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Abstract
This thesis presents the topic of simulation relations over Büchi automata and the use
case of various simulations. The simulation relations are important for reducing a state
space of an automaton, or checking the under approximation of language inclusion. There
are also parity games, which are important for computing some of the simulation types we
introduce. We will go over multiple algorithms that compute these simulation relations. The
mentioned algorithms are implemented in programming language C++ and are compared to
a tool named RABIT. Our implementation is better only for smaller sized automata.

Abstrakt
Tato práce popisuje téma simulací relací nad Büchiho automaty a využití těchto relací
simulací. Relace simulací jsou důležité pro snižování stavového prostoru automatů, nebo
dále pro kontrolu pod aproximace jazykové inkluze. Dále popisujeme téma paritních her,
které je úzce spojeno s výpočtem relací simulací pro některé typy simulací. Podívame se
také na různé algoritmy pro řešení relací simulací. Zmíněné algoritmy byly implementovány
v jazyce C++ a implementace byla porovnána s nástrojem RABIT. Z experimentů je vidno,
že je naše implementace lepší pouze pro menší automaty.
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tomaton
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Rozšířený abstrakt
Büchiho automat (BA) je koncept rozšiřující konečné automaty o nekonečné vstupy (slova
nekonečné délky). Büchiho automat je zařazen do skupiny tzv. 𝜔-automatů. BA akceptuje
slovo tehdy, pokud existuje běh na automatu, který navštíví alespoň jeden z konečných
stavů nekonečně mnohokrát. Práce se zabývá relacemi simulací, které běží právě nad BA.
Těchto simulací je hned několik druhů, my se budeme zabývat hlavně dopřednými sim-
lucemi (férová, přímá, opožděná). Okrajově ovšem také zmíníme kamínkovou simulaci a
význam zpětných simulací. Simulace se nejčastěji používají pro redukci statového prostoru
automatu, nebo také pro kontrolu jazykové inkluze. V naší práci se budeme zabývat pouze
redukcí stavového prostoru. Zmíníme základní techniky jako kvocientování (quotienting) a
prořezávání (pruning). Pro výpočet férové a opožděné simulace uvedené algoritmy převádí
automat na graf paritní hry, který je poté zpracován a daná simulační relace vypočtena z
tohoto grafu. Pro přímou simulaci tento krok není nutný, je ovšem také možné tuto možnost
využít a relaci přímé simulace vypočítat z grafu paritní hry. Tato možnost se ovšem moc
nevyužívá, jelikož máme efektivnější algoritmy. Paritní hra je orientovaný graf, kde každý
uzel je obarven prioritou (v našem případě je priorita 𝑝 = {0, 1, 2}). Jedná se o hru dvou
hráčů, kteří se po každém tahu vystřídají. Hra trvá, dokud hra buď neskončí (jeden z
hráčů se nemůže hnout), nebo se vytvoří nekonečně dlouhá cesta, kterou nazýváme jako
tah. Vítěz je ten, čí oponent se nemohl hnout dál. Pokud je hra nekonečně dlouhá, tak je
vítěz určen pomocí nejvyšší priority uzlu, přes který se šlo nekonečně mnohokrát. Pokud
je tato priorita sudá, tak vyhrává hráč Nula, naopak hráč Jedna.
Hlavním úkolem práce bylo implementovat knihovnu v jazyce C++, která bude právě tyto
výpočty konat pomocí algoritmů, které jsou v prácí uvedené. Celý program má rozhraní
v příkazové řádce, kterou má uživatel možnost využít. Náš program je schopný vypočítat
přímou, férovou a opožděnou relaci simulace. Konečnou relaci je možné vypsat do příka-
zové řádky, a nebo vytvořit dot soubor, který zkonvertujeme na obrázek. Zde je poté
vizualně vidět, mezi kterými stavy simulace platí. V průběhu implementace jsme narazili
na různé komplikace, kvůli kterým jsme museli do algoritmů zasahovat. Naše implemen-
tace jsou tedy vždy trochu modifikované, vše je podrobně popsané v práci. Na závěr jsme
naši implementaci testovali oproti nástroji RABIT, který má všechny tyto simulace naim-
plementované. Náš nástroj nedosahuje rychlosti RABITu pro automaty s vyšším počtem
stavů a přechodů, avšak pro ty menší si počíná náš nástroj lépe. Experimenty porovná-
vají jednotlivé simulace vůči sobě, či jednotlivé implementace vůči jiným. Pro budoucí
práci je rozhodně možné nástroj optimalizovat a přidat možnost redukovat statový prostor
vstupního automatu.
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Chapter 1

Introduction

An automaton is a basic tool that sets land for formal verification, model checking and to a
theoretical informatics field as a whole. This thesis is focused on a special area of automata
- Büchi automata. These automata have an infinite input of symbols. These so called
𝜔-automata are different from the classic finite automata in a way, that their run has to
go infinitely many times over some of the states of an 𝜔-automaton to be accepted. There
are many various accepting condition for 𝜔-automata, such as Büchi, Strett etc. In this
thesis, we will be going over a very important part, that is closely related to the topic of 𝜔-
automata and that are simulation relations. A simulation relation can be widely useful. We
can use it to reduce a state space of an automaton, under approximate language inclusion
of an automaton. We will go over the use case of a reduction of an automaton and some
techniques, that help us achieve, preferably, without changing the automaton’s language,
i.e. accepting words are not changed. There are various simulation types, where not every
is suitable for the reduction of the state space of an automaton. We will talk about what
these different simulations are good for, e.g. pruning, quotienting. These simulation can be
seen as a game between two players that are trying to beat each other. We call them Spoiler
and Duplicator. In order to understand this, we will need to mention, what a parity game
graph is, what a run over the game graph is etc. We will also mention a way to construct
this game arena from an 𝜔-automaton.
There are multiple algorithm for solving the simulation for each of the simulation types,
the current ones are mentioned in the upcoming chapters. The aim of this thesis is to
implement these algorithms as efficiently as possible using a programming language C++
with a proper command line interface to operate the program easily. The implementation
is described in chapter 6.
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Chapter 2

Preliminaries

As the whole thesis is revolving around formal verification, we should define the concept.
Formal verification uses an abstract mathematical model of the system or software and for-
mally proves either its correctness or inaccuracy. Nevertheless, it is very computationally
intensive. Formal verification [3] uses various methods, such as Theorem Proving, Static
Analysis, or Model Checking.

We will start the thesis by defining some basic concepts, which will accompany us during
the whole text. Atomic proposition 𝑎 is a named boolean value, which represents a simple
value. The value of 𝑎 can be either True or False. 𝐴𝑃 is a finite set of atomic propositions,
e.g. {𝑎, 𝑏}. The alphabet is then denoted as Σ = 2𝐴𝑃 , i.e. {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}. An infinite
word, i.e. 𝜔-word is an infinite sequence of symbols of the alphabet Σ, 𝑤 = 𝑤1𝑤2𝑤3 . . . ∈ Σ𝜔.

Definition 1 An 𝜔-automaton is a quintuple ⟨𝑄,Σ, 𝛿, 𝑞𝑖, 𝐴𝑐𝑐⟩, where 𝑄 is a finite set of
states, Σ is a finite alphabet, 𝛿 : 𝑄×Σ → 2𝑄 is the state transition function, 𝑞𝑖 is the initial
state, 𝐴𝑐𝑐 is the acceptance condition. In case of deterministic 𝜔-automaton, a transition
function 𝛿 : 𝑄× Σ → 𝑄 is used.

The acceptance condition can be set as a set of states, as a set of state-sets or as a
function from the set of states to a finite set of natural numbers.

A Büchi automaton 𝐴 is an 𝜔-automaton, a variant of a finite automaton, which takes
in an 𝜔-word (infinite). As the word is infinite, the automaton 𝐴 would run for an infinite
amount of time. Automaton 𝐴 accepts a run that happens to occur an infinite amount of
times over a state 𝑞 ∈ 𝐹 . The accepting runs of an 𝜔-automata have to check the entire
input word, not just a finite prefix. This implies that acceptance criteria are needed to
check infinite runs acceptance. Büchi acceptance helps us to determine whether a run was
successful or not. A word 𝛼 ∈ Σ𝜔 is accepted by a Büchi automaton 𝐴 iff there is a run 𝜌
of 𝐴 that satisfies the following condition [6]:

𝐼𝑛𝑓(𝜌) ∩ 𝐹 ̸= ∅

i.e at least one of the states 𝑠 ∈ 𝐹 of the automaton 𝐴 has to be visited infinitely often
during the run 𝜌.

Definition 2 A nondeterministic Büchi automaton NBA 𝐴 = ⟨Σ, 𝑄, 𝑞𝑖,∆, 𝐹 ⟩ has a finite
alphabet Σ, a finite set of states 𝑄, an initial states 𝑞𝑖 ∈ 𝑄, a finite set of transitions
∆ ⊆ 𝑄× Σ ×𝑄 and a finite set of accepting states 𝐹 ⊆ 𝑄.
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Definition 3 A run of Büchi automaton 𝐴 is a sequence 𝜋 = 𝑞0𝑎0𝑞1𝑎1𝑞2𝑎2 . . . of states
and letters such that for every 𝑖, (𝑞𝑖, 𝑎𝑖, 𝑞𝑖+1) ∈ ∆.

In this thesis, we will be using this notation 𝑝
a−→ 𝑞 to denote (𝑝, 𝑎, 𝑞) ∈ 𝛿.

Example 1 Consider the NBA with the alphabet Σ = {𝑎, 𝑏} in Figure 2.1.

𝑞0start 𝑞1

𝑏

𝑎

𝑏

Figure 2.1: Automaton 𝐴

In order for a run 𝜌 to be accepted by 𝐴, 𝜌 has to visit state 𝑞1 an infinite amount of times.
For example, we can have an accepting word 𝜌 described by an 𝜔-regular expression (𝑏𝑎)𝜔,
so the run is 𝜋 = 𝑞0, 𝑞1, 𝑞0 . . .. The condition of state 𝑞1 ∈ 𝐹 being visited infinitely often is
fulfilled. Therefore the run 𝜌 is accepted by the automaton 𝐴.

In order to compute a x-simulation relation over Büchi automaton we need to know
what a preorder is. Preorders are most often denoted as ⊑. The strict version of a preorder
is denoted as @, i.e. 𝑥 @ 𝑦 if 𝑥 ⊑ 𝑦 ∧ 𝑦 ̸⊑ 𝑥.

Definition 4 Preorder ⊑ is a binary relation that is reflexive and transitive. Reflexivity
tells us that for each 𝑥, 𝑥 ⊑ 𝑥 holds. Transitivity is that 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧.

Simulation relations are binary relations on the states of an automaton 𝐴. A simulation
relates states whose steps are step-wise related, i.e. they can mimic their steps. We will
have to think about how a word is accepted, not just whether the word is accepted. We
can formally describe a simulation between two states 𝑞 and 𝑝 as a parity game between
two players, called Spoiler and Duplicator. Duplicator wants to prove that 𝑝 can step-wise
mimic the movement of 𝑞. Spoiler wants to disprove that.

We know, that simulation relations are efficiently computable, but they are often limited
by their size, which can be much smaller than other GFQ1/GFP2/GFI3 preorders. One
such example are trace inclusions, which can be obtained by a modification of the simulation
game. In simulation games, Spoiler and Duplicator build two paths called 𝜋0, 𝜋1 by choosing
a single transition at a time in an alternating fashion. Duplicator usually sees only the next
Spoiler’s step. We have an option to introduce a lookahead in section 3.5, i.e. Duplicator
sees a certain amount of Spoiler’s steps.

