
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

OPTIMIZATION OF THE SURICATA IDS/IPS
OPTIMALIZACE IDS/IPS SYSTÉMU SURICATA

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. LUKÁŠ ŠIŠMIŠ
AUTOR PRÁCE

SUPERVISOR Ing. PAVOL KORČEK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Computer Systems (DCSY) Academic year 2020/2021

Master's Thesis Specification |||||||||||||||||||||||||
23479

Student: Šišmiš Lukáš, Be.
Programme: Information Technology and Artificial Intelligence
Specializatio Application Development
n:
Title: Optimization of the Suricata IDS/IPS
Category: Networking
Assignment:

1. Study the Intrusion Detection System (IDS) / Intrusion Prevention System (IPS) and focus on
the open-source IDS/IPS software Suricata.

2. Analyze the performance parameters of the Suricata under simulated operation with selected
rules.

3. Design the optimization of Suricata parameters in order to increase the performance
(throughput) on the given hardware.

4. Implement the proposed optimizations.
5. Test the created implementation.
6. Discuss achieved results and the possibilities of further improvements.

Recommended literature:
• According to the instructions.

Requirements for the semestral defence:
• Points 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Korček Pavol, Ing., Ph.D.
Consultant: Kučera Jan, Ing., UPSY FIT VUT
Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: February 4, 2021

Master's Thesis Specification/23479/2020/xsismi01 Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
The recent rapid increase of network traffic bandwidth has sprung new challenges in
securing the network. It is v i t a l to keep monitor ing the traffic to securely identify threats
in the network. Systems like IDS (intrusion detection systems) alert us about events in
the analyzed traffic. Suricata, as one of the available IDS , was chosen for this thesis. The
ult imate goal of the thesis is to tune settings of A F P A C K E T capture interface to reach
the best performance possible and then suggest and implement an opt imizat ion for
Suricata. Results of the A F P A C K E T should be used as a baseline for comparison wi th
future improvements. Opt imiza t ion is based on implementing a new capture interface to
Suricata that is based on D a t a Plane Development K i t (D P D K) . D P D K helps to
accelerate packet capture and this implies that it might improve the performance of
Suricata. Results that compare A F P A C K E T and D P D K performance are evaluated at
the end of this master thesis.

Abstrakt
V d n e š n o m svete zrýchľujúcej sa sieťovej p r e v á d z k y je p o t r e b n é držať krok v jej
mon i to rovan í . D o s t a t o č n ý prehľad o d i an í v sieti dokáže zabrán iť roz l ičným ú t o k o m na
ciele n a c h á d z a j ú c e sa v nej. S t ý m n á m p o m á h a j ú s y s t é m y IDS, k t o r é u p o z o r ň u j ú na
udalosti n á j d e n é v analyzovanej p revádzke . P re t ú t o p r á c u bo l v y b r a n ý s y s t é m Suricata.
Cieľom p r á c e je vyladi t nastavenia s y s t é m u Suricata s r o z h r a n í m A F P A C K E T pre
o p t i m á l n u výkonnosť a ná s l edne n a v r h n ú ť a implementovat op t ima l i zác iu Suricaty.
Výs ledky z m e r a n í A F P A C K E T m a j ú slúžiť ako zák l ad pre porovnanie s n a v r h n u t ý m
vy lepšen ím. N a v r h o v a n á op t ima l i zác i a implementuje nové rozhranie za ložené na projekte
D a t a Piane Development K i t (D P D K) . D P D K je schopné akcelerovat pr í jem paketov a
preto sa p r e d p o k l a d á , že zvýši výkon Suricaty. Zhodnotenie výs ledkov a porovnanie
r o z h r a n í A F P A C K E T a D P D K je m o ž n é nájsť na konci diplomovej p ráce .

Keywords
Suricata, X D P , Hyperscan, F low shunting, Bypass, A F P A C K E T , P F R I N G , D P D K ,
P C A P , Network monitoring, IDS , IPS , Network traffic detection, Suricata opt imizat ion,
D P D K runmode

Kľúčové slová
Suricata, X D P , Hyperscan, F low shunting, Bypass, A F P A C K E T , P F R I N G , D P D K ,
P C A P , Monitorovanie siete, IDS , IPS , Detekce s i tového provozu, Optimalizace Suricaty,
D P D K r u n m ó d

Reference
SISMIS, Lukas . Optimization of the Suricata IDS/IPS. Brno , 2021. Master 's thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Supervisor Ing. Pavol
Korcek, P h . D .

Rozšírený abstrakt
Technologické v ý d o b y t k y súčasnej doby n á m o tvá ra jú š i rokú šká lu možnos t í . N a j m ä oblasť
IT sa posunula za pos ledné d e k á d y o h r o m n ý m s p ô s o b o m vpred. P o č í t a č e a technológie s
n imi spo jené n a p r í k l a d u m o ž ň u j ú komunikovať ľudom na diaľku, znižujú čas p o t r e b n ý pre
prenos informácie alebo zefekt ívňujú celkovú p r á c u ľudstva . Jednou z veľmi p o d s t a t n ý c h
technológi í , k t o r é p o č í t a č e na komun ikác iu p o t r e b u j ú , je sieť. V súčasnos t i na jpouž ívane j š ia
sieť je Internet. T á t o sieť existuje takmer od p o č i a t k u p rvých experimentov prepojenia
poč í t ačov . Sieť sa p r i ebežne vyví ja a v súčasnos t i sa na ň u k a ž d ý m rokom p r i p á j a viac a
viac za r i aden í . S ich zvyšu júc im p o č t o m n a r a s t á aj objem a rýchlosť sieťovej prevádzky.

