
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

RPM PACKAGE QUERY RESOLVER
DOTAZOVÁNÍ NAD RPM BALÍKY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR TOMÁŠ KORBAŘ
AUTOR PRÁCE

SUPERVISOR Ing. MIROSLAV HRONČOK
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Korbař Tomáš
Programme: Information Technology
Title: RPM Package Query Resolver
Category: Operating Systems
Assignment:

1. Study the RPM package metadata, their structure in DNF repositories and their dependency
relationships.

2. Create an efficient Python and user interface for accessing information about a DNF
repository with RPM packages.

3. Design a tool for resolving complex queries of inter-package relations and dependencies.
The queries are evaluated in real time, generate machine readable results.

4. Implement the proposed tool.
5. Propose (and eventually implement) an extension dedicated to resolving of more types of

queries with information from additional different sources about the RPM packages (e.g.
from an externally managed list).

6. Evaluate your solution and propose future extensions.
Recommended literature:

RPM packaging guide: https://rpm-packaging-guide.github.io/
DNF documentation: https://buildmedia.readthedocs.org/media/pdf/dnf/latest/dnf.pdf

Requirements for the first semester:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Rogalewicz Adam, doc. Mgr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/25086/2021/xkorba02 Page 1/1

http://www.tcpdf.org

Abstract
The goal of this thesis is to create a tool allowing effective retrieval of data about RPM
packages and perform queries both about their data and the relations which exist between
them. The tool has to be able to outperform the speed of currently existing tools and allow
easy extension for the preservation of more data or relations. Another required feature
is a visualization of results according to user settings or providing of results in machine-
readable format.

Abstrakt
Cílem této práce je vytvořít nástroj umožňující efektivně získávat data o RPM balících
a dotazovat se jak na data jednotlivých balíků tak na vztahy, které mezi nimi existují.
Nástroj musí být schopen předčít dosavadní rychlost dotazování existujících nástrojů a do-
volit snadné rozšíření o ukládání dalších dat nebo vztahů. Další z požadovaných funkcí je
vizualizace výsledků podle nastavení uživatele nebo poskytnutí výsledku v strojově zpraco-
vatelném formátu.

Keywords
Packages Queries Python RPM Fedora RHEL

Klíčová slova
Balíky Dotazování Python RPM Fedora RHEL

Reference
KORBAŘ, Tomáš. RPM Package Query Resolver. Brno, 2022. Bachelor’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Miroslav
Hrončok

Rozšířený abstrakt
RPM balíky jsou komprimované archívy obsahující software a metadata o jejich obsahu.

Pokud uživatel chce nainstalovat software s pomocí RPM správce balíků, DNF ku příkladu,
pak DNF projde seznam nakonfigurovaných repozitářů a najde balíky, které poskytují uži-
vatelem požadované funkcionality. RPM balík ve svých metadatech obsahuje informace
o tom co balík poskytuje, například knihovnu a připojen seznam balíků, které je třeba
nainstalovat na systém aby mohla správně fungovat.

Při tom jak Linuxová distribuce roste a stává se více komplexní, tak rostou i její RPM
repozitáře a je vyžadováno více jejich údržby aby zůstaly v dobrém stavu a užitečnými
pro své uživatele. Tuto práci přímo ovlivňuje kooperace vývojářů, kteří jednotlivé části
distribuce spravují, a jejich schopnost rychle získávat informace.

Zatímco ty nejdůležitější informace, jako jsou závislosti a seznam souborů mohou být
zpřistupněny v řádu sekund pomocí samotného DNF nástroje, informace obsahující vlast-
nosti balíků, které nejsou nezbytné pro fungování balíků nebo jsou užitečné hlavně vývo-
jářům, musí být často vyhledávány manuálně nebo pomocí pomalých skriptů. Tento fakt
vede k hlavnímu cíly této práce a to je vytvořit nástroj, který bude schopný rychle získávát
jakákoliv data o RPM balících, uložit je do paměti a umožní dotazovat se na kterékoliv
z nich pohodlným způsobem.

Ukázkovým příkladem tohoto je situace, která nastává často při vývoji a údržbě každého
vydání distrubuce Fedora. Fedora je vyvíjena komunitou a tak není nezvyklé když některý
z přispěvatelů nemá nadále čas se věnovat údržbě balíků, které má na starost. Když taková
situace nastane, vývojář může buď předat vlastníctví balíků jednomu z ostatních přispě-
vatelů nebo označit balík jako sirotka. Takto označený balík je ponechán v oficiálních
repozitářích pouze dalších osm týdnů a pokud jej do té doby nepřevezme jiný vývojář pak
je z distribuce odebrán. Problémem je, že balíky, které jej potřebují přestanou fungovat.
Většinou vývojáři závislého balíku sirotka převezmou a nadále ho spravují ale nejdřiv se
musí dozvědět, že k takové události došlo. Je logické tyto vývojáře kontaktovat ale pro to je
třeba vědět o koho se jedná. Toto je moment kdy se uživatel musí dotázat na závislé balíky
jednotlivých sirotků a pak hledat příslušné vývojáře. Taková operace je schopná zabrat
desítky minut při současném stavu DNF API a jeho použitím ve skriptech. Se správným
použitím paměti a optimalizacemi by mělo být možné tento čas zkrátit do řádu sekund.

Další problém, který tato práce má vyřešit je používání komplikovaných dotazů. Napřík-
lad zjištění kolik často používaných balíků bude ovlivněno odebráním nějaké knihovny.
Tento dotaz vyžaduje, aby balíky byly spojeny s informací o počtu jejich stažení a bylo
možné je filtrovat podle zadané hranice. S pomocí takového dotazu je pak možné prior-
itizovat údržbu vysoce používaných knihoven a splnit tak skutečné požadavky uživatelů
distribuce.

První z velkých výzev tohoto projektu je nalezení účinné datové struktury pro uchování
dat o balících tak, aby vyhodnocování dotazů bylo schopné je rychle procházet a zároveň
bylo možné použit algoritmy, které dokážou dobře pracovat s relacemi. Dalším poža-
davkem je srozumitelnost datové struktury a v nejlepším případě aby byla serializovatelná
do souboru, který je možné později použít jako paměť. Paměť by měla umožnit uživateli
vyhnout se konstrukci datové struktury při každém spuštění a tak urychlit provádění dotazů
vyhnutím se této časově náročné operaci.

Druhá je zvolení způsobu jak by měly být dotazy specifikované. Tento způsob musí
být dostatečně silný aby mohl vyjadřovat komplikované dotazy ale zároveň jednoduchý
na naučení a čitelný tak aby uživatel nemusel strávit mnoho času zkoumáním nástroje
než ho vůbec bude schopný použít k něčemu užitečnému. Dále je nutné zajistit aby

vykonávání dotazů bylo optimalizované tak aby neprobíhalo žádné nadbytečné vyhodno-
cování a výsledek byl tak dostupný co nejrychleji.

Základ na kterém každý nástroj použitelný v reálných situacích stojí je přesná doku-
mentace. Projekt musí být řádně zdokumentován tak aby uživatel snadno našel vše co
potřebuje a nebyl zpomalován potřebou dotazovat se vývojářů nebo zkoušením jak se pro-
jekt chová v různých situacích. Dokumentací projektu je myšleno nejen použití nástroje ale
i poskytnutého API a specifikace jak může být projekt dále rozšiřován.

Posledním ale ne méně důležitým požadavkem je aby byl nástroj řádně otestován. Kom-
binace jednotkových a funkcionálních testů bude třeba, aby byla zajištěna stabilita nástroje
a usnadněna dlouhodobá údržba projektu. Na výběr je mnoho testovacích modulů ale pro-
tože jazykem projektu bude Python, bude nejlepší použít ověřenou technologii s velkou
komunitou uživatelů jako je Pytest.

Projekt má realný příklad použítí, který vyvstal při vývoji a údržbě balíků distribuo-
vaných systémy Fedora a RHEL. Díky tomu bude možné jednoduše ověřit zda projekt plní
účel, za kterým byl vyvíjen nebo ne. V konečném důsledku by měla tato práce splnit
všechny předešlé požadavky a dokázat, že vytvoření dostatečně silného nástroje je možné
a dokáže urychlit práci vývojářů pracujících na Linuxové distribuci tak aby mohla být více
stabilní a bezpečná.

RPM Package Query Resolver

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Miroslav Hrončok. The supplementary information was
provided by Mr. Adam Rogalewicz. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

. .
Tomáš Korbař

May 6, 2022

Acknowledgements
I would like to thank Mr. Miroslav Hrončok for watching that the project meets require-
ments for it to be usable and Mr. Adam Rogalewicz for his help during making of this
thesis.

Contents

1 Introduction 2

2 Theory and current state 3
2.1 RPM package . 3
2.2 RPM repository . 4
2.3 Package managers . 5
2.4 DNF API . 6
2.5 Storing techniques and query language . 6
2.6 Caching . 11
2.7 Configuration . 12

3 Research 13
3.1 Project structure . 13
3.2 Retrieval of information from repository . 14
3.3 Customization and modification of functionalities 14
3.4 Internal structure of data representation . 15
3.5 Query language design . 16
3.6 RPQR language and its use . 19
3.7 Plugin architecture and its interface . 21
3.8 Caching . 21
3.9 API design . 21
3.10 Command line interface design . 22

4 Implementation and evaluation 23
4.1 Important parts of implementation . 23
4.2 User manual . 33
4.3 API documentation and example of scripting 39
4.4 Use of RPQR API to perform queries . 43
4.5 Testing . 44
4.6 Distribution . 46
4.7 Evaluation . 47

5 Conclusion 48

Bibliography 49

A Acronyms 51

B Installation 52

1

Chapter 1

Introduction

Linux distributions are built upon packages that provide software to their users. It is these
packages that make particular distribution different or similar to another one. All these
packages require maintenance, in this case, the distribution is developed commercially, as
well as is developed by the community. The fact that the whole system is stable and
comfortable to use is a result of the good work of maintainers who work together to ensure
that all packages are working and their requirements are met.

