BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGIi

DEPARTMENT OF COMPUTER SYSTEMS
USTAV POCITACOVYCH SYSTEMU

OPTIMIZATION OF THE SURICATA IDS/IPS

OPTIMALIZACE IDS/IPS SYSTEMU SURICATA

MASTER’'S THESIS
DIPLOMOVA PRACE

Ve

AUTHOR Bc. LUKAS SISMIS
AUTOR PRACE
SUPERVISOR Ing. PAVOL KORfEK, Ph.D.

VEDOUCI PRACE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2020/2021
Master's Thesis Specification |||l
23479

Student: Sismis Lukas, Bc.
Programme: Information Technology and Artificial Intelligence
Specializatio Application Development

n:
Title: Optimization of the Suricata IDS/IPS
Category: Networking

Assignment:

1. Study the Intrusion Detection System (IDS) / Intrusion Prevention System (IPS) and focus on
the open-source IDS/IPS software Suricata.
2. Analyze the performance parameters of the Suricata under simulated operation with selected
rules.
3. Design the optimization of Suricata parameters in order to increase the performance
(throughput) on the given hardware.
4. Implement the proposed optimizations.
5. Test the created implementation.
6. Discuss achieved results and the possibilities of further improvements.
Recommended literature:
¢ According to the instructions.
Requirements for the semestral defence:
¢ Points 1 to 3 of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Korcek Pavol, Ing., Ph.D.
Consultant: Ku€era Jan, Ing., UPSY FIT VUT
Head of Department: Sekanina Lukas, prof. Ing., Ph.D.
Beginning of work: November 1, 2020

Submission deadline: May 19, 2021

Approval date: February 4, 2021

Master's Thesis Specification/23479/2020/xsismi01 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract

The recent rapid increase of network traffic bandwidth has sprung new challenges in
securing the network. It is vital to keep monitoring the traffic to securely identify threats
in the network. Systems like IDS (intrusion detection systems) alert us about events in
the analyzed traffic. Suricata, as one of the available IDS, was chosen for this thesis. The
ultimate goal of the thesis is to tune settings of AF__PACKET capture interface to reach
the best performance possible and then suggest and implement an optimization for
Suricata. Results of the AF__PACKET should be used as a baseline for comparison with
future improvements. Optimization is based on implementing a new capture interface to
Suricata that is based on Data Plane Development Kit (DPDK). DPDK helps to
accelerate packet capture and this implies that it might improve the performance of
Suricata. Results that compare AF__PACKET and DPDK performance are evaluated at
the end of this master thesis.

Abstrakt

V dnesnom svete zrychlujicej sa siefovej prevadzky je potrebné drzat krok v jej
monitorovani. Dostatoé¢ny prehlad o diani v sieti dokdze zabranif rozlicnym utokom na
ciele nachadzajice sa v nej. S tym nam pomdhaju systémy IDS, ktoré upozornuji na
udalosti nijdené v analyzovanej prevadzke. Pre tiito pracu bol vybrany systém Suricata.
Cielom prace je vyladit nastavenia systému Suricata s rozhranim AF_ PACKET pre
optimalnu vykonnost a néasledne navrhnit a implementovat optimalizaciu Suricaty.
Vysledky z merani AF_PACKET maja sluzit ako zaklad pre porovnanie s navrhnutym
vylepsenim. Navrhovand optimalizacia implementuje nové rozhranie zalozené na projekte
Data Plane Development Kit (DPDK). DPDK je schopné akcelerovat prijem paketov a
preto sa predpokladd, Ze zvysi vykon Suricaty. Zhodnotenie vysledkov a porovnanie
rozhrani AF__PACKET a DPDK je mozné najst na konci diplomovej prace.

Keywords

Suricata, XDP, Hyperscan, Flow shunting, Bypass, AF_PACKET, PF_RING, DPDK,
PCAP, Network monitoring, IDS, IPS, Network traffic detection, Suricata optimization,
DPDK runmode

KTlacové slova
Suricata, XDP, Hyperscan, Flow shunting, Bypass, AF_PACKET, PF_RING, DPDK,

PCAP, Monitorovanie siete, IDS, IPS, Detekce sifového provozu, Optimalizace Suricaty,
DPDK runméd

Reference

SISMIS, Lukéas. Optimization of the Suricata IDS/IPS. Brno, 2021. Master’s thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Pavol
Korc¢ek, Ph.D.

Rozsireny abstrakt

Technologické vydobytky stcasnej doby nam otvaraja Sirokd skdlu moznosti. Najma oblast
IT sa posunula za posledné dekddy ohromnym sp6sobom vpred. Pocitace a technoldgie s
nimi spojené napriklad umoznuji komunikovat ludom na dialku, znizuju ¢as potrebny pre
prenos informaécie alebo zefektiviiuju celkovi pracu ludstva. Jednou z velmi podstatnych
technologii, ktoré pocitace na komunikaciu potrebuju, je sief. V stcasnosti najpouzivanejsia
siet je Internet. Tato sief existuje takmer od pociatku prvych experimentov prepojenia
pocitacov. Siet sa priebezne vyvija a v sucasnosti sa na nu kazdym rokom pripaja viac a
viac zariadeni. S ich zvySujicim poctom narastd aj objem a rychlost siefovej prevadzky.

Ako bolo spomenuté na zaciatku, nové technolégie prindsaji mnoho moznosti. Avsak,
ako sa tieto moznosti vyuziji zavisi na imysloch pouzivatelov. Je preto mozné, ze niektori
pripojeni pouzivatelia sa rozhodnt pachat napriklad trestnt ¢innost. Tymto spdsobom
vznikaju urcité hrozby, podobne, ako je tomu vo svete mimo informacnych technologii.
Policiu v tomto pripade moze substituovat administratori jednotlivych podsieti. Na pomoc
pri vykonavani ich ¢innosti im sltzia rézne nédstroje. Pomocou nich sa snazia ustrazit
aktivity na sieti. Medzi tieto nastroje moze patrit napriklad firewall, antivirusové programy
alebo softvér na overovania moznosti pristupu. Medzi tieto néstroje patria aj IDS/IPS
systémy. Tieto programy umoznuju pozorovat prechadzajicu sietovi prevadzku, analyzovat
ju voci vopred zadefinovanym pravidlam a v pripade podozrivého konania mézu upozornit
administratora. IPS systémy mozu potom este naviac automaticky zabranit vykonavaniu
skodlivych aktivit.

Pomocou IDS/IPS néastrojov je mozné odhalif rézne typy ttokov. Moézu to byt
napriklad distribuované utoky, prenos infikovanych suborov alebo phishing. Ako bolo
spomenuté, na ich fungovanie je vic¢sinou potrebné analyzovat celil prechadzajicu siefovi
prevadzku. Siefovad previadzka je rozdelend do jednotlivych paketov. Tieto systémy musia
kazdy prijaty paket dekédovat a pokusit sa najst zhodu s nejakym zadefinovanym
pravidlom. S narastajicou rychlostou a objemom dat to ale pre tieto systémy zacina byt
velmi vypocetne naro¢na tloha.

Tato diplomova praca sa preto snazi navrhnut a implementovat optimalizaciu pre systém
Suricata. Je to jeden z dostupnych IDS/IPS systémov. Prednost systému Suricata spoc¢iva
najmé vo vysokej vykonnosti. Ta je, okrem iného, dosiahnuta kvalitnou multi-vlaknovou
architektirou. To znamend, Ze moze analyzovat viacero paketov sucasne. Suricata a aj
iné IDS/IPS systémy sa ale potykaji s problémom vysokych vypocetnych poziadavkov.
Je snaha ich zmensovat roéznymi optimalizaciami. V tomto pripade navrhnuté zlepsSenie
vykonnosti zahfna implementovanie a pouzivanie nového rozhrania pre prijimanie paketov.
Rozhranie uz je implementované s pouzitim kniznice DPDK.

Na zaciatku diplomovej prace je predstavenie systému Suricata. Kapitola zacina
predstavenim jej architektiry. Nasledne sa pokracuje detekénymi pravidlami, ich zlozenim
a spracovavanim. V dalSej sekcii sa prezentuju 3 odliSné sposoby fungovania vlakien v
Suricate. To, aky spdsob sa zvoli, mé vplyv na prepojenie modulov Suricaty. Potom v
dalSej rozsiahlejsej sekcii s predstavené jednotlivé moduly sliziace na prijem paketov.
Moduly a ich teoreticky princip fungovania si vyobrazené na diagramoch s textovym
opisom. Pri subsekcii AF__PACKET sua rozobraté aj jeho mozné vylepsenia v podobe
eBPF filtrov a XDP. Predposlednd sekcia v kapitole Suricaty rozoberd jej mozné zlepsenie
vykonnosti pomocou techniky bypass. To dovoluje vynechaf inSpekciu paketov pre
vybrané siefové toky. Do toku zvycajne patria pakety, ktoré zdielaju isté charakteristiky.
Vécsinou je to definovand ako pética s rovnakou/opac¢nou zdrojovou/cielovou IP adresou,
s rovnakym/opaénym portom a s rovnakym protokolom vrstvy L4 OSI modelu. Pri

spojeni s XDP je mozné tieto pakety vynechat uz na trovni ovladaca sietovej karty.
Posledné sekcia prezentuje mozné vystupy systému Suricata.

Na zaciatku dalSej kapitoly diplomovej prace sa prezentuje navrh architektury, ktora
slizi na testovanie vykonnosti systému Suricata. Po tejto sekcii si dalej predstavené
nastroje, ktoré sa pouzivali pri ladeni a testovani systému. Z nich je najviac rozobraty
nastroj ethtool. Na odosielanie siefovej prevadzky sluzi Replikator. Je to ndstroj na
preposielanie sietovej prevadzky s moznostou amplifikicie az do 100 Gbps. Detaily
ohladom pouzitia tohto néastroja najdeme v dalSej sekcii. V tejto sekcii je popisany aj
testovaci framework, ktory bol navrhnuty a implementovany pre zniZzenie Casti manualnej
prace spojenej s testovanim Suricaty. Ten umoznoval zoradif viacero merani za sebou a
vykonavat ich podla vopred zadefinovaného scenara. Poslednou c¢astou sekcie je analyza
zachytenej siefovej prevadzky, ktord bola pouzivanid na testovanie. Tento sibor sa
preposielal pomocou vyssie spomenutého replikdtoru. Replikator bol obsluhovany
pomocou testovacieho framework-u. Posledna sekcia kapitoly popisuje ladenie parametrov
konfiguracie v systéme Suricata s rozhranim AF_PACKET. Najvyssiu dosiahnutelnt
vykonnost takto zostaveného systému bolo potrebné ziskat pre nasledne porovnanie novej
optimalizicie. Vytvorilo to zdklad pre dalsie merania.

Nasledne, v dalSej sekcii je ukazany navrh zamyslanej optimalizicie. V tejto sekcii je
vysvetlené preco sa ako nova optimalizicia zvolila implementacia DPDK rozhrania. Je
tam popisany samotny navrh riesenia. Ten je rozkresleny do viacerych diagramov, ktoré
ilustruju jednotlivé Casti novej optimalizacie.

Posledna sekcia sa zaoberd implementiciou spolu s meraniami, ktoré boli vykonané.
Tato sekcia postupne opisuje priebeh implementacie. Zacina popisom zaradenia nového
moédu behu (rozhrania) do systému Suricata a jej procesu kompildcie. Dalej opisuje
podiatoénd inicializdciu a synchronizaciu samotného rozhrania a jeho vldkien.
Najdolezitejsia cast rozhrani na prijem paketov v systéme Suricata je prijimaci cyklus.
Kéd v tomto cykle je vykondvany opakovane pricom pocas behu sa snazi prevziat pakety
zo siefovej karty a poslat ich inym modulom k dalSiemu spracovaniu. Synchronizacia
vlakien sa pocas ich behu v cykle nepouziva kvoli vysokej rézii. Na konci sekcie st
popisané funkcie potrebné pre odosielanie paketov (rezim IPS) a uvolnenia paketu zo
systému Suricata.

Samotny zaver diplomovej prace je venovany porovnaniu behov rozhrani DPDK a
AF_PACKET v réznych podmienkach. Najviacsi doraz je kladeny na vykonnost. Ta je
zalozena na pomere prijatych a odoslanych paketov. Cielom je aby pocet prijatych
paketov bol rovny odoslanym po ¢o najvyssiu rychlost. Testy prebiehali s réznym poc¢tom
vlakien — s 1, 8 a 16 vlaknami. Z vysledkov vyplyva, ze nové DPDK rozhranie prekonava
vysledky rozhrania AF__PACKET vo vsetkych testoch. Ukazuje sa, ze vykonnost Suricaty
sa mierne zvysila. To znadi, Ze nova optimalizacia pomohla uvolnif vypocetné prostriedky
inym modulom. Zaroven miera zvySenia vykonnosti naznacuje, Ze rozhranie pre prijem
paketov neobmedzuje Suricatu v behu. Ovela vyssia vykonnost prijmu paketov v rezime
bez pravidiel implikuje, ze detekény modul s vysokym pocétom pravidiel najviac vytazuje
vypocetné prostriedky systému Suricata. V poslednej casti sa dalej disktuje pokracovanie
v praci so systémom Suricata.

Optimization of the Suricata IDS/IPS

Declaration

I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Pavol Koréek Ph. D. The supplementary information
was provided by Mr. Ing. Jan Kucera. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

Luk4as Sismis
May 18, 2021

Acknowledgements
I would like to express my deepest appreciation to my consultant Ing. Jan Kucera for his
professional supervision and constructive feedback. I would also like to extend my sincere
thanks to Ing. Pavol Koréek Ph. D. for the support that he has provided me for the
duration of writing this thesis.

Contents

1 Introduction
2 Suricata
2.1 Architecture
2.2 Detectionrules
2.3 Runmodes e
2.4 Capture options and running modes
2.5 Bypass and flow shunting 000 0oL
2.6 Outputs
3 Setting up the environment
3.1 Network architecture oo
3.2 Configuration tool —ethtool
3.3 Testing framework
3.4 Performance tuning of AF_ PACKET
4 Design of the proposed optimization
4.1 Motivation e
4.2 Analysis of the current implementation.
4.3 Ideaproposal e e
5 Implementation and benchmarks
5.1 Implementation
5.2 Benchmarks
6 Conclusion and future work
Bibliography

A NIC settings

B PCAP analysis

23
23
24
30
35

44
45
45
46

52
52
61

70

72

74

75

Chapter 1

Introduction

In computer history, the ARPANET [6] is recorded as the first wide-area packet-switching
network with the first connected users in 1969. As time progressed, the network grew and by
1988 it was estimated that about 60000 computers were connected. Users, mostly consisted
of scientists, were excited about the new era in the computer world. However, they did
not know what awaits them in November that year. Morris worm [11] was released and
by combining several vulnerabilities in computer systems it was able to infect thousands of
Berkeley Unix systems leading to a dysfunctioning the majority of them and partitioning
the network for few days. It is recognized as the first computer threat distributed over the
network and gaining attention all over the world.

The computer networks continued to grow, gaining more users and enabling faster
transfer rates together with an increasing number of threats as well. People had started
to focus on securing their devices and networks more and more over time. Administrators
learned new ways to mitigate attacks and systems such as firewalls, antiviruses or intrusion
detection systems came to light. The first concept of intrusion detection system was defined
in the 1980s and was further researched and developed later that decade. Between 1984
and 1986 the first concept of such software was developed. [1]

»An intrusion detection system (IDS) is a device or software application that monitors
a network or systems for malicious activity or policy violations. Any intrusion activity
or violation is typically reported either to an administrator or collected centrally using a
security information and event management (SIEM) system. A SIEM system combines
outputs from multiple sources and uses alarm filtering techniques to distinguish malicious
activity from false alarms.“ [7]

IDS can be installed at various points of a network, however, this thesis is focused on
a network intrusion detection system (NIDS) rather than a host-based intrusion detection
system (HIDS). The most common use case of NIDS is to monitor all traffic between the
outer and inner network and raise alerts about potential threats. This is possible thanks
to the analysis of packets passing through and a library of attacks or ruleset of the NIDS.

However, with rapidly increasing bandwidth worldwide, all systems and devices
connected to the core networks must comply strict security and performance
requirements. Otherwise, such systems can be viewed as bottlenecks. As a result, they
can cause packet drops, increase in latency or may be unable to detect threats in real-time
as expected. These factors are great motivation for network security research teams
around the world to make sure intrusion prevention systems are not only performant
enough to keep pace with an increase in network bandwidth but also to distinguish
threats at a very high rate while not introducing severe latency.

This master thesis first attempts to introduce the reader to IDS/IPS project Suricata

[10]. It explores its settings and also goes over tools that can be used to tune deployed
Suricata instances. In the thesis, they are used to tune AF_PACKET running mode on
given hardware. The performance results are later used as a baseline for future work.
The goal of the thesis is to propose and implement optimization of Suricata. Results of
performed analysis have led me to implement a new running mode that uses a DPDK
library. This should reduce the load of the capture interface and leave more resources
to other Suricata modules. At the end of the master thesis, DPDK is compared to the
performance of AF__ PACKET and the results are evaluated.

Chapter 2

Suricata

Suricata [10] is a community-run, open-source project acting as an intrusion detection
system (IDS) or an inline intrusion prevention system (IPS). It also has the ability to
perform network security monitoring (NSM) and offline packet capture (pcap) processing.
It performs deep packet inspection using pattern matching. It is mainly maintained and
developed by the non-profit organization OISF and the Suricata source code is licensed
under version 2 of the GNU General Public License. The first beta version was released in
December of 2009.

Suricata provides a long list of configurable options ranging from the definition of
network architecture over logging preferences to settings of packet capture strategies and
runmodes. To understand the consequences of each option it is desired to, if not fully, at
least partially understand concepts Suricata is built upon. With this knowledge, it is
possible to achieve higher throughput and better performance thanks to appropriately
chosen settings. Awareness of constraints in the design of Suricata and packet capture
mechanisms, in general, can help to quickly identify possible bottlenecks in various
configurations. As an overview and brief intro, this chapter provides diagrams and a more
in-depth description of the internal structure of Suricata. You can find different stages of
packet processing in Suricata below. Basic Suricata architecture is followed by deeper dive
into separate sections of the configuration file. Configuration is stored in a suricata.yaml
file with many options coupled with helpful comments.

Suricata can normally be set up in three modes:

o Host-based IDS (HIDS) (Figure 2.1) — runs on a single machine placed on the edge of
the network, monitors the critical resources, and is mainly used for testing. It does not
come across the traffic of other network devices as it sees only flows incoming /outgoing
of the device it is installed on.

o Network IDS (NIDS) (Figure 2.2) — tap on a strategic network link, analyzes traffic
and raises an alert if a rule is matched, packets are never intercepted. It is usually
placed on the boundary of the local network (LAN) and the Internet (WAN). NIDS
never blocks traffic and only notifies the network administrator about suspicious
events that match the specified rules. Responsibility of at the attack mitigation is
left on the network administrator. NIDS is further mentioned as IDS only.

o Inline IPS (Figure 2.3) — provides the possibility to monitor and block certain types of
traffic if rules are matched. It works on an automated basis and requires no assistance
from the network administrator once set up. Similarly to NIDS, it is situated in the

same place of the network. However, it additionally not only detects but also blocks
matching network traffic. In some scenarios, a high rate of false-positive matches
results in significantly a worse user experience.

IPS x

4 (NiDs
\4 \4 A\ 4
|HIDS lNoHlel,” H]])SI | Il I | I | Il I
Traffic i Traffic unil Traffic i Traffic i Traffic i Traffic i Traffic p Traffic p Traffic protected
Figure 2.1: Host based Figure 2.2: Network Figure 2.3: Inline intrusion

intrusion detection system intrusion detection system prevention system (IPS).
(HIDS). (NIDS).

