
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

OPTIMISATION OF TESTING ENVIRONMENT ALLO­
CATION IN TESTING FARM SERVICE
OPTIMALIZACE ALOKACE TESTOVACÍHO PROSTŘEDÍ V SLUŽBĚ TESTING FARM

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR DANIEL SIMKO
AUTOR PRÁCE

SUPERVISOR RNDr. MAREK RYCHLÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

Bachelor's Thesis Assignment
148208

Institut: Department of Information Systems (UIFS)
Simko Daniel
Information Technology
Information Technology

Student:
Programme:
Specialization:

Title: Opt imisat ion of Testing Environment Al locat ion in Testing Farm Service
Software Engineering Category:

Academic year: 2022/23

Assignment:

1. Familiarize yourself with the Testing Farm project and testing system, its parts and interfaces.
Focus in particular on the Artemis service, which is able to find or create and provide a virtual or
physical machine suitable for running tests based on the specified parameters. Familiarize
yourself with the issue of reserving or allocating a physical or virtual machine and its use and life
cycle.

2. Design a method and system to speed up the allocation of the machines for the Testing Farm by
preparing them in advance or by using a cache. Also design a way to monitor, manage, configure
and document such system and the machines.

3. After consultation with the supervisor, implement an extension of the Artemis service using pre-
allocation of machines according to the design from the previous point. Integrate the result with
other services of the Testing Farm project.

4. Test the solution, evaluate and discuss the results. Publish the resulting software as open-source.

Literature:
• Testing Farm Documentation. Red Hat. 2022 [cit. 2022-09-23]. Available at https://docs.testing-

farm.io/
• Prchlík, M.: Artemis. Red Hat. 2022 [cit. 2022-09-23]. Available at https://artemis6.docs.apiary.io/
• Gregg, B.: Systems performance: enterprise and the cloud. Second edition. Boston: Addison-

Wesley, 2021. ISBN 978-0-13-682015-4
• De, P., Gupta, M., Soni, M., Thatte, A.: Caching VM Instances for Fast VM Provisioning: A

Comparative Evaluation. In: Kaklamanis, C , Papatheodorou, T., Spirakis, P.G. (eds) Euro-Par
2012 Parallel Processing. Euro-Par 2012. Lecture Notes in Computer Science, vol 7484. Springer,
Berlin, Heidelberg, 2021. ISBN 978-3-642-32820-6. https://doi.org/10.1007/978-3-642-32820-6_33

Requirements for the semestral defence:
Item 1 and 2 finished; item 3 in progress.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Rychlý Marek, RNDr., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: 1.11.2022
Submission deadline: 10.5.2023
Approval date: 24.10.2022

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://docs.testing-
https://artemis6.docs.apiary.io/
https://doi.org/10.1007/978-3-642-32820-6_33
https://www.fit.vut.cz/study/theses/

Abstract
The aim of this thesis is to implement shelving, and pre-provisioning of guest virtual ma­
chines as optimizations in the V M provisioning component of a test pipeline. This work
describes the process of provisioning of virtual machines in the context of the Artemis ser­
vice, and the Testing Farm service environment, and modifications made to the provisioning
pipeline in order to decrease the time between making a new provisioning request and re­
ceiving a fully-provisioned mechine.

Abstrakt
Cieľom tejto práce je implementácia 'poličky' a poprednej prípravy virtuálnych strojov ako
optimalizácií v procese zaisťovania virtuálnych strojov pri testovaní softvéru. Táto práca
popisuje proces získavania virtuálnych strojov službou Artemis v prostredí služby Testing
Farm a zmeny vykonané v mechanizmoch zabezpečujúcich získavanie virtuálnych strojov
tak, aby bol znížený čas medzi vytvorením požiadavku a poskytnutím plne funkčného stroja.

Keywords
Virtual machine, Provisioning, Cache, Pre-provisioning, Continuous Integration, Artemis,
Python

Klíčová slova
Virtuálny stroj, Zaisťovanie virtuálnych strojov, Cache, Popredná príprava virtuálnych stro­
jov, Priebežná integrácia, Artemis, Python

Reference
SIMKO, Daniel. Optimisation of Testing Environment Allocation in Testing Farm Ser­
vice. Brno, 2023. Bachelor's thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor RNDr. Marek Rychlý, Ph.D.

Optimisation of Testing Environment Allocation in
Testing Farm Service

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of RNDr. Marek Rychlý, Ph.D. The supplementary information was
provided by Miloš Prchlík. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

Daniel Simko
May 10, 2023

Acknowledgements
I want to express my gratitude towards the few people who made this thesis possible and
helped me throughout the process. First, I would like to thank my consultant Miloš Prchlík
for guiding me throughout this process and providing me invaluable insight into the tech­
nologies involved. Also, I would like to extend my utmost gratitute towards my supervisor
RNDr. Marek Rychlý, Ph.D for providing feedback and guidance in regards to the formal
aspects of the thesis.

Contents

1 Introduction 3

2 Related Work and Technologies 4
2.1 Caching 4
2.2 Virtual Machine Provisioning Optimization 4
2.3 Resource Pooling 5
2.4 Message-Oriented Middleware 5

3 Artemis Machine Provisioning Service 7
3.1 Testing Farm 7
3.2 Artemis Architecture 8
3.3 Guest Request 10
3.4 Tasks 12
3.5 Components 13
3.6 Metrics 14

4 Design 15
4.1 Requirements 15
4.2 Shelving 17
4.3 Pre-provisioning 20

5 Implementation 23
5.1 Artemis Project Structure 23
5.2 Working with the Database 23
5.3 Task structure 26
5.4 Run-time Variables 28
5.5 Error Handling 29
5.6 Shelving 29
5.7 Pre-provisioning 36

5.8 Testing and Evaluation 38

6 Conclusion 40

Bibliography 41

A State-Task Diagram 43

B Development Environment 44
B . l Environment Preparation and Server Configuration 44

1

B.2 Starting the Server
B.3 Configuring CLI

Contents of the Attached Media

Chapter 1

Introduction

In today's landscape of fast evolving technologies, the need for flexible and reliable resources
has lead to the emergence of virtualisation technologies, such as virtual machines. One of
the largest bottlenecks and a critical aspect of providing such services is the provisioning of
said technologies.

The virtual machine provisioning is a key aspect of infrastructure as a cloud services.
Therefore, there has been an enormous interest in increasing the ease of use and the quality
of the provided services by optimising the time spent by preparing new machines. Chap­
ter 2 provides an overview of some of the techniques used to decrease the time between a
requires for a machine allocation is made until the machine becomes ready for use, as well
as technologies related to the work done in this thesis.

This assignment was created in a collaboration with the Red Hat Czech s.r.o. company as
they bear an interest in optimising virtual machine allocation within their testing pipelines.
The relation, and the source of the interest, is explained in Chapter 3, describing the use of
virtual machines for tests execution in the environment of the Testing Farm, and provides
an overview for the architecture and composition of the Artemis provisioning service this
thesis focuses on.

Chapter 4 delves into an in-depth analysis of the current use cases of the provisioner,
discusses presented approaches and devises a design of a mechanism intended to increase
the perceived responsiveness and efficiency of the service. Chapter 5 then describes the
implementation specifics of the modifications to the provisioning mechanism as devised in
the prior chapter.

3

Chapter 2

Related Work and Technologies

In recent years, virtual machine (VM) provisioning optimization has become a significant
research focus due to its impact on the efficiency of cloud computing platforms. Various
ways to approach this problem, as well as related avenues, have been explored. This chapter
aims to review the related work focusing on various approaches and techniques employed to
address the challenges associated with resource management in cloud computing platforms.

2.1 Caching

As described by Brendan Gregg [11], a cache refers to a component that stores the duplicate
of or buffers a limited amount of data, such that they can be quickly retrieved, improving
the performance of the system. Important metrics for evaluation of the cache efficiency are
cache hits and misses, which refer to the number of times the required resources could be
found, or could not be found in the cache, respectively, and notably the hit ratio defined as
the ratio of cache hits and all attempted accesses to the cache.

Caching is also extensively explored and used outside the hardware realm, notably in
the context of web resources caching and content delivery networks. The goal there is to
minimize the delay and costs incurred by transferring data over long distances by being able
to cache requests at a closer location. A significant challenge in the anticipation of future
requests arises from the relative difficulty of prediction of future request [8].

Similar concerns are also applicable to caching in the cloud context, where likewise the
topic has been extensively studied. Multiple solutions have been proposed and are being
utilized as explored in the following section (2.2).

2.2 Virtual Machine Provisioning Optimization

Virtual Machine provisioning is a critical aspect of cloud computing, responsible for allocat­
ing resources to V M s and deploying them on physical hosts. Optimizing V M provisioning
is essential for maximizing resource usage, minimizing costs, and reducing management
overhead, which are all important factors impacting the providers and consumers of infras­
tructures services alike. Over time, many approaches tackling the issues associated with
different parts of the provisioning of a scalable infrastructure have been described.

One of the first steps when provisioning a new V M is to look up in the image repository
and copy the image template file to a compute host. These image files can be very large
in size, often in the GigaByte range, and transferring such large files over the network is

4

time consuming [9]. As Emeneker et al. [10] demonstrated, this problem can be alleviated
by caching virtual images on the compute nodes themselves. Another approach, instead of
focusing on efficient delivery of the images themselves to the nodes, is to efficiently deploy
instances accounting for where the images are already present [12].

In addition to the overhead incurred by transferring large images, the boot process can
be slow depending on the number of pre-installed components in the image. Zhu et al. [16]
developed an approach, which allows to bypass the often lengthy application initialization
time by leveraging the 'suspend' operation of a V M and creating a snapshot of an initialized
system. Naive approach, as noted in the paper, consisting of loading the created memory
snapshot is feasible only for systems with smaller memory, thus they developed a technique
consisting of selectively loading only those memory pages that are likely to be accessed in
the near future and continue loading remaining pages in parallel with the V M execution.

An approach looking into a possible solution for both of the aforementioned issues is
explored by Pradipta el al. at I B M research [9]. Their proposed solution consists of predict­
ing the expected usage of different machine instance types and used image templates, and
instantiating these V M s , which would be stored in a standby mode in a cache. In essence,
they create an inventory of readily deliverable V M s , which can be used to quickly serve user
requests.

2.3 Resource Pooling

Pooling refers to the concept of grouping together of various resources or assets [4] in order
to extract greater profit from the resources.

Resource pooling can be seen used also in the context of computing 1. The term can be
used to refer to the grouping of anything from database connections, through raw hardware
resources, such as R A M or CPUs, to whole virtual machines, which will be the context
commonly used throughout this work.

