
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2023 Bc. Adam Ludes



BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

ANOMALY AND THREAT DETECTION IN AUDIT LOGS
USING MACHINE LEARNING
DETEKCE ANOMÁLIÍ A ÚTOKŮ V AUDIT LOGU POMOCÍ UMĚLÉ INTELIGENCE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Adam Ludes

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Adrián Tomašov

BRNO 2023



Date of project 
specification:

6.2.2023
Deadline for 
submission:

 19.5.2023

Supervisor:     Ing. Adrián Tomašov

 
doc. Ing. Jan Hajný, Ph.D.

Chair of study program board 
 

Master's Thesis 
Master's study program Information Security

Department of Telecommunications 
Student: Bc. Adam Ludes ID: 211802
Year of 
study:

 2 Academic year:  2022/23

TITLE OF THESIS:

Anomaly and threat detection in audit logs using machine learning

INSTRUCTION:

The thesis focuses on anomaly and threat detection in audit logs from container orchestration platforms. The goal
is to detect undesirable requests leading to a denial of service or private data leakage. The semestral part of the
thesis investigates the given problem and gathers necessary data. The data are inspected and then examined
with basic statistical tests. The results highlight the best preprocessing methods and machine learning algorithms
used in the analysis. The diploma thesis implements highlighted preprocessing methods with machine learning
models and compares them against state-of-the-art solutions. The last part is to deploy implemented models into
a production infrastructure.

RECOMMENDED LITERATURE:

[1] CHALAPATHY, Raghavendra; CHAWLA, Sanjay. Deep learning for anomaly detection: A survey. arXiv
preprint arXiv:1901.03407, 2019.

[2] AHMAD, Subutai, et al. Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 2017,
262: 134-147.

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno



ABSTRACT
The thesis explores cloud-native architecture, anomaly detection techniques, machine
learning, and data analysis to develop an anomaly detection model for audit logs from
the Red Hat OpenShift Container Platform. Statistical methods and time series analysis
for anomaly detection are introduced, while machine learning models and preprocess-
ing techniques are implemented and evaluated. The results demonstrate limitations in
traditional models for handling anomalies in deeply nested data, while the NLP model
shows robust performance. This research provides valuable insights and is a reference for
researchers and practitioners in cloud-native architecture, anomaly detection, machine
learning, and data analysis.

KEYWORDS
Anomaly Detection, Cloud-native, Data Analysis, Kubernetes, Machine Learning, Open-
Shift

ABSTRAKT
Tato práce představuje softwarové architektury založené na cloudu, techniky detekce
anomálií, strojové učení a analýzu dat za účelem vytvoření modelu pro detekci anomálií
v audit lozích z Red Hat OpenShift Container Platform. Jsou představeny statistické
metody a analýza časových řad pro detekci anomálií, zatímco jsou implementovány a
hodnoceny modely strojového učení a techniky předzpracování dat. Výsledky ukazují
omezení tradičních modelů při zpracování anomálií v hluboce vnořených datech, zatímco
model zpracovávající přirozený jazyk prokazuje robustní výkon. Tato práce poskytuje
cenné poznatky a může být použita jako reference pro výzkum i praxi v oblasti soft-
warových architektur založených na cloudu, detekce anomálií, strojového učení a analýzy
dat.

KLÍČOVÁ SLOVA
Analýza dat, Cloud-native, Detekce anomálií, Kubernetes, OpenShift, Strojové učení

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz


Rozšířený abstrakt
Tato diplomová práce se podrobně zabývá cloudovou architekturou, technikami de-
tekce anomálií, strojovým učením a analýzou dat. Jejím cílem je vytvořit model
detekce anomálií pomocí strojového učení na audit lozích z kontejnerové platformy
Red Hat OpenShift.

První kapitola nabízí podrobný výklad cloud-nativní architektury. Je v ní vy-
světlen historický vývoj, který vedl k jejímu vzniku od virtuálních strojů až ke kon-
tejnerům. Následně představuje klíčový vývojový přístup DevOps společně s mikro-
službami, na kterých je cloud-nativní architektura postavena. Dále je představen
princip orchestrace kontejnerů, který je v cloud-nativní archtektuře klíčový. Na
závěr jsou představeny dvě platformy sloužící k orchestraci kontejnerů – Kubernetes
a Red Hat OpenShift Container Platform, jejíž audit logy jsou zkoumány v této
práci.

Ve druhé kapitole byla vysvětlena problematika detekce anomálií a hrozeb, k čemu
slouží a jaké základní metody lze použít, jako je metoda mezikvartilového rozpětí,
Grubbsův test a modely Gaussových směsí, a také analýza časových řad pro identi-
fikaci anomálií v sekvenčních datech.

Třetí kapitola se komplexně věnuje strojovému učení. Dělí strojové učení na zák-
ladní druhy – s učitelem, bez učitele, jejich kombinaci a zpětnovazební učení. Dále
zahrnuje metriky hodnocení výsledků dosažených modely strojového učení jako je
přesnost, výtěžnost, F1 skóre a křivka provozní charakteristiky přijímače a nák-
ladové funkce. Zmiňuje nejpoužívanější metody strojového učení používané k de-
tekci anomálií jako algoritmus k-nejbližších sousedů, local outlier factor, DBSCAN,
metoda podpůrných vektorů a Isolation Forest. Zabývá se také neuronovými sítěmi,
jejich architekturou, vrstvami a zaměřuje se na autoenkodéry, které lze používat
k detekci anomálií a Generative Pre-trained Transformer (GPT) sloužící ke zpra-
cování přirozeného jazyka. Představuje také princip tokenizace textu a architekturu
tzv. “transformerů”, které jsou základní stavební bloky GPT modelu.

Následuje kapitola věnovaná analýze dat, která byla poskytnuta kolegy v Red
Hatu ze dvou interních OpenShift clusterů a tudíž jsou považována za citlivá a nemo-
hou být publikována. Tato kapitola používá nástroje jako pandas, ydata-profiling,
matplotlib, seaborn a Scikit-learn k čištění, komplexní analýze a vizualizaci těchto
dat. Dále představuje princip transformace hluboce vnořených dat z původního
formátu JSON do 2D “tabulkových” dat vhodných pro tradiční metody detekce
anomálií včetně autoenkodérů. Následně je představen princip rekurzivní trans-
formace těchto dat do textové formy podobné větám přirozených jazyků, která je
vhodná pro modely GPT.

Pátá kapitola se věnuje implementaci již zmíněných metod předzpracování dat a



modelů za pomoci knihoven PyTorch, Transformers.
V poslední kapitole byly představeny výsledky těchto modelů, které byly měřeny

na datech nepoužitých při procesu trénování. Do těchto dat bylo zamícháno 10 000
upravených logů, které sloužily k simulaci anomálie. Výsledný dataset obsahoval
203 297 prvků. Pro všechny modely byla představena matice záměn.

Výsledky odhalují omezení při předzpracování vnořených dat do 2D formátu,
konkrétně při převodu textu na celočíselné značky. To vede k tomu, že tradiční mod-
ely nejsou schopny rozlišit mezi normálními daty a anomáliemi. Z tohoto důvodu
nebyly pro tyto modely zhodnoceny zbývající metriky, neboť bylo předem jisté, že
jejich výkon není dobrý, a tyto modely nejsou vhodné pro použití v reálných sys-
témech.

Model GPT naopak vykazuje slibný výkon při detekci anomálií. Vykazuje ro-
bustnost díky efektivnímu využití konvencí v textu, což mu umožňuje zvládnout
malé změny v často se měnících oblastech a zároveň zůstat citlivý na změny v rela-
tivně stabilních oblastech.

Vysoká míra výtěžnosti 99,33 % naznačuje, že model GPT dokáže identifikovat
významnou většinu anomálií v souboru dat. Míra přesnosti 98,37 % navíc naznačuje,
že model produkuje relativně nízký počet falešně pozitivních výsledků.

Kromě toho skóre AUC 0,84 pro křivku ROC naznačuje, že model GPT dokáže
účinně rozlišovat mezi anomáliemi a normálními případy. V tomto ohledu však
existuje prostor pro zlepšení.

Vzhledem k těmto faktorům lze model GPT považovat za slibný přístup k detekci
anomálií, zejména při práci s textem nebo hluboce vnořenými a proměnlivými daty.
Je slibný pro reálné aplikace při detekci anomálií v rámci prezentovaných datových
souborů.

Tento dokument poskytuje cenné poznatky tím, že rozsáhle zkoumá cloudovou
architekturu, techniky detekce anomálií, strojové učení a analýzu dat. Může sloužit
jako komplexní reference pro výzkumné pracovníky, odborníky z praxe a nadšence
a podporuje hlubší porozumění těmto oblastem.

Poznatky z této práce jsou nyní blíže zkoumány a v blízké době budou ap-
likovány v produkční infrastruktuře k detekci neoprávněných či chybných zásahů
v OpenShiftových clusterech.



LUDES, Adam. Anomaly and threat detection in audit logs using machine learning.
Brno: Brno University of Technology, Faculty of Electrical Engineering and Communi-
cation, Department of Telecommunications, 2023, 91 p. Master’s Thesis. Advised by
Ing. Adrián Tomašov



Author’s Declaration

Author: Bc. Adam Ludes

Author’s ID: 211802

Paper type: Master’s Thesis

Academic year: 2022/23

Topic: Anomaly and threat detection in audit
logs using machine learning

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation § 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature∗

∗The author signs only in the printed version.



ACKNOWLEDGEMENT

I want to express my heartfelt appreciation to all those who have aided and supported me
in completing my thesis. First and foremost, I owe a debt of gratitude to my supervisor,
Ing. Adrian Tomašov, who provided me with guidance, expertise, and unwavering support
throughout my research journey. Their invaluable insights and constructive feedback were
instrumental in shaping the direction of my work.
I am also grateful to my colleagues Mark Freer and Hilliary Lipsig, who recommended
this topic, provided knowledge and expertise, and kindly helped me access the datasets
I used. Without them, I could not have embarked on this journey.
My family and friends have been my constant pillars of support, providing me with
encouragement, understanding, and patience. Their unwavering belief in my abilities
has been a constant source of motivation and inspiration, and I am truly indebted to
them.



Contents

Introduction 15

1 Cloud-native architecture 16
1.1 Virtualization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Virtual machines . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.2 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Continuous Integration, Continuous Delivery/Deployment . . 19
1.2.2 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Container orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Core Kubernetes Concepts . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Kubernetes components and objects . . . . . . . . . . . . . . . 25

1.5 Red Hat OpenShift Container Platform . . . . . . . . . . . . . . . . . 28

2 Anomaly Detection 30
2.1 Techniques for Anomaly and Threat Detection . . . . . . . . . . . . . 30
2.2 Statistical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Interquartile Range method (IQR) . . . . . . . . . . . . . . . 31
2.2.2 Grubbs’ test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Gaussian Mixture Models (GMM) . . . . . . . . . . . . . . . . 32

2.3 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Machine Learning 35
3.1 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 36
3.2 Common Anomaly Detection Techniques . . . . . . . . . . . . . . . . 37

3.2.1 Distance-based techniques . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Clustering-based techniques . . . . . . . . . . . . . . . . . . . 39
3.2.3 Supervised and semi-supervised techniques . . . . . . . . . . . 40
3.2.4 Tree-based ensemble methods . . . . . . . . . . . . . . . . . . 41

3.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Layers of neurons . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4 Generative Pre-trained Transformer (GPT) . . . . . . . . . . . 46



4 Data Analysis 49
4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Analysis and Preprocessing Tools . . . . . . . . . . . . . . . . . . . . 49

4.2.1 pandas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 ydata-profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.4 seaborn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.5 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Tabular Data Preparation and Exploration . . . . . . . . . . . . . . . 52
4.3.1 Data Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Data Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.4 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.5 Preprocessing Methods . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Sentence Generation from Nested Data . . . . . . . . . . . . . . . . . 56

5 Implementation 57
5.1 Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Tabular Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Sentence Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Scikit-learn models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 63

6 Results 66
6.1 Preprocessing limitations . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 GPT model performance . . . . . . . . . . . . . . . . . . . . . . . . . 68

Conclusion 70

Bibliography 72

Symbols and abbreviations 77

List of appendices 79

A Attached media 80

B Correlation matrices 81



C Source Code Listings 90



List of Figures
1.1 Virtualized deployment vs. Containerized deployment. . . . . . . . . 18
1.2 DevOps Toolchain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Microservice Architecture diagram. . . . . . . . . . . . . . . . . . . . 22
1.4 Kubernetes Architecture diagram. . . . . . . . . . . . . . . . . . . . . 24
1.5 Kubernetes node overview. . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 RHOCP Architecture diagram. . . . . . . . . . . . . . . . . . . . . . 29
2.1 Interquartile Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Time series anomaly. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Layers of a neural network. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Autoencoder diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Transformer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 Correlation matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 GPT model result distributions. . . . . . . . . . . . . . . . . . . . . . 66
6.2 ROC curve for the GPT-2 model. . . . . . . . . . . . . . . . . . . . . 69
B.1 Correlation matrix of the pruned data. . . . . . . . . . . . . . . . . . 81
B.2 Correlation matrix of the subset with the create verb. . . . . . . . . . 82
B.3 Correlation matrix of the subset with the delete verb. . . . . . . . . . 83
B.4 Correlation matrix of the subset with the deletecollection verb. . . . . 84
B.5 Correlation matrix of the subset with the get verb. . . . . . . . . . . 85
B.6 Correlation matrix of the subset with the list verb. . . . . . . . . . . 86
B.7 Correlation matrix of the subset with the patch verb. . . . . . . . . . 87
B.8 Correlation matrix of the subset with the update verb. . . . . . . . . 88
B.9 Correlation matrix of the subset with the watch verb. . . . . . . . . . 89



List of Listings
5.1 JSON Flattening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Data Pruning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Recursive string conversion. . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 IsolationForest training and predictions. . . . . . . . . . . . . . . . . 61
5.5 LOF and GMM training. . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 DeepMinMaxedAutoencoder Class. . . . . . . . . . . . . . . . . . . . 62
5.7 GPT-2 Fine-tuning command. . . . . . . . . . . . . . . . . . . . . . . 64
5.8 GPT-2 score function. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.1 Labelling and scaling data. . . . . . . . . . . . . . . . . . . . . . . . . 90
C.2 KubeDataLoader Class. . . . . . . . . . . . . . . . . . . . . . . . . . 91



Introduction
Computer systems and software have become essential in almost every industry as
technology advances rapidly. The software industry has made remarkable progress
in meeting the increasing demand for efficiency, scalability, resiliency, and secu-
rity. New technologies like containers and container orchestration platforms have
emerged to address these challenges, optimising hardware utilisation and enhancing
the performance of distributed systems.

These advancements have led to innovative software architectures, such as mi-
croservices, which streamline development cycles by adopting DevOps practices. Ad-
ditionally, infrastructure management concepts like Immutability, Declarative Con-
figuration, and online self-healing have simplified the deployment and maintenance
of software systems.

This thesis analyses audit logs from the OpenShift Container Platform, based on
another popular container orchestration platform, Kubernetes, to comprehensively
examine the logs using statistical tests. The primary objective is identifying the
most relevant log features and determining appropriate preprocessing techniques.
These findings are later utilised to develop multiple machine learning models that
are assessed to select the best-performing one, which will be used on production
systems to help engineers filter anomalies quickly and effectively.

By exploring the complexities of audit logs in containerised environments, this
research aims to enhance our understanding of the OpenShift Container Platform
and its underlying Kubernetes infrastructure. The findings and insights obtained
from this investigation will contribute to developing effective machine-learning mod-
els and anomaly detection techniques in container-based systems.