1Good for quotienting
2Good for pruning
3Good for inlcusion
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Chapter 3

Simulations

This chapter is focused on explaining various simulation relations over Büchi automata.
Simulation relations are preorders on the state space requiring that whenever 𝑠 ⪯ 𝑠′, i.e.
𝑠′ simulates 𝑠, state 𝑠′ can mimic all stepwise behavior of 𝑠. We also need to address that
𝑠′ ⪯ 𝑠 is not guaranteed, so state 𝑠′ can perform transitions that state 𝑠 cannot match.
Simulation relations are often used to verify, whether one system correctly implements an
other more abstract system. There are many simulation types such as direct, fair and
delayed, which will be the primary topic of this chapter. Simulations are usually used to
reduce the state space of an automaton, while preserving the language of the automaton or
to prune the state space in algorithms for complementing Büchi automata or testing their
language inclusion.
A Simulation itself is a binary relation on the states of an automaton. Simulation between
two state 𝑞0 and 𝑝0 can be described as a game played by two players - a Spoiler and a
Duplicator. The aim of the game is that the latter player wants to prove that 𝑞0 can mimic
the steps (behavior) of the state 𝑝0 and the former player wants to disprove this claim. We
will talk about this game more in depth in section 3.7.1.
We usually assume that the automaton has no dead ends, i.e., from each of automaton 𝐴’s
states, there is a possibility to get to some state in 𝐹 with a path of length at least 1. The
language defined by the automaton 𝐴 is 𝐿(𝐴) = {𝑤 ∈ Σ* | 𝐴 has an initial and final trace
on 𝑤}. Given a Büchi automaton 𝐴 and (𝑞0, 𝑞

′
0) ∈ 𝑄2 we can declare multiple types of

simulations. Direct, fair and delayed simulation all have different levels of coarseness. We
will now talk about them more.

3.1 Direct simulation
Direct simulation requires that the accepting states will match each other immediately, i.e.
the strongest condition. Thanks to this strong condition, direct simulation can be used to
safely reduce states and transition of an automaton.
Let us say that 𝑞 and 𝑝 direct-simulate each other. We can then merge these two states
together into one and it will not affect the automaton’s language. On top of that, when
𝑞 is directly simulated by 𝑝 and both of them can be reached by a predecessor 𝑠 with the
same label, then we know that the transition from 𝑠 to 𝑞 can be deleted without changing
the automaton’s language.

Definition 5 𝑞 ⪯𝑑𝑖 𝑞
′ iff 𝑞 ⪯𝑓 𝑞′∧ ∀𝑖 : 𝑞𝑖 ∈ 𝐹 , then also 𝑞′𝑖 ∈ 𝐹 .

6



Every time a run 𝜋 visits an accepting state 𝑞𝑖, then run 𝜋′ must also visit an accepting
state 𝑞′𝑖 at the same time.

Lemma 1 Direct simulation is GFQ (good for quotienting) and also GFP (good for prun-
ing).

Formally, a simulation between two states 𝑝0 and 𝑞0 can be described in terms of a game
between these two players, Spoiler and Duplicator. The latter wants to prove that 𝑞0 can
step-wise mimic the movement of state 𝑝0. This game starts in an initial configuration
(𝑞0, 𝑝0). It starts with Spoiler choosing a symbol 𝛼 ∈ Σ and a corresponding transition
denoted as 𝜋0 = 𝑝0

𝜎0−→ 𝑝1
𝜎1−→ . . . and 𝜋1 = 𝑝1

𝜎0−→ 𝑞1
𝜎1−→ . . .. Duplicator wins the game if

𝐶𝑑𝑖(𝜋0, 𝜋1) holds:

Definition 6 𝐶𝑑𝑖(𝜋0, 𝜋1) ⇐⇒ ∀(𝑖 ≥ 0) · 𝑝𝑖 ∈ 𝐹 ⇒ 𝑞𝑖 ∈ 𝐹

Since we already formally defined direct simulation, we can now try and compute a direct
simulation relation over a Büchi automaton 𝐴.

Example 2 Let us have a Büchi automaton 𝐴 from figure 3.1. We now want to compute
its simulation relation.

𝑞start 𝑟

𝑠

𝑎

𝑎

𝑎

𝑏

𝑎

Figure 3.1: Automaton 𝐴

⪯𝑑𝑖 q r s
q 1 1 0
r 0 1 0
s 0 1 1

Table 3.1: Relation table for direct simulation relation over automaton 𝐴

We can see how the simulation relation of the automaton 𝐴 from Figure 3.1 looks like.
In Table 3.1 above, we can see the final result, i.e. direct simulation relation. Table 3.1
tells us which states simulate which. We can use that information for quotienting, pruning,
language inclusion checks. We will have an example on quotienting and pruning in later

7



chapter using simulation relations. We will now go over an algorithmic way of computing
the direct simulation relation using Algorithm 1.

Algorithm 1: Complement to a direct simulation relation
Input: an NBA 𝒜
Output: ̸⊑𝑅

1: for 𝑞 ∈ 𝑄, 𝑎 ∈ 𝐴 do
2: compute 𝛿𝑟(𝑞, 𝑎) as a linked list;
3: compute card(𝛿(𝑞, 𝑎));
4: initialize all 𝑁(𝑎) with 0;
5: 𝜔 = ∅;
6: 𝒞 = NEWQUEUE();
7: for 𝑖 ∈ 𝐹 do
8: for 𝑗 ∈ 𝑄− 𝐹 do
9: if (𝑖 ∈ 𝐹 ∧ 𝑗 ̸∈ 𝐹 ) ∨ (𝛿(𝑖, 𝑎) ̸= ∅ ∧ 𝛿(𝑗, 𝑎) = ∅ for some 𝑎 ∈ Σ) then

10: 𝜔 = 𝜔 ∪ {(𝑖, 𝑗)};
11: ENQUEUE(𝒞, (𝑖, 𝑗));
12: while 𝒞 ̸= ∅ do
13: (𝑖, 𝑗) = DEQUEUE(𝒞);
14: for 𝑎 ∈ 𝐴 do
15: for 𝑘 ∈ 𝛿𝑟(𝑗, 𝑎) do
16: 𝑁(𝑎)𝑖𝑘 = 𝑁(𝑎)𝑖𝑘 + 1;
17: if 𝑁(𝑎)𝑖𝑘 == card(𝛿, (𝑘, 𝑎)) then
18: for 𝑗 ∈ 𝛿𝑟(𝑖, 𝑎) do
19: if (𝑗, 𝑘) /∈ 𝜔 then
20: 𝜔 = 𝜔 ∪ {(𝑗, 𝑘)};
21: ENQUEUE(𝒞, (𝑗, 𝑘))

22: return 𝜔

Example 3 Let us have a Büchi automaton 𝐴. We will show a step-by-step usage of the
algorithm from article [7] to compute a direct simulation preorder.
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𝑎

Figure 3.2: Automaton 𝐴

We can now compute automaton’s 𝐴 direct simulation relation. We will use algorithm
from [7], which runs in time 𝒪(𝑚𝑛) and space 𝒪(𝑛2). This algorithm is not the fastest
one invented, but it is fairly easy to use. This algorithm computes a complement ̸⊑ to a
preorder ⊑.
We will now go over the algorithm from article [7], given here as algorithm 1.

Step 1: We first have to compute our linked list 𝛿𝑟(𝑞, 𝑎) and card(𝛿(𝑞, 𝑎)). Afterwards we have
to initialize all 𝑁(𝑎)s with zeros. Set queue 𝜔 as empty for now, same for queue 𝒞.

Step 2: What we need to do now is initialize the queue 𝜔, i.e. lines 6-8. Our initialized queue
𝜔 should in this case look as follows: 𝜔 = {(1, 4), (2, 4), (3, 4)}.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4)}.

Queue 𝒞: 𝒞 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4)}.

Step 3: We are now at line 10. We start with a pair (𝑠1, 𝑠4). This pair gets deleted from
queue 𝒞. At line 12, we choose symbol 𝑎 first, but there is no transition from node 𝑠4
to 𝑠1 with symbol 𝑎, so we end at line 13 with 𝑘 = ∅. We now take symbol 𝑏, which
returns us 𝑘 = {𝑠1} at line 13. If we proceed, we get to line 15, where we see, that
𝑁(𝑎)𝑠1,𝑠1 is 1 and also card(𝛿, (𝑘, 𝑎)) is 1. At line 16, 𝑗 = ∅. No new pair was added
to 𝜔.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4)}.

Queue 𝒞: 𝒞 = {(𝑠2, 𝑠4), (𝑠3, 𝑠4)}.

Step 4: We take a pair (𝑠2, 𝑠4). With symbol 𝑎, there are no transitions from 𝑠4 with symbol 𝑎,
so we decide to go to symbol 𝑏 already. With symbol be, we get 𝑘 = {𝑠1}. Condition
at line 15 is satisfied, i.e. 𝑁(𝑎)𝑠2,𝑠1 . We get 𝑗 = {𝑠2, 𝑠4}. We add to 𝜔 and also to 𝒞
pairs (𝑠2, 𝑠1) and (𝑠4, 𝑠1).
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Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1)}.

Queue 𝒞: 𝒞 = {(𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1)}.

Step 5: We take a pair (𝑠3, 𝑠4). We already know from previous steps, that we can skip the
symbol 𝑎 in this case. With symbol 𝑏, we get 𝑘 = {𝑠1} again. In this case 𝑗 = {𝑠3, 𝑠4}.
We add to 𝜔 and 𝒞 pair (𝑠3, 𝑠1), we will not add the pair (𝑠4, 𝑠1), since it is already
in the queue 𝜔.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1)}.

Queue 𝒞: 𝒞 = {(𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1)}.

Step 6: Other pair we take out of the queue 𝒞 is (𝑠2, 𝑠1). We start with symbol 𝑎, we recieve
𝑘 = {𝑠3}. Cardinality condition on line 15 is satisfied. We get 𝑗 = {𝑠1}. We add to
the queues a pair (𝑠1, 𝑠3). We take a look at symbol 𝑏, which returns 𝑘 = ∅. No more
additions to the queues.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1), (𝑠1, 𝑠3)}.

Queue 𝒞: 𝒞 = {(𝑠4, 𝑠1), (𝑠3, 𝑠1), (𝑠1, 𝑠3)}.

Step 7: Other pair we investigate is (𝑠4, 𝑠1). In case of both symbols 𝑎 and 𝑏, we can not
make any additions to the queues. We move to other pair.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1), (𝑠1, 𝑠3)}.

Queue 𝒞: 𝒞 = {(𝑠3, 𝑠1), (𝑠1, 𝑠3)}.

Step 8: Next in order is pair (𝑠3, 𝑠1). Symbol 𝑎 gives a 𝑘 = {𝑠3}. Cardinality condition is
satisfied. We get 𝑗 = {𝑠2}. We add the pair (𝑠2, 𝑠3) to the queues. Symbol 𝑏 is not
useful in this step.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1), (𝑠1, 𝑠3), (𝑠2, 𝑠3)}.

Queue 𝒞: 𝒞 = {(𝑠1, 𝑠3), (𝑠2, 𝑠3)}.

Step 9: As well for the pair (𝑠1, 𝑠3), we start with symbol 𝑎. We get 𝑘 = {𝑠2}. Cardinality
condition is satisfied. We get 𝑗 = {𝑠3}. We can now add the pair (𝑠3, 𝑠2). We continue
with symbol 𝑏, which arranges that 𝑘 = {𝑠3, 𝑠4}. For 𝑠3, 𝑗 is empty set. For 𝑠4, the
cardinality condition is not satisfied, i.e. card(𝛿(𝑘, 𝑎)) is 2.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1), (𝑠3, 𝑠1), (𝑠1, 𝑠3), (𝑠2, 𝑠3), (𝑠3, 𝑠2)}.

Queue 𝒞: 𝒞 = {(𝑠2, 𝑠3), (𝑠3, 𝑠2)}.

