.1
presents a schematic structure of generative AI and its technologies (adopted from [19]).
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Figure 4.1: The schematic structure presenting the position of Generative AI as a subset of
Machine Learning (ML) and its overlap with different technologies such as Deep Learning
(DL), Natural Language Processing (NLP) and Computer Vision (CV).

Large Language Models are part of Generative AI, focused on natural language
processing (NLP), that uses large scale language models for tasks including text generation,
summarizing, completion, translation and more. It is trained on large datasets with large
number of parameters. This translates to millions or even billions of parameters with the
GPT-3 having 175 billions of parameters [19].

While the above are more broader terms, the Generative Pre-Trained Transformers
is a family of Generative AI models, designed for natural language understanding and
generating tasks, capable of learning language patterns, semantics, syntax and to concept
large amount of general knowledge [19].

Especially the capability of these models to comprehend large amount of knowledge base
of real world and to process text inputs, including code, make them promising candidate
for use in Cyber security, namely in the malware analysis and adversarial behavior analysis.
These models can potentially be used to generate descriptions of adversarial behavior in
organization’s environment and on end-user’s endpoints, by taking security logs, endpoint
detection details and more. Then by analyzing them with the aid of given context describing
the situation preceding security alerts. Such models could also provide remediation steps
for each detection or security alert, tailored to acknowledge organization’s procedures and
policies.

4.2 Large Language Models for Malware Behavior Analysis
This section discusses the options to leverage large language models in cyber security and
in attempts to describe adversarial behavior and malware analysis.
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4.2.1 Generative AI in Cyber Security - General Overview

Staying ahead of malicious actors and emerging threats poses an ongoing challenge. Tradi-
tional cyber security methods, that consist of static rules and indicators, struggle to keep
pace with the dynamic nature of cyber attacks. However, the emergence of generative
AI presents a appealing solution. By utilizing the power of generative AI, organizations
can more effectively manage risks, mitigate the impact of cyber threats, and increase the
security of their digital assets [19]. There are multiple ways of achieving this:

• Threat Simulation and Prediction: Generative AI models can simulate realistic
attack patterns, aiding in the training and testing of defense systems. Additionally,
these models can predict vulnerabilities and potential attack vectors, by analyzing
large datasets and discovering trends, enabling proactive defense strategies. Thanks
to data augmentation capabilities of this models, security researchers can get access
to diverse and realistic datasets for training machine learning models [19]. The sim-
ulation of newly generated realistic attacks, could potentially lessen the number of
zero-day attacks as these could be explored sooner. However, the same way the LLMs
can be used by security researchers, they can be used by adversaries.

• Enhancing Anomaly Detection with using Generative AI models for developing
models of usual system behavior, with additional data generated from learned pat-
terns. This approach enhances anomaly detection efficiency, as these models excel at
pattern recognition [19].

• Reducing False Positives: Even with endless tuning of traditional cyber security
solutions, there is always large number of false positive alerts. These alerts shift the
focus of security analysts from alerts that are true positive and have to be dealt with.
By increasing the accuracy of threat detection algorithms, generative AI can minimize
false positives, allowing security professionals to focus on genuine threats.

• Automated Incident Response: The generative AI models can greatly impact the
mitigation time of incident response by assessing the scope and severity of security
issues. The models can provide recommendations for mitigation or even automate
some of the procedures [19].

• Red Team Activities: The generative AI model can be useful in creation of new
automated tests for red teams to test the smaller organizations relying on traditional
tools. These tests could be tailored specifically for the currently tested environment
and relieve penetration testers from long preparations, which precede the testing.
One of the domains of testing, that could generative AI models prove useful, would
be phishing attacks. The fine tuned versions of models could learn to mimic employee’s
colleague’s writing style, even chatting with the victim on prolonged basis, using social
engineering techniques.

This was a summary of some of the potential use cases of Generative AI in cyber
security. We will discuss how could the malware or adversary behavior analysis be aided
by this models in the following sections.

4.2.2 Malware Behavior Analysis with LLMs

There are several options to take into consideration when using large language models for
malware behavior analysis.
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One of the options could be to create a sandbox environment for dynamically executing
malware sample in secured environment. With the help of traditional malware analysis
tools, the pre-trained large language model could be given the processed output of these
tools to summarize the activity in a comprehensive description. Such tool could be used to
aid malware analyst to better understand the capabilities of analyzed malware. During the
malware analysis, it often happens that malware analysts face highly obfuscated portions
of scripts. Sometimes it is hard to pinpoint every clue exhibited by the analyzed software
and connect the dots. The ability of Generative AI to generate human like written text and
recognize patterns would set it for being able to describe the goals of the adversary that
written the malicious software. The malware analysis is highly time consuming process and
requires deep technical knowledge. This process could be made more efficient with the aid
of large language model.

The second approach would be to use generative AI for analysis of alerts and detections
in real time. Security analysts are often overwhelmed by the large amount of alerts triggered
by traditional tools. They have to usually manually review each of them, while not being
able to distinguish between true positive alerts and false positive alerts at first glance. By
the time that an analyst reaches the conclusion, there could already be several new alerts
triggered. With the help of generative AI describing the spotted behavior in digestible
form, the analysts would be better able to prioritize, which alerts to take on first.

Such tool would most likely have to be integrated into one of the existing solutions, to
not introduce yet another source to monitor. The best suit would be SIEM system, which
already possesses access to various security logs, application logs, firewall logs and logs
from endpoint detection systems. All this information could be aggregated and fed to the
analysis tool. The tool could also be given some additional information that would further
enhance its descriptive capabilities:

• Organization knowledge base, which would help the model to put the detection into
context. This could include assets information to understand the environment and
points of interest. The incident response procedures would help to provide the analyst
a proper steps for escalation.

• Common Vulnerabilities and Exposures (CVE) list for the model to be able to recog-
nize whether the triggering application is known to be vulnerable and is potentially
being exploit. This is indeed a job of threat intelligence team, however with the
amount of vulnerabilities disclosed each year it is hard to keep up. This information
could be fed to the model automatically from a trusted source.

• MITRE framework techniques could be used to help the model to understand various
ways of how attackers operate and compare it with the behavior within the system.

• Malware databases information could be introduced to the model. There is plenty of
available information that could be fetched about existing malware samples. Model
could compare this information with the detection details and possibly query for
indicators of compromise provided in such database. This would be an effective way
for threat hunting. The model could either provide an analyst with the steps to take
in order effectively search an environment for possible artifacts left by the malware
or even perform the steps itself.
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The complexity of such a tool would require a significant amount of work and fine-
tuning, but it would be of tremendous value in enhancing the efficiency and effectiveness
of cyber security operations.
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Chapter 5

Architecture of the Malware
Behavior Analysis Tool.

This chapter consists of requirements analysis, the high level architecture of the system
and the architecture of the analysis module for malware behavior analysis tool using large
language model. It describes the technologies required, and chosen for its implementation.

5.1 The Requirements for Malware Analysis Tool using Large
Language Models

This section consists of the analysis of the requirements for the tool capable of analysis
of the malware behavior. The points are not solely focused on the requirements for the
final product, rather than an ideal scenario. It is also important to take into considera-
tion the resources required for training or fine tuning a sufficient and precise model. The
requirements analysis for a tool capable of classification of malware behavior using Large
Language Models involves several key aspects:

• Performance and Scalability: The system should be able to efficiently process
large amounts of data, including real-time classification of malware behavior. In
the case of usage within environment of security operations center monitoring, the
implemented system should be able to address the malware activities that generate
a large amount of system events and changes. The one aspect that needs to be
taken into consideration is whether the system is to be agent based, installed on each
endpoint, consuming system resources of workstations, or whether it is meant to be
centralized with dedicated computing power.

• Classification Accuracy: The system should achieve high levels of accuracy in
classifying malware behavior. This includes the ability to distinguish between different
types of malware while minimizing false positives and false negatives. The objective of
such implementation is to ease the manual evaluation of malware incidents or malware
analysis and should be accurate enough in order to not create yet another demanding
task for security analysts or malware analysts.