15



1 Cloud-native architecture
The term “cloud-native” is commonly used in marketing, but its meaning is often
unclear. It generally refers to an architectural approach for developing and operating
applications that fully utilise cloud computing principles like scalability, resilience,
and flexibility. Cloud-native applications are designed to be deployed on distributed
cloud platforms and infrastructures instead of traditional on-premise applications [1].

Cloud-native applications have a global reach, spreading their data across mul-
tiple data centres. This improves the reliability of the application, reduces delays,
and ensures data integrity. As a result, these applications can easily handle a grow-
ing user base. Additionally, microservices enable scaling of only specific parts of
the application, reducing resource requirements. This also facilitates seamless up-
dates of individual parts of the application without causing significant disruptions,
eliminating the need for restarting the entire product [1].

The robustness of the architecture is also a key feature of cloud-native appli-
cations. These applications do not break down due to any infrastructure hiccup
and will continue to work immediately after the issue is resolved, making them
self-healing [1].

Cloud-native applications are possible thanks to automated development stages,
leveraging DevOps practices, Continuous Integration, Continuous Delivery, microser-
vices, and Container Orchestration Platforms [2].

1.1 Virtualization tools
Previously, server admins required developers to use identical tool versions on the
same system for all applications. This reduced the workload of maintaining multiple
versions of the same tool on one system. However, this meant that a new server was
needed every time a different tool version was required.

Furthermore, assigning specific resources to individual applications was not feasi-
ble, as all applications shared the same resource pool. As a result, if one application
used most of the resources, it would negatively impact the performance of the other
applications [3].

More servers can be deployed to solve these problems, requiring unnecessary
hardware and underutilising physical machines. Additionally, the cost of spinning
up another server can be too high, hindering development. This is why virtualisation
was created as an alternative solution [3].

Virtualisation overcomes this issue since it allows separate environments to run
side by side on the same physical machine. A software abstraction layer separates

16



these environments and should not interfere with each other, provided the virtu-
alisation software has no bugs. With this approach, the data centre footprint is
significantly reduced, which reduces costs and brings other benefits, such as faster
server provisioning [4].

1.1.1 Virtual machines

Virtual Machines (VMs) themselves date to the 1950s but did not start to get
much use until the 1990s when notable mentions like SoftPC, Virtual PC, and
VMWare Workstation (system virtual machines) were released. Later, in the mid-
2000s, hardware assists were implemented in processors, which made virtual ma-
chines more powerful, and with that came projects like Linux Kernel-based Virtual
Machine (KVM) and VirtualBox [4].

System Virtual Machines enable full virtualization. Even the hardware is sim-
ulated, and any guest Operating System (OS) can be installed on the VM. Any
number of virtual machines can be present on a single physical machine. Since
they contain their own OS, they can each have different applications installed with
different versions of dependencies [5].

However, with full virtualisation come some drawbacks. Since every VM has its
own OS, there is some resource overhead that is necessary for the VM to function,
reducing the resources the applications can utilise.

Process Virtual Machines solve a different problem than the one described earlier
and, as such, are not the focus of this thesis. They run on top of the hardware and
operating system. Their primary purpose is to enable portability, allowing programs
to run on any system on which the process virtual machine can be installed. For
example, Java programs are compiled into Java byte code, which is interpreted or
compiled just-in-time (JIT) by the Java Runtime Environment [5].

1.1.2 Containers

Containers are examples of operating system-level virtualisation: these solutions
package applications with all their dependencies, but they do not contain any OS.
Instead, they use features of the host OS to separate the application from the host
without the need to simulate the hardware and any guest OS. These features in the
case of the Linux kernel consist mainly of namespaces and cgroups [6].

Namespaces abstract global system resources and isolate resources between run-
ning applications. Linux Control Groups (cgroups) enable limiting the use of system
hardware, such as core count, memory limits, disk io!, etc. [7]. This helps solve the
noisy neighbour problem, which occurs when an application takes the majority of

17



available resources and disrupts the operation of other applications on a given sys-
tem.

These features ultimately isolate the processes inside the container and limit
the number of system resources they have access to, allowing them to run in any
environment, be it a local development instance or a production instance running
in the cloud.

This dramatically simplifies the development process since applications retain full
functionality in all environments throughout software production and deployment.

Containers vs. Virtual Machines

In a way, containers are similar to virtual machines since they house everything
necessary for applications to run, but there are some differences.

Virtual machines leverage a hypervisor to virtualise physical hardware, and a
guest operating system needs to be installed on each machine, inflating the images
to several gigabytes. The guest OS also uses resources even when idle, increasing
resource overhead and reducing total performance.

Containers, conversely, contain only the application and its dependencies. This
is due to them utilising the host operating system’s features to separate the appli-
cations from the host without the need to virtualise. Since containers do not use
a guest OS, an idle container does not use any resources, and container sizes are
measured in megabytes [3].

Fig. 1.1: Virtualized deployment vs. Containerized deployment. Adapted from [8].

18



The absence of hardware and guest OS virtualisation makes containers consider-
ably faster, portable, and more lightweight, allowing more containers to be present
on a system than virtual machines [3].

However, containers are not a replacement for virtual machines. Instead, they
are best used together. For example, running a container on a different operating
system than for which it was created is not trivial.

Virtual machines improve infrastructure by allowing system administrators to
expand the number of systems from the available servers. In contrast, contain-
ers improve development by enabling DevOps practices and, together with the mi-
croservices architectural style, increase portability, development speed, and product
resiliency while utilising resources better, increasing computation density.

1.2 DevOps
DevOps is a set of practices intended to reduce the time between com-
mitting a change to a system and the change being placed into normal
production while ensuring high quality. [9]

DevOps is a software development approach prioritising collaboration and commu-
nication between development and operations teams. This methodology emphasises
automation, continuous integration, continuous delivery, and rapid iteration to im-
prove software development and deployment speed, quality, and efficiency.

The DevOps philosophy promotes the idea that development and operations
teams should work closely throughout the entire software development lifecycle. This
includes planning, development, testing, deployment, and maintenance. DevOps
aims to eliminate traditional bottlenecks and delays by breaking down silos between
teams and improving collaboration and communication.

1.2.1 Continuous Integration, Continuous Delivery/Deployment

Continuous Integration and Continuous Delivery/Deployment (CI/CD) is a collec-
tion of tools and practices that assist software development teams in building, test-
ing, and deploying software with greater speed and dependability.

Continuous Integration (CI) involves regularly integrating code changes into a
shared repository and automatically building and testing the code to ensure it works
correctly. CI aims to catch and fix issues early in the development cycle, reducing
the risk of errors and bugs that can cause delays and downtime [11].

Continuous Delivery (CD) automates the deployment process of software to pro-
duction environments. Code changes are automatically built, tested, and validated

19



Fig. 1.2: DevOps Toolchain. Adapted from [10].

through a continuous delivery pipeline and then deployed to a staging or production
environment. This enables teams to release new features and updates more rapidly
and confidently while minimising the chances of errors and downtime [11].

Continuous Deployment (CD) is an automated process where code changes are
directly deployed to production environments without manual intervention. This
method requires a strong focus on testing and validation to ensure safety and sta-
bility [11].

Implementing CI/CD involves several tools and technologies, such as source code
management systems, build automation tools, testing frameworks, containerisation
platforms like Docker and Kubernetes, and deployment automation tools like Ansible
and Chef. Adopting CI/CD practices can help organisations enhance the speed,
quality, and reliability of their software development and deployment while reducing
errors and downtime and accelerating innovation and time to market

1.2.2 Microservices

Microservices is a software development method that involves dividing large, com-
plex applications into smaller, independent services that can be tested, developed,
and deployed more efficiently and easily. This approach helps streamline the devel-
opment process.

In a microservices architecture, every service has a unique purpose or task and in-
teracts with other services through clear Application Programming Interfaces (APIs).
Typically, each service is created and launched independently, providing more flex-
ibility and agility in software development.

20



Monoliths

Traditionally, software applications were built as a collection of many built-in, inter-
connected modules that could not function independently. These are called mono-
lithic applications or monoliths.

Most programming languages are designed to build particular executable appli-
cations (monoliths) that rely on resource sharing within the same machine. They
result in a technology lock-in: developers must continue using the same language
and framework throughout the entire application [12].

These applications prove challenging to use on distributed systems since they
are difficult to maintain and suffer from “dependency hell”, where different library
versions can cause misbehaviour of the application or a crash. Any change in a
module requires restarting the whole application. The application’s scalability is
very limited since in cases where only a few modules are strained by the traffic,
the only way to scale is to deploy more instances of the whole application and load
balancing those [12].

Microservices

Microservices implement as little functionality as necessary, making their code base
small and reducing the risk of bugs. However, since all the building blocks are sep-
arated into different microservices, communication needs to be established between
them. There are several solutions to this problem. Microservices can communicate
using traditional request/response messages, notifications without a response, or a
publish/subscribe model [13].

They can be deployed side by side with older versions, and other services that
depend on them can be gradually modified to move between versions. Due to that,
the end product will never require a complete restart since all the microservices
are restarted as needed, resulting in very short product downtime and easier main-
tenance. They are easily containerised and scaled as needed, and apart from the
technology used to make microservices communicate (protocols, data, etc.), they
bring no additional lock-in [12].

Some key characteristics of microservices include:
Decentralized Microservices are designed to be independent of each other, with

each service responsible for its own data and functionality.
Scalable Services can be scaled up or down as needed without affecting other parts

of the application.
Resilient Services are designed to be fault-tolerant, with redundant components

and automatic failover to ensure continuous availability.

21



Composable Services can be combined and reused in different ways to create new
applications and functionality.

Polyglot Services can be developed in different programming languages and tech-
nologies based on the specific requirements of each service.

Fig. 1.3: Microservice Architecture diagram. Adapted from [14].

1.3 Container orchestration
Container orchestration automates container deployment, management, scaling, and
networking. The orchestrator usually provides features to limit container resources,
load balancing, autoscaling, scheduling, health monitoring, and fault tolerance [15].

Container orchestration platforms are used to deploy containerised applications
in cloud environments. These platforms are either self-deployed to bare metal
servers, using Infrastructure as a service (IaaS) to build the platform on virtual
machines, or using ready-made distributed clusters – Platform as a service (PaaS).

• Resource limit controls ensure the given container does not exceed the maxi-
mum allowed memory and CPU usage [15]. These constraints are used to make
scheduling decisions. They can help prevent a container from consuming too
much memory due to memory leaks and ensure that all the containers have
the necessary resources, combating the noisy neighbour problem.

22



• Scheduling controls the number of containers placed on the desired cluster
nodes. Project maintainers can specify the desired number of containers and
their node affinity, and the scheduler will try to fulfil the desire (when possible).

• The load balancer distributes the load between container instances, usually
using round-robin scheduling, but other load balancers can also be used.

• Health checks ensure containers are not in a faulty state using simple readiness
and liveliness requests.

• Using the results of health checks and resource limits, fault tolerance can be
achieved by destroying faulty containers and containers using too many re-
sources. After a container is destroyed, a new one is recreated to take its place
to continue regular operation.

• Autoscaling automatically adds more container instances if the load is too
great. A resource threshold usually defines this; a new instance is created if
current instances exceed the threshold.

The leading container orchestration platforms include Kubernetes, Red Hat
OpenShift Container Platform, Docker Swarm, Google Kubernetes Engine, Amazon
Elastic Container Service, Azure Kubernetes Service, Marathon, and Centurion [16].

1.4 Kubernetes
Kubernetes is an open-source container orchestration platform initially developed
at Google and introduced to the public in 2014. It has become the standard for
deploying and managing cloud-native applications at nearly every public cloud [17].
Kubernetes is nowadays a proven infrastructure for distributed systems at every
scale, be it a couple of single board computers like the Raspberry Pi or a global
scale cluster spanning different continents [18].

Kubernetes provides a fast-paced, distributed, and scalable platform. When
paired with already mentioned DevOps practices, such as CI/CD and microservices,
the applications deployed in Kubernetes become reliable, scalable, and maintain
availability even during software rollouts and maintenance [17].

1.4.1 Core Kubernetes Concepts

The core concepts that allow Kubernetes to be as reliable and fast-paced are [17]:
• Immutability
• Declarative configuration
• Online self-healing systems.

23



Fig. 1.4: Kubernetes Architecture diagram. Adapted from [19].

Immutability

Immutable infrastructure describes the property of an object in a system that does
not change via any user input. Compared to traditional mutable infrastructure
(servers, computers, software systems, etc.), which applies changes through incre-
mental updates, immutable systems completely replace the running image with a
new one in a single operation [17]. In the case of containers, the differences between
mutable and immutable principles of operation can be described with the following
example of a software update:

• The traditional mutable update would consist of logging into a container, run-
ning a command to update a new version of the software inside the container,
and restarting it [17].

• On the other hand, an update that adheres to the immutable principles would
require building a new container image with the new software version already
in it, pushing it to a container registry, pulling the new image from the registry
on the cluster, destroying, and redeploying the container [17].

At first glance, the second approach requires more work. However, the advantage
of such an approach is that all images contain the same software and dependencies.
The differences between images are easily spotted and can be traced and fixed sooner

24



in case of an error. These two approaches can also be considered an example of the
Pet vs Cattle analogy [20].

Immutability would pose a problem when data must be saved and kept persistent
between container images. This issue can be solved by using volumes. Volumes are
file systems mounted inside the container independent of the container lifecycle and
can be reused between image versions to store data and configuration [21].

Declarative configuration

Compared to an imperative configuration, where a sequence of commands achieves
the end state of the system, declarative configuration describes the desired state,
and Kubernetes ensures that this desire is reflected in the actual state of the sys-
tem, if possible. For example, instead of a sequence of three commands to start
three containers, the declarative configuration would specify three replicas of the
container. Kubernetes would perform the required steps to achieve that state [17].

This configuration allows one to ensure that the desired state is met continually.
In contrast, the imperative configuration could break where the desired state would
not be understood without executing the command sequence. This feature can
be further used in conjunction with traditional software development tools such
as source control, code review, and testing to create what can be referred to as
Infrastructure as code (IaC). [22]

Online self-healing systems

Since Kubernetes uses declarative configuration, it continuously ensures that the
system’s current state matches the desired state, even when disturbed. Instead
of setting up alerts and having a human react to them, Kubernetes will repair the
state to the configured one. So, for example, if the configuration specifies the desired
state as having three replicas of a service and an administrator mistakenly deletes
or creates one more, or one replica crashes, Kubernetes will destroy the additional
replica or create a new one as needed to match the configured state [17].

1.4.2 Kubernetes components and objects

A Kubernetes cluster consists of a set of worker machines called nodes. Nodes host
the application workload managed by the cluster’s control plane. The control plane
is a container orchestration layer that exposes API and Interfaces to define, deploy,
and manage the lifecycle of containers inside the cluster. It usually runs across
multiple nodes to provide fault tolerance and high availability [19].

25



Nodes

In Kubernetes, a node is a worker machine in a cluster that runs containerised ap-
plications. It comprises a kubelet, container runtime, kube-proxy, and an operating
system. Nodes execute assigned tasks and workloads while communicating with the
control plane. A Kubernetes cluster can function with a single node; however, a
typical deployment would consist of multiple nodes.

Namespaces

Namespaces allow groups of resources to be isolated within the same cluster. They
are intended to be used in environments where many users are spread across multiple
teams or projects. Namespaces provide a scope for naming objects; objects must be
uniquely named only within a namespace but not cluster-wide [23].

Pods

A pod is a collection of application containers and volumes running in the same exe-
cution environment. They are the smallest deployable unit in Kubernetes, meaning
that all containers within a pod will always run on the same machine. These appli-
cations share the same IP address and port space, have the same hostname and are
expected to be closely related but not as much to be part of the same container [17].