Efficient maintenance requires accurate information, which maintainers get from multiple
sources and use many tools to retrieve. For example, which packages depend on their
packages, and thus which maintainers should they communicate with when encountering
disturbing changes? Often the information is not easy to acquire and slows down developers
by forcing them to manually search through different places. To solve this problem, a new
tool that can store and filter any information about packages is required as no other exists
at the moment.

RPQR is an originally proposed tool that is supposed to make maintainers’ life easier by
allowing them to describe how to acquire the data only once and then be able to retrieve
it on demand. It is flexible enough to store any new kind of data and to search packages
based on a combination of any of them while also providing the option to accelerate queries
by making specialized commands. RPQR also lets users build a cache which makes further
queries faster and thus saves time while doing everyday work.

The tool can be directly used by other projects through provided API. It can also be used
by a user as any other command-line project. Users are also able to visualize their results
for a faster understanding of the results.

2

Chapter 2

Theory and current state

While crucial information about an RPM package is stored directly inside it within the
header section, additional information as who maintains it or which bugs are currently
known has to be searched in external sources of information. This chapter describes RPM
packages and technologies which currently exist for working with them. Then there is a
description of other subjects which are needed to successfully design and implement the
RPQR project.

2.1 RPM package

RPM packages have their file format[9]. It is composed of four parts with their specific
purposes. The parts are (i)lead, (ii)signature, (iii)header and (iv)archive. Here are described
and explained all parts relevant to the RPQR project.

The lead

The lead is the first part of the RPM package. It contains the magic number and version
of the RPM file format. It also contains whether the package type is binary or source and
other information relevant to a system using it. The difference between binary and source
packages is that the source package contains source code from which software can be built
or the whole downloaded project, while the binary package contains the actual software.
The lead is no longer used internally by RPM because of its inflexibility and is noted here
only for completeness of file format description.

The signature

The signature is allowing package integrity and optionally authenticity to be verified. It
holds little purpose for RPQR but it is important because DNF uses it and RPQR is using
DNF API.

3

The header

The header is the most interesting part from the perspective of the RPQR project be-
cause it contains detailed crucial information about the package. It is composed of tags
that describe different aspects of the bundled software. Examples of these tags can be
RPMTAG_VERSION specifying a version of the package or RPMTAG_RELEASE which
specifies what release of this version this is. The header is parsed by software that is making
the metadata structure of RPM repositories and this structure is then used by the DNF
package manager to find appropriate packages that the user needs.

00001198 8e ad e8 01 00 00 00 00 00 00 00 3e 00 00 0f dd |...........>....|

The first 16 bytes of the header part are describing the attributes of this header. Three
bytes are the magic number identifying the header, one byte says that the header conforms
to version 1 of the specification. Four other bytes are reserved. Then there is a count of
entries stored in this header (00 00 00 3e to decimal is 62). The last four bytes mean how
many bytes are stored in this structure (00 00 0f dd to decimal is 4061).

000011c8 00 00 03 e8 00 00 00 06 00 00 00 02 00 00 00 01 |................|

For the best example, we will describe the name tag. 00 00 03 e8 identifies the presence of
a name tag and 00 00 00 06 says that value is a string. 00 00 00 02 means that the value is
located 2 bytes after the start of the store and 00 00 00 01 indicates that there is just one
value, which is the only allowed possibility for string value stored in the header.

The store is composed of values after each other that are distinguished only by their re-
spective offsets.

The archive

The archive is a set of files and folders compressed with a compression algorithm. Its
integrity can be verified with the specified signature.

2.2 RPM repository

RPM repositories are directory structures that contain RPM packages and metadata which
are needed to quickly locate packages that the user needs. Metadata are created by cre-
aterepo [11] utility and accessed by the DNF package manager.

Repodata

Every RPM repository contains a folder repodata which contains data about the contents
of the repository. There is a file repomd.xml containing XML structure indicating where
should package manager look for databases with information about packages.

4

Important databases:

• primary database which specifies all crucial information about each package as of
version, description, or file list.

• other database which contains other less important information e.g. changelog of
a package

2.3 Package managers

Working with RPM packages can be done with multiple tools. Their general responsibility is
to recognize package dependencies and being able to install or uninstall software contained
in the package. Most frequently used are RPM package manager and DNF package manager
(successor of the old YUM package manager).

RPM package manager

RPM package manager supports more low-level operations with packages than DNF does
[10]. It allows to build the source of a project according to specfile and create distributable
packages. More of the important operations are also reading the metadata and verification
of installed software, in case it is not working properly. Installation of dependencies would
have to be handled by a user manually so the rpm utility is not often used by end-users of
the systems.

YUM package manager

Yum package manager is historically the first manager that allowed easy downloading of
packages from remote repositories and handling their dependencies [16]. It is currently
deprecated and has been replaced by DNF. Reasons for deprecation and replacement were
that YUM was not properly documented, it was not ready for a switch to Python3, and
the algorithm for dependency resolution was not strong enough to handle all problems that
withstand in modern RPM-based Linux distributions.

DNF package manager

DNF package manager is a successor of the older YUM package manager [2]. It allows users
to install and remove software on the system comfortably by handling all of the operations
that are needed to retrieve package dependencies and resolve any possible conflicts. A very
often used feature is also system upgrades, when DNF can migrate a system from old
versions of distribution to new ones. A very important fact that needs to be stated is that
DNF provides Python API which can be used by other projects to retrieve metadata from
repositories and distinguish them.

5

DNF is the only tool that is currently able to query repositories for metadata that are
specified in packages. An example of a frequently used query is:

$ dnf repoquery --whatprovides /usr/bin/bash

This command issues that DNF should execute command repoquery filtering by tag provides
and find all packages that provide file /usr/bin/bash. DNF can search for packages based
on attributes that are supplied within the package, but it is not able to retrieve additional
information or query based on complex relationships. It is not its job to resolve more
difficult queries and it would be wrong to force it to by extending its capabilities.

2.4 DNF API

DNF provides Python API through which developers can interact with repositories and
retrieve information. At first, an instance of Base class has to be created and then specify
repositories from which metadata should be retrieved. Call to fill_sack method after that
will load the metadata and API can then execute queries that the DNF tool supports.

Example of how is dnf API used in RPQR project:

base = dnf.Base()
for (name, url) in self.repositories:

base.repos.add_new_repo(name, base.conf, baseurl=[url])
base.fill_sack(load_system_repo=False, load_available_repos=True)
return base.sack.query().available()

2.5 Storing techniques and query language

As was stated before, it is crucial to choose the right technologies to store package metadata
in such a format that they can be read by a human reader while also easily parsable and
serializable. This section will describe possible formats. Another part will explain the
existing query languages that could be used for RPQR queries and their pros and cons in
the context of describing package metadata.

Data structures

While RPM repositories store metadata as a list in XML format or sqlite database, for
use cases that are oriented about relationships between packages list does not have to be
appropriate data structure for internal representation of package metadata.

6

• List
Pros:

Easy to work with Python
Simple algorithms to process its members

Cons:
Bad handling of relationship representation

• Dictionary
Pros:

Faster accessing of members
Cons:

Forcing packages to be identified by the same attribute

• Graph
Pros:

Great representation of relationships between packages
Fast algorithms for searching and filtration

Cons:
More complex algorithms for processing of nodes
To filter packages according to attributes, dictionary or list is still needed since

there is no package that we could consider as the proper root of the graph.

Data formats

An appropriate data format needs to be chosen for storing data. Currently, many massively
used formats could be suitable for the RPQR use case. The data format should be chosen
accordingly to how much readability it can provide for a human developer and whether it
can be used within versioning repositories such as git or mercury.

XML

Extensible markup language[14] is used by repocreate utility which is parsing package meta-
data and creating their collections for package managers. It is natively supported by Python
and relatively easy to read. XML uses tags to distinguish individual elements of serialized
data. Its advantage is that it supports various encodings and even can contain comments
so some things in serialized data could have additional explanations when needed.

7

Example of XML data:

<?xml version="1.0" encoding="UTF-8"?>
<element>

<innerElement>
Example text

</innerElement>
<!-- Explanation comment -->

</element>

JSON

JavaScript Object Notation[4] is a widely used format for data serialization which represents
objects with pairs of named attributes and their values. One of the big advantages is that
it also natively supports arrays and consists of minimal syntax which allows most data to
be stored and transferred with less required space. Unfortunately, there is no support for
comments but the readability of JSON data is generally good so they are not needed in
most cases.