A k o bolo s p o m e n u t é na zač ia tku , nové technológie p r iná ša jú mnoho možnos t í . Avšak,
ako sa tieto možnos t i využi jú závisí na úmys loch používateľov. Je preto možné , že n iek tor í
p r ipo jen í použ íva te l i a sa r o z h o d n ú páchať n a p r í k l a d t r e s t n ú činnosť. T ý m t o s p ô s o b o m
vzn ika jú u r č i t é hrozby, podobne, ako je tomu vo svete mimo in fo rmačných technológi í .
Pol íciu v tomto p r í p a d e m ô ž e substituovat a d m i n i s t r á t o r i j edno t l i vých pods ie t í . N a pomoc
pr i vykonávan í ich č innos t i i m slúžia rôzne nás t ro j e . Pomocou nich sa snaž ia us t ráž iť
akt iv i ty na sieti. M e d z i tieto n á s t r o j e m ô ž e pa t r i ť n a p r í k l a d firewall, an t iv í rusové programy
alebo softvér na overovania m o ž n o s t i p r í s t u p u . M e d z i tieto n á s t r o j e patr ia aj I D S / I P S
sys témy. Tieto programy u m o ž ň u j ú pozorovať p r e c h á d z a j ú c u sieťovú p revádzku , analyzovať
j u voči vopred zadef inovaným p r a v i d l á m a v p r í p a d e podoz r ivého konania m ô ž u upozorniť
a d m i n i s t r á t o r a . I P S s y s t é m y m ô ž u po tom eš te naviac automaticky zabrán iť vykonávan iu
škodl ivých ak t iv í t .

Pomocou I D S / I P S ná s t ro jov je m o ž n é odhal iť rôzne typy ú tokov . M ô ž u to byť
n a p r í k l a d d i s t r i buované ú toky , prenos infikovaných s ú b o r o v alebo phishing. A k o bolo
s p o m e n u t é , na ich fungovanie je väčš inou p o t r e b n é analyzovať celú p r e c h á d z a j ú c u sieťovú
p revádzku . Sieťová p r e v á d z k a je rozde lená do j edno t l i vých paketov. Tieto s y s t é m y musia
k a ž d ý p r i j a tý paket dekódovať a pokúsiť sa nájsť zhodu s n e j a k ý m zadef inovaným
pravidlom. S n a r a s t a j ú c o u rýchlosťou a objemom d á t to ale pre tieto s y s t é m y zač ína byť
veľmi v ý p o č e t n ě n á r o č n á ú loha .

T á t o d ip lomová p r á c a sa preto snaž í n a v r h n ú ť a implementovat op t ima l i zác iu pre s y s t é m
Suricata. Je to jeden z d o s t u p n ý c h I D S / I P S sys t émov . P r ed n o sť s y s t é m u Suricata spočíva
n a j m ä vo vysokej výkonnos t i . T á je, okrem iného , d o s i a h n u t á kval i tnou mul t i -v l áknovou
a r c h i t e k t ú r o u . To z n a m e n á , že m ô ž e analyzovať viacero paketov súčasne . Suricata a aj
iné I D S / I P S s y s t é m y sa ale p o t ý k a j ú s p r o b l é m o m vysokých v ý p o č e t n ý c h pož iadavkov .
Je snaha ich zmenšovať r ô z n y m i op t ima l i zác i ami . V tomto p r í p a d e n a v r h n u t é zlepšenie
výkonnos t i z a h ŕ ň a implementovanie a použ ívan ie nového rozhrania pre p r i j íman ie paketov.
Rozhranie už je i m p l e m e n t o v a n é s p o u ž i t í m knižnice D P D K .

N a z a č i a t k u diplomovej p r á c e je predstavenie s y s t é m u Suricata. K a p i t o l a zač ína
p r e d s t a v e n í m jej a r ch i t ek tú ry . N á s l e d n e sa pok raču j e d e t e k č n ý m i pravidlami , ich z ložením
a sp racovávan ím. V ďalšej sekcii sa p r ezen tu jú 3 odl i šné spôsoby fungovania v lák ien v
Suricate. To, a k ý spôsob sa zvolí, m á vp lyv na prepojenie modulov Suricaty. P o t o m v
ďalšej rozsiahlejšej sekcii sú p r e d s t a v e n é j edno t l ivé moduly s lúžiace na pr í jem paketov.
M o d u l y a ich t eo re t i cký p r inc íp fungovania sú vyobrazené na diagramoch s t e x t o v ý m
opisom. P r i subsekcii A F P A C K E T sú r o z o b r a t é aj jeho m o ž n é vy lepšen ia v podobe
e B P F filtrov a X D P . P r e d p o s l e d n á sekcia v kapitole Suricaty rozobe rá jej m o ž n é zlepšenie
výkonnos t i pomocou techniky bypass. To dovoľuje vynechať inšpekc iu paketov pre
v y b r a n é sieťové toky. Do toku zvyča jne patr ia pakety, k t o r é zdieľajú is té charakteristiky.
Väčš inou je to def inovaná ako p ä t i c a s r o v n a k o u / o p a č n o u zdrojovou/c ieľovou IP adresou,
s r o v n a k ý m / o p a č n ý m por tom a s r o v n a k ý m protokolom vrs tvy L 4 OSI modelu. P r i

spojení s X D P je m o ž n é tieto pakety vynechať už na ú rovn i ov ládača sieťovej karty.
P o s l e d n á sekcia prezentuje m o ž n é v ý s t u p y s y s t é m u Suricata.