For example, creating a pod consisting of a volume where data is stored, a
container serving web requests accessing the data in the volume, and a container
periodically fetching new data to put save in the volume would make sense. These
two containers are closely related, but the server has a higher priority, while the
updater can run with a “best-effort” quality of service [17].

Services

Service objects provide an abstract way of exposing an application to make it ac-
cessible outside the cluster. They define a set of pods and a policy on accessing
them [24].

Replica Sets

Replica sets are configuration objects that describe how many copies of pods are
supposed to be created and managed. They can be configured to set the minimum
and maximum number of replicas to be managed and a metric to decide when a new
replica should be created, such as the CPU utilisation threshold [17].

26



Ingress

Ingress is an API object that acts as a gateway or entry point to expose Hypertext
Transfer Protocol (HTTP) and Hypertext Transfer Protocol Secure (HTTPS) routes
to services within the cluster. It provides external access to services by defining
rules for routing and load balancing incoming traffic, terminates Transport Layer
Security (TLS), etc. [25].

Deployments

Deployments are Kubernetes objects that manage the release of new versions. After
a configuration change, deployments can gracefully move applications to the next
version according to the configuration and use health checks to ensure that the new
version of the application is running correctly. If the rollout fails, deployments allow
rolling back versions [26].

Fig. 1.5: Kubernetes node overview. Adapted from [27].

27



1.5 Red Hat OpenShift Container Platform
For all that Kubernetes can do to orchestrate containers, users still need
to integrate other components like networking, ingress, load balancing,
storage, monitoring, logging, multi-cluster management, continuous in-
tegration and continuous delivery (CI/CD), and more to accelerate the
development and delivery of containerised applications at scale. Red Hat
OpenShift offers these components with Kubernetes at its core. [28]

Red Hat OpenShift Container Platform (RHOCP) is an open-source container or-
chestration platform created by Red Hat. It is an enterprise Kubernetes-based
application platform with many features added on top. Since it is an enterprise
platform, it comes with additional security policies. RHOCP also separates the con-
trol plane from the workload by default, resulting in a few sets of nodes – master
nodes dedicated to control plane components, infrastructure nodes for maintenance
and routing purposes, and worker nodes running the entirety of user workload.

Some notable differences from Kubernetes include:
Ease of use OpenShift offers a user-friendly interface and simplified workflows that

facilitate the management and deployment of containerised applications. In
contrast, Kubernetes demands more manual configuration and administration.

Security and compliance Enterprises can easily manage and secure their con-
tainerised applications with OpenShift’s integrated security features and com-
pliance controls. While Kubernetes offers some security features, they require
manual configuration and management.

Multi-cloud support OpenShift can be deployed in different environments, in-
cluding on-premises, public, or hybrid cloud configurations. It provides a
consistent set of APIs and tools across all environments. In contrast, Kuber-
netes can be deployed in any environment, but the tools necessary to enable
the various deployments must be installed separately [29].

Application services OpenShift provides a wide range of application services,
such as databases, messaging, and logging, which can be easily integrated
into containerised applications.

Red Hat technology OpenShift integrates Red Hat technology, such as compo-
nents from Red Hat Enterprise Linux (RHEL). Unlike Kubernetes, which
can be installed on any Linux distribution, RHOCP uses mostly Red Hat En-
terprise Linux CoreOS (RHCOS), an immutable container-oriented operating
system [29].

Figure 1.6 represents a typical Red Hat OpenShift Container Platform architec-
ture. This architecture ensures the availability, scalability, and efficient management
of containerised workloads in the Red Hat OpenShift Container Platform.

28



Fig. 1.6: RHOCP Architecture diagram. Adapted from [30].

Master Nodes OpenShift deploys multiple master nodes for high availability and
fault tolerance. These nodes host the control plane components, including the
API server, scheduler, and controller manager. They work together to manage
and orchestrate the cluster [29].

Worker Node Worker nodes are where the actual application workloads run. They
host containers and execute tasks assigned by the control plane [29].

Infra Nodes Infra nodes, or infrastructure nodes, are specialised worker nodes
dedicated to running router pods. These pods handle the external network
traffic and provide routing and load-balancing capabilities to route requests to
the appropriate services within the cluster [29].

Registry and Object Storage OpenShift utilises a registry to store and manage
container images used by applications. It enables efficient image distribution
and deployment. Object storage refers to a storage system that stores various
files and objects required by applications [29].

External Load Balance An external load balancer sits outside the OpenShift
cluster and distributes incoming traffic across worker or infra nodes.

Router Load Balancer The router load balancer is an internal component within
the OpenShift cluster. It distributes incoming external traffic to the appropri-
ate router pods on infra nodes [29].

Bastion Host A bastion host, sometimes called a jump host, is a secure gateway
that provides access to the OpenShift cluster for administration and manage-
ment purposes. It is a controlled entry point for authorised users to interact
with the cluster.

29



2 Anomaly Detection
This chapter provides an overview of anomaly detection, covering the principles,
methods, and applications of detecting anomalies in different data types. It briefly
introduces statistical and time series analysis approaches commonly used in the
field and mentions the fundamental techniques for threat detection. The content
aims to give readers the basic knowledge needed to understand and apply effective
anomaly detection strategies in various domains, providing a solid foundation for
further exploration of the topic.

Anomaly detection is a method used in data analysis and machine learning to
pinpoint data points or patterns significantly different from the norm. This process
helps identify unexpected or unusual events or behaviour in a dataset, which could
indicate a malfunction, cyberattack, or other unusual activity. Various anomaly
detection methods include statistical analysis, machine learning algorithms, and
neural networks [31].

Identifying possible security threats to a system or network is called threat de-
tection. These threats can come from cybercriminals, hackers, insiders, or malware.
Techniques like monitoring network traffic, user activity, and system behaviour are
used to detect potential security breaches. Intrusion detection systems, log analysis,
and behavioural analytics are commonly used for threat detection.

To maintain the security and integrity of computer systems, networks, and data,
utilising both anomaly and threat detection techniques is essential. These techniques
enable organisations to quickly and efficiently detect and respond to potential secu-
rity incidents, ultimately preventing harm to their assets and reputation.

2.1 Techniques for Anomaly and Threat Detection
This section provides a brief overview of techniques used for detecting anomalies and
threats. While threat detection techniques are not the main focus of this work, we
briefly introduce them alongside anomaly detection techniques, as they are relevant
to the topic of this thesis. It should also be noted that utilising multiple techniques
would enhance the accuracy and efficiency of the results. The techniques listed here
briefly introduce their fundamental concepts, which can give readers a high-level
understanding before further exploring their applications.
Anomaly detection techniques:

• Statistical analysis can identify outliers or anomalies in a dataset, such as
standard deviation, quartiles and regression analysis.

• Time series analysis can identify anomalies in a time-based dataset, such as
detecting a sudden spike in network traffic or an unexpected drop in website

30



visits.
• Machine learning algorithms can be trained on standard data patterns to iden-

tify deviations or anomalies in new data, such as decision trees, random forests,
and neural networks. While machine learning algorithms may incorporate sta-
tistical methods as part of their training, they can also capture more complex
data patterns that may not be detectable using simple statistical techniques.

Threat detection techniques:
• Signature-based detection uses a database of known malware signatures or

patterns to identify and block threats, such as antivirus software and intrusion
detection systems [32].

• Behaviour-based detection looks for unusual behaviour patterns in the system
or network activity, such as unexpected file transfers or attempts to access
unauthorised resources [33].

• Heuristic analysis uses a set of rules or algorithms to identify potentially sus-
picious behaviour, such as monitoring for changes to critical system files or
unusual login attempts [34].

In the following sections, we aim to provide a concise yet comprehensive overview
of both statistical and time series analyses. We will then delve deeper into machine
learning in the subsequent chapter. We aim to deliver a solid foundation in these
fundamental concepts to understand better the key principles underpinning data
science and artificial intelligence.

2.2 Statistical techniques
Statistical techniques are widely used in anomaly detection to identify deviations
in data distributions and variable relationships. They aim to detect data points
that significantly deviate from the norm, representing potential anomalies. From
simple methods based on normality assumptions to advanced approaches for com-
plex data distributions, these techniques offer diverse options for detecting outliers
without complex models or extensive training. This section outlines the key statis-
tical techniques, discussing their strengths, weaknesses, and applicability in various
contexts.

2.2.1 Interquartile Range method (IQR)

The Interquartile Range (IQR) method is another simple statistical technique for
detecting anomalies, especially in non-Gaussian data distributions. It is based on
the concept of quartiles, where the data is divided into four equal parts. The IQR
is calculated as the difference between the first quartile (Q1) and the third quartile

31



(Q3). Anomalies are data points that fall below Q1 - 1.5IQR or above Q3 + 1.5IQR.
This method is less sensitive to extreme values than the Z-score method and can be
more robust in certain situations. However, it may still struggle with complex or
multi-modal data distributions [31].

Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1 − 1.5 × IQR

−0.6745σ 0.6745σ 2.698σ−2.698σ

50%24.65% 24.65%

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

Fig. 2.1: Interquartile Range diagram. Adapted from [35].

2.2.2 Grubbs’ test

Grubbs’ test is a statistical method used to detect a single outlier in a univariate
dataset, assuming it follows a Gaussian distribution. The test calculates the stan-
dardised value of the data point with the most significant absolute deviation from
the mean. It compares it to a critical value derived from the t-distribution. The
data point is an outlier if the standardised value exceeds the critical value. Grubbs’
test is helpful for detecting a single outlier but may not be suitable for detecting
multiple outliers or handling data with non-Gaussian distributions [31].

2.2.3 Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM) are a more advanced statistical technique for
anomaly detection, capable of modelling complex data distributions by represent-
ing them as a combination of multiple Gaussian distributions. GMMs use an

32



expectation-maximization (EM) algorithm to estimate the parameters of these Gaus-
sian distributions iteratively. Anomalies can be detected by calculating the likeli-
hood of each data point belonging to any of the Gaussian distributions, and those
with a low likelihood are considered outliers. GMMs are more flexible than the
Z-score, IQR, and Grubbs’ test methods, as they can handle multi-modal data and
account for various data shapes. However, they require more computational re-
sources and may be sensitive to the initial parameter settings [31].

GMM will be used as the primary statistical technique for anomaly detection.

2.3 Time series analysis
Time series analysis is a statistical method used to study and understand data
collected over time. This technique involves analysing and modelling the patterns,
trends, and relationships within a time-based dataset to predict future outcomes
or detect abnormalities. It is beneficial for data with a temporal component, as
it can reveal trends and patterns that may not be evident with other statistical
methods [36].

Time series analysis is popular in several fields, such as finance, economics, and
environmental science. Its purpose is to analyse and predict patterns and trends
over time. Time series analysis is applied to many areas, including the analysis of
stock prices, forecasting of economic indicators, prediction weather patterns, and
evaluating climate changes.

Detecting anomalies is a critical part of analysing time series data. It helps to
identify patterns, trends, or events that are unexpected or unusual in a dataset or-
dered by time. There are three types of anomalies: point, contextual, and collective.
Point anomalies are data points that deviate significantly from the norm, whereas
contextual anomalies are data points that seem unusual within a specific context,
like a particular time of day or season. Collective anomalies involve a group of data
points that display abnormal behaviour, even though individual data points may
not be anomalous [36].

33



Anomaly

Time

Va
lu
e

Fig. 2.2: Time series anomaly diagram.

34



3 Machine Learning
Machine learning is a branch of artificial intelligence that develops algorithms and
statistical models to allow computer systems to learn and improve from their ex-
periences. In simpler terms, machine learning algorithms can automatically learn
patterns and relationships in data without explicit programming. To achieve this,
we expose the algorithm to a vast dataset and train it to identify patterns or make
predictions based on that data [37].

Machine learning can be categorised into four main types: supervised, unsuper-
vised, semi-supervised, and reinforcement learning.

• Supervised learning is a process of training a model with a labelled dataset. In
simpler terms, every example in the dataset is associated with a label or target
value. The main objective is to create a mapping between input variables
(features) and the output variable (label) so that the model can make precise
predictions on new, unseen data. Examples of supervised learning include
image classification, speech recognition, and sentiment analysis [37].

• Unsupervised learning involves training a model without labelled data, which
means there are no assigned target values for each example. Its objective
is comprehending the data’s fundamental structure, like patterns, clusters,
or anomalies. Unsupervised learning techniques include clustering, anomaly
detection, and dimensionality reduction [37].

• Semi-supervised learning leverages a small amount of labelled data for supervi-
sion while using unlabeled data to capture underlying patterns. This approach
is practical when labelled data is limited or costly, allowing for efficient utili-
sation of available resources. [37].

• Reinforcement learning teaches an agent to make decisions that result in the
highest possible reward. The agent learns by interacting with the environment
and receiving positive or negative feedback. Some examples of reinforcement
learning applications include game playing, robotics, and autonomous driv-
ing [37].

Our primary focus is detecting anomalies in multivariate time series, which refers
to a collection of time series data where multiple variables are measured simulta-
neously over a period of time. We will compare commonly used techniques, such
as clustering, density-based methods, and one-class classifiers. Our evaluation will
be based on their ability to detect anomalies and their computational efficiency
accurately.

The thesis will investigate using Natural Language Processing (NLP) to detect
anomalies. Along with traditional methods, we will use a fine-tuned Generative
Pre-trained Transformer (GPT) language model to determine the likelihood of a

35



sentence anomalous. In our scenario, this approach is beneficial as the data pri-
marily comprises text in a nested JavaScript Object Notation (JSON) format with a
highly irregular structure, which deviates from the typical tabular data that machine
learning algorithms or models might expect.

Due to the complexity of the data and the lack of labelling, unsupervised learning
methods will be utilised.

We aim to assess the efficiency of the NLP-based anomaly detection approach by
comparing its performance with traditional methods on the benchmark dataset. We
will also explore the effects of different factors, such as the training dataset’s size,
the language model’s complexity, and the choice of pre-processing techniques. Our
findings will have practical implications, and we will investigate potential real-world
uses of NLP-based anomaly detection.

3.1 Performance Evaluation Metrics
When using machine learning to detect anomalies and identify new patterns in
data, it is crucial to have evaluation metrics in place. These metrics help assess the
performance of various algorithms and models.

Precision, recall, F1 score, and area under the receiver operating characteristic
(ROC) curve are this field’s most commonly used evaluation metrics. Precision
measures the number of true positives compared to all predicted positive instances,
while recall measures the number of true positives compared to all actual positive
instances. Accuracy is the ratio of correctly predicted instances (both positive and
negative) to the total number of instances. The F1 score is a balanced performance
measure considering precision and recall. The area under the ROC curve (AUC) is
a metric that evaluates how well the algorithm distinguishes between normal and
anomalous instances [38].

Recall = TP
TP + FN (3.1)

Precision = TP
TP + FP (3.2)

Accuracy = TP + TN
TP + TN + FP + FN (3.3)

F1 Score = 2× Precision× Recall
Precision + Recall (3.4)

AUC =
∫ ∞
−∞

Recall(f), d(FPR(f)) (3.5)

where FPR = FP
FP+TN .

36



Other metrics that may be used to evaluate anomaly and novelty detection in-
clude accuracy, mean squared error (MSE), negative log-likelihood (NLL), and root
mean squared error (RMSE).