Example of JSON data:

{"Element":{
"InnerElement": "Example text"
}

}

YAML

YAML[15] Ain’t Markup Language is a data format used by many applications for configu-
ration and data transfer. YAML used JSON as a basis for its version 1.2 and it is accepting
JSON as its subset. The interesting about this format is that unlike JSON it supports
comments and extensible data types. Strings in YAML can be also specified without the
starting and ending quotation marks. Individual attributes of objects are distinguished by
name and indentation by a style that is similar to Python. While YAML data sets are
generally smaller than JSON, the number of additional syntax features makes their parsers
more complex and thus it inevitably takes more time to load them.

8

Example of YAML data:

element:
InnerElement: Example text

Pickle

For completeness here is mentioned even Python pickle format[7] for object serialization.
Because it is binary it can be parsed more quickly and support the additional acceleration
of RPQR execution. There is an issue with the execution of arbitrary code when parsing
pickle structures which does not occur in previously mentioned formats. Unlike the previous
formats, it is not human-readable and thus unfortunately not appropriate to be used for
package data structures that should be accessible by different tools. There is no example
because it would not make sense to show binary data.

Query languages

For purposes of the RPQR project, there needs to be a specification on how to describe
queries. Currently, there are many approaches. In this section, there will be a description
of some of them and their features which could prove useful for selecting packages and their
attributes.

SQL

Structured Query Language[12] is a domain-specific language that is widely used to interact
with relational databases. SQL can select records based upon their attributes and relations
but is not capable of describing complex recursive queries about graphs. Another caveat is
that for a Python application, using standard Python libraries, to be able to use SQL, it
would need to hold an instance of sqlite database in memory and that could prove to be an
unnecessary overhead1 that could slow execution down.

Example of SQL query: SELECT * FROM table WHERE id = 3

GraphQL

GraphQL[3] is an open-source query language that allows developers to implement their
interpretation of individual query parameters. It is used in REST APIs to allow client
applications to retrieve data effectively from a server without it having to transfer any
unnecessary data. Its flexibility is a great advantage, but queries are not as readable as
they would be in SQL language.

1Resources required to perform an operation

9

Cypher query language

Cypher query language is an implementation of opencypher specification. It is meant to
work with the neo4j graph database and is developed for such a purpose. For an application
to be able to get the advantage of cypher, it needs to use the neo4j database which can
result in too big an overhead for utilities designed with one specific purpose in mind.

Example of Cypher query language:

MATCH (peter: employee name: ’Peter Parker’) RETURN peter

Example of GraphQL query:

{
table(where: {id: {_eq: 3}}) {

id
name
age

}
}

Domain specific language on Python

Creating query language is always an option and it holds enormous power in the ability
to bend the language to the specific purpose that the RPQR project needs. Problem
is that developing and maintaining language takes time and energy. For a language to
be functional, RPQR would need to implement its components like scanner, parser, and
interpreter. In the essence, a domain-specific language for RPQR would need to be relatively
simple. There is a requirement to interpret statements which result is always a set of nodes
that represent packages. These statements consist of commands that take values and other
statements as arguments and operators which realize basic set operations as is union or
intersection.

Example of how RPQR language could look:

WHATDEPENDSON(’libyang’, 3) & WHATDEPENDSON(’libgcc’, 3)

10

Components that are needed for interpretation of RPQR language:

• Scanner
The scanner is used to convert the source text of the language to tokens for further
processing by the parser. Its crucial part is a finite state machine that reacts to
characters in input and recognizes lexical tokens. The scanner is also able to tell
a user when some lexical error occurs and the query needs to be changed for it to be
valid.

• Parser
Parser consumes tokens from the scanner and handles the creation of abstract syn-
tactic tree or some other internal representation of source text on input. The parser
can recognize syntactic errors which occur during parsing and optionally inform the
user about them. There are multiple techniques for syntactic analysis as Top-Down
Parsing or Bottom-Up Parsing, which are algorithms how to recognize language units
on input. Both of these techniques use models for context-free languages such as
formal grammar. Formal grammar is a list of rules which are used to check whether
the input is written in a language or not.

• Interpreter
RPQR does not need to translate the query into some other form, it needs to perform
it. That is the reason why the last part of the RPQR language would be its interpreter.
The interpreter inside of RPQR would need to be flexible enough for it to be able
to accept new commands for searching for packages. Another important thing is
using optimizations such as short evaluation to make searching for packages as fast
as possible.

2.6 Caching

Since one of the most time-consuming actions of the current approach to queries about RPM
packages is network communication and transfer of metadata, it is crucial to download all
metadata at once at the start of execution to not need any further downloads. This can be
ensured through DNF API by executing a query to list all packages that are available to
install from specified repositories. DNF package manager uses a very similar approach by
downloading all metadata to local storage and updating it only when the user forces it to
or the cache expires.

The question of metadata expiration needs to be handled by the RPQR itself too.

Approach, when metadata is not updated unless the user wants to do so, could save time
for checking of the repository, but the user would be responsible for the consistency of
metadata and repository state, which could prove problematic.

RPQR could stick with the same approach as the DNF. That means rebuilding metadata
when they expire. The problem is that building internal structure and rebuilding cache
could be a very time-consuming operation, maybe even in a matter of minutes.

11

The third and maybe the most proper approach is to set the expiration time of metadata
to some longer period. After such a period the time, rebuilding of the cache will not be
so important. Also if no change occurred then it is pointless to rebuild the data and it
would be highly useful to rebuild only parts of internal data structures which do not longer
correspond with the actual state of RPM repositories supplied in a configuration.

2.7 Configuration

The RPQR tool will need multiple options for it to work properly and accordingly to users’
notions. There are multiple ways how to supply such configuration to the tool. One of
the most common ones is to supply configuration by command-line options. While this is
easy to implement and Python offers native support for it, this approach could prove to be
painful for the user when overused. For example, six or more command-line options would
be difficult to track. That can be solved by providing the user with the means to set mostly
static options through the configuration file.

With configuration file withstands more choices.

• Format of the configuration file. Multiple formats can be used. JSON or YAML is
probably the most appropriate ones. Their description was stated in previous sections.

• What options should configuration include? Configuration should include only options
which do not change often and thus do not force the user to change the file frequently.

12

Chapter 3

Research

With a good knowledge about the current state of utilities and technologies, this chapter
can explore the best approach to resolving complex queries about RPM packages. In each
section, there is described a particular approach chosen as the best solution to an individual
problem.

3.1 Project structure

Python project is most often divided into folders that contain logically related classes.
Classes that have fewer dependencies are located deeper in a directory structure. So entire
implementation of the logic of the project has one root folder. Another folder is meant for
executable binaries or scripts that are supposed to be installed in the path of the users’
system. The last important folder is the folder containing tests. There are multiple ways
to store projects’ tests but a dedicated folder seems to be the cleanest and tests seeking
utilities have an easier time finding tests organized like that.

Illustration of proposed structure:

bin - executables of the project
bin/script
project - project classes
test - all the particular tests

13

3.2 Retrieval of information from repository

While there are approaches that would allow individual retrieval of metadata from repos-
itories, such as custom downloading of XMLs and database archives, there is no reason
for that. DNF provides API[2] that allows an application to use its already implemented
downloading of metadata. The best way to use it for this purpose is to create a query that
matches every package accessible through configured repositories.

3.3 Customization and modification of functionalities

RPQR project needs to be able to adapt to changing demands on queries and the most
simple way to achieve that is to create a system of loading plugins in a form of Python
modules. The Python script cannot dynamically load another module but because of the
very high level of introspection that Python provides, it is possible to achieve something
very similar. When the plugin upholds certain defined rules, such as that class for load
is named the same as the file, then it is possible to easily create an efficient algorithm for
searching and importing accessible plugins.

Illustration of plugin importing:

• Gather all directories for inspection from configuration or use hardcoded paths

• For each folder, walk over files and check if they fulfill naming rules

• Try to import classes by names devised from file names

Naming conventions for files containing plugins:

• Filename can not start with an underscore. Python uses __init__ files in directories
and we need to omit them. There also has to be a possibility to add supplementary
files without importing them

• Class that should be imported has to have the same name as the file. This way we
can avoid implementing unnecessary overhead by looking through the module and
searching for classes by some more rules

A plugin will contain one main class that can define how to retrieve data that it needs and
commands that can be used to filter packages by this attribute or relationship. Enforcing
good structure will be done by providing base classes that plugins need to extend.

14

3.4 Internal structure of data representation

For RPQR, to be able to effectively walk through packages and filter them by attributes
and relationships, there has to be an appropriate way to access them as quickly as possible.
That is why by nature, a graph is the best way. Using graphs will allow the RPQR project
to use graph algorithms such as breadth-first search or depth-first search. Python itself does
not have built-in graph support, so the RPQR project can either contain its implementation
or use a library.

NetworkX[5] seems to be a very quick and easy-to-use implementation of graph abstract
data type which is also capable of rendering a graph with multiple algorithms when needed.
Another very useful feature is that NetworkX can save the graph to JSON formatted string
and load it again from this string.

Example of building graph using NetworkX API:

import NetworkX as netx
graph = netx.Graph()
graph.add_node(1)
graph.add_node(2)
graph.add_edge(1,2)

Configuration

Some options are uncomfortable to enter through the command line repeatedly, therefore
they should be stored in a persistent file. The structure of the configuration file can have
many forms but Python has a built-in module named configparser[1] which defines a human-
readable format appropriate for the RPQR project. Configparser uses a section to divide
configuration into logically related blocks, there will be the main section for global options
like URLs of repositories. Each plugin will have its section where it will be possible to
disable it or provide individual information necessary for its proper function.