Step 10: Next is pair (𝑠2, 𝑠3). Symbol 𝑎 makes 𝑘 = {𝑠2}, 𝑗 = {𝑠1}. That adds (𝑠1, 𝑠2) to the
queues. With symbol 𝑏, 𝑘 = {𝑠3, 𝑠4}. Node 𝑠3 gives us 𝑗 = {𝑠2, 𝑠4}. Only (𝑠4, 𝑠3)
gets added, because (𝑠2, 𝑠3) was already in 𝜔. For node 𝑠4, card(𝛿(𝑠4, 𝑏)) is 2, so no
new pairs to be added.
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Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1),
(𝑠3, 𝑠1), (𝑠1, 𝑠3), (𝑠2, 𝑠3), (𝑠3, 𝑠2), (𝑠1, 𝑠2), (𝑠4, 𝑠3)}.

Queue 𝒞: 𝒞 = {(𝑠3, 𝑠2), (𝑠1, 𝑠2), (𝑠4, 𝑠3)}.

Step 11: The last pair we will be taking care of is (𝑠3, 𝑠2), the rest of the pairs will not do
anything to the result of the algorithm. We would continue as before. The symbol 𝑎
will not add anything to the queues, so we will skip it. Symbol 𝑏 gives us 𝑘 = {𝑠2, 𝑠4}.
We already know that node 𝑠4 with symbol 𝑏 does not satisfy the cardinality condition
on line 15. Node 𝑠2 gives us 𝑗 = {𝑠3, 𝑠4}. We only add (𝑠4, 𝑠2) to the queues, since
(𝑠3, 𝑠2) was already there.

Queue 𝜔: 𝜔 = {(𝑠1, 𝑠4), (𝑠2, 𝑠4), (𝑠3, 𝑠4), (𝑠2, 𝑠1), (𝑠4, 𝑠1),
(𝑠3, 𝑠1), (𝑠1, 𝑠3), (𝑠2, 𝑠3), (𝑠3, 𝑠2), (𝑠1, 𝑠2), (𝑠4, 𝑠3), (𝑠4, 𝑠2)}.

Queue 𝒞: 𝒞 = {(𝑠1, 𝑠2), (𝑠4, 𝑠3), (𝑠4, 𝑠2)}.

Step 12: There are still three steps left, but we already ended up with the result. The remaining
pairs in the queue 𝒞 would be processed as the ones before. Nothing would be added
due to the pair already being in 𝜔, 𝑘 or 𝑗 being empty sets, or the cardinality condition
would not be satisfied. Nevertheless, we already found an identity of the set ⪯𝑑𝑖. We
would continue doing the same work until the queue 𝒞 was empty.

Below in Table 3.3, we can see the final result, i.e. direct simulation relation over the
automaton 𝐴 from Figure 3.2. Above the example, we can see Algorithm 1, which we used
to compute Table 3.3.

⪯𝑑𝑖 𝑠0 𝑠1 𝑠2 𝑠3
𝑠0 1 0 0 0
𝑠1 0 1 0 0
𝑠2 0 0 1 0
𝑠3 0 0 0 1

Table 3.2: Table for direct simulation relation over automaton 𝐴

3.2 Fair simulation
In fair simulation, which has the weakest condition of these simulations, Duplicator has to
visit an accepting state infinitely often only if the Spoiler did so. Fair simulation is not
enough by itself to safely remove a transition or merge state together without affecting the
original language of an automaton.

Definition 7 𝑞 ⪯𝑓 𝑞′ iff there are infinitely many 𝑗 such that 𝑞′𝑗 ∈ 𝐹 or there are only
finitely many 𝑖 such that 𝑞𝑖 ∈ 𝐹 .

Lemma 2 Fair simulation is neither GFQ or GFP.
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Direct simulation between 𝑝0 and 𝑞0 can be described as a game between two players, the
same thing applies to fair simulations. Spoiler chooses a symbol 𝛼 ∈ Σ and a corresponding
path denoted as 𝜋0 = 𝑝0

𝜎0−→ 𝑝1
𝜎1−→ . . . and 𝜋1 = 𝑝1

𝜎0−→ 𝑞1
𝜎1−→ . . .. Duplicator wins the

game if 𝐶𝑓 (𝜋0, 𝜋1) holds:

Definition 8 𝐶𝑓 (𝜋0, 𝜋1) ⇐⇒ 𝜋0 is fair, then 𝜋1 is fair

Fairness means that all words starting from state 𝑞 have a corresponding run to the
same word starting from state 𝑞′. And, for all accepting words’ runs starting from state 𝑞,
there must exist a run with accepting word starting from state 𝑞′, where the words have to
correspond, i.e. be the same.

Example 4 Let us have a Büchi automaton 𝐴 in Figure 3.3. We will compute a fair
simulation relation over the automaton 𝐴.

𝑞start 𝑟

𝑏

𝑎

𝑎

Figure 3.3: Automaton 𝐴

⪯𝑓 𝑞 𝑟

𝑞 1 0
𝑟 1 1

Table 3.3: Table for fair simulation relation over automaton 𝐴

As we can clearly see, only 𝑟 ⪯𝑓 𝑞 is satisfied, but not the other way around. There is no
transition with symbol 𝑏 that state 𝑟 could use to get to state 𝑞.

3.3 Delayed simulation
Delayed simulation does not have as strong accepting condition as direct simulation. It
introduces a delay in which we can still match a state. If the 𝑖-th state of path from state 𝑞
is accepting, then there exists such 𝑗 ≥ 𝑖 such that 𝑗-th state of matching path from state
𝑝 is accepting. Therefore we can find more pairs of states that we can reduce safely by
merging the together. However, delayed simulation does not guarantee a safe delete of a
transition while preserving the language of an automaton.

Definition 9 𝑞 ⪯𝑑𝑒 𝑞
′ iff, for all 𝑖, if 𝑞𝑖 ∈ 𝐹 , then there is also 𝑗 ≥ 𝑖 such that 𝑞′𝑗 ∈ 𝐹 .

Definition 9 tells us that every time run 𝜋 visits an accepting state 𝑞𝑖, then run 𝜋′ has
to visit at least one accepting state 𝑞′𝑗 later on to cover the run 𝜋.

Lemma 3 Delayed simulation is GFQ, but not GFP.
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Also delayed simulation between two states 𝑝0 and 𝑞0 can be describe as a game between two
players, Spoiler and Duplicator. The game also starts with Spoiler choosing a symbol 𝛼 ∈ Σ

and a corresponding path denoted as 𝜋0 = 𝑝0
𝜎0−→ 𝑝1

𝜎1−→ . . . and 𝜋1 = 𝑝1
𝜎0−→ 𝑞1

𝜎1−→ . . .,
where 𝜋1 is Duplicator’s path. Duplicator wins the game if 𝐶𝑑𝑒(𝜋0, 𝜋1) holds:

Definition 10 𝐶𝑑𝑒(𝜋0, 𝜋1) ⇐⇒ ∀(𝑖 ≥ 0) · 𝑝𝑖 ∈ 𝐹 ⇒ ∃(𝑗 ≥ 𝑖) · 𝑞𝑗 ∈ 𝐹

With this formal definition, we can compute a delayed simulation relation over a Büchi
automaton 𝐴, defined below. 𝐶𝑑𝑖(𝜋0, 𝜋1) implies 𝐶𝑑𝑒(𝜋0, 𝜋1), which also implies 𝐶𝑓 (𝜋0, 𝜋1).

Example 5 Let us have a Büchi automaton 𝐴 in Figure 3.4. We will compute a delayed
simulation relation over the automaton 𝐴.

𝑞0start

𝑞1

𝑞2

𝑞3𝑏

𝑎, 𝑏

𝑏

𝑎

𝑎

𝑎

𝑎

𝑎

Figure 3.4: Automaton 𝐴

⪯𝑑𝑒 𝑞0 𝑞1 𝑞2 𝑞3
𝑞0 1 0 0 0
𝑞1 1 1 1 1
𝑞2 1 1 1 1
𝑞3 1 1 1 1

Table 3.4: Table for delayed simulation relation over automaton 𝐴

We can compute the delayed simulation relation using the formal definition from above, or
we can transform the automaton 𝐴 into a parity game and use Jurdzinski’s lifting algorithm
[8] to solve the parity game. All these steps can be found in [5]. Table 3.4 above displays
a delayed simulation relation that we can use further to minimize an automaton, or check
language inclusion. . . We will have an example on how to minimize automaton using delayed
simulation relation in chapter 5.

3.4 Multipebble simulation
In this type of simulation the Duplicator is given 𝑛 pebbles which can be used to hedge her
bets and delay the resolution of nondeterminism. Therefore she has increased power and
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can produce coarser GFQ preorders.
Multipebble, direct and delayed simulations are also GFQ preorders, but they are more
coarser than their basic versions. They are PTIME computable for a fixed number of
pebbles.
However, multipebble simulations are overall PSPACE-hard, which is hard to compute.
It is also exponential with the number of pebbles we are using. That is the reason why
lookahead simulations are much more popular instead. These are used to compute an
under-approximations of multipebble simulations.

3.5 Lookahead simulations
In a standard simulation game, the players are choosing transitions to build a path 𝜋0, 𝜋1. In
this case, Duplicator knows only the next step of Spoiler and moves by a single transition.
We can obtain a coarser relation if we let Duplicator see a fixed number of lookaheades
of Spoiler’s chosen transitions. In extreme case, the Duplicator can even see the whole
Spoiler’s path in advance.
The greater the lookahead we choose, the harder the simulation is to compute. In the case
of lookahead 𝑘 = 1, the lookahead simulation is identical to the ones we already described.
The lookahead is put under Duplicator’s control. Every round she has to choose according
to Spoiler’s move how much lookahead she needs this round (up to 𝑘, a set number of
lookaheads) [4].
Let us have a configuration of a game denoted by a pair of states (𝑞0, 𝑞1). From such
configuration, one round of the game is played as follows:

• Spoiler chooses a sequence of 𝑘 consecutive transitions
𝑝𝑖

𝜎𝑖−→ 𝑝𝑖+1
𝜎𝑖+1−−−→ . . .

𝜎𝑖+𝑘−1−−−−→ 𝑝𝑖+𝑘

• Duplicator chooses a lookahead 𝑚 such that 1 < 𝑚 ≤ 𝑘

• Duplicator then responses with a sequence of 𝑚 transitions
𝑞𝑖

𝜎𝑖−→ 𝑞𝑖+1
𝜎𝑖+1−−−→ . . .

𝜎𝑖+𝑚−1−−−−−→ 𝑞𝑖+𝑚

• The rest of Spoiler’s moves 𝑝𝑖+𝑚
𝜎𝑖+𝑚−−−→ 𝑝𝑖+𝑚+1

𝜎𝑖+𝑚+1−−−−−→ . . .
𝜎𝑖+𝑘−1−−−−→ 𝑝𝑖+𝑘 is forgotten

and the game continues with configuration (𝑝𝑖+𝑚, 𝑞𝑖+𝑚). The game either halts or
continues forever, which creates two infinite paths.

3.6 Backward direct simulation
Backward direct simulation ⊑𝑏𝑤−𝑑𝑖 is defined like ordinary simulation, except the fact, that
the transitions are going backwards:
Consider an initial configuration (𝑝𝑖, 𝑞𝑖), Spoiler takes a transition 𝑝𝑖+1

𝜎𝑖−→ 𝑝𝑖, Duplica-
tor now replies with a transition 𝑞𝑖+1

𝜎𝑖−→ 𝑞𝑖, so the configuration after this round is
(𝑝𝑖+1, 𝑞𝑖+1). Along the way, both Spoiler and Duplicator build infinite backward traces,
𝜋0 = . . .

𝜎1−→ 𝑝1
𝜎0−→ 𝑝0 for Spoiler and for Duplicator 𝜋1 = . . .