2.1 Architecture

To introduce Suricata, high-level overview is presented in the following section along with
Figure 2.4 depicting the main thread-modules of Suricata’s architecture. Thread-module
is an abstract name of multiple similar and connected functions aggregated into one unit.
Thread-modules also separate functionality and responsibilities of individual
thread-modules. [2]

Suricata

Packet
~ > Capture —> Decode —> Detection

\ 4

\ 4

Output

Figure 2.4: Suricata architecture of thread-modules.

As seen in Figure 2.4, Suricata comprises 4 main thread-modules:
o Capture — module receives packets from NIC, passes them to the next layer

e Decode — module decodes each incoming packet, reads data and saves decoded
information into an internal representation of the packet. The decoding process
starts from the bottom layers and continues to the top layers (of OSI model). The
module also handles stream tracking and TCP reassembly. New decoding functions
can be added at the end of the processing pipeline.

e Detect — module matches internal representation of packets against pre-defined rules.
Module is parallelized into smaller modules processing one packet simultaneously.

e Output — module passes verdict (result) of the detection module to the configured
outputs and appropriately adjust Suricata statistics. The module handles all events
and alerts.

2.2 Detection rules

Detection rules (or signatures) are fundamental building blocks of intrusion
detection/prevention systems. Each rule define behavior of network traffic. To operate,
they require knowledge of the network architecture that they are supposed to protect. In
Subsection 2.2.1, network definitions are described in more detail with examples of usage.
Afterwards, variables defined here are used to modify and specify behavior of each rule.
Rule composition and rule matching algorithms are then described in Subsection 2.2.2.

2.2.1 Network definitions

For Suricata to know which resources it needs to protect, it is required to specify lists of
either subnets or exact IP addresses in its configuration file and lists of ports. As discussed
at the start of Section 2.2, it is also possible to define user-defined variables to use in rules
definition. Table 2.1 provides a syntax overview that can be used to define network hosts.
It starts with definitions of the exact IP address and IP range via prefix. Additionally,
these can be combined with basic operators as grouping ("[.., ..]") and negation ("!").
Listing 2.1 is an example of network definition extracted from suricata.yaml where variable
HOME_NET uses grouping operation to define a group of three subnetworks defined by prefix
and EXTERNAL_NET uses negation operator to match every IP address but the ones defined
in HOME_NET.

Example Meaning
192.168.0.21 Exact definition of an IP address
192.168.0.0/16 IP addresses ranging from 192.168.0.0 to

192.168.255.255

[192.168.0.0/24, 192.168.1.100] | IP addresses ranging from 192.168.0.0 to 192.168.0.255
and the exact IP address 192.168.1.100

[10.24.0.0/24, 110.24.0.100] All IP addresses ranging from 10.24.0.0 to 10.24.0.255
but excluding the exact IP address 10.24.0.100

I$SHOME_NET All IP addresses except those included in
HOME NET variable
any Arbitrary IP address

Table 2.1: Examples of defining network hosts.

vars:
more specific is better for alert accuracy and performance
address—groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$HOME_NET"
HTTP_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"

Listing 2.1: An example of network hosts definition cut from suricata.yaml.

2.2.2 Rules

Rule (or signature) is a common way for IDS/IPS to detect a threat in the network traffic
passing through the system. Although it resembles basic pattern matching, it also uses
additional fields to match network specific properties.

To form a threat into a rule, it is needed to extract certain features or properties of
the threat that are shared even if the threat would target another device. Set of these
features can then be written down and form a rule, which can then be appended to the
set of existing rules (to ruleset). If the rule is correct, the next time the same or similar
threat happens, system administrators are immediately notified in case of IDS or the
attack is mitigated in case of IPS. However, attackers would have a huge advantage if each
system administrator had to manually create their own rules for rulesets after each attack.
Therefore, a community around the rulesets was formed to gather and manage rules
received from system administrators around the globe. One of the most notable rulesets is
Emerging Threats' from Proofpoint, which offers PRO and OPEN version. In PRO
version they offer daily updates of the latest malware-detecting rules. OPEN version is
often sufficient as it contains more than 20000 relevant rules.

Suricata Update” is a command line tool to manage and update installed rulesets. It
automatizes the whole process of update, so it is hopefully less error-prone. Suricata rule
is in Figure 2.6 for better comprehension of the structure and importance of it.
Suricata-Update reads the configuration files and then finds and downloads the latest
version of Emerging Threats Open ruleset for the version of Suricata installed on the
system. Afterwards, it updates the ruleset according to the loaded configuration.

As can be seen in Figure 2.5, Suricata rule structure consists of 3 logical parts —
ACTION, HEADER and RULE OPTIONS. Each part of the rule is described in the list
below.

ACTION HEADER OPTIONS

Figure 2.5: Suricata rule extracted from the ruleset.

ACTION determines what happens when the rule matches. It can be considered as a
result of the rule matching process. Values are:

e pass — allow a packet to pass,

o drop — drop packet and generate an alert to the configured output files (only works in
IPS/inline mode), the communication is timed out as the packet is silently dropped,

o reject[src,dst,both] — send RST/ICMP unreach error to the sender/receiver /both sides
of the communication,

o alert — generate an alert to the configured output files.

"https://rules.emergingthreats.net/
https://suricata.readthedocs.io/en/latest/

http://emergingthreats.net/

HEADER part is specifying the traffic to match in broader granularity. Flows matching
the header are further inspected with rule options. Header consists of:

e protocol — specifies the protocol to match — possible values are from all sorts of
different layers of The Open Systems Interconnection (ISO/OSI) model® e.g., tcp
(L4), udp (L4), icmp (L3), ip — stands for ,any“ (L3), http (L7), ftp (L7), tls (LT7).
Availability of protocols can be manually configured in the suricata.yaml file.

e source and destination — provides high versatility in specifying the origin and target of
the traffic. Exact IP addresses (e.g., 132.153.32.25) and IP ranges (e.g., 10.0.2.0/24)
can be combined with operators of negation ("!") and grouping ("[.., ..]"). It is also
possible to use user defined variables from the suricata.yaml (e.g., SHOME_NET)
and a keyword ,any“ to match everything. Examples of defining IP addresses for
source and destination are in Table 2.1.

e ports — specifies the ports to match, as with source and destination, Suricata provides
a very flexible way to input ports with options to use exact ports, port ranges (":"),
lists ("[.., ..]") and exceptions ("!"). Examples of defining ports are similar as in Table
2.1 except port range is defined with colon (e.g. " 8080:8088 ") and not prefix.

e direction — specifies which way the rule has to match. Most signatures use one way
direction operator (->), which specifies the source on the left and the destination on
the right. It is also possible to use bidirectional operator (<>) to match rule both
ways.

OPTIONS of rule specify additional information of the rule or extra requirements for the
rule to match. Each rule needs to have signature ID (sid). If multiple rules share the same
sid, revision (rev) option is also compulsory for Suricata to pick the latest rule. Options
are enclosed by parenthesis and each rule is separated by semi-colon. Individual rule can
be specified in two ways:

e key-value pair with syntax: <keyword>: <settings>;
Example:
msg:"ET ATTACK_RESPONSE Hostile FTP Server Banner
(Bot Server)"; flow:established,from_server;

e key only with syntax: <keyword>;
Example:
nocase; dns.query;

Rule in Figure 2.6 is an example of information written in previous paragraphs put
together. Action of the rule is to alert the administrator. Header of the rule defines the
connection must be over TCP with any source IP address and with source port 21.
Destination IP address must matches one of IP addresses defined in the variable
HOME_NET (following the syntax from Table 2.1 of network definitions). Destination
port does not matter for this rule. Rule option:

o msg — is shown to the network administrator in the defined outputs (as shown in
Section 2.6),

Snttps://wuw.iso.org/ics/35.100/x/

https://www.iso.org/ics/35.100/x/

o flow — signifies the connection must be established,

o content — packet must contain "220 Bot Server (Win32)",
e nocase — content search is case insensitive,

o classtype — used to categorize the rule as "trojan-activity",
o sid — signature’s (rule’s) ID is 2002811,

e rev — it is the fifth revision of the rule.

alert tcp any 21 -> $HOME_ NET any (msg:"ET ATTACK_RESPONSE Hostile
FTP Server Banner (Bot Server)"; flow:established; content:"220 Bot Server (Win32)";
nocase; classtype:trojan-activity; sid:2002811; rev:5;)

Figure 2.6: Suricata rule extracted from the ruleset.

2.2.3 Rules processing

Rules are loaded in the order of which they are in the rulesets. However, they are then sorted
according to the priorities and by default are evaluated in the order they have been listed
in the upper paragraph. Action-order can be adjusted in suricata.yaml configuration file.
Suricata rules are also compatible with Snort rules and on top that it accepts L7 protocols
as mentioned in protocol part of rule format description. Upon loading, Suricata’s detect
engine groups similar rules to efficiently manage operating memory and performance. When
ICMP packet arrives, no IP rules can be applied and thus all of them are skipped. Rules
with common properties are usually placed in the same group as displayed in Figure 2.7.
On the highest layer of the rule-groups tree lies the protocol, then direction of the flow,
source and destination address and the further it is, the more specific the group is.

Protocol Src IP Dst IP Src port Dst port Rules
group group group group
9000
|4132.14.5.0124 / 22
Ly 192.0.0.0/8 22 /

Packet ‘10.24.0.0/164/ ¥ 53 :

source |P TCP £—»168.32.2.0/24 ™S 0y —
destination IP. /

source port

source port

protocol

\ UDP

Figure 2.7: Rule groups.

However, with an increasing number of groups, Suricata demands more memory to store
them. The quantity of groups determines the balance between performance and memory.

Each group is described by additional information in a multi-pattern matching (mpm)
context stored in a group head. It is possible to manage memory requirements and limits
in the settings file.

MPM groups are matched in the detection engine with MPM algorithm. In Suricata
there are 4 alternative algorithms:

e ac — Aho-Corasick, enabled by default,
e ac-bs — Aho-Corasick, reduced memory implementation,

e ac-ks — Aho-Corasick, "Ken Steele" variant, recommended if Hyperscan is not
available,

o hs — Hyperscan, required to add when Suricata is built. Requires x86 processors (32
or 64 bit architecture) and Streaming SIMD Extensions 3 at minimum. However, on
most modern processors it can be installed without any problems.

Hyperscan® [15] is an open source project licensed under the BSD License and led by
Intel. The main language is C/C++. It is a high-performance mpm library, follows the
common syntax of regular expressions used in libpcre library but has an own API. It uses
hybrid automata techniques to perform parallel matching of thousands regular expressions
on data streams. As mentioned before, Suricata prefers to use Hyperscan in the detection
engine to match regular expression in the passing network traffic.

2.3 Runmodes

To have a look at available runmodes in Suricata, it is first required to have deeper
understanding of the core building blocks of Suricata — threads, thread-modules and
queues. Suricata is a multi-threaded system. Therefore, it allows multiple threads to be
active at the same time. A thread is a running process in an operating system, consisting
of thread-modules and connected with other threads with queues. Thread-module is
explained in the first paragraph of section 2.1. It is used to express a functionality part of
Suricata. In Figure 2.4 there are 4 thread-modules:

o Capture,
e Decode,
e Detect,

e Output.

Queues are used to pass packets between the threads. As mentioned before, Suricata can
run in one or multiple threads. Each thread can consist of one or more thread-modules.
If the thread comnsists of multiple thread-modules, only one thread-module can run at a
time. Each thread-module can only work with one packet at the time. However, Suricata
is usually composed of a collection of threads assigned to different CPU cores. Each core
can work individually, and, for that reason, Suricata engine can process multiple packets
simultaneously. The way the architecture of these building blocks is configured by is called
the Runmode. Suricata contains several pre-defined runmodes.

“https://www.hyperscan.io/

10

http://www.hyperscan.io/

Runmode single as displayed in Figure 2.8 contains all thread-modules from capture to
output in a single thread. It is mainly used in a process of initial configuration or debugging.
The number of management threads is not limited and is configured in suricata.yaml file.
Network traffic does not have to be load balanced since all traffic is forwarded to a single
thread.

PACKET PROCESSING THREAD

NIC

MANAGEMENT THREAD(S)

Figure 2.8: Runmode Single.

Runmode autofp is mainly used with inline IPS setups and while processing PCAP files.
It is possible to note that in Figure 2.8 the whole packet processing is done in one thread
while in Figures 2.9 and 2.10 the process is divided into flow worker threads (FWTs) and
packet capture threads (PCTs). PCTs capture and decode the packets, then the packets
are forwarded to FWTs to finish the packet processing. In autofp runmode number of
packet capture threads is less than the number of flow worker threads. Network traffic is
distributed between PCTs and they are then used as additional load balancers for FWTs. If
there is a single PCT as in Figure 2.9, load is solely distributed in internals of Suricata. In
setups similar to the Figure 2.10 packets are load-balanced by both the NIC and Suricata.

PACKET
PROCESSING
THREAD

PACKET
CAPTURE o
THREAD et
PACKET
PROCESSING
THREAD

NIC

MANAGEMENT THREAD(S)

Figure 2.9: Single capture thread in
autofp runmode.

11

PACKET PACKET
CAPTURE PROCESSING
THREAD THREAD
®
o
PACKET PACKET
CAPTURE PROCESSING
THREAD THREAD
Z MANAGEMENT THREAD(S)

Figure 2.10: Multiple capture threads
in autofp runmode.

In runmode workers, the whole process of packet inspection is performed in one
individual thread for each packet. As it is possible to see in Figures 2.8, 2.9, 2.10 and
2.11, the only difference is a different amount of full packet processing pipeline threads
and the fact that the NIC distributes the network traffic over the various threads. In most
cases, workers runmode results in the best performance compared to other runmodes.

PACKET PROCESSING THREAD

PACKET PROCESSING THREAD

NIC

MANAGEMENT THREAD(S)

Figure 2.11: Runmode Workers.

2.4 Capture options and running modes

Sockets in Linux work as an API to access network interfaces to send or receive packets.
Over the years of development, Suricata developers and other contributors have
implemented numerous packet capture interfaces into running modes and usually named

12

after the implemented interface. The most used modes are AF_PACKET, PF_RING,
NETMAP and PCAP. Additionally, these interfaces can be individually accelerated using
optimization techniques discussed below in the individual sections of packet capture
options.

Figures 2.13, 2.14 and 2.19 share similar behavior. It is possible to notice, especially in
the upper part of the diagrams, the relationship of components — Network driver, Buffer
and Deferred reception. It is explained in more detail in Figure 2.12. The component
Deferred reception means that received packets from the NIC are put into the Buffer shown
on the right side and the interrupt is sent to the CPU. When the CPU acknowledges the
interrupt, it is scheduled with high priority. On handling the interrupt, the CPU must
stop the activity that it is executing and switch context to packet processing. Once the
context is switched, it allocates the socket kernel buffer through function skb_allocate ()
and copies there the data from the Buffer. References of all packets received between the
interrupts can then be sent to the user application.

NIC
:' """""""""""""""""""""""""""""""""""" 1
i Packet @ Kernel space !
Network interface @ o Buffer -
! card driver]
H memset :
E Interrupt @ E
i IRQ Packet ! :
: (R address ! @ '
| ®) 5
CPUO Interrupt handler :
handle(IRQ) :

skb_allocate() . @

% User space
\ 2

Application

Figure 2.12: Packet processing and interrupt handling in the CPU.

13

2.4.1 AF_PACKET

The AF_PACKET socket was implemented in the Linux kernel since the version 2.2° and
therefore it is commonly used in Linux network programming. It works in cooperation with
the kernel, from where incoming packets are copied to the user space as soon as they are
received from the physical layers of the card. Similarly, outward packets are copied to the
kernel space just before they are sent to the NIC. The Figure 2.13 can help to understand
the way AF_PACKET works. Starting from the top, packets gathered by the network
interface are sent to the kernel. If the interface is bound to socket, the packet is cloned and
sent to the user space, where the application is running. The original packet continues to
be processed in the kernel. Some performance loss can be expected due to packet cloning.

In the Linux kernel version 2.4 "mmap" functionality was added to the AF_ PACKET
interface. It provides a configurable ring buffer mapped in user space which can be used
to receive or send packets. As can be seen in Figure 2.14, packets are stored in a structure
accessible from both physical (kernel space) and virtual (user space) layers.

Being able to reach packets stored in the ring buffer reduces the number of system calls
needed to deliver a packet to the application in the user space and the number of required
packet copies.

NIC NIC
e Lo A 4 Kernel space
i y Kernel space '

ot Network driver
.) (configuration)
Network driver Lo Buffer
acket reception — b 1
® ption) Buffer

Deferred
reception

y

3 E ;".: other Kernel '.f‘:
l ! E / AF_PACKET / ::.: modules :::

i ; ¢/ other Kemel :
AF_PACKET modules

,,,

Deferred
reception

, 2 User space

Application :

Figure 2.13: Packet flow in Figure 2.14: Packet flow in mmap
AF_PACKET capture interface. version of AF__ PACKET capture interface.

Shttps://manpages.ubuntu.com/manpages/precise/man7 /packet.7.html

14

2.4.2 eBPF and XDP

(Classic) Berkley Packet Filter (cBPF) is a long-known technology implemented in Unix-
like operating systems. It acts like a filtering mechanism that only allows to receive packets
that comply with conditions specified in a user-set program (filter). These programs are
run in a BPF 32-bit virtual machine that resides in the kernel. Before packet is accepted or
rejected, programs in the virtual machine perform arithmetic operations on packet’s data
and test the results against set constraints. Classic BPF programs typically allow high-level
text rule describing the pattern to match from which it is converted to machine code by
assembler.

Extended Berkley Packet Filter (eBPF') [8] enhances capabilities of the original BPF
virtual machines. Since the Linux kernel version 3.18, virtual machine for BPF programs
have increased the number of registers to 10 and doubled the size of the registers to 64-bits.
Nowadays, all BPF programs are translated into an eBPF bytecode in the kernel before
program execution. To compile eBPF program into machine code, it is required to use
special compilers such as clang’. eBPF programs can be written in a subset of C, which
is then compiled by one of eBPF compilers. This allows writing more complex filtering
mechanism to more accurately inspect passing traffic. eBPF brought not only improved
virtual machine but also new helper functions that ease programming, eBPF verifier to
prevent any downtime with incorrectly written eBPF programs and eBPF maps which
serves as an intermediate storage between the eBPF program and an userspace application
and to keep state between invocations of eBPF program. There are different kinds of maps
such as Hash, Array, Per-CPU Hash/Array and others.

Express Data Path (XDP) [8] builds on top of the eBPF mechanism to allow high
performance networking data path. XDP is placed very early in packet processing
pipeline — even before allocating socket kernel buffer. For this reason it allows eBPF
program to make a decision in the beginning in the packet processing pipeline and thus
save computational resources for packets that actually needs to be analyzed by a
user-space application. Memory allocation can be very expensive operation. Similarly to
eBPF, it operates on raw packets. As depicted in Figures 2.15, 2.16, 2.17 XDP can work
in 3 modes within the packet processing pipeline:

e hardware — as depicted in Figure 2.15, eBPF program is loaded to a programmable
partition of the NIC. It allows to save CPU resources for other tasks. Currently
supported by Netronome only. [4]

e driver — program is loaded and executed within the NIC’s driver but before the socket
kernel buffer is allocated for the packet. This method is more prevalent among NICs
producers. It is shown in Figure 2.16.

o soft / generic — illustrated in Figure 2.17, generic XDP implementation that should
work on any Linux kernel with version 4.8 or higher. Although this mode is the most
universal, it also comes with the highest performance penalty since the eBPF program
is executed after the skb allocation.