Example of configparser configuration file:

[first_section]
option1 = 1
option3 = filepath
[second_section]
option2 = 2

15

3.5 Query language design

RQPR language is by nature of its use oriented on filtering sets and thus will be constructed
from statements and operations between them. This section will thoroughly describe the
language and its formal description from the view of formal language theory.

Lexical analysis

RPQR will use a finite state machine for scanning tokens present in entered queries and
putting them in a list that can be further processed. Each of the lexical tokens is defined
by regular expression and when not recognized can be marked as invalid.

The finite state machine representing the considered regular expressions is as follows:

16

The lexical tokens that occur in RPQR language are:

• left bracelet (

• right bracelet)

• and operator &

• or operator |

• negation operator ~

• number (consisting only of numeric characters e.g 123)

• string (hyphen separated string of alphanumeric and special characters e.g ’hello’)

• command (command contains only alpha characters and has to be described by a plu-
gin e.g NAMELIKE)

• comma used mainly as a separator for command arguments ,

Syntactic analysis

RPQR language syntactic analysis will be mainly precedent syntactic analysis because the
language is statement-oriented. The precedent syntactic analysis uses an algorithm with
a symbol stack and acts accordingly to the precedent syntactic table. This table defines
what operators can be used at particular places and their respective priorities. This solves
the problem of evaluation of statements but there is still the matter of command recognition
and validation of argument types. Every command has to define what arguments it needs to
work properly. The initial configuration of RPQR will load commands and create context-
free grammar for them. Because every command has a different name and there is no need
for dynamic arguments, a distinction should be straightforward and effective.

Another more problematic matter is that for RPQR language to be able to handle all
necessary use cases, commands need to be able to accept the results of other commands
as arguments. This is problematic since it requires a new instance of precedent syntactic
analysis to parse this statement. Fortunately, this can be solved by cutting substatement
out of the original statement and putting it queue of statements that have to be yet parsed.

After all these problems are solved, RPQR will have an abstract syntactic tree containing
all the information that is necessary for the execution of statements e.g. commands that
need to be executed first and operators located in depth accordingly to their precedence.
This tree will be later processed by semantic analysis e.g. interpreter.

17

Precedent syntactic table used for RPQR language:

() & | ~ $
(< = < < < #
) # > > > > >
& < > > < < >
| < > < > < >
~ < > > > < >
$ < # < < < X

Explanation of symbols

The algorithm which handles syntactic analysis is driven by the precedent syntactic table.
It always looks at the first terminal symbol at the top of the stack and performs an operation
that is specified in the table by what symbol is in input.

• < means that a special symbol marking the start of a particular statement needs to
be put onto the stack and a new symbol loaded from the input

• = means only load new symbol

• > means that particular sub statements should be collapsed into one parent statement

• # means that syntactic error occurred and provided input is not a valid RQPR
language statement

• X marks the end of parsing of a valid RPQR language query

Semantic analysis

Semantic analysis e.g. interpreter will be an implementation of a depth-first search algo-
rithm for processing of abstract syntactic tree provided by syntactic analysis. It is walking
through the tree and putting found nodes in a stack until it finds a command or statement
that can be already resolved. When the command that is defined by the accessible plugin
is encountered, then the interpreter will filter loaded packages and either provide them as
the final result or use them as an operand to one of the operators.

When a command is executed or a statement can be evaluated accordingly to the type
of operator that it contains, part of the abstract syntactic tree related to it is marked as
resolved and the temporary result is saved into the appropriate node. This means that the
final result will be present as the root of the tree.

As in syntactic analysis, there is a problem with subsets used as an argument. These
subsets have to be executed similarly as they were processed into the abstract syntactic
tree. When encountered interpreter will stop command processing and proceed to resolve
the substatement with higher priority.

18

3.6 RPQR language and its use

This section should provide usage examples of RPQR language and results that should be
expected. RPQR statement always consists of at least one command.

Simple command

COMMAND()

This command will receive the entire graph of packages as input and will be responsible
for providing a set of packages that conform to its filter. Since this command does not
accept any arguments, as there are no arguments supplied, the filter is static and can not
be affected by the user. There are currently no plugins providing such type of command so
there is no example.

Command with arguments

ADVANCEDCOMMAND(’package’, 3)

Command used like this accepts two arguments which alter his behavior. The first one
is a string and the second is a number. RPQR language does not consider whitespace
characters, so there is no difference or problem with their presence in the query. Commands
like this can have more advanced behavior and are generally more useful than the ones
without arguments.

Example of this type of command is:

WHATDEPENDSON(’libyang-1.0.225-1.fc34.x86_64’, 1)

Command accepting subset as an argument

SUBSETCOMMAND(NAMELIKE(’cups’), 3)

This is the most complex command that the RPQR language supports. This query will at
first filter the entire graph with the command NAMELIKE(’cups’) and then supply its result
to the SUBSETCOMMAND command. The second command will have the possibility to
work with a subset and thus does not have to work with the entire graph which results
in an ability to work more efficiently or perform operations with a specific context. For
a better explanation of how the query could work, here is an example. The first command
could gather packages that contain string cups in their name. The second could then filter
only three first by their name in alphabetical order.

Example of this type of command is:

SUBSETNAMELIKE(’x86_64’, NAMELIKE(’libyang’))

19

Operators

Intersection

FIRSTCOMMAND() & SECONDCOMMAND()

Operator & can be used as an intersection between sets provided as outputs of two com-
mands or sets. Packages returned by query specified like this have to be present in both
the left and right set.

Join

FIRSTCOMMAND() | SECONDCOMMAND()

Operator | can be used to join sets provided by two commands or statements. It has
a lower priority than intersection and means that resulting sets will contain packages that
are present in either left or right set of this statement.

Negation

~COMMAND()

Operator ~ can be used to specify that the result set of packages can contain only such
packages that do not conform to conditions specified by COMMAND. It is important to
keep in mind that the input of the command is always the entire graph.

Priorities of the operators

When in need of complex conditions and a combination of commands, it is very useful to
use bracelets to force priority of evaluation and to avoid confusion between what the user
expects as a result and what is the real result. Without the bracelets, the standard priority
is as follows:

• ~

• &

• |

Example of bracelet use:

FIRSTCOMMAND() & SECONDCOMMAND() | THIRDCOMMAND()

Explanation of this query is: return packages that conform to conditions of FIRSTCOM-
MAND and SECONDCOMMAND or packages that conform to THIRDCOMMAND. This
is caused by the priority of operators.

FIRSTCOMMAND() & (SECONDCOMMAND() | THIRDCOMMAND())

20

This query looks very similar but some bracelets change their meaning very significantly.
Packages in result set has to conform to FIRSTCOMMAND and to SECONDCOMMAND
or THIRDCOMMAND in the same time. Bracelets allow us to form more complex descrip-
tions of packages that we are looking for.

3.7 Plugin architecture and its interface

Since the whole project will be written in Python which is an object-oriented language, all
plugins will be inherited from a class that will provide the standard interface expected by
the RPQR project. There should be an initialization method allowing the plugin to prepare
helper structures and then a method responsible for inserting information into the plugins.
Packages have attributes and relationships, so there will have to be two types of plugins,
one inserting proper attributes to nodes and another one that will construct relationships
between them. RPQR will work with attribute plugins as if they had a higher priority so
relationship plugins will be able to work with already prepared attributes and there will be
no unnecessary overhead.

Commands supplied by the plugin will also conform to the interface specified by their base
class. Each will have to list types of arguments that they need and implement a function
that contains the logic of their filtering operations. Since many commands will be working
with similar graph algorithms such as depth-first search or breadth-first search, the base
class will provide an optimized implementation that just needs specification of filter in
a form of function.

3.8 Caching

As was stated in the previous chapter, RPQR will need to use cache to save time consumed
by building information about packages contained in configured repositories. After careful
consideration, the approach of using JSON as a format of the cache was chosen. This way,
even third-party tools will be able to manipulate it and users will be able to read it if
necessary. The cache will be invalidated only by users’ request to do so and when a new
plugin is found. The presence of plugins will be tested by a special record in the cache.
Fortunately, all this is supported by the networkX library.

3.9 API design

RPQR needs to have a Python application programming interface so external developers
can use its plugins and features even more efficiently than through a command-line interface
and create their solutions. API will be using the same RPQR language as the command
line interface and queries will be returning NetworkX graphs. This way, applications using
the API can walk through nodes that represent packages and perform any transformation
of the graph that they deem useful.

21

3.10 Command line interface design

RPQR tool will be using one main positional option that has to be provided and that is
a query written in RPQR language. By default, the output will go into standard output
and log messages to standard error output.

The first two options that can, but do not have to be specified will be whether the user
wants to see a visualization of result created by his query and what attributes or relations
should be included in the output. Filtering of attributes and relations is helpful because,
with multiple plugins, there can be a lot of unnecessary data in the output that takes a lot
of space. Another important option is the location of the configuration file if the user does
not want to use the default location which is /etc/rpqr.conf. The last option is whether the
tool should invalidate the cache and build it again.

22

Chapter 4

Implementation and evaluation

With research and design complete, the RPQR project can now be implemented in the
best way possible. This chapter will cover a deep description of the project’s code and the
algorithms it uses to fulfill the assigned task. Each section will cover the limitations of the
presented solution and what could be done in the future to overcome them. Usage of the
RPQR project will also be described in a form of a user manual and a description of the
way how new plugins are supposed to be developed using the RPQR interface.

