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Chapter 1

ABSTRACT

There is an increasing e�ort in modern physics to connect di�erent physi-
cal platforms. Such a quantum interconnection is based on the existence of
entanglement between various systems. Quantum correlations between two
physically di�erent systems are an interesting phenomenon to study. They
can provide an operational tools to manipulate limitedly accessible experi-
mental platforms, such as noisy macroscopic atomic or mechanical systems,
at quantum noise level using well controllable strongly quantum probes.

In this thesis, we propose and study a robust method of achieving basic
QND interaction between continuous variables of two quantum oscillators A,
B through the mediating oscillator M appearing in any unknown state. The
mediating system is considered not to be accessible in other way than just
by that QND interaction. This interaction allows to generate signi�cantly
entangled Gaussian states for any initial thermal noise of the mediating os-
cillator M. Moreover, we extensively analyze a robustness of the entangling
procedure under small damping in the oscillators A,B and M in a limit of
large noise of M. The proposed method can be used to construct optical
microwave transducers, assisted by a noisy mechanical oscillator.
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Chapter 2

THEORY

2.1 INTRODUCTION TO THE PROBLEM

In 1935, Austrian theoretical physicist Erwin Schrödinger proposed a thought
experiment in order to demonstrate the problem he saw in the Copenhagen
interpretation of quantum mechanics. It is named after him - the Schrödinger
cat experiment.

To introduce the problem we closely follow the popular interpretation
which can be found in [1]. Imagine a non-transparent box that is perfecly
isolated from outer space. Once the box is closed, it is impossible to get any
information about the inside without opening it. Inside of it we place a cat
along with a device that contains radioactive source, a hammer and a �ask
which contains a poison. The experiment is constructed in the way that after
a period of time there is a 50 percent chance of decaying the radioactive atom.
If an internal counter detects radiation, the hammer breaks the �ask with
the poison and the cat is killed. Because of the perfect isolation of the box
any observer has no imformation about what is happening inside, whether
or not an atom has decayed, and consequently, whether the poison has been
released, and the cat killed. According to the law of quantum physics and
because we have not any knowledge about the inside, the cat is both dead
and alive.

This con�guration is called a superposition of states between the atom
and the cat. Although the superposition of microscopic objects are commonly
considered in quantum mechanics, here we speculate about the superposition
of microscopic atom and macroscopic cat. The superposition is destroyed ex-
actly at the momment when someone opens the box and the cat becomes one
or the other (alive or dead). We in�uence the state of the system by opening
the box, and therefore we make the wave function collapse. Schrödinger cat

9



CHAPTER 2. THEORY 10

experiment presents an interesting connection between a macroscopic system
described by classical physics (the cat) and a system described by quantum
laws (the radioactive atom). In fact, this thought experiment demonstrates
a theoretical possibility of transposing non-classical features to strongly clas-
sical system. The main problem remaining in this though experiment is a
de�nition of macroscopic (classical) system. In our considerations, we focus
on initial macroscopic states represented by strongly mixed systems at ther-
mal equilibrium with its environment. It is our step towards more serious
discussion about the macroscopic quantum e�ects. Through the whole the-
sis, the term entanglement plays a key role in describing two-system states
after an interaction. It is worth mentioning that Schrödinger coined this
term (in German - Verschränkung) during the development of this experi-
ment. We therefore consider the most feasible and robust type of Gaussian
entanglement between two or more quantum oscillators, one quantum colled
down to a ground state and another classical at thermal equilibrium with
environment at room temperature.

Figure 2.1: Schrödinger cat experiment. Since we can not gain any informa-
tion about the inside of the box, the cat is in a superposition state with the
radioactive atom, it is both dead and alive. [1]

In the same year as E. Schrödinger presented his thought experiment,
another important paper was published. It is a signi�cant and in�uential
work written by A. Einstein, B. Podolsky and N. Rosen (EPR). Understand-
ing of EPR paradox and the role of entanglement in it contributed to form
a proper theoretical background of this thesis, therefore it is undoubtedly
useful to mention it in the introduction. But since it was not our main
motivation we introduce the concept very brie�y, detailed description can
be found in [2]. The main purpose of EPR paper was to show the incom-
pleteness of quantum mechanics. The authors tried to show the possibility



CHAPTER 2. THEORY 11

of measuring position and momentum of a quantum particle at the same
time, which is in contradiction to Heisenberg�s uncertainty principal. Al-
though, the EPR paradox has been fully explained, it stimulated a birth of
the method of remote state preparation based on the existence of entangle-
ment. The remote state preparation is able to prepare a set of eigenstates of
complementary variables (like position and momentum) on system A by an
adjustable measurement on system B, if A and B are quantum-mechanically
correlated.

Situation analogous to the Schrödinger cat experiment was the starting
point and also the initial model for thermal entanglement analysis in [18]. In
my bachelor�s thesis, we proposed a Gaussian version of the Schrödinger cat
experiment. We demonstrated that these states are theoretically achievable
even for highly noisy macroscopic system. Further analysis performed at our
Department veri�ed feasibility of thermal Gaussian entanglement in current
quantum electromechanical systems. It demontrates a feasibility of Gaussian
version of strongly mixed Schrodinger cat state. It is therefore possible to go
beyond purely academic discussions and search for an interesting application
of this entanglement.

The model situation for this master�s thesis is given by extended con-
�guration of Schrödinger�s experiment. The current model contains a third
additional quantum system coupled to the classical system. Imagine, for ex-
ample, another atom A2 which can be coupled to already existing entangled
state of the atom A1 and the cat. In principle, these two systems can be
physically di�erent if they can couple to the same classical mediating sys-
tem M. It brings us to a concept of quantum transducer between di�erent
physical systems. The cat here stands as that mediator M of thermal entan-
glement. The goal is to gain quantum-mechanical correlations between two
physical platforms represented by quantum systems (A1 and A2) without di-
rectly interacting with each other. Analogically to the Gaussian Schrödinger
cat experiment where we build entanglement between quantum and classical
system, initially at thermal equilibrium with the environment, here entan-
glement can be built with the third system using the classical one initially in
thermal equilibrium.

2.2 INTERACTION OF LIGHT ANDMECHAN-

ICAL OSCILLATOR

Let�s consider a typical scheme for quantum optomechanics - a cavity with
a movable mirror at one end. Everytime a photon re�ects on the movable
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Figure 2.2: The idea of extended con�guration of Schrödinger cat experiment.
Third system is included and the cat participates in the interaction only as a
mediator. The goal is to build entanglement between two quantum systems
without directly interacting with each other.

mirror, it transfers energy onto the mirror and thus makes the mirror vibrate
(slightly changes the position of the mirror). We say that the light transfers
energy through a radiation pressure.

The radiation pressure interaction can now be used to modify the dynam-
ics of the mechanical oscillator. We can model this situation as a coupling
between a mechanical and an optical oscillator. In microscopic terms we can
imagine that optical oscillator - mode of light and mechanical oscillator -
mode of vibrations, exchange photon to phonon and vise versa. We consider
here the case that we are able to detect a single cavity mode and also a single
mechanical mode only and that the mechanical modes do not couple to each
other. In this section we closely follow the derivation presented in [3].

2.2.1 OPTICAL RESONATOR

To characterize an optical cavity we introduce a few relevant parameters. The
cavity contains a series of resonances ωcav = mπ(c/L), where L is the distance
between the mirrors and m being an integer number. The free spectral range
(FSR) of the cavity is de�ned as the separation of two longitudinal resonances

∆ωFSR = π
c

L
. (2.1)

A photon cavity decay rate κ describes the energy losses caused by �nite mir-
ror transparencies and the absorption inside the cavity. An average number
of cycles that photon makes inside the cavity before leaving it, is desribed
by the quantity

F ≡ ∆ωFSR

κ
, (2.2)
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Figure 2.3: Radiation pressure interaction. Light is coupled through an input
mirror into a resonator with a movable mirror in the back, it transfers energy
onto the mirror via radiation pressure [4].

which is called optical �ness. As an alternative, we can introduce a quality
factor of the optical resonator

QOPT = ωcavτ, (2.3)

where τ = κ−1 is the photon lifetime. If we consider a high-Q cavity, its decay
rate can be expressed as a sum of two separate components κ = κex + κ0,
where κex refers to the loss rate associated with the input coupling and κ0
represents the remaining loss rate.

A quantum mechanical description of a cavity coupled to the environment
can be given by a framework known as input-output formalism of quantum
theory [3]. It describes the time evolution of the �eld amplitude ĉ inside
the cavity. The formalism is formulated on the level of a modi�cation of
Heisenberg-Langevine equations of motion. The equation of motion in input-
output formalism reads

˙̂c = −κ
2
ĉ+ i∆ĉ+

√
κexĉin +

√
κ0f̂in, (2.4)

where ĉin is the annihilation operator of single input cavity mode and f̂in is
Langevin operator of external environment of cavity. The classical analogy
to this equation could be obtained by simply taking the average value of
the operators. We use a frame rotating with the laser frequency ωL, which
means ĉ = e−iωLtâ and introduce the laser detuning ∆ = ωL − ωcav. For a
very good cavity, we can neglect κ0 and then all the intracavity �eld can be
asymptotically obtain in the output mode. According to the input-output
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theory of open quantum systems , the �eld that is re�ected from the Fabry-
Perot resonator is given by

ĉout = ĉin −
√
κexĉ. (2.5)

One can �nd numerous textbooks with detailed discussion of quantum
treatment of optical �elds, e. g. [5],[6].