Shttps://clang.llvm.org/

15

http://llvm.org/

P
A USERSPACE T
K PROGRAM
2
N4 KERNELSPACE
kb . NETWORK
NIC | xor UDRIVER U Jit O c1ack
|
Figure 2.15: XDP Hardware mode.
P
A USERSPACE USER
K PROGRAM
2
.5~ KERNELSPACE H
kb . NETWORK
NIC DRIVER xor & 50 O oK
|
- Figure 2.16: XDP Driver mode.
P
A USERSPACE T
K PROGRAM
2
<5~ KERNELSPACE i
NETWORK

NIC: DRIVER 35, 55

STACK

Figure 2.17: XDP Soft/Generic mode.

16

eBPF program is invoked once it receives a packet. It immediately starts processing it
and after completion it returns an action code that determines fate of the packet. Possible
outcomes are:

e« XDP_ PASS — packet continues to the network stack,

e XDP_DROP - packet is never to be seen again,

e XDP__ABORTED - program throws an error, packet is dropped,
e XDP_TX — transmit to the NIC,

e« XDP_REDIRECT - redirect packet to a different NIC or CPU.

Suricata support of eBPF and XDP

In Suricata [5] these mechanisms are implemented in the most used interface —
AF_PACKET - to extend possibilities of configuration. This can aid Suricata in
improving performance even more. Suricata has some XDP and eBPF filters included
directly in the source code to help with a smoother start. If enabled, it can be compiled
and installed along Suricata. Traffic passing through Suricata can be cut through with an
eBPF filter to ignore known and safe connections (e.g. video streams from popular
streaming platforms or scheduled backups of data). To drop packets even earlier, XDP
filter can be used as well. As shown in Figure 2.18, Suricata (user program) can
dynamically talk to the filtering program and adjust properties of the ignored traffic via
eBPF hash table (eBPF map). The hash table acts as a flow table that can tell kernel
program whether the packet should or should not be processed. As mentioned before,
since Suricata can dynamically adjust properties of ignored traffic, flow table can not only
be set before start of Suricata but also during its execution. Flow table can also modified
if Suricata hits a rule with a special keyword (bypass) in the rule’s options section for the
given flow. Flow is then added from the user program (Suricata) to the hash table (eBPF
map). Incoming packets of the given flow are then ignored when the filter extracts flow
information from the packets and compares them to values stored in the eBPF map. It is
described in more detail in Section 2.5.

17

USERSPACE

USER PROGRAM K PACKETS

eBPF MAP
KERNELSPACE <>
CAGKETS XDP | eBPF NETWORK
PROGRAM XPP_PASS " grack

QOHG dax

Figure 2.18: Usage of eBPF maps within XDP.

2.4.3 PF_RING™

PF_RING™ is a type of network socket and a kernel module developed by company
ntop’. It enables high-speed packet capture and analysis. Similarly to mmap version of
AF_PACKET, module creates a ring buffer shared between the user space and the kernel,
as can be noted in Figure 2.19. It is a free open source project, and it is available since
Linux 2.6.32. Kernel module is licensed under the GNU GPLv2 license, LGPLv2.1 for the
user-space PF__RING™ library. Thanks to the modular architecture of PF__RING™ it is
possible to add additional closed-source, paid ntop modules such as Zero Copy, FPGA or
other modules. Modules can further increase performance.

Internally it uses Linux New API (NAPI) to poll packets from the NIC, copy them to
the circular buffer from where the application (in the user space) can retrieve all packets.

2.4.4 PCAP

Running mode PCAP reads the specified pcap files and replaying them to Suricata for
offline analysis. It allows to test rules or configuration on real-life traffic in situations where
deployment in live networks is not possible.

2.4.5 DPDK

Data Plane Development Kit (DPDK) [12] is a framework to enable high-speed packet
processing. It is an open source project, licensed under the Open Source BSD License.
It was originally developed by Intel, in 2017 it was joined to Linux Foundation. Packet
processing workloads are accelerated on a wide range of device architectures like x86, ARM
or PowerPC. Currently, DPDK only supports Linux and FreeBSD operating systems. It is

"https://www.ntop.org/

18

http://www.ntop.org/

important to note that the framework needs to have access to advanced parts of the NIC.
These parts are accessible via the device driver. Therefore, some NICs require a custom
driver to be installed in order to work with the DPDK library. However, majority of NIC
manufacturers like Intel, Mellanox or Napatech support the DPDK on their cards. DPDK
might not be supported especially on lower-end NICs.

Officially, Suricata does not support DPDK, however, there has been discussions about
supporting the framework and also an effort to implement it®. Unfortunately, at the time
of writing this thesis, it was still not publicly available.

Lack of DPDK support in Suricata was motivation for bachelor thesis of Igor
Mjasojedov led by Jan Kucera. Thesis analyses different intrusion detection systems, out
of which Suricata is considered as the best candidate for further development. There are
also described possible options to add a support for DPDK with final performance tests at
the end. It was implemented following the common architecture of DPDK applications [9].

In general, DPDK enables packet processing in user space, similarly to previous packet
capture running modes. By bypassing the kernel, more resources can be concentrated on
the user space application processing the packets. The DPDK architecture can be seen in
Figure 2.20. Packets are transferred directly from the NIC to the user application while
kernel space is only used to store NIC’s driver and to configure the NIC.

As can be seen in Figure 2.20, from the large part DPDK architecture bypasses kernel
and uses the kernel loaded NIC’s drivers only for the configuration. The transfer of packets
from the NIC to the application is managed by the Poll Mode Driver (PMD) which provides
a direct connection between these two parts. However, it must be supported by the network
interface. Other capture interfaces use CPU interrupts. This is shown in Figures 2.13, 2.14,
2.19 as Deferred reception. Polling method has direct access to the Buffer and repeatedly
queries the NIC for new data. This method is more performance oriented as no forced
context switching is required and packets are transferred straight to the application. To
ensure high portability of DPDK applications Environment Abstraction Layer (EAL) is
present in the DPDK API. EAL provides a unifying layer between the application and the
NIC to prevent tight dependencies on the architecture the application was developed upon.
The DPDK framework therefore allows zero-copy transfer of packets from the NIC to the
application, while providing support for cross-platform and architecture independent usage.

Shttps://github.com/vipinpv85/DPDK_SURICATA-4_1_1

19

NIC

Figure 2.20: Packet flow in DPDK

capture interface.

NIC

;
: "
' [[N
. 3
)
- Q.
'@ m oF
1 — A r.
. £S5 Y
Il = < | U"
Ve 0o o)
H o < ,
|
<« > W <>)
)
| o '
' (=] '
H c)
h 9]
i =
h i])
' ' S 1
: _ 5 “
1]
. .
H g = =] < :
L | 5% o m "
h
<& 'y ~¥ 5 |l _AM ! |]
' S W.v o 1 1
' Q= \ '
' ..M c 2 1]
! 2 g o ' '
' Z ™’ \ 4
[l N] 1
" o) " "
H O | '
! | '
1] 1
1] 1
[l " 1
b e mcmcmcmmmmmmm
'
)
g g "
]
Qo
il g m
) D] c 1
Q
£ s €3 3 s b
D] =] = 15} '
4 X 5 2)
g 2 g :
g]
£E 2 |
o '
]
'
]
]
]
]
/ 1
]
=)
w.m 1
2]
=2 a
53 3§ 2 m
S <9 E3 ~ '
> 0 5& @ 1
Q u= | '
=) T w]
83 es = m
zg '
= / "
]
]
]
]
]
]
]
]
]

20

Figure 2.19: Packet flow in PF_RING

capture interface.

2.5 Bypass and flow shunting

Traffic bypass is one of the Suricata features to lower the delay and enable higher packet
processing throughput. The idea behind bypass is fairly simple and straightforward. Divide
network traffic into flows and, using rules or other techniques, mark flows that can be
bypassed. The next packets of these flows are not inspected anymore and we drop/redirect
them as fast as we can. In Suricata, bypassing a packet can be done on multiple levels.
Performance benefits of bypass can vary depending on where packet inspection stops. The
sooner the packet processing of the given flows is stopped, the more the enhancement is
efficient. Bypass can be executed internally in Suricata (local bypass) or in a capture
interface as mentioned, for example, in Subsection 2.4.2. Since local bypass is implemented
directly in Suricata, it is capture interface agnostic and therefore it can be always used.
On the other side, capture interface bypass must be supported directly in capture interface
implementation by providing functions that should execute on bypass. From currently
implemented capture interfaces there are only 2 that supports it — AF_ PACKET and NFQ.
AF_PACKET makes use of key-value storage of eBPF hash table to tell the filter program
in the kernel to drop or redirect packets. Kernel capture bypass is more effective because it
saves not only Suricata from reading the packet, decoding it and rules classification but it
also frees kernel from processing the packet in the network stack (allocating skb, interrupt
handling and more). In case of XDP hook in the hardware (NIC) bypass function can ever
more boost performance.

Flow shunting is a technique that classifies traffic into flows and then it uses bypass to
flag flows that meet a certain condition. Usually it is activated for long flows once a certain
(preset) number of packets is reached. It is not common for attacks and threats to send
pre-packets (packets before the attack) and they usually occur on the very beginning. This
makes long flows less interesting for Suricata and they can be considered as safer compared
to short aggressive flows. Alternatively, it can be used for safe domains (e.g. products of
Google, Amazon). More details can be found in reference [3, 14].

2.6 Outputs

In suricata.yaml you can also set which properties and features of the analyzed traffic
network are logged and sent to the outputs. Suricata can send data off to:

e eve.json — stores information about analyzed data in JSON format. As it contains
many details, it is not suitable for manual inspection but rather it can be accessed by
certain tools for a better analysis. From this file an administrator can identify sources
of the attack and mitigate the threat. The file can be fed to the ELK (Elastic search,
Logstrash, Kibana) stack and Evebox to conveniently view alerts in a web browser.

o stats.log — holds the basics statistics, which are exported in fixed intervals and
appended at the end of file. It can serve well for a quick manual inspection. The
results of this file are later used in analysis of Suricata performance. Stats can be
logged at different levels of granularity — from per thread to cumulative results.

o fast.log — a line based alerts log.

e Syslog — a line based alert log sent to Syslog.

21

As is shown in Listing 2.2 outputs can be customized independently in the Suricata’s
configuration file with options to include extra fields into the output.

default-log-dir: yes
stats:
enabled: yes
interval: 8

Configure the type of alert (and other) logging you would like.
outputs:
- fast:
enabled: yes
filename: fast.log
append: yes # after Suricata starts do not create new file

Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:
enabled: yes

Listing 2.2: An extract of Suricata output configuration from suricata.yaml.

22

Chapter 3

Setting up the environment

Sometimes it is hard to configure Suricata well. But focusing solely on Suricata most likely
yields in unsatisfactory performance results. Tuning is a complex process that includes an
examination of other parts of the system and even the other network devices and many
other factors to consider. Therefore, in this chapter, common bottlenecks of packet capture
and packet processing are described in more detail with their possible explanations.

3.1 Network architecture

As Suricata tuning is a complicated process of adjusting tightly coupled hardware and
software requirements and capabilities, it is important to define an architecture of
network, where Suricata is planned to be deployed. As the tuned settings are not generic,
focus on the designed architecture is essential. Components need to be wisely selected as
building the infrastructure can be costly. Incorrectly chosen components (e.g., due to
some incompatibilities) can lead to unwanted bottlenecks, which add extra expenses to fix.

A testbed is an implementation of the designed architecture. It serves especially as
a platform for experiments where easily repeatable, transparent and accurate tests are
possible. It can disprove or confirm theories and ideas. The term in various industries can
have different shapes. In networking it is usually a mesh of different devices needed for test
purposes. It is common practice that in software engineering testbeds are not connected to
the live network. It attempts to prevent any damage to production services and to shield
the testbed from potential intruders.

Testbed shown in Figure 3.1 is used for measurements in this thesis. It connects two
machines named Pinot and Claret.

>

Pinot Claret

Figure 3.1: Architecture of the testbed used for measurements.

23

Pinot:

o OS: Scientific Linux 7.3 (kernel version 3.10.0)

o CPU: 6 cores Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00 GHz
« RAM: 64 GB

e NIC: internally made replicator rated for 100 Gbps

e Role: replay PCAP file of captured traffic with destination MAC addresses changed
to claret’s NIC MAC address. PCAP size is approximately 300 GB. Replicator
does not respect relative timestamps in the PCAP and transmission speed can be set
arbitrarily.

Claret:

o OS: CentOS 8.1 (kernel version 4.18)

e Suricata: version 6.0.3-dev

e CPU: 10 cores Intel® Xeon® Silver 4114 @ 2.20 GHz

« RAM: 64 GB

e NIC: 2 port Mellanox ConnectX-5 MT27800 card rated for 100 Gbps

¢ Role: receive packets on the NIC, let Suricata inspect them

3.2 Configuration tool — ethtool

Ethtool' is a small utility supported by many vendors of NICs. It attempts to create a
unifying interface to query and configure settings of NICs. It is not always true because
not all options are implemented by the manufacturer of the NIC or not all options are
supported or configurable by the NIC itself.

NIC’s settings are initialized by the network driver with default settings from the
manufacturer. Altering some parts of the configuration can lead to an increase in
throughput or latency. However, it is important to clearly decide on priorities
(throughput vs latency) before the configuration process as reaching a goal in one (e.g.,
throughput) usually decreases results of the other (e.g., latency). In this thesis, the goal
was to achieve balanced results, with a possibility to focus more on the throughput.

Ethtool groups similar settings into individual switches. Lower letter switches (e.g., -g)
query data from the NIC and capital letter switches (e.g., -G) configure the NIC. When
adjusting settings, a set of options are commonly found after the specified interface. List
of few frequently used switches, which are described below:

e -g | -G — ring buffer settings,
e -a | -A — pause frames settings,

e —c | -C — interrupt coalescing settings,

https://linux.die.net/man/8/ethtool

24

e -k | -K — offload settings,

e -n | -N — receive network flow classification,
e -1 |-L — NIC queues count settings,

e -x | =X — receive flow hash settings,

e -S — statistics.

3.2.1 Ring buffer size

Ring buffer is an important component in receiving packets. It is a buffer where the
NIC stores all packets as they are received. Overwriting of existing data happens when
the application is not able to drain the packets from the ring buffer quickly enough. In
AF_PACKET packet capture interface, the application must communicate with the driver
as the ring buffer is shared only between the driver and the NIC. The driver sends the
packets to the higher layer of kernels and then to the application which holds the relevant
socket. Ring buffer is shown in Figures 2.13, 2.14 and 2.19 as a component named Buffer.
Enlarging the buffer size requires more operating memory because it is allocated in the
kernel-space. Command bellow sets size of the ring buffer to maximum.

ethtool -G eth4d rx 8192

3.2.2 Pause frames

When the receiver’s NIC is getting overwhelmed by the incoming packets and the buffer is
about to overflow, it can send a pause frame to let the sender know to stop transmitting
packets for a specified period of time. The switch can then buffer some packets that are
later sent. Historically, there were attempts in adopting this technique by manufacturers,
however, it was never widely used and additionally, it caused problems. Command bellow
disables receive (rx) and transmit (tx) pause frames.

ethtool -A ethd rx off tx off

3.2.3 Interrupt coalescing

In networking, interrupt coalescing is a technique that holds interrupts for a specified
amount of time and then they are aggregated into one. It aims to reduce interrupt load
by not firing them too frequently (by default, each received packet generates one
interrupt). Potentially, this can have throughput benefits as the CPU handles batch of
packets at once. However, it can lead to an increase in latency. The command bellow sets
time for received interrupt coalescing to 125 milliseconds. It also disables adaptive
moderation to ensure replicable results. Using the option rx-frames (example:
rx-frames 100) it is also possible to configure the NIC to send interrupt either after
timeout or packet count is reached.

ethtool -C eth4 adaptive-rx off adaptive-tx off rx-usecs 125

25

3.2.4 OfHoading

In modern network cards, there are several offloading features. It means that part of the
network traffic is not processed by the CPU but rather it is directly processed on the chip
of the NIC. It can then reduce load on the CPU.

For instance, General Receive Offload (GRO) can reduce processing overheads of small
packets. Network card reassembles short packets into larger and then sends them to the
application. As a result, CPU processes fewer packets. There are various kinds of
offloading libraries, however, network traffic offloading usually means packet manipulation
or modification. Raw packets, in the form as they are transferred over the network, are
very important for intrusion detection/prevetion systems as rules (signatures) may not
match the offloaded (and thus modified) traffic. For this reason, it is better to turn off
every possible offload the network card may have.

for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan; do
ethtool -K ethd4 $i off;
done

Options rxhash and ntuple allow classification of incoming network flows upon the
results of the hash function. It is covered in more detail in Sections 3.2.5 and 3.2.6 but it
is advised to enable them.

ethtool -K eth4 rxhash on ntuple on

3.2.5 Receive side scaling

To fully comprehend for what receive flow hash is used, it is first required to understand
basic concepts of interrupt affinity and receive side scaling (RSS). Both techniques are
commonly combined to maximize throughput of NICs.

Interrupt affinity

Interrupt (IRQ) is sent from a device (hardware level) to a CPU as a form of a request for
some action to execute. In terms of NICs, it is usually meant to poll packets from the NIC’s
ring buffer. Packet acquisition through interrupt handling is shown in Figures 2.13 or 2.19
as deferred reception because the NIC inserts packets into the ring buffer and notifies the
CPU by an interrupt. The described process is illustrated in Figure 2.12. Additionally, in
the same diagram (2.12), component CPUOQ is representing core number zero of the CPU.
The default behavior is the same between single and multi-core systems. As a result, core
0 can be easily overloaded under high packet load and that leads to packet drops.

The term interrupt affinity means binding an application or a device to a specified set
of CPU cores. This means the interrupt is not handled only by core 0 but it is distributed
among all specified CPU cores. As a consequence, latency improvements and higher network
throughput can be expected. Bash script /usr/sbin/set_irq_affinity.sh is included in
the installation of Mellanox driver. After executing the script with a specified interface,
it balances the load of interrupts among all cores. It is also possible to use other Bash
scripts (set_irq_affinity_bynode.sh or set_irq_affinity_cpulist.sh) to distribute
IRQs among the selected set of CPU cores only.

26

Receive side scaling

Knowledge from previous paragraphs can help to better understand basics behind receive
side scaling (RSS). It relies on multiple hardware queues to which it can distribute
incoming packets. Contemporary NICs support multiple receive and transmit descriptor
queues (multi-queues). Sometimes queues are not differentiated and are labeled as
combined. It is generally advised to assign one queue to one physical CPU core as
opposed to assigning more queues to one CPU or using hyper-threaded logical cores.
Switches "-1|-L" are used to view settings and manage the number of enabled queues. An
example of command to configure the NIC to use 20 combined queues is:

ethtool -L eth4 combined 20

When RSS is enabled, it might use XOR, or Toeplitz hash algorithms to appropriately
balance packets into the queues. Toeplitz hash algorithm allows specification of Random
Secret Key (RSK) with a length of 40 bytes to determine how the packets are distributed.
It serves as a seed that gets mixed with input values inside the hash algorithm. Input values
are packet features aligned into n-tuples and described in more detail in Subsection 3.2.6.
The algorithm provides load-balancing statistically. That means hashes of packets with
different properties result in different queues bound to specific cores. The more random the
traffic is (different IPs, protocol ports), the more uniform the distribution is.