4.1 Important parts of implementation

This section will show the most important parts of the implementation and structure of
Python code. Inheritance and general content of classes can be found on the class diagram.

23

24

RPQRConfiguration

RPQRConfiguration class serves for purposes of loading plugins and creating RPQR lan-
guage structures necessary for its successful parsing and interpreting. An instance of this
class has to be created for every use of the RPQR project and is used by all following
components and their diverse operations.

Initialization of plugins

This is the centerpiece of plugin loading. The plugins are loaded by the following method,
which walks through all configured directories which according to configuration should
contain plugin modules and if its file does not start with an underscore then attempts to
import them and create their instance. Two conditionals relate to the plugin configuration.
The first one is checking whether a configuration related to this plugin exists and thus
should be provided to it and the second one is there for a case when a user does not want
to use the plugin at all, to save space for example, or to speed up processing.

def _initializePlugins(self):
""" Load plugins from supplied directories
"""
for dir in self.pluginDirectories:

sys.path.append(dir)
pluginModules = os.listdir(dir)
for file in pluginModules:

moduleName = file[:-3]
if file name starts with _ then it is most likely not a plugin
if moduleName.startswith("_"):

continue
cfg = None
if moduleName in self.userConfiguration.keys():

cfg = self.userConfiguration[moduleName]

if (cfg != None and cfg.get("disabled") == "1"):
self._logger.info(

"%s plugin was disabled in configuration" % moduleName)
continue

module = importlib.import_module(moduleName)
pluginClass = getattr(module, moduleName)

pluginInstance = pluginClass(rootLogger=self.rootLogger,
config=cfg)

self.plugins.append(pluginInstance)

25

RPQRLoader

RPQRLoader is a class responsible for the loading of data about packages through plugins
and constructing graph structures out of them. It is taking advantage of DNF API to
retrieve the data as efficiently as possible and access them in the same way as the package
manager would.

Construction of graph

This method distinguishes between plugins that are supposed to add attributes to package
nodes and plugins that create relations between individual packages. The first kind is
executed first so relationship plugins can depend on them later. Each instance of the
plugin has its fillData method which is called for each package that was retrieved by DNF
API. After the graph is built, a list of plugins that were present during the creation of this
structure is saved into the plugins list for easier detection of invalid cache.
def createDatabase(self, cache: str = None) -> NetworkX.MultiDiGraph:

""" Get graph of packages with data and relations described by plugins
:param cache: path to cache file, defaults to None
:type cache: str, optional
:return: Graph of packages
:rtype: NetworkX.MultiDiGraph
"""
graph = NetworkX.MultiDiGraph()
dataPlugins = [plugin for plugin in self.plugins if isinstance(

plugin, RPQRDataPlugin)]
relationPlugins = [plugin for plugin in self.plugins if isinstance(

plugin, RPQRRelationPlugin)]

pluginRecords = []
for plugin in dataPlugins + relationPlugins:

pluginRecords.append((plugin, plugin.__class__.__name__))
...
av_query = self._getAvailableQuery()
q_avail = av_query.run()
for id, pkg in enumerate(q_avail):

graph.add_node(id)
for pluginInstance in dataPlugins:

pluginInstance: RPQRDataPlugin
pluginInstance.fillData(id, pkg, graph)

for id, pkg in enumerate(q_avail):
for pluginInstance in relationPlugins:

pluginInstance: RPQRRelationPlugin
pluginInstance.fillData(id, pkg, graph, av_query)

graph.graph["plugins"] = [name for (_, name) in pluginRecords]
...
return graph

26

RPQRScanner

RPQRScanner is a class responsible for scanning the query entered in RPQR language
format. It is able to recognize when there is a lexical error in the query and is used to parse
a string into tokens.

Implementation of finite state machine

Method getTokens is responsible for creating a list of tokens out of input. It is composed
of a while cycle that parses characters and switches the state of the machine accordingly.
It is strictly implemented accordingly to the graph of FSM which was mentioned earlier.

def getTokens(self, input: str) -> Optional[List[RPQRToken]]:
...
while curInputIndex < len(input) + 1:

if curInputIndex < len(input):
c = input[curInputIndex]

else:
c = ’’

if curState == States.START:
if c == ’’:

break
elif c == ’(’:

curToken = RPQRToken(self.tokenTypes["leftBracelet"], c)
curState = States.LEFTBRACELET

elif c == ’)’:
curToken = RPQRToken(self.tokenTypes["rightBracelet"], c)
curState = States.RIGHTBRACELET

elif c == ’&’:
curToken = RPQRToken(self.tokenTypes["and"], c)
curState = States.AND

...
curInputIndex += 1

elif curState == States.AND:
tokens.append(curToken)
curState = States.START

elif curState == States.OR:
tokens.append(curToken)
curState = States.START

elif curState == States.NUMBER:
if c.isnumeric():

curToken.appendToContent(c)
curInputIndex += 1

else:
tokens.append(curToken)
curState = States.START

27

RPQRParser

RPQRParser is a class responsible for the processing of lexical tokens and the construction of
abstract syntactic trees that can be interpreted in a strictly defined way. The class contains
helper methods for easier manipulation with a list of tokens and methods considered as
callbacks to certain operations encountered in the source query. These operations are uses
of operators like & or ~ which needs the abstract syntactic tree to be constructed in a certain
way.

parsing algorithm

while True:
while True:

if curInput.type in self.config.commandTypes.values():
commandRule = None
for rule in self.rules[4:]:

if rule[0] == curInput.type:
commandRule = rule

childList = [curInput]
for indexMember, member in enumerate(commandRule[1:]):

if member == self.nonTerminalTypes["statement"]:
...

if argToken.type != member:
...

if (argToken.type in
[self.config.tokenTypes["number"], self.config.tokenTypes["

↪→ string"]]):
childList.append(argToken)

newStatement = RPQRStackSymbol(
self.nonTerminalTypes["statement"], childList)

self.stack.append(newStatement)
curInput = tokens.pop(0)
continue

lastTerminalIndex = 0
...

requiredAction = precedencTable[self.stack[lastTerminalIndex].type][
↪→ curInput.type]

...
decide whether we need to keep parsing or everything is already done
if len(substatementQueue) == 0:

return rootStatement
else:

curStatement = substatementQueue.pop(0)
self.stack = [RPQRStackSymbol(self.config.tokenTypes["end"])]
tokens = curStatement.children
curInput = tokens.pop(0)

28

The parsing algorithm is based on the processing of a statement queue that contains all
individual statements that need to be parsed. The first cycle is going through a queue of
statements and the inner one is performing precedent syntactic analysis and calling ap-
propriate callbacks. An interesting operation is that when substatement is encountered
(command accepts a statement as an argument) algorithm cuts this substatement out of
the source and inserts it into the queue for further resolution. Because of the tree’s struc-
ture, it is possible to resolve the rest of the statement even when the construction of the
substatement is not yet known.

The current parsing algorithm is not able to handle commands that take a dynamic number
of arguments. This is a known limitation but because this feature was not needed in any
relevant testing scenario, RPQR will not at the time of this thesis contain such an option.

29

RPQRInterpreter

RPQRInterpreter is a class responsible for the interpretation of RPQR language. It is
mainly composed out of an algorithm that performs a depth-first search of the abstract
syntactic tree and resolves nodes from bottom to up direction.

Interpretation algorithm

while len(stack) > 0:
curNode = stack[-1]
curResult = resultStack[-1]
if curNode.operator is not None:

if len(curResult.childResults) < 1:
...

elif curNode.operator != ’~’ and len(curResult.childResults) < 2:
...

else:
now we have all operands, we can begin resolution
validNodes = []
...
stack.pop()
resultStack.pop()

else:
...
notResolvedStatementFound = False
for argIndex, argType in enumerate(commandClass.args):

if argType == str or argType == int:
literals can be resolved right away
if (argIndex > len(curResult.childResults)-1):

curResult.childResults.append(RPQRResultTree(
curNode.children[1:][argIndex].content, []))

else:
continue

elif argType == list:
if (argIndex > len(curResult.childResults)-1):

...
break

else:
continue

if notResolvedStatementFound:
continue

arguments = []
for partResult in curResult.childResults:

arguments.append(partResult.result)
curResult.result = commandClass.execute(graph, arguments)
stack.pop()
resultStack.pop()

30

The algorithm distinguishes between nodes that represent statements composed out of op-
erator and operands and commands that filter packages. Processing of such nodes differs
because operators are built-in and have a fixed number of arguments while commands are
defined by plugins and every command can have a different number of arguments. The algo-
rithm walks through the abstract syntactic tree and performs partial operations by calling
execute method of plugins with already loaded arguments. When the root node is reached
by resolution and its result is known, then the result can be returned by performCommands
method and formated by users’ requirements.

31

RPQR script

RPQR script is a command-line utility that allows users to use the RPQR project comfort-
ably. It is designed to take advantage of the whole project and its features while providing
the user with the ability to control for example when a cache file should be invalidated and
overwritten.