• Flexibility and Adaptability: The system should have the ability to adapt to
new malware variants, previously unseen in the “wild” and to respond rapidly to
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new emerging threats. As the system aims to improve the current state of the mal-
ware behavior analysis, it should be capable of recognizing and describing patterns in
malware behavior and to output useful information in textual form. Flexibility also
involves working with various types of input data. This might be a demanding task as
malware activities affect various system variables, leading into possible training data
diversity in the case of fine tuning of the model.

• Integration with HIDS and Other Security Tools: The system should be able
to be integrated into HIDS or other security tools, such as security and information
event management systems for their enrichment. This creates a demand for the system
to have an interface capable of effective communication with other tools.

• Processing of Textual Data: Given the use of Large Language Models, the system
should effectively process textual data related to malware behavior. This creates a
requirement for the system to effectively transform the input data and parse it to the
Large Language Models in comprehensive form. This might include analyzing the
descriptions provided by HIDS serving as a data source, raw logs and other data.

• Selection of Suitable Pre-Trained Model This thesis is a single person project
with limited resources. It is impossible for an individual to collect tremendous data
required to train Large Language Model from scratch. This creates a need for proper
pre-trained model selection and testing of possible variants in order to find the most
suitable option. It is a crucial step in the design of such system.

• User Interface: In terms of user interface, the question is whether the final system
architecture will be as a standalone unit or if it will serve as an integration module.
In the second case, the user interface would be covered by the system that the module
would be integrated into. However, one important aspect of usability of the software
by users is the capability of such implementation to generate understandable reports
on malware detection and classification.

5.2 High Level Overview of The Architecture
The high level overview of the architecture of designed tool can be seen at figure 5.1.

The malware behavior analysis tool periodically queries Wazuh for data during the
runtime of analyzed program or during constant host monitoring. Wazuh forwards the
data using Data Forwarder and the tool receives it via its Data Collector. For this purposes
the technology used will be Logstash as it is the best suiting data forwarder for Wazuh
integration.

Data processor of the malware behavior analysis tool pre-processes the data received by
data forwarder in order to pass it to Behavioral Analysis Engine. The behavioral analysis
engine uses pre-trained large language model to analyze the important features from the
received data and describes the behavior of the program that has either triggered a Wazuh
alert or is being manually analyzed. It also produces textual report about the characteristics
of malware and outputs it to user interface. It is possible to integrate the tool into Wazuh
and use the output of the tool as a data enrichment on Wazuh’s dashboard.

At user interface, user can manage the results of the analysis, by viewing them, rating
them or managing countermeasures. The countermeasure will then be reflected on Wazuh
Servers in form of new prevention signatures. The feedback of the user in form of False
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Positive or True Positive verdict is then sent to data processor for the record. These data
can be then used for re-training purposes. It is worth mentioning that such verdicts would
be accessible to more experienced system users.

Figure 5.1: High level architecture diagram. The left part of the diagram with blue color
consists of Wazuh SIEM solution and its components. Wazuh Agent sends logging data to
Wazuh Server, which relays this data to Indexer for creating indices. Once indexed, the
data is forwarded by server to a data collection point. On the right section with yellow
color is Analysis Tool. The data is processed by Data Processor and passed to Analysis
Engine including the model to be queried. Output is then provided to user.

5.3 Retrieval-Augmented Generation (RAG)
This section contains an overview of what the Retrieval-Augmented Generation (RAG)
stands for and its benefits in using large language model in specific topic. Following this is
the architecture of the tool implemented in this paper.

5.3.1 Retrieval-Augmented Generation Overview

Retrieval-Augmented Generation (RAG) is a technique used for enhancing the accuracy
and reliability of large language models in specific topic, with the use of additional external
sources to retrieve text documents and use them as additional context for generating the
model output[11].

Large language models are proving to be excellent at generating text that appears to
be written by human. However, when used in tasks that require specific knowledge, which
includes cyber security tasks, they tend to hallucinate and provide unreliable answers.
These answers can be taken with a grain of salt, or the technique such as RAG can be used
to aid the models in completing knowledge demanding tasks.

Another motivation to use RAG is for the organizations that would like to complete
tasks using internal knowledge, but the confidentiality of this information does not allow

21



for the usage of external LLMs. This is especially the case in cyber security related tasks
when feeding an external LLM could greatly affect privacy of the organization by leaking
secret information. One of the options is to run such model locally, however the resources
required to run some of the largest generative AI models are also an aspect to consider.
This leaves smaller organizations which would like to implement a topic specific solution
with the internal information as an input, with a necessity to opt for smaller, optimized
models. As these models are usually trained with significantly lesser amount of parameters,
than their bigger peers the inaccuracy of the results in topic specific tasks raises. The main
goal of the Retrieval-Augmented Generation technique is to fill these gaps by providing
models with context from chosen information sources that is tailored for each query.

On a high level, the creation of Retrieval-Augmented Generation tool consists of two
parts. Preparing the context retrieval system and a query processor feeding the context
based on the query and the query itself. The ingestion of the data is broken into following
steps (based on [10]):

• Loading data sources to text which involves pre-processing the data to be usable
by embedding models, choosing the data sources, validating its relevancy for the
specific task.

• Splitting the text to chunks is a process of slicing the text data into smaller units
in order for the model to be able to concept it into its context window.

• Text embedding is the process of creating a numerical embedding for each chunk,
which helps to select the most relevant text chunks for a given question by identifying
the most similar chunks in the embedding space.

• Loading the embeddings to vectorstore for efficiency and speed.

The figure 5.2 represents the data ingestion for Retrieval-Augmented Generation (adopted
from [10]).

Figure 5.2: The figure shows the data ingestion model for Retrieval-Augmented Generation.

The next part is to query the model. This can be performed using a chat history, in
case that the solution works as a chat bot remembering the previous answers. In cases like
security alerts analysis, this step may be omitted. If this option is omitted the query prompt
should be optimized for the model to produce understandable and structured answers that
do not require additional queries. The more advanced architecture could even consist of
multiple models chained together. One of the models could purely analyze the security
alerts and the second model could be used to generate incident response actions based on
the answer of the model analyzing the alerts. The second part of querying the model is
to search for relevant documents in vectorstore database. This is done using the same
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embeddings as the ones used to create the database. Once the question, the chat history
and the relevant documents are combined into single query, it can be passed to model to
generate the response. This architecture is based on the [10] and follows the same principles
as the original paper [11], experimenting with the idea of Retrieval-Augmented Generation
technique. The figure 5.3 shows the flow overview of the Retrieval-Augmented Generation
technique described above from [10].

Figure 5.3: The figure shows the flow of the Retrieval-Augmented Generation technique
used with large language model (LLM) (retrieved from [10]).

5.4 The Final Design of Adversarial Behavior Analysis Tool
using RAG with LLM

This section contains the design details of the tool that has been implemented as a practical
output of this work. It contains brief overview of the chosen tools, technology and the final
architecture of the tool.

5.4.1 Chosen Technologies

The chosen technologies for designing the final tool for adversarial behavior analysis depend
on multiple factors. The aim of this work was to use open-source technologies to maximize
the cost efficiency of such tool, which could be easily adopted by smaller organizations,
without the requirement of purchasing expensive tools. However, to improve the resulting
outcome, there was a need to opt for some technologies with limited free usage or at some
small financial cost. The following is the list of the technologies used in the design and final
implementation of the adversarial behavior analysis tool:

• Wazuh SIEM is and open-source solution for the security information and events
management system and is representing a traditional tool that feeds the security
alerting data to the adversarial behavior analysis tool.

• LangChain is an open-source framework for developing tools using large language
models. This work uses its Python library.

• Mistral 7B is an open-source large language model used to generate the descriptions
of the adversarial behavior.
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• Ollama is an open-source solution allowing to run large language models locally and
to interact with them. It supports Mistral 7B and is supported by LangChain.

• ChromaDB is an open-source embedding database used to store embeddings in
vectorstores. The LangChain Python library contains interface for operations with
ChromaDB.