It is sufficient for generic applications like web applications or streaming applications
concerned about the transferred data only. However, for IDS/IPS to monitor and analyze
passing network traffic, both directions of communication is required. Flow-based rules
depend on packets from both inward and outward directions. As it is demonstrated in
Figure 3.2, using the default hash algorithm, packets of different directions end up in
different queues because hash of incoming 5-tuple is different from outgoing 5-tuple. 5-
tuple” is a set of five different values usually consisting of source IP address, source port,
destination IP address, destination port and transport protocol. It can be optionally set to
n-tuple configured according to 3.2.6. This would lead to huge number of cache misses as
it would be vital for detect threads to fetch data out of caches of different cores to get the
most recent data of network flows.

To tackle this problem, use the key from Listing 3.1. It is an absolutely symmetric
key for RSS. It puts packets of the same flow in the equivalent queues [16]. Toeplitz hash
algorithm with symmetric hashing is demonstrated in Figure 3.3 as packets from both
directions are put into the same queue. As stated before, one CPU core is bound to one
queue and because of that, cache of each CPU core is occupied by packets of the same flow.
As a result, cache misses are minimized since cores are not required to transfer data out of
caches of different CPU cores.

0Ox6dba 0x6db5a 0x6dba 0x6dba
0Ox6dba 0x6db5a 0x6dba 0x6dba
0Ox6dba 0x6db5a 0x6dba 0x6dba
0Ox6dba 0x6db5a 0x6dba 0x6dba
0Ox6dba 0x6db5a 0x6dba 0x6dba

Listing 3.1: Symmetric receive side scaling key.

Commands in Listing 3.2 set the RSS function to Toeplitz and its hash key to the
previously mentioned key. After applying latency and cache misses should be lowered.

https://www.ietf.org/rfc/rfc6146.txt

27

Packet
132.12.46.29
>

10.23.1.18

Toeplitz hash
function

Packet
10.23.1.18
>
132.12.46.29

Queue 4

Figure 3.2: Receive side scaling with asymmetric hashing.

echo toeplitz > /sys/class/net/eth4/settings/hfunc

ethtool -X eth4 hkey \
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:\
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 20

Listing 3.2: Setting a symmetric receive side scaling key on an interface.

28

Packet
132.12.46.29
>

10.23.1.18

Toeplitz hash
function
RSK: 0x6d5a

Packet Queue 4

10.23.1.18
AENEIRRRRNNNNRRINIREEINY

>
132.12.46.29

Figure 3.3: Receive side scaling with symmetric hashing.

3.2.6 Receive network flow classification

As mentioned before, Toeplitz hash function uses certain parameters of the packet formed
into n-tuple where n specifies the number of parameters that are used as input parameters
to the hash function. These parameters can be set using

ethtool -N <iface> rx-flow-hash <flow type> <options>

command with flow types (e.g., ip4, tcp4, udp4, ip6, tcp6, udp6) and options:

o m — Layer 2 destination (MAC) address,

e v — Layer 2 VLAN tag,

e t — Layer 3 protocol,

e s — Layer 3 IP source address,

e d — Layer 3 IP destination address,

o f— Layer 4 bytes 0 and 1 (source port in TCP and UDP),

o n — Layer 4 bytes 2 and 3 (destination port in TCP and UDP),
e 1 — Discarding packets of the flow type.

Commonly used are combinations of options "sd" and "sdfn". Example of the command
might look like:

ethtool -N eth4 rx-flow-hash tcp6 sdfn

29

3.2.7 Statistics

Counters of acquired or dropped packets can be seen on several places in Linux. Tools like
ifconfig are not always accurate as they are mainly designed as log tools and may not
always have access to correct memory chunks. On the other hand, as ethtool is more tied
to network drivers, results should be more favorable. It has direct access to NIC’s counters
and offers a wide variety of stats from packet/bytes counters for each separate queue to
cumulative results of the whole NIC. It can be used to verify the number of packets received
by the NIC. However, it is incorrect to verify count of dropped packets.

For measurements connected with dropped and received packets, a term buffer overflow
(BO) was defined. As shown in Equation 3.1, BO is calculated as percentage of packets
received (P,,) divided by packets transmitted (P;,).

Packets received (P,;) is the difference of components acquired from the ethtool stats
counter "rx_ packets". Equation 3.2 shows that minuend is the number of received packets
after all packets were transmitted and the subtrahend is the number of received packets
before the transmission. For easier calculation a little script in Listing 3.3 is used. It is
expected to run this script before any measurements, afterwards it should be run after each
separate measurement.

Packets transmitted (P;) is the number of packets transmitted by the specified device/s
and it is expected the number is either gathered from the statistics of the transmitting
NIC or gathered from the number of packets contained in the PCAP file. Calculation is
therefore very similar to Equation 3.2. It is expected that measurements run in an isolated
environment where packets of sources different from the specified transmit device/s are not
present.

100 * P,
BO%) = — e (3.1)
Ptm
P,, = rx_ stop — rx__start (3.2)

expr $(ethtool -S eth4 | grep rx_packets: | grep -o "[0-9]*") - $ETHLAST;
ETHLAST=$(ethtool -S eth4 | grep rx_packets: | grep -o "[0-9]%");

Listing 3.3: Bash script for getting P,, after separate measurements.

3.3 Testing framework

To reach the final configuration, many options need to be explored. Manual testing can
be rather labor-intensive and repetitive work for researchers. It also opens a possibility to
introduce a human error in measurements. To eliminate these problems, automated testing
is viewed as a better approach. Section introduces the proposed architecture of the testing
with the design of the testing framework.

For tests to be replicable, it is essential to replay the same traffic. For this reason,
tuning process can not be just tapped into the live network. For consistent results, a
large PCAP file is recorded from the live traffic and that is used in all tests. This ensures
that configurations are measured under the usual traffic load that goes through the tapped
interface.

30

3.3.1 Architecture

High-level architecture in Figure 3.4 shows how the control station connects to the servers
and executes measurements. Connections to the machines are made over Secure Shell (SSH)
and Secure Copy Protocol (SCP). Commands to control the servers are executed over SSH
and files are transferred over SCP. Control station can be any computer that has access to
these servers and has a Bash shell.

Internal framework structure in Figure 3.4 shows modular design with a configuration
file. Certain modules (e.g., transmit module) can be replaced or reconfigured in case the
hardware architecture is altered. This enables flexibility and removes dependencies in
testing. Individual components are implemented in Bash scripting language.

Sequence diagram in Figure 3.5 shows a proposed testing scenario. Control station
starts the Suricata instance on Claret and then after Suricata warm-up time it connects
to Pinot, reconfigures and starts the transmission of packets with additional parameters as
transmission speed and a specified PCAP file. Upon finish, Pinot transmit log is transferred
to the control station and similarly, control station stops Suricata on Claret and pulls
statistics. The downloaded files are parsed and data are stored in a file of comma-separated
values (CSV). The results can later be processed with graph imaging tool to visualize and
merge several measurements together into one graph.

Transmit modules Receive modules
MODULE MODULE
TCPREPLAY SURICATA
MODULE
REPLICATOR
Config

. . | [Hostname]
e ! | Jusemame

L]

Config

MODULE Config
L1 [| .| =
MAIN ———1
—

Testing framework

Figure 3.4: Internal structure of the testing framework.

31

:TestingFramework :Claret :Pinot
E start Suricata ' '
wait to get ready '
finish i
Dbty T configure TX interface _
' finish
Rl PTTTTTTTTommommommommmmmm s e
! start TX !
!]
' transmit
:
< . download log file save log
stop Suricata :
4>_._
L
wait to stop

download log file

L
parse logs

&
save results

P

Figure 3.5: Sequence diagram of the usual testing scenario.

<E

32

save lo

_____ L 4¢—

g

B s

3.3.2 Replicator

Replicator, as mentioned in the earlier paragraphs, is a custom made FPGA network card.
It resides on Pinot, from where packets are transmitted to Claret as shown in Figure
3.1. Broad variety of options for packet transmission is one of the main advantage of the
replicator. Out of the most highlighted ones are ability to:

e replay the same PCAP file over and over in a loop,
o set number of loops (infinite is also an option),
e set the transmission speed,

set the number of replications (up to 10),

e modify the individual replications.

The last two points are making the replicator very special as they allow to amplify the
bandwidth of transmitted traffic up to 10 times where a single replication can transmit up
to 10 Gbps. As noted, individual replications can be modified. For instance, that includes
change in source or destination MAC, IPv4 or IPv6 address. The basic principle is shown
in Figure 3.6 where incoming packet is processed and individual replications change the
value of packet properties. This not only results in higher bandwidth but it also creates
more network flows. This behavior better simulates conditions of heavy loaded network.

Replication 1 —» ipv4.src —QA

PACKET

Replication 2 —» ipv4.src += 1 — —

Replication 3 —»| ipv4.src +=2 — —

(B

)N
¥

°
: REPLICATOR

Replication 10— ipv4.src += 9 — _y

Figure 3.6: Replicator — transmission of a multiplied packet.

3.3.3 PCAP

For repeatable experiments it is essential to have a stable environment and an ability to
make changes independently step by step. In the proposed architecture of the testbed
(Figure 3.1) there are 2 components — replicator on Pinot and Suricata on Claret. Change
in any of these can affect results of measurements. However, it is unlikely that change

33

occurs on Pinot as this machine is rated for sufficient throughput of 100 Gbps. Thus, the
only point where change is expected and anticipated is Claret.

Except stable connection between devices, it is also crucial to have easily repeatable
traffic. This problem can be easily solved by capturing live traffic on a selected network
and then storing it into PCAP file. In comparison to the traffic created artificially (i.e.
using Scapy®), it has a benefit of being more authentic. PCAP files are data files that
contain individual packets captured from the live network. These files can be used for later
analysis or, as in this case, for controlled retransmission.

Listing 3.4 shows preliminary analysis of the PCAP file used in all later
measurements. Packets were captured from a live network and therefore the PCAP file
consists of mixed traffic. However, the traffic should not contain too many malicious
activities since it is an internal network. As described in Subsection 3.3.2, replicator is
able to set arbitrary transmission speed. Therefore, data bit rate of the PCAP causes no
problem for retransmission of the PCAP. The data size and amount of packets captured
in the PCAP ensure there are enough data to replay.

To have a better picture of what is included in the PCAP, it is better to make an analysis
of possible threats captured in the file. This helps us evaluate how successful Suricata is in
dealing with these threats. Analysis provides a set of individually generated alerts that are
grouped together to get their sum. Listing B.1 shows all alerts generated by Suricata after
PCAP was transmitted from Pinot from one replication. All rules that are used in later
measurements were enabled. Retransmission was done with one replication and was fully
successful with all packets received on Claret. From the generated alerts, it can be noted
that the traffic is not malicious, most of the alerts are connected with invalid packets of
TCP connection.

File encapsulation: Ethernet

Packet size limit: file hdr: 65535 bytes
Number of packets: 509 M

File size: 393 GB

Data size: 385 GB
Capture duration: 1166 seconds
Data byte rate: 330 MBps
Data bit rate: 2 642 Mbps

Average packet size: 756,18 bytes
Average packet rate: 436 kpackets/sec

Listing 3.4: PCAP analysis by capinfos.

For PCAP analysis, it is suitable to use offline Suricata, as shown in Listing 3.5 to
prevent any problems with packet transmission. In offline mode, Suricata only reads the
PCAP file and raises alerts if a rule is matched. Configured outputs are used to store
the information from analysis. The command on the bottom in Listing 3.5 extracts alert
messages from fast.log file, sorts them and groups them. The analysis report can be used
later to compare with Suricata outputs.
suricata -r ~/pcap/testdata.pcap
cut -c 48- fast.log | grep -Eo ".*}" | grep -Eo ".*\[**\]" | sort | uniq -c

Listing 3.5: PCAP analysis by Suricata.

However, since replicator uses replications in a way as explained in 3.3.2, it creates new
traffic flows by adjusting certain properties of packets. To see how Suricata reacts to this

3https://scapy.net/

34

kind of traffic, further analysis was done by using 4 replications. Packets were transmitted
at speed 900 Mbps per replication. Purpose of the second analysis was to test theory that
the number of alerts generated by 4 transmitting replications is equal to the quadrupled
number of alerts generated by 1 replication. With 4 replications enabled, one replication
sends the original PCAP and the others send altered PCAP (changing bit in source IP
address). The Listing B.2 shows results of the second analysis.

From the analysis, it is possible to obtain that count of alerts have totally disproved
the theory. Therefore an increase in the number of replications does not dramatically
increase count of generated alerts. In some cases (e.g. ET POLICY rule) the number of
alerts have quadrupled. However, majority of generated alerts do not follow this pattern.
This assumption was therefore dismissed. The results of this comparative analysis does not
affect future measurements. Suricata can still be under a heavy load of incoming packets.
Suricata’s goal is to inspect all incoming packets.

It is also possible to see that majority of alerts are from Suricata rulesets, two alerts are
from Emerging Threats rulesets.

3.4 Performance tuning of AF_ PACKET

Implementing any kind of optimization without a possibility to compare with already
existing solutions would not tell much. As discussed in sections before, it is crucial to
have a solid and stable testing environment to move forward any settings in current
solutions. Similarly, it is necessary to evaluate newly proposed design step by step
whether implementation is on the right track and is competent enough compared to other
existing solutions.

This section present steps taken to achieve the best results that were captured with
the current hardware. To decide what configuration suits the best the designed network
architecture, it is vital to iteratively perform various tests of the deployed Suricata instance.
As stated before, tuning the Suricata is a complex process and has no generic settings for
the top performance. The process consists of an evaluation of results gathered from tests
of Suricata loaded under various configurations. Group of steps are then coupled with
measurements that are displayed on the graphs. Individual graphs can serve as a baseline
results for a proposed optimization.

3.4.1 Performance measuring tools

Configuring Suricata correctly is usually a lengthy process. Knowing its architecture helps
but since it is a very complex piece of software, it is often hard to understand. Even then
it does not guarantee fast configuration process. Another (nachine learning like)
approach would be to take Suricata almost as a black box that takes initial configuration
file, starts processing packets and then according to the feedback, adjust individual
settings of the configuration file and repeat. It is obvious this approach would not be
feasible in human version. The usual way of configuration is somewhere in the middle —
little bit of architectural knowledge combined with trial-and-error approach with focus
onto certain areas of the configuration file. Certain settings can be generally applied for
better performance but some must be tuned per environment where Suricata is deployed
(e.g. hardware Suricata is running on or popular type of traffic that occurs on the
network). Getting feedback in form of received/dropped packets would still leave us blind

35

in many areas. Therefore, this subsection presents performance measuring/tuning tools to
gather valuable information and uncover details of these areas.

Performance Counters for Linux (perf)

Perf! is a popular performance analysis tool among Linux developers to see at what places
spends the running program the most time. It can detect possible bottlenecks or places
that can be improved. It has been initially released in 2009 and it is still widely used today.
To report actual performance usage, it is based on event counting statistical methods. It
has various sub-commands such as:

» stat — measures events statistics of one specific command/program,
o top — dynamically updated list of top used (hot) functions (Figure 3.7),

e record — record and save sampling data of the program to a file (to be processed
later),

e report — reads a file of sampling data and generates different kinds of reports.

Figure 3.7 shows usage of sub-command top (perf top). On the top, in the blue-colored
frame, we can see details about event sampling. The second line of the output describes of
what individual rows in the list is composed of. Below, the most used functions are listed
in descending order according to its overhead percentage. Color of overhead percentage
also gives a clue to how serious the usage is. Starting from the bottom — no to low usage is
white, low to medium usage is green and medium to high usage is red. Symbol hints what
part of the program uses the most of the CPU time.

Samples: 2M of event 'cycles', 4000 Hz, Event count (approx.): 303466299469 lost: 8/0 drop: 0/0
Overhead Shared Object

Figure 3.7: Screenshot of running perf top.

htop

Htop® (shown in Figure 3.8) as an interactive performance monitor/process manager is
the Swiss army knife of Linux administrators for diagnosing problems of the server. It is

“https://man7.org/linux/man-pages/manil/perf.1.html
Shttps://man7.org/linux/man-pages/mani/htop.1.html

36

well known tool among Linux users. As seen in Figure 3.8 the first part of the output
represents a load of individual processor’s cores between the squared brackets. In this case,
there are 40 cores (physical and logical cores are combined) with a significant load on the
odd numbers since Suricata is set to run only on NUMA node 0. Representation of core
numbers with respect to NUMA nodes location differs between the operating systems. Load
in the squared brackets is divided in two colors — red and green. Red color denotes load
of kernel related tasks (e.g. interrupt handling) and green represents load from user space
applications (e.g. packet inspection in Suricata).

How much memory is left can be viewed between the squared brackets at lines denoted as
Mem and Swp. Label Mem represents a load of Random Access Memory (RAM) whereas Swp
stands for additional Swap memory.

The green-colored line denotes descriptions of individual columns. The list of rows described
individual processes that are run on the machine with respective usage of resources.

PID USER RES SHR S CPU% MEM%v TIME+ Command
10085 root 12.5G 3767M S 752. 19.6 sismi@l/measure-suri/
0115 18 R 9.6 . - t 1 -5

Figure 3.8: Example of running htop.

Intel Performance Counter Monitor (pcm)

Similarly to previously mentioned tools, Intel PCMY is a performance monitor that provides
deeper insight into how individual components of Intel platform are busy. In the first section
of Figure 3.9, individual cores of available processors are displayed along with respective
statistics to each core. When performance tuning is a goal, it is useful to look at columns
IPC and L3HIT. Under the core list there are averaged statistics/counters per processor
socket (NUMA node).

IPC stands for Instruction per Cycle and it is equal to the average number of executed
instructions per CPU cycle. If IPC counter equals to 4, it means the core is 100% utilized.
Because of Hyperthreading’, on 1 physical core resides 2 logical cores. As a result their
IPC counters are summed when calculating actual IPC on physical core.

Shttps://software.intel.com/content/www/us/en/develop/articles/intel-performance-counter-
monitor.html

"https://www.intel.com/content /www/us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html

37

https://software
http://intel.com/
https://www
http://intel.com/

L3HIT is a ratio between successful and failed lookups in L3 cache. Cache in the CPU
design serves as a temporary storage of data that CPU might use later. There are
different levels of cache implemented. Ranging from L1 up to L3 cache, each level
provides different levels of access times (the lowest is the fastest) and different sizes (the
highest is the biggest). Data that does not fit into these caches are pushed into operating
memory. Fetching the data from operating memory requires huge amount of time
compared to Lz cache of the processor. For this reason, it is in the best intentions to keep
majority of the data in cache. However, because of the great amount of traffic and limited
size of Lz caches it is not possible to have 100% hit rate. It is indeed favored to be as
close as possible.

Under the core list we can find distribution of cores C-states®. Cores in Intel architecture
have different power and performance strategies. These strategies are called C-states and
go from CO (the most performant, the least power saving) through C1 up to C6 (the least
performant, the most power saving). As a limited number of cores can run in C-state C0,
other cores can run at C-state C1l. In Figure 3.9 it is possible to notice that half of the
cores run in C0/C1 (cores of the socket where Suricata is running) and the other half is in
power saving mode (the other NUMA node).

The next section shows statistics of Intel Ultra Path Interconnect’ (UPI) which is a
successor of Intel Quick Path Interconnect (QPI). There are two sockets displayed in Figure
3.9 with 2 UPI links with close to no data transfers between the sockets. Bandwidth of
respective links in absolute and relative numbers is displayed in the relevant cells.

The very last section shows counters for the main operating memory controller and
individual processor sockets. READ/WRITE columns denote the amount of gigabytes
(GB) that are transferred from or to the main memory controller. Column LOCAL shows
ratio of memory request to local memory controller.