2.4 Message-Oriented Middleware

Edward Curry defined [7] message-oriented middleware (MOM) as referring to an infrastruc­
ture that facilitates asynchronous communication between distributed systems through the
exchange of messages. This interaction model addresses many limitations found in remote
procedure call (RPC) mechanisms which rely on synchronous communication and can lead
to performance bottlenecks.

In a MOM-based system, clients are not required to block and wait until an operation is
completed, instead, they can continue processing once a message has been sent. This allows
the delivery of messages when the sender or receiver is not active or available to respond at
the time of execution.

M O M systems typically employ one of, or the combination of, two primary messaging
models: point-to-point and publish/subscribe. Both of these models rely on message ex­
change through a queue, which is typically the First-In First-Out (FIFO) queue. As the
name suggests, in this type of queue, the messages are retrieved in the same order they were
sent.

The point-to-point model allows for a direct asynchronous exchange of messages be­
tween software entities. Although usually used with only a single receiver, there is no strict

1 V M w a r e vSphere : h t t p s : / / d z o n e . c o m / a r t i c l e s / r e s o u r c e - p o o l i n g

5

https://dzone.com/articles/resource-pooling

restriction on the number of receivers. Rather, even with multiple connected receivers, the
message is delivered only once — only to a single receiver. This model is particularly useful
as it can be employed to introduce smooth, efficient load balancing into a system.

In contrast, the publish/subscribe model facilitates a one-to-many or many-to-many
message distribution. A single (or multiple) clients can publish (send) messages, which are
received by all clients subscribed to a queue — referred to as a topic.

A component of M O M solution is a message broker. Its role, as described by Martin
Kleppmann [13], is to facilitate the routing, storage, validation and the delivery of messages
to the proper destinations. Typically, they do not enforce any particular data model as a
message is just a sequence of bytes with metadata.

G

Chapter 3

Artemis Machine Provisioning
Service

This chapter describes the role of the Artemis machine provisioning service in the context
of the Testing Farm, its capabilities, architecture, and the provisioning pipeline.

3.1 Testing Farm

Testing Farm [6] provides Testing System as a Service to numerous Red Hat internal, as
well as external open-source projects related to Red Hat products. It enables users to
submit tests to be run to a R E S T A P I , which easily integrable into other services. The test
definitions are abstracted away using an open-source test metadata format, which aims to
unify the way engineers, contributors, and communities are able to discover, debug, and run
tests. As such it is often used as a test execution backend of other CI systems, and services.

The service is capable of executing tests defined in multiple formats. These include the
Standard Test Interface (STI) 1 and a more modern Flexible Metadata Format (F M F) 2 . The
tests themselves can be executed on both virtualised and bare-metal hardware environments.
This allows developers to run tests on different hardware configurations as needed, without
worrying about the underlying infrastructure. The test infrastructure abstraction ensures
that the tests can request specific hardware requirements without being concerned about
which infrastructure to use.

The testing pipeline of the service follows a well-defined sequence of steps. After a user
submits a request to the service's A P I , a plan is generated. According to the plan(s) a
number of tests in multiple environments can be executed in parallel.

Each pipeline then starts with provisioning a machine, which will be used to run the
required tests. The provisioner module communicates with Artemis, a machine provisioning
service. After obtaining a machine, the test environment in prepared by installing the
required artifacts as required by the test specification. Afterwards, the specified tests are
executed and their results along with generated artifacts are collected and stored in artifact
storage. This result is then reported to the user. This pipeline is shown in the Figure 3.1.

Testing farm utilizes the T M T project3, a tool to manage and execute tests, to handle
certain steps of the pipeline. At the moment these are only the test planning stage and

1 S t a n d a r d Test Interface: h t t p s : / / d o c s . f e d o r a p r o j e c t . o r g / e n - U S / c i / s t a n d a r d - t e s t - i n t e r f a c e /
2 F l e x i b l e M e t a d a t a F o r m a t : h t t p s : / / f m f . r e a d t h e d o c s . i o / e n / s t a b l e / o v e r v i e w . h t m l
3 T M T : h t t p s : / / t m t . r e a d t h e d o c s . i o /

7

https://docs.fedoraproject.org/en-US/ci/standard-test-interface/
https://fmf.readthedocs.io/en/stable/overview.html
https://tmt.readthedocs.io/

r >
A r t e m i s

Test request

i

Test request
A P I

f >
Test p l a n P r o v i s i o n e r A P I

f >
Test p l a n P r o v i s i o n e r

Tes t env i ronmen t p r e p a r a t i o n Test execu t ion
f \

- • Resu l t s co l l ec t i on
Test resul ts

^

Figure 3.1: Testing Farm test pipeline

test execution, however, the plan is for T M T to handle the entire pipeline in the future.
Notably, T M T can also utilize the Artemis provisioning service.

3.2 Artemis Architecture

Artemis is a machine provisioning service designed to streamline the process of allocating
virtual machines for testing purposes in a pipeline implemented using the Python program­
ming language1. The primary goal of Artemis is to provide a unified interface for interacting
with different cloud providers, such as OpenStack or AWS, while offering fine-grained op­
tions for machine selection and configuration. This enables extensive testing on a diverse
range of machine types and architectures without the need for specialized code in continuous
integration (CI) or test pipelines.

Key features of Artemis include:

• Abstraction layer: Artemis abstracts the complexities of working with various cloud
providers by offering a unified interface for machine provisioning. This allows users to
interact with different providers seamlessly without having to worry about the specific
implementation details testing-farm.gitlab.io.

• Hardware constraint specification: Users can define hardware constraints, such as a
minimum amount of R A M or a specific number of C P U cores, to ensure that the
provisioned machines meet their testing requirements testing-farm.gitlab.io.

• Wide range of machine types and architectures: With its fine-grained options for
machine selection, Artemis enables testing on various machine types and architectures,
increasing the flexibility and robustness of the testing process.

• Failure detection and fail-over mechanisms: Artemis is designed to increase the avail­
ability of machine provisioning services by implementing failure detection and fail-over
mechanisms. This ensures that the service continues to function even in the presence
of failures, providing a more reliable and resilient solution for users.

Artemis uses the concept of drivers and pools of resources. A specific driver refers
to a component adapting the A P I of a specific cloud provider, and implementing methods

P y t h o n : h t t p s : / / w w w . p y t h o n . o r g /

8

http://www.python.org/

required internally by Artemis to be able to communicate with the specific provider. A
pool refers to a specific group of resources accessible by a specific user or billing account on
the platform. A pool utilizes a driver to communicate with the platform, and each driver
can be used by multiple pools with a different configuration and/or account.

3.2.1 Microservice Architecture

Microservice Architecture (MSA) is a software development pattern that structures appli­
cations as a collection of small, autonomous services, each implementing a single business
capability within a bounded context. Microservices are independently deployable services
modeled around a business domain, commonly communicating through well-defined inter­
faces and lightweight networks and offer various options for solving problems. They are
a type of service-oriented architecture (SOA) with an emphasis on service boundaries and
independent deployability. These services are technology agnostic and expose their business
capabilities through network endpoints, making them a form of distributed system.

The microservices architecture offers several advantages, such as scalability and reliabil­
ity. Services can be scaled independently, allowing for more efficient resource utilization and
addressing bottlenecks in specific subsystems without affecting the entire application. Ad­
ditionally, this architectural pattern helps enhance reliability by promoting fault isolation,
ensuring that a failure in one service has minimal impact on the overall system performance.
In a microservices architecture, each service is designed to be independent and responsible
for a specific business function, enabling the system to recover from failures and maintain
stable performance. [14]

Artemis builds on top of this pattern with the server part consisting of 4 inter-operating
components:

• API component provides H T T P R E S T A P I , used to request, query the status of, and
delete objects, such as guests (virtual machines), snapshots, metrics;

• Dispatcher is a component that periodically queries for new tasks submitted in the
database, and upon reading them, dispatches these tasks to a broker to be processed
by workers;

• Scheduler handles dispatch of periodically-running tasks, such as refreshing pool
metrics or checking the worker availability and stability;

• Worker receives tasks from the broker, and executes the operations, such as guest
provisioning, release, snapshot operations, etc.

A more detailed description of these components is provided in 3.5

9

Front dl

CLI

Artemisl

A P I

Dispatcher

Scheduler

Worker

Back-end

DB

Broker

Cache

Figure 3.2: Diagram of Artemis architecture

3.2.2 Data Mode l

The data storage solution consists of a relational database — a type of database that, as
described by Sai Sumathi [15], uses a collection of tables to represent both data and the
relationships among those data allowing the identification and access to related data. The
database stores the current state of the service.

3.3 Guest Request

A guest request represents a request made by a client to provision a guest machine, as well
as the corresponding state of the machine.

The table guest_requests contains data identifying the specific guest request
(guestname), requested environment (machine's features, configuration serialized in _environment
field), the user owning the guest (ownername), selected pool (poolname), SSH connection
information (ssh_keyname, ssh_port, ssh_username), and if successfully provisioned, the
machine's IP address (address).

3.3.1 Guest Request Life-Cycle

The provisioning process is implemented as a series of discrete non-blocking tasks. Each
task handles a step of the provisioning, updates the guest state and dispatches the next task
in the series.

This process is highly configurable in order to facilitate flexible testing in numerous
environments.

10

Routing

Upon creation, the guest request enters a state called routing, and the
route_guest_request task is added to the queue. Routing is the first step of the process
of acquiring a guest machine. This is the most customizable and scriptable part of the
process, where, according to defined rules, pools, which satisfy the request, are selected.
Furthermore, at this stage preference rules are evaluated, selecting the 'most suitable pool'
to be used in the provisioning process. If the routing fails, the guest request enters the
error state, and provisioning concludes at this point.

Acquiring guest

After routing, the guest is switched to provisioning state, and handed over to the
acquire_guest_request task calling the driver of the chosen pool to attempt to obtain a
machine as selected in the routing step. If the driver returns a machine instantaneously,
the process proceeds onto the preparation stage. In practice, however, this process is not
nearly instantaneous, and takes a significant portion of time to accommodate this wait until
the guest becomes ready, the guest request is switched to the promised state (as it was
promised by the driver to be ready eventually), and a task to update the state is scheduled.
In case of a failure, the guest request falls back to the routing stage and is retried.

The update_guest_request task queries the driver on the current state of the guest.
If the guest was successfully acquired, the preparation task is queued, otherwise this task
is re-scheduled, and re-checks the state again later. In case of a failure, similarly to the
acquire_guest_request task, the progress is discarded, and provisioning is restarted from
the routing stage.

Preparation

During the preparation stage, by default the prepare_verif y_ssh task verifies the availabil­
ity, and proper configuration of SSH connection to the guest. This task can by configured
to be skipped.

If a post-installation script is set, and the driver does not support running post-installation
script natively, the p r e p a r e _ p o s t _ i n s t a l l _ s c r i p t task is queued, which connects to the
guest over SSH, and executes the script.