N a z a č i a t k u ďalšej kapi toly diplomovej p r á c e sa prezentuje n á v r h a r ch i t ek tú ry , k t o r á
slúži na testovanie výkonnos t i s y s t é m u Suricata. P o tejto sekcii sú ďalej p r e d s t a v e n é
nás t ro je , k t o r é sa používal i p r i l aden í a t e s tovan í s y s t é m u . Z nich je najviac r o z o b r a t ý
ná s t ro j ethtool. N a odosielanie sieťovej p r evádzky slúži R e p l i k á t o r . Je to n á s t r o j na
preposielanie sieťovej p r e v á d z k y s možnosťou amplif ikácie až do 100 Gbps . Deta i ly
ohľadom použ i t i a tohto n á s t r o j a n á j d e m e v ďalšej sekcii. V tejto sekcii je p o p í s a n ý aj
tes tovac í framework, k t o r ý bo l n a v r h n u t ý a i m p l e m e n t o v a n ý pre zníženie čas t i m a n u á l n e j
p r áce spojenej s t e s t o v a n í m Suricaty. Ten umožňova l zoradiť viacero m e r a n í za sebou a
vykonávať ich podľa vopred zadef inovaného scená ra . Poslednou časťou sekcie je a n a l ý z a
zachytenej sieťovej p revádzky, k t o r á bola p o u ž í v a n á na testovanie. Tento s ú b o r sa
preposielal pomocou vyššie s p o m e n u t é h o r ep l i ká to ru . R e p l i k á t o r bo l obs luhovaný
pomocou testovacieho framework-u. P o s l e d n á sekcia kapi toly popisuje ladenie parametrov
konfigurácie v s y s t é m e Suricata s r o z h r a n í m A F P A C K E T . Najvyšš iu dos iahnu teľnú
výkonnosť takto zos t aveného s y s t é m u bolo p o t r e b n é získať pre nás l edne porovnanie novej
op t imal izác ie . Vytvor i lo to zák lad pre ďalšie merania.

Nás ledne , v ďalšej sekcii je u k á z a n ý n á v r h zamýšľanej op t imal izác ie . V tejto sekcii je
vysve t l ené prečo sa ako nová op t ima l i zác i a zvol i la i m p l e m e n t á c i a D P D K rozhrania. Je
t am p o p í s a n ý s a m o t n ý n á v r h r iešenia . Ten je rozkres lený do v iacerých diagramov, k to ré
i lus t ru jú j edno t l ivé čas t i novej op t imal izác ie .

P o s l e d n á sekcia sa z a o b e r á i m p l e m e n t á c i o u spolu s meraniami, k t o r é bol i v y k o n a n é .
T á t o sekcia postupne opisuje priebeh i m p l e m e n t á c i e . Zač ína popisom zaradenia nového
m ó d u behu (rozhrania) do s y s t é m u Suricata a jej procesu kompi lác ie . Ďalej opisuje
p o č i a t o č n ú inicial izáciu a synchron izác iu s a m o t n é h o rozhrania a jeho v lák ien .
Najdôleži te jš ia časť r o z h r a n í na p r í j em paketov v s y s t é m e Suricata je pr i j ímací cyklus.
K ó d v tomto cykle je v y k o n á v a n ý opakovane p r i čom p o č a s behu sa snaž í prevziať pakety
zo sieťovej kar ty a poslať ich i n ý m modulom k ďalš iemu spracovaniu. Synchron izác ia
v lák ien sa p o č a s ich behu v cykle nepouž íva kvôli vysokej réžií. N a konci sekcie sú
p o p í s a n é funkcie p o t r e b n é pre odosielanie paketov (režim IPS) a uvoľnenia paketu zo
s y s t é m u Suricata.

S a m o t n ý záver diplomovej p r á c e je venovaný porovnaniu behov r o z h r a n í D P D K a
A F P A C K E T v rôznych podmienkach. Najväčš í dô raz je k l adený na výkonnosť . T á je
za ložená na pomere p r i j a tých a odos laných paketov. Cieľom je aby p o č e t p r i j a tých
paketov bo l rovný o d o s l a n ý m po čo na jvyšš iu rýchlosť. Testy prebiehali s r ô z n y m p o č t o m
vlákien - s 1, 8 a 16 v l á k n a m i . Z výs ledkov vyplýva , že nové D P D K rozhranie p rekonáva
výs ledky rozhrania A F P A C K E T vo vše tkých testoch. Ukazuje sa, že výkonnosť Suricaty
sa mierne zvýši la . To značí , že nová op t ima l i zác i a pomohla uvoľniť v ý p o č e t n ě prostriedky
i n ý m modulom. Zároveň miera zvýšen ia v ý k o n n o s t i naznaču je , že rozhranie pre pr í jem
paketov neobmedzuje Suricatu v behu. Oveľa vyšš ia výkonnosť p r í jmu paketov v rež ime
bez pravidiel implikuje, že de t ekčný modu l s v y s o k ý m p o č t o m pravidiel najviac vyťažuje
v ý p o č e t n ě prostriedky s y s t é m u Suricata. V poslednej čas t i sa ďalej disktuje pokračovan ie
v p rác i so s y s t é m o m Suricata.

Optimization of the Suricata IDS/ IPS

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of M r . Ing. Pavo l Korček P h . D . The supplementary information
was provided by M r . Ing. Jan K u č e r a . I have listed a l l the l i terary sources, publications
and other sources, which were used dur ing the preparation of this thesis.

L u k á š Šišmiš
M a y 18, 2021

Acknowledgements
I would like to express my deepest appreciation to my consultant Ing. Jan K u č e r a for his
professional supervision and constructive feedback. I would also like to extend my sincere
thanks to Ing. Pavo l Korček P h . D . for the support that he has provided me for the
durat ion of wr i t ing this thesis.

Contents

1 Introduction 2

2 Suricata 4
2.1 Archi tecture 5
2.2 Detection rules 6
2.3 Runmodes 10
2.4 Capture options and running modes 12
2.5 Bypass and flow shunting 21
2.6 Outputs 21

3 Setting up the environment 23
3.1 Network architecture 23
3.2 Configuration tool - ethtool 24
3.3 Testing framework 30
3.4 Performance tuning of A F _ P A C K E T 35

4 Design of the proposed optimization 44
4.1 Mot iva t ion 45
4.2 Analys is of the current implementat ion 45
4.3 Idea proposal 46

5 Implementation and benchmarks 52
5.1 Implementation 52

5.2 Benchmarks 61

6 Conclusion and future work 70

Bibl iography 72

A N I C settings 74

B P C A P analysis 75

1

Chapter 1

Introduction

In computer history, the A R P A N E T [6] is recorded as the first wide-area packet-switching
network wi th the first connected users in 1969. A s t ime progressed, the network grew and by
1988 it was estimated that about 60000 computers were connected. Users, mostly consisted
of scientists, were excited about the new era in the computer world. However, they d id
not know what awaits them i n November that year. Mor r i s worm [11] was released and
by combining several vulnerabili t ies in computer systems it was able to infect thousands of
Berkeley U n i x systems leading to a dysfunctioning the majority of them and part i t ioning
the network for few days. It is recognized as the first computer threat distr ibuted over the
network and gaining attention a l l over the world.