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (3.6)

NLL = − 1
n

n∑
i=1

log(p(yi|xi)) (3.7)

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.8)

Please note that in the above equations:
• yi represents the true value for the i-th sample.
• ŷi represents the predicted value for the i-th sample.
• n represents the total number of samples.
• TP stands for True Positives (correctly predicted positive samples).
• TN stands for True Negatives (correctly predicted negative samples).
• FP stands for False Positives (negative samples incorrectly predicted as posi-

tive).
• FN stands for False Negatives (positive samples incorrectly predicted as neg-

ative).
• TPR(f) represents the True Positive Rate (also known as Sensitivity or Recall)

at a given threshold f.
• FPR(f) represents the False Positive Rate at a given threshold f.
• The integration in the AUC equation represents the integration over the entire

range of thresholds.
• p(yi|xi) represents the conditional probability of the true value yi given the

input features xi.

3.2 Common Anomaly Detection Techniques
In this segment, we will delve into a handful of machine learning-based anomaly
detection techniques that have gained significant traction in the industry. These
techniques include clustering, density-based methods, and one-class classifiers de-
signed to identify and handle anomalies effectively [39].

3.2.1 Distance-based techniques

Distance-based techniques are crucial in anomaly detection, focusing on the prox-
imity between data points to uncover potential outliers. These methods identify

37



anomalies with significantly different characteristics than their neighbours by mea-
suring the similarity or dissimilarity between data points. Distance-based techniques
often rely on simple metrics and require minimal assumptions about the data dis-
tribution, making them versatile and applicable in various situations.

K-Nearest Neighbours

K-Nearest Neighbours (k-NN) is a non-parametric machine learning algorithm used
for classification and regression tasks. k-NN works on finding the K closest data
points in the training set to a new, unlabeled data point and assigning a label or
value based on most K-nearest neighbours [39].

The k-NN algorithm determines the most frequent class label among the K-
nearest neighbours for classification tasks and assigns it to the new data point.
Regarding regression tasks, the k-NN algorithm calculates the mean of the K-nearest
neighbours and uses it as the predicted value for the new data point [39].

The k-NN algorithm has a significant benefit in its simplicity and ease of interpre-
tation. It does not presume anything about the data’s distribution, and the results
are straightforward. Nevertheless, k-NN has some constraints, such as its sensitivity
to the K value, the curse of dimensionality, and computational complexity. These
limitations can impact its ability to detect anomalies effectively.

When detecting anomalies, k-NN can serve as a one-class classifier that identifies
data points that do not match the learned model. However, the accuracy of anomaly
detection heavily depends on the choice of K and distance metric. As a result,
it is crucial to carefully evaluate and adjust hyperparameters to achieve the best
performance from k-NN in anomaly detection tasks.

Local Outlier Factor

The Local Outlier Factor (LOF) is a well-known algorithm that detects datasets
anomalies by measuring a data point’s local density compared to its neighbours.
This unsupervised machine learning algorithm is widely used for this purpose [39].

To start the LOF algorithm, we select a data point from the dataset and identify
its k-nearest neighbours using a distance metric. Next, we calculate the chosen
data point’s Local Reachability Density (LRD) by finding the inverse of the average
distance of its k-nearest neighbours. This LRD value helps us determine how isolated
and densely populated the data point is compared to its neighbours.

To determine if a data point is an outlier, we calculate its LOF score by dividing
the LRD of the data point by the average LRD of its k-nearest neighbours. If
the resulting score is greater than 1, the data point is an outlier compared to its
neighbours and the rest of the dataset [39].

38



The LOF algorithm is a helpful tool that can identify outliers or anomalies
by analysing all data points in a dataset. It is beneficial for detecting anomalies
within dense regions of the dataset and distinguishing them from anomalies in sparse
regions.

While the LOF algorithm is valuable, it has certain limitations to keep in mind.
One limitation is that selecting hyperparameters k and distance metrics can signif-
icantly affect the algorithm’s performance. Additionally, managing large datasets
can be difficult due to the computational complexity of the LOF algorithm.

3.2.2 Clustering-based techniques

Clustering-based techniques are a popular choice for anomaly detection, utilising
unsupervised learning algorithms to group similar data points and uncover hid-
den patterns. By identifying clusters within the data, these methods distinguish
anomalies as points that do not fit well into any cluster or are distant from cluster
centroids.

Clustering-based techniques offer the advantage of adaptability to various data
structures and the ability to discover irregularly shaped clusters without prior knowl-
edge of the number or distribution of anomalies.

k-Means clustering

K-Means clustering is an unsupervised learning method that groups similar data
points into k-distinct clusters. It works by assigning each data point to the nearest
cluster centroid and updating the centroid positions based on the mean of the points
within each cluster [39].

Anomalies are identified as distant points from their assigned cluster centroids.
However, K-Means assumes that clusters are spherical and equally sized, which may
not always hold. The algorithm is also sensitive to the initial centroid placement
and the choice of k. Nonetheless, K-Means is easy to use and computationally
efficient [39].

Density-Based Spatial Clustering of Applications

DBSCAN is a clustering algorithm that detects clusters of arbitrary shapes and
identifies noise points that are considered anomalies. It groups closely packed data
points based on a distance metric and density threshold and treats points that do
not belong to any cluster as noise [39].

Unlike k-Means clustering, DBSCAN does not require specifying the number of
clusters beforehand and can automatically discover them based on the input data’s

39



density distribution. This makes it suitable for detecting complex and irregularly
shaped data anomalies. However, DBSCAN may face difficulties when the data
contains clusters with varying densities, and it is sensitive to the choice of distance
metric and density threshold parameters [39].

3.2.3 Supervised and semi-supervised techniques

Supervised and semi-supervised techniques are potent anomaly detection approaches
that rely on labelled data to build predictive models. While effective when labels
are available, they may not be suitable when obtaining accurate labels is challenging
or infeasible. This thesis will focus on unsupervised techniques, as the data at hand
makes labelling difficult. Thus, this section briefly introduces supervised and semi-
supervised techniques but excludes them from further exploration in this study.

Support Vector Machines

Support Vector Machines (SVM) are typically used for classification and regression
tasks. In anomaly detection, SVM can be applied as a binary classification prob-
lem, where data points are labelled normal or anomalous. SVM aims to find the
optimal hyperplane that separates the two classes, maximising the margin between
the closest points of each class, called support vectors [39].

One-Class SVM, a variant of the standard SVM, is designed explicitly anomaly
detection. It works by finding the smallest hyperplane that encloses most data
points, treating points outside this hyperplane as anomalies. SVM is effective for
high-dimensional data and can handle non-linear relationships using kernel func-
tions. However, it may not scale well with large datasets and is sensitive to the
choice of hyperparameters, such as the cost parameter and kernel functions [39].

Decision trees

Decision trees can be used for both classification and regression tasks. They work
by recursively splitting the input data based on feature values, creating a tree-like
structure representing the relationships between features and the target variable.

Decision trees can classify data points based on their feature values. They can
handle non-linear relationships and are easy to interpret. However, decision trees
may be prone to overfitting. In addition, obtaining accurate labels for supervised
anomaly detection can be challenging, as anomalies are typically rare and hard to
characterise [39].

40



3.2.4 Tree-based ensemble methods

Tree-based ensemble methods combine multiple decision tree learners to enhance
anomaly detection performance. Among these techniques, Isolation Forest is de-
signed explicitly for unsupervised anomaly detection and offers unique advantages
like handling high-dimensional data and computational efficiency. In this study, we
will focus on Isolation Forests for detecting anomalies.

Isolation Forest

Isolation Forest is based on the concept of isolation. A tree-based algorithm works
by partitioning the dataset into subsets and identifying anomalies as data points
isolated in fewer partitions.

The Isolation Forest algorithm randomly selects a feature and a value for that
feature and then splits the data into two partitions based on the selected value.
The process is repeated recursively for each partition until all data points are iso-
lated. Data points isolated in fewer partitions are considered anomalies, while those
isolated in many are considered normal [40].

The Isolation Forest algorithm has several advantages, including its ability to
handle high-dimensional datasets and its computational efficiency. It also requires
minimal domain knowledge, making it applicable to many datasets [40].

A significant drawback is that it may not perform well on datasets with many
anomalies or anomalies close to standard data points. Additionally, the algorithm’s
performance can be sensitive to the choice of hyperparameters, such as the number
of trees and the maximum depth of the trees [40].

3.3 Neural networks
Neural networks are computational models inspired by the structure and function
of the human brain. They consist of interconnected nodes or neurons organised
into layers, which work together to learn patterns and representations from input
data. Artificial neurons are the fundamental building blocks of neural networks,
designed to mimic biological neurons’ behaviour. Each artificial neuron receives
input, processes it, and passes the result to other neurons in the network [37].

A typical neural network has three types of layers: the input layer, one or more
hidden layers, and the output layer. The input layer receives the input data, while
the output layer provides the final prediction or result. The hidden layers, which
lie between the input and output layers, transform the input data into meaningful
representations that help the network make accurate predictions [37].

41



Each connection between neurons has a weight associated with it, representing
the strength of the connection. During training, these weights are adjusted to min-
imise the difference between the network’s predictions and target values (i.e., the
error). This is achieved through backpropagation, which involves computing the
error gradient concerning each weight and updating the weights accordingly [37].

There are several types of neural networks, each with its unique architecture and
properties. Some of the most common types include:

• Feedforward Neural Networks (FNN): The simplest form of neural networks,
where information flows in a single direction from the input layer to the output
layer without any loops or cycles. FNNs are helpful for various tasks, such as
classification and regression [41].

• Convolutional Neural Networks (CNN): These networks are designed to handle
grid-like data, such as images or multidimensional arrays. CNNs use convo-
lutional layers to scan the input data and learn local features, making them
particularly effective for tasks like image recognition, object detection, and
natural language processing [41].

• Recurrent Neural Networks (RNN): RNNs are designed to handle sequential
data, such as time series or natural language text. Unlike FNNs, RNNs have
connections that form loops, allowing them to maintain a hidden state that
can capture information from previous time steps. RNNs can model temporal
dependencies and perform tasks like language translation, speech recognition,
and time-series prediction [41].

• Long Short-Term Memory (LSTM) Networks: LSTMs are a particular type of
RNN designed to overcome vanishing gradients, a common problem in train-
ing deep RNNs. LSTMs can effectively model long-range dependencies in
sequential data, making them suitable for tasks like machine translation, text
generation, and time-series analysis [41].

3.3.1 Neurons

In artificial neural networks, a perceptron (also called an artificial neuron or node)
is a simplified computational model inspired by its biological counterpart.

An artificial neuron receives input from other neurons or input data, processes
the input by applying a weighted sum and an activation function, and passes the
output to other neurons in the network. The weights associated with the connections
between neurons are adjusted during the learning process to minimise the prediction
error and improve the network’s performance [37].

Artificial neurons are the basic building blocks of neural network architectures,
enabling them to learn and represent complex patterns and relationships in the input

42



data [37].

3.3.2 Layers of neurons

Neural networks use layers to group artificial neurons or nodes that perform specific
operations on input data. The purpose of layering is to allow the network to learn
hierarchical representations of the input data, which helps it to capture complex
patterns and relationships.

y = σ(Wx + b) (3.9)

Equation 3.9 represents a fully connected (dense) layer, where each neuron is
connected to every input in the input vector. In this equation:

• x represents the input vector to the dense layer.
• W denotes the weight matrix, where each row represents the weights associated

with a neuron in the layer.
• b represents the bias vector, which is added element-wise to the weighted sum.
• σ represents the activation function applied element-wise to the weighted sum,

producing the output vector y of the dense layer.
A neural network can effectively transform and process the input data to produce

accurate predictions or classifications by combining multiple layers with different
architectures and functionalities. As the network processes the input data, the
layers’ arrangement helps it learn more complex and abstract features, making it
better at generalising to new, unseen data.

• Input layer : The input layer receives the input data and passes it to the
subsequent layers. Each neuron in the input layer represents a single feature or
dimension of the input data. The dimensionality of the input data determines
the number of neurons in the input layer.

• Hidden layers: Hidden layers lie between the input and output layers and
transform the input data into meaningful representations that help the network
make accurate predictions. The neurons in the hidden layers apply a weighted
sum of their inputs, followed by an activation function (e.g., ReLU, sigmoid, or
tanh) to introduce non-linearity. A neural network can have multiple hidden
layers, and the number of neurons in each layer can vary depending on the
complexity of the problem and the network architecture.

• Output layer : The output layer provides the final prediction or result from
the network. The number of neurons in the output layer depends on the task
the network is designed to perform. For example, in a binary classification
problem, the output layer may have a single neuron with a sigmoid activation
function to represent the probability of a data point belonging to the positive

43



class. For multi-class classification, the output layer typically has as many
neurons as there are classes, with a softmax activation function to produce
class probabilities.

Input layer
Hidden layers

Output layer

Fig. 3.1: Layers of a neural network.

In addition to these primary layer types, more specialised layer types can exist
depending on the network architecture and the problem being solved:

• Convolutional layers: Used in convolutional neural networks (CNNs) for grid-
like data (e.g., images), convolutional layers apply a series of filters or kernels
to the input data to learn local features and patterns. Convolutional layers
effectively capture spatial information and are commonly used in tasks like
image recognition and natural language processing [42].

• Recurrent layers: Used in recurrent neural networks (RNNs) for sequential
data (e.g., time series or text), recurrent layers maintain a hidden state that
can capture information from previous time steps. This allows RNNs to model
temporal dependencies in the data. Examples of recurrent layers include sim-
ple RNN layers, Long Short-Term Memory (LSTM) layers, and Gated Recur-
rent Unit (GRU) layers [42].

• Transformer layers, central to the groundbreaking Transformer architecture,
efficiently model long-range dependencies in natural language processing. These

44



layers combine Multi-Head Self-Attention and Position-wise Feed-Forward Net-
works. Later in this chapter, we will explore their applications in anomaly
detection [42].

• Fully connected layers: Also known as dense or linear layers, fully connected
layers combine the learned features from previous layers and produce the final
prediction. In a fully connected layer, each neuron is connected to every neuron
in the previous and subsequent layers [42].

3.3.3 Autoencoders

Autoencoders are artificial neural networks used to learn efficient codings of unla-
beled data. They are trained on a set of standard data points and then used to
reconstruct the same data points. Anomalies are data points with a high recon-
struction error or cannot be reconstructed accurately.

The autoencoder algorithm consists of an encoder and a decoder. The encoder
compresses the input data into a low-dimensional representation, and the decoder
reconstructs the original data from the compressed representation. During training,
the autoencoder learns to minimise the difference between the input and recon-
structed data [43].

Encoder Decoder

Latent
space

Fig. 3.2: Autoencoder diagram.

45



One of the main advantages of the autoencoder algorithm is its ability to handle
complex data structures and nonlinear relationships between variables. It can also
be used for unsupervised anomaly detection, making it useful for datasets with few
labelled anomalies [43].

As previously mentioned, the limitation of unsupervised learning is that it may
not perform well on datasets with many anomalies or anomalies significantly different
from the usual data points. Additionally, the choice of hyperparameters, such as
the number of hidden layers and neurons, can significantly impact the algorithm’s
performance.

3.3.4 Generative Pre-trained Transformer (GPT)

Generative Pre-trained Transformer (GPT) is a type of neural network architecture
used for natural language processing tasks, such as language modelling, text gen-
eration, and sentiment analysis. It was developed by OpenAI and is based on the
Transformer architecture, a type of neural network architecture that uses attention
mechanisms to process data sequences [44].

GPT is a pre-trained language model trained on massive amounts of text data,
such as Wikipedia, books, and news articles. It learns the statistical properties of
language, such as the distribution of words and the relationships between words,
and can generate coherent and grammatically correct sentences.

The GPT architecture consists of a multi-layered Transformer decoder network
that generates text by predicting the next word in a sequence based on the previous
words. The network is pre-trained on a large corpus of text data and then fine-tuned
on specific tasks, such as sentiment analysis or text classification [44].