𝜎1−→ 𝑞1
𝜎0−→ 𝑞0. In order for

Duplicator to win, both accepting and initial states have to be matched:

𝒞𝑏𝑤
𝐼,𝐹 (𝜋0, 𝜋1) ⇐⇒ ∀(𝑖 ≥ 0) · 𝑝𝑖 ∈ 𝐹 ⇒ 𝑞𝑖 ∈ 𝐹 ∧ 𝑝𝑖 ∈ 𝐼 ⇒ 𝑞𝑖 ∈ 𝐼
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We see, that 𝑝 ⊑𝑏𝑤−𝑑𝑖 𝑞 holds if Duplicator has a winning strategy in the backward simula-
tion game starting from (𝑝, 𝑞) with winning condition 𝒞𝑏𝑤

𝐼,𝐹 . Backward simulation relation
⊑𝑏𝑤−𝑑𝑖 is an efficiently computable good for quotienting preorder.

Lemma 4 Backward simulation ⊑𝑏𝑤−𝑑𝑖 is a PTIME computable GFQ preorder on nonde-
terministic Büchi automata.

relation on NBA complexity quotienting inclusion pruning
direct simulation ⊑𝑑𝑖 PTIME X X X

fair simulation ⊑𝑓 PTIME X X X
delayed simulation ⊑𝑑𝑒 PTIME X X X

direct lookahead simulation ⪯𝑘−𝑑𝑖 PTIME X X X
fair lookahead simulation ⪯𝑘−𝑓 PTIME X X X

delayed lookahead simulation ⪯𝑘−𝑑𝑒 PTIME X X X
backward direct simulation ⊑𝑏𝑤−𝑑𝑖 PTIME X X X

Table 3.5: Summary of results for simulation-like relations on NBA

Table 3.5 above, we can see which simulations are good for quotienting, good for pruning
and good for inclusion. We can also see their complexity. An extended version of this table
can be found in [12].

3.7 Infinite games
Infinite games introduced in this section are two-player games played on a finite graph. A
game has an arena and a winning condition. We will first declare what an arena is and
then we will take a look at winning conditions.

Definition 11 An arena 𝛼 is a quadruple 𝛼 = (𝑉0, 𝑉1, 𝐸, 𝑓), where 𝑉0 is a set of vertices
for Player 0 and 𝑉1 is a set of vertices for Player 1. Edge relation 𝐸 is ⊆ (𝑉0∪𝑉1)×(𝑉0∪𝑉1).
𝐸 could also be called a set of moves. 𝑓 is a strategy.

The games we will talk about are played by two players, called Player 0 and Player 1. We
will denote the player by 𝜎 = {0, 1} and consider Player 𝜎. When referring to the other
player, we will speak of the player as Player 𝜎’s opponent and denote him as Player 𝜎. We
set 𝜎 = 1 − 𝜎 for 𝜎 ∈ {0, 1} . The two players are called Spoiler and Duplicator. Spoiler is
the one starting - Player 0. Duplicator is Player 1. These games have multiple outcomes.
Either the game halts, which means, that the Spoiler wins, or the game can produce two
infinite runs 𝜋 = 𝑞0𝑎0𝑞1𝑎1𝑞2 . . . and 𝜋′ = 𝑞′0𝑎

′
0𝑞

′
1𝑎

′
1𝑞

′
2 . . . . With these two runs, we can now

introduce the rules to determine the winner of a game played between the two players.
These rules are not applied to a game graph of any sort, just a regular NBA.

• Direct simulation: Duplicator wins iff, for all 𝑖, if 𝑞𝑖 ∈ 𝐹 , then also 𝑞′𝑖 ∈ 𝐹

• Fair simulation: Duplicator wins iff there are infinitely many 𝑗 such that 𝑞′𝑗 ∈ 𝐹 or
there are only finitely many 𝑖 such that 𝑞𝑖 ∈ 𝐹

• Delayed simulation: Duplicator wins iff, for all 𝑖, if 𝑞𝑖 ∈ 𝐹 , then there is 𝑗 ≥ 𝑖 such
that 𝑞′𝑗 ∈ 𝐹
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3.7.1 Parity games

Parity games are probably the most important type of infinite games. Parity games are
usually used in verification and synthesis. Solving a parity game is in NP, but it is unknown,
if the game can be solved in polynomial time. This is one of the reasons why this topic
is a highly active research topic. The best known algorithm can solve a parity game in
exponential time.
Parity games are played by two players - player Zero and player One. Every parity game
has to be won either by player Zero or player One. For every parity game, there is a winning
strategy for one of these players. A strategy is called a winning strategy if, no matter how
Spoiler plays the game, Duplicator always wins. Consider player Zero having a winning
strategy 𝑓𝑣0 for a game 𝑃 (𝐺, 𝑣0) and will always stick to it, player Zero will always win
every parity game 𝑃 (𝐺, 𝑣0). This means that we can possibly split the game arena into two
different sets according to player’s Zero and One win opportunity from a vertex. So the
solution of a parity game is a set of winning vertices for each player. The goal of solving a
parity game is to determine, whether there are winning strategies for each player and how
do they look like.

𝑊0 = {𝑣 ∈ 𝑉 | player Zero has a winning strategy from 𝑣}
𝑊1 = {𝑣 ∈ 𝑉 | player One has a winning strategy from 𝑣}

Problem of splitting an arena into 𝑊0 and 𝑊1 is in 𝑁𝑃 ∩𝑐𝑜−𝑁𝑃 . It is yet to be discovered
if this problem is in 𝑃 . We will talk about the principles of parity games and how they are
played in detail in Chapter 4.
Parity games are memoryless determined, i.e. memoryless strategy has to return the same
vertex regardless of the history of the play. Such strategy does not depend on the history
and can be represented without any memory. Therefore we usually work with memory less
strategies, because they are easier to work with. Memory less determinacy of a parity game
means that in every parity game, both players win memory less. Memory less strategy is a
strategy that does not need memory at all, where one can choose 𝑀 , where 𝑀 is a finite
set, to be a singleton. We can view memory less strategies as partial functions: 𝑉𝜎 → 𝑉 .
For ease in notation, we will use this representation in our thesis.

Definition 12 A game 𝐺 is determined iff 𝑉 = 𝑊0(𝐺) ∪𝑊1(𝐺).

Definition 13 A game 𝐺 is memory less determined iff, for every position 𝑣 ∈ 𝑉 , there
exists a memory less strategy that wins the game from a position 𝑣 for some player.

Let ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}. We can denote a strategy for Duplicator in game 𝐺⋆
𝐴(𝑞0, 𝑞

′
0) as a function

𝑓 which determines the next move for Duplicator according to the history of choices of
Spoiler up to a certain point in the game. A strategy 𝑓 for Duplicator is a winning strategy,
when there is no chance for a Spoiler to win - the game is always won by Duplicator. The
strategy 𝑓 is winning for Duplicator whenever 𝜋 = 𝑞0𝑎0𝑞1𝑎1 . . . is an infinite run through
the automaton 𝐴 and 𝜋′ = 𝑞′0𝑎

′
0𝑞

′
1𝑎

′
1 . . . is a run defined by 𝑞′𝑖+1 = 𝑓(𝑞0𝑎0𝑞1𝑎1 . . . 𝑞𝑖+1), then

Duplicator wins based on 𝜋 and 𝜋′.

Definition 14 Let 𝐴 be a Büchi automaton. Let ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}. A state 𝑞′ of this automa-
ton 𝐴 direct, delayed, fair simulates another state of automaton 𝐴𝑞, if there is a winning
strategy for Duplicator 𝐺⋆

𝐴(𝑞0, 𝑞
′
0). We can denote such a relationship by 𝑞 ⪯⋆ 𝑞

′.
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Proposition 1 Let 𝐴 be a Büchi automaton.
For ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}, ⪯⋆ is a so called preorder (transitive and reflexive relation) on
the state set 𝑄.

1.2. These relations are ordered by containment: ⪯𝑑𝑖⊆⪯𝑑𝑒⊆⪯𝑓 .

3. For ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}, if 𝑞 ⪯⋆ 𝑞
′, then we can say that 𝐿(𝐴[𝑞]) ⊆ 𝐿(𝐴[𝑞′]).

We got through the basics of parity games, now we can take a look into one.

Example 6 Below we can see a constructed parity game arena 𝒢. We distinguished the
two players - player Zero and player One, by a color. Nodes that are blue are part of 𝑉1

and nodes of brown color are in 𝑉0. The last value in 𝑉0’s nodes is a symbol. Every node
has a priority, which is assigned to each of the nodes by a function 𝑝. We will mention this
topic in much more detail in chapter 4.

𝑣(𝑞,𝑞,𝑎,2)

𝑣(𝑞,𝑟,1)

𝑣(𝑞,𝑞,0)

𝑣(𝑞,𝑟,𝑏,0)

Figure 3.5: Parity game graph
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Chapter 4

Transforming simulations into
parity games

In this chapter, we will describe an algorithm that computes a parity game graph 𝐺𝐴
⋆ from a

simulation. This step reduces our problem of solving a simulation to solving a parity game.
We will describe an algorithm for this conversion for fair and then for delayed simulation.
We can create a parity game graph 𝐺𝐴

⋆ , where ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}. We will discuss the option
of that in the latter sections more.
We can construct a parity game graph 𝐺𝐴

⋆ = (𝑉 ⋆
0, 𝑉

⋆
1, 𝐸

⋆, 𝑓⋆). This game is played by two
players, Spoiler and Duplicator. Therefore player One represents Duplicator and player
Zero represents Spoiler. We make both of the players move their pebbles, which are placed
on the starting vertex in the game graph, according to their moves. Spoiler is starting and
he has to choose a transition (𝑞𝑖, 𝑎, 𝑞𝑖+1) and move its pebble to 𝑞𝑖+1. Afterwards, it is
Duplicator’s turn: he has to choose a transition such that (𝑞′𝑖, 𝑎, 𝑞

′
𝑖+1) ∈ ∆ and moves its

(Duplicator’s) pebble to 𝑞′𝑖+1. If there is no 𝑎-transition that starts from 𝑞′𝑖, then the game
halts and Spoiler wins.
We will now introduce a straight forward way to construct fair and delayed game from
⋆-simulation, where ⋆ ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}.

4.1 Fair parity game
A parity game on graph 𝐺 starting at vertex 𝑣0 ∈ 𝑉 is denoted as 𝑃 (𝐺, 𝑣0). This game is
played by two players, player Zero and player One. The game starts by placing a pebble on
a vertex 𝑣0. Players One and Zero can move with the pebble according to these rules: with
pebble currently being on vertex 𝑣𝑖 ∈ 𝑉𝑖, where 𝑖 ∈ {0, 1}. Player Zero (One, respectively)
moves the pebble to a neighbor 𝑣𝑖+1 such that (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸. If this rule cannot be applied,
i.e. one of the players cannot move the pebble, because there are no outgoing edges in the
game, then the game ends and the player who cannot move loses. Otherwise, the game
goes on forever and a path gets defined. We denote such a path as 𝜋 = 𝑣0𝑣1𝑣2 . . . in 𝐺.
Such a path is called a play of the game. The only thing left is to determine the game’s
winner. We do it as follows. Let 𝑘𝜋 be the minimum priority that occurs infinitely often in
the play 𝜋. Player Zero wins if 𝑘𝜋 is even, whilst player One wins if 𝑘𝜋 is odd.
As we already know how the parity game is played, we can now focus on how to construct
the game graph 𝐺𝑓

𝐴 for fair parity game. The game graph is 𝐺𝑓
𝐴 = ⟨𝑉 𝑓

0 , 𝑉
𝑓
1 , 𝐸

𝑓
𝐴, 𝑝

𝑓
𝐴⟩. This

game graph will have only three priorities, i.e. 𝑝𝑓𝐴 = {0, 1, 2}. Another very important

18



thing is that for each pair of states (𝑞, 𝑞′) ∈ 𝑄2, there will be a vertex 𝑣(𝑞, 𝑞′) ∈ 𝑉 𝑓
0 such

that player Zero has a winning strategy from 𝑣(𝑞,𝑞′) iff 𝑞 ⪯𝑓 𝑞′. 𝐺𝑓
𝐴 is formally denoted as:

𝑉 𝑓
0 = {𝑣(𝑞,𝑞′,𝑎) | 𝑞, 𝑞′ ∈ 𝑄 ∧ ∃𝑞′′((𝑞′′, 𝑎, 𝑞) ∈ ∆)}

𝑉 𝑓
1 = {𝑣(𝑞,𝑞′) | 𝑞, 𝑞′ ∈ 𝑄}

𝐸𝑓
𝐴 = {𝑣(𝑞1,𝑞′1,𝑎), 𝑣(𝑞1,𝑞′2) | (𝑞′1, 𝑎, 𝑞

′
2) ∈ ∆} ∪ {𝑣(𝑞1,𝑞′1), 𝑣(𝑞2,𝑞′1,𝑎) | (𝑞1, 𝑎, 𝑞2) ∈ ∆}

p𝑓
𝐴(𝑣) =

⎧⎨⎩
0, (𝑣 = 𝑣(𝑞,𝑞′,𝑎) ∨ 𝑣 = 𝑣(𝑞,𝑞′)) ∧ 𝑞′ ∈ 𝐹,

1, 𝑣 = 𝑣(𝑞,𝑞′), 𝑞 ∈ 𝐹,∧𝑞′ /∈ 𝐹,

2, otherwise

In order to get a game graph 𝐺𝑑𝑒
𝐴 for delayed simulation we require to make only trivial

modification to 𝐺𝑓
𝐴. We will talk about this in the next chapter.