The computer networks continued to grow, gaining more users and enabling faster
transfer rates together w i t h an increasing number of threats as well . People had started
to focus on securing their devices and networks more and more over t ime. Adminis t ra tors
learned new ways to mitigate attacks and systems such as firewalls, antiviruses or intrusion
detection systems came to light. The first concept of intrusion detection system was defined
in the 1980s and was further researched and developed later that decade. Between 1984
and 1986 the first concept of such software was developed. [1]

„An intrusion detection system (IDS) is a device or software applicat ion that monitors
a network or systems for malicious act ivi ty or pol icy violations. A n y intrusion act ivi ty
or viola t ion is typical ly reported either to an administrator or collected centrally using a
security information and event management (S I E M) system. A S I E M system combines
outputs from mult iple sources and uses a larm filtering techniques to dist inguish malicious
act ivi ty from false alarms." [7]

IDS can be installed at various points of a network, however, this thesis is focused on
a network intrusion detection system (NIDS) rather than a host-based intrusion detection
system (HIDS) . The most common use case of N I D S is to monitor a l l traffic between the
outer and inner network and raise alerts about potential threats. Th is is possible thanks
to the analysis of packets passing through and a l ibrary of attacks or ruleset of the N I D S .

However, w i th rapidly increasing bandwidth worldwide, a l l systems and devices
connected to the core networks must comply strict security and performance
requirements. Otherwise, such systems can be viewed as bottlenecks. A s a result, they
can cause packet drops, increase in latency or may be unable to detect threats i n real-time
as expected. These factors are great motivat ion for network security research teams
around the world to make sure intrusion prevention systems are not only performant
enough to keep pace wi th an increase i n network bandwidth but also to dist inguish
threats at a very high rate while not introducing severe latency.

2

This master thesis first attempts to introduce the reader to I D S / I P S project Suricata
[10]. It explores its settings and also goes over tools that can be used to tune deployed
Suricata instances. In the thesis, they are used to tune A F P A C K E T running mode on
given hardware. The performance results are later used as a baseline for future work.
The goal of the thesis is to propose and implement opt imizat ion of Suricata. Results of
performed analysis have led me to implement a new running mode that uses a D P D K
library. Th is should reduce the load of the capture interface and leave more resources
to other Suricata modules. A t the end of the master thesis, D P D K is compared to the
performance of A F P A C K E T and the results are evaluated.

3

Chapter 2

Suricata

Suricata [10] is a community-run, open-source project act ing as an intrusion detection
system (IDS) or an inline intrusion prevention system (IPS) . It also has the abi l i ty to
perform network security moni tor ing (N S M) and offline packet capture (pcap) processing.
It performs deep packet inspection using pattern matching. It is mainly maintained and
developed by the non-profit organization O I S F and the Suricata source code is licensed
under version 2 of the G N U General Pub l i c License. The first beta version was released in
December of 2009.

Suricata provides a long list of configurable options ranging from the definition of
network architecture over logging preferences to settings of packet capture strategies and
runmodes. To understand the consequences of each option it is desired to, i f not fully, at
least par t ia l ly understand concepts Suricata is buil t upon. W i t h this knowledge, it is
possible to achieve higher throughput and better performance thanks to appropriately
chosen settings. Awareness of constraints in the design of Suricata and packet capture
mechanisms, i n general, can help to quickly identify possible bottlenecks i n various
configurations. A s an overview and brief intro, this chapter provides diagrams and a more
in-depth description of the internal structure of Suricata. Y o u can find different stages of
packet processing i n Suricata below. Basic Suricata architecture is followed by deeper dive
into separate sections of the configuration file. Configuration is stored i n a suricata.y ami
file w i th many options coupled wi th helpful comments.

Suricata can normal ly be set up i n three modes:

• Host-based IDS (HIDS) (Figure 2.1) - runs on a single machine placed on the edge of
the network, monitors the cr i t ica l resources, and is mainly used for testing. It does not
come across the traffic of other network devices as it sees only flows incoming/outgoing
of the device it is installed on.

• Network IDS (NIDS) (Figure 2.2) - tap on a strategic network l ink, analyzes traffic
and raises an alert i f a rule is matched, packets are never intercepted. It is usually
placed on the boundary of the local network (L A N) and the Internet (W A N) . N I D S
never blocks traffic and only notifies the network administrator about suspicious
events that match the specified rules. Responsibi l i ty of at the attack mit igat ion is
left on the network administrator. N I D S is further mentioned as IDS only.

• Inline IPS (Figure 2.3) - provides the possibil i ty to monitor and block certain types of
traffic i f rules are matched. It works on an automated basis and requires no assistance
from the network administrator once set up. S imi la r ly to N I D S , it is situated in the

4

same place of the network. However, it addi t ional ly not only detects but also blocks
matching network traffic. In some scenarios, a high rate of false-positive matches
results i n significantly a worse user experience.

(W A N)

T

1
NIDS IPS

Traffic inspected Traffic uninspected Traffic inspected Traffic inspected Traffic inspected Traffic inspected Traffic protected Traffic protected Traffic protected

Figure 2.1: Host based Figure 2.2: Network Figure 2.3: Inline intrusion
intrusion detection system intrusion detection system prevention system (IPS).
(HIDS) . (NIDS) .