2.2.2 MECHANICAL RESONATOR

Now we focus on a single normal mechanical mode of vibration of frequency
Ωm. Analogically to the optical resonator we introduce relevant parameters
that represent the energy damping in the oscillator. The mechanical oscillator
is described by the damping rate Γm or the quality factor Qm = Ωm

Γm
. If we

are interested in equation of motion for the global amplitude x(t) of the
osciallator, we can utilize a suitably normalized dimensionless mode function
u⃗(r⃗, t), such that the displacement �eld would be u⃗(r⃗, t) = x(t) · u⃗(r⃗). The
evolution is then described by a simple equation of motion for a harmonic
oscillator of mass m:

m
dx2(t)

dt2
+mΓm

dx(t)

dt
+mΩ2

mx(t) = Fex(t). (2.6)

The right side of this equation represents the sum of all the forces acting on
the mechanical resonator.

The quantum mechanical treatment of the mechanical harmonic oscillator
[7] leads to the Hamiltonian

Ĥ = h̄Ωm(b̂
+b̂+

1

2
), (2.7)

where b̂+(b̂) are the phonon creation (anihilation) operators. We de�ne

x̂ = xZPF (b̂
+ + b̂),

p̂ = −imΓmxZPF (b̂− b̂+),

where

xZPF =

√
h̄

2mΓm

is the zero point �uctuation amplitude of the mechanical oscillator. The po-
sition and momentum satisfy [x̂; p̂] = ih̄. We typically do not display the
contribution of the zero-point energy to the energy of the oscillator.
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2.2.3 OPTOMECHANICAL COUPLING

In our case the coupling between mechanical and optical oscillator is per-
formed by the radiation pressure. A single photon transfers the momentum
|∆p| = 2h̄/λ, λ being the light wavelength. The radiation pressure force is
therefore given by [3]

⟨F̂ ⟩ = 2h̄k
⟨â+â⟩
τc

= h̄
ωcav

L
⟨â+â⟩. (2.8)

Here τc = 2L/c denotes the cavity round-trip time.
The Hamiltonian of two uncoupled modes is given simply as the sum of

individual Hamiltonians

Ĥ0 = h̄ωcav(x)â
+â+ h̄Ωmb̂

+b̂. (2.9)

The radiation pressure makes the movable mirror change its position, the
length of the cavity increases and the resonance frequency of the cavity
changes. The coupling is therefore parametric

ωcav(x) ≈ ωcav + x
∂ωcav

∂x
+ · · · .

For our discussion it is su�cient to keep the linear term, where we de�ne the
optical frequency shift per displacement as G = −∂ωcav

∂x
. Expanding to the

leading order in the displacement we obtain

h̄ωcav(x)â
+â ≈ h̄(ωcav −Gx̂)â+â. (2.10)

Using earlier de�nition of x̂ = xZPF (b̂
+ + b̂) we get the form of interaction

Hamiltonian

Ĥint = −h̄g0â+â(b̂+ + b̂), (2.11)

where g0 = GxZPF is the vacuum optomechanical coupling strength. Since
the coupling strength is exremely low, we can enhance it using a combination
of the cavity e�ect and large intensity of the coherent pump. The necessary
consquence of this increase of coupling strength is the linearization of (2.11).
We rewrite the amplitude of the optical �eld as a sum of an average coherent
amplitude ā and a �uctuating term δâ:

â = ā+ δâ. (2.12)

Inserting this new form of the optical �eld in (2.11) we get

Ĥint ∝ (ā+ δâ)+(ā+ δâ)(b̂+ + b̂). (2.13)
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This expression can be expanded in terms of ā. The �rst term ∝ |ā|2 can be
omitted after implementing an appropriate shift of the mechanical displace-
ment�s origin and afterward always using a modi�ed detuning. The second
term, of order |ā|, is the one we focus on and the third term is ignored be-
cause of being smaller by factor |ā|. Assuming that |ā| is a real number, the
resulting interaction Hamiltonian reads

Ĥint ∝ (δâ+ + δâ)(b̂+ + b̂). (2.14)

It is a qudratic Hamiltonian of QND type which rises from linearization of
original nonlinear cubic Hamiltonian for the pressure of light. It is advan-
tageous for us because it leads to linear Heisenberg-Langevine equations of
motion for the optomechanical interaction. Such linear equations have a lin-
ear solutions in the operators of the systems which transform Gaussian states
always to Gaussian states.

2.3 PULSED OPTOMECHANICS

There have been numerous various experiments proposed and performed in
quantum optomechanics [8],[9],[10]. To present a scheme close to our proof-
of-principle considerations in following sections the pulsed regime of quantum
optomechanics is used.

Through this work we frequently mention [11] as a stimulating idea. In
the last chapter of this thesis we propose an experiment that is a modi�-
cation of the one in [11]. It is therefore convenient to use this experiment
for demonstration of basic properties of pulsed optomechanics. In following
chapter we also include a brief overview of the whole experiment in order to
show the analogy to this work.

A speci�c feature of pulsed optomechanics is an optical pump which con-
sists of very intensive short pulses. There are important limitations in the
experiment parameters that have to be satis�ed to fully utilize possibili-
ties that pulsed regime provides. In [11], the experiment consists of four
consequent interactions between laser pulse and mechanical oscillator. The
required constraints read

TM ≫ τ > 4σ > κ−1, (2.15)

where TM = 2π/Ωm is the period of motion of the mechanical oscillator, τ
stands for the round-trip time of each laser pulse, σ is the temporal width
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of laser pulse and κ represents the photon cavity decay rate. Expr. (2.15)
contains three simultaneous inequalities, each of them represents a di�erent
experimental limitation. For each interaction it is assumed, that the pulse
has the same teporal pro�le, which is valid if σ > κ−1. Setting τ > 4σ,
ensures that each successive pulse decays out of the cavity prior to the next
pulse entering. This also enables to neglect interference between subsequent
pulses and successfully resolve individual interactions. Finally, to generate
geometric phase e�ect exploited in our method we need the mechanical os-
cillator to be nearly motionless, which is represented by TM ≫ τ . The laser
pulse also has to be shorter than decoherence time of the present �eld and
the mechanical oscillator. In this regime, we can simply neglect the free evo-
lution of mechanics and all mechanical noise e�ects. The free evolution of
optical mode can be eliminated by setting the veri�cation of light mode at
the same frequency. The coupling is then a simple QND coupling between
light and mechanics.

Optomechanical coupling does not necessarily require a cavity, however
its presence appears to enhance the coupling strength [9]. The experiment
reported in [9] is performed in the regime satisfying (2.15). The experiment
uses Mach-Zehnder interferometer that has a micro-mechanical oscillating
mirror in one of the two interferometer paths. The pulses are �rst divided
by a beam-splitter into a weak signal beam and an intense beam. The in-
tense beam acts as a local oscillator, wheres the signal beam is focussed onto
the mirror. The coherent optical pulse gains a phase shift proportional to
the mechanical position. Concurrently, the radiation pressure imparts mo-
mentum onto the mirror. The imformation exchange between the light and
mechanics is quanti�ed by χ = 4πx0

√
N/λ. [N , mean photon number per

pulse; λ, optical wavelength; x0 = (h̄/2mΩm)
1/2, mechanical ground state

extension; m, mechanical mass; Ωm, mechanical angular frequency]. The au-
thors speci�ed all the elements used in experiments, we do not include these
parameters here. For tha largest optical pulse strength used the measured
results correspond to the interaction strength of χ ∝ 10−4. An e�ective way
to increase this quantity is to employ an optical cavity to enhance the op-
tomechanical interaction. Using the same experimental parameters, a cavity
of �nesse ∝ 104 is su�cient. As such a cavity simultaneously requires a high
�nesse, as well as a large bandwith to accomodate a short optical pulse, this
is best achieved with an optomechanical microcavity [3].
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2.4 COHERENT, SQUEEZED AND THERMAL

STATES

In this thesis we deal only with Gaussian states, they are enough to describe
quantum oscillators cooled down to ground state as well as the thermal states
of oscillators at thermal equilibrium. In order to understand the di�erence
between classical and non-classical states it is convenient to present their def-
initions [5]. To be able to de�ne that di�erence it is necessary to know the
term coherent state. Coherent states build a connection between quantum
and classical coherence theory in the sense that they are the most appropri-
ate quantum representation of a classical wave. Di�erently to the thermal
equilibrium states, the coherent states are out of the thermal equilibrium.