RPQR script implemenation

rpqrcfg = RPQRConfiguration(pluginDirectories, namexrepository, cfgParser
↪→)

loader = RPQRLoader(rpqrcfg)
graph = loader.createDatabase(cacheFile, args.clearcache)
we will not be performing empty query
if len(args.query) == 0:

sys.exit(0)
result = RPQRQuery.performQuery(args.query, graph, rpqrcfg)
if result is None:

sys.exit(1)
we will filter result attributes according to supplied parameters
if len(args.filterattributes) != 0 or len(args.filterrelations) != 0:

...
if len(args.filterattributes.split(";")[0]) != 0:

for node in result.nodes:
for key in list(result.nodes[node].keys()):

if not key in args.filterattributes.split(";"):
del result.nodes[node][key]

if len(args.filterrelations.split(";")[0]) != 0:
for node in result.nodes:

for u, v, edge_key in graph.out_edges([node], keys=True):
if not edge_key in args.filterrelations.split(";"):

graph.remove_edge(u, v, key=edge_key)
if result should not be visualized then just print it
in JSON format to stdout
if not args.visualize:

print(json.dumps(json_graph.node_link_data(
result), indent=4, sort_keys=True))

sys.exit(0)

labeling requires some more processing
...
pos = NetworkX.spring_layout(result)
NetworkX.draw_NetworkX(result, pos=pos, with_labels=True, labels=

↪→ labelDict)
edgeLabels = dict([((n1, n2), key) for n1, n2, key in result.edges])
NetworkX.draw_NetworkX_edge_labels(result, pos=pos, edge_labels=

↪→ edgeLabels)
plt.show()

32

Implementation of RPQR script uses RPQR API and allows users to specify whether the
result should be visualized or printed out through the standard output. Another very useful
feature is the filtering of attributes and relations that should be included in the output.
The script is using matplotlib Python library to render graphs of packages if required.

4.2 User manual

This section contains a manual of the RPQR tool and a detailed description of the way
how it is intended to be used. Another part provides information about the development
of plugins and scripts that are using RPQR API to retrieve and filter package metadata.

NAME

RPQR - RPM package query resolver

SYNOPSIS

RPQR [-h] [--cfgpath <CFGPATH>] [--filterattributes <FILTERATTRIBUTES>]
[--filterrelations <FILTERRELATIONS>] [--visualize] [--clearcache] <QUERY>

DESCRIPTION

RPQR utility is supposed to make querying RPM repositories about package metadata
easy by providing the user with the means to filter them by such metadata and individual
types of relations that occur between them. Utility is configurable through configuration
file which is located by default in /etc/rpqr.conf.

OPTIONS

• -h, --help
Show help message and exit

• --cfgpath <CFGPATH>
Path to configuration file

• --filterattributes <FILTERATTRIBUTES>
Specify list of attributes which interest you in the result. If left empty, then all

attributes will be present in result

• --filterrelations <FILTERRELATIONS>
Specify list of relations which interest you in the result. If left empty, then all

relations will be present in result

• --visualize
Visualize result

33

• --clearcache
Clear cache

CONFIGURATION FILE

The following configuration file should illustrate general principles of how the RPQR utility
behavior can be changed with it.

[RPQR]
pluginDirectories=["./rpqr/loader/plugins/implementations"]
cache=/var/tmp/rpqr.json

[RPQRRepo_f34-repo]
url=http://ftp.fi.muni.cz/pub/linux/fedora/linux/releases/34/Everything/

↪→ x86_64/os/

[RPQRMaintainerPlugin]
url=https://src.fedoraproject.org/extras/pagure_owner_alias.json

The first section named RPQR is the main configuration section that contains the most
important setting. pluginDirectories is an array of directories that contain Python modules
with RPQR plugins. cache is the path to the cache file, when this path is not supplied then
RPQR utility will not use cache.

The second section named RPQRRepo_f34-repo is meant to set up the repository that
which user wants to query. There can be one to n number of repositories and they all have
to be configured in their section with prefix RPQRRepo_ and member URL which specifies
the base URL of the repository.

The third section is required for RPQRMaintainerPlugin. Each plugin can have its section
of configuration and member disabled, which when set to 1 will prevent this plugin from
working. Plugin configuration is described by plugins individually and is mentioned here
only for the clarification of examples.

Example of use

RPQR ”ONWHATDEPENDS(’libyang-1.0.225-1.fc34.x86_64’, 1)“

--filterattributes ”name“ --filterrelations ”depends“ --visualize

RPQR language

RPQR language serves as a means to specify what packages the user wants to see in the
result. Take advantage of operators to create an appropriate combination of commands to
get the results that you want.

34

Operators

• & - package has to conform to both right and left statements

• | - package has to conform to either left or right statements

• ~ - package must not conform to statement located on the right

Parenthesis

RPQR also supports parenthesis to provide further means to set the priority of statements
that are specified. Use parenthesis to make your query more readable and to make sure
that the result is what you expect. statement1 & (statement2 | statement3) This statement
is not equal to the version without parenthesis specified like this statement1 & statement2
| statement3. The semantic of the first statement is: Find packages that conform to
statement1 and at the same time conform to either statement2 or statement3.
On the other hand, the second statement meaning is: Find packages that conform to
both statement1 and statement2 but if the package conforms to statement3
then it does not have to conform either to statement1 or statement2.

35

Official distributed plugins documentation

This section of the manual contains documentation about the behavior of plugins that are
officially distributed with the RPQR tool and supported by the maintainers.

RPQRNamePlugin

RPQRNamePlugin is one of the most important plugins for RPQR utility. It gathers the
complete name of the package, meaning its name, version, release, and architecture. It is
an attribute plugin and inserts attribute name into the package.

• Added attribute: ’name’

• Added commands: ’NAME’, ’NAMELIKE’, ’SUBSETNAMELIKE’

• Depends on plugins: None

Commands provided by RPQRNamePlugin

NAME

Required arguments: name (string literal)

NAME command filters out only package that has the same name attribute as was specified
with the name argument.

Example of use: NAME(’libyang-1.0.225-1.fc34.x86_64’)

NAMELIKE

Required arguments: name (string literal)

NAMELIKE command filters out packages that contain substring specified with the argu-
ment name.

Example of use: NAMELIKE(’libyang’)

36

SUBSETNAMELIKE

Required arguments: name (string literal), statement (RPQRLanguage statement)

SUBSETNAMELIKE command filters out packages returned by argument statement that
contain substring specified with the argument name.

Example of use: SUBSETNAMELIKE(’x86_64’, NAMELIKE(’libyang’))

Explanation of the example semantics: This query returns packages that contain libyang in
their name and at the same time x86_64 substring. The difference between this statement
and NAMELIKE(’x86_64’) & NAMELIKE(’libyang’) is that the first query will be faster
because it has to go through an only subset of packages.

RPQRDependencyPlugin

RPQRDependencyPlugin is a relation plugin that gathers information about package de-
pendencies and creates dependency relations between nodes that represent them in the
RPQR graph of packages.

• Added relation: ’depends’

• Added commands: ’ONWHATDEPENDS’, ’WHATDEPENDSON’

• Depends on plugins: RPQRNamePlugin

Commands provided by RPQRDependencyPlugin

ONWHATDEPENDS

Required arguments: name (string literal), depth (numeric literal)

ONWHATDEPENDS command filters out packages on which package, with name attribute
matching name argument, depends. depth argument is controlling the depth to which
RPQR should go when gathering dependencies from the graph. Depth zero means that
only the package specified by name will be present in the output, value one causes that
only direct dependencies will be present, and so on.

Example of use: ONWHATDEPENDS(’libyang-1.0.225-1.fc34.x86_64’, 1)

WHATDEPENDSON

Required arguments: name (string literal), depth (numeric literal)

WHATDEPENDSON command filters out packages that depend on the package, with
name attribute matching name argument. depth argument is controlling the depth to
which RPQR should go when gathering dependent packages from the graph. Depth zero
means that only the package specified by name will be present in the output, value one
causes that only directly dependent packages will be present, and so on.

Example of use: WHATDEPENDSON(’libyang-1.0.225-1.fc34.x86_64’, 1)

37

RPQRMaintainerPlugin

RPQRMaintainerPlugin is an attribute plugin that gathers information about maintainers
who work on packages. It inserts attribute maintainer into packages. Plugin, unfortunately,
depends on the format of the list of maintainers which has to be in JSON.

• Added attribute: ’maintainer’

• Added commands: ’MAINTAINER’, ’DEPENDSONUSER’

• Depends on plugins: RPQRDependencyPlugin

Commands provided by RPQRMaintainerPlugin

MAINTAINER

Required arguments: maintainers name (string literal)

MAINTAINER command filters out packages that have a maintainer specified with the
argument maintainers name in the list of their maintainers.

Example of use: MAINTAINER(’tkorbar’)

DEPENDSONUSER

Required arguments: maintainers name (string literal), depth (numeric literal)

DEPENDSONUSER command filters out packages that depend on the work of the main-
tainer specified with argument maintainers name. That means that depth zero will retrieve
packages that have specified maintainer in the list of its maintainers as MAINTAINER com-
mand would. Values higher than zero will retrieve packages that depend on those retrieved
with depth zero.

Example of use: DEPENDSONUSER(’tkorbar’, 1)

RPQRMaintainerPlugin configuration

RPQRMaintainerPlugin has one additional variable for configuration not included in the
default setting for all plugins. It is a variable URL that specifies the location of the main-
tainer list.

Example:
[RPQRMaintainerPlugin]
url=https://src.fedoraproject.org/extras/pagure_owner_alias.json

LICENSE

You may copy, distribute and modify the software as long as you track changes/dates in
source files. Any modifications to or software including (via compiler) GPL-licensed code
must also be made available under the GPL along with build & install instructions.