• OpenAI API is API used to create embeddings in this work.

• VirusTotal API is used for context enrichment with details about malware samples.

• MITRE Framework is used as a knowledge base source.

The selection of the right large language model for the goals of this work depend on
two main factors. The performance of the model and its resources consumption. With
larger amount of parameters the hardware requirements for running the model increase.
The practical part of this work was performed on a single host machine, including the
security information and event management system (SIEM). This created a requirement
for the model that is the most efficient for its size. Three models taken into consideration
were Llama 2 7B, Llama 2 13B and Mistral 7B.

The Mistral AI has conducted a series of benchmarks comparing the model performance
to Llama models showcasing that Mistral 7B is outperforming the Llama models, including
the ones with higher parameter count. The figure 5.4 shows the benchmark results compared
to Llama 2 7b, Llama 2 13B and Llama 1 34B [9].

The parameters important for this work are especially reasoning, comprehension, beyond
the benchmark hurdle and code. For the tool designed in this work is important to use model
that is able to reason about the provided context and detection details, to comprehend the
task and context data provided. The code portion is an important attribute to ensure, that
the model will not struggle with scripts potentially introduced to its query. Beyond the
benchmark hurdle represents the models adaptability to beyond standard tasks.

Figure 5.4: The figure shows the performance of Mistral 7B compared to Llama mod-
els. The benchmarks performed are MMLU: Massive Multitask Language Understanding,
Knowledge, Reasoning, Comprehension, AGI Eval: Artificial General Intelligence Evalua-
tion, Math, BBH: Beyond the Benchmark Hurdle, Code. (retrieved from [9]).

The solution for running the large language models chosen is Ollama. Another option
was LMStudio, which supports larger amount of models and possibility to directly import
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them from HuggingFace. However, during the testing of both Ollama was deemed more
pleasant to work with. Ollama supports Mistral 7B.

The OpenAI API is used to create OpenAIEmbeddings and is the only paid tool in this
work. An alternative considered and tested was OllamaEmbeddings, however it produced
significantly worse results and the search function was not able to retrieve the context
information from vectorstores properly.

The last technology to be discussed is VirusTotal API. VirusTotal is an online scanner
used to analyze files submitted by users, using a large amount of security tools [12]. In this
paper it is used as an enrichment source to retrieve additional information that can be
either passed as a context to the model directly, or used to search for the information in
vectorstores database. It comes with a limitation, as the free tier allows only 4 API requests
per minute. This is sufficient for the testing purposes in this work, but would either needed
to be replaced by similar, free tool, or upgraded to paid tier.

5.4.2 Implementation Design of RAG with LLM for Adversarial Behavior
Analysis

The design used to implement the adversarial behavior analysis tool is briefly explained in
this part.

The figure 5.5 shows the interaction model between main components, which are the
following:

• Alerts Collector

• Alerts Processor

• Analysis Engine

• Vectorstores Database

Alerts Collector is responsible for periodically collecting the alerts generated by
Wazuh SIEM and to store it in file system. The alerts collected are in a JSON file for-
mat. The alerts are stored in single file, which contains all the alerts collected during the
current time interval. The default alert interval is set to five minutes. This can be changed
depending on the performance of the system and the required mean time to respond. The
Alerts Collector is running on Wazuh Server. It is querying Wazuh Indexer API to fulfill
this task.

Alerts Processor processes the alerts collected by Alerts Collector. It defines the
parameters required to analyze alerts based on the triggering rule. The Alerts Processor
parses the required data, employs data enrichment and generates query parameters for
Analysis Engine. The part of the query parameters is whether custom prompt tem-
plate should be used or not. If the query for the currently processes alert requires custom
template, Alerts Processor passes this information to Analysis Engine including the
required template. Another parameter that is controlled by Alerts Processor is, the in-
formation how should the context be searched by the Analysis Engine in Vectorstores
Database. This depends on the triggering rule and reflects whether the context search query
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should be split into multiple parts or as a single query. Alerts Processor launches Alerts
Engine and waits for its response. Once the response is received, Alerts Processor saves
the result to the file system. Each individual alert is stored separately named after its id
in Wazuh.

Analysis Engine employs the large language model to create descriptions of adversarial
behavior identified from Wazuh alerts. Based on the parameters received from Alerts
Processor it searches the Vectorstores Database for additional context that has to be
provided to large language model alongside the query data encapsulated in prompt. The
prompt is defined by prompt template. Analysis Engine has a default prompt template
set, but it is able to receive prompt templates from Alerts Processor. It queries the
model for response and appends the sources of context data to the response. It returns the
response to Alerts Processor.

Figure 5.5: The figure shows the design of the architecture and the interaction between the
components. The alerts saving and data enrichment is omitted for simplicity.
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Chapter 6

SIEM Deployment and Attack
Simulation

This chapter begins the practical component of this paper. It describes the preparation
of testing environment, which includes deploying Wazuh Security Information and Event
Management (SIEM) system in a virtual environment. Following this is the the simulation
of adversarial behavior in order to determine the alerting capabilities of the deployed system
and to generate security alerts.

6.1 Wazuh Deployment and Configuration in Virtual Envi-
ronment

This section contains the steps taken to deploy and configure Wazuh SIEM within virtual
environment in VirtualBox.

6.1.1 Wazuh Open Virtual Appliance

The nature of this work requires a setup within virtual environment due to high risk of
infecting the host with malware. The ideal option to install Wazuh SIEM is Wazuh Open
Virtual Appliance (OVA). It is pre-built virtual machine image, whiche can be directly
imported to VirtualBox [30].

The system runs on Amazon Linux 2 64-bit and contains all the necessary components
for the complete Wazuh server:

• Wazuh Manager

• Wazuh Indexer

• Wazuh Dashboard

The requirements that must be met before the Wazuh Virtual Machine can be imported
into a host operating system include that the host operating system must be a 64-bit
system and hardware virtualization must be enabled in the host’s firmware. The host
operating system used for the virtual environment is Windows 10 Professional edition 64-bit.
The table 6.1 shows the hardware specifications of the virtual machine used for the purposes
of this work. The specifications align with those outlined in the Wazuh documentation [30].
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Component CPU (cores) RAM (GB) Storage (GB)
Wazuh v4.7.4 OVA 4 8 50

Table 6.1: The default hardware specifications for Wazuh v4.7.4 OVA retrieved from [30]

The last step before the first launch was to configure the graphic controller of the
machine to VMSVGA as advised in [30].

6.1.2 Deploying Wazuh Agent on Windows 10 Endpoint

The operating system chosen for the endpoint that will act as a victim host is Windows
10 64-bit Professional edition. The reason behind this choice is that according to [24] this
is the most used version of Windows operating system at the time with more than 69 %.
The figure 6.1 (adopted from [24]) shows the Windows versions used by visitors of websites
with StatCounter from January 2018 to July 2023.

Figure 6.1: The figure shows Windows operating system versions throughout January 2018
to July 2023. Purple line: Windows 10, light blue line: Windows 11, yellow line: Windows
7. The rest is Win8, Win8.1 and WinXP. Adopted from [24].

The table 6.2 shows hardware specifications used for Windows 10 endpoint. The speci-
fications were adjusted during the testing for optimal performance.

Component CPU (cores) RAM (GB) Storage (GB)
Windows 10 64-bit 2 6 50

Table 6.2: The hardware specifications of Windows 10 machine used as victim endpoint.

After successful operating system installation some common applications were installed
using Ninite. This is done to mimic a real world host machine in case some malware samples
with Virtualization/Sandbox Evasion capabilities such as user activity based checks are
tested [7].

The Wazuh Agent installation is quite straightforward. Wazuh provides Microsoft Win-
dows Installer (MSI) file and the installation may be performed using both command line
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interface and graphical user interface. The Manager IP address is an installation parameter
that has to be configured during the installation. Once the agent is installed it with pro-
vided Manager IP it will be able to automatically request the key to encrypt communication
between the agent and the manager and import it [28].