The last task in this stage is guest_request_prepare_f inalize_post_connect, which
marks the guest as ready, updates provisioning metrics, and schedules a
guest_request_watchdog task, the purpose of which, unlike its name might suggest, is not
to verify the availability, and proper operation of the guest, but rather it serves a specific
function, where certain providers (drivers) require the guest reservation to be periodically
extended to prevent premature termination.

11

route-guest-request

I
acquire-guest-request

update-guest lest-request 1

1 ^
I r

prepare- verify-ssh

guest-request-prepare-finalize-pre-connect

prepare-post-install-script

c I
guest-request-prepare-finalize-post-connect

guest-request est-watchdog 1

Figure 3.3: Chain of provisioning tasks

Guest Release

Compared to the guest provisioning, the guest release is a notably simpler process. Upon
the receipt of the guest delete command, the guest's state is set to condemned, and a
release_guest_request task is queued.

During the execution of the task, the driver is instructed to release the guest and deletes
the guest request entry in the database.

3.4 Tasks

Tasks define units of operations carried by the Artemis workers. A message broker is used
to relay and queue the messages identifying tasks which are needed to be performed and
dispatch them to a suitable worker.

Upon receipt of the message, the worker performs the operation defined by the task and
logs the result. Optionally, it can dispatch a new task to the broker and then awaits further
tasks from the broker.

Due to the synchronization requirements, some tasks cannot be dispatched immediately
but only after a successful commit to the database because the next task might require the
guest to already be in a certain state. In such task request can be created as a
part of the database transaction modifying the guest's state. The task request identifies the

12

task that would need to be dispatched to the broker, as well as any accompanying arguments
passed along to this task.

New task requests are periodically queried from the database by the dispatcher, which
submits these tasks to the broker and removes the entries from the database.

3.5 Components

As mentioned in the architectural overview (3.2), Artemis server consists of multiple inter-
operating components. This section will provide deeper look into the inner workings and
structure of the relevant components.

The server source code is contained in server/src/tf t/artemis/ directory in the repos­
itory.

3.5.1 A P I

The A P I module source is located in the api directory. The A P I is built with the use of
Molten Framework . The framework provides abstraction on top of Python Web Server
Gateway Interface for building H T T P APIs.

The framework [3] introduces multiple concepts to simplify the writing of the API :

• schema — a schema of the request content;

• handler — a method handling specific route;

• component — manages objects that may be requested by a handler;

• route — endpoint, path, where a request can be made;

• middleware — a glue code for pre-processing requests;

As described by its documentation, key features the framework provides include re­
quest validation, which ensure only valid data are received by the handler. In addition,
the framework performs dependency injection, which helps decoupling handler and its
dependencies by making components easily swappable and individually testable.

The Artemis A P I implements managers for the different entities handled by it. This
enables for better and more reliable backwards compatibility as the A P I implements all the
different older/legacy versions of the A P I , so that even clients using older A P I revisions can
leverage latest Artemis features and optimizations.

The typical workflow of A P I includes querying the database for the requested data in
case of G E T requests, or creating or modifying data, followed by a dispatch of a task to
a broker or adding an entry to the transactional outbox (described in 3.5.2) for further
processing.

3.5.2 Dispatcher

As Artemis often requires synchronization between database operations and the dispatch of
tasks, it leverages transactional outbox . The dispatcher periodically queries the database

5 M o l t e n F r a m e w o r k : h t t p s : / / m o l t e n f r a m e w o r k . c o m /
6 P y t h o n W S G I : h t t p s : / / p e p s . p y t h o n . o r g / p e p - 3 3 3 3 /
t r a n s a c t i o n a l o u t b o x pa t t e rn : h t t p s : / / m i c r o s e r v i c e s . i o / p a t t e r n s / d a t a / t r a n s a c t i o n a l -

o u t b o x . h t m l

13

https://moltenframework.com/
https://peps.python.org/pep-3333/
https://microservices.io/patterns/data/transactional-

for new task and snapshot requests. If a new task request was committed to the database,
the relevant task is resolved and a task is dispatched to the broker for a worker to pick up.

3.5.3 Worker

The worker is implemented as a simple wrapper script dispatching dramatiq worker, which
then connects to the broker and subscribes to all or just specified queues and awaits new
tasks. Upon receipt of a message, the worker resolves and executes the task contained in
the message. The tasks are closer described in 3.4.

3.5.4 Database Initialization Script

Implemented in scripts/init_db_content .py,

3.6 Metrics

Metrics are quantitative measures that provide insights into various aspects of software
operation, performance and may provide insights helping identify potential areas for im­
provement. They play a crucial role in early anomaly detection and warning, and help
ensure smooth and reliable operation of a service.

During normal operation, Artemis collects metrics primarily focused on the provisioning
process, guests and pools in order to assist with catching, diagnosing and generating alerts
for potentials issues. The metrics are exposed on a H T T P endpoint by the A P I in a format
compatible with and scraped by Prometheus8.

8 P r o m e t h e u s : h t t p s : / / p r o m e t h e u s . i o /

14

Chapter 4

Design

In Chapter 2, we investigated various approaches employed to optimize the time lapse
between requesting a virtual machine and receiving a provisioned machine for the end user.
Moreover, Chapter 3 introduced the Artemis provisioning service, the context in which it is
used, and the provisioning process as executed by the service. This section delves into an
in-depth analysis of the current use cases for the provisioner and the design of enhancements
to the existing provisioning process, aiming to augment the perceived responsiveness and
efficiency of the service.

4.1 Requirements

Currently, Testing Farm executes each test plan in a separate fresh environment. This
results in a new machine being provisioned to ensure that each test is run in isolation,
preventing any potential interference from other tests or lingering artifacts from previous
test runs. This approach, however, introduces a time delay associated with provisioning a
new virtual machine, which is especially noticeable as the service tries to utilize the cheaper
spot instances1 many IaaS providers provide as a way to sell their spare compute capacity
at a significantly discounted price.

The goal is to introduce a mechanism transparent to the user to reduce the time the test
workload waits for a machine to become available. Furthermore, as a non-trivial number
of test scenarios are non-destructive — container testing. In these cases, we would like
to be able to mitigate the overhead of setting up a container runtime and re-use existing
machines to run multiple of these tests as containers run in isolation and do not influence
the environment of the executor machine and thus cannot influence other container tests
that would run in the same V M .

From the techniques discussed in Section 2.2, the methods described by [10, 12] to reduce
delay from loading V M image templates cannot be applied to our use-cases as we do not
maintain the underlying infrastructure. Therefore, we have to rely on the providers to do
their best to optimize this part of the provisioning process. Similarly, the approach used
by [16] is not a feasible solution in our system as it is only suitable for systems and services
where a fast and efficient replication of a specific application is required. In our case, the
application being tested changes with every execution and as such replicating snapshot of
initialized empty V M s could provide only negligible if any benefit.

1 A m a z o n E C 2 S p o t Instances: h t t p s : / / a w s . a m a z o n . c o m / a w s - c o s t - m a n a g e m e n t / a w s - c o s t -
o p t i m i z a t i o n / s p o t - i n s t a n c e s /

15

https://aws.amazon.com/aws-cost-management/aws-cost-

The last technique discussed [9] proposes keeping initialize and running V M s in a cache
and used these to satisfy requests. A similar approach can be replicated in the Artemis
service as most tests are executed in a small number of compatible instance types. It would
therefore be possible to provision a number of V M instances, keeping them in a cache and
then be able to almost instantaneously serve new provisioning requests with one of these
machines, if compatible with the requested machine.

Additionally, such an approach can be extended to serve as kind-of resource pool (as
described in Section 2.3). After execution of non-destructive tests, the machine is left in a
state suitable to run additional test plans. Currently, such a machine is completely released,
however, it would be possible to return this machine to a pool of existing machines, which
can be used to immediately serve new requests.

This hybrid resource pool-cache consisting of compatible machines was decided to be
referred to as a 'shelf in this work. The work will be further split into two parts building
on top of each other:

1. Shelving: A pool of compatible, re-usable machines;

2. Pre-provisioning: Building the foundation for triggering the provisioning and shelving
of a multiple machines.

As this was a long-awaited feature, the team already had an idea of what these features
should entail 2.

4.1.1 Shelving

The primary outcome expected from the shelving feature is to extend the guest provisioning
and release processes, as described in 3.3.1, with a transparent mechanism to serve new
requests with already existing machines, as well as, returning machines to a shelf. Since
there is no mechanism to determine whether the machine was modified or not, this decision
will be left on the user to make.

Important thing we need to ensure is active monitoring the state of the shelved machines
as sometimes machines can be taken away from us without notification, especially if we rely
on cheaper-priced spot instance types 3. For this reason, a periodically-running watchdog
checking the health of the machine must be included in the solution.

Furthermore, there needs to be a mechanism to administer the shelves and shelved guests
using the Artemis CLI . The required actions include:

• listing all shelves,

• getting information about a specific shelf,

• creating a shelf,

• removing a shelf,

• listing shelved guests,

• releasing a shelved guest,
2 S h e l v i n g a n d p r e - p r o v i s i o n i n g issues: h t t p s : / / g i t l a b . e o m / t e s t i n g - f a r m / a r t e m i s / - / i s s u e s / 1 1 8 ,

h t t p s : / / g i t l a b . c o m / t e s t i n g - f a r m / a r t e m i s / - / i s s u e s / 1 1 7
3 A W S E C 2 Spo t Instances: h t t p s : / / a w s . a m a z o n . c o m / a w s - c o s t - m a n a g e m e n t / a w s - c o s t - o p t i m i z a t i o n /

s p o t - i n s t a n c e s /

16

https://gitlab.eom/testing-farm/artemis/-/issues/118
http://lab.com/testing-farm/artemis/-
https://aws.amazon.com/aws-cost-management/aws-cost-optimization/

• configure maximum number of guests on a shelf.

It is also important we are able to monitor the behaviour of the shelves. For this reason
a number of metrics are required:

• Shelf usage — the number of guests on a shelf;

• Shelf hits — tracking the number of guests served from a shelf;

• Shelf misses — the number of guests failing-over to normal provisioning;

• Forced removals — the number of guests forcefully removed by a user;

• Dead guests — the number of guests in a shelf that stopped responding (died);

• Removals — the aggregate number of guests removed from a shelf for any reason.

4.1.2 Pre-provisioning

Pre-provisioning is building on top of shelving as described in 4.1.1. The expected outcome
is a mechanism, which would be utilized to trigger the replenishment of a shelf and serve as
an extensible foundation for further automation of this process if desired later on.

This feature would consist of a mechanism to create a specified number of guest ma­
chines according to a specified guest template and subsequently release them to a shelf on
provisioning completion. Initially, only manual trigger is to be implemented. This would
mean extending the shelf operations with an additional one allowing the user to specify the
parameters required for pre-provisioning.