Let�s start with the classical oscillator, it can be described by the corre-
lation function for all possible times

⟨α∗n(t)αm(t′)⟩, (2.16)

with an amplitude α. Moving to the quantum oscillator we deal with the
creation â+ and the annihilation â operators(for simplicity we no longer use
the notation â and reduce it to simple a)

⟨a+n(t)am(t′)⟩. (2.17)

These two expressions should correspond

⟨α∗n(t)αm(t′)⟩ = ⟨ψ|a+n(t)am(t′)|ψ⟩, (2.18)

therefore coherent state |α⟩ is an eigenstate of the annihilation operator
a|α⟩ = α|α⟩.

The de�nition says that classical state is a mixture of coherent states

ρ =
∫
P (α)|α⟩⟨α|d2α, (2.19)

whereas non-classical states ρ ̸=
∫
P (α)|α⟩⟨α|d2α are not compatible with

such an expansion.
Thermal states are an example of classical states being at thermal equi-

librium with the environment. These states can be desribed as states with
maximal entropy and constant average value of energy. It is de�ned in Fock
state representation by the density operator

ρ =
∑
n

⟨n⟩n

(1 + ⟨n⟩)n+1
|n⟩⟨n|, (2.20)
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where

⟨n⟩ = 1

e
h̄Ωm
kT − 1

(2.21)

is the average value of number operator, h̄ is a reduced Planck constant, Ωm

is the oscillator frequency, k is a Boltzmann constant and T stands for the
ambient temperature. In the representation of coherent state the de�nition
reads

⟨α|ρ̂|α⟩ =
∑
n

⟨n⟩n

(1 + ⟨n⟩)n+1
⟨α|n⟩⟨n|α⟩ = e−|α|2

1 + ⟨n⟩
e

−|α|2

1+ 1
⟨n⟩ . (2.22)

Thermal states are also characterized by zero average value of its quadratures
⟨x⟩ = ⟨p⟩ = 0 and equal variances Vx = Vp = ⟨x2⟩ = ⟨p2⟩. Variance of the
number operator reads

VN = ⟨n⟩(1 + ⟨n⟩). (2.23)

It is illustrative to include a dependance of the thermal noise VN on the
ambient temperature and the frequency of the mechanical ocsillator, which
is illustrated in Fig. 2.4. Phonon statistics is described by Bose-Einstein
distribution (2.21). If we use the form of the creation a+ = x−ip

2
and the

annihiliation a = x+ip
2

operator and consider the commutator [x, p] = 2i and
the fact that ⟨x2⟩ = ⟨p2⟩ = VN , we obtain the expression that enables to
determine the value of VN

VN =
2

e
h̄Ωm
kT − 1

+ 1. (2.24)

We include this �gure for better imagination of scale we use in graphs that
illustrate our results. It is clear that for lower frequencies of mechanical
oscillator the variance VN can be much larger than unity, even quite below a
room temperature. It very simply demonstrates the importance of robustness
of procedures under the thermal mechanical noise.

Coherent states, i. e. states of the �eld that correspond to the classical
oscillations the best, started to attract attention with the invention of laser
and also with the huge development of quantum theory. In classical theory
the oscillations have well-de�ned amplitude and phase. The transition from
classical to quantum physics brings �uctuations associated with both am-
plitude and phase. We can describe the �eld in terms of the two conjugate
quadrature components. They are limitted by fundamental Heisenberg�s
uncertainty principle which is in the form:

VxVp ≥ 1, (2.25)
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Figure 2.4: The dependance of the thermal noise VN on the ambient temper-
ature T and the frequency f = Ωm/2π.

where Vx and Vp stand for the variance in position x = a + a+ or in mo-
mentum p = i(a− a+), respectively. Both variables x and p for both optical
and mechanical oscillator are identically decomposing the annihilation oper-
ator a = x+ip

2
of photons and phonons. A �eld in a coherent state satis�es

the minimum-uncertainty equation and also has equal uncertainties in both
quadrature components.

In principle, there is a possibility of generating a state that satis�es the
lowest limit for uncertainty but does not have symmetrical �uctuations. It
means that the �eld in this state has a single variance of the quadrature com-
ponents reduced below unity. This fact is compensated by increasing variance
in the conjugate quadrature, such that the Heisenberg�s uncertainty relation
is not violated. Such states of a radiation �eld are called squeezed states,
which can be obtained by unitary trasformation of the coordinate and mo-
mentum variables x′ = λx, p′ = λ−1p, where λ ∈ (0,∞). Two cases can
occur, if λ < 1 the state is squeezed in x, or λ > 1 and the is state squeezed
in p. A quadrature component with �uctuations that are below the standard
quantum limit, has interesting aplications in gravitational wave detection
[12], quantum teleportation [13] and quantum computing [14].
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Figure 2.5: vacuum [15]
Figure 2.6: a thermal
state [15]

Figure 2.7: a coherent
state [15]

Figure 2.8: a squeezed
state [15]

2.5 QUADRATURE PICTURE OF QND IN-

TERACTION

Single modes of mechanical and optical resonators can be considered as a
quantum harmonic oscillator. If we assume a regime of a strong optical
pumping, when there is enough strong and fast coupling between light and
matter to be almost unitary, it still keeps much lower strength than a perfect
swap of quantum states between light and matter would require. Using
frequency detuning of mechanical oscillator and optical mode, this coupling
can be modi�cated among very di�erent types of quadratic interactions [3].
It includes all the three prominent interactions: beam-splitter (BS), ampli�er
(AMP) and quantum non-demolition (QND), which will be our main focus.

We describe the interaction between two physical systems A and B as the
simplest but weak Gaussian interaction between two di�erent linear harmonic
quantum oscillators described by XA, PA and XB and PB, respectively. They
satisfy [X,P ] = 2i.

The asymmetrical unitary QND interaction can be adjusted by local phase
shift to the two di�erent transformations, either

X ′
A = XA , P ′

A = PA −KPB,
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X ′
B = XB +KXA , P ′

B = PB

(2.26)

transfering XA to the mechanical oscillator B, or

X ′
A = XA +KPB , P ′

A = PA,

X ′
B = XB +KPA , P ′

B = PB

(2.27)

transferring PA to the mechanical oscillator B, with QND gain K > 0. A
weak interaction is represented by the value of K close to the zero. Here we
consider for simplicity that optomechanical interaction is enhanced enough
to make free evolution negligible during the coupling.

2.6 THE COVARIANCE MATRIX, ENTAN-

GLEMENT AND CONDITIONAL VARI-

ANCE

To introduce these terms we follow [16].

2.6.1 GAUSSIAN ENTANGLED STATES, THE CO-

VARIANCE MATRIX

To describe Gaussian entanglement generated between two modes assisted
by mediator, we will introduce the formalism of covariance matrices useful
to calculate logarithmic negativity as a reasonable measure of the Gaussian
entanglement. For describing a continuous variable (CV) system we use a
Hilbert space resulting from the tensor product of in�nite dimensional Fock
spaces. Using the annihilation and the creation operators is convenient here.
Let these operators act on each Fock space and de�ne the related quadrature
phase operators x̂j = (aj + a+j ) , p̂j = i(aj − a+j ). We denote xj and pj the
corresponding phase space variables. Let X̂ = x̂1, p̂1, ..., x̂n, p̂n denote the
vector of the operators x̂j and p̂j. In terms of the symplectic form Ω, the
commutation relations for the X̂j take the form

[X̂j, X̂k] = 2iΩjk,
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with

Ω ≡
n⊕

j=1

ω, ω ≡
(

0 1
−1 0

)
.

Such a CV system could be also described by a positive trace-class oper-
ator (the density matrix ρ). In this thesis, we deal only wit Gaussian states
and Gaussian interactions. Gaussian states are fully described by their �rst
and second statistical moments of the �eld operators, because higher mo-
ments are determined by them. Each physical system in our discussion is
therefore characterized by the variance of x and p. If the Gaussian char-
acter of both systems is preserved after the interaction, we describe it as a
Gaussian interaction.

To investigate entanglement generation between two systems it is nec-
essary to introduce the covariance matrix (CM) formalism. The covariance
matrix Γ consists of elements that are de�ned as

Γjk ≡
1

2
⟨X̂jX̂k + X̂kX̂j⟩ − ⟨X̂j⟩⟨X̂k⟩. (2.28)

Apparently, covariance matrix resulting from this de�nition is symmetrical.
According to the earlier de�nition of the quadrature operators in terms of
the ladder operators, the entries of CM are real numbers. The canonical
commutation relations and the positivity of the density matrix ρ imply

Γ + iΩ ≥ 0, (2.29)

meaning that all the eigenvalues of the matrix (Γ+ iΩ) have to be greater or
equal than zero. This expression is very powerful because it is a necessary
and su�cient condition the matrix Γ has to ful�l to be the CM corresponding
to a physical state. Notice that Ineq.(2.29) is the constraint for any states
(not only for the Gaussian states). For pure, uncorrelated states it reduces
to a familiar Heisenberg�s principle. Such a restriction implies Γ ≥ 0.