6.1.3 Wazuh Server and Agent Configuration

To be capable of the basic monitoring an additional configuration of both Wazuh server
and Wazuh agent is necessary. The following was configured on Wazuh agent:

• Windows Defender Logs shows information about the malware detection, scans
passed, and actions taken.

• System Monitor (Sysmon) is a Windows service and drive persistent on the system
across reboots, used to monitor system activity by observing processes being created
and terminated, network connections, and modifications to files [17].

• Windows Power-Shell activity monitoring.

• Windows logs including security logs, application logs and system events logs.

An attempt to integrate and configure Sigma rules was made by integrating an open-
source tool Chainsaw with Wazuh. The integration is done by installing Chainsaw on
endpoint agent and configuring Wazuh wodle command to run a PowerShell script. This
script retrieves Sigma rules from official Sigma repository and runs Chainsaw executable
using this rules [22].

The Chainsaw was able to scan the host using Sigma rules when ran manually, however
the only Wazuh alert generated by automated execution was about failed Sigma rules
update. There could be several reasons causing this issue, including insufficient privileges
or incorrect Wazuh configuration. The manual scans using Chainsaw should suffice in case
there is a need for detections based on Sigma rules.

The next to be configured is Wazuh Manager. Wazuh comes with out-of-the-box defined
rules, however to be able to increase detection capabilities it is important to add some
additional rules. One subset of rules that can be added are open-source rules for the
Sysmon events. There is couple of rules that address Sysmon events to be imported to
Wazuh on GitHub. The rules used to complement Wazuh rules used in this work are from
[21]. The rules can be imported to Wazuh via Wazuh Management Dashboard under

Wazuh -> Management -> Rules -> Manage Rules Files -> Custom Rules.
The rule files are stored in XML format. Once a new rule set is introduced to Wazuh the

Wazuh Manager has to be restarted with command line command shown in listing 6.1.

systemctl restart wazuh-manager

Listing 6.1: Restarting wazuh-manager

The two remaining rules were configure on Wazuh Manager. A network connection to
uncommon port and Server Message Block (SMB) connection to external IP address. This
can be done using Constant Database (CDB) list in Wazuh. To be able to detect a network
connection to uncommon port, it is needed to specify what are the uncommon ports. This
list can then be adjusted according the needs of an organization. The same applies for SMB

29



connection to external IP. The internal IP addresses can be whitelisted for SMB connections
and any other address is external. The creation of a CDB list in Wazuh can be done via
Wazuh dashboard or by saving the list directly on the server. The list has to be saved at
/var/ossec/etc/lists/ and read-write permissions have to be set by chmod 660. Once
the list is created it has to be added to configuration file /var/ossec/etc/ossec.conf.
For the Wazuh to be able to pull the list from lists folder a line from the listing 6.2 has to
be added among other list definitions.

<list>etc/lists/common-ports</list>

Listing 6.2: Add list to Wazuh

To apply the changes to the configuration file a command from 6.1 has to be executed
again. Once everything has been done the list will appear in CDB list section on Wazuh
dashboard 6.2.

Figure 6.2: The Constant Database (CDB) list of common ports displayed on Wazuh
dashboard. The first 10 ports are displayed.

The next step is to create a Wazuh rule for the alerts to generate on events when a
network connection is made to different ports than the ones listed in the newly created
list. The rule is shown in the listing 6.3. When uploading rules via Wazuh dashboard the
Wazuh Manager is automatically restarted. The Wazuh SIEM will now be able to detect
outgoing connections to uncommon ports and possibly detect malicious connections.
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<rule id="102600" level="12">
<if_group>sysmon_event3</if_group>
<list field="win.eventdata.destinationPort" lookup="not_address_match_key

">etc/lists/common-ports</list>
<description>$(win.eventdata.image) Made a Network Connection to Uncommon

Port</description>
<group>sysmon_event3,</group>

</rule>

Listing 6.3: A Wazuh rule to trigger an alert of level 12 when a network connection is made
to a port that does not match any of the ports in common ports list.

A similar rule can be created for detecting SMB connections to external IP address.
The principle is the same. A list with internal IP addresses and a rule to trigger an alert
need to be created. The rule created in this work can be seen in listing 6.4.

<rule id="102601" level="14">
<if_group>sysmon_event3</if_group>
<list field="win.eventdata.destinationIp" lookup="not_address_match_key">

etc/lists/internal-ips</list>
<field name="win.eventdata.destinationPort">445</field>
<description>$(win.eventdata.image) Made an SMB Connection to External IP

</description>
<group>sysmon_event3,sysmon_smb_external,</group>

</rule>

Listing 6.4: A Wazuh rule to trigger an alert of level 14 when an SMB connection to an
external IP on port 445 is detected.

The configuration is set and the SIEM should be able to trigger enough alerts for this
project. The following section will describe the simulation of adversarial behavior performed
on the victim machine in order to generate alerts.

6.2 Simulation of Adversarial Behavior
This section explains the steps taken to generate security alerts in order to be able to test
the implemented adversarial behavior analysis tool and to further improve it based on the
inputs it is eligible of receiving.

The simulation of adversarial behavior performed in an attempt to generate security
alerts, that could be used in this work, can be split into three testing types:

• Manual Testing - Kali Virtual Machine

• Automated Testing - Atomic Red Team Framework

• Specific Vulnerability Exploit (CVE-2023-23397)

As an attacking machine for this project was chosen a Kali machine deployed in virtual
environment. Its specifications are listed in the table 6.3.
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Component CPU (cores) RAM (GB) Storage (GB)
Kali Rolling (2024.1) x64 2 2 20

Table 6.3: The hardware specifications of Kali virtual machine used as an attacker endpoint.

The following subsections comment on the steps taken in each testing type.

6.2.1 Manual Testing Using Kali Virtual Machine

The initial idea was to create some Windows payloads in Metasploit framework using
msfvenom, deliver it to the machine and let the virus connect to the attacker machine.
The first attempt was made before fully configuring the Wazuh Manager and Wazuh agent
and the alerts did not trigger. This led to a realization a much more configuration would
need to be done in order to detect malicious behavior. After the first failure to generate
alerts with activity performed from Kali virtual machine towards victim machine hosted
on the Windows endpoint, the Microsoft Defender Logs were enabled. However, this was
insufficient as if the Microsoft Defender was kept active, hunting for threads, it would not
allow for any payload from Kali virtual machine to be executed.

On the other hand, when the Microsoft Defender was turned off, the reverse TCP
connection was successfully made. At this phase of the testing, the alert triggered by
connections to uncommon ports has not been configured yet. The turned off defender did
not produce any alerts, thus there was a need to catch this behavior with different alert.
This is why the alert from 6.2 in listing 6.3 was created.

This approach has proven to be time consuming and nonproductive. It might be useful
for slowly setting up Wazuh alerts and creating robust system capable of detecting various
types of alerts, but there was a need for faster way to create various types of alerts. Also
as the design of the implemented adversarial behavior analysis tool counts with MITRE
Techniques to be used as a knowledge base, this approach lacked the ability to swiftly cover
various types of techniques.

6.2.2 Testing with Atomic Red Team Framework

This subsection describes an approach chosen after manual testing in Kali virtual machine
has been deemed unworthy for the purposes of this work.

For the more complex testing an open-source framework Atomic Red Team from Red
Canary was used. It is a library of tests that can be used by security teams to simulate
adversarial activity in their environment. The atomic in the name of the project relates to
the character of the size of the tests. The tests are small and atomic. The atomic tests are
mapped to MITRE Framework [3]. This makes it an ideal candidate for the purposes of
this work.

A big benefit of this framework is that a specific operating system can be chosen, filtering
out the tests that are not needed for this specific use case. The tests can be run either
one by one or all at once, which is not recommended. This is due to the fact that there
is a certain delay of the tests executions and the cleaning of the environment needs to be
performed to be able to continue without an enormous mess made in logs.

To make the testing even smoother Atomic Red Team provides a PowerShell module
called Invoke-Atomic. The module was installed on the victim endpoint. To ensure the
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undisturbed run of the tests, the folder to download and store Atomic tests and payload
has been whitelisted by exclusion in Microsoft Defender.