One of the main advantages of GPT is its ability to generate high-quality text
that is coherent and contextually relevant. It can also be fine-tuned for specific
language tasks, making it a powerful tool for natural language processing applica-
tions [44].

However, the GPT architecture also has some drawbacks. One is that it requires
massive amounts of data for pre-training, which can be computationally expensive
and time-consuming. Additionally, the generated text can sometimes be biased or
inaccurate, depending on the quality and representativeness of the training data.

Our use case involves fine-tuning a GPT-2 model using the provided dataset.
However, instead of generating new data, we will use the model to determine the
likelihood of a given sentence occurring. This will help us detect any anomalies in
the dataset. Before proceeding, let us review the core concepts that make GPT
work.

46



Tokenisation

Tokenisation is a fundamental step in natural language processing that involves
segmenting a text into smaller units called tokens. Depending on the specific ap-
plication, these tokens are typically words but can also be characters, subwords, or
other meaningful units. The primary purpose of tokenisation is to convert unstruc-
tured text data into a structured format that can be analysed computationally. This
technique is frequently used as a preprocessing step in NLP to enable further analysis
or modelling of the text data. By breaking down the text into smaller, more man-
ageable pieces, tokenisation facilitates a range of NLP tasks, such as part-of-speech
tagging, sentiment analysis, and text classification [45].

Transformers

Transformers are a type of neural network architecture that has emerged as one
of the most successful approaches to Natural Language Processing (NLP). Unlike
traditional RNNs, transformers process input text in parallel, breaking it down into
smaller tokens embedded into high-dimensional vectors. These vectors are then
passed through multiple layers utilising a self-attention mechanism to focus on rele-
vant input parts. This allows transformers to capture long-range dependencies and
effectively model the structure of natural language [46].

Transformers have achieved state-of-the-art NLP benchmarks, including GLUE
and SuperGLUE. They are highly versatile and can be fine-tuned for various NLP
applications, such as language modelling, machine translation, and text classifica-
tion. In addition, they can handle both sequential and non-sequential inputs, making
them a powerful tool for analysing a wide range of natural language data [46].

Figure 3.3 shows the architecture of a single transformer layer (where Nx is the
ID the layer) which has two sub-layers – a multi-head self-attention mechanism, and
a position-wise fully connected feed-forward network [47].

47



�����
���������

�����
���������

����������
��������

����������
������������

��
���

��	���
����������
��������

���������
���������

���������
���������

����
��
���

���������

������

�����

��

��

����������
��������

����������
��������

������ �������
����
�	������

������
�����������
�

Fig. 3.3: Transformer architecture. Adapted from [47]

48



4 Data Analysis
In this chapter, we conduct a thorough analysis of the data collected for the purpose
of anomaly detection in machine learning. We examine the data for any patterns,
trends, or anomalies that could impact the performance of the anomaly detection
models. In the process, we may encounter various challenges and issues, such as
missing or inconsistent data, noisy data, imbalanced data distribution, or outliers.
We propose and apply suitable solutions to address these problems and improve
the quality and usefulness of the data. By conducting a comprehensive analysis of
the data, we aim to obtain a deeper understanding of the data characteristics and
enable the development of effective and accurate anomaly detection models.

4.1 Data Collection
Our colleagues at Red Hat generously provided the data used in this study. The
dataset was obtained from two internal OpenShift Container Platform clusters, con-
tains three months’ worth of audit logs and underwent a pre-processing stage, which
involved removing certain elements to ensure data privacy and confidentiality.

While the dataset is not entirely raw, it is deemed suitable for exploratory data
analysis and machine learning to determine the most suitable method that will be
used to train on the raw data. The pre-processed data has been carefully reviewed
and deemed appropriate for this study.

It is important to note that the dataset contains sensitive information and will
be treated with the utmost care and confidentiality throughout the study. Although
the dataset does not contain personally identifiable or customer information, it is
still deemed sensitive and will be kept private.

4.2 Analysis and Preprocessing Tools
Practical data analysis and exploration are critical to developing accurate and robust
machine learning models. Data analysis and preprocessing tools provide a means
to gain insight into the data, identify patterns, and prepare it for machine learning
algorithms.

This section overviews this study’s data analysis and preprocessing tools. These
tools include various Python libraries, such as pandas, NumPy, and Matplotlib,
widely used for data manipulation, analysis, and visualisation.

49



4.2.1 pandas

pandas is a popular Python data manipulation and analysis library. It provides
a powerful and flexible toolset for working with structured data, such as tables or
spreadsheets, allowing users to clean, transform, and analyse data efficiently [48].

Pandas is built on top of NumPy, another popular Python library for numeri-
cal computing, and offers additional functionalities for working with time series and
missing data. The library provides data structures for handling one-dimensional (Se-
ries) and two-dimensional (DataFrame) data, with a wide range of built-in functions
for data manipulation, such as filtering, grouping, pivoting, merging, and reshap-
ing [49].

Pandas is widely used in data analysis and machine learning applications, making
it an essential tool for any data scientist or machine learning practitioner. Its ability
to easily handle large datasets and provide efficient data cleaning and preparation
methods has made it a preferred tool among the data science community. The library
also offers excellent visualisation capabilities, allowing users to create charts and
graphs to understand the data better. Overall, Pandas is a powerful and versatile
library that has revolutionised data analysis in Python and continues to play a
significant role in developing machine learning models [48].

4.2.2 ydata-profiling

ydata-profiling is a Python library used for exploratory data analysis of struc-
tured datasets, built on top of the popular Pandas library. This library provides an
efficient way to quickly generate a comprehensive dataset report, including statistics,
visualisations, and other useful information. The report generated by ydata-profiling
provides valuable insights into the data, including data distribution, missing values,
the correlation between features, and various other data quality metrics. This li-
brary is highly customisable, allowing users to control the level of detail in the
report and the type of visualisations used. Ydata-profiling is a time-efficient way to
generate insights into the data that can help guide the machine learning modelling
process [50].

4.2.3 matplotlib

matplotlib is a Python library widely used for data visualisation and plotting. It
provides various tools for creating high-quality and customisable plots, charts, and
graphs for data analysis and presentation. Matplotlib is designed to work seamlessly
with other Python libraries, such as NumPy and Pandas, making it an essential
tool for data scientists and machine learning practitioners. The library provides

50



various plotting functions, including scatter plots, line plots, histograms, and bar
charts. Matplotlib also offers extensive customisation options, allowing users to
adjust every plot aspect, including colour scheme, font, size, and style. This library
is highly flexible and can be used for various visualisation tasks, from simple data
exploration to complex data presentations. Overall, Matplotlib is an essential tool
for data visualisation in Python, providing a powerful and versatile set of functions
for generating high-quality plots and charts [51].

4.2.4 seaborn

seaborn is a Python library built on Matplotlib, providing a high-level interface
for visually appealing statistical graphics. This library is designed to simplify the
creation of complex visualisations and make it easier for data scientists and machine
learning practitioners to explore and understand their data. Seaborn offers a wide
range of plotting functions, including scatter plots, line plots, histograms, and heat
maps, optimised for visualising statistical relationships in data [52].

Seaborn is highly customisable and provides extensive control over plot aesthet-
ics, such as colour palettes, font size, and plot style. It also offers advanced features
for exploring data distributions, such as kernel density estimation and probability
density functions. Seaborn is particularly useful for data scientists and machine
learning practitioners interested in exploring relationships between variables, such
as correlation or regression analysis.

In addition to its visualisation capabilities, Seaborn offers convenient tools for
working with multi-dimensional data, such as FacetGrid and PairGrid, allowing
users to visualise relationships across multiple variables. Seaborn’s intuitive interface
and extensive documentation make it popular among data scientists and machine
learning practitioners [52].

4.2.5 Scikit-learn

Scikit-learn, also known as sklearn, is a popular machine-learning library in
Python. It provides many supervised and unsupervised learning algorithms and
tools for data preprocessing, model selection, and evaluation. Sklearn is built on
top of other scientific computing libraries in Python, such as NumPy, SciPy, and
matplotlib, and is designed to be easy to use and integrate with other data anal-
ysis and visualisation tools. Its intuitive API and extensive documentation make
it popular for beginners and machine learning experts. Sklearn offers a variety of
algorithms for tasks such as classification, regression, clustering, and dimensionality
reduction, making it a powerful tool for solving a wide range of problems [53].

51



The Sklearn library was utilised in this study’s pre-processing and machine-
learning stages. Sklearn’s data preprocessing tools were used during pre-processing
to prepare the data for model training, including a label encoder and feature scaling.
In the machine learning stage, Sklearn’s algorithms for unsupervised learning were
utilised to build and evaluate machine learning models.

4.3 Tabular Data Preparation and Exploration
This section focuses on preparing the data in a tabular format optimised for machine
learning models. We explore the data using statistical methods and correlation
analysis and conduct data preprocessing tasks to improve data quality and relevance
for machine learning algorithms.

The tabular data format was adopted for all machine learning models employed
in this study except the GPT model. The GPT model utilises the same dataset but
employs a different data format in the form of sentences. Specifically, the data was
transformed from its original format to sentences, where each sentence corresponds
to a single observation in the dataset. The data preparation and exploration phase
involved various techniques to ensure the suitability of the dataset for the machine
learning models employed in this study.

4.3.1 Data Cleanup

The data collected for this study was in the form of newline-delimited JSON files,
where each log entry was represented as a JSON object on a separate line in the
log file. However, to utilise the data with the pandas library and machine learning
algorithms, it was necessary first to flatten the deeply nested data structure of the
JSON files.

During the data preparation process, the first issue encountered was invalid lines
in the original data that contained unterminated JSON data. These lines were
likely caused by excessively long lines or incorrect redaction. To address this issue,
a solution was devised to read the data line by line, parsing the JSON as it was
encountered. Any line that was unable to be parsed was subsequently dropped.

Following the successful resolution of the invalid lines issue, the data was flat-
tened using the pandas library, and the preparation process continued without any
further issues.

52



4.3.2 Data Exploration

The collected logs for this study were in the form of deeply nested JSON structures,
which presented challenges during the data preparation process. While some log
fields were required, the optional fields often contained valuable information, such
as the objects being modified, the associated security policy, and the nature of
the operation1. The log data also depended on the type of request made, such
that an update operation would require different attributes than a delete operation.
Consequently, the flattened data initially contained more than 1,000 columns, with
many of the columns predominantly empty.

The issue was addressed by attempting to remove empty attributes by retaining
columns with consistently non-empty values throughout the entire dataset. However,
this resulted in only ten columns, indicating the loss of valuable data. Subsequently,
all columns that contained more non-empty values than empty ones across the entire
dataset were retained, resulting in 20 columns that still did not contain important
information.

Upon realising the limitations of these initial approaches, the dataset was split
into subsets based on the verb attribute, which corresponds to the Kubernetes verb
associated with the request made. To retain as much data as possible, columns
that contained less than 10% non-empty values were removed from each subset.
The resulting list of columns was combined from all subsets, resulting in a current
filter of 55 columns across the dataset. This approach allowed for a more efficient
representation of the log data while retaining some information.

4.3.3 Data Correlation

The exploration and analysis of data correlations are essential for identifying mean-
ingful relationships and attributes within a dataset. One common approach is util-
ising correlation matrices, which visually represent the relationship between each
column in the dataset. The ydata-profiling library includes correlation matrices in
its report, but this approach is limited to only columns containing numerical data,
thus omitting a significant amount of information.

To address this limitation, we employed the pandas library to convert text
columns into a categorical representation, replacing text with numbered indices.
We then used the categorical dataset to calculate the correlation matrix in pan-
das. The resulting correlation matrix was further visualised using the seaborn and
matplotlib libraries, which generated correlation matrices in graphical form.

1The Kubernetes API reference is beyond the scope of this thesis; see the official documentation
for details: https://kubernetes.io/docs/reference/config-api/apiserver-audit.v1/

53

https://kubernetes.io/docs/reference/config-api/apiserver-audit.v1/


4.3.4 Correlation Matrix

Fig. 4.1: Correlation matrix.

The resulting correlation matrix demonstrates the correlations between attributes
of a table. A value of 1 indicates a direct proportional relationship between the given
attributes, while a value of -1 indicates an inverse proportional relationship. A value
of 0 suggests a lack of correlation between the given attributes.

Identifiable clusters of correlating attributes in the correlation matrix may in-
dicate duplicate features within the dataset. These results can later be used when
training the machine learning model, where these duplications could be filtered out
with a minimal loss in detection performance.

Additional correlation matrices of the pruned dataset and verb subsets mentioned
in Section 4.3.2 can be found in Appendix B.

54



4.3.5 Preprocessing Methods

In the case of time-series data, the timestamp information is critical in understand-
ing the patterns and trends that emerge over time. However, the raw timestamp
information cannot be directly used as input to machine learning algorithms, as
they require numerical data. Instead, the difference between consecutive logs is cal-
culated, resulting in a numerical value representing the elapsed time between two
events. This time difference can be used as an input feature for the machine learning
models.

It is necessary to note that the models used in this study do not hold context
over time; they do not consider any temporal relationships or dependencies between
the data points. Instead, the models learn patterns and anomalies based solely
on the features of each item. While this approach may not capture the complex
relationships within the time-series data, it provides a simple and effective way to
identify anomalous behaviour.

Label encoder is a common technique for converting categorical data into nu-
merical data. This approach is beneficial when dealing with string data, enabling
machine learning algorithms to work with this type of data. The label encoder
assigns a numerical value to each unique string within the dataset, creating a one-
to-one mapping between the original and numerical data. This process preserves
the underlying relationships between the string values while converting them into a
format that the machine learning algorithms can use.

Finally, the min-max scaler is a data preprocessing technique that scales the
dataset’s features to values between 0 and 1. This normalisation step can help
ensure that all features have a similar range and for improving the performance
of some machine learning algorithms. By scaling the data, the models can learn
from the data more effectively, resulting in more accurate predictions. Together, the
label encoder and min-max scaler enable the machine learning models to analyse
the time-series data and quickly identify anomalies effectively.

Learning long-term trends and dependencies within the data would be possible
using other methods. For example, recurrent neural networks (RNNs) can model the
temporal relationships between the data points and capture long-term dependencies
within the time-series data.

This approach comes with a trade-off regarding computational complexity and
model interpretability. RNNs are complex models that require significant compu-
tational resources to train, and their internal workings can be difficult to interpret.
Furthermore, the choice of the model architecture and hyperparameters can signifi-
cantly impact the model’s performance, making it challenging to determine the best
approach for a given dataset.

55



In addition to utilising recurrent neural networks (RNNs) to model the temporal
relationships between data points, another approach for identifying patterns and
anomalies in time-series data is to analyse the frequency of logs occurring in a given
time frame.

By aggregating the logs into time intervals (e.g., hourly or daily) and analysing
the frequency of logs within each interval, it is possible to identify patterns or
anomalies that may not be immediately apparent from the raw time series data.
For example, a sudden increase or decrease in the frequency of logs within a given
interval may indicate anomalous behaviour that warrants further investigation.

4.4 Sentence Generation from Nested Data
The recursive conversion of deeply nested JSON logs into sentences is an important
data preparation step that facilitates using such data in natural language processing
applications, including fine-tuning GPT models.

The nested structure of JSON logs can make it difficult to extract relevant infor-
mation for language processing tasks. The recursive transformation process involves
traversing through each layer of the JSON hierarchy and recursively converting it
into a sentence, where each sentence represents a separate log entry. This process
eliminates unnecessary brackets and quotes, simplifies the data structure, and en-
sures that each log entry is represented as a separate sentence in the resulting data.