Shttps://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/
reference/energy-analysis-metrics-reference/c-state.html
9https ://en.wikipedia.org/wiki/Intel_Ultra_Path_Interconnect

38

https://software
http://intel.com/
http://wikipedia.org/wiki/Intel_Ultra_Path_Inter

1

11111111111111111111111111111

traffi

from CP

Figure 3.9: Screenshot of pcm.

39

3.4.2 Pre-baseline measurements

In the beginning, setting a goal that is not too hard to grasp was crucial. As mentioned
earlier, it is important to gradually move forward. The goal was to measure buffer overflow
of Suricata with AF_ PACKET capture interface and with no rules applied. For the later
measurements, the results might be considered as potential top performance for Suricata
(although it certainly is not taken as a fact) as enabling rules degrade performance of
Suricata. However, the main point was to test functionality and reliability of the testing
framework architecture. It also proved that PCAPs acquired for the replicated tests and
other limitations of hardware/software cause no problems.

At this stage, progress was made in iterative steps, starting with successful packet

transmission and reception. Even with no rules enabled, Suricata handles and decodes all
incoming packets. In these tests, only the detection module was not tested. It continued
with picking the seemingly best NIC configuration according to ethtool statistics
mentioned in Subsection 3.2.7. After many experiments, configuration that can be found
in Listing A.1 was used. This configuration remained through all measurements of
AF_PACKET runmode. Section 3.2 explains individual settings in more detail. All
measurements were performed with the testing framework mentioned in Section 3.3. As
rules were disabled, some already implemented optimization techniques such as Hyperscan
or XDP were not yet applicable as the performance enhancement is linked to more
efficient ruleset usage. During this process, version of Suricata together with a version of
operating system got fixed to values mentioned in Section 3.1.
AF_PACKET results of the tuned configuration can be seen in Figure 3.10. In the
figure, it is possible to observe that packet reception is consistently reliable up until 22
Gbps with buffer overflow from 0 to 1 percent. All three variants of measurements
received 100% packets in sub-20 Gbps receive speeds. After that, the number of dropped
packets starts to increase. It is possible to notice that 8 replications (8 times more flows
than in the original PCAP file) puts more stress on Suricata than 4 replications at the
same transfer rates. As the goal of this test was to ensure all machines are set up
correctly, there was enough data to stop the measurements. It was certain Suricata
handles traffic very well up until 22 Gbps. It was possible to enable rules and start
measurements.

40

Claret CentOS8 Suricata v6.0.1 AF-PACKET 2 replications, 18 NIC queues HT NUMAO /
1.2 Claret CentOS8 Suricata v6.0.1 AF-PACKET 4 replications, 18 NIC queues HT NUMAO no rules /

Claret CentOS8 Suricata v6.0.1 AF-PACKET 8 replications, 18 NIC queues, NUMAO (HT Enabled) no rules /

1.0 /
|
|

0.4

Dropped packets (%)

0.2

0.0
6000 8000 10000 12000 14000 16000 18000 20000 22000
Transmit speed [Mbps]

Figure 3.10: Optimized AF__PACKET capture interface with no rules enabled.

3.4.3 Baseline measurements

After the initial measurements and tests, it was possible to set a new goal — measure
Suricata buffer overflow with rules enabled. During this stage it was important to
establish a set of rules (ruleset) and use it throughout all measurements. Performance could
vary due to the always changing set of Emerging Threats rules. This could further cause
imprecise measurements because of a different number of rules enabled. Chosen ruleset
stored in suricata.rules was added to the source control system of the testing framework to
be easily accessible for future installations.

As described in the previous subsection, the configuration file was updated in iterative
steps according to the feedback in the form of dropped packets. With the help of profiling
tools described in Subsection 3.4.1 it was possible to reach great results even on the available
hardware described in Figure 3.1. Figure 3.11 represents Suricata performance with traffic
sent from 4 replications. NUMA node 0 had 18 cores allocated for Suricata worker threads
and 2 cores for management threads. NIC was configured with commands of Listing A.1
— 18 combined queues, 10ms interrupt coalescing, enabled RSS. Suricata runs in workers
mode and AF__PACKET is set to cluster_gm mode. Cluster_gm mode binds RSS queues
with individual CPU cores in one-to-one relationship. Packets from 1 queue always lands
on the 1 bound CPU core. Therefore, RSS also acts as a load balancer. 1 core inspects
packets from both directions because of the special symmetric RSS hash key (Listing 3.1).
From the output of PCM (Subsection 3.4.1) displayed in Figure 3.9 it was possible to
observe IPC (Instruction Per Cycle) hovering around 3.3 instructions per cycle (topping at
3.5 IPC). This means Suricata is greatly tuned and even surpasses IPC of 2.7 from Suricata
Extreme Performance Tuning (SEPTun) [13]. L3HIT rate was around 65% which is still
very good result at this amount of traffic. Inter-processor communication (UPI) was almost
zero and in 99% of memory requests local NUMA memory controller was able to provide
the requested data.

Hyperscan was also enabled to speedup rule matching. eBPF filter program was also

41

available. If needed, it was hooked to the kernel via XDP. In case flow shunting is enabled,
it stops packet inspection after 20 packets of the given flow. Suricata uses special flow rules
to count number of packets of the given flow. When the number of packets reaches the
limit (20), a bypass rule is activated. The flow is then bypassed at the driver level.

Graph in Figure 3.11 displays three different measurements. Blue line is tuned Suricata
with previously mentioned settings and finely tuned suricata.yaml configuration file. Orange
line had additionally enabled XDP bypass as described in Subsections 2.4.2 and 2.5. Green
line had enabled both XDP bypass and flow shunting — also described in Subsection 2.5.
Classic Suricata (blue line) handles traffic up to 6 Gbps. XDP located in the driver helps
to push performance even further to almost 7.5 Gbps. Emerging Threats rules do not use
bypass very often. Dropping packets had the same characteristics in both versions. On the
other hand, aggressive flow shunting method proves very high packet throughput — reaching
up to 18.5 Gbps. Higher receive speeds results in a slight increase in packet drop.

Graph in Figure 3.12 proves the same packet processing behavior of Suricata happens
even if Suricata is under a load of different number of replications. It can handle very well
even high amounts of flows. These results were achieved after careful tuning of Suricata
over time. Number of different tuning paths were explored. These results are reference
results and new capture interfaces or other Suricata enhancements can be compared with

these performance graphs. Alternatively, it is also possible to reuse the configuration files
for later measurements.

70 Claret AF-PACKET 4 replications, 18 NIC queues HT NUMAO ///
-
Claret AF-PACKET 4 replication XDP BYPASS //
_—
60 Claret AF-PACKET 4 replications XDP BYPASS FLOW SHUNTING

w P vl
o o o

Dropped packets (%)

N
(=]

10

-
_—

2500 5000 7500 10000 12500 15000 17500 20000
Transmit speed [Mbps]

Figure 3.11: AF_PACKET capture interface with rules enabled.

42

Claret AF-PACKET 2 replications, 18 NIC queues HT NUMAO

_—

Claret AF-PACKET 2 replication XDP BYPASS
70 —
_——

Claret AF-PACKET 2 replications XDP BYPASS FLOW SHUNTING _74/1___
_—
60 Claret AF-PACKET 4 replications, 18 NIC queues HT NUMAO /?/
"
=

Claret AF-PACKET 4 replication XDP BYPASS

wu
(=]

Claret AF-PACKET 4 replications XDP BYPASS FLOW SHUNTING
Claret CentOS8 Suricata v6.0.1 AF-PACKET 8 replications, 18 NIC queues, NUMAO (HT Enabled)
Claret CentOS8 Suricata v6.0.1 AF-PACKET 8 replications XDP BYPASS

Claret CentQS8 Suricata v6.0.1 AF-PACKET 8 replications XDP BYPASS FLOW SHUNTING

2 ///

0 2500 5000 7500 10000 12500 15000 17500 20000
Transmit speed [Mbps]

Dropped packets (%)
w B
S s}

o

Figure 3.12: AF_PACKET capture interface with rules enabled with tested under different
number of replications.

43

Chapter 4

Design of the proposed
optimization

To figure out how to improve system’s performance, it is crucial to use a set of suitable tools
for such tasks. Some of these tools were presented in Subsection 3.4.1. In each application,
there are always multiple places to optimize. When using such tools, it is possible to
pinpoint the biggest bottlenecks of the application. After choosing a single bottleneck to
focus on, investigation of the problem follows. This process results either in elimination of
the bottleneck or inability to overcome the selected bottleneck. However, the former option
happens much more often. In most cases, a quick ad hoc solution is to add more resources.
This might be sometimes impossible and, among other things, it implies higher operation
costs of such systems.

The problem of finding the root cause of the bottleneck and implementing a solution
to eliminate it can look often more challenging upfront but it can easily pay off in the
future. It requires deep understanding of not only the application but also the stack the
application is running on and technology that it uses. The whole optimization process can
be longer than, e.g. increasing available resources. As a result, the upfront costs can be
higher. Removing the root cause of the bottleneck can pay off in the long run. It might
imply that it lowers service expenses and speeds up processing/response time.

As a result, the former approach is better suited for short fixes or onetime operations
such as data migration. The direct mitigation of the bottleneck can therefore be more
worthy in the long running applications. An example can be Suricata. Instances of Suricata
deployed in production operate continuously and uninterrupted for 24/7.

Therefore, individual modules of Suricata should be highly optimized and use as much
resources as possible to provide the best performance. Suricata already tries to do its part
well by optimizing individual modules. For example, Suricata uses a high-level of
parallelism thanks to being a multi-threaded program — this was more elaborated in
Section 2.3. Another popular IDS/IPS application — Snort' uses for detection a single
thread. It is therefore limited by the single-core performance of the CPU (to scale up to
100 Gbps it would require 250 cores [17]). In detection module, Suricata additionally uses
an open-source, high-performance, regular expression-matching library from Intel
described in Subsection 2.2.3. The library improves detection in Suricata instances with
large rulesets thanks to SIMD instructions. Suricata also uses various optimized capture

"https://www.snort.org/

44

http://www.snort.org/

interfaces either implemented by either Suricata developers or other companies. These
capture interfaces were more described in Section 2.4.

4.1 Motivation

Previous chapters introduce topics such as Suricata architecture or various capture
interfaces. It is first required to fully comprehend all of them, to be able to successfully
move towards any optimization of Suricata. As Suricata is open-source and public, there
have been efforts to speed certain modules of Suricata. These attempts were not always
successful as some of them might not have yielded the best results or have been
abandoned over time. DPDK capture interface or GPU (CUDA) acceleration are
examples of such failed efforts.

After tuning of settings of Suricata with AF_PACKET capture interface, I performed
an analysis of Suricata performance with tools mentioned in Subsection 3.4.1. High load
of kernel tasks (red-colored ticks) shown in Figure 4.1 has sparked my attention and
I decided to inspect it a little further. These kernel calls are attributed to interrupt
handling. Interrupts originate in AF_PACKET capture interface as a way to signal
kernel to handle packets from the NIC. This can result in a load as high as 20% of the
total application load. Among other things, this analysis has helped to set a proposal for
Suricata optimization for this master thesis. I will attempt to lower the load of capture
interface by implementing a new one — based on the DPDK framework.

Figure 4.1: Profiling Suricata in htop (AF_PACKET capture interface enabled).

4.2 Analysis of the current implementation

As mentioned earlier, there have been attempts to implement DPDK interface into Suricata.
It was a rejected pull request” and a bachelor thesis of a student[9].

The author of the previously mentioned pull request is maintaining the implementation
in a new separate branch®. However, this implementation is based on Suricata 4.1.4 and

https://github.com/0ISF/suricata/pull/4902
3https://github.com/vipinpv85/DPDK_SURICATA-4_1_1

45

uses DPDK of version 19.11.3. Additionally, lack of documentation contributed to closing
the pull request. It is in my best effort to follow Suricata design and code guidelines for
a successful integration. With thorough documentation it might be used by a broader
audience.

The bachelor thesis successfully proved the possibility of implementation of DPDK
into the Suricata and Suricata integration within the DDoS Protector (ex DCPro)*
system. However, it lacks certain attributes of performance-oriented and maintainable
capture interface. With results of the mentioned thesis, I was unable to select capture
interface other than DPDK. Although the implementation provides a way to configure
Environment Abstraction Layer (EAL), it is not possible to adjust parameters of other
things related to DPDK such as packet mempool size.

Current implementation also uses packet copy, which, if avoided, can bring further
performance benefits. It also follows old architecture of IPS with a verdict module. This
is explained in more detail in the next section. The new architecture should leave
responsibility of releasing and transmitting a packet to Suricata release function.

The listed problems, among other things, increased the motivation for the new
implementation of DPDK capture interface.

4.3 Idea proposal

As mentioned in the introduction of this chapter, to successfully design an optimization
for Suricata, deep understanding of topics presented in the previous chapters are required.
Knowledge of Suricata architecture presented in Section 2.1 is crucial to implement a new
capture interface. Additionally, insight acquired from Subsection 2.4.5 can aid reader in
comprehending the presented proposal.

Suricata architecture, as shown in Figure 2.4 consist of 4 main thread modules. These
are described in more detail in Section 2.1. Figure 2.4 presents a high-level overview that
not always reflects the actual implementation of the individual modules.

Listing 4.1 is an extract from the main configuration file that contains the threading
part of the configuration. From there, it is possible to notice 4 main CPU sets of threads.
Names of the thread groups expose how the Suricata is implemented internally. Individual
thread groups serve for specific purposes. Figure 4.2 illustrates more in-depth architecture
of Suricata. Individual parts are also explained in Suricata documentation[10].

threading:
set-cpu-affinity: yes
cpu-affinity:
- management-cpu-set:
cpu: [0, 21
- receive-cpu-set:
cpu: [4, 61
- worker-cpu-set:
cpu: [8, 10, 12, 14]
- verdict-cpu-set:
cpu: [4, 61

Listing 4.1: Threading part of suricata.yaml configuration file.

“https://www.liberouter.org/technologies/ddos-protector/

46

http://www.liberouter.org/technologies/ddos-protector/

Incoming data in Figure 4.2 are first passed to the receive CPU set. This thread group
handles data reception and decodes it to the format Suricata can understand. Packets
decoded from this group serve as an input for the next thread group. They are put in
packet pools to be processed by worker threads. Worker CPU set handles, for example,
reassembling TCP streams, defragmentation, detection or logging. Packets leaving the
worker thread can either be handed over to the verdict CPU set (in case of IPS) or freed
from Suricata memory (in case of IDS). Verdict threads receives packet and according to
the information in the packet structure it executes the desired action. These verdict threads
can either drop packet or transmit it via a configured NIC.

Management CPU set takes mainly care of flow tables that are also used in the detection
process. These threads access memory of all threads and thus are not directly incorporated
in the processing pipeline.

Some capture interface like AF__PACKET simplifies the module architecture by using a
callback function. This function is called by Suricata when a packet is being released from
internal packet pools. The capture interface can implement not only release of the packet’s
data from the interface but also a transmit functionality to support IPS mode. Using this
method, Verdict module can be removed from the pipeline shown in Figure 4.2.

The DPDK capture interface is designed to follow the presented architecture. It

focuses on workers runmode, which is more described in Section 2.3. It essentially means
that all modules are bundled together in one thread. This implies that one module is
directly connected to the next module without switching between threads. Suricata then
consists of many worker threads that avoid inter-thread communication.
Before individual modules are created, DPDK application needs to have environment
abstraction layer initialized. In DPDK framework, this is handled by a main lcore.
Sequence diagram in Figure 4.3 shows the process of DPDK initialization. It is expected
that this lcore is separated from Suricata completely or that it is assigned to the
management thread set. As Suricata starts, the main lcore initializes EAL. Packet
processing/Worker threads are created later in the process of Suricata initialization.
During spawning of these threads, separate NICs are configured with the loaded interface
configuration. DPDK packet memory pools are created individually by each thread.
These are filled with packets received by the NIC. Load is distributed to separate packet
mempools by receive side scaling (RSS) of the NIC.

Decision tree diagram in Figure 4.4 presents how packets are received and forwarded
from the NIC to Suricata. It consists of 1 main loop that detects when Suricata is stopped.
Inside the main loop, pointers to individual packet Mbufs are from the NIC in an array.
The size of Mbuf array is variable and depends on the size of packet burst received by
the NIC. In the receive module, each packet in the Mbuf array is assigned to an internal
packet structure returned from Suricata’s packet queue. Certain parts of initialization of
this packet structure are shared among all capture interfaces. DPDK capture interface then
also sets a pointer to the individual Mbuf (stored in the DPDK memory pool) and a pointer
to a packet release function.

Packet release function must be implemented in the receive module. Proposed idea of
the function is illustrated by a diagram in Figure 4.5. In case of IPS mode, this function
handles the packet according to the action set by Suricata. If the packet is flagged by drop
action, packet is not forwarded further and is only released. In other cases, the packet is
transmitted on the configured interface.

Regardless of the selected mode (IDS/IPS), the packet release function then returns Mbuf
to the DPDK packet memory pool and also returns the packet structure to the Suricata

47

_ /

4 N\
SURICATA
RECEIVE CPU SET
RECEIVE| THREAD RECEIVE| THREAD
’ v MANAGEMENT CPU SET
RECEIVE MODULE RECEIVE MODULE
000
A Y
DECODE MODULE DECODE MODULE
= =
> >
P4 P4
> >
o) o)
m m
= =
z 00 z
= =
WORKER CPU SET = =
> >
(w) (w)
WORKER THREAD | @ @ @ | WORKER THREAD
VERDICT CPU SET
Y Y
VERDICTTHREAD | @ @ @ | VERDICT THREAD
§ » < J
r \

Figure 4.2: Suricata architecture through thread sets.

48

:MainLcore

init DPDK

init EAL

spawn DPDK threadsi

loop
[i<worker_cnt]

spawn

» :WorkerLcore [i]

configure
NIC
create

mempool

Figure 4.3: Initialization of DPDK capture
interface.

alt
[i==last_worker]

49

Initialize
variables

[mbufs_cnt =

GetMbufs(port_id, (Deinit thread
queue_id, mempool)

\V4

Yes

acketGetFromQueueOrAIIoc%

[InltPacket(p mempool[l])]

ProcessPacket(p)
v

| |
I

Figure 4.4: DPDK receive loop function.

internal packet queue. This allows DPDK to assign Mbufs to incoming packets, and it also
allows Suricata to be able to handle new packets acquired by the DPDK receive function.

(—> NC ——

not DROP Transmlt b WORKER THREAD

packet
structure

Packet DROP
IPS / ACTION

Suricata IDS L,
MODE rFree—‘Mbuf—> Freet Pkt
return mbuf .. return packet ..
L7 A
DPDK MEMPOOL SURICATA QUEUE

Figure 4.5: DPDK release function.

The diagram in Figure 4.6 presents connection of individual modules and components
from the bigger picture. A packet received by the NIC is assigned to individual queue.
Packets from this queue are fetched in burst and assigned to individual Mbufs stored in
a DPDK memory pool. Array of Mbufs are then passed to ReceiveLoop function. The
purpose of the function is to iterate over the array and for each received Mbuf request a
packet structure from Suricata queue. When the packet structure is obtained, its attributes
are initialized. It also stores a pointer to the Mbuf and thus also to packet data. After
all attributes are set, packet structure is left to be processed by Suricata. Meanwhile
ReceiveLoop function continues in the same process as described. Once Suricata executes
detection on the packet, it calls packet’s release function. If Suricata runs in an IPS mode
and packet’s determined action is not a drop action, the packet can be transmitted to the
configured interface. The release function always releases Mbuf that packet structure was
pointing to and the packet structure itself.