2.6.2 TWO-MODE STATES

In our discussion we concetrate on two-mode Gaussian states. Basic proper-
ties of such states are listed below. Any covariance matrix can be devided
in sub-matrices. In case of two-mode state it is useful to express the CM in
terms of three 2× 2 matrices α, β and γ

Γ ≡
(

α γ
γT β

)
. (2.30)
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Matrices α and β contain information about each system, whereas γ consists
of correlations between them. In principle, for any two-mode CM Γ we can
�nd local symplectic operations S1 and S2 (each Sj acting on one of the two
modes) that their direct sum S1

⊕
S2(corresponding to the tensor product of

local unitary operations) changes the CM Γ to the so called standard form
Γsf

ST
l ΓSl =


a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b

 . (2.31)

The states with a = b are called symmetric. Further, any pure state is
symmetric and ful�ls c+ = −c− =

√
a2 − 1. Notice, that up to a common

sign �ip between c+ and c−, the standard form associated with any CM is
unique. It is unique because the correlations a, b, c+, c− are determined by the
four local symplectic invariantsDetΓ = (ab−c2+)(ab−c2−), Detα = a2, Detβ =
b2, Detγ = c+c−. Considering two-mode states, the Ineq.(2.29) can be recast
as a constraint Sp(4,R) invariants DetΓ and ∆(Γ) = Detα +Detβ + 2Detγ:

∆(Γ) ≤ 1 +DetΓ. (2.32)

We denote ν− and ν+ the symplectic eigenvalues of the CM corresponding to
a two-mode Gaussian state. With the convention ν− < ν+, the Heisenberg
uncertainty relation reducing to

ν− ≥ 1. (2.33)

The expression for determining the symplectic eigenvalues is

ν∓ =

√√√√∆(Γ)∓
√
∆(Γ)2 − 4DetΓ

2
. (2.34)

The physical meaning of the smallest symplectic eigenvalue appears in a
connection with entanglement presented in the state.

2.6.3 ENTANGLEMENT OF GAUSSIAN STATES

To be able to separate two-mode Gaussian states it is necessary and su�cient
to satisfy the positivity of the partially transposed states (PPT criterion).
The partial transposition of a bipartite quantum state is de�ned as a simple
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transposition but applied only on one of the two subsystems in a given basis.
In our case this leads to a sign �ip in Detγ. Therefore ∆(Γ) changes to ∆̃(Γ),
that takes the form

∆̃(Γ) = Detα +Detβ − 2Detγ. (2.35)

The symplectic eigenvalue now reads

ν̃∓ =

√√√√∆̃(Γ)∓
√
∆̃(Γ)2 − 4DetΓ

2
. (2.36)

The PPT criterion thus reduces to a simple inequality that must be satis�ed
by the smallest symplectic eigenvalue ν̃− of the partially transposed state

ν̃− ≥ 1, (2.37)

which can be equivalently written in the form

∆̃(Γ) ≤ DetΓ + 1. (2.38)

Looking at the above inequalities in detail, they imply Detγ = c+c− < 0 as
the necessary constraint for generating entanglement for the two-mode Gaus-
sian state. The quantity ν̃− provides all the information about qualitative
characterization of the entanglement for arbitrary two-mode Gaussian states.
If the PPT criterion is violated, we automatically know that the systems are
entangled which means that we are interested in the states that do not satisfy
(2.37).

We presented a method that enables to decide if two systems are entan-
gled. The next logical step is to determine how much entanglement is gener-
ated. In other words, how to characterize entanglement from the quantitative
point of view. There are many di�erent ways how to quantify entanglement,
we would like to brie�y introduce only few of them that suit our case best.
A measurement of Gaussian entanglement can be provided by the negativity
N. The negativity N of a state ϱ is de�ned as

N(ϱ) =
∥ϱ̃∥ − 1

2
, (2.39)

where ϱ̃ is the partially transposed density matrix and ∥ô∥ = Tr|ô| repre-
sents the trace norm of the hermitian operator ô. In our discussion, we use
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logarithmic negativity EN as the main indicator of how much entanglement
is generated. It is strictly related to the negativity N and is de�ned as

EN ≡ log2∥ϱ̃∥. (2.40)

For any two-mode Gaussian states the negativity is a simple decreasing func-
tion of ν̃−, therefore it is an inverse quanti�er of entanglement:

∥ϱ̃∥ =
1

ν̃−
⇒ N(ϱ) = max[0,

1− ν̃−
2ν̃−

],EN = max[0,−log2ν̃−]. (2.41)

These expressions determine how strongly the PPT inequality (2.37) is vio-
lated. From these we can say that the symplectic eigenvalue ν̃− completely
quali�es and also quanti�es the quantum entanglement of a Gaussian state.
We would also like to mention another quantity called �delity. It is not used
in this work but we include it here for completeness. The �delity sets how
much successful a teleportation experiment is [13], it reaches unity only for
a perfect transfer of a state. According to experiments, without using en-
tanglement, by purely classical communication the �delity of FCL = 1

2
is the

best that can be achieved. The su�cient �delity criterion says that if tele-
portation is made with F > FCL, then the shared resource is entangled. But
converse statement is generally false. The optimal �delity is given by

FOPT =
1

1 + ν−
, (2.42)

where ν− is the smallest symplectic eigenvalue of CM. This equation shows
that optimal �delity of continuous variables teleportation of coherent states
depends only on the entanglement quanti�ed by ν−. More information about
�delity can be found in [17].

2.6.4 CONDITIONAL VARIANCE

By conditional variance we understand a controllable preparation of a state in
system A by measuring system B only. Furthermore, a preparation of a non-
classical state in a classical system. Since our discussion is about Gaussian
states the only way how to prepare a non-classical state is to squeeze the
variance under unity. Therefore it is also referred as conditional squeezing.
Mathematical expression takes the form

VC = ⟨(XA − gXB)
2⟩, (2.43)
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where g is a variable gain, which is used to reduce the variance VXA = ⟨X2
A⟩

to VC . It applies transformation of XA to XA−gX̄B, where X̄B is a measured
value of XB.

In principle, we distinguish two types of conditional variance, but the
di�erence is only how to achieve the required state. If we consider that
⟨XB⟩ = ⟨XA⟩ = 0 and minimalizing via g we obtain

VC = ⟨X2
A⟩ −

|⟨XAXB⟩|2

⟨X2
B⟩

, (2.44)

which means that in this type the key task is to optimize the factor g. On
the other hand, the principle in the second case is in selecting appropriate
measurement results. Whenever XB ≈ 0 is measured we know that we
obtain the minimum conditional variance that is in agreement with (2.44).
Any other results that are not in a very small interval around zero are just
thrown away. Because of the selection of only a few measurements from a
huge number of attempts this method is sometimes referred as probabilistic.
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THERMAL ENTANGLEMENT

PRODUCED BY QND

The existence of entanglement between a quantum system and a macro-
scopic object is the de�ning feature of the interpretation of the Schrödinger
cat state. We model the Schrodinger cat state by very robust Gaussian en-
tanglement with a very noisy system at thermal equilibrium. The possibility
of generating this thermal Gaussian entanglement and its consequent prop-
erties is discussed in [18] for three prominent types of interactions. The main
purpose was to pick the most appropriate intearaction type that would show
the most promising results. Our ambition here is to give a summary of the
most signi�cant results to identify the starting point of this master�s thesis.

Ampli�er and QND generate entanglement for all possible values of the
variances of variables in discussion, even for high values of thermal noise
VN . Beam splitter is the type of interaction that requires squeezed state at
the input to observe entanglement at all, therefore it is clearly not a proper
candidate to our purpose here. Of course, the amount of entanglemenent
for VN ≫ 1 is very low for both ampli�er and QND. However, it is never
vanishing, therefore the interaction does not degrade to entanglement break-
ing. The only way to obtain more entangled state is to input squeezed state,
where the amplifer shows slightly more promising result than QND. On the
other hand, squeezing at the input of the light system decreases the robust-
ness of entanglement against subsequent damping before further application
for both QND and ampli�er. Only ampli�er presents the possibility of pre-
serving entanglement through small energy losses even for VN ≫ 1. Also the
conditional variance analysis showed the best state preparation of squeezed
state of matter for the ampli�er. In all three cases of various interactions,
the noisy matter system shows higher robustness to energy damping.

Despite the fact, that ampli�er was the best candidate to obtain robust

28
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thermal entanglement, our analysis showed that it is inapplicable for the pur-
poses of this thesis. On the other hand, the second best candidate - QND
- enables con�guration that is suitable for this situation and will be used
through the whole thesis. It is therefore useful to review the properties of
QND interaction more extensively.

3.1 GAUSSIAN ENTANGLEMENT FROMQND

INTERACTION

The light is characterized by the variance VS ∈ (0; 1⟩ which determines its
squeezing. To describe the thermal noise of the mechanical oscillator we use
the variance VN > 1. QND interaction advantageously generates entangle-
ment for all con�gurations, which means the light does not have to be in a
squeezed state and the mechanical system can contain a lot of noise to still
observe entanglement after the interaction. The amount of entanglement for
high values of VN is however very low and the only way how to increase
entanglement is to use squeezed state of light. This is illustrated in Fig. 3.1.