This transformation is beneficial for fine-tuning GPT models on log data. GPT
models are trained to generate text based on the patterns and structures present
in the input data. By converting the JSON logs into sentences, we provide the
GPT model with a meaningful sequence of sentences that accurately represents the
underlying structure and content of the log data. This approach ensures that the
GPT model can learn to generate text that accurately reflects the patterns and
relationships present in the original data.

The recursive conversion of deeply nested JSON logs into sentences is a crucial
data preparation step for fine-tuning GPT models on log data. This transforma-
tion simplifies the data structure, eliminates unnecessary brackets and quotes, and
provides the GPT model with a meaningful sequence of sentences that accurately
represents the underlying patterns and structures in the log data.

56



5 Implementation
This chapter will explain the technical aspects of the machine learning models
utilised in this thesis. We will cover the code snippets for developing and train-
ing these models, including the libraries utilised, the preprocessing steps to prepare
the data, and the specific model architectures implemented.

This detailed analysis will provide readers with a comprehensive understanding
of the technical intricacies of building and training machine learning models and
how these models can be applied to solve real-world problems.

5.1 Tools Used
In this section, we want to introduce the tools we used to create our machine-learning
model. We utilised PyTorch and Transformers in addition to the libraries already
introduced. These tools are widely used in both the research and industry commu-
nities. We selected these tools because of their powerful capabilities, versatility, and
ease of use. These tools enabled us to create and evaluate our model efficiently and
effectively.

5.1.1 PyTorch

PyTorch is a machine learning framework that has gained popularity in academic and
industry circles. It is known for being flexible, efficient, and easy to use. PyTorch
is a free, open-source software library created by Facebook’s AI research group.
It allows developers to build and train machine learning models using a high-level
programming interface.

One of PyTorch’s key features is its dynamic computational graph, making model
construction more flexible and efficient than other frameworks such as TensorFlow.
This feature enables developers to construct neural networks during model execu-
tion, making experimenting with new architectures easier and iterating on model
designs quickly [54].

PyTorch also offers a variety of modules and classes for building and training
neural networks, such as layers, activation functions, loss functions, and optimisers.
These modules can be combined to create complex neural network architectures,
and developers can efficiently train the entire model [54].

5.1.2 Transformers

The Transformers library, developed by Hugging Face, is an open-source software
library offering comprehensive tools for building and training natural language pro-

57



cessing (NLP) models [55].
It is built on top of PyTorch and includes state-of-the-art implementations of

popular transformer-based architectures like BERT, GPT-2, and RoBERTa. Due
to its ease of use, flexibility, and powerful capabilities, Transformers has become
popular for NLP practitioners.

The library offers a range of modules and classes that enable users to create and
train transformer-based models. These include pre-processing tools, model architec-
tures, and fine-tuning scripts.

One of the critical features of Transformers is its ability to pre-train models on
large-scale datasets, which can be fine-tuned on specific tasks like sentiment analysis,
text classification, and question answering to achieve state-of-the-art performance
on a wide range of downstream NLP tasks. In addition, Transformers offers a range
of pre-trained models [55].

5.2 Tabular Preprocessing
This section will discuss the snippets of code used to pre-process data for tabular
anomaly detection models. Pre-processing is a crucial step in machine learning, as
it involves transforming raw data into a format that is suitable for use by the model.
In the context of tabular anomaly detection, pre-processing may involve handling
missing values, scaling or normalising features, or performing other transformations
to the data.

As mentioned in the previous chapter, the data we are working with is in the
form of deeply nested JSON objects, some of which are incomplete.

Listing 5.1 defines a function called flatten_data that takes a file as input and
performs operations to convert JSON data into a tabular format using Pandas. It
reads the file and loads each line of JSON data, skipping lines with errors. It then
converts the data to a DataFrame using pd.json_normalize and converts the "re-
questReceivedTimestamp" column to a datetime format. The flattened DataFrame
is then saved as a CSV file, and memory resources are freed.

Next, the data is pruned using a function called drop_columns shown in List-
ing 5.2. It helps to remove unnecessary columns and calculate the time difference be-
tween events using Pandas. The code also reads a CSV file, sorts the DataFrame by
"requestReceivedTimestamp", removes unwanted columns, and saves the pruned
DataFrame as a CSV file. Additionally, the code frees up memory resources after
execution.

Afterwards, the dataset was shuffled to distribute the two clusters’ data uni-
formly. Subsequently, it was split into the training and testing sets, with the training
set containing 80% of the entire dataset.

58



� �
1 def flatten_data ( file : str ) :
2 json_lines = [ ]
3 with open ( file ) as read_file :
4 for line in read_file :
5 try :
6 json_line = json . loads ( line . rstrip ( ) )
7 except JSONDecodeError :
8 continue
9 json_lines . append ( json_line )

10 df = pd . json_normalize ( json_lines , sep="." )
11 df [ " requestReceivedTimestamp " ] = pd . to_datetime (
12 df [ " requestReceivedTimestamp " ]
13 )
14 """ data is saved and memory is freed ."""� �

Listing 5.1: JSON Flattening.� �
1 def drop_columns ( file : str ) :
2 df = pd . read_csv ( file , low_memory=False )
3 df . sort_values ( by=" requestReceivedTimestamp " , inplace=True )
4 df [ " requestReceivedDelta " ] = (
5 df [ " requestReceivedTimestamp " ]
6 . diff ( )
7 . apply ( lambda x : x / np . timedelta64 (1 , "ns" ) )
8 . fillna (0 )
9 . astype ( " int64 " )

10 )
11 """ Same as the above but for the 'stageDelta ' column """
12 df1 = df [ [ " requestReceivedDelta " , " stageDelta " ] + COLUMNS [ 2 : ] ]
13 """ data is saved and memory is freed ."""� �

Listing 5.2: Data Pruning.

The Function label_scale shown in Listing C.1 does two things: it encodes
labels and scales the input data using Scikit-learn. It divides the input files into
training and testing lists, fills missing values with zeros, and applies label encoding
and scaling to each file. The processed data is saved as a CSV file, and memory is
freed. The label encoding classes are also saved as NumPy objects, and the scaling
objects are saved as Pickle objects so they can be loaded and used later.

After undergoing pre-processing, the data has been meticulously refined and is
now fully prepared to be utilised in machine learning techniques.

5.3 Sentence Preprocessing
In this section, we will introduce a recursive technique utilised to convert JSON data
into a sentence-like representation suitable for use in natural language processing.
By recursively converting the nested structure of the JSON data into a sentence-like
representation, we can effectively leverage the power of natural language processing

59



techniques to analyse and learn from the data to calculate later the probability of a
data point being an anomaly.

This technique is based on two functions – _dict_str and _list_str, which
function very similarly and only offer small differences based on the datatype passed
to the function, which is why only _dict_str will be shown in Listing 5.3.� �

1 def _dict_str ( dic : dict ) -> str :
2 result = ""
3 for key , value in dic . items ( ) :
4 if type ( value ) == dict :
5 if result == "" :
6 result = f"{key} { _dict_str ( value )}"
7 else :
8 result += f" {key} { _dict_str ( value )}"
9 elif type ( value ) == list :

10 if result == "" :
11 result = f"{key} { _list_str ( value )}"
12 else :
13 result += f" {key} { _list_str ( value )}"
14 elif value is None :
15 pass
16 else :
17 if result == "" :
18 result = f"{key} { value }"
19 else :
20 result += f" {key} { value }"
21 return result� �

Listing 5.3: Recursive string conversion.

These two functions recursively traverse the data to form a string that resembles
a sentence while still containing all the information. Based on the data type of each
value in the key-value pair of the passed dictionary, it is either converted to a string
directly or recursed more deeply. The _list_str function is virtually identical, only
looping through the items of a list instead of key-value pairs of a dictionary.

No extra pre-processing is necessary, and the result can be directly passed to the
model.

5.4 Scikit-learn models
Scikit-learn provides various machine-learning methods, including those evaluated
in this thesis. In this section, we will briefly show how to use them.

In Listing 5.4 the training dataset is imported into a pandas DataFrame using
pd.read_csv(), and the isolation forest model is trained using the fit() method.
After training, the model generates predictions for the test dataset using the predict()
method. The results variable is a NumPy array that matches the length of the

60



� �
1 train_df = pd . read_csv ( path )
2 iso_forest = sklearn . ensemble . IsolationForest ( random_state=0) . fit ( train_df )
3

4 test_df = pd . read_csv ( path )
5 result = iso_forest . predict ( test_df )� �

Listing 5.4: IsolationForest training and predictions.

test dataset. It contains values of 1 for normal results and -1 for anomalies. The
random_state parameter is used to control the pseudo-randomness of the model to
achieve consistent results across multiple runs.

Similarly, Local Outlier Factor and Gaussian Mixture models are fitted and used
to generate predictions in Listing 5.5.� �

1 lof = sklearn . neighbors . LocalOutlierFactor (
2 n_neighbors =350 , novelty=True
3 ) . fit ( train_df )
4 gmm = sklearn . mixture . GaussianMixture (
5 n_components =8, random_state=0
6 ) . fit ( train_df )� �

Listing 5.5: LOF and GMM training.

This snippet only shows the training of these models as predictions are made in
the same way as in the case of Isolation forests.

The n_neighbors parameter is used to set the number of closest neighbours
used to calculate the local density of each data point, and the novelty parameter is
used to allow the model to respond to previously unseen data. The n_components
parameter corresponds to the number of mixture components present in the datasets.

These numbers were chosen arbitrarily for a first look at the results, and a grid
search algorithm was meant to determine the best-performing ones later. However,
we soon realised a fatal pre-processing flaw that will become apparent in the next
chapter, so they were not further explored.

5.5 Autoencoders
Much of the time dedicated to this thesis was focused on Autoencoders. They
were explored before the already mentioned sklearn models and exhibited the same
problems. This section will briefly show the implementation before we move on to
the best-performing solution, Natural Language Processing.

The development was based on the widely used Pytorch Template Project1 which
enables the developer to focus on the things that matter the most, such as writing

1https://github.com/victoresque/pytorch-template

61

https://github.com/victoresque/pytorch-template


data loaders and designing the models. At the same time, the actual training process
is already implemented and highly configurable.

Autoencoders were selected for anomaly detection because they can utilise the
GPU to vastly improve their performance. The plan was to calculate the loss for
a particular data point and determine whether it was anomalous based on a pre-
determined threshold. This threshold was supposed to be selected as an average of
many artificially prepared anomalous log results.

The KubeDataLoader class, shown in Listing C.2 is a custom data loader for
loading data from CSV files in PyTorch. The class inherits from BaseDataLoader,
a PyTorch built-in class for data loading, and overrides its __init__ method.

In the __init__ method, the class constructor takes input parameters such as
the directory containing the data, the batch size, whether to shuffle the data, the
validation split ratio, the number of workers for loading the data, and the training
and test CSV file names. The constructor then calls the parent class constructor
with the dataset loaded using the load_datasets method.

Depending on the training flag, the load_datasets method reads the training
or test CSV file. The CSV file is loaded using Pandas and then converted to a list
of lists. Each sublist is then converted to a PyTorch FloatTensor. Finally, the list
of tensors is zipped into a list of tuples, where each tuple contains a pair of tensors
representing an input and output pair.� �

1 class DeepMinMaxedAutoencoder ( nn . Module ) :
2 def __init__ ( self , dims =[56 , 256 , 128 , 6 4 ] , use_bias=True ) :
3 super ( DeepMinMaxedAutoencoder , self ) . __init__ ( )
4 enc_layers = [ ]
5 dec_layers = [ ]
6 for i in range ( len ( dims ) - 1) :
7 enc_layers . append ( nn . Linear ( dims [ i ] , dims [ i + 1 ] , bias=use_bias ) )
8 enc_layers . append ( nn . ReLU ( ) )
9 for i in reversed ( range (1 , len ( dims ) ) ) :

10 dec_layers . append ( nn . Linear ( dims [ i ] , dims [ i - 1 ] , bias=use_bias ) )
11 dec_layers . append ( nn . ReLU ( ) )
12 self . encoder = nn . Sequential (∗ enc_layers )
13 self . decoder = nn . Sequential (∗ dec_layers )
14

15 def forward ( self , x ) :
16 encoded = self . encoder ( x )
17 decoded = self . decoder ( encoded )
18 return decoded� �

Listing 5.6: DeepMinMaxedAutoencoder Class.

The DeepMinMaxedAutoencoder class shown in Listing 5.6 is a PyTorch module
for building a deep autoencoder neural network. In the __init__ method, the
constructor takes a list of dimensions representing the input and output sizes of
each layer in the network and a flag indicating whether to use bias terms in the

62



linear layers. The constructor then builds the encoder and decoder networks using
PyTorch’s nn.Linear and nn.Tanh layers.

The encoder is defined as a PyTorch nn.Sequential module that applies linear
transformations and tanh activations to the input data. The decoder is defined
similarly but in reverse order, with the output layer having the same size as the
input layer.

In the forward method, the input data x is passed through the encoder to obtain
the compressed representation encoded and then passed through the decoder to
obtain the reconstructed output decoded. The reconstructed output is returned as
the output of the forward pass.

5.6 Natural Language Processing
The model is based on distilgpt2 [56]. This model is the smallest version of the
Generative Pre-trained Transformer 2 (GPT-2). Its original use case is to generate
text, but we will fine-tune it in this thesis on the prepared sentenceized data and
use it for anomaly detection.

Later we can calculate the loss on a given sentence and determine whether it is
anomalous based on a threshold that we will determine by preparing a dataset full
of anomalous data and another one with good data. The decision boundary will be
selected based on the distributions of both datasets’ results.

This incredibly flexible approach allows us to use the entire dataset without
removing features. It is way more robust and capable of handling small changes
very well.

The model was fine-tuned using a ready-made script in the transformers library
repository2. This script is well written and commented, and allows training or fine-
tuning language models using any available HugginFace datasets or custom ones as
well. Listing 5.7 shows an example command of how the script can be used. The
fine-tuning was done on a Red Hat OpenShift Data Science (RHODS) cluster with
an NVIDIA Tesla T4 GPU attached. The process lasted two days, resulting in a
high-performance model.

2https://github.com/huggingface/transformers/blob/main/examples/pytorch/
language-modeling/run_clm.py

63

https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py


� �
1 python run_clm . py \
2 - - model_name_or_path distilgpt2 \
3 - - train_file path_to_train_file \
4 - - validation_file path_to_validation_file \
5 - - per_device_train_batch_size 4 \
6 - - per_device_eval_batch_size 4 \
7 - - do_train \
8 - - do_eval \
9 - - save_total_limit 10 \

10 - - output_dir /tmp/test - clm� �
Listing 5.7: GPT-2 Fine-tuning command.

In this command, the following arguments are used:
–model_name_or_path: Specifies the model to be used for training or fine-

tuning.
–train_file: Specifies the path to the training file containing the data used to train

the language model.
–validation_file: Specifies the path to the validation file containing the data used

for model evaluation during training to monitor its performance.
–per_device_train_batch_size: Sets the batch size for training data, deter-

mining the number of training samples processed together in each iteration.
Here, it is set to 4.

–per_device_eval_batch_size: Sets the batch size for evaluation data, deter-
mining the number of evaluation samples processed together during model
evaluation. It is also set to 4.

–do_train: Indicates that the training process should be executed, triggering the
training loop to train the language model using the specified training file.

–do_eval: Specifies that model evaluation should be performed, triggering the eval-
uation process using the validation file to assess the model’s performance.

–save_total_limit: Defines the maximum number of checkpoints or saved models
to keep during training. It is set to 10, meaning that the 10 most recent
checkpoints will be saved.

–output_dir: Specifies the directory where the trained model and associated files
will be saved. In this case, it is set to "/tmp/test-clm".