50

Packet Worker thread #0
NIC#1 ReceivelLoop —> Suric_ata > ReIeasePacket%(
EEEaN engine
& - IPS
> NIC#2 >
\||QUEUEn]\|\
Worker thread #n

\, , Suricata
ReceivelLoop —> engine +ReleasePacket9<

Figure 4.6: Packet lifecycle in Suricata.

51

Chapter 5

Implementation and benchmarks

Chapter 4 proposed a design how integration of DPDK capture interface could look like.
Knowledge gained in the previous chapter serves as building blocks for further development.
This chapter develops on the obtained insight in this topic and describes the process of
implementation of DPDK capture interface into Suricata. Many references to previous
sections prove the importance of presented information.

Section 5.1 describes a series of actions that had to be gradually implemented and
combined into a working capture interface. It starts with including files to Suricata build
system, then goes over to runmode registration and finally outline a process of implementing
the core of Suricata capture interface. It might even serve as guide to implement a new
packet capture interface.

Section 5.2 focuses primarily on benchmarking the newly implemented DPDK runnnig
mode. It presents a list of tests that measures performance of DPDK and AF_PACKET
and then compares the results. The individual measurements are always evaluated and
accompanied with a brief summary. The measurements mostly focus on performance, where
the main indicator is the rate of lost packets.

5.1 Implementation

5.1.1 Capture interface registration
Adding source files

Suricata code base is divided in different folders. Folders store files that share some common
characteristics. They either combine source files that use the same programming language
(e.g. python/, rust/) or serve one designated purpose (e.g. doc/, qa/). All Suricata C
source files are stored a single folder named src/. Further hierarchy is achieved by source
filenames prefixes (e.g. detect-* or stream-*). Even though structure of Suricata code
base is mostly flat, it causes no problems in navigation between source files.

Suricata capture interfaces are implemented in the C programming language. The
source files need to be therefore stored in src/ folder. To actually support a new capture
interface it is required to add two source files associated with their header files. The file
that will implement the actual capture process have a prefix source-. The other file with a
prefix runmode- introduces the runmode to Suricata. To support DPDK, it was necessary
to create 4 files:

52

o src/runmode-dpdk.{c,h},
o src/source-dpdk.{c,h}.

Suricata would not be able to see these files unless they are added to its build system.
Makefile is the primary build tool for Suricata. However, these Makefiles are generated
from templates. Files named like Makefile.am usually act as a template for future
Makefiles. These templates are generated by GNU Automake' tool. The Automake tool
generates Makefile.in files from the Makefile.am files. Afterwards from these files the
final Makefile files are generated with tool GNU Autoconf”.

Suricata uses GNU Autoconf to produce configure scripts for build, instal or package
procedures. A template for creating a configure file is named configure.ac and is located
in the root folder of Suricata code base. The file consists of code written in Bourne shell
and specific Autoconf macros that are evaluated during the creation of the configure
script. Configure script accepts various parameters to produce the required Makefile.
These parameters determine how Suricata is built and compiled. But except CFLAGS
(build parameters), configure script also accepts parameters of individual capture
interfaces. According to these parameters, individual runmodes can be included
in/excluded from Suricata binary. Additional features as extra debug information or
verbose stats can be also enabled with these parameters.

Code in Listing 5.1 adds a support for DPDK argument in the configure script. The
first argument in the macro AC_ARG_ENABLE creates a new feature (--enable-dpdk) in the
configure script, the second argument includes a hint to show when help is called. The
last argument assigns the default value to the variable. According to the assigned value
in the variable, the configure script can also check if all dependencies for the project are
present on the system. In case of DPDK it verifies that the DPDK library is available.
AC_ARG_ENABLE (dpdk,

AS_HELP_STRING([--enable-dpdk],

[Enable DPDK support [default=nol]l),,
[enable_dpdk=no])

Listing 5.1: Adding a DPDK parameter to the configure script.

As previously mentioned, Makefile.am act as a template to generate the final Makefile.
Therefore, to include the newly created DPDK source files to the compilation process,
it is required to add them to the list of Suricata sources in Makefile.am. Source files
in Makefile.am are sorted in ascending alphabetical order. This also has an effect that
individual modules are grouped together. The convention can be seen in Listing 5.2 where
new source files are included to already existing list of other source files.

suricata_SOURCES =
runmode-dpdk.c runmode-dpdk.h \

source-dpdk.c source-dpdk.h \
Listing 5.2: Adding DPDK source files to the Makefile.am.

The whole process of generating the files and running the configure script also
defines constants that serve as directives. They are set according to default values and

"https://www.gnu.org/software/automake/
https://www.gnu.org/software/autocons/

53

http://www.gnu.org/sof
https://www
http://gnu.org/sof

parameters passed to the configure script. If --enable-dpdk parameter is used during
the configuration process, HAVE_DPDK constant is set. These constants determine what
parts of source code are available compiled into the binary file. This method excludes the
code that is not used from the source files (e.g. disabled capture interface) but also leaves
an option to include it in the future. The example can be:

#ifdef HAVE_DPDK

// code that is executed when DPDK is enabled
#else

// code that is executed when DPDK is disabled
#endif /* HAVE_DPDK */

Registering the capture interface

Once the new source files are added to the built system, it is possible to move forward.
TmModule is a structure in Suricata that contains attributes required to be initialized in
order to register a new module. Suricata holds an array of these structures and according
to this array it is able to run individual modules/capture interfaces. The array has a fixed
size equal to the number of implemented modules. Each module initializes the TmModule
structure on the assigned index number, similarly as in Listing 5.3. For DPDK, the array
contains space for two structures. One structure is for the receive module and can be
accessed by TMM_RECEIVEDPDK (Listing 5.3) and the other structure is for the decode module
and can be accessed by TMM_DECODEDPDK.

void TmModuleReceiveDPDKRegister(void)

{
tmm_modules [TMM_RECEIVEDPDK] .name = "ReceiveDPDK";
tmm_modules [TMM_RECEIVEDPDK] .ThreadInit = ReceiveDPDKThreadInit;
tmm_modules [TMM_RECEIVEDPDK] .Func = NULL;
tmm_modules [TMM_RECEIVEDPDK] .PktAcqLoop = ReceiveDPDKLoop;
tmm_modules [TMM_RECEIVEDPDK] .PktAcqBreakLoop = NULL;
tmm_modules [TMM_RECEIVEDPDK] .ThreadExitPrintStats = ReceiveDPDKThreadExitStat;
tmm_modules [TMM_RECEIVEDPDK] .ThreadDeinit = ReceiveDPDKThreadDeinit;
tmm_modules [TMM_RECEIVEDPDK] .cap_flags = SC_CAP_NET_RAW;
tmm_modules [TMM_RECEIVEDPDK] .flags = TM_FLAG_RECEIVE_TM;

Listing 5.3: Initialization of TmModule structure for the DPDK receive module.

From Listing 5.3, it is possible to observe the module mainly consists of name and a
set of functions. The purpose of the module in Suricata is determined by the assigned flag
(TM_FLAG_RECEIVE_TM). Functions can be assigned to the structure’s attributes depending
on the purpose of the module. In case of a receive module, the main functions are:

e Thread Init — initializes thread during the startup,

e Packet Acquisition Loop — the main capture method that receives packets and
forwards them to Suricata,

e Thread Exit Print Stats — as Suricata stops, function is responsible to dump the
counters for the last time,

¢ Thread Deinit — frees memory of allocated objects or frees resources in general.

54

Some functions of the list could have been already spotted in Section 4.3. In the design
phase I had in mind the architecture of the Suricata modules. These functions are described
in more elaborate way in the following sections.

However, the TmModule structure would be never initialized if a function call of
TmModuleReceiveDPDKRegister would not be initiated from the Suricata core. It is
therefore required to also append the function call at the end of setup functions in
src/suricata.c.

Runmode implementation

Runmodes as described in Section 2.3 offer a variety of options how individual modules are
connected and how they inter-operate. As discussed in Section 4.3, this thesis is focused
on workers runmode. But functionality of runmode single can also be acheived by only
enabling one worker thread. Source files with prefix runmode- can therefore suggest that
they contain source code related to registering and enabling the runmode. Each capture
interface must have this part implemented as initial configuration is often different from
interface to interface. In runmode-* source files capture interfaces are able to tell Suricata
which runmodes are supported. They also load configuration for individual runmodes.
In Listing 5.4 DPDK runmode registers workers running mode. The third argument is
a helper text and the last argument is a function RunModeIdsDpdkWorkers that is called
when DPDK workers runmode is selected.

RunModeRegisterNewRunMode (RUNMODE_DPDK, "workers",
"Workers DPDK mode, each thread does all"
" tasks from acquisition to logging",
RunModeIdsDpdkWorkers) ;

Listing 5.4: DPDK runmode registration.

The name of the function RunModeIdsDpdkWorkers follows naming conventions of
Suricata. IDS in the middle of the name might suggest it is only suitable for detection
only. It is not true thanks to the architecture presented in Section 4.3. Workers runmode
is fully functional also in IPS mode. Packets are transmitted during release of their
resources of Suricata. It will be described in more detail in the following sections.

The main purpose of the function is to load the DPDK configuration and initialize
environment for the DPDK application. Once ready, it spawns all worker threads with
configurations of separate network interfaces. Following Section 5.1.2 describes how
configuration is loaded and DPDK initialized.

5.1.2 Configuration and DPDK initialization

All runmodes need to be setup in a certain way. Configuration allows us to adjust
behavior of these runmodes. The settings are usually stored in the main configuration file
— suricata.yaml. Suricata has already functions that are able to retrieve values of this
configuration file. Suricata capture interfaces implement functions for parsing
configuration of individual interfaces from a list of interfaces.

But before the list of interfaces is loaded, it is required to first initialize DPDK
environment abstraction layer (EAL). To support DPDK parameters in Suricata, I added
a new section to the suricata.yaml file called dpdk:. This section should contain
settings that are globally applied to the DPDK application. EAL parameters are stored in
a subsection eal-params:. The subsection can consist of arbitrary EAL parameters that

55

can change the way EAL is configured. Code inside RunModeIdsDpdkWorkers function
loads subsection dpdk.eal-params: and crafts an array of arguments. Both short and
long versions of argument names are supported. The array is required for the main DPDK
initialization function — rte_eal_init. The function usually accepts command line
arguments that are passed to the main function of application. The crafted array
simulates the usual contents of these arguments. Important arguments to mention can be:

e -1/--lcores — specifies what cores will be available to the DPDK application,

e -a — specifies what NIC will be available according to Peripheral Component
Interconnect Express® (PCle) address. It can be used multiple times.

After EAL is initialized, Suricata continues to load configuration of interfaces. In
section dpdk-ifaces: (Listing 5.5) of suricata.yaml file it is possible to specify settings
of individual interfaces. For convenience, it is also possible to leave some values of settings
to auto. For example, in case of threads: setting, value auto assigns all available DPDK
lcores to the interface. Name of each interface must be specified with PCle address of a
NIC that is allowed to be used within DPDK. Settings from Listing 5.5 are loaded to
internal DPDK structure of interface configuration (DPDKIfaceConfig). This
configuration is passed to DPDK threads on spawn. From Listing 5.5 it is possible to
observe that implementation support various kinds of settings, from the basic settings as
enabling promiscuous mode (promisc:) to more advanced as enabling offload
(checksum-checks-offload:). It also allows complete control over the size of DPDK
memory pool and the number of transmit or receive descriptors.

dpdk-ifaces:

- interface: 0000:3b:00.0
threads: auto
rx-queues: auto
tx-queues: auto
promisc: true
multicast: true
checksum-checks: true # if Suricata should validate checksums
checksum-checks-offload: true # if possible, offload checksum validation
mtu: 3000
mempool-size: 65535
mempool-cache-size: 250
rx-descriptors: 1024
tx-descriptors: 1024
IPS mode for Suricata works in 3 modes - none, tap, ips
- none: disables IPS functionality (does not further forward packets)
- tap: forwards all packets and generates alerts (omits DROP action)
- ips: the same as tap mode but it also drops packets that are flagged by
rules to be dropped
copy-mode: ips
copy-iface: 0000:3b:00.1

Listing 5.5: The default configuration of DPDK interfaces section.

3https://www.intel.com/content /www/us/en/io/pci-express/pci-express-architecture-
general.html

56

https://www
http://intel.com/

5.1.3 Worker threads de/initialization
Thread initialization

Once configuration is loaded into DPDKIfaceConfig structure, Suricata then continues to
spawn worker threads. The number of threads for each interface is determined by the
threads: option in configuration of the interface. Suricata uses pthread library for
multithreading. However, because of DPDK’s special nature, it is required to use a
different approach to spawn a thread. In DPDK, it is possible to use function
rte_eal_remote_launch. During creation of new threads Suricata also creates 2
per-thread variables. Initialization of (ThreadVars) structure is shared among all capture
interfaces and runmodes. Structure DPDKThreadVars groups all attributes that are
capture mode specific (e.g. a pointer to DPDK packet mempool). Structure
DPDKIfaceConfig is referenced from the thread that spawned worker threads. In general,
Suricata avoids sharing variables among multiple threads. This is the common and correct
approach to multi-threaded programming as multi-thread synchronization brings a huge
performance penalty. Figure 5.1 visualizes the creation of thread variables (outlined
rounded rectangles) and referencing the interface configuration (dashed shapes). Worker
threads keep reference to DPDKIfaceConfig only during the initialization phase.

WORKER THREAD #1
DPDKIfaceConfig ;, DPDKThreadVars
MANAGEMENT
THREAD [
[]
[DPDKlfaceConfig] ®
WORKER THREAD #N

ThreadVars | DPDKIfaceConfig, | DPDKThreadVars

Figure 5.1: Thread initialization in Suricata.

DPDKIfaceConfig contains an atomic counter which is incremented by each spawned
thread. Thanks to the counter, threads are synchronized. They are effectively waiting
for the last thread to reset the counter and join them. Meanwhile, the last thread is
responsible for NIC configuration according to values of DPDKIfaceConfig structure. It
starts with configuration of basic settings such as multicast or promiscuous mode.

It attempts to enable some offloads like checksum validation or RSS. Receive side
scaling is automatically enabled if more than 1 worker thread is used. It uses symmetric
hash key described in 3.1 to forward packets of the same to the same receive queues.
When Suricata runs in IPS mode, it is also beneficial to enable
DEV_TX_OFFLOAD _MBUF_FAST FREE and DEV_TX_OFFLOAD_MT_LOCKFREE offloads to speed
up transmission rates.

As the last thread joins the waiting threads, each thread creates an individual DPDK
mempool according to settings stored in DPDKIfaceConfig structure. Reference to this

57

mempool is stored in DPDKThreadVars structure. Each thread also sets up its receive and
transmit queues of the selected port.

Before the start of the NIC, each thread is added to a list of peers. A peer in the list
is a worker thread. The list contains every running worker thread and comes to its full
potential when Suricata runs in IPS mode. Each worker must have a peer to send packets
to. The copy-* options in Listing 5.5 defines behavior of IPS. PCle address in copy-iface:
specifies a NIC where received packets will be forwarded after Suricata detection. Possible
modes of IPS (copy-mode:) are also described in Listing 5.5. If a free peer with a given NIC
is not found in the list, the worker is only appended to the end of the list (and paired later).
After the list is completed, links between peers are verified. If a worker is left without any
peers to bind, Suricata fails to start. This technique is used to bind all receive queues of
one NIC together with all transmit queues of the NIC. Figure 5.2 illustrates the result of a
successful peering. The whole process can look as follows.

Workers of NIC#1 are spawned first, and they are appended to the peers list. Since
thread scheduling algorithms are not deterministic, workers are appended to the list in
random order. Workers of NIC#1 then create receive and transmit queues and assign
them to their DPDKThreadVars structure. The process repeat for worker threads of NIC#2.
However, in this case workers are not only appended to the list but also try to look for a
free worker (of NIC#1) willing to peer. After peering, workers have access to each others
transmit queues. Peers list operates with workers to ensure only valid transmit queues
are used. In Figure 5.2 the same colored workers are peered and pointers to queues are
stored in their DPDKThreadVars structure. Dotted arrows are potential paths of packets
after peering if Suricata runs in IPS mode.

To provide a more specific example, it is possible to assume there are 4 receive/transmit
queues per interface. Packet received by NIC+#1 is put into RX queue number 1. Worker#1
reads the queue and processes all packets through its pipeline of modules. After that,
Worker#1 is ready to release the packet. If the packet is not evaluated to be dropped,
Worker#1 adds the packet to transmit queue number 1 of NIC#2.

| | | = | | | Worker.thread #1........... }
DPDKThreadVars :
||| TX Queue #1 [| 14
[]
NIC#1 : :
|| |[RX Queue #N | ||
DPDKThreadVars
|[]Tx Queue #N | || [« :
‘oo Worker thread #N+1.. .| F[[] X Queue #1 [[]
DPDKThreadVars : \ | | | RX Queue #1 | | |
[]
. : NIC#2
||| Tx Queue #N |||
DPDKThreadVars
| |RX Queue #N | ||

Figure 5.2: Peers list in Suricata.

58

As previously mentioned, worker threads try to minimize the inter-thread
communication. Up to this point, it might seem they heavily rely on communication via
mutexes and synchronization controls. However, this is not true after initialization phase.
After all worker threads are added to the peers list, the NIC is started and threads enter
to a continuous capture (receive) loop.

Thread deinitialization

After Suricata stops, worker threads go to deinit phase. This allows threads to release all
allocated resources. DPDK requires no special deinitialization actions. It first frees DPDK
packet memory pool created in the initialization phase and then frees DPDKThreadVars
structure.

5.1.4 Receive loop

Receive loop is the core function of the whole capture interface. It is repeatedly executed
until interrupted by, for example Suricata exit signal. It must be performance oriented, as
inability to capture all packets can lead to missed security events. With this in mind, I was
able to design and implement the function. The design could have been seen already in
Figure 4.4.

Actual implementation is not far from the proposed design. It only made it more
specific. Implementation of this part also makes use of some functions from DPDK library.
As shown in Figure 4.4, the functions start with initialization of variables. FExecution
then enters the main loop. Then receive module fetches a list of received Mbufs to thread’s
DPDKThreadVars structure. This operation is accomplished by rte_eth_rx_burst function.
A place to retrieve packets from is determined by given port id and queue id. Combination
of these two identification numbers is unique for every worker thread. Execution continues
if some packets are received, otherwise it jumps to the beginning of the main loop.

Receive module loops over each received Mbuf structure from the array. The module
needs to obtain a packet structure (Packet) from the internal Suricata queue, since the
modules following the receive module use generic packet structure. The same function as in
Figure 4.4 is used to receive the packet structure. PacketGetFromQueueOrAlloc attempts
to retrieve a free packet from the queue and if it fails, it will allocate a new one.

The packet structure is then initialized with various information, among others:

o packet release function,

o Suricata mode (IPS/IDS),

o internal checksum validation,

o pointer to the Mbuf structure in memory,
e worker peer,

e packet data.

Packet data are set directly from the Mbuf structure. Since Mbuf is a large structure, it
might not always be easy to know where the actual packet data are and how long they are.
DPDK has macros like rte_pktmbuf_mtod or rte_pktmbuf_pkt_len to solve the problem.
Macro rte_pktmbuf_mtod returns actual packet data section of the passed Mbuf structure.
Macro rte_pktmbuf _pkt_len returns length of the packet data section.

59

Afterwards, packet is only sent for Suricata processing and execution continues in either
next Mbuf structure processing or statistics update followed by a jump to the start of the
main loop.