2
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Figure 3.1: QND type of interaction (K2 = 0.05): logarithmic negativity as
a function of VS and VN .

The most illustrative and simple way how to characterize the realistic
change of entanglement is to determine how quickly it increases when the
squeezing goes from the threshold VS = 1. QND is a non-symmetrical in-
teraction, it is advantageous to consider squeezing of light in the momentum
quadrature PL. In other words, VSX > 1(it is a consequence of Heisenberg�s
uncertainty relation). Larger values of VSX > 1 now correspond to more
squeezing in momentum, therefore we identify VS ≡ VSP . The function of
the logarithmic negativity becomes zero in the in�nity of VN and increases
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very slowly with increasing VS, therefore we have to take into account higher
orders of a Taylor series. We used the limit VS → 1+. The character is
descrribed by

∂LN

∂VS
|VS=1 =

2K2

VN ln2
. (3.1)

An interesting fact appears also when we study the behaviour of LN from
the left side, in the closeness of VS = 0. When we apply the �rst derivative
of the logarithmic negativity and then take the limit for VS → 0 we obtain

∂LN

∂VS
|VS=0 =

2K2VN
(V 2

N − 1)ln2
. (3.2)

It means that in the area of higher thermal noise, the LN is increasing faster
in the closeness of VS = 0. Considering high values of VN , (3.2) reduces
to (3.1), which would mean that the derivative does not change with VS,
but this would not correspond to Fig. 3.1. Therefore we add here a better
approximation of (3.1). We took into account higher orders of Taylor series
and obtain ∂LN

∂VS
|VS=1 = 2K2

VN ln2
− 8K4

V 2
N ln2

. If we study the absolute value of
entanglement in the area of high VN with no squeezing for a weak interaction,
we obtain

fLN = −log2(1−
2K2

VN
). (3.3)

It clearly demonstrates how logarithmic negativity is non-vanishing for large
VN and the possibility to compensate the larger variance by higher interac-
tion strength K.

3.2 ROBUSTNESS OF ENTANGLEMENT FROM

QND INTERACTION

An important characteristic of any quantum system is its robustness against
energy damping. Since we consider two physically di�erent systems, light
and mechanical oscillator, it opens a question in what system the energy
damping a�ects the generation of entanglement more. To involve energy loss
in each system we consider simple beam splitter. For this purpose, we derive
a condition for the minimum ηmin ∈ (0, 1), that represents the transmission
of the beam splitter. We also include a condition that makes ηmin ≤ 0 and
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therefore the entanglement is robust for all values of η > 0, we say that the
robustness is absolute.

Under the consideration of energy damping in mechanical system we de-
rive

η > 1− 4VN
V 2
N − 1

, (3.4)

which is independent on K and VS, therefore if we somehow manage the
value of VN < 2 +

√
5 we automatically get entanglement. This expression

corresponds to Fig. 3.2. Note, that we do not need to input squeezed VS. The
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Figure 3.2: QND type of interaction (K2 = 0.05): maximal possible loss of
energy in mechanical oscillator to preserve entanglement as a function of VS
and VN .

area of our main interest is the area of high values of VN where the condition
reduces to

η > 1− 4

VN
. (3.5)

For energy damping in light system, if there is satis�ed

VS <
1

1 + 2K2VN√
K2VN (V 2

N−1)

(3.6)
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then the following condition stands, but in other case the entanglement is
always robust. The condition for minimum η is

η > 1− 4K2V 2
S VN

(V 2
N − 1)(VS − 1)2

, (3.7)

which is illustrated in Fig. 3.3. In comparison to (3.4) VS and K play a
substantial role here now. For high values of VN we obtain from (3.7)
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Figure 3.3: QND type of interaction (K2 = 0.05): maximal possible loss of
energy in light to preserve entanglement as a function of VS and VN .

η > 1−
4K2V 2

S

(VS−1)2

VN
, (3.8)

which is obviously di�cult to achieve. The only way to generate it is to in-
crease VS towards unity for given η. But the appropriate interval of synchro-
nized values of VS and η is very thin. So squeezed VS here is disadvantageous.

3.3 CONDITIONAL SQUEEZING FROMQND

INTERACTION

In our motivational case of Schrödinger cat experiment the mechanical sys-
tem can be also conditionally prepared in a non-classical state by a mea-
surement on the quantum system. It can be considered as a transposition of
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quantum features to the macro-system which was initially in a very classical
state. We focus on studying the conditional variance, especially the case
when we are able to squeeze the conditional variance under unity which is
called conditional squeezing.

For QND interaction, solving the problem of the conditional variance of
the position of the mechanical oscillator leads us to a result that there is
squeezing in VN needed but this is out of possible values of VN , so there is
no chance to obtain VCX < 1. On the other hand, VCP < 1 is achievable by
satisfying

VS <
K2VN
VN − 1

. (3.9)

In the area of high values of VN it reduces to

VS < K2. (3.10)

Coexistence of entanglement and VCX < 1 is not possible, but entanglement
and VCP < 1 may be coexisting and that happens if we satisfy the restriction
for VCP < 1 because generating entanglement for QND is not limitted in our
considerated values.

Besides the existence of conditional squeezing of mechanical oscillator
we study how much under unity the conditional squeezing goes. As we did
in entanglement analysis we identify VS ≡ VSP here, too. The amount of
conditional squeezing can be described by the equation

VCP =
VNVS

VS +K2VN
. (3.11)

For better insight we include the illustration in Fig. 3.4. In the area of high
values of VN the Eq.(3.11) changes to

VCP =
VS
K2

. (3.12)

From Fig. 3.4 and also from (3.12) we can certainly say that VS plays positive
role for obtaining more conditional variance.

All results clearly demontrate that QND type of thermal entanglement
between light mode at ground state and mechanical mode at thermal equal-
ibrium not only exists for arbitrary temperature, but also remains reasonably
robust and can be exploited in the remote state prepration. It opens a way
to possible applications of this thermal entanglement which follows in the
next chapter.
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Figure 3.4: QND type of interaction (K2 = 0.05): the dependence of the
conditional squeezing VCP on VS and VN .



Chapter 4

ANALYSIS OF

ENTANGLEMENT MEDIATED

BY THERMAL NOISE

In this chapter we are going back to our original motivation presented in
the intorduction. Our analysis is focused on deriving conditions that guar-
antee generating entanglement between systems A and B without directly
interacting with each other. Entanglement is mediated by system M in an
unknown state. We consider the mediator to be mechanical system and two
systems A and B can be two modes of radiation, for example, at di�erent
frequencies. Therefore, it can describe the example of quantum transducer
between two di�erent frequencies of radiation [19],[20],[21]. The mechani-
cal state can be naturally a thermal state at thermal equlibrium with room
temperature. The goal is to �nd the proper type of interaction to generate
entanglement between systems A-M and B-M, respectively. Even more sub-
seqent interactions may be needed. If such a con�guration exists, we include
quantitative analysis as well. A large attention is paid to a stability of en-
tanglement generation in the presence of small energy absorption during the
entangling process. It is very important for �nal judgement about feasibility
of proposed method. Robustness of generated entangled states against sub-
sequent damping before they are used for an application is also discussed.
Simple analytical results are rare in this kind of complex non-linear problem.
Most results are presented in �gures followed by a discussion. Although the
problem can be solved analytically, the analytical forms of formulas are too
complex to be presented.

35
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4.1 MEDIATED QND INTERACTION

We consider three quantum harmonic oscillators coupled in pairs, see Fig. 4.1(a).
Oscillators A,B representing for example optical modes are accessible, they
can be prepared in any state and measured by any measurement. Accessible
oscillators A,B however do not interact with each other. The coupling is
performed by the mediating oscillator M , representing on the other hand
a mechanical mode. Each of the oscillators is described by its operators
X = a+a+ and P = i(a+−a) representing generalized position and momen-
tum. We denote one oscillator XM , PM and the two other oscillators Xi, Pi,
i = A,B. Both the variables satisfy the commutation relations [Xi, Pi] = 2i
and [XM , PM ] = 2i of generalized position and momentum. The mediator
M appears in a thermal state with the variance VN > 1 of both XM , PM

variables. We also consider that VN is not known and can even �uctuate.
Systems A and B can be either at thermal equilibrium state with the vari-
ance Vi > 1, i ∈ A,B, or they can be cooled down to a pure state at quantum
limit with the variance Vi = 1.

The scheme for our analysis consists of three physical systems - two oscil-
lators A and B and one mediating oscillator M . We now let the M system
interact subsequently with A and B systems by four unitary QND inter-
actions, as it is shown in Fig. 4.1(b). The interaction is considered to be
faster than any relevant decoherence time. It limits naturally the interaction
transfer K. The mediator participates in all four interactions - in QND1 and
QND3 along with A system and in QND2 and QND4 along with B system.
We ignore, for a while, all the elements LOSS1-LOSS7 that will be considered
later.