To use the trained model, the following shown in Listing 5.8 is used to process a
sentenceized log and return the probability of this sentence occurring.

The score function takes a string and returns a probability-like score indicating
how well it matches the pre-trained neural network model. It tokenises the input
sentence, calculates the loss using the pre-trained model, and returns the exponential
of the negative loss value as the output score. The tokens are split into chunks for
strings that exceed the maximum length defined in the model. The loss is calculated

64



for each chunk and added together, producing an average after exponentiating.� �
1 def score ( sentence : str ) -> np . float32 :
2 ids = (
3 tokenizer (
4 tokenizer . bos_token + sentence + tokenizer . eos_token , return_tensors="

pt"
5 )
6 . to ( device )
7 . input_ids [ 0 ]
8 )
9 loss = np . float32 ( 0 . 0 )

10

11 with torch . no_grad ( ) :
12 if len ( ids ) > ( tokenizer . model_max_length - 2) :
13 max_len = tokenizer . model_max_length - 2
14 chunks = torch . split ( ids , max_len )
15 for ch in chunks :
16 ch_loss : np . float32 = (
17 model ( input_ids=ch , labels=ch ) . loss . cpu ( ) . detach ( ) . numpy ( )
18 )
19 loss = np . nansum ( [ loss , ch_loss ] )
20 loss = loss / len ( chunks )
21 else :
22 loss = model ( input_ids=ids , labels=ids ) . loss . cpu ( ) . detach ( ) . numpy ( )
23 if loss == np . nan :
24 loss = np . float32 ( 0 . 0 )
25 return np . exp ( - loss )� �

Listing 5.8: GPT-2 score function.

65



6 Results
In this chapter, we will share the outcomes of our chosen machine-learning models on
a dataset previously unseen by these models during their training phase. We assessed
the models’ ability to detect anomalies in the data by introducing tampered data
points, where their values were replaced with randomly generated ones. This was to
replicate real-world scenarios where anomalies can occur due to errors, malfunctions,
or malicious intent. We added 10,000 tampered data points to the dataset, which
was then mixed among roughly 193,000 natural logs, resulting in a total of 203,297
data points to be assessed.

To ensure the reliability and robustness of the results, we carefully picked eval-
uation metrics commonly used in the machine learning field, including accuracy,
precision, recall, and F1-score. Using these metrics, we accurately and effectively
evaluated the models’ performance in detecting anomalies.

Through this evaluation and analysis, we hope to contribute to the growing
research on anomaly detection in machine learning and provide valuable insights
into the use of these models for real-world applications. Overall, the results we
present in this chapter demonstrate the effectiveness of our chosen models and their
potential to be applied for detecting anomalies in deeply nested data.

The tampered and untampered data were first evaluated separately, and to select
the decision boundary, the intersection of their distributions was selected, as shown
in the figure below. The selected boundary point is highlighted in blue around the
score of 0.42.

Fig. 6.1: GPT model result distributions.

66



Model
True False

Positives Negatives Positives Negatives

IsolationForest 130,957 4,202 5,798 62,339

LocalOutlierFactor 17,061 9,128 872 176,235

GaussianMixture 0 10,000 0 193,297

Autoencoder 0 10,000 0 193,297

GPT-2 191,839 6,990 3,182 1,286

Tab. 6.1: Confusion matrices for tested models.

The presented table reveals a significant issue with the machine learning models
trained on the tabular representation of the converted data. The problem was iden-
tified as a significant limitation of encoding string data into integer labels. Specifi-
cally, the label encoder generates the same integer value for each known string while
incrementing its dictionary for previously unseen strings.

6.1 Preprocessing limitations
Due to the nature of the data, each log contains slightly different information. This is
the main limitation of the presented approach. The differences between the numbers
are tiny, so most, if not every previously unseen log, will get classified as an anomaly
because there is simply no way to decide if an item is an anomaly or just new data
that is otherwise fine.

Large and small changes within the same attribute will receive the same treat-
ment – just an incrementation of the dictionary by one. Combined with the MinMax
scaler, all of these new or anomalous instances will exceed the scale present during
training, making almost the entire testing dataset seemingly anomalous.

This behaviour is unacceptable as it requires engineers to manually verify the
vast majority of logs flagged as anomalous, rendering the approach impractical for
real-world applications. It is questionable whether the real-world performance would
even amount to at least the numbers in the above table. As such, it is no better
than having engineers verify every log in the first place.

67



6.2 GPT model performance
On the other hand, the GPT model does not exhibit this behaviour rather than
relying on data of a rigid format. It learns the conventions present in the text we
show it during training. This results in a significantly more robust performance. It
is resistant to small changes in frequently changing areas while being sensitive to
changes in areas that do not change as much.

For this reason, additional performance metrics were calculated for this model:

Metric Value (%)

Recall 99.33

Precision 98.37

Accuracy 97.80

F1 Score 98.85

Tab. 6.2: GPT-2 Performance Metrics.

In anomaly detection, it is crucial to balance precision and recall. Precision
is the proportion of correctly identified anomalies out of all instances labelled as
anomalies. At the same time, recall measures the proportion of correctly identified
anomalies out of all actual anomalies in the dataset. The GPT model has a high
recall rate of 99.33%, indicating its ability to detect anomalies effectively. However,
the precision rate of 98.37% suggests that some instances identified as anomalies
may be false positives.

It is crucial to achieve a precision-recall balance depending on the specific re-
quirements and priorities of the anomaly detection task. If missing anomalies is
costly, prioritising recall becomes crucial. Conversely, emphasising precision may be
more critical if false positives have severe consequences. This work sought a balance
between precision and recall, which is well demonstrated by the similarity of both
scores.

The Receiver Operating Characteristic (ROC) curve provides further insights into
the model’s performance. It illustrates the trade-off between the true positive rate
(sensitivity) and the false positive rate (1-specificity) at various decision thresholds.

The ROC curve for the GPT model, shown in Figure 6.2, indicates an Area
Under the Curve (AUC) score of 0.84. A higher AUC score generally indicates
a better ability to discriminate between the two classes. In this case, the GPT
model demonstrates a reasonably good level of discrimination, although there is
still room for improvement. It implies the model can effectively rank instances and
assign higher anomaly scores to true anomalies than normal ones. However, some

68



overlap or ambiguity may be near the decision boundary, leading to false positives
or negatives.

Fig. 6.2: Receiver Operating Characteristic curve for the GPT-2 model.

69



Conclusion
The thesis extensively explored several significant research areas, introducing cloud-
native architecture, anomaly detection techniques, machine learning, and data anal-
ysis. The goal was to develop an anomaly detection model using machine learning
on a data set of audit logs from Red Hat OpenShift Container Platform.

The initial chapters focused on cloud-native architecture, explaining the con-
cept and examining virtualisation tools such as virtual machines and containers.
We also discussed the DevOps approach, continuous integration, and microservices,
highlighting their relevance in modern software development practices. Addition-
ally, container orchestration, specifically the widely adopted Kubernetes framework,
was thoroughly investigated, encompassing core concepts, components, and objects.
Finally, Red Hat OpenShift Container Platform, an enterprise-grade solution for
container orchestration, was introduced.

We then focused on anomaly detection, particularly emphasising various sta-
tistical techniques. These included the Interquartile Range method, Grubbs’ test,
and Gaussian Mixture Models, all playing crucial roles in detecting anomalies in
diverse datasets. Moreover, time series analysis techniques were explored to capture
temporal patterns and identify anomalies in sequential data.

To broaden the scope of understanding, we extensively investigated the domain
of machine learning. This involved comprehensively examining performance evalua-
tion metrics commonly employed in assessing model performance. We also explored
various anomaly detection techniques, encompassing distance-based and clustering-
based approaches, supervised and semi-supervised methods, and tree-based ensem-
ble models. Additionally, we explored the domain of neural networks, covering the
intricacies of neurons, layered architectures, autoencoders, and the state-of-the-art
Generative Pre-trained Transformer (GPT) model.

The data analysis chapter analysed the provided dataset using various tools and
techniques. Data collection, cleanup, exploration, and visualisation were performed
to gain valuable insights. Additionally, innovative methods were employed to gen-
erate interpretable sentence-like representations from nested data. The findings and
insights obtained from this analysis serve as a foundation for subsequent modelling
and decision-making processes.

Finally, we addressed the implementation aspect of the research, incorporat-
ing essential tools such as PyTorch and Transformers. The chapter encompassed
detailed discussions on tabular and sentence preprocessing techniques and the util-
isation of Scikit-learn models, autoencoders, and natural language processing for
practical data analysis and anomaly detection.

The last chapter presents the outcomes of the selected machine learning models

70



on a dataset previously unseen by the models, evaluating their anomaly detection
performance. Tampered data points were introduced in-between unmodified data to
simulate real-world scenarios, resulting in 203,297 data points for assessment. The
evaluation employed standard metrics such as accuracy, precision, recall, and F1-
score. The results reveal limitations in preprocessing nested data into a 2D format,
specifically during the conversion of strings to integer labels. This results in the
traditional tabular models being unable to differentiate between normal data and
anomalies.

The GPT model demonstrates promising performance in anomaly detection. It
exhibits robustness by effectively leveraging the conventions in the text, allowing it
to handle small changes in frequently changing areas while remaining sensitive to
changes in relatively stable areas.

The high recall rate of 99.33% suggests that the GPT model can identify a
significant majority of anomalies in the dataset. Additionally, the precision rate of
98.37% indicates that the model produces a relatively low number of false positives.

Furthermore, the AUC score of 0.84 for the ROC curve suggests that the GPT
model can effectively discriminate between anomalies and normal instances. How-
ever, there is room for improvement in this aspect.

Considering these factors, the GPT model can be regarded as a promising ap-
proach for anomaly detection, mainly when dealing with text or deeply nested and
variable data. It holds promise for real-world applications in detecting anomalies
within the presented datasets.

This document has contributed valuable insights to the academic community by
extensively exploring these diverse research areas. The findings presented herein
serve as a comprehensive reference, offering researchers, practitioners, and enthusi-
asts a deeper understanding of cloud-native architecture, anomaly detection tech-
niques, machine learning, and data analysis.

The knowledge gained from this study is currently being reviewed, and a solution
based on it will soon be deployed in production RHOCP clusters.

71



Bibliography
1. GANNON, Dennis; BARGA, Roger; SUNDARESAN, Neel. Cloud-native ap-

plications. IEEE Cloud Computing. 2017, vol. 4, no. 5, pp. 16–21.

2. RED HAT. Understanding cloud-native applications. 2022-05. Available also
from: https://www.redhat.com/en/topics/cloud-native-apps.

3. THE KUBERNETES AUTHORS. Kubernetes – Overview. 2022-11. Available
also from: https://kubernetes.io/docs/concepts/overview.

4. CAMPBELL, Sean; JERONIMO, Michael. An introduction to virtualization.
Published in “Applied Virtualization”, Intel. 2006, pp. 1–15.

5. CHIUEH, Susanta Nanda Tzi-cker; BROOK, Stony. A survey on virtualization
technologies. Rpe Report. 2005, vol. 142.

6. IBM CLOUD EDUCATION. Containers. 2021-06. Available also from: https:
//www.ibm.com/cloud/learn/containers.

7. KOVÁCS, Ákos. Comparison of different Linux containers. In: 2017 40th In-
ternational Conference on Telecommunications and Signal Processing (TSP).
2017, pp. 47–51.

8. VM FARMS INC. The complete guide to containers vs VMs for DevOps. 2019.
Available also from: https://www.stack.io/blog/containers-vs-vms.

9. BASS, Len; WEBER, Ingo; ZHU, Liming. DevOps: A software architect’s per-
spective. Addison-Wesley Professional, 2015.

10. WIKIMEDIA COMMONS. File:Devops-toolchain.svg — Wikimedia Commons,
the free media repository. 2020. Available also from: https://commons.wikimedia.
org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285.

11. SHAHIN, Mojtaba; BABAR, Muhammad Ali; ZHU, Liming. Continuous in-
tegration, delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE Access. 2017, vol. 5, pp. 3909–3943.

12. DRAGONI, Nicola; GIALLORENZO, Saverio; LAFUENTE, Alberto Lluch;
MAZZARA, Manuel; MONTESI, Fabrizio; MUSTAFIN, Ruslan; SAFINA, Lar-
isa. Microservices: yesterday, today, and tomorrow. Present and ulterior soft-
ware engineering. 2017, pp. 195–216.

13. RICHARDSON, Chris. Pattern: Messaging. 2022. Available also from: https:
//microservices.io/patterns/communication-style/messaging.html.

14. RICHARDSON, Chris. Pattern: Microservice Architecture. 2022. Available also
from: https://microservices.io/patterns/microservices.html.

72

https://www.redhat.com/en/topics/cloud-native-apps
https://kubernetes.io/docs/concepts/overview
https://www.ibm.com/cloud/learn/containers
https://www.ibm.com/cloud/learn/containers
https://www.stack.io/blog/containers-vs-vms
https://commons.wikimedia.org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285
https://commons.wikimedia.org/w/index.php?title=File:Devops-toolchain.svg&oldid=504012285
https://microservices.io/patterns/communication-style/messaging.html
https://microservices.io/patterns/communication-style/messaging.html
https://microservices.io/patterns/microservices.html


15. CASALICCHIO, Emiliano. Container orchestration: a survey. Systems Model-
ing: Methodologies and Tools. 2019, pp. 221–235.

16. BENTALEB, Ouafa; BELLOUM, Adam SZ; SEBAA, Abderrazak; EL-MAOUHAB,
Aouaouche. Containerization technologies: Taxonomies, applications and chal-
lenges. The Journal of Supercomputing. 2022, vol. 78, no. 1, pp. 1144–1181.

17. BURNS, Brendan; BEDA, Joe; HIGHTOWER, Kelsey; EVENSON, Lachlan.
Kubernetes: up and running. "O’Reilly Media, Inc.", 2022.

18. THE KUBERNETES AUTHORS. Running in multiple zones. 2022-05. Avail-
able also from: https://kubernetes.io/docs/setup/best- practices/
multiple-zones/.

19. THE KUBERNETES AUTHORS. Kubernetes Components. 2022-10. Available
also from: https://kubernetes.io/docs/concepts/overview/components/.

20. MENCHACA, Joaquín. DevOps Concepts: Pets vs Cattle. 2018-05. Available
also from: https://joachim8675309.medium.com/devops-concepts-pets-
vs-cattle-2380b5aab313.

21. THE KUBERNETES AUTHORS. Volumes. 2022-11. Available also from: https:
//kubernetes.io/docs/concepts/storage/volumes/.

22. MORRIS, Kief. Infrastructure as code: managing servers in the cloud. " O’Reilly
Media, Inc.", 2016.

23. THE KUBERNETES AUTHORS. Namespaces. 2022-11. Available also from:
https : / / kubernetes . io / docs / concepts / overview / working - with -
objects/namespaces/.

24. THE KUBERNETES AUTHORS. Services. 2021-12. Available also from: https:
//kubernetes.io/docs/concepts/services-networking/service/.

25. THE KUBERNETES AUTHORS. Ingress. 2022-10. Available also from: https:
//kubernetes.io/docs/concepts/services-networking/ingress/.

26. THE KUBERNETES AUTHORS. Deployments. 2022-08. Available also from:
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
#rolling-back-a-deployment.

27. THE KUBERNETES AUTHORS. Viewing Pods and Nodes. 2022. Available
also from: https://kubernetes.io/docs/tutorials/kubernetes-basics/
explore/explore-intro/.

28. RED HAT. Red Hat OpenShift vs. Kubernetes. 2022-10. Available also from:
https://www.redhat.com/en/technologies/cloud-computing/openshift/
red-hat-openshift-kubernetes.