4.2 Shelving

This section deals with the design of the shelving mechanism and its principle of operation.
As outlined in the requirements, described in Section 4.1.1, this involves modification of the
current provisioning pipelines. At this point, no partitioning of these shelves will be imple­
mented, which results in certain restrictions for what guests would be considered suitable
for shelving.

4.2.1 Modifications of the Guest Request Life-cycle

In order to facilitate the required functionality, modifications to the guest request's life-cycle
are required. New operations have to be performed before the original guest provisioning
and release flows. Using a shelf allows for these original processes to be bypassed. The idea
behind these changes is illustrated by the Figure 4.1.

This approach results in the creation of two new tasks, which would be executed during
the standard provisioning and guest release processes. Furthermore, to distinguish an active
guest from a shelved guest a new state for these guests has to be added.

4.2.2 Provisioning

First, in order to bypass the provisioning and use a shelved guest, it is required to attempt
to pick a compatible guest from a shelf before performing routing to an available pool for

17

use cache

Provisioning request
Determine if a cache can be used Fall back to provisioning

Provisioned guest

•

i
Return to cache

Guest deletion request
Determine if the guest should be cached Release the guest Determine if the guest should be cached Release the guest

Figure 4.1: Expected changes to the provisioning flow

provisioning. Since this mechanism is supposed to bypass the provisioning entirely, a new
task is inserted at the start of the provisioning pipeline.

The shelved guest selection has to be a robust mechanism returning a guest only if
certain criteria are met:

• The guest is present in the specified shelf;

• The guest is compatible with the request.

4.2.3 Release

In order to be able to use guests stored in a shelf, there needs to be a mechanism to fill up
the shelf. Therefore, if a shelve-able guest is being removed, instead of completely releasing
it, it can be shelved and later re-used.

However, there are several restrictions placed on this mechanism. First of all, it is
necessary to control the maximum number of guests in order to prevent runaway resource
and money usage if too many guests were to be provisioned and stored on a shelf. Thus
a verification of the number of guests already on a shelf does not exceed the configured
maximum of allowed guests has to be performed.

Additionally, since no partitioning of shelves is being implemented at the current time
and vast majority test scenarios utilize standard pre-configured guest types, it is necessary
to ensure no special guests are being shelves as these would be of very little if any use.
To avoid wasting resources associated with shelving such guests, the shelving task has to
perform validation no additional constraints for the environment were set or a special post-
installation script to configure the machine was provided by the user.

Last condition is that the guest must be operational at the time of shelving. The
user can cancel a provisioning request before the guest is fully provisioned. Executing a
guest cancellation command immediately marks the guest for removal and any ongoing
provisioning is immediately stopped. Therefore such an incomplete guest is not suitable for
serving requests.

If any of these conditions were to be violated, a regular guest release should be scheduled
instead.

18

4.2.4 Watchdog and Monitoring

Since the guests in shelves can be long(er)-lived, it is necessary to monitor their state, and
ensure that it was not destroyed by an external action and can still be accessed. For this
purpose, a periodic task is to be scheduled for the duration of the guest's presence in the
shelf, ensuring the guest is still in a operational state, and disposing of any dysfunctional
guests.

4.2.5 Shelf Representation

We need to be able to represent a shelf in the system. Since there are plans for individual
users to be able to bring their own infrastructure, it needs to be possible to isolate resources
between users. Consequently it is not possible to share shelves between different users of
the service, and therefore only one user can own and access any given shelf as well as any
related resources. The shelf itself needs to be capable of holding guests, which, since we will
be selecting them from and returning to a specific shelf, the guest will be tied to a specific
shelf for the entire duration of its life-cycle.

Shelf therefore represents a new entity being introduced to the system. It is owned by a
user, however a user can have a number of separate shelves for different purposes. The shelf
is also capable of 'owning' guest requests — or rather a guest can belong to a shelf. This
relationship is illustrated by Figure 4.2.

User

Guest Request

Figure 4.2: Entity-relation diagram of a shelf

4.2.6 Shelf Configuration

As specified in the requirements, there needs to be a possibility to manage and configure
the shelves and its properties.

API

The user-facing management interface is implemented as a R E S T A P I by Artemis. It will,
therefore, be necessary to extend this interface to allow the user to submit operations related
to the shelf management.

The shelving-specific methods will be implemented under the /shelves/ endpoint.
First and foremost, it is necessary for the user to list the resources under their manage­

ment. For this reason, submitting a GET request to the /shelves/ endpoint should return

19

a list of shelves managed by them. Subsequently, provided the name of a specific shelf, the
user might desire to obtain only parameters of a specific shelf. This purpose will be served
by the /shelves/<shelfname> endpoint. Both of these endpoints would have to fetch the
data of all or just the specified shelf from the database and relay them as a response to the
client.

Another important operation is the shelf creation. This operation should be implemented
as an endpoint responding to POST requests to the /shelves/<shelfname> endpoint. As
there are no complex operations associated with the creation of a shelf, upon receipt, a new
entry in the shelves table can be created for a shelf with the specified name. The shelf can
be immediately active and used.

Shelf deletion is, however, a more complex problem as a shelf might have guests associ­
ated with it. For this reason, the A P I component itself should not handle this process and
it is delegated to the workers to perform the clean-up and deletion. The A P I changes the
state of the shelf to condemned to indicate it is no longer supposed to be used and creates
a task request to dispatch the shelf removal task.

Last but not least, there needs to be a way for user to instruct the service to release
a shelved guest. In order to preserve original functionality of the /guests/ endpoints and
isolate shelves from the rest of the guest management, the /guests/<guestname> endpoint
should not accept DELETE requests for shelved guests. This helps prevent unintended re­
movals and releases of shelved guests. For this reason, a dedicated endpoint is required to
schedule the release of shelved guests. A DELETE request to the
/shelves/guests/<guestname> endpoint will schedule the release of such a guest.

The remaining operations, such as adjusting the shelving-related variables will be ser­
viced by existing endpoints. The newly-created endpoints are summarized in the Table 4.1.

4.3 Pre-provisioning

As specified by the requirements (Section 4.1.2), at the moment there was no desire in
implementing a full-blown inventory management system. Instead, the plan is to introduce
a mechanism to allow the user to fill a shelf with a user-specified guest types. Multiple
approaches were evaluated for this purpose.

First possible way to approach the mechanism is to entirely decouple this functionality
from the server in the form of an external application interfacing with the A P I . This was
envisioned as a custom subcommand implement in the CLI . The client would begin provi­
sioning a number of guests as specified by the user, wait until the provisioning completes
and then automatically release the guests leveraging mechanisms introduced by shelving.
Although sufficient for the manual guest pre-provisioning, this approach limits the options
for future extendability and automation. Furthermore, such an approach might introduce

Endpoint Method Description
List available shelves
Get shelf info and properties
Create a shelf
Remove the specified shelf
Delete guest from shelf

/shelves/ GET
/shelves/{shelfname} GET
/shelves/{shelfname} POST
/shelves/{shelfname} DELETE
/shelves/guests/{guestname} DELETE

Table 4.1: Shelf management Endpoints

20

possible unwanted reliability issues as it would be difficult to resume the process if the client
was to disconnect or outright crash.

Another approach is implementing a separate server component running alongside work­
ers. This would help mitigate the issues mentioned with the CLI-based approach while still
maintaining isolation from the rest of the services, and thanks to the deeper integration
with the rest of the system would enable possible robust automation in the future. How­
ever, it would provide no benefit compared to the last approach while consuming additional
resources as it would have to be deployed as a separate component of the service.

The last explored approach is based on tasks. The idea is to create a separate task,
which would be dispatched upon receiving a pre-provisioning request. The task would be
responsible for the creation and dispatching provisioning for new guests. As a task, it
can be easily dispatched by the A P I and other components of the service through already
established mechanisms and allow for a relatively simple extension of functionality later on,
if desired.

After a discussion with the project owner, the task-based approach was deemed best
suited for our use-cases and therefore, the design of the final solution is based on this
approach.

4.3.1 Pre-provisioning Process

The pre-provisioning process is going to be implemented as a new task. This task can
be be triggered from multiple sources, such as a shelf reaching a minimum guest count
threshold or a manual user pre-provisioning request. From these only the manual trigger
will be implemented as a part of this work. The schema between the interaction between
the triggers, the pre-provisioner and shelves are illustrated by the Figure 4.3.

Cache limits A P I Triggers

I
I I
Usage patterns |

Pre-provisioner

Figure 4.3: Pre-provisioner as a task with multiple triggers

The task itself will have to accept a template of a desired guest type, the target shelf
and the number of guests requested. The task will then create entries for these new guest
requests and dispatch tasks to begin the provisioning for these guests.

Given the first step of the provisioning pipeline is an attempt to lookup a compatible
guest in a shelf, the shelving mechanism will have to be mitigated to not provide an existing
guest.

Additionally, a mechanism for dispatching the shelving of the newly-provisioned guests
is required. A n option would be to have a task periodically refreshing and waiting for the
current guests to complete provisioning and then move them to the target shelf. However,

21

this introduces addition overhead associated with running additional tasks on workers. A
better solution appears to extend the provisioning mechanisms with the ability to dispatch
a task upon provisioning completion automatically. Then the new guest requests could be
configured to be automatically released and the shelving would be handled by the regular
shelving mechanisms described in Section 4.2.3.

4.3.2 User Interaction

The only mechanism to trigger the pre-provisioning implemented as a part of this thesis will
be the manual triggering. This will consist of an A P I endpoint
/shelves/<shelfname>/preprovision, which accepts POST requests containing the nec­
essary information to prepare guests.

22

Chapter 5

Implementation

This chapter provides an overview of the inner workings of Artemis and the specifics of the
implementation of the solution as designed in the Chapter 4. The initial sections of this
chapter focus on the description of the current implementation of certain mechanisms and
abstractions in Artemis in order to be able to implement the shelving and pre-provisioning
mechanisms and then, building on this knowledge, describes the implementation of these
mechanisms as well as the modifications that were necessary to facilitate these processes.
The implementation was done in two phases. The first phase consisted of the shelving
mechanism to facilitate the re-use of machines. The second phase built on top of the first
one, implementing a basis for the pre-provisioning mechanism.

5.1 Artemis Project Structure

Artemis is implemented in the Python programming language1 and utilizes Poetry 2 as its de­
pendency manager. The main repository contains two modules: the server and co-developed
CLI used to manage and interact with the server.

The repository layout is described in the Table 5.1.