The testing with the framework was first done automatically to try to generate as many
alerts as possible and then as needed for the testing of specific scenarios. To conduct the
automatic, yet controlled test a PowerShell script was created. The script is shown in the
listing 6.5 (modified version of the original retrieved from [4]).

$techniques = gci C:\AtomicRedTeam\atomics\* -Recurse -Include T*.yaml |
Get-AtomicTechnique

foreach ($technique in $techniques) {
foreach ($atomic in $technique.atomic_tests) {

if ($atomic.supported_platforms.contains("windows") -and ($atomic.
executor -ne "manual")) {
Invoke-AtomicTest $technique.attack_technique -TestGuids $atomic

.auto_generated_guid -GetPrereqs
Invoke-AtomicTest $technique.attack_technique -TestGuids $atomic

.auto_generated_guid -ExecutionLogPath ’C:\AtomicLog\mylog.
csv’

Start-Sleep 3600
Invoke-AtomicTest $technique.attack_technique -TestGuids $atomic

.auto_generated_guid -Cleanup
}

}
}

Listing 6.5: Script for automatically launching Atomic Red Team tests on Windows
operating system. It is set to sleep after each test for one hour. It stores the logging
data to mylog.csv. The script has been retrieved from [4]

There were several sessions for launching the atomic tests due to few complications.
Some of the dependencies were unable to be installed automatically and some of the tests
require user interaction. The figure 6.3 shows the increase of Wazuh alerts during the
beginning of one of the testing sessions. The relevant rule levels were selected as low level
alerts are noisy at almost any time.
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Figure 6.3: The figure shows an increase of Wazuh alerts during one of the testing sessions.
First half of the timeline represents no malicious activity and the spike of the alerts begins
at the time of the test beginning. Some of the rule levels were omitted for the clarity.

6.2.3 Exploiting the CVE-2023-23397

The next goal in simulation of adversarial behavior was to try to find a vulnerability that
is not easily detectable when exploited. The vulnerability CVE-2023-23397 was provided
by technical supervisor of this work Ing. Petr Chmelář, Phd. as a suggestion for the review
and it was chosen to be exploited on the victim endpoint.

On March 14th, 2023, Microsoft has released the details about Exchange Online Protec-
tion (EoP) vulnerability in Microsoft Outlook for Windows, identified as CVE-2023-23397.
This vulnerability, discovered by Microsoft Threat Intelligence, involved the potential theft
of NTLM credentials without user interaction, triggered by a specially crafted message. It
affected all supported versions of Microsoft Outlook for Windows [14].

In order to successfully exploit this vulnerability the version of Outlook in the test
environment has to be downgraded to any version prior to the update addressing this
vulnerability. Microsoft support portal provides guide to downgrade Office package with
Office Deployment Tool [13]. To downgrade to the vulnerable version, we have reviewed the
[18] and found the version prior to the release of the vulnerability. The full version number
chosen is 16.0.15928.20198. For the Office Deployment Tool to choose this version a
configuration file in XML format needs to be provided as an execution parameter. We have
written the configuration file shown in the listing 6.6. The configuration file specifies the
Office version and contains an instruction to disable further updates.
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<Configuration>
<Add OfficeClientEdition="64" Channel="Current" Version

="16.0.15928.20198">
<Product ID="0365ProPlusRetail">

<Language ID="en-us" />
</Product>

</Add>

<Updates Enabled="FALSE" Channel="Current" />
-</Configuration>

Listing 6.6: The configuration file used to specify the version of Office package to revert to.
It contains an instruction to disable further updates.

When the vulnerable version of the application is on the system, the specially crafted
Outlook item, specifically the appointment for the calendar, needs to be created. This can
be done in two different ways:

• Using development kit for Outlook compatible, malicious message creation.

• Using OutlookSpy plugin to change the parameters of the message created in Outlook.

The first approach includes implementing the specially crafted appointment message
using MsgKit from [23]. This was demonstrated by Dominic Chell in [5]. This approach
has been attempted during the exploitation attempts of CVE-2023-23397, however unsuc-
cessfully. The message was not able to be built due to the fact that for it to be built
a modification has to be made to the MsgKit library on a local copy. This is no longer
possible as the kit has been since updated.

The second approach is to use OutlookSpy plugin for Outlook, to modify the appoint-
ment created directly in Outlook. The principle and the modifications to the message
needed for successful exploit remain the same. Dominic Chell found out, that the Microsoft
script released for the scanning for malicious Outlook messages, is specifically looking for
the PidLidReminderFileParameter property of the mail [5].

The PidLidReminderFileParameter is used to specify the filename of the sound that a
client application should play when the reminder reaches the deadline. [15]. This parameter
accepts an Universal Naming Convention (UNC) path and can trigger NTLM authentication
when alert’s reminder is executed. Another property explored in Microsoft’s cleaning script
is PidLidReminderOverride [5]. The property PidLidReminderOverride determines if the
client should use the specified properties to decide whether to play a sound and what file to
play when a reminder is triggered [16]. When set, this setting forces the alert to be played,
thus leaving the victim defenseless.

Before moving on to the crafting of the malicious appointment, the attacking machine
needs to be set to listen for authentication attempts. We have set our Kali machine to listen
for such attempts using Responder. We do not need to continue further with relaying the
retrieved hash for authentication, or cracking it with brute-force. Simply outputting it to
console will be enough. The Responder is launched using command from the listing 6.7.
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kali@kali: responder -I eth0

Listing 6.7: Command to launch responder to listen for authentication attempts. -I
parameter specifies the networking interface.

The attacker machine is ready and listening. The next step is to create a malicious ap-
pointment that will have PidLidReminderFileParameter set to the network share location
of the attacker machine.

We have installed the OutlookSpy plugin and created a regular appointment first. Once
the appointment is in the calendar, it can be open as an object in separate window by
double-clicking it. On the menu bar for the new window, the OutlookSpy button launches
a contextual window of this plugin allowing for reviewing and setting otherwise hidden
properties of this object. We clicked on the Script tab and written the commands to
change the properties needed to perform this exploit. This is presented on the figure 6.4.

Figure 6.4: The figure shows an OutlookSpy plugin window with commands to set the
parameters required to exploit the vulnerability. The appointment item can be seen in the
background.

The following is to set the reminder for the malicious appointment to 0 minutes, in
order for it to instantly trigger. This can be done via regular Outlook user interface.
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The figure 6.5 reveals that the exploit has been successful and the terminal of Kali machine
is full of leaked NTLM hashes.

Figure 6.5: The figure shows the terminal window of Kali attacker machine after successful
exploit of CVE-2023-23397. It contains user information and leaked NTLM hashes.

This vulnerability is highly dangerous as it is relatively easy to exploit and impossible
to avoid if the victim’s machine is vulnerable to it. The appointment could be simply
forwarded to victim in a phishing mail.

When first exploiting this vulnerability in our environment, there was not a sign of an
alert that could indicate that the Windows endpoint has been attacked. In such cases, it
is up to diligent threat intelligence team to be constantly on the watch for newly disclosed
vulnerabilities. Based on this findings the Wazuh rule from 6.4 has been implemented.
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Chapter 7

Implementation and Experiments

This chapter covers the implementation of the alert analysis tool using Retrieval-Augmented
Generation architecture with a large language model. The chapter concludes with experi-
ments conducted on the implemented solution, to demonstrate the solution’s capabilities,
will be described at the end of this chapter. These experiments revealed some issues, leading
to modifications in the implementation.

7.1 Implementing Retrieval-Augmented Generation with LLM
This section presents the implementation details of the tool for adversarial behavior analysis
using large language model with Retrieval-Augmented Generation technique.

The tool has been implemented in Python programming language, with the version
installed on the development host being Python 3.9.12. An open-source platform Ollama
was used for hosting the large language model. The large language model used in this project
is Mistral 7b. The embedding function used for the final version is OpenAIEmbeddings
with the embedding model text-embedding-3-small. The embedding model was the only
paid product used in this project and its usage costed 0.01$. The database to store the
embeddings in vectorstores is ChromaDB. As a wrapper over all of the technologies was used
LangChain Python library.