The only arrangement that enables generating entanglement even for high
values of VN (representing ambient temperature) is represented in Heisenberg
picture by transformations

QND1 : X ′
A = XA −K ·XM P ′

A = PA,

X ′
M = XM P ′

M = PM +K · PA,

QND2 : X ′
B = XB P ′

B = PB −K · P ′
M ,

X ′′
M = X ′

M +K ·XB P ′′
M = P ′

M ,

QND3 : X ′′
A = X ′

A +K ·X ′′
M P ′′

A = P ′
A,

X ′′′
M = X ′′

M P ′′′
M = P ′′

M −K · P ′
A,
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QND4 : X ′′
B = X ′

B P ′′
B = P ′

B +K · P ′′′
M ,

X ′′′′
M = X ′′′

M −K ·X ′
B P ′′′′

M = P ′′′
M , (4.1)

where XM(Xi), PM(Pi), i = A,B represent operators of mediator (oscillators
A and B), and K stands for the interaction gain. Applying these transfor-
mations sequentially leads us to the operation

X ′′
A = XA +K2 ·XB P ′′

A = PA,

X ′′
B = XB P ′′

B = PB −K2 · PA, (4.2)

which does not depend on the mediator at all. It is an interesting result
because it has the form of QND type of interaction between A and B with
the transfer coe�cient K̃ = K2. The whole procedure therefore behaves as a
single QND interaction between oscillators A and B, even though there is no
actual coupling between them. Advantageously, it does not depend on the
mediator M , therefore it works even for arbitrary noisy and unstable states
of M . The fact that thermal noise of the mediator does not a�ect the joint
operation between the oscillators A and B was the main initial reason to
focus on this con�guration of four consequent QND types of interaction.

4.2 THE GEOMETRIC PHASE POINT OF

VIEW

If a physical system drives around a closed path in phase space, the geometric
phase (Berry phase)[22] is imparted on the wavefunction of the quantum
state. Wide applications of this phase can be found in quantum computing
to create logic gates, but in [11] the connection between geometric phase and
optomechanics is presented.

The autors of [11] proposed a method of four subsequent interactions
between mechanical and optical resonator, that allows to generate squeezed
state of the mechanical one. This con�guration also leaves the resulting state
of the oscillators disentangled. If we realize the analogy between the problem
in this master�s thesis and the method in [11], the motivation becomes clear.
By adding a third system, the con�guration generates two mode squeezing
- entanglement between two systems, whereas the third one - mediator is
disentangled. In [11], the authors disentangled light mode, here we how-
ever focus on more interesting and logical case of disentanglement of noisy
mechanical mode. The non-existing correlations between the systems bring
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(a)

(b)

Figure 4.1: (a) The basic idea of three coupled harmonic oscillators. (b) The
scheme of entangling procedure. Accessible oscillators A,B are sequentially
coupled to not accessible systemM by interactions QND1-QND4. Each oscil-
lator experiences energy damping through the process and in the consequent
channel represented by the elements LOSS1-LOSS7. Three colours of these
elements are used to illustrate di�erent types of energy loss depending on
where it is considered. Blue colour corresponds to ηAB, green colour corre-
sponds to ηM , whereas red colour illustrates the in�uence of energy damping
in the ouside channel ηCH . We study the generation of entanglement at the
output and its robustness to energy loss at the outside channel.

the possibility of generating entanglement independently on the mediating
system. Then the mediator can be in any state, even classical thermal state
at a room temperature and entangling procedure will work. In addition, the
mediator does not have to be measured after the entangling procedure. The
goal is to �nd proper interactions that correspond to this idea of implement-
ing the geometric phase on the mediator.
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Figure 4.2: The evolution of the mechanical system in phase space. Dashed
lines represent the optomechanical interactions between mechanical oscillator
and optical mode A or B. Two random starting points are shown. The
whole procedure consisting of four QND interactions (A-M, B-M) produces a
closed loop in phase space, no matter where the starting point is. The whole
procedure behaves as an interaction between two optical modes A and B,
whereas the mechanical oscillator is left out.

4.3 MEDIATED GENERATION OF ENTAN-

GLEMENT

After the entangling procedure at Fig. 4.1(b), the QND interaction advanta-
geously produces entanglement for all the possible values of K for VA,B = 1
[18]. The smallest symplectic eigenvalue of the covariance matrix in idealized
case with no loss of energy and VA,B = 1 is given by

ν0− =
√
1 + 2K4 − 2

√
K4 +K8. (4.3)

In the ideal case of unitary interactions, the transfer coe�cient K is only
factor that determines the amount of entanglement. The entanglement does
not depend on the state of mediator M . As it is easy to see from Fig. 4.3,
if we assume Vi = 1, i ∈ A,B, increasing transfer coe�cient K simply
guarantees more entanglement.

However, if oscillators A,B are not cooled down to the ground state and
they contain initially thermal state with VA = VB = VT > 1, the resulting
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smallest symplectic eigenvalue takes the form

νT− = VT · ν0−. (4.4)

Unlike in the case with VA,B = 1, here we are limited by condition for the
interaction gain

K >

√
V 2
T − 1

2VT
. (4.5)

Using the expansion to the second order for VT ≫ 1 we obtain the condition
for observing entanglement VT < 2K2. It means that it is still possible to
obtain entangled states just by increasing the interaction gain above thresh-
old KTH =

√
VT

2
, even if there are only noisy systems far from being in the

ground state.
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Figure 4.3: The amount of produced entanglement dependent on the interac-
tion gain K and on the noise of side oscillators VT if the whole process does
not experience any loss of energy.

The dependence of logarithmic negativity LN on VT and K is shown in
Fig. 4.3. As long as we satisfy (4.5), increasing value of K guarantees more
entanglement which is the same result as we faced above for VA,B = 1. It was
veri�ed by semi-positiveness of ∂LN

∂K
for any VT > 0 and increasing K > 0.

Simultaneously, LN descreases for any K > 0 and increasing VT , it proves
that higher thermal noise in systems A,B lowers the amount of produced
entanglement for any given value of K.
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4.4 ROBUSTNESS OF GENERATED ENTAN-

GLEMENT

An important characteristic of any entangled states is a robustness against an
energy damping. We discuss the case when the whole entangling procedure
is assumed to be perfect and we consider only loss of energy at the output to
determine robustness of the entanglement. In Fig. 4.1(b), it means removing
all the damping placed inside the generation scheme except of LOSS2 and
LOSS7 presented in the channel. The energy damping can be simulated by
implementing an auxiliary beam splitting type of interaction with ancillary
environmental oscillators in ground states. This interaction is characterized
by its transmission η ∈ (0; 1). The operators of oscillators A,B therefore
change to a new form

X ′
i =

√
ηiXi +

√
1− ηiX0i,

P ′
i =

√
ηiPi +

√
1− ηiP0i, (4.6)

where i ∈ A,B. To simplify analysis we take the same η2 = η7 = ηCH for
both of the systems A,B. If we assume both oscillators A,B in a quantum
limit with VA,B = 1, the condition that has to be satis�ed takes the form

ηCH > 1− 2

K2
. (4.7)

This is a very positive outcome in the meaning that for K <
√
2 the gener-

ated entanglement is absolutely robust. On the other hand, the amount of
robust entanglement is not very large, because of this limit (4.7) to guarantee
robustness; see Fig. 4.4. Since for the ideal unitary entangling procedure
the generated state does not depend on M , there is also no dependence on
the mediator in (4.7).

The threshold depicted in Fig. 4.4 is clearly corresponding with (4.7). On
the other hand, considering �nite energy losses at the output of entangling
procedure makes LN dependent on interaction transfer K. Increasing K no
longer guarantees monotonously increasing generation of more entanglement
for given value of ηCH . The optimal value of interaction transfer K that
guarantees the largest amount of entanglement is

K =
1

4
√
1− ηCH

. (4.8)

As ηCH decreases, the optimal K reduces to unity. The sensitivity of Gaus-
sian entanglement to the energy damping depends on how far the oscillators
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Figure 4.4: The logarithmic negativity of produced entanglement dependent
on the loss of energy at the output described by transmission η2 = η7 = ηCH

and on the interaction gain K for Vi = 1. We ignore the possibility of energy
damping in the process.

are from the ground state. If oscillators A,B are in a thermal state with vari-
ance VT > 1, the maximal possible energy damping at the output to preserve
entanglement is presented in Fig. 4.5. In the area ηCH = 1, the threshold
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Figure 4.5: Maximal possible loss of energy at the output ηCH to preserve
entanglement as a function of the interaction gain K and the variance VT .
We assume that the process is without losses.
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in Fig. 4.5 is in agreement with the condition (4.5). In general, to preserve
entanglement for larger variance VT in oscillators A,B, only small energy
damping (ηCH ≈ 1) can be tolerated. That tolerance moreover decreases for
larger transfer coe�cient K. For every given value of VT there is however an
optimal K that is the least sensitive to the energy damping at the output of
the entangler. The optimal value of the interaction gain K is di�erent for
every value of VT . The exact value of optimal K can be found numerically.
For not too large VT > 1, there is still a su�cient tolerance of the generated
entanglement to damping ηCH , if K is optimized.