73

https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://kubernetes.io/docs/setup/best-practices/multiple-zones/
https://kubernetes.io/docs/concepts/overview/components/
https://joachim8675309.medium.com/devops-concepts-pets-vs-cattle-2380b5aab313
https://joachim8675309.medium.com/devops-concepts-pets-vs-cattle-2380b5aab313
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://www.redhat.com/en/technologies/cloud-computing/openshift/red-hat-openshift-kubernetes
https://www.redhat.com/en/technologies/cloud-computing/openshift/red-hat-openshift-kubernetes


29. RED HAT. An overview of the architecture for OpenShift Container Platform.
2022. Available also from: https://access.redhat.com/documentation/en-
us/openshift_container_platform/4.11/html/architecture/index.

30. CURRY, Marc. Viewing Pods and Nodes. 2017. Available also from: https:
//cloud.redhat.com/blog/openshift-container-platform-reference-
architecture-implementation-guides.

31. CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Anomaly de-
tection: A survey. ACM computing surveys (CSUR). 2009, vol. 41, no. 3, pp. 1–
58.

32. AL-ASLI, Mohammed; GHALEB, Taher Ahmed. Review of Signature-based
Techniques in Antivirus Products. In: 2019 International Conference on Com-
puter and Information Sciences (ICCIS). 2019, pp. 1–6. Available from doi:
10.1109/ICCISci.2019.8716381.

33. JUNEJO, Khurum Nazir; GOH, Jonathan. Behaviour-based attack detection
and classification in cyber physical systems using machine learning. In: Proceed-
ings of the 2nd ACM international workshop on cyber-physical system security.
2016, pp. 34–43.

34. BAZRAFSHAN, Zahra; HASHEMI, Hashem; FARD, Seyed Mehdi Hazrati;
HAMZEH, Ali. A survey on heuristic malware detection techniques. In: The
5th Conference on Information and Knowledge Technology. 2013, pp. 113–120.

35. WIKIMEDIA COMMONS. File:Boxplot vs PDF.svg — Wikimedia Commons,
the free media repository. 2012. Available also from: https://commons.wikimedia.
org/wiki/File:Boxplot_vs_PDF.svg.

36. WU, Hu-Sheng. A survey of research on anomaly detection for time series.
In: 2016 13th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP). 2016, pp. 426–431.
Available from doi: 10.1109/ICCWAMTIP.2016.8079887.

37. GÉRON, Aurélien. Hands-on machine learning with scikit-learn and tensorflow:
Concepts. Tools, and Techniques to build intelligent systems. 2017.

38. MEIRA, Jorge; ANDRADE, Rui; PRAÇA, Isabel; CARNEIRO, João; BOLÓN-
CANEDO, Verónica; ALONSO-BETANZOS, Amparo; MARREIROS, Goreti.
Performance evaluation of unsupervised techniques in cyber-attack anomaly
detection. Journal of Ambient Intelligence and Humanized Computing. 2020,
vol. 11, pp. 4477–4489.

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/architecture/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/architecture/index
https://cloud.redhat.com/blog/openshift-container-platform-reference-architecture-implementation-guides
https://cloud.redhat.com/blog/openshift-container-platform-reference-architecture-implementation-guides
https://cloud.redhat.com/blog/openshift-container-platform-reference-architecture-implementation-guides
https://doi.org/10.1109/ICCISci.2019.8716381
https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg
https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg
https://doi.org/10.1109/ICCWAMTIP.2016.8079887


39. CHANDOLA, Varun; BANERJEE, Arindam; KUMAR, Vipin. Anomaly De-
tection: A Survey. ACM Comput. Surv. 2009, vol. 41, no. 3. issn 0360-0300.
Available from doi: 10.1145/1541880.1541882.

40. LIU, Fei Tony; TING, Kai Ming; ZHOU, Zhi-Hua. Isolation-Based Anomaly
Detection. ACM Trans. Knowl. Discov. Data. 2012, vol. 6, no. 1. issn 1556-
4681. Available from doi: 10.1145/2133360.2133363.

41. SCHMIDHUBER, Jürgen. Deep learning in neural networks: An overview.
Neural networks. 2015, vol. 61, pp. 85–117.

42. THE LINUX FOUNDATION. Torch.nn. Available also from: https://pytorch.
org/docs/stable/nn.html.

43. YUAN, Lun-Pin; LIU, Peng; ZHU, Sencun. Recomposition vs. Prediction: A
Novel Anomaly Detection for Discrete Events Based On Autoencoder. CoRR.
2020, vol. abs/2012.13972. Available from arXiv: 2012.13972.

44. RADFORD, Alec; WU, Jeffrey; CHILD, Rewon; LUAN, David; AMODEI,
Dario; SUTSKEVER, Ilya, et al. Language models are unsupervised multitask
learners. OpenAI blog. 2019, vol. 1, no. 8, p. 9.

45. MIELKE, Sabrina J; ALYAFEAI, Zaid; SALESKY, Elizabeth; RAFFEL, Colin;
DEY, Manan; GALLÉ, Matthias; RAJA, Arun; SI, Chenglei; LEE, Wilson Y;
SAGOT, Benoît, et al. Between words and characters: A brief history of open-
vocabulary modeling and tokenization in NLP. arXiv preprint arXiv:2112.10508.
2021.

46. GILLIOZ, Anthony; CASAS, Jacky; MUGELLINI, Elena; ABOU KHALED,
Omar. Overview of the Transformer-based Models for NLP Tasks. In: 2020
15th Conference on Computer Science and Information Systems (FedCSIS).
2020, pp. 179–183.

47. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob;
JONES, Llion; GOMEZ, Aidan N; KAISER, Łukasz; POLOSUKHIN, Illia.
Attention is All you Need. In: GUYON, I.; LUXBURG, U. Von; BENGIO, S.;
WALLACH, H.; FERGUS, R.; VISHWANATHAN, S.; GARNETT, R. (eds.).
Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2017, vol. 30. Available also from: https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

48. BLOICE, Marcus D; HOLZINGER, Andreas. A tutorial on machine learning
and data science tools with python. Machine Learning for Health Informatics.
2016, pp. 435–480.

75

https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/2133360.2133363
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html
https://arxiv.org/abs/2012.13972
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


49. THE PANDAS DEVELOPMENT TEAM. pandas-dev/pandas: Pandas. Zen-
odo, 2023. Version v2.0.1. Available from doi: 10.5281/zenodo.7857418.

50. BRUGMAN, Simon. ydata-profiling: Exploratory Data Analysis for Python.
2019. Available also from: https://github.com/ydataai/ydata-profiling.

51. HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering. 2007, vol. 9, no. 3, pp. 90–95. Available from doi: 10.1109/
MCSE.2007.55.

52. WASKOM, Michael L. seaborn: statistical data visualization. Journal of Open
Source Software. 2021, vol. 6, no. 60, p. 3021. Available from doi: 10.21105/
joss.03021.

53. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION,
B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG,
V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.;
PERROT, M.; DUCHESNAY, E. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

54. PASZKE, Adam; GROSS, Sam; MASSA, Francisco; LERER, Adam; BRAD-
BURY, James; CHANAN, Gregory; KILLEEN, Trevor; LIN, Zeming; GIMELSHEIN,
Natalia; ANTIGA, Luca; DESMAISON, Alban; KÖPF, Andreas; YANG, Ed-
ward Z.; DEVITO, Zach; RAISON, Martin; TEJANI, Alykhan; CHILAMKURTHY,
Sasank; STEINER, Benoit; FANG, Lu; BAI, Junjie; CHINTALA, Soumith. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. CoRR.
2019, vol. abs/1912.01703. Available from arXiv: 1912.01703.

55. WOLF, Thomas; DEBUT, Lysandre; SANH, Victor; CHAUMOND, Julien;
DELANGUE, Clement; MOI, Anthony; CISTAC, Pierric; RAULT, Tim; LOUF,
Rémi; FUNTOWICZ, Morgan; DAVISON, Joe; SHLEIFER, Sam; PLATEN,
Patrick von; MA, Clara; JERNITE, Yacine; PLU, Julien; XU, Canwen; SCAO,
Teven Le; GUGGER, Sylvain; DRAME, Mariama; LHOEST, Quentin; RUSH,
Alexander M. Transformers: State-of-the-Art Natural Language Processing.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations. Online: Association for Computa-
tional Linguistics, 2020, pp. 38–45. Available also from: https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

56. SANH, Victor; DEBUT, Lysandre; CHAUMOND, Julien; WOLF, Thomas.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
In: NeurIPS EMC2̂ Workshop. 2019.

76

https://doi.org/10.5281/zenodo.7857418
https://github.com/ydataai/ydata-profiling
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://arxiv.org/abs/1912.01703
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Symbols and abbreviations
API Application Programming Interface

AUC Area Under the Curve

CD Continuous Delivery

CI Continuous Integration

CNN Convolutional Neural Networks

FNN Feedforward Neural Networks

GPT Generative Pre-trained Transformer

HTTPS Hypertext Transfer Protocol Secure

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a service

IaC Infrastructure as code

JIT just-in-time

JSON JavaScript Object Notation

k-NN K-Nearest Neighbours

KVM Kernel-based Virtual Machine

LOF Local Outlier Factor

LRD Local Reachability Density

LSTM Long Short-Term Memory

NLP Natural Language Processing

OS Operating System

PaaS Platform as a service

RHCOS Red Hat Enterprise Linux CoreOS

RHEL Red Hat Enterprise Linux

RHOCP Red Hat OpenShift Container Platform

77



RHODS Red Hat OpenShift Data Science

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristic

SVM Support Vector Machines

TLS Transport Layer Security

VM Virtual Machine

78



List of appendices

A Attached media 80

B Correlation matrices 81

C Source Code Listings 90

79



A Attached media
Attached to this document is an archive containing the source code. No data or
trained models could be included for the reasons mentioned in 4.1

autoencoder/................................autoencoder source code
base/ ....................................... abstract base classes

...
configs/...................................configuration settings

autoencoder.json ........................... autoencoder config
data_loader/..........................................data loading

data_loaders.py
logger/...................tensorboard visualization and logging

logger.py
logger_config.json
visualization.py

model/ ............................... models, losses, and metrics
loss.py
metric.py
model.py

trainer/...................................................trainers
trainer.py

utils/....................................small utility functions
util.py

test.py ...................................... main training script
train.py ...................................... main testing script
parse_config.py..........handling config files and cli options
results.py..................................results visualization

data/ .................................................. data directory
gpt/ .................................................. gpt source code

gpt.py ...................................... log evaluation script
results.py..................................results visualization

scripts/..............................................various scripts
analysis.py..................................data analysis script
preprocessing.py............................preprocessing script
sklearn-methods.py....................sklearn anomaly detection

thesis/...............................source code for this document
...

README.md...............................introduction to the project
requirements-dev.txt......................development requirements
requirements.txt.............................execution requirements

80



B Correlation matrices

Fig. B.1: Correlation matrix of the pruned data.

81



Fig. B.2: Correlation matrix of the subset with the create verb.

82



Fig. B.3: Correlation matrix of the subset with the delete verb.

83



Fig. B.4: Correlation matrix of the subset with the deletecollection verb.

84



Fig. B.5: Correlation matrix of the subset with the get verb.

85



Fig. B.6: Correlation matrix of the subset with the list verb.

86



Fig. B.7: Correlation matrix of the subset with the patch verb.

87



Fig. B.8: Correlation matrix of the subset with the update verb.

88



Fig. B.9: Correlation matrix of the subset with the watch verb.

89



C Source Code Listings
� �

1 def label_scale ( files , group : str ) :
2 le = preprocessing . LabelEncoder ( )
3 scaler = preprocessing . MinMaxScaler ( )
4 training_files = [ f for f in files if " train " in Path ( f ) . stem ]
5 testing_files = [ f for f in files if f not in training_files ]
6 ordered_files = training_files + testing_files
7 for file in ordered_files :
8 df = pd . read_csv ( file , low_memory=False )
9 for idx , column in enumerate ( df . columns ) :

10 if str ( df [ column ] . dtype ) == " object " :
11 df [ column ] . fillna ( "0" , inplace=True )
12 df [ column ] = le . fit_transform ( df [ column ] )
13 else :
14 df [ column ] . fillna (0 , inplace=True )
15 elif " train " in file :
16 minmaxed = scaler . fit_transform ( df )
17 else :
18 minmaxed = scaler . transform ( df )
19 minmax_df = pd . DataFrame ( minmaxed , columns=df . columns )
20 """ data is saved and memory is freed ."""
21 if " train " in file :
22 np . save ( f" classes_ { group }. npy" , le . classes_ )
23 joblib . dump ( scaler , f" scaler_ { group }. gz" )� �

Listing C.1: Labelling and scaling data.

90



� �
1 class KubeDataLoader ( BaseDataLoader ) :
2 def __init__ (
3 self ,
4 data_dir : str ,
5 batch_size : int ,
6 shuffle : bool = True ,
7 validation_split : float = 0 . 0 ,
8 num_workers : int = 1 ,
9 training : bool = True ,

10 train_file : str = " train .csv" ,
11 test_file : str = "" ,
12 ) :
13 self . data_dir = data_dir
14 self . training = training
15 self . train_file = train_file
16 self . test_file = test_file
17 self . dataset = self . load_datasets ( )
18 super ( ) . __init__ (
19 self . dataset ,
20 batch_size ,
21 shuffle ,
22 validation_split ,
23 num_workers ,
24 )
25

26 def load_datasets ( self ) -> List [ Tuple [ torch . FloatTensor , torch . FloatTensor ] ] :
27 if self . training :
28 lis = pd . read_csv (
29 os . path . join ( self . data_dir , self . train_file )
30 ) . values . tolist ( )
31 else :
32 lis = pd . read_csv (
33 os . path . join ( self . data_dir , self . test_file )
34 ) . values . tolist ( )
35

36 tensors = [ torch . FloatTensor ( sublist ) for sublist in lis ]
37 del lis
38

39 result = list ( zip ( tensors , tensors ) )
40 return result� �

Listing C.2: KubeDataLoader Class.

91


	Introduction
	Cloud-native architecture
	Virtualization tools
	Virtual machines
	Containers

	DevOps
	Continuous Integration, Continuous Delivery/Deployment
	Microservices

	Container orchestration
	Kubernetes
	Core Kubernetes Concepts
	Kubernetes components and objects

	Red Hat OpenShift Container Platform

	Anomaly Detection
	Techniques for Anomaly and Threat Detection
	Statistical techniques
	Interquartile Range method (IQR)
	Grubbs' test
	Gaussian Mixture Models (GMM)

	Time series analysis

	Machine Learning
	Performance Evaluation Metrics
	Common Anomaly Detection Techniques
	Distance-based techniques
	Clustering-based techniques
	Supervised and semi-supervised techniques
	Tree-based ensemble methods

	Neural networks
	Neurons
	Layers of neurons
	Autoencoders
	Generative Pre-trained Transformer (GPT)


	Data Analysis
	Data Collection
	Analysis and Preprocessing Tools
	pandas
	ydata-profiling
	matplotlib
	seaborn
	Scikit-learn

	Tabular Data Preparation and Exploration
	Data Cleanup
	Data Exploration
	Data Correlation
	Correlation Matrix
	Preprocessing Methods

	Sentence Generation from Nested Data

	Implementation
	Tools Used
	PyTorch
	Transformers

	Tabular Preprocessing
	Sentence Preprocessing
	Scikit-learn models
	Autoencoders
	Natural Language Processing

	Results
	Preprocessing limitations
	GPT model performance

	Conclusion
	Bibliography
	Symbols and abbreviations
	List of appendices
	Attached media 
	Correlation matrices 
	Source Code Listings 