Example 7 Consider the following Büchi automaton 𝐴 given in Figure 4.1. Let us trans-
form 𝐴 into a parity game 𝐺𝑓

𝐴

𝑞start 𝑟

𝑏

𝑎

Figure 4.1: Automaton 𝐴 that we transform into a parity game 𝐺𝑓
𝐴

We use the formal definition from above to create the parity game graph 𝐺𝑓
𝐴. This

formal definition can be found in [5]. These formal definitions help us build the parity
game graph 𝐺𝑓

𝐴, which can be also found in Figure 4.2, which originally came up with these
rules. The game can be solved by using the Jurdzinski’s lifting algorithm from [5], or the
efficient verstion of it from [5]. The outcome of this algorithm determines the winning set
of vertices for each player, which tells us, if there are vertices that are always winning for
one of these two players. The running time of this algorithm is 𝒪(𝑚𝑛).

𝑣(𝑞,𝑞,𝑎,2) 𝑣(𝑞,𝑟,𝑎,0) 𝑣(𝑟,𝑞,𝑎,2) 𝑣(𝑟,𝑟,𝑎,0)

𝑣(𝑞,𝑞,2) 𝑣(𝑞,𝑟,0) 𝑣(𝑟,𝑞,1) 𝑣(𝑟,𝑟,0)

Figure 4.2: Automaton 𝐴 that we transform into a parity game 𝐺𝑓
𝐴
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Above, we can see a complete transformation from a Büchi automaton 𝐴 into a fair
parity game 𝐺𝑓

𝐴. In this stage, we are ready to use Jurdzinski’s lifting algorithm to solve
this parity game. The result we get is a winning strategy 𝑓 for each of the players, i.e.
player Zero (One, respectively) always wins the game using this strategy 𝑓 .
After the algorithm’s run is complete, every vertex has a value 𝜌(𝑣) assigned to them. If
the value 𝜌(𝑣) < ∞, then player Zero has a winning strategy from that vertex. Otherwise,
player One has a winning strategy from the vertex 𝑣.

4.2 Direct parity game
Even though there are better algorithms for solving direct simulation, there is a possibility
to reformulate a direct simulation into a parity game. The parity game graph 𝒢𝑑𝑖

𝐴 is exactly
the same as 𝒢𝑓

𝐴, except that all nodes have priority of value 0, i.e. 𝑝𝑑𝑖𝐴 (𝑣) = 0. There is also
one more modification, we have to remove some edges:

𝐸𝑑𝑖
𝐴 = 𝐸𝑓

𝐴\({(𝑣, 𝑣(𝑞1,𝑞′1)) | 𝑞1 ∈ 𝐹 ∧ 𝑞′1 /∈ 𝐹} ∪ {(𝑣(𝑞1,𝑞′1), 𝑤) | 𝑞1 /∈ 𝐹 ∧ 𝑞′1 ∈ 𝐹})

Vertex 𝑣 has a set of successors 𝑤. Once the game graph 𝒢𝑑𝑖
𝐴 is constructed, we run it

through Jurdzinski’s lifting algorithm to solve the game.

4.3 Delayed parity game

In the previous section we talked about constructing 𝐺𝑓
𝐴. Now we have to make these small

modifications we mentioned at the end of the previous section. We play the game the same
way we play fair parity game. It is still a two player game. First, we will declare this
construction formally.

𝑉 𝑑𝑒
0 = {𝑣(𝑏,𝑞,𝑞′,𝑎) | 𝑞, 𝑞′ ∈ 𝑄 ∧ 𝑏 ∈ {0, 1} ∧ ∃𝑞′′((𝑞′′, 𝑎, 𝑞) ∈ ∆)}
𝑉 𝑑𝑒

1 = {𝑣(𝑏,𝑞,𝑞′) | 𝑞, 𝑞′ ∈ 𝑄 ∧ 𝑏 ∈ {0, 1} ∧ (𝑞′ ∈ 𝐹 → 𝑏 = 0)}

The extra bit 𝑏 we have here (it is not present in fair parity game) tells us whether Spoiler’s
pebble has witnessed an accepting state without Duplicator’s pebble having witnessed one
yet. The edges of 𝐺𝑑𝑒

𝐴 are denoted as follows:

𝐸𝑑𝑒
𝐴 = {𝑣(𝑏,𝑞1,𝑞′1,𝑎), 𝑣(𝑏,𝑞1,𝑞′2) | (𝑞′1, 𝑎, 𝑞

′
2) ∈ ∆ ∧ 𝑞′2 /∈ 𝐹}

∪ {𝑣(𝑏,𝑞1,𝑞′1,𝑎), 𝑣(0,𝑞1,𝑞′2) | (𝑞′1, 𝑎, 𝑞
′
2) ∈ ∆ ∧ 𝑞′2 ∈ 𝐹}

∪ {𝑣(𝑏,𝑞1,𝑞′1), 𝑣(𝑏,𝑞2,𝑞′1,𝑎) | (𝑞1, 𝑎, 𝑞2) ∈ ∆ ∧ 𝑞′2 /∈ 𝐹}
∪ {𝑣(𝑏,𝑞1,𝑞′1), 𝑣(1,𝑞2,𝑞′1,𝑎) | (𝑞1, 𝑎, 𝑞2) ∈ ∆ ∧ 𝑞′2 ∈ 𝐹}.

All that is left is to describe is a priority function of 𝐺𝑑𝑒
𝐴 .

𝑝𝑑𝑒𝐴 (𝑣) =

{︂
𝑏, 𝑣 = 𝑣(𝑏,𝑞,𝑞′)
2, 𝑣 ∈ 𝑉0
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Player Zero has a winning strategy in a parity game 𝒢 from vertex 𝑣(𝑏, 𝑞, 𝑟) iff 𝑟 ⪯𝑑𝑒 𝑞,
𝑏 = 1 and 𝑞 ∈ 𝐹 and 𝑟 /∈ 𝐹 . If bit 𝑏 = 0, otherwise. We have now mentioned everything we
need to transform a nondeterministic Büchi automaton into a delayed parity game.

Example 8 Lets us have a NBA 𝐴. We will now try and solve the delayed simulation
relation for the automaton 𝐴. We will go through the construction of the game graph we
just mentioned above. Then we will use Algorithm 2 to solve the parity game. Even though
it is a naive algorithm, it should not take a long time to compute the simulation relation.

𝑞start 𝑟

𝑏

𝑎

𝑎

𝑏

Figure 4.3: Automaton 𝐴

We first need to transform the automaton 𝐴 into a parity game graph 𝒢. We can see it
below in Figure 4.4.

𝑣(0,𝑞,𝑞,𝑎) 𝑣(0,𝑞,𝑟,𝑎) 𝑣(0,𝑟,𝑞,𝑏) 𝑣(0,𝑟,𝑟,𝑏)

𝑣(1,𝑞,𝑞,𝑎) 𝑣(1,𝑞,𝑟,𝑎) 𝑣(1,𝑟,𝑞,𝑏) 𝑣(1,𝑟,𝑟,𝑏)

𝑣(0,𝑞,𝑞) 𝑣(0,𝑞,𝑟) 𝑣(0,𝑟,𝑞) 𝑣(0,𝑟,𝑟) 𝑣(1,𝑞,𝑟) 𝑣(1,𝑟,𝑟)

Figure 4.4: Automaton 𝐴 that we transform into a parity game 𝐺𝑓
𝐴
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⪯𝑓 𝑞 𝑟

𝑞 1 0
𝑟 1 1

Table 4.1: Table for delayed simulation relation over automaton 𝐴

Step 1: We start by determining how many vertices with a priority 1 are in the game. This
number is denoted as 𝑛1. In our case, 𝑛1 = 2. It is important to know, when the 𝜌(𝑣)
overflows to ∞, because 𝑛1 + 1 = ∞.

Step 2: We can start with vertices that belong to player Zero (𝑉0). We can see, that all of
these vertices have priority 2, which means that nothing can be changed. We will not
do anything this iteration.

Step 3: For the vertices of player One(𝑉1), we can see that there are two with the priority 1.
We will take care of these (1, 𝑞, 𝑟), (1, 𝑟, 𝑟), because they will change their 𝜌(𝑣) value.
Both of these vertices will now have 𝑟ℎ𝑜(𝑣) = 1. The rest of player’s One vertices will
not change, since their priority is 0 and at the same time, there is not a successor for
any of those with 𝜌(𝑣) being ∞. That is it for the first iteration.

Step 4: Player’s Zero vertices (1, 𝑟, 𝑟, 𝑏), (1, 𝑟, 𝑞, 𝑏) both only have a successor (1, 𝑟, 𝑟). That
means that they will always take this vertex’s 𝜌(𝑣). Vertices (1, 𝑟, 𝑟, 𝑏), (1, 𝑟, 𝑞, 𝑏) will
update theirs 𝜌(𝑣) = 1.

Step 5: In the second iteration we will do the same exact steps as we did before for player
One. This time, we will increment the value again - 𝜌(𝑣) = 2 for both vertices
(1, 𝑞, 𝑟), (1, 𝑟, 𝑟).

Step 6: This is now our third iteration, we will do the exact same steps for both of the
players. We will repeat these steps until none of the vertices 𝜌(𝑣) value changes.
That state comes in iteration number five, where the state of the game is as follows:
(1, 𝑞, 𝑟), (1, 𝑟, 𝑟) both have their 𝜌(𝑣) = ∞, same goes for vertices (1, 𝑟, 𝑟, 𝑏), (1, 𝑟, 𝑞, 𝑏)
that belong to player Zero.

Step 7: We can now determine the delayed simulation relation. We can see the result above
in Table 4.1.