Directory Description

5.2 Working with the Database

Artemis utilizes SQL toolkit and object-relational mapper SQLAlchemy 3 . This python
library provides abstraction over the underlying database management system and abstracts
away raw SQL statements and enables the developer to manipulate the data as if they

1 P y t h o n : h t t p s : / / w w w . p y t h o n . o r g /
2 P o e t r y : h t t p s : / / p y t h o n - p o e t r y . o r g /
3 S Q L A l c h e m y : h t t p s : / / w w w . s q l a l c h e m y . o r g

server/
server/conf igurat ion/
server/src/tft/artemis/
c l i /
c l i / s r c / t f t / a r t e m i s _ c l i /

Root of the server module
Default location of the server configuration
Source code of the server module
Root of the command line interface module
Source code of the C L I module

Table 5.1: Repository layout

23

http://www.python.org/
http://www.sqlalchemy.org

were native Python objects. In the production environment, the database is backed the
PostgreSQL database management system1, however thanks to the O R M framework, it is
possible to utilize SQLite 5 during the first stage of unit testing as it does not require a
separate server.

The database O R M definition and wrappers for safe data manipulation are implemented
in server/src/tft/artemis/db.py using the SQLAlchemy framework along with Alembic
to handle automating of creation and executing database migrations.

Table Definition

SQLAlchemy's [5] declarative mapping is used to construct mappings for database objects.
This is done by constructing a base class called Base using the declarative_base() function
from which then the mapped classes are inherited from.

The classes are then mapped on a table specified by the tablename with columns
specified as Column objects assigned to attributes of this class and mapped to columns of
the same name. SQLAlchemy allows to specify the column's data type, which maps Python
type to the most suitable column type available on the target database. Some notable types
include:

• Enum — a type for mapping enumerations;

• Integer — maps Python's i n t type;

• S t r i n g — maps string and character types.

Furthermore, it is possible to specify the column constraints. Most notable constraints can
be specified directly as keyword arguments of the Column:

• n u l l a b l e — specifies if the column's value can take up on an empty (NULL) value;

• primary_key — whether the column is the table's primary key;

• unique — whether each value in the column must be unique.

It is also possible to specify additional constraints as Constraint objects passed to the
Column constructor. From these, important is the ForeignKey defining a dependency be­
tween two columns.

The Column usage is Column(type, *constraints, primary_key=<bool>,
nullable=<bool>, unique=<bool>).

As a simple example, a mapped table named 'orders' in the database, consisting of
an integer primary key i d uniquely identifying the specific order, integer foreign key user
identifying the user account creating the order and a string state storing the state of the
order, which can take on one of 'pending', 'shipped' or 'completed' values. This table can
then be defined as follows:

Odataclasses.dataclass
class OrderState:

PENDING = "pending"
SHIPPED = "shipped"

4 P o s t g r e S Q L : h t t p s : / / w w w . p o s t g r e s q l . o r g /
5 S Q L i t e : h t t p s : / / w w w . s q l i t e . o r g / i n d e x . h t m l

24

http://www.postgresql.org/
http://www.sqlite.org/index.html

COMPLETED = "completed

class Order(Base):
tablename = "orders"

i d = Column(Integer(), primary_key=True, nullable=False)
userid = Column(Integer(), ForeignKey('users.id'), nullable=False)
state = Column(

Enum(OrderState),
nullable=False,
server_default=0rderState.PENDING.value

)

user = relationship(User, back_populates='orders')

Executing Database Statements

Building on top of the Artemis's error handling, wrappers for safely manipulating database
are used.

For querying the database a class SafeQuery is used, allowing to build up SELECT
queries using the SQLAlchemy's abstraction. The class is typically instantiated using the
SafeQuery. from_session(session, klass) method, allowing to specify the database ses­
sion and the queried table.

To add a WHERE clause to the statement, the f i l t e r method is called with the desired
criterion as an argument. The mapping between SQL condition operators and O R M query
constructs is described in table 5.2.

column=value MappedColum == value
column>value MappedColum > value
column<value MappedColum < value
column>=value MappedColum >= value
column<=value MappedColum <= value
columnOvalue MappedColum != value
column BETWEEN lower AND higher MappedColum.between(lower, higher)
column LIKE value MappedColum.like(value)
column IN (values, ...) MappedColum.in_([values, ...])

Table 5.2: SQL conditional operators and their O R M equivalent

To obtain the result of the query, a call is made to one of the available methods according
to the expected result:

• SafeQuery. one () — returns exactly one row or error;

• SafeQuery. one_or_none () — returns one row or None if there is no match, error
otherwise;

• SafeQuery. a l l () — returns a list of all matching rows.

An example of usage:

25

r e s u l t = SafeQuery.from_session(session, Order) \
.f i l t e r (O r d e r . s t a t e == OrderState.PENDING) \
. a l l ()

The statements modifying contents of the database are built from insert/upsert.
update and delete methods. For statements changing the row's values, the values are
specified using the values () method. Except for the insert/upsert statements, selecting
specific rows to modify can be achieved by using the where () method with condition.

Examples of such statements:

INSERT statement
insert(Order).values(id=4031, userid=2)
UPDATE statement
update(Order).where(Order.id == 4031).values(userid=l)
DELETE statement
delete(Order).where(Order.id == 4031)

Constructed statements are executed using one of execute_db_statement or
saf e_db_change wrappers. These handle the execution of, logging of the operation and any
exceptions possibly raised by the operation. The difference in usage is that the saf e_db_change
function is used to perform changes, which must be synchronized with other actions by is­
suing an explicit COMMIT after executing the statement.

Database Migrations

Artemis's database migrations are implemented using SQLAlchemy's Alembic tool [1]. The
tool is used to apply upgrades or downgrades of the database schema in order to be able
to move between Artemis versions. Additionally, alembic is able to automatically generate
migration scripts based on the difference between the latest schema revision present in the
database and the metadata built from the database as defined in the code.

To execute migrations to the latest revision, the following command can be executed:

alembic upgrade head

Afterwards, a new revision can be generated using:

alembic r e v i s i o n --autogenerate -m "New migration"

The generated script, however, may not capture all the changes made and may therefore
often require additional manual modifications.

The script consists of variables r e v i s i o n identifying the version this script revises the
database to, down_revision identifying the version this script revises from. The migrations
themselves are implemented by the function upgrade and downgrade for up and down
revision, respectively.

5.3 Task structure

Each task is implemented in its own source file present in the server/tft/artemis/tasks
directory and follows a common structure consisting of 4 parts.

First a task-specific workspace class is defined. This class is inherits from a general
Workspace class defined in the tasks module initialization script (tasks/ i n i t .py)

26

should store necessary task-specific variables and define the steps of the task as methods.
The steps of the task are implemented as methods with no return value within the task-
specific workspace class. Each step should be decorated with the ©step decorator.

A simple example of the structure:

from . import Workspace as _Workspace

class Workspace(_Workspace):
n n tt

The t a s k - s p e c i f i c workspace
i i i i i i

TASKNAME = 'sample-task'
Task-specific variables
. . .

©step
def e n t r y (s e l f) -> None:

II II II

Begin the process by nice logging and loading required data
II II II

self.handle_success('entered-task')

Load data
. . .

Additional steps
. . .

A class method within the workspace is used to create and initialize the workspace and
execute the chained steps of the task. This method should return the final task result.

This can be implemented similarly to:

class Workspace(_Workspace):

©classmethod
def sample_task(cls, ...) -> DoerReturnType:

Create and i n i t i a l i z e the workspace
workspace = els.create(...)
Execute steps
f i n a l _ r e s u l t = workspace \

.entry() \
Additional steps are chained as c a l l s to the corresponding
methods

27

. f i n a l _ r e s u l t

return f i n a l _ r e s u l t

The final part of the task is the entry point function that wraps the task execution in
the task_core function, which handles common task-related functionality like logging and
session management. The entry point is always decorated with the ©task decorator.

Example:

©task
def sample_task(*args) -> None:

task_core(
cast(DoerType, Workspace.test_task),
logger=get_*_logger(Workspace.TASKNAME, _R00T_L0GGE, . . .) ,
doer_args=args,
session_iso1ation=True

)

This structuring increases the modularity of the code, as well as the readability. Another
major consideration is the testability. Structuring tasks as shown enables writing fine­
grained unit tests testing the behaviour of individual steps.

5.4 Run-time Variables

Artemis uses user-configurable run-time variables implemented under the name of Knobs.
These allow the user to configure certain properties of Artemis's components and provision­
ing processes, such as the number of worker threads, enabled pools, etc.

Knobs can utilize various sources for their values, organized in a hierarchy:

1. A database-backed storage implemented by the KnobSourceDB

2. A value read from environment variable implemented by the KnobSourceEnv;

3. A constant or default value represented by KnobSourceDef ault or KnobSourceActual;

In addition to knobs setting values globally for all components, under certain circum­
stances it is desirable to be able to configure the behaviour of different pools utilizing the
same driver. For this per-pool knobs exist, allowing to use knob names parametrized with
the pool's name, modifying the behaviour of a specific resource pool only. The pool-specific
values can only be loaded from environment variables and database, and if the value cannot
be determined, the value for driver (instead of a specific pool) is used.

Usage

A n example of knob usage:

KNOB_EXAMPLE = Knob(
'example',
'Helpful d e s c r i p t i o n of the knob.',
has_db=True,
per_pool=True,

28

envvar='ARTEMIS_EXAMPLE',
cast_from_str=int,
default=0

)

Since the specified knob is a 'per-pooľ knob, a Pool object or the name of the pool
needs to be passed to the get_value method. The value of the knob can be obtained by:

KNOB_EXAMPLE.get_value(pool=pool)

5.5 Error Handling

Due to Artemis's architecture, there is a need to be able to safely propagate and log errors
throughout the code as an unexpected or improperly handled exceptions could potentially
leave the system in an unexpected state. For this reason, wrappers storing results and error
or exception data exist.

Notably, to propagate the success or failure of an operation Result objects are used.
This class, however, is not instantiated directly but the class-provided methods Ok and
Error are used, which set-up the instance with additional information for faster resolution
of whether the operation succeeded or not. These are provided by gluetool 6 library, which
contains the code shared across Testing Farm projects.

To instantiate the Result object in case of a success, a call Ok(success_value) is used
and similarly the object can be created in case of an error using the Error (error_value)
call. Upon receiving the Result object, the caller/receiver can easily query the result
of the operation by checking the Result. i s _ e r r o r properly, which relays the informa­
tion whether the object holds a valid result value of a successful operation or information
about an error. The value itself can then be accessed by calling the Result .unwrap() or
Result .unwrap_error() in case of an error.

In addition to these, Artemis implements F a i l u r e class, which stores the information
about a erroneous situation, including the information provided by a raised exception or the
source of the failure (as another instance of Failure), as well as other information clarifying
the context and source of the failure. These are used for logging purposes and the class itself
also implements the logic to submit errors to the Sentry monitoring service .

5.6 Shelving

This section focuses on the implementation of the solution design as described in the Sec­
tion 4.2.