2.1 Architecture

To introduce Suricata, high-level overview is presented in the following section along wi th
Figure 2.4 depicting the ma in thread-modules of Suricata's architecture. Thread-module
is an abstract name of mult iple similar and connected functions aggregated into one unit .
Thread-modules also separate functionality and responsibilities of ind iv idua l
thread-modules. [2]

Packet
- O

Suricata

Packet
- O

1
• Capture —> Decode —> Detection —> Output -

Figure 2.4: Suricata architecture of thread-modules.

A s seen i n Figure 2.4, Suricata comprises 4 ma in thread-modules:

• Capture - module receives packets from N I C , passes them to the next layer

• Decode - module decodes each incoming packet, reads data and saves decoded
information into an internal representation of the packet. The decoding process
starts from the bo t tom layers and continues to the top layers (of OSI model) . The
module also handles stream tracking and T C P reassembly. New decoding functions
can be added at the end of the processing pipeline.

• Detect - module matches internal representation of packets against pre-defined rules.
Module is parallelized into smaller modules processing one packet simultaneously.

• Output - module passes verdict (result) of the detection module to the configured
outputs and appropriately adjust Suricata statistics. The module handles a l l events
and alerts.

5

2.2 Detection rules

Detection rules (or signatures) are fundamental bui ld ing blocks of intrusion
detection/prevention systems. Each rule define behavior of network traffic. To operate,
they require knowledge of the network architecture that they are supposed to protect. In
Subsection 2.2.1, network definitions are described in more detai l w i th examples of usage.
Afterwards, variables defined here are used to modify and specify behavior of each rule.
Rule composit ion and rule matching algorithms are then described i n Subsection 2.2.2.

2.2.1 N e t w o r k definit ions

For Suricata to know which resources it needs to protect, it is required to specify lists of
either subnets or exact I P addresses i n its configuration file and lists of ports. A s discussed
at the start of Section 2.2, it is also possible to define user-defined variables to use i n rules
definition. Table 2.1 provides a syntax overview that can be used to define network hosts.
It starts w i th definitions of the exact IP address and IP range v i a prefix. Addi t ional ly ,
these can be combined wi th basic operators as grouping ("[.., ..]") and negation ("!").
L i s t ing 2.1 is an example of network definition extracted from suricata.yami where variable
H0ME_NET uses grouping operation to define a group of three subnetworks defined by prefix
and EXTERNAL_NET uses negation operator to match every I P address but the ones defined
in H0ME_NET.

Example Meaning
192.168.0.21 Exac t definition of an I P address

192.168.0.0/16 IP addresses ranging from 192.168.0.0 to
192.168.255.255

[192.168.0.0/24, 192.168.1.100] IP addresses ranging from 192.168.0.0 to 192.168.0.255
and the exact I P address 192.168.1.100

[10.24.0.0/24, 110.24.0.100] A l l I P addresses ranging from 10.24.0.0 to 10.24.0.255
but excluding the exact I P address 10.24.0.100

! $ H O M E _ N E T A l l I P addresses except those included i n
H O M E N E T variable

any A r b i t r a r y IP address

Table 2.1: Examples of defining network hosts.

vars:
more s p e c i f i c i s better f or a l e r t accuracy and performance
address-groups:
H0ME_NET: " [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$H0ME_NET"
HTTP_SERVERS: "$H0ME_NET"
DNS_SERVERS: "$H0ME_NET"

Lis t ing 2.1: A n example of network hosts definition cut from suricata.yami.

6

2.2.2 Ru le s

Rule (or signature) is a common way for I D S / I P S to detect a threat in the network traffic
passing through the system. A l t h o u g h it resembles basic pattern matching, it also uses
addi t ional fields to match network specific properties.

To form a threat into a rule, it is needed to extract certain features or properties of
the threat that are shared even if the threat would target another device. Set of these
features can then be wri t ten down and form a rule, which can then be appended to the
set of existing rules (to ruleset). If the rule is correct, the next t ime the same or similar
threat happens, system administrators are immediately notified i n case of IDS or the
attack is mit igated i n case of IPS . However, attackers would have a huge advantage i f each
system administrator had to manually create their own rules for rulesets after each attack.
Therefore, a community around the rulesets was formed to gather and manage rules
received from system administrators around the globe. One of the most notable rulesets is
Emerging Threa ts 1 from Proofpoint, which offers P R O and O P E N version. In P R O
version they offer dai ly updates of the latest malware-detecting rules. O P E N version is
often sufficient as it contains more than 20000 relevant rules.

Suricata U p d a t e 2 is a command line tool to manage and update installed rulesets. It
automatizes the whole process of update, so it is hopefully less error-prone. Suricata rule
is in Figure 2.6 for better comprehension of the structure and importance of it.
Suricata-Update reads the configuration files and then finds and downloads the latest
version of Emerging Threats Open ruleset for the version of Suricata installed on the
system. Afterwards, it updates the ruleset according to the loaded configuration.

A s can be seen i n Figure 2.5, Suricata rule structure consists of 3 logical parts -
A C T I O N , H E A D E R and R U L E O P T I O N S . E a c h part of the rule is described i n the list
below.

A C T I O N H E A D E R O P T I O N S

Figure 2.5: Suricata rule extracted from the ruleset.

A C T I O N determines what happens when the rule matches. It can be considered as a
result of the rule matching process. Values are:

• pass - allow a packet to pass,

• drop - drop packet and generate an alert to the configured output files (only works in
IPS / in l i ne mode), the communicat ion is t imed out as the packet is silently dropped,

• reject [src,dst,both] - send R S T / I C M P unreach error to the sender/receiver/both sides
of the communication,

• alert - generate an alert to the configured output files.
x h t t p s : //rules.emergingthreats.net/
2 h t t p s : //suricata. readthedocs.io/en/latest/

7

http://emergingthreats.net/

H E A D E R part is specifying the traffic to match i n broader granularity. Flows matching
the header are further inspected wi th rule options. Header consists of:

• protocol - specifies the protocol to match - possible values are from a l l sorts of
different layers of The Open Systems Interconnection (ISO/OSI) m o d e l 3 e.g., tcp
(L4), udp (L4) , icmp (L3) , ip - stands for „any" (L3), ht tp (L7) , ftp (L7) , tls (L7) .
Avai labi l i ty of protocols can be manual ly configured i n the suricata.yaml file.