4.4 Solving a parity game
Since we already know how to construct different types of parity games, we now have to
take a look at algorithm for solving parity games. There are multiple parity game solv-
ing algorithms, but we will focus on Jurdzinski’s lifting algorithm and its modified version
from [5].
Let us start with the easier solution - Jurdzinski’s lifting algorithm. We have to define a
few operators in order to understand what is really going on.
We have a parity game graph 𝒢, where 𝑛 is its number of vertices and 𝑚 is its number of
edges. We assume only three possible priority values: 𝑝 : 𝑉 → {0, 1, 2}. We have to define
𝑛1 =| 𝑝−1(1) |. The algorithm gives every vertex a so called progress measure in the range
𝐷 = {0, . . . , 𝑛1} ∪ {∞}. Initially, every one of these vertices of game graph 𝒢 have value 0.
The progress measure is being incremented until the value of a fixed point is reached. We
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assume that 𝐷 is totally ordered, i.e. 𝐷 is a partial order in which any two elements are
comparable.
For every function 𝜌 : 𝑉 → 𝐷, called a measure, and 𝑣 ∈ 𝑉 , let:

val(𝜌, 𝑣) =

{︂
⟨min({𝜌, 𝑤) | (𝑣, 𝑤) ∈ 𝐸})⟩𝑣, if 𝑣 = 𝑉0,
⟨max({𝜌, 𝑤) | (𝑣, 𝑤) ∈ 𝐸})⟩𝑣, if 𝑣 = 𝑉1

Jurdzinski defines a ’lifting’ operator, which gets a measure 𝜌 and 𝑣 ∈ 𝑉 and gives us a
new, updates measure. In order to define the lifting operator, we first need to define how
an individual vertex measure is updated with respect to its neighbors:

update(𝜌, 𝑣) =𝑖𝑛𝑐𝑟𝑣(val(𝜌, 𝑣))

The lifted measure, lift(𝜌, 𝑣) : 𝑉 → 𝐷, is defined as follows:

lift(𝜌, 𝑣)(𝑢) =

{︂
update(𝜌, 𝑣), if 𝑢 = 𝑣
𝜌(𝑢), otherwise

Now we have declared all the necessary parts in order to describe Jurdzinski’s algorithm
itself.

Algorithm 2: Jurdzinski’s lifting algorithm

1: foreach 𝑣 ∈ 𝑉 do
2: 𝜌(𝑣) := 0
3: while there exists a 𝑣 such that update(𝜌, 𝑣) ̸= 𝜌(𝑣) do
4: 𝜌 :=lift(𝜌, 𝑣)

Jurdzinski’s lifting algorithm has a running time of 𝒪(𝑚𝑛), where 𝑚 is the number of
edges in the parity game graph 𝒢 and 𝑛 is number of vertices in the parity game graph 𝒢.
But there is a more efficient implementation of the algorithm 2. We can find it in [5].
This more efficient implementation of the lifting algorithm maintains a set of 𝐿 of ’pending’
vertices 𝑣. Measures of this vertex 𝑣 have to be considered for lifting, because a successor
has recently been updated, which results in a requirement to update 𝜌(𝑣). We also have
to look at arrays 𝐵 and 𝐶. These arrays store the value val(𝜌, 𝑣) for each vertex and also
the number of successors 𝑢 of 𝑣. That is denoted as ⟨𝜌(𝑢)⟩𝑝(𝑣) = val(𝜌, 𝑣), which is further
denoted as cnt(𝜌, 𝑣).

Lemma 5 The lifting algorithm depicted in 3 computes the same function 𝜌 as Jurdzinski’s
algorithm, in time 𝒪(𝑚′𝑛1) and space 𝒪(𝑚′).
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Algorithm 3: Efficient implementation of the lifting algorithm

1: foreach 𝑣 ∈ 𝑉 do
2: 𝐵(𝑣) := 0; 𝐶(𝑣) :=| {𝑤 | (𝑣, 𝑤) ∈ 𝐸} |; 𝜌(𝑣) := 0;
3: 𝐿 := {𝑣 ∈ 𝑉 | 𝑝(𝑣) is odd };
4: while 𝐿 ̸= ∅ do
5: let 𝑣 ∈ 𝐿; 𝐿 := 𝐿\{𝑣};
6: 𝑡 := 𝜌(𝑣);
7: 𝐵(𝑣) :=val(𝜌, 𝑣); 𝐶(𝑣) :=cnt(𝜌, 𝑣); 𝜌(𝑣) :=𝑖𝑛𝑐𝑟𝑣(𝐵(𝑣));

𝑃 := {𝑤 ∈ 𝑉 | (𝑤, 𝑣) ∈ 𝐸};
8: foreach 𝑤 ∈ 𝑃 such that 𝑤 /∈ 𝐿 do
9: if 𝑤 ∈ 𝑉0 ∧ 𝑡 = 𝐵(𝑤) ∧ 𝐶(𝑤) > 1 then

10: 𝐶(𝑤) := 𝐶(𝑤) − 1;
11: if 𝑤 ∈ 𝑉0 ∧ 𝑡 = 𝐵(𝑤) ∧ 𝐶(𝑤) = 1 then
12: 𝐿 := 𝐿 ∪ {𝑤};
13: if 𝑤 ∈ 𝑉1 ∧ 𝜌(𝑣) = 𝐵(𝑤) then
14: 𝐶(𝑤) := 𝐶(𝑤) + 1;
15: if 𝑤 ∈ 𝑉1 ∧ 𝜌(𝑣) = 𝐵(𝑤) then
16: 𝐿 := 𝐿 ∪ {𝑤};

Using this algorithm, we can successfully reduce the state space of the automaton 𝐴.
We can use quotienting with respect to delayed simulation. This is not true with fair
simulation. According to [5], we can indeed say, that quotients with respect to delayed
simulations can be substantially smaller than quotients with respect to direct simulation.
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Chapter 5

Reduction of states and transitions

There can be a problem with simplifying an automaton while preserving its semantics, i.e.
its language. We generally try to reduce the number of states and transitions in order
to save some memory and time with our computations. The reduction problem is really
important because the complexity of decision procedures using Büchi automata usually de-
pends on the size of the input automaton. One of the best known techniques for state and
transition reduction is quotienting, where the states of the automaton are identified by a
given equivalence and transitions are projected accordingly. We obtain these equivalences
from suitable preorders. We define quotenting w.r.t. (with respect to) preorders, i.e. direct
and delayed simulation, direct and delayed multipebble simulation and also direct trace
inclusion. Even though fair simulation relation is not GFP nor GFQ, it can be used effec-
tively to prune the state space of an automaton [14]. Then there is also pruning reduction
technique, which is a little bit more difficult to implement. While quotienting is reducing
the amount of states/transitions with a merging technique, we will explore a different ap-
proach which prunes, i.e. removes, the transitions. When we think about this approach,
first what comes to mind is that it should be possible to remove a certain transition and
still preserve the automaton’s language, because there should remain some better transition
in the automaton. There is an option for us to change the start state of the automaton 𝐴
to a different state 𝑞. This newly created automaton is denoted as 𝐴[𝑞].

5.1 Quotienting
Quotienting is one of the most basic techniques for reducing the state space of an automaton,
while preserving its language, i.e. semantics. It merges multiple states that are equivalent
into a single state. Let us have an automaton 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿) and let ⊑ be a preorder
on 𝑄 with induced equivalence ≈:= (⊑ ∩ ⊒). Given a state 𝑞 ∈ 𝑄, we denote by [𝑞]
its equivalence class with respect to ≈ (which is left implicit for simplicity) and for a set
of states 𝑃 ⊆ 𝑄, [𝑃 ] is the set of equivalence classes [𝑃 ] = {[𝑝] | 𝑝 ∈ 𝑃}. Afterwards
we can define a quotient of the automaton 𝐴 according to preorder ⊑ as a quintuple
𝐴/ ⊑= ([𝑄],Σ, 𝛿′, [𝑞𝑖], [𝐹 ]), where 𝛿′ = {([𝑞], 𝜎, [𝑞′]) | ∃𝑞1 ∈ [𝑞], 𝑞′1 ∈ [𝑞′].(𝑞1, 𝜎, 𝑞

′
1) ∈ 𝛿}.

For every run 𝜋 = 𝑞1
𝑢1−→ 𝑞2

𝑢2−→ 𝑞3
𝑢3−→ . . . of the automaton 𝐴 on word 𝑢 = 𝑢1𝑢2𝑢3 . . . there

exists a corresponding run 𝜋′ = [𝑞1]
𝑢1−→ [𝑞2]

𝑢2−→ [𝑞3]
𝑢3−→ . . . of the automaton 𝐴/ ⊑, which

is accepting if the original run 𝜋 was accepting. We can state that 𝐿(𝐴) ⊆ 𝐿(𝐴/ ⊑) holds
for every preorder ⊑.
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Definition 15 A preorder ⊑ is good for quotienting (GFQ) if 𝐴 ≈ 𝐴/ ⊑. GFQ preorders
are downward closed, i.e. also called lower set is a subset 𝑆 of 𝑋 with the property that any
element 𝑥 ∈ 𝑋 that is in relation to some other element of 𝑆 is also an element of set 𝑆.
When it comes to quotienting, we are interested in finding coarse and efficiently computable
GFQ preorders for NBA. The coarser the simulation relation is, the greater reduction of
the automaton we can achieve. Basic examples are given by forward simulation relations.

As we already know, direct and delayed simulation relations are good for quotienting. This
fact can be seen in Table 3.5. We will now set an example automaton that we will try and
reduce its state space using quotienting.

Example 9 Consider a following Büchi automaton 𝐴 in Figure 5.1. Using direct and
delayed simulation relations, we will reduce its state space.

𝑞0start

𝑞1

𝑞2

𝑞3𝑏

𝑎, 𝑏

𝑏

𝑎

𝑎

𝑎

𝑎

𝑎

Figure 5.1: Automaton 𝐴

𝑞0start 𝑞1 𝑞3

𝑏 𝑎 𝑎

𝑎, 𝑏 𝑏 𝑞0start 𝑞1

𝑏 𝑎

𝑎, 𝑏

Figure 5.2: Automaton in the left corner is 𝐴/ ⊑𝑑𝑖 and in the right corner 𝐴/ ⊑𝑑𝑒

.

As we can see in Figure 5.2 both of the simulation relation types minimized the state space
of the original automaton 𝐴. In an automaton 𝐴, the states 𝑞1 and 𝑞2 are directly simulating
each other, i.e. 𝑞1 ≈𝑑𝑖 𝑞2 stands. We call this equivalence class as a state 𝑟1. So we have
three equivalence classes. Class [𝑞0] is denoted by 𝑟0 and class [𝑞3] is denoted by 𝑟3.
On the other hand, all of the states 𝑞1, 𝑞2, 𝑞3 delay-simulate each other, i.e. 𝑞1 ≈𝑑 𝑞2 ≈𝑑𝑒 𝑞3
stands. That is why automaton 𝐴/ ⊑𝑑𝑒 only has two states.
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5.2 Transition pruning reduction technique
Pruning is also one of the widely used techniques for state space reduction. It also preserves
an automaton’s language. This method does not merge equivalent states into a single state
like quotienting, but it takes a different route. Transition pruning reduction technique re-
moves such transitions that can be replaced by some other, naturally better states [11].
Pruning transitions does not only reduce the number of transitions, but also, indirectly,
the number of states. That means, when we remove a transition, a state could become a
dead end state, and thus be removed from the automaton without changing its language.
The reduced automaton is usually much more sparse than the original one, i.e. uses fewer
transitions per state and has less non deterministic branching. That fact makes the com-
putation of the pruning perform faster. We will also have an automaton 𝐴 = (Σ, 𝑄, 𝐼, 𝐹, 𝛿),
then we will declare 𝑃 ⊆ 𝛿×𝛿, which is a relation on 𝛿 and let 𝑚𝑎𝑥𝑃 be the set of maximal
elements of 𝑃 :

𝑚𝑎𝑥𝑃 = {(𝑝, 𝜎, 𝑟) ∈ 𝛿 |̸ ∃(𝑝′, 𝜎′, 𝑟′) ∈ 𝛿 : ((𝑝, 𝜎, 𝑟), (𝑝′, 𝜎′, 𝑟′)) ∈ 𝑃}

The pruned automaton is defined as 𝑃𝑟𝑢𝑛𝑒(𝐴,𝑃 ) := (Σ, 𝑄, 𝐼, 𝐹, 𝛿′), where 𝛿′ = 𝑚𝑎𝑥𝑃 . We
have to note that removing transitions cannot introduce new words into the language, thus
𝑃𝑟𝑢𝑛𝑒(𝐴,𝑃 ) ⊆ 𝐴. When also the converse inclusion holds, that means that the language
of the automaton is preserved, we say that 𝑃 is good for pruning (GFP).