The logical structure of the implementation follows the design presented in the sec-
tion 5.4. The project consists of scripts in the main folder and three additional folders:
data, chromadb and wazuh. The wazuh folder is a shared folder, shared with virtual ma-
chine hosting the Wazuh server. It contains the script that is used as a data collector to
retrieve alerts from Wazuh Indexer. It is also a destination to store alerts retrieved for
analysis in a file alerts.json.

The chromadb folder contains pre-built database, built during the implementation. This
is mainly to save the cost related to using OpenAI embeddings. An additional version that
uses OllamaEmbeddings function is in folder chroma, but is not part of the final solution.
However, it can be used in case of missing OpenaAI API Key.

The data folder contains three comma separated values (CSV) lists. The two files
contain the MITRE techniques list and MITRE software list. These lists have been retrieved
from [6] and further processed. The third list called mitre_dataset.csv is a resulting data
set created by combining the two lists and cleaned of an unnecessary bloat, that would
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worsen the accuracy of responses. The script for the preparation of the data is included in
the main folder of the project.

The main folder contains the scripts representing the rest of the components described
in the section 5.4. The following subsections detail the creation of the database and how
do the components operate.

7.1.1 Dataset Preparation and Vectorstores Database Creation

This subsection consists of steps taken to create the database that can be used for searching
for the relevant pieces of information from MITRE Techniques list and MITRE Software
list.

The character of the data used for this project is a table consisting of name and the
description of either MITRE technique or software from MITRE Software list. The de-
scriptions are of variable length. While techniques descriptions are extensive, the software
descriptions are much shorter. The descriptions contain URLs and citations across the whole
description. This information would not be useful for the context creation, thus was re-
moved using the script prepare_dataset.py. The script cleans the descriptions of citations
and URLs and merges the two list into one uniform dataset.

The embedding of the data follows in the create_mitre_chromadb.py. Before the
embedding, the data is split to smaller chunks. The size of chunks is a parameter that can
be experimented with. The final solution uses chunks of 800 characters long texts. The
overlap between the chunks is 80 characters. The embedding of the chunks of text is done
using OpenAIEmbeddings with the model text-embedding-3-small. To be able to use this
embedding model an OpenAI API key has to be provided as a parameter of the embedding
function. The API key is retrieved from the environment variable called OPENAI_API_KEY,
where it was stored using setx command. In case of missing key, an alternative embedding
function OllamaEmbeddings may be used. This is an open-source embedding function and
does not require API key for its functioning. It is important to note, that this function has
been used in an initial implementation cycle. This function did not provide the required
results and the solution was unusable.

After the text is embedded it is stored in chroma database, which is directly created
using the chunks. The database is automatically persistent and the method persist() is
obsolete.

7.1.2 Alerts Collection

The alerts collection is done on the Wazuh server by querying the Wazuh Indexer. This
was not necessary in the given setup for this work as the Wazuh server from this project is
a single cluster unit. However, having the option to use the querying mechanism from the
outside of the Wazuh server leaves the door open for different setups and the tool can be
used as a standalone unit.

The script used to query Wazuh Indexer and retrieve alerts is wazuh_query.py. It
uses Wazuh Indexer API, which is served on Port 9200 by default. The script combines
term matching with range matching in a single bool query. Wazuh uses OpenSearch, thus
the query language is Query domain-specific language (DSL) [2]. The term to used for
retrieving the alerts is the ID of the rule. This means that only the alerts triggered by the
rules that are supported should be queried. The time range for alert retrieval is based on
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alert parameter timestamp. The time zone was set to UTC+2, as this is the timezone of both
Wazuh server and Wazuh endpoint. The query retrieves alerts from the past 5 minutes.
The query is shown in the listing 7.1.

query_body = {
"query": {

"bool": {
"must": [

{"term": { "rule.id": rule_ids } },
{"range": {

"timestamp": {
"time_zone": "+02:00",
"gte": "now-5m"

}
}}

]
}

},
"sort": [

{ "timestamp": { "order": "desc" } }
],

}

Listing 7.1: The query used by Wazuh server to retrieve alerts using Wazuh Indexer API.

To make the Wazuh server automatically run the script in the required time intervals, a
Wazuh Wodle Command is used. The command has to be put into configuration file of Wazuh
Manager stored at /var/ossec/etc/ossec.conf. The command used in this project, set
to be running in 5 minute intervals, is in the listing 7.2.

<wodle name="command">
<disabled>no</disabled>
<tag>LLM</tag>
<command>python /media/sf_wazuh/wazuh_query.py alerts</command>
<interval>5m</interval>
<run_on_start>yes</run_on_start>
<timeout>0</timeout>

</wodle>

Listing 7.2: The Wazuh Wodle Command used to run alerts collection script in 5 minute
intervals.

As an alternative to have the alerts querying mechanism on the Wazuh server would be
to query the alerts directly from the hosting machine of the analysis tool. We have faced
issues to be able to communicate with Wazuh Indexer from outside of the Wazuh server.
There is lack of a documentation for this use case. After saving the alerts in JSON format,
they are processed by alerts processor.
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7.1.3 Alerts Processing

The alerts processing segment is performed by script called alerts_processor.py. It is
retrieving the the alerts stored by alerts collection module and processing them based on
the triggering rule. During the testing phase of this project it was explored that due to the
usage of more compact model, it is necessary for certain alerts to have their own custom
prompt template, query and even context retrieval methodology. This is implemented in
alets processor.

The prompt template is a template for query that is completed with context informa-
tion and query. An example prompt template for the alert Unsigned Image loaded by
C:\Windows\System32\rundll32.exe is in the listing 7.3.

"""
You are senior security analyst, describing received alert to your

junior colleague. The alert: {question}. Here is a description of
observed MITRE Techniques:

{context}

---

Explain the alert and describe the loaded image’s capabilities based on
the MITRE Techniques.

"""

Listing 7.3: An example of prompt template. This particular template is used for the alert
triggered by unsigned image being loaded by rundll32.exe.

The alerts processor is further responsible for:

• What information is used to search the context information in the database. This is
based on the character of an alert. If the alert contains a file SHA256 hash, that can
be analyzed using the VirusTotal, the information from VirusTotal is preferred. This
way the language model can directly explain the behavior that the file has exhibited
in different sandboxes.

• How is the context search performed. This is done as some of the alerts were getting
better description results by the model when the context search was split into multiple
queries. For some of the alerts a single query worked better.

• Saving the alerts to the file system.

The context for some of the alerts, related to files, is enriched using a VirusTotal in-
tegration. It is done by querying the VirusTotal API. This is implemented in separate
module, that is called by the alerts processor when needed. In the current version of
the tool, the information queried from VirusTotal API is MITRE Techniques exhibited by
the file sample in various sandboxes. This allows the alerts processor to set the query
to search context directly to these techniques. When combined with the right prompt tem-
plate, the model is able to provide meaningful and beneficial behavior description, that
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could be used by security analysts. The API key for VirusTotal has to be stored as an
environment variable VT_API_KEY.

The response received from alerts analysis module is saved as a text file in Analyzed_Alerts
folder. The resulting text files are named using the Wazuh alert’s unique IDs.

7.1.4 Alerts Analysis

The alerts analysis is done by large language model Mistral 7b, which is provided the
context information and query, encapsulated in prompt template.

The mechanism to query the model is implemented in mistral_query.py. It searches
the chroma database for the context, based on the instructions received by alerts processor.
For searching the database, the same embedding function that was used to create the em-
beddings, has to be used.

The module invokes the model and formats its response appending the sources used for
the context search.

7.2 Experiments
This section presents some of the experiments taken during the implementation and tuning
of the final solution. The selected test logs are stored in the test.log file in the main
folder of the tool. The outputs of the experiments in this section contain information and
paraphrased information from MITRE Framework [6].