• source and destination - provides high versatili ty i n specifying the origin and target of
the traffic. Exac t IP addresses (e.g., 132.153.32.25) and I P ranges (e.g., 10.0.2.0/24)
can be combined wi th operators of negation ("!") and grouping ("[.., ••]")• It is a l s °
possible to use user defined variables from the suricata.yaml (e.g., $ H O M E _ N E T)
and a keyword „any" to match everything. Examples of defining IP addresses for
source and destination are i n Table 2.1.

• ports - specifies the ports to match, as w i th source and destination, Suricata provides
a very flexible way to input ports w i th options to use exact ports, port ranges (":"),
lists ("[.., ..]") and exceptions ("!"). Examples of defining ports are similar as i n Table
2.1 except port range is defined wi th colon (e.g. " 8080:8088 ") and not prefix.

• direction - specifies which way the rule has to match. Most signatures use one way
direction operator (->), which specifies the source on the left and the destination on
the right. It is also possible to use bidirect ional operator (<>) to match rule both
ways.

O P T I O N S of rule specify addi t ional information of the rule or extra requirements for the
rule to match. E a c h rule needs to have signature ID (sid). If mult iple rules share the same
sid, revision (rev) option is also compulsory for Suricata to pick the latest rule. Options
are enclosed by parenthesis and each rule is separated by semi-colon. Indiv idual rule can
be specified i n two ways:

• key-value pair w i t h syntax: <keyword>: <settings>:
Example:
msg:"ET ATTACK_RESP0NSE Hostile FTP Server Banner
(Bot Server)"; flow:established,from_server;

• key only w i t h syntax: <keyword>:
Example:
nocase; dns.query;

Rule i n Figure 2.6 is an example of information wri t ten in previous paragraphs put
together. A c t i o n of the rule is to alert the administrator. Header of the rule defines the
connection must be over T C P wi th any source I P address and w i t h source port 21.
Dest inat ion IP address must matches one of IP addresses defined i n the variable
H O M E _ N E T (following the syntax from Table 2.1 of network definitions). Dest inat ion
port does not matter for this rule. Rule option:

• msg - is shown to the network administrator i n the defined outputs (as shown in
Section 2.6),

3https://www.iso.org/ics/35.100/x/

8

https://www.iso.org/ics/35.100/x/

• flow - signifies the connection must be established,

• content - packet must contain "220 Bot Server (Win32)" ,

• nocase - content search is case insensitive,

• classtype - used to categorize the rule as "trojan-activity",

. sid - signature's (rule's) ID is 2002811,

• rev - it is the fifth revision of the rule.

alert tcp any 21 -> $ H O M E _ N E T any (msg : "ET A T T A C K R E S P O N S E Hostile
F T P Server Banner (Bot Server)"; flow:established; content:"220 Bot Server (Win32)" ;

nocase; classtype:trojan-activity; sid:2002811; rev:5;)

Figure 2.6: Suricata rule extracted from the ruleset.

2.2.3 Ru le s process ing

Rules are loaded i n the order of which they are i n the rulesets. However, they are then sorted
according to the priorities and by default are evaluated i n the order they have been listed
in the upper paragraph. Action-order can be adjusted i n suricata.yaml configuration file.
Suricata rules are also compatible w i th Snort rules and on top that it accepts L 7 protocols
as mentioned in protocol part of rule format description. U p o n loading, Suricata's detect
engine groups similar rules to efficiently manage operating memory and performance. W h e n
I C M P packet arrives, no IP rules can be applied and thus a l l of them are skipped. Rules
wi th common properties are usually placed i n the same group as displayed i n Figure 2.7.
O n the highest layer of the rule-groups tree lies the protocol, then direction of the flow,
source and destination address and the further it is, the more specific the group is.

Packet
source IP

destination IP

source rort
source port

protocol

Protocol

TCP

UDP

192.0.0.0/8 <

•168.32.2.0/24

Src IP
group

Dst IP
group

Rules

,132.14.5.0/24

'10.24.0.0/16

Figure 2.7: Rule groups.

However, w i th an increasing number of groups, Suricata demands more memory to store
them. The quantity of groups determines the balance between performance and memory.

9

Each group is described by addi t ional information i n a mult i-pat tern matching (mpm)
context stored i n a group head. It is possible to manage memory requirements and l imits
in the settings file.

M P M groups are matched i n the detection engine wi th M P M algori thm. In Suricata
there are 4 alternative algorithms:

• ac - Aho-Coras ick, enabled by default,

• ac-bs - Aho-Coras ick , reduced memory implementation,

• ac-ks - Aho-Coras ick , " K e n Steele" variant, recommended i f Hyperscan is not
available,

• hs - Hyperscan, required to add when Suricata is bui l t . Requires x86 processors (32
or 64 bit architecture) and Streaming S I M D Extensions 3 at min imum. However, on
most modern processors it can be installed without any problems.

H y p e r s c a n 1 [15] is an open source project licensed under the B S D License and led by
Intel. The main language is C / C + - h It is a high-performance m p m library, follows the
common syntax of regular expressions used in l ibpcre l ibrary but has an own A P I . It uses
hybr id automata techniques to perform parallel matching of thousands regular expressions
on data streams. A s mentioned before, Suricata prefers to use Hyperscan i n the detection
engine to match regular expression in the passing network traffic.