5.1.5 Packet transmission and release

After Suricata finishes processing the packet, it is no longer needed. It can be therefore
released from the system. In general, Suricata has 2 approaches — either via a Verdict
module or via a packet release function. As discussed in Section 4.3, DPDK is designed to
not use Verdict modules. Instead, a release function is assigned to each packet. Function’s
only required parameter is the packet structure. Since the packet structure comes out
of the Suricata engine, it contains results of the detection. Implementation of the DPDK
release function very closely corresponds with a function design proposed in Figure 4.5. The
details are also described in Section 4.3. Function rte_eth_tx_burst is used if a packet is
supposed to be transmitted. The function takes the same arguments as rte_eth_rx_burst
— port and queue identification number and an array of Mbuf structures. However, in this
case, port and queue ID is fetched from the peer. Also, array only contains one element —
the Mbuf structure.

The packet structure can be released as soon as the packet is sent. If Suricata does not
run in IPS mode, the packet is released immediately. But before packet structure can be
released, it is required to free the Mbuf structure. DPDK function rte_pktmbuf_free takes
Mbuf pointer and frees space for incoming packets. If Mbuf structure is not freed, DPDK
would not be able to capture more packets because of depleted Mbuf pointers. After Mbuf is
freed, it is possible to call function PacketFreeOrRelease with the packet structure as the
only argument. The function frees the packet structure in case it is only allocated. If the
packet structure was obtained from the Suricata queue, it is released. The packet structure
can then hold information about a newly incoming packet.

5.1.6 Statistics

It is important to have an overview of how the deployed Suricata instance performs.
Monitoring count of received/dropped packets can provide basic insights of Suricata’s
health. For example, increase in dropped packets can indicate some problem that should
be more investigated. Statistics in Suricata are collected at all times. They are accessible
in real time from various places. For instance, they can be accessed in output files like
eve.log/stats.log or over Unix socket.

In DPDK, statistics are updated continuously in a function DPDKDumpCounters. The
function fetches statistics of the configured NIC and then updates individual thread
counters. Statistics are fetched on queue-basis. By default, DPDK has statistic
information for only 16 queues. This can be configured by adjusting
RTE_ETHDEV_QUEUE_STAT_CNTRS during build of the DPDK framework. If number of
queues is higher than RTE_ETHDEV_QUEUE_STAT_CNTRS, Suricata warns the user during
startup but continues in execution.

Suricata has special receive module function to gather statistics and print them out at
the end. DPDK receive module required no special handling in this case. Therefore, in
ReceiveDPDKThreadExitStats it only calls DPDKDumpCounters and prints out the
statistics.

60

5.2 Benchmarks

As the name of this section suggests, the section presents achieved results of DPDK runmode
implementation to Suricata. It also compares the results with AF_PACKET — the most
commonly used implementation of the receive module. When measuring performance of
systems, it is crucial to have a stable environment. The testbed used for benchmarks
is presented in Section 3.1. There have been problems like incomplete data transfers or
tedious measurement process (Section 3.3). These problems have been resolved prior/during
performance tuning of AF__PACKET running mode.

The test cases were executed under the same conditions as in the case of AF PACKET.
That included over 20000 rules from ET Open ruleset as presented in Subsection 2.2.2 and
the same PCAP file as analyzed in Subsection 3.3.3. Flexible architecture of the testbed
allowed to switch between individual running modes effortlessly.

Graph consists of two axis, horizontal axis displays transmission speed in megabits per
second and vertical axis shows buffer overflow in percentages. As in previous measurements,
the main performance indicator is buffer overflow (BO) — the count of received packets
divided by the count of transmitted packets. Section 3.2.7 describes the exact process of
BO calculation.

Tests are executed mainly in two variants — with disabled or enabled rules. Testing
performance without rules has proven to be a very efficient strategy. It provides a capability
to see how much rules affect the performance of Suricata. It can also show the top possible
performance of Suricata. On the other hand, Suricata would not be helpful if it would detect
nothing. For that reason, it is beneficial to see the actual, close to real-life performance of
Suricata.

Benchmarks start with 1 worker thread as the simplest testing scenario. To provide
more insight how Suricata scales, later tests are using more worker threads. The second
benchmark uses 8 worker threads and the third uses 16 workers. Between individual
benchmark runs no settings are changed, except thread section of the configuration file.

5.2.1 Benchmark with 1 worker thread

Testing Suricata performance with 1 core can provide early insights to benefits and problems
of the new capture interface. Developing a single threaded programs is easier and helps to
exclude problems like thread synchronization or concurrency control. It therefore simplifies
debugging certain bugs. On the other hand, some bugs may only appear in concurrent
environments.

The very first milestone in the implementation was to measure results of Suricata
packet capture. This means that rules were not applied. As discussed in Subsection 3.4.2
that Suricata only receives and discards packets. Suricata actually does full packet
decoding and creates/modifies records in flow tables. Only the detection part is skipped.
This further eliminates possible problem-causing parts. The test is heavily focused on
receive performance of the individual capture interfaces.

Figure 5.3 presents results of the measurements. It is possible to see DPDK capture
interface (orange line) over-performs AF_PACKET (blue line). Amount of received
packets by DPDK (8 Gbps) doubles the amount of received packets by AF_PACKET (<4

61

Gbps) under 5% buffer overflow threshold. This proves the implementation of DPDK
brings benefits of faster and more reliable capture method.

Graph in Figure 5.4 presents results of a Suricata benchmark that also applied rules.
Full capture to detection pipeline is, again, placed in 1 thread. Compared to 5.3, it is
possible to see a decrease in overall Suricata throughput to about 600-750 Mbps. This
proves how the detection part with large amount of rules is performance heavy. However,
DPDK implementation proves to be more efficient even in this test. It continuously increases
Suricata throughput by additional 100 Mbps compared to AF_ PACKET implementation.
Zero loss packet detection of DPDK goes up to 700 Mbps.

Claret AF-PACKET, logs, no rules, 4 replications, 1 NIC queue

25 Claret DPDK, logs, no rules, 4 replications, 1 NIC queue

20

. /

Dropped packets (%)
—~——

2000 4000 6000 8000 10000 12000
Transmit speed [Mbps]

Figure 5.3: 1 queue and disabled rules.

62

Claret AF-PACKET, logs, rules, 4 replications, 1 NIC queue
30 Claret DPDK, logs, rules, 4 replications, 1 NIC queue
25
=
220
[0}
<
1%
©
[=3
B1s5
Q.
3]
a
10
5
0 —
500 600 700 800 900 1000

Transmit speed [Mbps]

Figure 5.4: 1 queue and enabled rules.

5.2.2 Benchmark with 8 worker threads

The next set of measurements are set to 8 workers. All threads are assigned to physical
cores on the same NUMA node as the NIC. Graphs resulting from these measurements are
in Figures 5.5 and 5.6.

In a benchmark without any rules applied (Figure 5.5), AF_PACKET drop rate
steeply increases after input rate surpassesmusi 20 Gbps. On the other hand, DPDK
performance have packet drop very close to zero until 28 Gbps. From that moment, buffer
overflow steadily increases to 2%. Compared to Figure 5.4, DPDK runmode does not
scale proportionately to the number of threads/cores. However, in this case we can see a
large bump in the overall performance — from zero-loss throughput of 7 Gbps with 1
worker thread to 28 Gbps with 8 workers. In case of AF__PACKET capture interface, the
throughput scales in proportion to the number threads. From Figure 5.3 it is possible to
see that 1 worker is able to receive traffic at rate of around 2 Gbps without any packet
loss whereas in Figure 5.5 8 workers can receive traffic up to 16 Gbps.

Results of measurements of 8 workers with enabled rules can be seen in Figure 5.6. It
shares the same behavior as portrayed in Figure 5.4 in a sense of seriously decreased
performance compared to no-rule versions. However, it can be expected due to huge
amount of rules. Figure 5.6 that performance of both capture interfaces is rather similar.
Differences are more prevalent at higher transfer rates (6+ Gbps) where DPDK is
superior to AF__PACKET. However, at this speed, drop rate of packets reaches 10+
percents in both runmodes. In practical terms, this means that Suricata can fail to detect
important security events. When Figures 5.4 and 5.6 are compared, the increase in count
of threads goes hand in hand with a proportional increase of Suricata throughput. On
average, each added thread increases throughput of about 550 Mbps.

63

Transmit speed [Mbps]

Figure 5.6: 8 queues and enabled rules.

64

. . —
Claret AF-PACKET, logs, no rules, 4 replications, 8 NIC queues
25
Claret DPDK, logs, no rules, 4 replications, 8 NIC queue
20
2
2
215
1%
o
Q
el
[0}
Q
s
5 10
5
5000 10000 15000 20000 25000 30000 40000
Transmit speed [Mbps]
Figure 5.5: 8 queues and disabled rules.
Claret AF-PACKET, logs, rules, 4 replications, 8 NIC queues
35
Claret DPDK, logs, rules, 4 replications, 8 NIC queues
30
:\; 25
2
L
220
o
el
[}
=
o'15
a
10
5
0 B
3000 4000 5000 6000 7000 8000

5.2.3 Benchmark with 16 worker threads

The last set of tests were executed on 16 worker threads. Workers were spread over 8
physical and 8 hyperthreaded cores. Because of the limited number of physical cores,
Hyperthreading was enabled. Having more cores (even hyperthreaded) brings more benefits.
While worker on one physical core waits for the packet or some other operation, the worker
on the same but hyperthreaded core can continue in the inspection. Hyperthreading is
explained in Subsection 3.4.1. The number of DPDK receive descriptors must have been
increased to 32768 because of performance drops.

Figure 5.7 shows, again, an increase in received packets. The more threads equal to
better performance. But performance gain is not as noticeable as in the previous case.
The bigger difference between performance of 1 and 8 workers is attributed to the higher
utilization of physical cores. In contrast, performance gained by increasing 8 to 16 workers
is less remarkable because the added cores are hyperthreaded. However, this step costs no
more in terms of CPU occupancy as 16 worker variant uses 8 logical cores that are paired
with 8 physical cores.

In DPDK, 16 queues allow better data reception and thus handle speed of 40 Gbps with
practically zero packet loss. Further inspection was not needed as the goal is to mostly focus
on rule-based version. Improvement in the performance can be also seen in AF_ PACKET
implementation — from 16 Gbps to around 22 Gbps.

The results of the most performant version of Suricata with rules are featured in

Figure 5.8. DPDK implementation outperforms AF_PACKET by additional 500 Mbps in
zero/close to zero loss transmission speeds. The difference is even more apparent at higher
transfer rates. However, the drop of packets is again 10+%.
Figure 5.9 presents a graph with a different metric. X axis is the same as in previous
graphs but Y axis represents average number of generated alerts per second. Even though
presented tests are executed for the same amount of time, dividing count of alerts by
transmit duration (doing average) can be beneficial in tests of different duration. From
the graph, it is possible to observe almost the same behavior of AF_PACKET and
DPDK. It is especially striking between 4 Gbps and 6 Gbps. Graph in Figure 5.8 proves
that within this range, both capture interfaces are able to receive almost all packets. With
the given hardware and configuration, after 6 Gbps Suricata can not process packets fast
enough and dropped packets start to increase. Within transmit rate from 6 to 8 Gbps,
Suricata drops up to 20% of packets (in AF_PACKET running mode). Interestingly
enough, within this range in Figure 5.9, graph’s line shows the steepest increase in
generated alerts. This might be caused by coincidence and transmission speeds of over 6
Gbps are able to reach PCAP section which triggers the most rules with alert actions.
Figure 5.9 also shows that AF__ PACKET runmode generates more alerts in range from 6
to 7.5 Gbps. Results of this metric varied over several tests. In general, all measurements
followed the pattern. However, results of individual runmodes fluctuated in a certain
range. Therefore, the rate of generated alerts is rather similar in both cases.

This 16 worker setup was analyzed with different performance tools. These tools, as
explained in Subsection 3.4.1, can provide deeper insight into performance analysis of
Suricata. It is possible to compare outputs of individual implementations to get more
detailed information about Suricata performance. Listings 5.6 and 5.7 show output of top
20 processes extracted from the output of perf top command. In both cases, the load is
spread among functions with similar responsibilities. Also, detect module takes up the
most resources. From the output, it is also possible to notice that it is important to focus

65

Dropped packets (%)

Claret AF-PACKET, no logs, no rules, 4 replications, 16 NIC queues HT NUMAO /

Claret DPDK, no logs, no rules 4 replications, 16 NIC queues HT NUMAQ /

Dropped packets (%)
I w o
T~
TT—
T~—

w
~—

]
1 /
/
0 /
10000 15000 20000 25000 30000 35000 40000
Transmit speed [Mbps]
Figure 5.7: 16 queues and disabled rules.
A1
Claret AF-PACKET, logs, rules, 4 replications, 16 NIC queues HT NUMAO e
Claret DPDK, logs, rules, 4 replications, 16 NIC queues HT NUMAQ /
40
_—
30
20
10
J/
4000 5000 6000 7000 8000 9000 10000 11000 12000

Transmit speed [Mbps]

Figure 5.8: 16 queues and enabled rules.

66

10000
8000 /{//,// —
6000

4000

Average number of alerts per second

Claret AF-PACKET, logs, rules, 4 replications, 16 NIC queues HT NUMAO
2000
Claret DPDK, logs, rules, 4 replications, 16 NIC queues HT NUMAO

4000 5000 6000 7000 8000 9000 10000 11000 12000
Transmit speed [Mbps]

Figure 5.9: Generated alerts from 16 queues and enabled rules.

analysis not only around the application itself (e.g. suricata) but also include a load of
other related components (e.g. libhs.so0.5.3.0, [kernel]).

AF_PACKET functions in Listing 5.6 are usually under processes like suricata or
[kernel]. In case of DPDK, processes like suricata with librte_ pmd_mlx5.0.20.0.3 are
used. The latter process is part of DPDK PMD driver and is used to repeatedly fetch
packets from the NIC. It is interesting to observe that sum of capture interface’s functions
usage is in case DPDK (5.65%) higher than in AF_PACKET (4.57%). The listings may
provide incomplete information (only top 20 processes) but further processes are only
more lightweight than the presented ones. It is surprising since DPDK in overall performs
better than AF PACKET.

The two runmodes were also under analysis of pcm tool. The results were again quite
similar. In certain aspects — like L3HIT was AF_PACKET (0.76%) better than DPDK
(0.67%). However, in terms of instruction per cycle metrics, DPDK with 3.08 IPC per
physical core was better compared to AF__PACKET with 2.98 IPC per physical core. Both
running modes had UPI (QPI) equal or less than 1 percent.

67

O O O OO O0OO0OO0OO0OO0OOKFHr P, P, L, KFE,NOO

N
()]

O O O O O OO OO OOOO KK, NN O

.07%
.02%
.08Y%
.84Y,
.97%
.48
.23Y%
.14Y%
.03Y%
.73Y%
.68Y%
.65Y%
.63Y%
.61%
.59%
.41Y%
.40%
.39Y%
.38Y%
.38Y%

Listing 5.6: Top 20 processes of perf top when Suricata runs with AF_PACKET.

.82%
.58%
.22Y%
.55%
.37%
.98Y%
.21Y%
.97%
.65Y%
.62%
.49Y
L47Y%
L47Y%
.46
.46
.43,
.42Y%
.42Y%
.41Y%
.40%

suricata
suricata
suricata
suricata
suricata
libhs.s0.5.3.0
suricata
[kernel]
[kernel]
[kernel]
libhs.s0.5.3.0
[kernel]
[kernel]

libpthread-2.28.

suricata
suricata
libhs.s0.5.3.0
[kernel]
libhs.s0.5.3.0
suricata

suricata
suricata
suricata
suricata
suricata
suricata
libhs.s0.5.3.0
suricata
suricata

librte_pmd_mlx5.
librte_pmd_mlx5.

suricata

libpthread-2.28.
librte_pmd_mlx5.
librte_pmd_mlx5.

libhs.s0.5.3.0

librte_pmd_mlx5.
librte_pmd_mlx5.
librte_pmd_mlx5.

suricata

Listing 5.7: Top 20 processes of

SO

so.
.20.

SO

SO

SO.
SO.

SO.
SO.
SO.

L S B e T s IO e I s B s B e |

W

S T S Y Y T Y Y |

—
N
—

(k]

—
—

(k]
(k]
[.]

L T e B st B e B e B |

20.

20.
20.

20.
20.
20.

—

o
w

o
w

o
w

o
w

DetectRun.part.16
DetectEnginelInspectRulePacketMatches
DetectEnginePktInspectionRun
DetectProtoContainsProto
FlowGetFlowFromHash
0x0000000000612fa6
DetectEngineEventMatch
tpacket_rcv

memcpy_erms

build_skb

0x0000000000612641
tasklet_action_common.isra.14
fib_table_lookup
__pthread_mutex_lock
DetectFlowMatch
SCHSMatchEvent
0x0000000000579866
__netif_receive_skb_core
0x0000000000579933
AFPReadFromRingV3

DetectRun.part.16

DetectEnginePktInspectionRun
DetectProtoContainsProto
ReceiveDPDKLoop
FlowGetFlowFromHash
0x0000000000612fa6
DetectEngineEventMatch
rte_pktmbuf_free
0x00000000001bc6ac
0x00000000001bc6ee
DetectFlowMatch
__pthread_mutex_lock
0x00000000001bc2c9
0x00000000001bc72e
0x0000000000612641
0x00000000001bcObb
0x00000000001bc404
0x00000000001bc2a6
DecodeEthernet

L IO e T e Y e N e IO s Y s N s Y s T e Y e Y T s N e Y s Y s N s I s B e B e |
Iy T S T T Y N S S A S Y N N N S W |

o}

68

DetectEngineInspectRulePacketMatches

erf top when Suricata runs with DPDK.

5.2.4 Overall results evaulation

Several wvariants of benchmarks were executed to test Suricata performance.
AF_PACKET and DPDK were the main tested capture interfaces. DPDK was able to
consistently outperform AF_PACKET implementation by leaving more resources to other
modules. Performance improvements were big in measurements without rules.
A bottleneck appeared after applying huge amount of rules. This diminished DPDK’s
performance improvements. It led me to a conclusion that AF_PACKET is able to
capture most of the packets and has a similar performance to DPDK because both
capture interfaces are blocked by the detection module. As DPDK was more lightweight,
it slightly helped to improve the performance.

Looking at 1 and 8 worker measurements with rules, it is possible to see that Suricata
scales appropriately to the number of enabled cores. Each worker was on a separate physical
core. Similar scaling does not apply to measurements of 8 and 16 workers. It is caused by
using Hyperthreading for 16 workers. By creating 2 logical cores from 1 physical core it
allows better utilization of CPU cores. It does not reach performance gains of 2 physical
cores but it is better than 1 physical core only. It allowed to employ additional NIC queues
into Suricata. In overall, Suricata scales well on physical cores. However, the same number
of Hyperthreaded physical cores allows even higher CPU utilization than the physical cores
only approach. This possibly suggest that implementing autofp may be also beneficial as
DPDK is able to receive great amount of traffic just on a few cores. Therefore, some threads
could be focused on packet reception and some work solely on packet inspection.

69

Chapter 6

Conclusion and future work

Goal of this master thesis was to come up with a possible optimization for Suricata
IDS/IPS system. The goal could be divided in two parts. Prior to any optimization
proposals, I needed a baseline. Therefore, optimizing AF_PACKET running mode was
the first part. The second was to propose a Suricata optimization. According to my
performance analysis and previous efforts of CESNET, I have chosen to implement DPDK
capture interface.