7.2.1 Experiments using OllamaEmbeddings

The first few experiments were conducted using the database created with OllamaEmbeddings
method with nomic-embed-text model. The query using the OllamaEmbeddings with an
unoptimized prompt template to test the context retrieval is shown in the listing 7.4. The
portions of the context was condensed as it consisted of redundant information and lit-
eral representation of the descriptions from the MITRE Framework [6]. The context for
the model contains redundant entries where the same information about Boot or Logon
Autostart Execution is repeated multiple times with identical description parts. This re-
dundancy could impact the model’s efficiency. Instead, it could introduce a bias or overem-
phasis on the repeated parts of the technique description.

After the initial experiment using OllamaEmbeddings the several tests introducing
changes to prompt template were conducted. The prompt template did not provide signif-
icantly different results.

Another query parameter introduced to the context search query and the model was
the alert description. The first attempt was to propose a fictional alert description, to see
how it affects the response. This was rather a human ramble about what happened, than
structured short description of an alert. This had an effect on the accuracy of the context
search, as well as model’s response. The model was providing better responses to shorter,
structured queries.

The listing 7.5 presents an attempt to query the model with a longer query and adjusted
prompt template. Both the query and the response are condensed for better readability,
leaving only the significant parts.
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The query might be already too long, containing all the information from the detection.
The context search returned is unrelated to the alert details and yet again consists of redun-
dant information. This was thought to be due to long queries passed as the search parameter
for the context search. However, when re-creating the database using OpenAIEmbeddings
the context retrieved from the database was not redundant and consisted of relevant infor-
mation that matched the alert details. A positive aspect worth of highlighting is that the
model was able to reason about the detection details and in some part of the response was
not biased by the given context.

Human:
Answer the question based only on the following context:

(3x) Boot or Logon Autostart Execution
description: The description has been hidden.

(2x) Boot or Logon Autostart Execution: Port Monitors
description: The description has been hidden.

Answer the question based on the above context: How can
adversaries utilize Boot or Logon Autostart Execution?

------
Response: Adversaries can utilize Boot or Logon Autostart

Execution by setting a port monitor through the ‘AddMonitor‘
API call. This allows them to load and run an adversary-

supplied DLL during system boot, which can be located in ‘C
:\Windows\System32‘. The print spooler service, ‘spoolsv.exe
‘, under SYSTEM level permissions will load and run the DLL
on boot. This method is used by adversaries for persistence
or privilege escalation purposes.

Listing 7.4: The first query to the implemented tool, aimed at testing the context
search functionality. The prompt has been condensed. (The response from the
model contains paraphrased content from [6].)
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Human:
You are senior security analyst, describing an alert to your

junior colleague. Explain the situation based on the
following context and question details:

(3x) Hijack Execution Flow: Path Interception by Search Order
Hijacking

(2x) Hijack Execution Flow: Path Interception by Unquoted Path

Answer this question based on the above context: We have
received an alert with the following information:
technique_id=T1016,technique_name=System Network
Configuration Discovery, Commandline: nslookup -querytype=
ALL -timeout=10 _ldap._tcp.dc._msdcs.WORKGROUP. Suspicious
Windows cmd shell execution Can you explain it?

------
Response: Based on the context provided, the alert indicates

that there was a suspicious execution of the "cmd.exe"
command with the argument "nslookup querytype=ALL-timeout=10
_ldap._tcp..dc..WORKGROUP" in a Windows system.

However, this context does not explicitly mention any path
interception or search order hijacking incidents.

If you suspect path interception or search order hijacking based
on additional evidence, make sure to investigate further by
examining the directories and paths involved in the

executions of "cmd.exe" and "nslookup".

Listing 7.5: The query and the response of the model using OllamaEmbeddings.
This query introduces alert details. The context search returned redundant in-
formation. The model was able to reason about the alert details and irrelevancy
of the context provided. (The response from the model may contain paraphrased
content from [6].)

7.2.2 Experiments using OpenAIEmbeddings

After the re-creation of the embeddings vectorstore database using OpenAIEmbeddings the
context search began to retrieve results more relevant to the query. The software list,
retrieved from [6], was added to the database, alongside with the change of the embedding
function. This change could benefit the relevancy of the context information. If some
executable is a part of the alert details, model should be given a short description of its
usage.

The very first test using the new additions to the context database has proven its
benefits. The embeddings are also more accurate, thus retrieving more relevant information.
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In the listing 7.6 are noticeably improved results of the context search. This aided the model
to respond to the query with higher accuracy. The model was able to explain every tool
mentioned in the alert details. The subject to improve in the future might be the suggested
incident response. This could be adjusted with better prompt, demanding a bullet points
with remediation actions.

Human:
You are senior security analyst, describing an alert to your

junior colleague. Explain the situation based on the
following context and question details:

[’Nltest’, ’XSL Script Processing’, ’XSL Script Processing’, ’
cmd’, ’netsh’]

Answer the question based on the above context: We have received
an alert with following information: technique_id=T1059,

technique_name=Command-Line Interface Commandline:\"cmd.exe
\" /c nltest.exe /dclist:%%userdnsdomain%% Can you explain
it?

------
Response: This alert indicates that there has been an observed

use of the "Command Line Interface" (CLI) technique,
specifically with the command ‘cmd.exe‘ followed by ‘nltest.
exe‘. The ‘nltest.exe‘ is a Windows utility used to list
domain controllers and enumerate domain trusts.

The command ‘nltest.exe /dclist:%%userdnsdomain%%‘ is used here,
where ‘%%userdnsdomain%%‘ represents the current user’s

domain. This command is being executed in a batch process
using the Windows command-line interpreter, ‘cmd.exe‘.

The CLI technique is often used by adversaries to execute
commands or tools directly on target systems, as it provides
them with an easy way to interact with the system and

perform various tasks. In this case, the use of ‘nltest.exe‘
could potentially be for reconnaissance purposes, as it

allows an attacker to discover information about the domain
controllers and domain trusts within a network.

*** Generic recommendation for investigation. ***

Listing 7.6: The query and the response of the model using OpenAIEmbeddings.
The context search returned relevant information that helped the model accu-
rately reason about the alert details. (The response from the model may contain
paraphrased content from [6].)
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The following were tests on multiple types of alerts, to see how does the response change
for the different alert type. Some of the alerts did not receive as good descriptions. This
led to decision to create separate methods for specific types of alerts. These methods will
customize the input that is provided to the model and the context search query. Some of
the alerts require only the triggering command line and some will benefit from the parent
image parameter. Using LangChain it is possible to chain multiple models together. This
approach could be used to reserve one model to prepare the query and the second model
to answer it using context like in this project.

The next step was to test an alert where there is SHA256 hash of the file available, to
be able to use VirusTotal integration. It seemed like a great idea, but it revealed flaws
in the prompt template. Using the previous prompt template, the model was unable to
distinguish between what has been detected in the testing environment and what is reported
from sandboxes in VirusTotal.

The information chosen from VirusTotal was MITRE Techniques exhibited by the sam-
ple file in supported sandboxes. Each technique was pulled only once. The techniques
returned were used to search for the context information. The listing 7.7 shows the context
provided to the model and a specific type of alert. The prompt has remained almost the
same, except for the sentence: ”The above context contains MITRE techniques that
the loaded image has demonstrated in Sandbox.“ This sentence apparently was not
enough and the model made a false assumption that the behavior described in the MITRE
Techniques was detected in our environment. The prompt had to be adjusted using multiple
iterations to come with pleasant result.

46



-- Prompt --
[Device Driver Discovery; Software Discovery; Virtualization/

Sandbox Evasion: System Checks; File and Directory Discovery
~; System Information Discovery]

Explain the alert based on the above context and detection
details: [Alert Details] The above context contains MITRE
techniques that the loaded image has demonstrated in Sandbox
.

------
Response:
This behavior itself is not necessarily malicious as rundll32.

exe is a legitimate Windows utility used for running DLL
files, but the fact that an unsigned image was being loaded
raises concerns. The context provided in our alert mentions
techniques related to Adversary Behavior and Discovery.