2.3 Runmodes

To have a look at available runmodes in Suricata, it is first required to have deeper
understanding of the core bui ld ing blocks of Suricata - threads, thread-modules and
queues. Suricata is a multi-threaded system. Therefore, it allows mult iple threads to be
active at the same time. A thread is a running process in an operating system, consisting
of thread-modules and connected wi th other threads wi th queues. Thread-module is
explained i n the first paragraph of section 2.1. It is used to express a functionality part of
Suricata. In Figure 2.4 there are 4 thread-modules:

• Capture,

• Decode,

• Detect,

• Output .

Queues are used to pass packets between the threads. A s mentioned before, Suricata can
run i n one or mult iple threads. Each thread can consist of one or more thread-modules.
If the thread consists of mult iple thread-modules, only one thread-module can run at a
t ime. E a c h thread-module can only work w i t h one packet at the time. However, Suricata
is usually composed of a collection of threads assigned to different C P U cores. Each core
can work individual ly, and, for that reason, Suricata engine can process mult iple packets
simultaneously. The way the architecture of these bui ld ing blocks is configured by is called
the Runmode. Suricata contains several pre-defined runmodes.

4 h t t p s : //www.hyperscan.io/

10

http://www.hyperscan.io/

Runmode single as displayed i n Figure 2.8 contains a l l thread-modules from capture to
output i n a single thread. It is mainly used i n a process of in i t i a l configuration or debugging.
The number of management threads is not l imi ted and is configured in suricata.yaml file.
Network traffic does not have to be load balanced since a l l traffic is forwarded to a single
thread.

o
PACKET PROCESSING THREAD

MANAGEMENT THREAD(S)

Figure 2.8: Runmode Single.

Runmode autofp is mainly used w i t h inline IPS setups and while processing P C A P files.
It is possible to note that in Figure 2.8 the whole packet processing is done i n one thread
while in Figures 2.9 and 2.10 the process is d ivided into flow worker threads (F W T s) and
packet capture threads (P C T s) . P C T s capture and decode the packets, then the packets
are forwarded to F W T s to finish the packet processing. In autofp runmode number of
packet capture threads is less than the number of flow worker threads. Network traffic is
distr ibuted between P C T s and they are then used as addi t ional load balancers for F W T s . If
there is a single P C T as i n Figure 2.9, load is solely distr ibuted in internals of Suricata. In
setups similar to the Figure 2.10 packets are load-balanced by both the N I C and Suricata.

o
r1

PACKET
CAPTURE
THREAD

PACKET
PROCESSING

THREAD

PACKET
PROCESSING

THREAD

MANAGEMENT THREAD(S)

Figure 2.9: Single capture thread i n
autofp runmode.

11

o

PACKET
CAPTURE
THREAD

PACKET
CAPTURE
THREAD

PACKET
PROCESSING

THREAD

PACKET
PROCESSING

THREAD

MANAGEMENT THREAD(S)

Figure 2.10: Mul t ip l e capture threads
in autofp runmode.

In runmode workers, the whole process of packet inspection is performed i n one
ind iv idua l thread for each packet. A s it is possible to see i n Figures 2.8, 2.9, 2.10 and
2.11, the only difference is a different amount of full packet processing pipeline threads
and the fact that the N I C distributes the network traffic over the various threads. In most
cases, workers runmode results in the best performance compared to other runmodes.

o

PACKET PROCESSING THREAD

PACKET PROCESSING THREAD

MANAGEMENT THREAD(S)

Figure 2.11: Runmode Workers.

2.4 Capture options and running modes

Sockets i n L i n u x work as an A P I to access network interfaces to send or receive packets.
Over the years of development, Suricata developers and other contributors have
implemented numerous packet capture interfaces into running modes and usually named

12

after the implemented interface. The most used modes are A F P A C K E T , P F R I N G ,
N E T M A P and P C A P . Addi t ional ly , these interfaces can be indiv idual ly accelerated using
opt imizat ion techniques discussed below i n the ind iv idua l sections of packet capture
options.

Figures 2.13, 2.14 and 2.19 share similar behavior. It is possible to notice, especially in
the upper part of the diagrams, the relationship of components - Network driver, Buffer
and Deferred reception. It is explained i n more detail i n Figure 2.12. The component
Deferred reception means that received packets from the N I C are put into the Buffer shown
on the right side and the interrupt is sent to the C P U . W h e n the C P U acknowledges the
interrupt, it is scheduled wi th high priority. O n handling the interrupt, the C P U must
stop the act ivi ty that it is executing and switch context to packet processing. Once the
context is switched, it allocates the socket kernel buffer through function skb_allocate ()
and copies there the data from the Buffer. References of a l l packets received between the
interrupts can then be sent to the user application.

N I C

Packet ©

Network interface
card driver

Interrupt
(IRQ) ©

CPUO

Kernel space

© Buffer

memset

Packet
address ©

©
handle(IRQ)

Interrupt handler

skb i_allocateO -; (¥)

\ User space

_ ±

Application

Figure 2.12: Packet processing and interrupt handling i n the C P U .

13

2.4.1 A F _ P A C K E T

The A F P A C K E T socket was implemented in the L i n u x kernel since the version 2 .2 5 and
therefore it is commonly used in L i n u x network programming. It works in cooperation wi th
the kernel, from where incoming packets are copied to the user space as soon as they are
received from the physical layers of the card. Similarly, outward packets are copied to the
kernel space just before they are sent to the N I C . The Figure 2.13 can help to understand
the way A F P A C K E T works. Star t ing from the top, packets gathered by the network
interface are sent to the kernel. If the interface is bound to socket, the packet is cloned and
sent to the user space, where the applicat ion is running. The original packet continues to
be processed in the kernel. Some performance loss can be expected due to packet cloning.

In the L i n u x kernel version 2.4 "mmap" functionality was added to the A F P A C K E T
interface. It provides a configurable r ing buffer mapped i n user space which can be used
to receive or send packets. A s can be seen i n Figure 2.14, packets are stored in a structure
accessible from both physical (kernel space) and v i r tua l (user space) layers.