38

4.3 API documentation and example of scripting

RPQR project allows developers to create their plugins which can further extend its ability
to recognize attributes and relations between packages. This section will show already ex-
isting plugins on which it will describe plugin development and the importance of individual
parts.

RPQRMaintainerPlugin

class RPQRMaintainerPlugin(RPQRDataPlugin):
""" Plugin allowing us to store information about package maintainers

and ask Queries about them
"""

Plugin which wants to add a new attribute to packages needs to inherit from RPQRData-
Plugin class. Please pay attention to the file name of your Python module. The filename
has to be the same as the name of the class.

desiredName = "maintainer"

implementedCommands = [MaintainerFilter, DependsOnUserFilter]

desiredName is the name of the attribute that this plugin wants to add. implementedCom-
mands is a list of classes of commands that this plugin wants to add to the RPQR project.
Commands will be described later.

packageToMaintainer = None

def __init__(self, rootLogger: Logger = None, config: dict = None):
self.listUrl = None
if config == None and rootLogger != None:

lgr = rootLogger.getChild("RPQRDataPlugin")
lgr.warning("url for retrieval of maintainers was not supplied")
return

self.logger = rootLogger.getChild(
"RPQRDataPlugin") if rootLogger != None else None

self.listUrl = config.get("url")

packageToMaintainer is a helper class variable. A plugin can declare its variables as it sees
fit. The plugin needs to be ready for use-cases when it does not has access to logger or
configuration and has to act accordingly. Because RPQRMaintainerPlugin needs to know
the URL for retrieval of the maintainer list, it has to access configuration. All such use
cases have to be documented.

39

def _downloadJson(self):
if self.listUrl == None:

return {}
receivedResponse = requests.get(self.listUrl)

if receivedResponse.status_code != 200:
self.logger.error(

"RPQR was unable to retrieve maintainer list from supplied
↪→ url %s" % self.listUrl)

return receivedResponse.json().get("rpms", {})

This is a helper method for retrieval of the maintainer list. Plugins can access any source
of information that they want but this also has to be documented.

def prepareData(self, pkg: hawkey.Package) -> List[str]:
"""Get maintainers of package

:param pkg: hawkey package information
:type pkg: hawkey.Package
:return: list of maintainers
:rtype: List[str]
"""
download package maintainer list and build dictionary from it
if RPQRMaintainerPlugin.packageToMaintainer is None:

RPQRMaintainerPlugin.packageToMaintainer = {}
data = self._downloadJson()
data: dict
for name, value in data.items():

RPQRMaintainerPlugin.packageToMaintainer[name] = value
owner alias json uses source names as keys
return RPQRMaintainerPlugin.packageToMaintainer[pkg.name if pkg.

↪→ source_name == None else pkg.source_name]

prepareData is called for each package and has to return a value that should be saved to the
implemented attribute. If block is there because the first run of this method will retrieve
a list of maintainers and create a helper dictionary to accelerate loading. Please use such
approaches to keep the project fast. After such initialization, every package is just returned
a list of maintainers from packageToMaintainer dictionary. The ternary operator is there
because source packages have different naming conventions in DNF API than the binary
ones and RPQR has to be ready for both.

40

DependsOnUserFilter

class DependsOnUserFilter(RPQRFilteringCommand):
"""Command allowing filtering packages which depend on certain

↪→ maintainer.
That means the person is either maintaining them or package depends on
package which they maintain recursively.
"""
args = [str, int]
name = "DEPENDSONUSER"

def execute(graph: NetworkX.MultiDiGraph, args: list) -> List[int]:
""" Get list of ids of packages which depend on user specified in

↪→ args[0]
to max depth args[1]

:param graph: built graph of packages
:type graph: MultiDiGraph
:param args: arguments supplied to command
:type args: list
:return: node ids of packages which depend on specified maintainer
:rtype: List[int]
"""
targetUser = args[0]
depth = int(args[1])
nodes = [a for a in list(graph.nodes)

if targetUser in graph.nodes[a]["maintainer"]]

return RPQRFilteringCommand._BFS(graph, nodes, depth, "depends")

This is a more complex command out of RPQRMaintainerPlugins two commands so it is
more worthy of explanation. All commands have to inherit from RPQRFilteringCommand
class and declare args array and name class variable. args is an array that tells the RPQR
project what arguments this command needs. Allowed types are str, int and list. Str means
string literal, int means numeric literal and list is a result of substatement. A list is handled
as a list of integers. name is the name of the command used to invocate it.

All commands have to implement execute method. execute method receives a built graph
of packages and their arguments. As you can see, the first command gathers the ids of
nodes that have specified maintainers in their maintainer list. Ids are then passed to static
method _BFS which is a prepared implementation of Breadth-First Search. Breadth-First
Search then finds dependent nodes to the specified depth.

41

RPQRDependencyPlugin

class RPQRDependencyPlugin(RPQRRelationPlugin):
"""Plugin for gathering dependencies of packages and allowing filtering
by them
"""
desiredName = "depends"
implementedCommands = [OnWhatDependsFilter, WhatDepensOnFilter]

def __init__(self, rootLogger: Logger = None, config: dict = None) ->
↪→ None:
self.optionalDataStructure = None

def prepareData(self, pkg: hawkey.Package, graph: MultiDiGraph, query:
↪→ hawkey.Query) -> List[int]:
""" Get list of nodes to which we want to form this relation

:param pkg: hawkey package object. Holds information supplied by dnf
↪→ api

:type pkg: hawkey.Package
:param graph: graph of packages
:type graph: MultiDiGraph
:param query: hawkey query object. Allows further queries through

↪→ dnf api
:type query: hawkey.Query
:return: list of target nodes for this node
:rtype: List[int]
"""
we will use dictionary for optimalization of this process
if self.optionalDataStructure == None:

self.optionalDataStructure = {}
for (node, attribs) in graph.nodes.items():

self.optionalDataStructure[attribs["name"]] = node

edges = list()
requiredPackages = query.filter(provides=pkg.requires).run()
for dependency in requiredPackages:

target = self.optionalDataStructure[str(dependency)]
edges.append(target)

return edges

Relation plugins are very similar to those adding attributes with a few differences. Relation
plugins can access a graph of packages that they can access and Hawkey query from DNF
API. Relation plugins are returning a list of target nodes of oriented edges that they are
creating.

42

4.4 Use of RPQR API to perform queries

Working of RPQR API will be described on the RPQROrphaned script which was used for
testing of RPQR project.

if __name__ == "__main__":
set up configuration
config = RPQRConfiguration([os.path.dirname(rpqr.loader.plugins.

↪→ implementations.__file__)],
[("fedora-repo", "http://ftp.fi.muni.cz/pub/

↪→ linux/fedora/linux/releases/33/
↪→ Everything/x86_64/os/"),

("source-repo", "http://ftp.fi.muni.cz/pub/
↪→ linux/fedora/linux/releases/33/
↪→ Everything/source/tree/")],

{"RPQRMaintainerPlugin":{"url": "https://src.
↪→ fedoraproject.org/extras/
↪→ pagure_owner_alias.json"}})

query = RPQRQuery(config)
result = query.performQuery("MAINTAINER(’orphan’)")
for node in list(result.nodes):

now we will recursively gather packages which depend on every
↪→ orphaned package

dependentPackages = query.performQuery(
"WHATDEPENDSON(’%s’, 20)" % result.nodes[node]["name"])

get maintainers affected by this change
maintainerList = []
for pkgId in list(dependentPackages.nodes):

for maintainer in dependentPackages.nodes[pkgId]["maintainer"]:
if maintainer not in maintainerList:

maintainerList.append(maintainer)
maintainerList = list(dict.fromkeys(maintainerList))
orphan is just a placeholder so remove it
maintainerList.remove(’orphan’)
print("%s => " % dependentPackages.nodes[node]["name"], end="")
for maintainer in maintainerList:

print("%s " % maintainer, end="")
print()

Every use of the API needs to start with creating an instance of RPQRConfiguration class.
After that, the only other required thing is an instance of RPQRQuery class and then
it is possible to create perform queries. Results are returned as a NetworkX graph and
have to be worked with as. This script walks through orphaned packages and finds other
maintainers affected by their orphaning.

43

4.5 Testing

To ensure that the RPQR project is maintainable, testing is needed. Since the RPQR
codebase is written in a way that allows dividing the project into individually functional
blocks, it is possible to test each part of it separately. The structure of the tests copies
the structure of the source code. All tests use unittest[13] Python module which provides
functions necessary for testing and supports automatic discovery which can be executed
with the command: python3 -m unittest discover -p ”Test*“ -s ./test/.

For each significant class in the RPQR project, there is a test case that contains several
tests for individual features. Since test cases are similar, the principle of this technique will
be illustrated in one of those cases which is the most complicated one.

Test case description

The following test case is meant to verify that the RPQRParser can parse tokens prepared
by the RPQRScanner and create an abstract syntactic tree out of them. This should be
isolated from the implementation of any plugins, and thus mock plugins were created1.
Mock plugins are loaded into the configuration and provide simple commands.

The first test is a test of parsing a simple call of a command. The abstract syntactic tree
produced by the parser has to be identical to the one manually constructed according to
the way how the algorithm should work. The second test is performing a similar task but
tokens are prepared as if a statement with & operator was supplied in the query.