5.6.1 Preparatory work

Multiple places were identified before or during the feature's implementation, which required
modifications in order to be able to advance the work on the shelving mechanism.

6 G l u e t o o l : h t t p s : / / g l u e t o o l . r e a d t h e d o c s . i o
7 S e n t r y : h t t p s : / / s e n t r y . i o

29

https://sentry.io

Generalize 'per-pool' knobs

As it is necessary to be able to configure the behaviour of the shelves, the Artemis's knobs
were the obvious mechanism to be used to facilitate this need (rephrase). The knobs,
however, bore a limitation with respect to their usage, which was limited to either global
variables, or scoped variables corresponding to pools (per-pool). This 'per-pool' behaviour
thus had to be generalized for any kind of resource.

The way the per-pool knobs are used is that the knob's consumer can specify one of
poolname or pool parameters, which either are directly a string name or the string can
be obtained from the passed object. This is then used to parametrize string identifying
environment variable in the format '<envvar_name>_<poolname>' or database primary key
identifying the knob in the format '<knob_name>:poolname>'.

After understanding the structure of implementation of knobs, the required changes
become fairly simple. First, the option to pass pool object when obtaining the knob's
value was removed (pool parameter of get_value function), leaving only the option to
use poolname parameter to specify the name of the pool. This change was sufficient to
effectively decouple knobs from pools.

To reflect this change in semantics, the per-pool knobs were renamed. As these knobs
were now no longer tied to any specific entity, it was decided that the appropriate label for
these knobs would now be 'per-entity'. As a result, the poolname parameter was renamed
to entityname, as well as all *PerPool back-ends were renamed to PerEntity.

Additionally, it was necessary to update all occurrences of now per-entity knobs to
conform to the new usage.

Count Query

Additionally, the SafeQuery wrapper did not implement method to obtain the number
of matching rows in the database, which is required in order to determine the number
of currently shelved guests. Analogously to other operations, the count () method was
implemented as a wrapper around the SQLAlchemy's native count () method by adding
type annotations and decorating it with the @chain_get decorator:

class SafeQuery(Generic[T]):

@chain_get
def count(self) -> i n t :

return cast(
Callable [[] , in t] ,
self.query.count

)()
5.6.2 Shelf Table

In order to be able to start working with shelves, related constructs had to be implemented
before proceeding with any further work on the logic handling shelves or shelf-related guest
operations. The shelf entity, described in Section 4.2.5, translates into the relational model
used by Artemis into the table guest_shelves. The table is illustrated by the Figure 5.1.

The concrete implementation was done using a mapped class GuestShelf as described in
Section 5.2. The class itself defines the string attributes shelfname and ownername, which

30

guest shelves

1 n

guest requests
users

1 n * shelfname str 1 n * guestname str
• username str
o

1 n
• ownername str
•state Enum

1 n 0
° shelfname str
o

• username str
o

• ownername str
•state Enum

0
° shelfname str
o

Figure 5.1: Shelf database diagram

0
° shelfname str
o

identify the shelf itself (primary key) and the owner of the shelf. The ownername's definition
therefore contains a foreign key constraint, referring to the users table. Last attribute of
the shelf is its state. This was chosen to re-use the GuestState enumeration as it already
contains all the required state for the shelf.

Additionally, following the conventions set in the implementation, create_query helper
method was added. This method serves as a wrapper for creation of INSERT queries for new
shelves.

A new database migration script, bumping the revision to 3af 7c26ec4f 3 was generated
in order to facilitate the creation of the table in the actual database.

5.6.3 Management

As outlined the requirements and design of the feature in the Section 4.2.6, being able to
manage the shelves by the user is a crucial aspect requiring a working and stable A P I .

API

The A P I module, located within the a p i / subdirectory of the server's source, implements
the R E S T A P I interface served as a part of the service. In order to manage the shelves a
manager class for this new entity is implemented. A number of methods were required to
perform the necessary operations with shelves as outlined in the requirements, as well as a
schema class defining the response for data on shelves.

In order to be able to leverage the schemas provided by the Molten framework, a
GuestShelf Response class is defined using the Omolten. schema decorator. The class is
implemented as a Python dataclass8 so that it can be instantiated in a user-friendly manner
by passing the attribute values to its constructor. A n additional helper method from_db()
is defined to help instantiate the class from a database object — GuestShelf.

To obtain the list of available shelves the get_shelves () method is used. It utilizes
Saf eQuery to query the database for all shelves belonging to a particular user and vali­
dates the result to ensure an error was not returned. The results are parsed into a list of
GuestShelf Response objects, which are returned by the function. Similar function serves
the get_shelf() method, which, as its name may indicate, queries the database for a
singular specific shelf. It's return value is a single GuestShelf Response object.

Another important operation performed by the manager is the shelf creation. This is
implemented by the create_shelf () method. This is performed by creating an insert query
using the artemis_db. GuestShelf . create_query (shelf name, ownername) helper. After
inserting a new entry for the shelf, if no errors were raised, the shelf details are again queried
using the get_shelf () method and returned back to the caller.

8 P y h t o n dataclasses: h t t p s : / / d o c s . p y t h o n . o r g / 3 . 9 / l i b r a r y / d a t a c l a s s e s . h t m l

31

Last operation with the shelf entity is its removal, this is implemented by the
delete_by_shelfname() method. For the purposes of error reporting to the user, the shelf
is first attempted to be loaded. If found, as it is a more involved operation, it's state is
updated to 'condemned' to indicate it is no longer available for use and a removal task is
requested. The implementation of the task is dealt with in the Section 5.6.3.

With all the required operations implemented, handler methods are required to handle
new A P I endpoints to be exposed. The handlers handle have to ensure the user is properly
authorized, so that they can access the requested resources. These are implemented as static
methods of the manager as they do not require being version for the time being.

An example of shelf create handler:

Ostaticmethod
def entry_create_shelf(

manager: 'GuestSheIfManager',
shelfname: s t r ,
auth: AuthContext,
logger: gluetool.log.ContextAdapter

) -> Tuple [s t r , GuestShelfResponse]:
TODO: drop is_authenticated when things become mandatory
i f auth.is_authentication_enabled and auth.is_authenticated:

assert auth.username

ownername = auth.username

else:
ownername = DEFAULT_GUEST_REQUEST_OWNER

return HTTP_201, manager.create_shelf(shelfname, ownername, logger)

To expose the new endpoints, versioned 'route generator' methods are used by Artemis.
The routes are added to the generator for the next (so far untagged) version:

@route_generator
def generate_routes_v0_0_56(...) -> L i s t [Union [Route, Include]]:

return [

Include('/shelves', [

create_route('/{shelfname}',
GuestShelfManager.entry_get_shelf, method='GET'),

]

For a full list of endpoints refer to the Table 4.1.

Shelf Removal Task
The shelf removal is the most involved operation in shelf management as there may be guests
associated with the shelf, be it directly shelved guests or still active guests to be returned
to the shelf. Due to this reason, the removal process should be handled by a separate task

32

executed by a worker and the A P I does not itself handle the removal process, rather marks
the shelf for removal and requests this task.

To be able to properly remove a shelf we need to be able to ensure no guest remains
associated with the shelf, otherwise it would not be possible to remove the shelf as its
removal would result in the violation of the referential integrity of the database since there
would have to be guests in relation with a non-existent shelf. To maintain the integrity of
the system and perform a proper cleanup, after the shelf is switched to the 'condemned'
state, a separate task performs this process. The steps are:

1. Load Shelved Guests:

2. Schedule Release of Shelved Guest Requests: In this step, the task schedules the
release of all shelved guests associated with the particular shelf.

3. Remove Shelf from Guest Requests: The shelf is removed from any remaining guest
requests.

4. Delete Shelf: Upon reaching this step it is finally possible to safely remove the shelf
itself. A D E L E T E query is executing removing the shelf from the database table.

5.6.4 Server Configuration File

In addition to the A P I , it may be desirable to bootstrap shelves from the server configuration
file. The configuration file is a Y A M L 9 file capable of defining a number of entities within
the system. It is allows to quickly bootstrap the Artemis server as it possible to define
all the necessary constructs for operation in the server.yml. The file is parsed and the
database is populated by the database initialization script scripts/init_db_content. py.
For an example of the configuration file refer to Appendix B . l .

To add support for the creation of shelves using this script, the JSON schema defined
in schema/common.yml needed to be extended. Subsequently, the conf ig_to_db() method
can be extended by a loop iterating over defined shelves and executes an U P S E R T query to
insert new or update existing shelves. A shelf declaration follows the layout:

shelves:
- name: shelfname

owner: shelf_owner

5.6.5 Choosing Guest From a Shelf

First of the guest life-cycle modifications made is the ability to select a valid guest from
a shelf. This action was implemented in a new task guest-shelf-lookup. In order to
differentiate the stage of the provisioning the guest is in, and to be able to properly report
and monitor this state, a new guest state is introduced: 'shelf-lookup'. This also helps
mitigate potential issues if a different task attempted to modify the state as each step in
the provisioning process corresponds to a specific guest state.

The task consists of number of discrete steps:

1. Entry: In this step the task attempts to load a guest request passed for processing.
The guest request must be in the 'shelf-lookup' state, otherwise the task concludes
with an error at this stage.

9 Y A M L A i n ' t M a r k u p Language : h t t p s : / / y a m l . o r g /

33

https://yaml.org/

2. Shelf Query: At this step the task attempts to load all available shelved guests be­
longing to the shelf specified by the guest request.

3. Select Guest: The guests are selected from the shelf in a random order and validation
occurs, ensuring the guest, if selected, is compatible with the requested guest. At this
step an attempt is made to find the first compatible guest.

4. Use Guest: If a guest was selected in the previous step, the state of this guest is copied
into the new request and the new guest is switched to the 'preparing' state and a task
is dispatched to validate the guest is indeed accessible. If no compatible guest was
found, this step performs no operation.

5. Remove Shelved Guest Request: This step is also dependent on the result of guest
selection. If no shelved guest was selected this step is skipped. Otherwise, at this
point the selected guest is removed from the database in order to prevent other guest
requests from being served by the same guest, and the task concludes at this point.

6. Shelf Miss: If no guest was selected, at this step the 'routing' task is dispatched, falling
back to the full provisioning of a new guest.

7. Exit: This step only handles metrics and logging the information about task comple­
tion.

This task uses a repeatable read isolation level for its database session in order to mitigate
race condition where a different guest request could be assigned the same provisioned guest.

The default guest state upon its creation was changed 'shelf-lookup' state to reflect the
change in the provisioning process. Furthermore, the guest request manager component
in the A P I module was modified to dispatch this task after the receipt of a new guest
provisioning request.