Before I could even start with the master thesis, I had to get comfortable with many
different things like Suricata, a network stack of Unix systems or performance and
network analysis tools. Similarly, building a proper and functional testing environment
was not less important. This included not only interconnecting individual computers but
also, for example, implementing correct build and install scripts. The journey was
accompanied by many challenges to solve. Out of those, I could mention incomplete data
transfers due to a variety of reasons or Suricata compilation problems on old Linux kernel.
As a result, I was able to gain huge amount knowledge in a short time.

After the testbed was setup and I had a basic overview of Suricata I could proceed to the
initial phase of the thesis — performance experiments of Suricata AF_PACKET running
mode. I realized very soon that repeatedly obtaining performance data is monotonous
and very time-consuming process. This resulted in a need of a new testing framework.
Because of very specific requirements of testbed’s environment, it was not possible to use
some generic test framework. I had designed and implemented modular testing framework.
I chose Bash scripting language for the implementation. Output of the testing framework
are CSV files. Handling raw data and interpreting them in spreadsheet application was
again tedious process. For this reason, Python3 graph making script was designed and
implemented in parallel to the development of the testing framework. As running individual
tests in the test framework can still be a time-consuming process, I also added a scheduler
to the testing framework. It allows to schedule long operations in an execution queue.

Previously mentioned things, although time-consuming at first, provided essential
information through benchmarks and tests of Suricata. It then helped to steer the
configuration and optimization process in the right direction. During the process, I was
able to deeply dive into Suricata internals and configuration of Linux network stack. That
included configuration of the NIC driver, BIOS and also adjustment in kernel settings. All
these steps were required to explore possible options to acheive the top performance of
Suricata. When I reached high throughput and good performance results for the given

70

hardware and could not move further, I stopped. With limited time, possible optimization
techniques can be a very broad area to explore (and it is a very long process).

By finishing the optimization process, I have reached the first milestone of the thesis —
achieve baseline results of AF__ PACKET running mode. After that, I performed an analysis
of the accomplished Suricata configuration. I have found out, capture interface can take as
much as 20% of processing power. DPDK framework seemed like an adequate candidate
for capture interface as in many regards it is considered to be one of the very efficient
capture interfaces. Also previously failed efforts of DPDK integration to Suricata increased
the motivation for this attempt. I proceeded to explore a source code of Suricata. That
included not only capture interface source codes but also parts remotely connected with
it. It was a lengthy process, but it helped to form a big picture of Suricata architecture.
Lack of comprehensive developer documentation requires studying internal implementation
of Suricata from the source code. But before any design proposals, I had to have good
understanding of DPDK framework. For that reason, I continued to study architecture of
DPDK applications and also tried to apply the knowledge to some application prototypes.

With knowledge of both Suricata and DPDK, 1 was able to progress to the
implementation design. I followed common architectural practices applied in Suricata to
be consistent with other capture interfaces. AF_PACKET architecture was chosen as the
main capture interface to follow. After consulting the proposed design, I started
implementation. The actual implementation sticks to the suggested design. I have
developed the capture interface with my best intentions to be performance oriented and
user friendly as well. It provides a wide variety of options in the configuration file. As can
be observed from benchmarks, it consistently outperforms AF_PACKET capture
interface. However, AF_PACKET still has a place in Suricata as DPDK is supported
usually by modern NICs. Results of measurements also show that while DPDK helped to
increase the overall performance of Suricata, the capture interface is not the main
bottleneck. Detection module with large amount of rules is the heaviest part in Suricata
pipeline. In general, the results of the implementation are exciting and future of DPDK
capture interface is looking very promising.

Even though DPDK implementation outperformed AF_PACKET, I can still see a room
for improvement. The performance can be further enhanced by implementing bypass
functionality. This would skip the detection for certain flows of traffic. If implemented
properly, the NIC itself can already decide the fate of packet flow. It can work similarly to
XDP bypass. For this use-case rte_flow library of DPDK might be used.

Then, for the integration of Suricata into other applications, it would be possible to
create some sort of API to connect Suricata with already existing applications. This can be
possibly be acheived by running Suricata as a secondary DPDK process and use rte_ring
for inter-application communication.

It was also possible to notice from the benchmarks that DPDK receives packets at higher
rates than AF__PACKET. This also suggests an idea that implementing autofp can bring
additional performance benefits. On contrary to workers runmode, small amount of cores
could be dedicated to receive and decode modules while the majority of cores would receive
packets from these cores and focus on packet inspection.

I believe there are many possible paths how this project can further continue. Suricata
is always-evolving piece of software that also might come up with even better
optimization ideas. To my best intentions, I will work in cooperation with CESNET on
further improvements of DPDK running mode.

71

Bibliography

1]

BRUNEAU, G. The History and Evolution of Intrusion Detection [online]. SANS
Institute, . 2001 [cit. 2020-11-02]. Available at: https://www.sans.org/reading-room/
whitepapers/detection/history-evolution-intrusion-detection-344.

GHAFIR, 1., PRENOSIL, V., SVOBODA, J. and HAMMOUDEH, M. A Survey on Network
Security Monitoring Systems. August 2016. DOI: 10.1109/W-FiCloud.2016.30.
Available at: https://doi.org/10.1109/w-ficloud.2016.30.

GONZALEZ, J. M., PAXSON, V. and WEAVER, N. Shunting: A Hardware/Software
Architecture for Flexible, High-Performance Network Intrusion Prevention.

In: Proceedings of the 14th ACM Conference on Computer and Communications
Security. New York, NY, USA: Association for Computing Machinery, 2007,

p. 139-149. CCS ’07. DOI: 10.1145/1315245.1315264. ISBN 9781595937032.
Available at: https://doi.org/10.1145/1315245.1315264.

Kicinski, J. and VILJOEN, N. EBPF Hardware Offload to SmartNICs: clsbpf and
XDP. [online]. 2016, [cit. 2020-12-29]. Available at:
https://netdevconf.info/1.2/papers/eBPF_HW_OFFLOAD.pdf.

LEBLOND Eric and MANEV, P. Introduction to eBPF and XDP support in Suricata
[online]. 2020 [cit. 2020-12-30]. Available at: https://cdn2.hubspot.net/hubfs/
6344338/Resources/Stamus_WP_Intro_to_eBPF_and_XDP_in_Suricata_Online.pdf.

LUKASIK, S. Why the Arpanet Was Built. IEEE Annals of the History of
Computing. 2011, vol. 33, no. 3, p. 4-21. DOI: 10.1109/MAHC.2010.11.

MARTELLINI, M. and MALIZIA, A. Cyber and Chemical, Biological, Radiological,

Nuclear, Fxplosives Challenges: Threats and Counter Efforts. 1st ed. Springer, 2017.
ISBN 978-3-319-62108-1.

MIANO, S., BERTRONE, M., Risso, F., TumoLo, M. and BERNAL, M. V. Creating
Complex Network Services with eBPF: Experience and Lessons Learned. In: 2018

IEFEFE 19th International Conference on High Performance Switching and Routing

(HPSR). 2018, p. 1-8 [cit. 2020-12-30]. DOI: 10.1109/HPSR.2018.8850758.

MJASOJEDOV, 1. Systém pro ochranu pred DoS tutoky s vyuzitim IDS. Brno, CZ, 2020.
Bachelor thesis. Vysoké uceni technické v Brné, Fakulta informacnich technologii.
Available at: https://www.fit.vut.cz/study/thesis-file/23110/23110.pdf.

OISF. Suricata project [online]. 2020 [cit. 2020-10-21]. Available at:
https://suricata-ids.org/.

72

https://www.sans.org/reading-room/
https://doi.org/10.1109/w-ficloud.2016.30
https://doi.org/10.1145/1315245.1315264
https://netdevconf
https://cdn2.hubspot.net/hubfs/
https://www.fit.vut.cz/study/thesis-file/23110/23110.pdf
http://suricata-ids.org/

[11]

ORMAN, H. The Morris worm: a fifteen-year perspective. IEEE Security Privacy.
2003, vol. 1, no. 5, p. 35-43. DOI: 10.1109/MSECP.2003.1236233.

ProJeECTS, L. Official site of Data Plane Development Kit project. 2021. [Online;
accessed 2021-01-06]. Available at: https://www.dpdk.org/.

PurzynskI, M. and MANEV, P. Suricata Extreme Performance Tuning [online]. 2016
[cit. 2021-03-21]. Available at:
https://github.com/pevma/SEPTun/blob/master/SEPTun.pdf.

TECHNOLOGY, A. Shunt Away Unwanted Suricata Traffic with Accolade Adapters
[online]. 2016 [cit. 2020-12-03]. Available at: https://accoladetechnology.com/wp-
content/uploads/2018/07/Suricata-Flow-Bypass-Tech-Brief.pdf.

WaNG, X., HONG, Y., CHANG, H., PARK, K., LANGDALE, G. et al. Hyperscan: A
Fast Multi-pattern Regex Matcher for Modern CPUs. In: 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, February 2019, p. 631-648. ISBN 978-1-931971-49-2. Available

at: https://www.usenix.org/conference/nsdil9/presentation/wang-xiang.

Woo, S. and PARK, K. Scalable TCP Session Monitoring with Symmetric
Receive-side Scaling [online]. 2012 [cit. 2020-12-21]. Available at:
http://an.kaist.ac.kr/~shinae/paper/2012-srss.pdf.

ZHAO, Z., SADOK, H., ATRE, N., HOE, J. C., SEKAR, V. et al. Achieving 100Gbps
Intrusion Prevention on a Single Server. USENIX Association, november 2020 [cit.
2021-04-04]. Available at:

https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng.

73

https://www.dpdk.org/
https://accoladetechnology.com/wp-
https://www.usenix.org/conference/nsdil9/presentation/wang-xiang
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng

Appendix A

NIC settings

sudo systemctl stop irgbalance

sudo systemctl disable irgbalance

sudo service irqgbalance stop

sudo chkconfig irgbalance off

sudo service firewalld stop

sudo systemctl disable firewalld

sudo service iptables stop

sudo sysctl -w net.ipvé4.tcp_ecn=0

sudo sysctl -w net.ipv4.ip_forward=1

echo 0 | sudo tee cat /sys/bus/pci/devices/0000\:3b\:00.1/roce_enable

echo 0 | sudo tee /sys/bus/pci/devices/0000\:3b\:00.1/d3cold_allowed

sudo ip link set enslfl mtu 3000

sudo ip link set enslfl promisc on arp off up

echo 1 | sudo tee /proc/sys/net/ipv6/conf/ensifl/disable_ipv6

for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan \\
rx-udp_tunnel-port-offload rx-vlan-filter; do

sudo /usr/local/sbin/ethtool -K ensifl $i off;
echo $i
done
for proto in tcp4 udp4 ah4 esp4 sctp4 tcpb6 udp6 ah6 esp6 sctpb; do
sudo /sbin/ethtool -N ensl1fl rx-flow-hash $proto sdfn

done

sudo /usr/local/sbin/ethtool \\
-C enslfl adaptive-rx off adaptive-tx off rx-usecs 10 rx-frames 64

sudo /usr/local/sbin/ethtool -G ensifl rx 8192

sudo /usr/local/sbin/ethtool -A enslfl rx off tx off

echo toeplitz | sudo tee /sys/class/net/enslfl/settings/hfunc

sudo /usr/local/sbin/ethtool -K enslfl rxhash on ntuple on

sudo ethtool -L enslfl combined 18

sudo /usr/local/sbin/ethtool -X ensifl hkey \\
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:\\
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 18

sudo /usr/sbin/set_irq_affinity_cpulist.sh

"2,4,6,8,10,12,14,16,18,22,24,26,28,30,32,34,36,38" enslfl

Listing A.1: Optimized settings for the mlx5 NIC

74

Appendix B

PCAP analysis

1

10

430
107
186180
101

2

4

1

91

NN N -

32
106
25

N ONF~ F~ N

19194

= NN NDN

53
277
13
130
6
484

ET HUNTING Suspicious TLS SNI Request for Possible COVID-19 Domain M2
ET POLICY possible Xiaomi phone data leakage DNS

SURICATA Applayer Detect protocol only one direction
SURICATA Applayer Protocol detection skipped

SURICATA Applayer Wrong direction first Data

SURICATA FRAG IPv4 Fragmentation overlap

SURICATA HTTP Host header invalid

SURICATA HTTP METHOD terminated by non-compliant character
SURICATA HTTP Request abnormal Content-Encoding header
SURICATA HTTP Request line incomplete

SURICATA HTTP Request line with leading whitespace

SURICATA HTTP Request unrecognized authorization method
SURICATA HTTP Response invalid protocol

SURICATA HTTP Response invalid status

SURICATA HTTP URI terminated by non-compliant character
SURICATA HTTP Unexpected Request body

SURICATA HTTP gzip decompression failed

SURICATA HTTP invalid response chunk len

SURICATA HTTP invalid response field folding

SURICATA HTTP request field missing colon

SURICATA HTTP request header invalid

SURICATA HTTP response field missing colon

SURICATA HTTP response header invalid

SURICATA HTTP too many warnings

SURICATA HTTP unable to match response to request

SURICATA IKEv2 weak cryptographic parameters (Auth)

SURICATA IKEv2 weak cryptographic parameters (Diffie-Hellman)
SURICATA IKEv2 weak cryptographic parameters (PRF)

SURICATA SMTP invalid pipelined sequence

SURICATA SMTP no server welcome message

SURICATA STREAM 3way handshake SYN resend different seq on SYN recv
SURICATA STREAM 3way handshake SYNACK in wrong direction
SURICATA STREAM 3way handshake SYNACK resend with different ack
SURICATA STREAM 3way handshake SYNACK with wrong ack
SURICATA STREAM 3way handshake excessive different SYN/ACKs
SURICATA STREAM 3way handshake right seq wrong ack evasion

18809496 SURICATA STREAM 3way handshake wrong seq wrong ack

27
155

SURICATA STREAM 4way handshake SYNACK with wrong ACK
SURICATA STREAM 4way handshake SYNACK with wrong SYN

75

8801 SURICATA STREAM CLOSEWAIT ACK out of window
24362 SURICATA STREAM CLOSEWAIT FIN out of window
4871 SURICATA STREAM CLOSEWAIT invalid ACK
191 SURICATA STREAM ESTABLISHED SYN resend
812 SURICATA STREAM ESTABLISHED SYN resend with different seq
129 SURICATA STREAM ESTABLISHED SYNACK resend
743 SURICATA STREAM ESTABLISHED SYNACK resend with different ACK
6593241 SURICATA STREAM ESTABLISHED invalid ack
16603512 SURICATA STREAM ESTABLISHED packet out of window
18442 SURICATA STREAM FIN invalid ack
22334 SURICATA STREAM FIN out of window
39852 SURICATA STREAM FIN1 FIN with wrong seq
8 SURICATA STREAM FIN1 ack with wrong seq
16101 SURICATA STREAM FIN1 invalid ack
450 SURICATA STREAM FIN2 FIN with wrong seq
10919 SURICATA STREAM FIN2 invalid ack
3 SURICATA STREAM Last ACK with wrong seq
6881283 SURICATA STREAM Packet with invalid ack
2095 SURICATA STREAM Packet with invalid timestamp
237709 SURICATA STREAM SHUTDOWN RST invalid ack
177 SURICATA STREAM TIMEWAIT ACK with wrong seq
35296 SURICATA STREAM bad window update
6660 SURICATA STREAM excessive retransmissions
1061 SURICATA STREAM reassembly overlap with different data
63 SURICATA TCP invalid option length
6 SURICATA TCP option invalid length
2006 SURICATA TLS invalid handshake message
679 SURICATA TLS invalid record type
2685 SURICATA TLS invalid record/traffic
74 SURICATA TLS too many records in packet
114 SURICATA UDP packet too small
3 SURICATA UDPv4 invalid checksum

Listing B.1: Generated alerts from PCAP file that was transmitted by 1 replication

1 ET HUNTING Suspicious TLS SNI Request for Possible COVID-19 Domain M2
40 ET POLICY possible Xiaomi phone data leakage DNS
434 SURICATA Applayer Detect protocol only one direction
58 SURICATA Applayer Protocol detection skipped
188927 SURICATA Applayer Wrong direction first Data
344 SURICATA FRAG IPv4 Fragmentation overlap
1568 SURICATA FRAG IPv6 Fragmentation overlap
2 SURICATA HTTP Host header invalid
4 SURICATA HTTP METHOD terminated by non-compliant character
1 SURICATA HTTP Request abnormal Content-Encoding header
32 SURICATA HTTP Request line incomplete
2 SURICATA HTTP Request unrecognized authorization method
2 SURICATA HTTP Response invalid protocol
2 SURICATA HTTP Response invalid status
1 SURICATA HTTP URI terminated by non-compliant character
31 SURICATA HTTP Unexpected Request body
100 SURICATA HTTP gzip decompression failed

76

22 SURICATA HTTP invalid response chunk len
SURICATA HTTP invalid response field folding
SURICATA HTTP request field missing colon
SURICATA HTTP response field missing colon
SURICATA HTTP response header invalid
SURICATA HTTP too many warnings
18516 SURICATA HTTP unable to match response to request
SURICATA IKEv2 weak cryptographic parameters (Auth)
SURICATA IKEv2 weak cryptographic parameters (Diffie-Hellman)
SURICATA IKEv2 weak cryptographic parameters (PRF)
SURICATA SMTP invalid pipelined sequence
SURICATA SMTP no server welcome message
33 SURICATA STREAM 3way handshake SYN resend different seq on SYN recv
174 SURICATA STREAM 3way handshake SYNACK in wrong direction
16 SURICATA STREAM 3way handshake SYNACK resend with different ack
109 SURICATA STREAM 3way handshake SYNACK with wrong ack
8 SURICATA STREAM 3way handshake right seq wrong ack evasion
16747892 SURICATA STREAM 3way handshake wrong seq wrong ack
19 SURICATA STREAM 4way handshake SYNACK with wrong ACK
287 SURICATA STREAM 4way handshake SYNACK with wrong SYN
5356 SURICATA STREAM CLOSEWAIT ACK out of window
12716 SURICATA STREAM CLOSEWAIT FIN out of window
4099 SURICATA STREAM CLOSEWAIT invalid ACK
194 SURICATA STREAM ESTABLISHED SYN resend
69 SURICATA STREAM ESTABLISHED SYN resend with different seq
113 SURICATA STREAM ESTABLISHED SYNACK resend
38 SURICATA STREAM ESTABLISHED SYNACK resend with different ACK
5615369 SURICATA STREAM ESTABLISHED invalid ack
15599046 SURICATA STREAM ESTABLISHED packet out of window
12621 SURICATA STREAM FIN invalid ack
17269 SURICATA STREAM FIN out of window
25883 SURICATA STREAM FIN1 FIN with wrong seq
1 SURICATA STREAM FIN1 ack with wrong seq
8704 SURICATA STREAM FIN1 invalid ack
7 SURICATA STREAM FIN2 FIN with wrong seq
91 SURICATA STREAM FIN2 invalid ack
12 SURICATA STREAM Last ACK invalid ACK
6338431 SURICATA STREAM Packet with invalid ack
26756 SURICATA STREAM Packet with invalid timestamp
697535 SURICATA STREAM SHUTDOWN RST invalid ack
226 SURICATA STREAM TIMEWAIT ACK with wrong seq
19999 SURICATA STREAM bad window update
4810 SURICATA STREAM excessive retransmissions
354 SURICATA STREAM reassembly overlap with different data
252 SURICATA TCP invalid option length
24 SURICATA TCP option invalid length
1642 SURICATA TLS invalid handshake message
545 SURICATA TLS invalid record type
2187 SURICATA TLS invalid record/traffic
408 SURICATA UDP packet too small
126 SURICATA UDPv4 invalid checksum

Listing B.2: Generated alerts from PCAP file that was transmitted by 4 replication

N ONF~ DN

=N NDNDN

T