1. **Device Driver Discovery**: explanation + correlation to
alert

2. **Software Discovery**: explanation + correlation to alert
3. **Virtualization/Sandbox Evasion: System Checks**:

explanation + correlation to alert
4. **File and Directory Discovery**: explanation + correlation

to alert
5. **System Information Discovery**: explanation + correlation

to alert

Given this context, it is essential to investigate further. We
should gather more data about the unsigned image in question
, including its origin, digital signature (if available),
and any associated network traffic or system activity.
Additionally, we should assess the impact of the unsigned
image on the system and determine if any remediation actions
are necessary.

Listing 7.7: The query and the response of the model using OpenAIEmbeddings.
The context was searched based on the MITRE Techniques exhibited by the mal-
ware sample from the detection. The model was not able to distinguish between
our environment and sandbox. (The response from the model may contain para-
phrased content from [6].)

The following was done to improve the query:

• Prompt template has been restructured. The alert details were moved to the
first few rows of the query.
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• Higher emphasis on the details of usage of VirusTotal. It was made clear,
that the techniques described in the context are taken from VirusTotal analysis.

• The task was better specified. The task ”Explain the alert and describe
the loaded image’s capabilities based on the MITRE Techniques“ better rep-
resents what is the goal of this query.

This resulted in an accurate response from the model, that can be seen in the listing
7.8. The model was able to describe the situation within our environment, the VirusTotal
report, distinguish between them and to reason about file capabilities.
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You are senior security analyst, describing received alert to
your junior colleague. The alert: "Unsigned Image C:\\Users
\\Narnia\\Downloads\\T1036\\2.dll loaded by rundll32.exe".
We queried VirusTotal for details about this loaded image.
VirusTotal reports several MITRE Techniques used by this
image. Here is the description of observed MITRE Techniques:

[Context Information]

Explain the alert and describe the loaded image’s capabilities
based on the MITRE Techniques.

------
Response: The alert indicates that an unsigned image file named

"2.dll" located at "C:\Users\Narnia\Downloads\T1036" was
loaded by the legitimate system process "rundll32.exe". This
information, combined with the MITRE Techniques observed in
VirusTotal reports, suggests that the loaded image may be

used for malicious activities.
The first technique mentioned is "Application Layer Protocol:

File Transfer Protocols", which implies that this image
could potentially be involved in data transfer or command
and control communication between an attacker’s server and
the compromised system.

Another technique listed is "File and Directory Discovery". This
suggests that the loaded DLL might be used to enumerate

files and directories on the infected system, possibly for
further reconnaissance or exploitation purposes.

Additionally, "Content Injection" is mentioned. This technique
could mean that the loaded image might be capable of
modifying existing files or injecting malicious code into
them.

The technique "Software Discovery: Security Software Discovery"
indicates that this image may attempt to detect and gather
information about security software installed on the system,
potentially to bypass or disable it for further attacks.

The description also mentions that Rundll32.exe, which is used
to load the DLL in question, can be employed to execute
Control Panel Items (.cpl files) and scripts like JavaScript
. This raises concerns about potential PowerShell script
execution or other similar malicious activities.

Listing 7.8: The query and the response of the model using OpenAIEmbeddings.
The prompt has been restructured. The alert details are more straightforward.
An emphasis was given on usage of VirusTotal. The model described the alert and
the possible capabilities of the triggering file. (The response from the model may
contain paraphrased content from [6].)
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7.2.3 Enhanced Information and CVE-2023-23397

This subsection experiments with the idea of what could be possible, if the RAG LLM tool
received some additional information. With the enriched information, bigger embeddings
database and better security alerting, the prompt could look something like in 7.9.

You are senior security analyst, describing received alert to
your junior colleague. The alert: Windows system attempts to
connect to an SMB resource on external IP;ParentImage=

Outlook.exe. Here is a description of observed MITRE
Techniques:

Sources: [’Remote Services: SMB/Windows Admin Shares’, ’Brute
Force: Password Spraying’, ’Brute Force: Password Guessing’]

CVE-2023-23397: [Information from CVE List - Known Exploited
Vulnerabilities []]

Explain the alert based on the MITRE Techniques.
------
Response: The alert you received indicates that a Windows system

attempted to connect to an SMB resource using Outlook.exe
as the ParentImage. This behavior is significant because it
suggests that an adversary may be attempting to exploit a
known vulnerability, specifically CVE-2023-23397, in
Microsoft Office Outlook for privilege escalation purposes.

The adversary might be using this vulnerability to perform a
NTLM Relay attack against another service, allowing them to
authenticate as the user.

Furthermore, the connection to an SMB resource over an unsecured
or externally accessible channel raises concerns about

other MITRE techniques that could be employed, such as:
[List of techniques]
These techniques can enable adversaries to remotely access a

networked system, transfer files, run transferred binaries
through remote execution, and abuse single sign-on
applications or cloud-based services with federated
authentication protocols.

Additionally, consider reviewing the system configuration
settings to ensure that all necessary security measures are
in place, such as securing SMB ports (TCP 139, TCP 445),

enforcing strong password policies, and applying software
updates to address known vulnerabilities like CVE
-2023-23397.

Listing 7.9: The query and the response of the model using OpenAIEmbeddings.
Enhanced context database and alerting, result in better descriptions from the
model. (The response from the model may contain paraphrased content from [6].)
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The results are surprisingly good. This response was achieved only by adding an infor-
mation from known exploited vulnerabilities list from [1] and being able to formulate the
query in a comprehensive way for the model to respond to. This opens a discussion for the
possible improvements to the existing implementation in the section 7.3.

7.3 Possible Improvements to the Implementation
This section briefly introduces the options, how could the solution presented in this work,
be further improved.

There is multiple aspects that the tool implemented as a practical part of this work
could be improved. It is not a user friendly ready to be shipped application. However, it
lays strong basis for the further improvements.

Some of the improvements could be:

• Chaining multiple models together. By chaining multiple LLM models together
we could divide the demanding task of malware and adversarial behavior analysis into
smaller pieces, that can be solved by models the most suitable for each task.

• Using larger model. This work demonstrated what can be achieved at home
environment with limited resources and a small, compact model, compared to its
LLM peers. If we could use larger models, while maintaining the privacy of the
information fed to its prompts, we could achieve astonishing results.

• Enhancing the knowledge base database.By enhancing the database to retrieve
context from and enabling it to be periodically updated, the responses from the model
could increase in accuracy. The experiment in the subsection 7.2.3 has proven, that
even small additions to the knowledge base improve the results significantly.

• Fine-tuning the used models. Either fine-tuning the models by ourselves or
using fine-tuned models for the specific task could in combination with context driven
queries present interesting results.

The technical aspects of the tool, that could be improved are, creating an integration
to feed the response data to user interface and create a larger rule set to be able to describe
more alerts. This section concludes the practical part of this work.
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Chapter 8

Conclusion

This paper explored the possibilities of using a more compact large language model in a
cost efficient way in a demanding task such as malware behavior analysis.

The theoretical background was reviewed in chapters 2, 3 and 4, with the emphasis on
Host-Based-Intrusion-Detection (HIDS) systems, Malware Analysis and Large Language
Models (LLM).

The paper then built on this foundation to design an architecture of adversarial be-
havior analysis tool using large language model with the technique of Retrieval-Augmented
Generation (RAG) in chapter 5

The important part of this paper is a chapter 6 about deployment of Security Informa-
tion and Events Management (SIEM) system, for ensuring the alerting capabilities. With
the aid of penetration testing technique, this system has generated the very much needed
data in the form of alerts that could be analyzed by the implemented tool. It also provided
a way to automate the process of alerts collection.

The implementation part of this work from the chapter 7 has detailed the tool that is
the result of practical part of this project. An inherent component of this chapter are the
experiments conducted on the progressing versions of the implemented tool.

The end of this thesis discusses the possible ways to improve the implemented tool and
looks forward to undisputed potential of Generative AI in specialized tasks.
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