4.5 LOSS OF ENERGY IN THE ENTANGLING

PROCESS

In principle, no physical system is perfect in the sense of preserving energy
through any processes. It is therefore crucial to test robustness of the en-
tangling procedure to small energy dissipation especially in the limit of large
VN of the mediator M . To emulate impact of small dissipation from both
A,B oscillators and mediator M as well, we use a (4.6) with i = 1, 3 − 6.
We consider such the dissipation of energy after every QND interaction in
each system; see Fig. 4.1. It physically models non-unit in-coupling and out-
coupling e�ciencies that are also realistically limiting interactions between
di�erent systems. It is now useful to distinguish in our following discus-
sions the small energy dissipation in the process of generating entanglement
from the analysis of robustness of generated entanglement against the energy
damping. We therefore consider either η1, η3, η4, η5, η6 inside the entangling
process or η2, η7 = ηCH after the entangling process, respectively. We con-
sider for this section ηCH = 1. The energy dissipation in the process is
described by uni�ed parameter η = η1 = η3 = η4 = η5 = η6 for simplicity.
We do not consider any damping before the entangling process for all the
systems A, B and M . The initial states are classical (ground state, thermal
state) and therefore, such damping can be involved into the variances of that
states.

Let�s begin with the situation when the systems A,B are cooled down to
the ground states with Vi = 1, i = A,B. If we use the expansion for η ≈ 1
and K ≫ 1 the dominant element of the minimal symplectic eigenvalue ν− is
3K2

4
(1− η). For η < 1, when K increases, the minimal symplectic eigenvalue

grows and reaches ν− > 1, for some K. It means that considering a small
losses in the process qualitatively in�uences the generation of entanglement.
Increase of K therefore no longer guarantees more entanglement, but at some
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value of K the logarithmic negativity starts decreasing and reaches the point
of no entanglement at all, as is depicted in Fig. 4.6. The optimalK has to be
found numerically. It is an example why the test of robustness against basic
energy damping is important to verify stability of the entangling process.

0 2 4 6 8 10
K

1

2

3

4
LN

Figure 4.6: The dependence of logarithmic negativity on the interaction gain
K. Full line stands for the case with no losses considered. Dashed line
characterizes the bahaviour with η = 0.95, VN = 103, Vi = 1 considered.

In Fig. 4.7(a) and Fig. 4.7(b) we present the previous e�ect for small and
large VN for easier insight as the function of K. For the ground state VN = 1
of the mediator, even very small K is not able to compensate arbitrary losses
in the process. To generate entanglement there is still a clear threshold to
be overcome, which we can see in Fig. 4.7(a). Both Figs. 4.7(a) and 4.7(b)
show that increasing interaction gain K makes the condition for generation
of entanglement more strict so the energy dissipation in the process has to be
small. Large variance VN restricts the appropriate range of η that guarantees
generation of entanglement, as it is visible at Fig. 4.7(b). However, still for
large VN ≫ 1 we are able to produce entanglement if the dissipation η ≈ 1
is moderate and transfer coe�cient K is small. Evidently, this sensitivity of
the entangling process for large VN is example of crucial importance of the
analysis of robustness of the entangler against the small energy dissipation.

When the systems A,B are out of ground states, it appeared also to be
crucial in the analysis of robustness. We consider now the oscillators A,B
being in a thermal state with the variance VT and continue the discussion of
energy damping in the process. The case when systems A,B are in thermal
states can be understood from Fig. 4.8. We used the large value of variance
VN = 103 for the mediator, but all qualitative results mentioned here can be
generalized for all values of VN . We also used a di�erent scale for η to visualize
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Figure 4.7: Maximal possible loss of energy in the process to generate en-
tanglement at the output as a function of the interaction gain K. Areas of
VN = 1 (left column) and VN = 103 (right column) are shown for three di�er-
ent types of considered losses. Figures (a) and (b) illustrate equal losses in the
process η1,3,4,5,6 = η, (c) and (d) show the result if the damping ηAB = η1,6 is
held by only A,B systems, whereas (e) and (f) stand for damping ηM = η3,4,5
held by only mediator M . We kept Vi = 1.
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the desired e�ect. The upper area for η ≈ 1 again corresponds to (4.5). The
left side of Fig. 4.8 (VT ≈ 1) can be easily matched with Fig. 4.7(b). Clearly,
for larger VT > 1, the tolerance to smaller η vanishes. It happens even more
rapidly, when K is very large. We would like to stress that every value of
VT has however an optimal, yet di�erent, value of K that determines the
maximal energy dissipation in the process. We faced a similar feature of the
di�erent optimal value of K for each VT in the robustness analysis against
channel damping, see Fig. 4.5. It is therefore useful to cool the accessible
systems A,B down before the entangling process, it improves the robustness
against the dissipation during the less controllable entangling process.
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Figure 4.8: Maximal possible loss of energy in the process η to generate
entanglement as a function of the interaction gain K and the variance VT .
We used VN = 103.

4.6 LOSS OF ENERGY VIA OSCILLATORS

A, B

We divide our discussion of generating entanglement in separate categories to
understand the in�uence of small loss of energy during the process depending
on where it is considered. Let us �rst assume that the mediator does not
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experience any loss of energy, therefore the imperfectness is held by systems
A and B, with the same ηAB for both for simplicity ηAB = η1 = η6.

We begin with the systems A,B at the ground state Vi = 1, i ∈ A,B. In
Figs. 4.7(c) and 4.7(d) one can see the negative role of increasing K and VN .
The function has a similar character as in Figs. 4.7(a) and 4.7(b) but here we
are able to produce entanglement even for larger losses by decreasing K for
low thermal noise. In fact, Fig. 4.7(c) shows that for ground state VN = 1,
when K is small enough, entanglement is generated for all values of ηAB > 0.
This is a feature which can be observed for classical ground states of A, B
and M . Using Taylor series we again veri�ed the possibility of generating
entangled states even for VN ≫ 1 by keeping K and ηAB very low.

To present how much entanglement is generated we include Fig. 4.9(a),
where logarithmic negativity is shown. We can see that for given ηAB the
largest logarithmic negativity LN appears for an optimal value of K. This
optimal value of K once more decreases for smaller ηAB. We stated above
for equal losses in all the systems during process that even small dissipation
of energy breaks the monotonous increase of logarithmic negativity which
applies also here for the dissipation considered only in oscillators A,B. The-
oretically perfect process produces more entanglement for higher K, but
considering �nite losses equally just in systems A,B destroys this possibility
and entanglement reaches its maximum and then drops down with increasing
K.

To illustrate the in�uence of VT > 1, when A and B are not cooled down
to the ground states, on the existence of entanglement we present Fig. 4.10(a),
which we produced by taking a concrete con�guration with VN = 103. We
used a di�erent scale for ηAB to stress the importance of how much precise
the process has to be to observe entanglement. Fig. 4.10(a) and Fig. 4.8
appear nearly identical, but numerical veri�cation shows a slight di�erence.
Nevertheless, all the qualitative conclusions apply here as well, although the
dissipation is present only in the systems A and B. Increasing thermal noise
VT generally tolerates less dissipation in the systems A and B and interaction
gain K has a di�erent optimal value for each VT . The resemblance between
the situation where the energy dissipation in oscillators A,B only and the
situation with equal dissipation in all the systems indicates that systems
A,B are probably less robust against energy losses during the production of
entanglement. This statement holds for both ground state value VT = 1 and
VT > 1 far from the ground states of A and B.



CHAPTER 4. ANALYSIS OF ENTANGLEMENTMEDIATED BY THERMAL NOISE48

0

10

20

30

K

0.90

0.95

1.00
ΗAB

0

2

4

LN

(a)

0
10

20

30
K

0.95

0.975

1
ΗM

0
2
4
6

LN

(b)

Figure 4.9: The amount of generated entanglement as a function of the
interaction gain K and energy dissipation ηi. The energy loss ηi is considered
either only in oscillators A,B (a) or only in the mediator M (b). We used
VN = 103 and Vi = 1.
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4.7 LOSS OF ENERGY VIA THE MEDIA-

TOR

We now discuss the second case when the loss of energy is assumed only in
the mediator which means taking into account LOSS3, LOSS4 and LOSS5 in
Fig. 4.1 with the same ηM = η3 = η4 = η5. The bahaviour of the function is
illustrated in Figs. 4.7(e) and 4.7(f). Typically, entanglement vanishes with
increasing VN . As it was for previous cases, even here keeping ηM close to
unity (low damping) enables to observe entanglement even for high thermal
noise, which was veri�ed by expansion for VN ≫ 1. The di�erence appears
when we study the role of K which has no practical e�ect on the generation
of entanglement in this case. We can see that there is a clear threshold in
the value of ηM for each value of VN . Exact value of the threshold has to be
approached numerically.