The third test is a result of the development cycle after the first release of the RPQR
project. An issue with the parsing of statements supplied as arguments was discovered and
fixed. To prevent any future regression, the problem was fixed with a commit containing
documentation about it and this test can verify that this problem will not be re-introduced
in any of the future releases. This approach is very useful and should be enforced on any
future contributions or new features since it allows the project to be tested for real problems
and extends test coverage.

The complete test suite is available on the attached medium in the folder test.

1Mock means that a component just acts like its true implementation but contains only parts that are
relevant for testing

44

class TestRPQRParser(unittest.TestCase):
def testParserOne(self):

config = RPQRConfiguration(
["./test/query/language/parser/mock_plugins"], [])

parser = RPQRParser(config)
mylist = [...]

structure = parser.parseTokens(mylist)
mystruct = RPQRStackSymbol(

16, [RPQRToken(13, "DUMMY"), RPQRToken(6, "argument")])
self.assertEqual(structure, mystruct)

def testParserTwo(self):
config = RPQRConfiguration(

["./test/query/language/parser/mock_plugins"], [])
parser = RPQRParser(config)
mylist = [...]

structure = parser.parseTokens(mylist)
mystruct = RPQRStackSymbol(16, [RPQRStackSymbol(16, [RPQRToken(13, "

↪→ DUMMY"), RPQRToken(
6, "argument")]), RPQRStackSymbol(16, [RPQRToken(13, "DUMMY"),

↪→ RPQRToken(6, "argument2")])], "&")
self.assertEqual(structure, mystruct)

def testSubstatementParsing(self):
config = RPQRConfiguration(

["./test/query/language/parser/mock_plugins"], [])
parser = RPQRParser(config)

mylist = [...]

structure = parser.parseTokens(mylist)
mystruct = RPQRStackSymbol(16, [RPQRToken(15, "SUB"),

↪→ RPQRStackSymbol(16, [RPQRStackSymbol(16, [RPQRToken(13, "
↪→ DUMMY"), RPQRToken(
6, "argument")]), RPQRStackSymbol(16, [RPQRToken(13, "DUMMY"),

↪→ RPQRToken(6, "argument2")])], "&")])
self.assertEqual(structure, mystruct)

45

4.6 Distribution

The RPQR project is distributed through a Python package which can be installed with
the pip[8] tool. At the moment of release 1.0.1, it is possible to install it from the source
directory with the pip tool or use the RPM package. RPM package is provided by a public
repository hosted on Fedora copr2 website. The package is built according to the spec file
located in the source root directory. It uses prepared packaging macros and with them can
install the project with the pip tool so installation is even more centralized and simplified.
Every build also discovers and executes the tests.

%prep
%setup -q -n RPQR

%generate_buildrequires

%build
%pyproject_wheel

%install
sed -i "s;\\./rpqr/loader/plugins/implementations;%{python3_sitelib}/rpqr/

↪→ loader/plugins/implementations;g" example.conf
mkdir -m 0755 -p %{buildroot}/%{_sysconfdir}
install -m 0644 -vp example.conf %{buildroot}/%{_sysconfdir}/rpqr.conf
mkdir -m 0755 -p %{buildroot}/%{_mandir}/man1/
install -m 0644 -vp RPQR.1 %{buildroot}/%{_mandir}/man1/
%pyproject_install

%check
python3 -m unittest discover -p "Test*" -s ./test/

The setup.py script which uses Python setup tools is very simple but it fulfills its purpose
and handles installation of project modules to their appropriate directories.

setup(name=’rpqr’,
version=’1.0.1’,
description=’RPM package query resolver’,
author=’Tomas Korbar’,
author_email=’tkorbar@redhat.com’,
packages=find_packages(exclude=["test.*", "test"]),
scripts=["bin/RPQROrphaned", "bin/RPQR"]
)

2https://copr.fedorainfracloud.org/coprs/tkorbar/RPQR/

46

4.7 Evaluation

RPQR projects’ usefulness was evaluated with the RPQROrphaned script mentioned earlier
in the API documentation. The previous solution needed tens of minutes to create a list
of orphaned packages and maintainers that are affected, RPQROrphaned script needs one
minute on a system with a casual processor.

There are results measured with the Linux time command when RPQROrphaned is com-
pared with find_unblocked_orphans.py[6] script developed for the same purpose by Miroslav
Hroncok with previously accessible technologies.

find_unblocked_orphans.py

real 12m32.938s
user 2m37.206s
sys 0m2.847s

RPQROrphaned

real 0m30.988s
user 0m25.159s
sys 0m0.910s

47

Chapter 5

Conclusion

The RPQR project proved that the problem with query resolution about various metadata
of packages can be solved properly. The script that now performs tasks that were present
in the past is faster than the previous solutions and the project is ready to adapt to various
new tasks that can occur in the future.

All initial goals of this thesis were fulfilled and the project is ready for further development
because of well-documented code and set of tests that can always verify whether new changes
did not create a regression.

48

Bibliography

[1] Configparser — Configuration file parser — Python 3.10.4 documentation [online].
2022 [cit. 2022-04-16]. Available at:
https://docs.python.org/3/library/configparser.html.

[2] DNF, the next-generation replacement for YUM [online]. 2022 [cit. 2022-01-25].
Available at: https://dnf.readthedocs.io/en/latest/.

[3] GraphQL [online]. 2021 [cit. 2022-01-26]. Available at:
https://spec.graphql.org/October2021/.

[4] Bray, T. RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange
Format [online]. 2017 [cit. 2022-01-26]. Available at:
https://datatracker.ietf.org/doc/html/rfc8259.

[5] NetworkX — NetworkX documentation [online]. 2022 [cit. 2022-04-16]. Available at:
https://networkx.org/.

[6] Tree - releng - Pagure.io [online]. 2022 [cit. 2022-04-16]. Available at:
https://pagure.io/releng/blob/main/f/scripts/find_unblocked_orphans.py.

[7] Pickle - Python object serialization [online]. 2022 [cit. 2022-01-26]. Available at:
https://docs.python.org/3/library/pickle.html.

[8] Pip · PyPI [online]. 2022 [cit. 2022-04-16]. Available at:
https://pypi.org/project/pip/.

[9] Bailey, E. C., Nasrat, P., Saou, M. and Skyttä, V. Maximum RPM: Taking the
RPM Package Manager to the Limit [online]. 2000 [cit. 2022-01-25]. Available at:
http://ftp.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html.

[10] Rpm.org - RPM Reference Manual [online]. 2021 [cit. 2022-01-25]. Available at:
https://rpm-software-management.github.io/rpm/manual/.

[11] Createrepo [online]. 2013 [cit. 2022-01-25]. Available at:
http://createrepo.baseurl.org/wiki.html.

[12] Query Language Understood by SQLite [online]. 2022 [cit. 2022-01-26]. Available at:
https://www.sqlite.org/lang.html.

[13] Unittest — Unit testing framework — Python 3.10.4 documentation [online]. 2022
[cit. 2022-04-16]. Available at: https://docs.python.org/3/library/unittest.html.

49

https://docs.python.org/3/library/configparser.html
https://dnf.readthedocs.io/en/latest/
https://spec.graphql.org/October2021/
https://datatracker.ietf.org/doc/html/rfc8259
https://networkx.org/
https://pagure.io/releng/blob/main/f/scripts/find_unblocked_orphans.py
https://docs.python.org/3/library/pickle.html
https://pypi.org/project/pip/
http://ftp.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html
https://rpm-software-management.github.io/rpm/manual/
http://createrepo.baseurl.org/wiki.html
https://www.sqlite.org/lang.html
https://docs.python.org/3/library/unittest.html

[14] Bray, T., Paoli, J., , Sperberg McQueen, C. M., Maler, E. et al. Extensible
Markup Language (XML) 1.0 (Fifth Edition) [online]. 2008 [cit. 2022-01-25]. Available
at: https://www.w3.org/TR/xml/.

[15] Ben Kiki, O., Evans, C. and Net, I. döt. YAML Ain’t Markup Language
(YAML™) revision 1.2.2 [online]. 2009 [cit. 2022-01-26]. Available at:
https://yaml.org/spec/1.2.2/.

[16] Yum [online]. 2018 [cit. 2022-02-09]. Available at: http://yum.baseurl.org/.

50

https://www.w3.org/TR/xml/
https://yaml.org/spec/1.2.2/
http://yum.baseurl.org/

Appendix A

Acronyms

Since there are many used acronyms in this thesis, it is appropriate to list them and explain
them for better understanding.

• API - Application Programming Interface - interface for use of different project

• DNF - Dandified YUM - Successor of the YUM package manager

• RPM - Red Hat Package Manager - Low-level RPM package manager

• RPQR - RPM Package Query Resolver - Project created during this thesis

• YUM - The Yellowdog Updater, Modified - High-level RPM package manager

• GPL - General Public License - Open source license

51

Appendix B

Installation

There is a description of how to install the RPQR project either from a source or an RPM
package.
Installation from the source can be performed with pip install . command executed from
the the root of the project source.
Installation of the RPRQ projects’ RPM package has to be done with help of the Fedora
Copr repository. Before you can use the RPQR project, you need to install the python3-dnf
package from your systems’ official repositories. This is necessary, because DNF API is not
distributed through Python package index.
#dnf copr enable tkorbar/RPQR; dnf install -y python3-RPQR
If you do not wish to receive updates or install RPQR in the future then you need to remove
the repository configuration from your system.
#dnf copr disable tkorbar/RPQR

52