These changes enabled the use of a shelved guest to serve new incoming guest requests.
For a diagram illustrating the change in the guest's life-cycle refer to the diagram in Ap­
pendix A .

5.6.6 Shelving a Guest

Upon the cancellation of a guest, it's state is changed to 'condemned', which discards any
further information on the provisioning progress of the guest and cancels any ongoing pro­
visioning operations as the tasks would no longer be able to find a guest request in the
expected state.

The guest request manager in the A P I component therefore needs to be modified to
determine whether the guest was in a state suitable for being shelved (it is possible to
shelve only 'ready' guests). At this point therefore happens the decision on whether to
attempt to shelve the guest by dispatching the new 'return-guest-to-shelf' task or fall back
to the original full release of all guest resources.

If a guest is determined to be in a suitable state to attempt shelving, the decision
whether to keep a guest in a shelf and performance of the actual shelving is delegated to
the 'return-guest-to-shelf' task. This task consists of the following sequence of steps:

1. Entry: Loads the guest request in question.

34

2. Load Valid Shelf: Attempts to load a shelf associated with the guest request. The
shelf has to be in 'ready' state in order to be used. Otherwise it cannot handle new
guests.

3. Load Shelved Count: If a valid shelf was loaded in the previous step, the number
of currently shelved guests is loaded from the database as it will be important to
determine if there is a space for the new guest.

4. Load Shelf Maximum Guests: At this step, the task obtains a value from the
KNOB_SHELF_MAX_GUESTS knob as it holds the maximum number of guests allowed to
be held in a shelf.

5. Return Guest: At this step, the number of guests currently shelved and the number
of allowed guests in a shelf are compared, ensuring the shelf does not exceed its
configured capacity. Moreover, if the guest specified hardware requirements or a post-
installation script, it is considered a special guest, that should not be shelved as it is
not expected to be requested as commonly and therefore would waste resources. If the
guest satisfies the given conditions, its state is switched to 'shelved', and a watchdog
task is scheduled. The logs the successful result and concludes at this point.

6. Dispatch Release: If it was not possible to shelve the guest, a task to release its
resources is scheduled at this step.

5.6.7 Guest Watchdog

While shelved, the guest can become inaccessible if it is taken away or released outside the
Artemis service. Although it is not as critical issue because the validation of machine's
accessibility is performed before returning a guest from a shelf, detecting guests in this
erroneous state can free up space in the shelf for operational guests. The proper operation of
a guest machine can be tested by the same mechanism guests are verified during provisioning.
A n attempt to create an SSH connection is made, which, if successful, indicates the machine
is fully operational, and can be used to serve an incoming provisioning request.

A periodic task names 'shelved-guest-watchdog' is therefore scheduled for every shelved
guest, ensuring the machine is accessible and operational. For proper operation across
wide range of environments, the task requires configurable timeout for the SSH connection
timeout and a period between task's successive runs. These are implemented as knobs:

• KNOB_SHELVED_GUEST_WATCHDOG_DISPATCH_PERIOD: This is a knob period of the watch­
dog task. It stores a static value configurable by an environment variable or defaults
to 5 minutes and applies to all shelves and pools.

• KNOB_SHELVED_GUEST_WATCHDOG_SSH_CONNECT_TIMEOUT: This is a knob specifying the
maximum allowed period while waiting for an SSH connection to be established before
considering it failed. The default value is 15 seconds as that is the same default value
used for verification during provisioning. This knob can be configured for a different
value for each pool and is backed by the database, therefore can be changed at runtime.

The task then performs the following steps:

1. Entry: Loads specific shelved guest request and the pool that provisioned the guest.

35

2. End If SSH Disabled: This task respects the skip_prepare_verify_ssh guest at­
tribute, therefore, if set, it indicates the guest is not or should not be accessed over
SSH and therefore this check should terminate at this point.

3. Load SSH Timeout: If SSH verification is enabled, the task proceeds to load SSH
connection timeout value for the pool that was used to provision the guest.

4. Run Watchdog: This step utilizes the ping_shell_remote method in order to initiate
an SSH connection to the guest. It uses the SSH options configured for the specific
pool as well as the timeout value loaded in the previous step.

5. Dispatch Release: If the SSH connection attempt fails, the guest state is switched to
'condemned', the guest release task is scheduled to cleanup any resource left by the
machine and the task exits with an error.

6. Schedule Followup: After a successful connection to the guest, the task reschedules
itself with a delay specified by the KNOB_SHELVED_GUEST_WATCHDOG_DISPATCH_PERIOD
knob.

5.7 Pre-provisioning

This section describes the implementation of the pre-provisioning mechanism. The imple­
mentation follows the design laid out in the Section 4.3.

5.7.1 Pre-requisites

Bypassing Shelf

In order to be able to pre-provision a guest, an actual new guest needs to be provisioned.
Since a shelf is paired with a guest for its entire life-cycle, there needs to be a way to instruct
the 'guest-shelf-lookup' task to bypass the shelf and instead force the provisioning of a new
guest.

This is achieved by adding an additional attribute bypass_shelf _lookup indicating the
task should skip querying the specified shelf. Instead the list of available guests is replaced
with an empty list, resulting in no suitable guests to select from and therefore falling back
to the full provisioning.

Dispatch Tasks on Provisioning Completion

As a pre-requisite to be able to schedule the shelving of successfully provisioned guests in
an automated fashion, a mechanism to dispatch the task upon provisioning completion is
required. This is implemented such that it is not tied specifically to this use-case, however
can be easily re-purposed to serve other goals, such as running hooks to notify user of
provisioning completion, as well.

The GuestRequest table was extended by an _on_ready storing a JSON representation
of a list of tuples of (actorname, arguments). This structure is accessed through an
accessor on_ready, returning properly deserialized structure and fixes type annotations.

The 'prepare-finalize-post-connect' task was further modified. As this is the task where
the guest is switched to the 'ready' state, upon executing the state change, task requests
for all of the specified tasks in the on_ready field are created.

36

Shelving Guest in an Arbitrary State

At this point, the 'return-guest-to-shelf task accepted only 'condemned' guests. However,
we need to be able to move guests directly from the 'ready' state to 'shelved'.

This was a relatively simple change, which consisted of adding an additional parameter
for the task specifying the guest's expected state. Therefore, when executing the first step,
and the task requests a guest request, the expected current state is read from a variable
stored by the workspace.

5.7.2 Task

The main part of the pre-provisioning mechanism consists of a task named 'preprovision'.
The task requires the name of the shelf the guests would be pre-provisioned for, the number
of guests to be pre-provisioned, and a guest template JSON-serialized into a string.

Upon initialization, the task performs the deserialization of the guest template into a
GuestRequest object. The task is executed as a sequence of a number of steps:

1. Entry: This step attempts to load the shelf the guests are supposed to be provisioned
for to ensure the shelf exists and is ready to accept these guests.

2. Parse Environment: This step is responsible for deserializing the guest environment
specification into an Environment object.

3. Parse Log Types: At this step the defined log types required for the machines are
parsed into tuples of (string_log_name, GuestLogContentType) as log types are re­
quired in this format by the GuestRequest. create_query () helper. Additionally, this
way a validation is performed and in case of invalid data present, the pre-provisioning
would fail.

4. Create Guests: This is the step at which the guests are created. For each requested
guest an INSERT statement is created with a unique UUID as the guest name and in
accordance with the provided template. The guest is created with the
bypass_shelf _lookup attribute set to True as well as the 'return-to-shelf task in
the on_ready field. Upon the statement's execution, the 'guest-shelf-lookup' task is
requested in order to begin provisioning.

Upon the completion of the provisioning of guests, the 'return-to-shelf task is automat­
ically executed and therefore, any suitable guests would be shelved.

5.7.3 A P I

In order to facilitate the manual triggering of pre-provisioning throughout the Artemis's
R E S T A P I , a new action shelf-related action and an endpoint had to be implemented.

The pre-provisioning is a new action related to shelves. Therefore, a new preprovisionQ
method was implemented as a part of the shelf manager. This method re-uses the code
originally used for the validation of guest requests before their creation as it is necessary
to validate the guest template provided by the user. The validation was factored out into
the _validate_guest_request () method to avoid duplication of functionality within the
codebase. After the validation, the guest request data are serialized into a dictionary, which
is then transformed into a JSON string, which can be relayed to the 'preprovision' task over

37

the message broker. Along with the guest template, the requested guest count and name of
the shelf the pre-provisioning is being requested for are relayed to the task.

Similarly to shelf management endpoints, the pre-provisioning endpoint
(/shelves/<shelfname>/preprovision) requires its own handler, however in this case, due
to the changes being made to the guest request's schema, the endpoint's handler needs to
be versioned. The first version of the handler, introduced in the A P I version 0.0.56, is
implemented by the preprovision_v0_0_56 () method following the naming conventions
established for the guest creation endpoint. The handler performs authorization validation
and then calls the shelf manager's preprovisionQ method, passing the parameters pro­
vided by the user along with the JSON schema of the guest environment for the version
0.0.56.

The parameters required to make a pre-provisioning request are defined a schema:

©molten.schema
class PreprovisioningRequest:

count: i n t
guest: GuestRequest

The endpoint itself is then exposed in the A P I by adding a route to the route generator
under '/shelves':

create_route('/{shelfname}/preprovision', preprovision_v0_0_56,
method='P0ST')

5.8 Testing and Evaluation

In order to ensure quality and proper operation of the introduced changes as well as the
preservation of the original functionality, rigorous testing is required. This section describes
the testing performed and attempts to measure and evaluate the potential benefits brought
by the implemented optimisations.

5.8.1 Testing

The preservation of the original functionality is verified by the pre-existing test suites con­
sisting of multiple parts:

• Static Analysis — The code uses type annotations, which can be used to validate the
correct usage of variables, functions, etc. within the codebase;

• Database Migrations Tests — These are simple tests used to ensure it is possible to
safely and reliably perform migrations between any two revisions of the database;

• Unit Tests — A method by which smaller units of code are verified to conform to the
expected behaviour;

• Production D B M S Integration — The database migration tests as well as the unit test
suites are executed against an environment mimicking the production environment
setup.

During the implementation of the described modifications, unit tests were also written
covering almost the entirety of the new code. For example, the behaviour of individual tasks

38

created in order to amend the provisioning process is tested at the level of individual steps
and the configuration of these tasks is also verified in the process.

Furthermore, strict code formatting standards are enforced and all of the mentioned
checks are expected pass as a part of CI pipelines before any changes can be merged into
the main repository.

5.8.2 Provisioning Speed

Synthetic scenarios were executed in order to measure the potential impact of these optimi­
sations. These look at the provisioning times when using the Artemis provisioning service
without the support for shelving, with support but not used, and with the shelving used.
The scenarios were executed for the localhost driver as well as against the t2.small AWS
instances. The results from the testing are summarized in the Table 5.3.