Definition 16 A relation 𝑃 ⊆ 𝛿 × 𝛿 is good for pruning (GFP) if 𝑃𝑟𝑢𝑛𝑒(𝐴,𝑃 ) ≈ 𝐴.

Just like GFQ (good for quotienting), GFP (good for pruning) is ⊆-downward closed in the
space of relations. It is possible to study specific GFP relations obtained by comparing the
endpoints over the same input symbol. We have two binary state relations 𝑅𝑏, 𝑅𝑓 ⊆ 𝑄×𝑄
for both source and target endpoints, we define

𝑃 (𝑅𝑏, 𝑅𝑓 ) = {((𝑝, 𝜎, 𝑟), (𝑝′, 𝜎, 𝑟′)) ∈ 𝛿 × 𝛿 | 𝑝𝑅𝑏𝑝
′ ∧ 𝑟𝑅𝑓𝑟

′}.

𝑃 (·, ·) is monotone in both arguments.

Example 10 Consider NBA called 𝐴. Let us use pruning transition technique to reduce
the state space of the automaton 𝐴.

𝑞0start 𝑞2

𝑞1

𝑞3
𝑎, 𝑏

𝑎, 𝑏

𝑎

𝑏

𝑐

𝑏
𝑎

Figure 5.3: Automaton 𝐴
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⪯𝑑𝑖 𝑞0 𝑞1 𝑞2 𝑞3
𝑞0 1 0 0 0
𝑞1 1 1 1 0
𝑞2 1 1 1 0
𝑞3 0 0 0 1

Table 5.1: Table for direct simulation relation over automaton 𝐴

𝑞0start 𝑞1 𝑞3
𝑎, 𝑏

𝑎

𝑏

𝑐

Figure 5.4: Pruned automaton 𝐴, Prune(𝐴,𝑃 (𝑖𝑑,⊑𝑑𝑖))

As we can see in Table 5.1, 𝑞2 ⊑𝑑𝑖 𝑞1 holds. Therefore, we can prune the original
automaton with respect to 𝑃 (𝑖𝑑,⊑𝑑𝑖). In our case, both transition 𝑞0

a−→ 𝑞2 and 𝑞0
b−→ 𝑞2

will be removed from the automaton, since the transition prevails as 𝑞0
a,b−−→ 𝑞1. This is the

reason why 𝑞2 becomes a dead state, i.e. state 𝑞2 cannot be reached from any of the initial
states, thus can be removed.

5.2.1 Pruning NBA

Results of which simulation are GFP and GFQ are summarized in table 3.5. Both afore-
mentioned techniques lead to a state space reduction of an automaton to some extent.
However, by combining these two techniques, we should be able to get better results in
general.
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Chapter 6

Implementation

In this chapter, we will talk about the implementation of computation the simulations we
mentioned in Chapter 3. Everything is implemented in the programming language C++,
including the command line interface, which is used to determine which simulation we
want to compute. The library contains computation of a direct simulation relation, fair
simulation relation using parity games, and also delayed simulation relation using parity
games. The library is set to work with nondeterministic Büchi automata written in format
.ba, which is also used in the popular tool RABIT [1].

The main task was to implement fair, direct and delayed simulation relation computa-
tion. We decided to use a parity game for fair and delayed simulation relations [8]. For the
direct simulation relation, we use a basic naive algorithm from [7]. In Chapter 7 we will
talk more about the efficiency of these implementations and compare them with the results
another tool, which happens to also include these three simulations, named RABIT [1].

In order to use some of the algorithms to compute the simulation relations, we need
to modify them. We will now go over every modifications we made to the algorithms for
solving different problems that occurred during the implementation. We will go over the
problems in detail in the upcoming sections.

6.1 Modification of the preorder of a direct simulation
For implementation of a direct simulation, we use algorithm from [7]. This algorithm is
designed to compute a preorder complement of nondeterministic finite automata, but it
works just fine for 𝜔-automata. The optimal returning data type should be a set of pairs
of states of the automaton, so we can use the resulting relation of the direct simulation to,
e.g. reduce a state space of an automaton, compute the under approximation of language
inclusion etc. The only thing we need to address is that the algorithm 1 computes a
complement to the preorder of a direct simulation relation. We would much more prefer to
return the preorder.

6.2 Modification of the Jurdzinski’s lifting algorithm
We construct the parity game graph as describe in [5]. In this paper, the authors say that
these algorithms for solving the parity games only work for parity game graphs that have
no self-loops nor dead-ends. We cannot guarantee a parity game graph without a dead-end
in our case. We have to introduce extra rules to prevent the algorithm from returning a
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result that is not correct. We will now show an example of the algorithm not returning a
correct result and explain why it is happening.

Example 11 Lets us have a parity game graph 𝒢 that we constructed from a NBA 𝐴.

𝑞start 𝑟

𝑏

𝑎

𝑎

Figure 6.1: Automaton 𝐴

𝑣(𝑞,𝑞,𝑎,0) 𝑣(𝑞,𝑟,𝑎,2) 𝑣(𝑟,𝑞,𝑎,0) 𝑣(𝑟,𝑟,𝑎,2)

𝑣(𝑞,𝑞,0) 𝑣(𝑞,𝑟,1) 𝑣(𝑟,𝑞,0) 𝑣(𝑟,𝑟,2)

Figure 6.2: Automaton 𝐴 that we transform into a parity game 𝐺𝑓
𝐴

⪯𝑓 𝑞 𝑟

𝑞 1 0
𝑟 1 1

Table 6.1: Table for fair simulation relation over automaton 𝐴

We can see that 𝑞 ̸⪯𝑓 𝑟, but 𝑟 ⪯𝑓 𝑞 is satisfied. The final result is shown in Table 6.1. A
parity game in Figure 6.2 has a dead-end vertex 𝑣(𝑟,𝑟,𝑎,2). We also see that the vertex 𝑣(𝑞,𝑟,1)
of player One should have a value 𝜌(𝑣) = ∞ at the end of the algorithm’s run. The rest of
the player’s One vertices should have value 𝜌(𝑣) < ∞. The vertex 𝑣(𝑞,𝑟,1) has nowhere to
increase its value to more than 𝜌(𝑣) = 1. We have to introduce a new rule - every vertex
of player Zero, that does not have a successor has value 𝜌(𝑣) = ∞, which ensures, that the
algorithm runs correctly even on automata with dead-ends.

6.3 Modification of the efficient lifting algorithm
This algorithm was introduced in a paper [5]. This algorithm has been concluded to run in
time (𝑚′𝑛1) and space (𝑚′). We also need to consider an option to modify this algorithm
as well, since Algorithm 3 needs to be run over a parity game graph without dead-ends
and self-loops. Self-loops are guaranteed not to occur by the way we construct the parity
game graph. We have to take care about the ’dead’ states. In this case, the condition we
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introduced in previous modification in Section 6.2. We will now go over why this condition
does not guarantee a correct result. After inspecting this issue, we found out that we need
to propagate the value 𝜌(𝑣) = ∞ in a certain fashion to the other vertices. Let us have a
vertex 𝑣 that belongs to player Zero and its value 𝜌(𝑣) = ∞. We have to propagate vertex’s
𝜌(𝑣) value if vertex 𝑣 has a predecessor 𝑤 that belong to player One, because player One
always wants to increase the progress measure. If we want this rule to be applied to player
One as well, we need to have and extra check before propagating the 𝜌(𝑤) = ∞ value. The
extra condition is that the sum of successors of 𝑤 needs to be exactly one. Only then we
can propagate the 𝜌 value from player One to player Zero.

6.3.1 Special modification for delayed simulation relation

We found out that there was an issue, still unknown, that caused the program to loop
forever. We could not determine a problem on our side, so we opted to use a little modified
implementation instead, which worker. The issue was caused by some vertices being added
to the working list over and over again. Solution was discovered in this bachelor thesis
[13]. The conditions to insert a vertex into the working list are slightly modified. The
original efficient lifting algorithm 3 (lines 10-20) have to be modified. The modified version
of Algorithm 3 can be seen in Figure 4.

Algorithm 4: Modification of the efficient implementation of the lift-
ing algorithm

1: foreach 𝑣 ∈ 𝑉 do
2: 𝐵(𝑣) := 0; 𝐶(𝑣) :=| {𝑤 | (𝑣, 𝑤) ∈ 𝐸} |; 𝜌(𝑣) := 0;
3: 𝐿 := {𝑣 ∈ 𝑉 | 𝑝(𝑣) is odd };
4: while 𝐿 ̸= ∅ do
5: let 𝑣 ∈ 𝐿; 𝐿 := 𝐿\{𝑣};
6: 𝑡 := 𝜌(𝑣);
7: 𝐵(𝑣) :=val(𝜌, 𝑣); 𝐶(𝑣) :=cnt(𝜌, 𝑣); 𝜌(𝑣) :=𝑖𝑛𝑐𝑟𝑣(𝐵(𝑣));

𝑃 := {𝑤 ∈ 𝑉 | (𝑤, 𝑣) ∈ 𝐸};
8: foreach 𝑤 ∈ 𝑃 such that 𝑤 /∈ 𝐿 do
9: if 𝑝(𝑤) ̸= 0 ∧ 𝜌(𝑣) > 𝐵(𝑤) then

10: if 𝑤 ∈ 𝑉1 then
11: 𝐿 := 𝐿 ∪ {𝑤};
12: else if 𝑤 ∈ 𝑉0 ∧ (𝑝(𝑤) ̸= 0∧ 𝑡 = 𝐵(𝑤))∨ (𝑝(𝑤) = 0∧𝐵(𝑤) = 0) then
13: if 𝐶(𝑤) > 1 then
14: 𝐶(𝑤) := 𝐶(𝑤) − 1;
15: else if 𝐶(𝑤) = 1 then
16: 𝐿 := 𝐿 ∪ {𝑤};

We will now see an example of an automaton that does not terminate without the
modification of the algorithm.
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Example 12 Lets us have an automaton 𝐴 from Figure 6.3. We will run the algorithm
over the delayed parity game graph and see why the algorithm needed the modification.

𝑞start

𝑟

𝑠

𝑡

𝑏 𝑎

𝑎𝑏

𝑏

𝑏

𝑏

𝑏

𝑏

Figure 6.3: Automaton 𝐴

We will not be constructing the parity game graph, since there would be more than 80
vertices and 100 edges. Even a relevant part of the game graph would not fit in the page.
After the third iteration of the algorithm, the same vertices get put into the working list,
but all of them have priority zero or two, which results in the value 𝜌(𝑣) not changing at
all. All of these vertices get stuck in a loop between itself and a neighbour vertex from the
other player. We have not figured out, why this issue is happening, while fair simulation
relation not needing this modification. We can see the final result of the delayed simulation
in Table below 6.2.

⪯𝑑𝑒 𝑞 𝑟 𝑠 𝑡

𝑞 1 0 0 0
𝑟 0 1 0 0
𝑠 0 0 1 0
𝑡 0 0 0 1

Table 6.2: Table for delayed simulation relation over automaton 𝐴

We do not think that the reason could be related to the fact, that the result is an
identity. There were other automata that ran to the end with no issues and had an identity
as a result as well.

6.4 Usage of the program
We aimed for a simple command line interface that everyone can use. We will now go over
all the available commands.

The desired usage of the program is as follows:

./nba-simulations [ --file ] [ --direct | --fair | --delayed ] { --print
--dot --fast}
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Flag of the program Use case
file Specify file to read the automaton from. We use format .ba
dot Write the result into a file with dot syntax.

print Result (pair of states) gets printed into the command line.
fast Compute with the efficient version of lifting algorithm
help Prints usage of the program to the command line.

direct Compute direct simulation relation.
fair Compute fair simulation relation.

delayed Compute delayed simulation relation.