The amount of entanglement as the function ofK is presented in Fig. 4.9(b),
where one can see a very di�erent character of the function than in Fig. 4.9(a).
Here after reaching the optimal value of K, the amount of entanglement does
not drop but saturates with increasing K. Typically, energy dissipation ηM
approaching zero makes the entanglement vanish.

Fig. 4.10(b) illustrates the in�uence of thermal noise VT > 1. Increasing
thermal noise in systems A,B has negative in�uence in the sense that we
need stronger interaction gain K. However, once the appropriate value of K
to generate entanglement is reached for ηM in the process, further increasing
of K does not destroy entanglement. In fact, in Fig. 4.10(b) one can see that
the function shows saturation for increasing K and even in the direction of
increasing VT . Finding the exact saturation value has to be approached by
numerical analysis. The saturation in the interaction gain K and even in
thermal noise VT is opposite to previous cases, where entanglement was very
sensitive to the change of both K and VT . The major qualitative di�erence
between Fig. 4.10(b) and Fig. 4.8 just proves our earlier conclusion that the
energy damping in systems A,B disturbs the entanglement generation more
than in the mediator M . The damping process in A and B is therefore
dominant, it determines overall features of the robustness against energy
damping in the entangling process and practically determines the optimal
numerical value of K to generate maximum of entanglement.
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Figure 4.10: Maximal possible loss of energy to generate entanglement as a
function of the thermal noise VT and the interaction gain K. Figure (a) illus-
trates the in�uence of losses being considered only in systems A,B, whereas
(b) stands for losses held by only mediator M . We kept VN = 103.
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4.8 ROBUSTNESS OF ENTANGLEMENTGEN-

ERATED IN THE PROCEDURE WITH

SMALL DISSIPATION

So far, we used various idealizations to properly analyze di�erent in�uence
of energy damping and their in�uences on the production of entanglement.
Now, we keep the small dissipation of energy in each system between sub-
sequent QND interactions in the procedure and will investigate how much
the produced entanglement in the systems A and B is robust against en-
ergy loss in the channel. We consider ηAB = ηM = 0.98 (η1,3,4,5,6 = 0.98 in
Fig. 1(b)). We also unify the losses at the output ηCH = η2,7 and analyze
the robustness of generated entanglement for di�erent ηCH . In Fig. 4.11 we
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Figure 4.11: Maximal possible loss of energy at the output ηCH to preserve
entanglement as the function of thermal noise VN and the interaction gain
K. We assume equal loss of energy during the process η1,3,4,5,6 = 0.98 and
keep Vi = 1.

present that generated entanglement can be preserved for any ηCH even for
increasing thermal noise VN , if the interaction transfer K is lowered enough.
The relation between VN and ηCH is strongly determined by the value of K,
which is separately shown in Fig. 4.12. Unlike in previous situations, here we
face a clear maximum of VN to preserve entanglement after the channel. The
minimal ηCH to preserve entanglement increases for large K. Black line in
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Figure 4.12: Maximal possible loss of energy at the output ηCH to preserve
entanglement as a function of thermal noise of the mediator VN if the process
expreriences 2% energy loss and systems A,B are in a state with variance
Vi = 1. It is shown for di�erent values of the interaction gain K: K =
0.01(black), K = 0.5(red), K = 1(blue), K = 2(green)

Fig. 4.12 shows that keeping interaction transfer K low enough makes entan-
glement absolutely robust against output dissipation even for noisy system
M . It reaches the same robustness inside the channel as in the ideal case
depicted in Fig. 4.4. The absolute robustness vanishes with higher values of
K. Keeping the interaction transfer K low enables to compensate the loss
of energy by lowering thermal noise in the mediator M , green line illustrates
that increased value of K destroys the absolute robustness.

The logarithmic negativity of generated entanglement passing the chan-
nels is presented in Fig. 4.13. This graph was obtained by using VN = 103

and Vi = 1, i ∈ A,B. It shows that even combining small dissipation in
the process and energy loss at the output does not destroy the main idea
of the entangler mediated by very noisy oscillator. To produce the largest
logarithmic negativity LN we have to achieve an optimal value of K which is
di�erent for each ηCH . The amount of entanglement decreases along with the
e�ciency at the output ηCH , however, comparing to Fig. 4.4 shows that the
absolute robustness does not vanish for small dissipation in the entangling
process. For the systems A and B initially in the ground states, the entan-
gling procedure is stable against small energy dissipation during process and
generates absolutely robust entanglement, when transfer coe�cient K of the
QND interactions is optimized.

To complete our analysis we present the dependence of entanglement on
increasing thermal noise VT in oscillators A,B. The function in Fig. 4.14
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Figure 4.13: The logarithmic negativity of preserved entanglement as a func-
tion of interaction gain K and the loss of energy at the output ηCH . We
assume equal loss of energy during the process η1,3,4,5,6 = 0.98 and �x Vi = 1
and VN = 103.

shows a similar progress as functions in Fig. 4.5, Fig. 4.8 or Fig. 4.10. All
these �gures represent di�erent types of dissipation, but the results show a
similar relation between interaction gain K and thermal noise VT . We can
see a characteristic feature of the optimal value of K which needs to be op-
timized for each VT . Increasing noise in A,B systems forces us to keep ηCH

in the channel close to unity in order to be able to preserve entanglement.
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Figure 4.14: Maximal possible loss of energy at the output ηCH to preserve
entanglement as the function of thermal noise VT and the interaction gain
K. We assume equal loss of energy during the process η1,3,4,5,6 = 0.98 and
keep VN = 103.



Chapter 5

CONCLUSION AND

EXPERIMENTAL PROPOSAL

We suggested the continuous-variable entangling procedure generating ar-
bitrary large amount of entanglement between two oscillators through the
mediating oscillator initially in any state. We can now go back to general
picture depicted in Fig. 4.1(b). The strength of interaction is powering the
amount of Gaussian entanglement. The idealized procedure with zero energy
damping generates entanglement that is completely independent on the me-
diating system and can be absolutely robust against channel dissipation. We
determined the threshold value of the interaction strength, that guarantees
absolute robustness of generated entanglement against energy damping in
the output channels. However, it is crucial to test stability and robustness
of the procedure against even small energy damping during the entangling
process.

Considering energy damping during the process makes the generation
of entanglement strongly determined by the noise initially in the mediating
oscillator. Unlike in the idealized case where entanglement increases with
stronger interaction of oscillators, considering energy damping during the
process shows that entanglement maximum is reached for optimal value of
interaction strength. If the entangling process experiences small energy dis-
sipation, the absolute robustness against outside energy damping occurs, but
it is limited by the interaction strength and also by the mediating system.
We provided the comparison of two di�erent cases depending on where the
energy is absorbed during the entangling procedure. The huge impact of
energy damping in systems A,B on the generation of entanglement proved
their major signi�cance over the damping in the mediator.

The suggested method of generation of Gaussian entanglement between
two oscillators mediated by the noisy oscillator is therefore stable against

55
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a small energy damping. After an optimization of the interaction strength,
it qualitatively approaches the ideal method without any dissipation. It can
stimulate many principal ways how such the entangling procedure can be im-
plemented as quantum transducer between various physical platforms which
do not interact directly. A prominent example appears in quantum optome-
chanics, where the mediator is a mechanical system. The methods allow to
reach the basic entangling gate between the systems not interacting directly,
but interacting with the mechanical oscillator, without the need to deeply
cool it down.

We also include a brief proposal of the experimental con�guration that
could con�rm our theoretical results. The experiment consists of four subse-
quent QND interactions between light and mechanical oscillator. The basic
idea of the experiment corresponds to [11], which is the generation of geomet-
ric phase, here imparted on the mechanical oscillator. The modi�cation of
[11] consists of adding a third system, which is illustrated in Fig. 5.1. A co-

Figure 5.1: The scheme of proposed experiment. Laser pulses interact with
the mechanical oscillator via evanescent coupling from a toroidal cavity. The
mechanical oscillator acts as a mediator of entanglement between two optical
modes by switching the interaction between them.

herent laser pulse of temporal width σ enters the �ber cavity with round trip
time t via a beam splitter. The second laser is delayed by factor t/2. After one
successful laser pulse is coupled to the mechanical resonator via evanescent
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wave from a toroidal cavity [23] with decay rate κ, the interaction is switched
to the other system and the coupling is performed between mechanical os-
cillator and the second system. Each interaction switch is accompanied by
proper implementation of phase shift in order to perform interactions cor-
responding to (4.1). Each pulse repeats the cycle and interacts twice with
the mechanical oscillator to accomplish four QND subsequent interactions
in total, corresponding to Fig. 4.1(b). Therefore the whole scheme behaves
like entangling procedure between two optical �elds, totally independent on
the mechanical oscillator. A modi�cation of the experimental requirements
(2.15) apply here, too

TM ≫ t > 4σ > κ−1.

This suggested method can be extended to other experimental platforms.
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