Scenario description Average time to provision [s]
localhost driver on Artemis without shelving support 19.47
localhost driver without using shelving 29.79
localhost driver shelved guests 19.96
AWS guests without shelving 263.23
AWS guests from a pre-provisioned shelf 20.35

Table 5.3: Average of 10 runs for different provisioning scenarios

Initial rounds of testing were focused on the comparison of the original and updated
provisioning pipeline. The tests were execute with a 'simulated' localhost driver. As can
be seen from the results, there is an addition 10 second penalty incurred from using Artemis
version with a support for shelving. This finding can be explained by the fact that an
additional task was added to the provisioning pipeline. The tasks are dispatched using a
transactional outbox and are read by the dispatcher every 10 seconds from where stems the
additional slowdown. The use of shelved guests is comparable in duration with the original
implementation. This is due to the fact a step in the pipeline is bypassed and therefore the
same number of tasks are required to be dispatched by the dispatcher.

Although this would indicate a 50% slowdown in the provisioning, looking at the closer-
to-real-world figures from actual AWS guests, considering a guest was fully provisioned on
average after 263 seconds, the 10 seconds of additional delay are not creating a considerable
relative slow-down. The performance gained from pre-provisioned guests, however, more
than makes up for the shortcomings, cutting the provisioning time to a mere 20 seconds on
average.

39

Chapter 6

Conclusion

The primary objective of this thesis was to design and implement a mechanism intended to
optimize the time spent waiting for a machine to be provisioned by the Artemis machine
provisioning service.

A technique for the re-use of suitable systems, as well as a method to prepare these
machines in advance was devised and successfully implemented. The project consists of
two parts — shelving, and pre-provisioning building on top of the shelving mechanism and
extending its abilities.

The shelving introduced the concept of 'shelves' — pools of (virtual) machines — and
resulted in the modification of the machine provisioning flow such that an already provi­
sioned machine can be returned to a shelf instead of being completely released and then
used to serve a new provisioning request received afterwards.

The pre-provisioning mechanism enables preparing guests and releasing them into a
shelf before an actual request for the machine is received. Currently, only manual triggering
is implemented, which means a user can send a request for pre-provisioning a number of
machines ahead of expected workload surge, as an example.

Although the core functionality is implemented, discovered limitations regarding mon­
itoring and visibility mean there still is work ahead to continue developing the feature.
In the long-term horizon, if proven valuable, multiple other mechanisms to trigger pre-
provisioning, as outlined in the Section 4.3.1, may be implemented. These include auto­
mated pre-provisioning based on set limits or usage patterns extraction.

40

Bibliography

[1] Alembic documentation, [cit. 2023-04-15]. Available at:
https: //alembic.sqlalchemy.org/en/latest/.

[2] Documentation for Artemis provisioning service, [cit. 2023-04-15]. Available at:
https: / / t e s t ing- f arm.gitlab.io/artemis/.

[3] Molten: modern API framework, [cit. 2023-05-01]. Available at:
https: //moltenf ramework.com/index.html.

[4] Pooling - Wiktionary. [cit. 2023-05-01]. Available at:
https: //en.wiktionary.org/wiki/pooling.

[5] SQLAlchemy 1.4 Documentation, [cit. 2023-04-10]. Available at:
https: //docs.sqlalchemy.org/en/14/.

[6] Testing Farm. [cit. 2023-05-01]. Available at: https://docs.testing-farm.io/.

[7] C U R R Y , E. Message-Oriented Middleware. In: Middleware for Communications. John
Wiley & Sons, Ltd, 2004, chap. 1, p. 1-28. DOI:
https://doi.org/10.1002/0470862084.chl. ISBN 9780470862087. Available at:
ht tps: / /onlinelibrary.wiley.com/doi/abs /10.1002/0470862084 .chl.

[8] D A V I S O N , B . A Web caching primer. IEEE Internet Computing. 2001, vol. 5, no. 4,
p. 38-45. DOI: 10.1109/4236.939449.

[9] D E , P., G U P T A , M . , S O N I , M . and T H A T T E , A . Caching V M Instances for Fast V M
Provisioning: A Comparative Evaluation. In: K A K L A M A N I S , C , P A P A T H E O D O R O U ,
T . and S P I R A K I S , P. C , ed. Euro-Par 2012 Parallel Processing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, p. 325-336. ISBN 978-3-642-32820-6.

[10] E M E N E K E R , W . and S T A N Z I O N E , D. C. Efficient virtual machine caching in dynamic
virtual clusters. In:. 2007.

[11] G R E G G , B . Methodologies. In: Systems Performance: Enterprise and the Cloud.
lstth ed. USA: Prentice Hall Press, 2013, chap. 2, p. 21-88. ISBN 0133390098.

[12] H U A N G , B. , L I N , R., P E N G , K . , Z O U , H. and Y A N G , F. Efficient Service Deployment
by Image-Aware V M Allocation Strategy. In: Y I N , H . , T A N G , K . , G A O , Y . ,
K L A W O N N , F., L E E , M . et al., ed. Intelligent Data Engineering and Automated
Learning - IDEAL 2013. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
p. 252-261. ISBN 978-3-642-41278-3.

41

http://sqlalchemy.org/en/latest/
http://arm.gitlab.io/artemis/
http://ramework.com/index.html
http://wiktionary.org/wiki/pooling
http://sqlalchemy.org/en/14/
https://docs.testing-farm.io/
https://doi.org/10.1002/0470862084.chl
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470862084.chl

[13] K L E P P M A N N , M . Encoding and Evolution. In: Designing Data-Intensive Applications.
O'Reilly Media, Inc., 2017, chap. 4, p. 1 1 1 - 1 5 0 . ISBN 9781449373320 .

[14] N E W M A N , S. Just Enough Microservices. In: Monolith to Micro services: Evolutionary
Patterns to Transform Your Monolith. O'Reilly Media, 2019, chap. 1, p. 1-32. ISBN
9781492047797 . Available at: https://books.google.cz/books?id=ota_DwAAQBAJ.

[15] S U M A T H I , S. and E S A K K I R A J A N , S. Fundamentals of Relational Database
Management Systems. Springer Berlin Heidelberg, 2007. Studies in Computational
Intelligence. ISBN 9783540483977 . Available at:
https : //books.google.cz/books?id=RjnNAOGWOwsC.

[16] Z H U , J., J I A N G , Z . and X I A O , Z . Twinkle: A fast resource provisioning mechanism for
internet services. In: IEEE. 2011 Proceedings IEEE INFOCOM. 2011 , p. 8 0 2 - 8 1 0 .

42

https://books.google.cz/books?id=ota_DwAAQBAJ

Appendix A

State-Task Diagram

> SHELF_LOOKUP

route-guest-request

PROVISIONING

PROMISED i
CONDEMNED

release-guest-request

route-guest-request

PROVISIONING

acqulre-guest-requs

p re pa r e-f I rial l?e-p re-c or

CONDEMNED

release-guest-request

re turn-guest-to-she If

Figure A . l : Side-by-side comparison of diagrams of guest states and the tasks involved in
guest provisioning and removal before (left) and after (right) implementing provisioning
modifications for shelving

43

Appendix B

Development Environment

In order to be able to develop, test and verify changes, it is necessary to have a working
development environment to run tests and be able to run the Artemis server, as well as
interact with the A P I .

The application is typically deployed to Openshift or Kubernetes container orchestration
platforms. This is done using Openshift templates or the application's Helm chart 1.

For local development, the official documentation provides multiple options for deploying
the service on local machine [2]. This on the simpler of the two options, running Artemis
directly within the installed Python virtual environment.

B. l Environment Preparation and Server Configuration

Artemis uses Poetry 2 as its dependency manager. It helps to simplify the management of
dependencies and ensure consistent dependency versions across different environments. If
not present on the development system, Poetry can be installed using the official installer
available on the project's website.

After changing the current directory to the server's root,installing Artemis's dependen­
cies is then as simple as running:

$ make i n s t a l l

To configure the server, it is necessary to create a configuration file configuration/server.
to bootstrap the server. The documentation suggests using the provided templates, how­
ever, Artemis contains dummy 'localhost' driver, which is not exposed in this template.
This driver does not require access to any infrastructure provider and its use may be desired
with the development environment. Therefore, we will proceed with manual creation of the
configuration file.

First part can be taken from the original server. yml . j 2 template, extending it by the
dummy pool configuration:

server.yml:

users:
- name: admin

1 A r t e m i s H e l m char t : h t t p s : / / g i t l a b . c o m / t e s t i n g - f a r m / a r t e m i s - h e l m /
2 P o e t r y : h t t p s : / / p y t h o n - p o e t r y . o r g /

44

https://gitlab.com/testing-farm/artemis-helm/

r o l e : admin

- name: artemis

ssh-keys:
- name: master-key

owner: artemis
private: |
Your private SSH key (including "BEGIN" and "END" delimiters)

public: |
Public key

fi n g e r p r i n t : I
Key fi n g e r p r i n t

priority-groups:
- name: d e f a u l t - p r i o r i t y

guest_tags: []

pools:
- name: l o c a l

d r i v e r : localhost
parameters:

c a p a b i l i t i e s :
supported-architectures: ["x86_64"]

B.2 Starting the Server

The server requires access to a database, message broker and a cache. These can be easily
started using Docker Compose 3:

$ docker-compose up -d

After starting the required services and creating the configuration, the server can be
started using the provided script:

$ bash nominishift-develop.sh

At this point the server should be running and be accessible on http: //localhost: 8001.
This can be quickly verified:

$ c u r l http://localhost:8001/about

B.3 Configuring CLI

After successfully configuring the server, the C L I can be setup to connect to the local server.
There is a command to help guide the user through the configuration of the cli:

3 D o c k e r C o m p o s e : h t t p s : / / d o c s . d o c k e r . c o m / c o m p o s e /

45

http://localhost:8001/about
https://docs.docker.com/compose/

$ poetry run a r t e m i s - c l i i n i t

Artemis API URL
URL of Artemis API (for example "http://artemis.example.eom/v0.0.18"):
http://localhost:8001/vO.0.56

Artemis API version
API version to use when t a l k i n g to Artemis (for example "0.0.18"):
0.0.56

After completing the setup guide, it should be possible to access and list resources
available on the server, such as listing the available guests by:

$ poetry run a r t e m i s - c l i guest l i s t

4(3

http://artemis.example.eom/v0.0.18
http://localhost:8001/vO.0.56

Appendix C

Contents of the Attached Media

• artemis/ — Source code of the Artemis project.

• t h e s i s / — DTEXsource of this thesis along with all presented figures.

• thesis.pdf — Thesis in P D F format.

• t e s t s / — Source code of the scripts used for evaluation of the results.

• README.md — Description of the contents contained on the media and installation
instructions for the project.

47