Table 6.3: List of all the available flags in the program

We can use the program as follows:

./nba-simulations --file=myaut.ba --fair --fast --print

This command runs the program over an automaton myaut.ba and computes the effi-
cient version of the lifting algorithm for fair simulations. Afterwards, a result gets printed
- a set of pair.

The repository also contains a bash script which allows the user to select a file to read
the automaton from and select a simulation type he wants to compute. The script takes
the output of the program (dot file) and converts it to a .png file. This final file contains
the automaton and colors its transitions to indicate which states simulate each other.

The desired usage of the script is as follows:

./convert-dot.sh [ -f ] [ -s ]

Flag of the program Use case
f Specify file to read the automaton from. We use format .ba
s Specify what simulation type to run.

Table 6.4: List of all the available flags in the program

We can use the script as follows:

./convert-dot.sh -f myaut.ba -s delayed

This runs our program over the automaton file myaut.ba and computes a delayed sim-
ulation relation. After it is done, a dot file is generated and then converted to a picture.
We will see what states simulate each other.

6.5 Compilation
The repository with the code contains a Makefile which can be used to compile the nec-
essary C++ code and its header files. We will now go through all the source files.

• automaton.h/.cpp All the necessary data structures such as states, transitions, al-
phabet. . . There is also a parser for the input file. These input files are in .ba format.
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• simulations.h Header with the direct simulation implementation.

• fair_parity_game.h/fair_parity_game_solver.h Code with the steps to trans-
form an automaton into a fair parity game. Solver file contains the Jurdzinski’s
lifting algorithm 2 to solve the fair parity game.

• delayed_parity_game.h/delayed_parity_game_solver.h Includes the needed steps
to transform an automaton into a delayed parity game graph. Solver file contains the
Jurdzinski’s lifting algorithm 2 to solve the delayed parity game.
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Chapter 7

Experiments

In this chapter, we will be covering various experiments about our implementation of the
algorithms we mentioned in previous chapters. We want to determine whether our im-
plementation of the algorithms in fast enough in comparison with widely used tool for
manipulating Büchi automata - RABIT [1].
For these benchmarks, we used a tool named pycobench [9], which allows us to run these
tests in parallel (every test creates a new worker). The program pycobench outputs a csv
file that we process easily with a python script. We used library matplotlib [2] to plot
the final results. All of the input automata are from a GitHub repository [10]. All of
the upcoming plots will have both of their axis in ms and will have a logarithmic line to
determine the faster implementation.

7.1 Jurdzinski’s lifting algorithm vs. Effective lifting algo-
rithm

This section serves as a comparison between the original lifting algorithm [8] and the effec-
tive version of it. We already know that the original lifting algorithm is working naively
through all of the vertices of the parity game graph until no changes to progress measure
can be made. The effective version of the lifting algorithm takes a different path. It intro-
duces arrays that stores a vertex’s neighbour best possible progress measure.
We used exactly 178 nondeterministic BA. Since the original lifting algorithm is naive, it
should be much slower with bigger parity game graphs. Most of the cases confirm that
idea. There is one known bottleneck to our implementation of the effective version of the
algorithm - we take in any parity game graph, even with dead-ends. The original algorithm
discards those (transfers these graphs into ones without the dead-ends). Since we want
our tool to be robust (take in whatever parity game graph), we had to introduce extra
conditions for the algorithm that make it a little bit slower than it should have been.

7.1.1 Fair parity game graph

We will test fair and delayed parity game separately. The construction of the game graphs
has some minor changes and also the solving part.

As we can see in Table 7.1, the effective implementation of the lifting algorithm is a
little bit faster when it comes to an average time to compute the simulation relation over
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Implementation Average time in ms (standard deviation)
Original 1.384 ms
Efficient 0.334 ms

Table 7.1: Average compute time for an automaton. Original algorithm is the Jurdzinski’s
lifting algorithm from [8].

fair parity game graph. The original algorithm timed out 29 times, while the effective only
10 times. The timeout was set to be 60 seconds.

Figure 7.1: Comparison of running times for the effective and original lifting algorithm
over a fair parity game graph. Every circle under the red line means that the original
implementation was faster for that automaton.

7.1.2 Delayed parity game graph

In this subsection, we will compare the running time of the efficient lifting algorithm and
the original one. As we can see in Figure 7.2 the efficient algorithm is much faster in most
of the cases. We can inspect the average running time for an automaton in Table 7.2.

Implementation Average time in ms (standard deviation)
Original 2.275 ms
Effective 0.352 ms

Table 7.2: Average compute time for an automaton

We have to take in account that delayed parity game graph is just an expanded fair
parity game graph. For a delayed parity game graph, there is at most two vertices, that
represent a vertex in the fair graph. Hypothetically, the delayed graph can have up to twice
as much vertices to go through. That makes the number of the edges much bigger as well.
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Figure 7.2: Comparison of running times for the effective and original lifting algorithm
over a delayed parity game graph. Every circle under the red line means that the original
implementation was faster for that automaton.

7.2 Direct simulation relation
In this section, we will take a look at how our implementation stands against RABIT’s
implementation of the direct simulation relation. We will compare the times of these two
programs on nondeterministic BA. We have 628 of these automata. Both of these imple-
mentation are naive, so they will not be really fast, when it comes to larger automata. Both
of these implementations easily go through smaller automata (around 15 states). The most
interesting thing we found out is that RABIT’s implementation is much slower when run
on small automata (at most 10 states). Our implementation really thrives with the smaller
automata, but when it comes to the ones with more states and transitions, the speed falls
down. Most of the times for smaller automata for our implementation is 0.0 ms (instant
result), compared to RABIT’s 0.1 ms.

Program Average time in ms (standard deviation)
RABIT 0.126 ms

Our implementation 0.094 ms

Table 7.3: Average compute time for an automaton

Figure 7.3 does not look that convincing for our case at the first glance, but we have to
take in account that the darker blue circles depict a large quantity of automata than the
lighter ones. That is why we took an average time of computation as well.
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Figure 7.3: Comparison of running times for our implementation compared to RABIT.
Every circle under the red line means that RABIT’s implementation was faster for that
automaton.

7.3 Fair simulation relation
This section will discuss the comparison between the effective implementation of the lifting
algorithm and RABIT’s implementation. Our input was composed of 177 various semi-
deterministic BA. For our implementation, 22 of those timed out. The timeout was set to
60 seconds. We are then left with 155 dots in Figure 7.4. In Figure 7.4, we can see that
our algorithm beats RABIT’s implementation most of the times, when an input automaton
does not have that many states (faster times). Our implementation falls off a lot with
bigger automata. We think, that the bottleneck of our implementation is somewhere in the
initialization of the parity game graph, but we did not determine a place, where we could
make marginal improvements. We could also try and introduce some new conditions to
skip some of the vertices from even occurring in the iterations.
We will now look at Table 7.4 and see the average computation time for an automaton from
our test suite. Our implementation is quite slower due to the aforementioned reasons.

Program Average time in ms (standard deviation)
RABIT 0.092 ms

Our implementation 0.260 ms

Table 7.4: Average compute time for an automaton
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Figure 7.4: Comparison of running times for our implementation of fair simulation compared
to RABIT. Every circle under the red line means that RABIT’s implementation was faster
for that automaton.

7.4 Delayed simulation relation
This is one of our final tests. We compared our implementation of the delayed simula-
tion relation and RABIT’s implementation. After going through RABIT’s implementation
(code) of the delayed simulation, it does not seems like RABIT is using parity games at
all. We ran the comparison over set of BA that holds exactly 283 automata. The timeout
was set to be 60 seconds again. This time, the RABIT’s implemenation timed out 0 times,
while ours timed out 55 times. In Figure 7.5 with the result, we can see exactly 228 dots
(automata). We can see, that for most of the cases, our RABIT’s implementation rose
superior to ours.
We do not know the exact bottleneck to our implementation, but we suspect it is the con-
struction of the delayed game graph and we also could improve on discarding some of the
vertices from processing. We could not come up with a better result than this.
Below we can see Table 7.5 with the average time of computation for a single automaton
from the test suite.

Program Average time in ms (standard deviation)
RABIT 0.099 ms

Our implementation 0.520 ms

Table 7.5: Average compute time for an automaton
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Figure 7.5: Comparison of running times for our implementation of delayed simulation
compared to RABIT. Every circle under the red line means that RABIT’s implementation
was faster for that automaton.

7.5 Comparison of various simulation types
Our final test compares all three of the implemented simulation relations computations. We
will look into the speed of these simulations over semi-deterministic BA. We used exactly
247 automata as an input to our program. There were 29 automata that could not be
computed in time (they were timed out). The direct simulation timed out 8 times, the
fair simulation timed out 29 times and the delayed simulation timed out 20 times. The
timeout was set to 60 seconds again. Even though some of these simulation relations seem
to be faster than other, not every simulation relation is suitable for every task, e.g. fair
simulation is not good for quotienting.
The result of an average run for an automaton can be seen in Table 7.6. For this set of
semi-deterministic BA, direct simulation was much superior to the other simulation, when
it comes to raw speed. The reason is that direct simulation does not need to check the big
parity game graph, but it works only with the original automaton.

Simulation Average time in ms (standard deviation)
Direct 0.0013 ms
Fair 0.245 ms

Delayed 0.631 ms

Table 7.6: Average compute time for an automaton

7.6 Conclusion of the experiments
As we mentioned in some of the experiments, there are some improvements that could be
made to the implementation. We are talking especially about the fair and delayed simulation
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relation, which tend to time out much more often compared to the direct simulation. When
computing the simulation relation over a smaller sized automaton, our implementation is
doing fairly well, compared to RABIT.
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Chapter 8

Conclusion

In the first part of this thesis, we got through what simulations are and what they are used
for. We learnt that they can be used for various things, such as language inclusion checking
and reduction of the state space of an automaton. The important part about reducing
a state state of an automaton is that we want to preserve the language of the original
automaton, while reducing the automaton as much as we can. We took a look into several
simulation types such as direct, fair, delayed etc. These three are the most important since
they are more ’balanced’ than the other simulation types (not big compensations to the
speed of the algorithms). We can now say what these simulation are used for and why
so. Some of these simulations are good for state space reduction, some are better for the
under approximation of the language inclusion. After going through all of the necessary
simulations and the theory behind them, we needed to clarify what part are the parity games
playing in the field of simulations. Since simulations can be transferred into parity game
graphs, we needed to know how to solve them. For that, we mentioned several algorithms,
such as the original Jurdzinski’s lifting algorithm [8] or the more efficient version of it, which
was introduced in [5]. The important use case for simulations is state space reduction of an
automaton and there are multiple ways to reduce the state space. We introduced the two
basic principles - quotienting and pruning.
The second part of the work was the library written in C++. The task was set to implement
multiple algorithms for simulations relation. We implemented direct, fair and delayed
simulation relations. The fair and delayed simulations are using an algorithm that transfers
the automaton into a parity game graph. The whole program has a command line interface
with multiple flags to use. We can specify what simulation to run with a specific algorithm.
The other useful functionality is that we are able to print the original automaton with
transitions that simulate each other. Ours implementation can be faster than RABIT,
which is a really good result, but when it comes to bigger automata, our implementation
is much slower. We suspect that the reason is that the RABIT’s algorithm is faster and
really well optimized. The library as a whole is working well, without any known issues.
There were multiple challenges along the implementation of the algorithms, we even had to
modify some of them a bit to get them working in our case. There is room for optimization
in the code. We could take a closer look at the construction of the parity game graph or
how the solver of the parity games could skip some of the vertices of the graph to make the
solving faster. There is obviously room for improvement, as we already mentioned, in the
performance department, but we could also add some functionality to the command line
interface. We would like to add a possibility to reduce the state space of an automaton as
well. There would be multiple options to reduce the state space with different simulation
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types. We could also add the other aforementioned simulation types and experiment with
their results more, to see which of these are best for different tasks.
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