Being able to reach packets stored in the r ing buffer reduces the number of system calls
needed to deliver a packet to the appl icat ion i n the user space and the number of required
packet copies.

Application

Figure 2.13: Packet flow in Figure 2.14: Packet flow in mmap
A F _ P A C K E T capture interface. version of A F _ P A C K E T capture interface.

5 h t t p s : / / manpages .ubuntu. com/manpages/pr ec i se/man7/packet. 7.html

14

2.4.2 e B P F a n d X D P

(Classic) Be rk ley Packet F i l t e r (c B P F) is a long-known technology implemented i n U n i x ­
like operating systems. It acts like a filtering mechanism that only allows to receive packets
that comply wi th conditions specified in a user-set program (filter). These programs are
run i n a B P F 32-bit v i r tua l machine that resides in the kernel. Before packet is accepted or
rejected, programs i n the v i r tua l machine perform ari thmetic operations on packet's data
and test the results against set constraints. Classic B P F programs typical ly allow high-level
text rule describing the pattern to match from which it is converted to machine code by
assembler.

Ex tended Berk ley Packet F i l t e r (eBPF) [8] enhances capabilities of the original B P F
v i r tua l machines. Since the L i n u x kernel version 3.18, v i r tua l machine for B P F programs
have increased the number of registers to 10 and doubled the size of the registers to 64-bits.
Nowadays, a l l B P F programs are translated into an e B P F bytecode in the kernel before
program execution. To compile e B P F program into machine code, it is required to use
special compilers such as clang . e B P F programs can be wri t ten in a subset of C , which
is then compiled by one of e B P F compilers. Th is allows wr i t ing more complex filtering
mechanism to more accurately inspect passing traffic. e B P F brought not only improved
v i r tua l machine but also new helper functions that ease programming, e B P F verifier to
prevent any downtime wi th incorrectly wri t ten e B P F programs and e B P F maps which
serves as an intermediate storage between the e B P F program and an userspace applicat ion
and to keep state between invocations of e B P F program. There are different kinds of maps
such as Hash, Array, P e r - C P U H a s h / A r r a y and others.

Express D a t a P a t h (X D P) [8] builds on top of the e B P F mechanism to allow high
performance networking data path. X D P is placed very early i n packet processing
pipeline - even before al locating socket kernel buffer. For this reason it allows e B P F
program to make a decision in the beginning in the packet processing pipeline and thus
save computat ional resources for packets that actually needs to be analyzed by a
user-space applicat ion. M e m o r y al location can be very expensive operation. S imi la r ly to
e B P F , it operates on raw packets. A s depicted in Figures 2.15, 2.16, 2.17 X D P can work
in 3 modes wi th in the packet processing pipeline:

• hardware - as depicted in Figure 2.15, e B P F program is loaded to a programmable
par t i t ion of the N I C . It allows to save C P U resources for other tasks. Current ly
supported by Netronome only. [4]

• driver - program is loaded and executed wi th in the N I C ' s driver but before the socket
kernel buffer is allocated for the packet. Th is method is more prevalent among N I C s
producers. It is shown in Figure 2.16.

• soft / generic - i l lustrated i n Figure 2.17, generic X D P implementat ion that should
work on any L i n u x kernel w i th version 4.8 or higher. A l though this mode is the most
universal, it also comes wi th the highest performance penalty since the e B P F program
is executed after the skb allocation.

'https: //clang.llvm.org/

15

http://llvm.org/

p
A
C
K
E
T
S

N I C XDP £

USERSPACE USER
PROGRAM

y \

KERNELSPACE

DRIVER i> a t b

c •
i i

NETWORK
STACK

Figure 2.15: X D P Hardware mode.

P
A
C
K
E
T
S

USERSPACE USER
PROGRAM

KERNELSPACE

N I C * DRIVER XDP uJ skb k|
V alloc ^

NETWORK
STACK

Figure 2.16: X D P Driver mode.

USERSPACE USER
PROGRAM

KERNELSPACE
NETWORK

STACK

Figure 2.17: X D P Soft /Generic mode.

16

e B P F program is invoked once it receives a packet. It immediately starts processing it
and after completion it returns an action code that determines fate of the packet. Possible
outcomes are:

• X D P P A S S - packet continues to the network stack,

• X D P D R O P - packet is never to be seen again,

• X D P A B O R T E D - program throws an error, packet is dropped,

. X D P _ T X - transmit to the N I C ,

. X D P R E D I R E C T - redirect packet to a different N I C or C P U .

Suricata support of e B P F and X D P

In Suricata [5] these mechanisms are implemented in the most used interface -
A F P A C K E T - to extend possibilities of configuration. This can aid Suricata in
improving performance even more. Suricata has some X D P and e B P F filters included
directly in the source code to help wi th a smoother start. If enabled, it can be compiled
and installed along Suricata. Traffic passing through Suricata can be cut through wi th an
e B P F filter to ignore known and safe connections (e.g. video streams from popular
streaming platforms or scheduled backups of data). To drop packets even earlier, X D P
filter can be used as well . A s shown i n Figure 2.18, Suricata (user program) can
dynamical ly talk to the filtering program and adjust properties of the ignored traffic v ia
e B P F hash table (e B P F map). The hash table acts as a flow table that can te l l kernel
program whether the packet should or should not be processed. A s mentioned before,
since Suricata can dynamical ly adjust properties of ignored traffic, flow table can not only
be set before start of Suricata but also during its execution. F l o w table can also modified
if Suricata hits a rule w i th a special keyword (bypass) i n the rule's options section for the
given flow. F l o w is then added from the user program (Suricata) to the hash table (e B P F
map). Incoming packets of the given flow are then ignored when the filter extracts flow
information from the packets and compares them to values stored in the e B P F map. It is
described i n more detail i n Section 2.5.

17

USERSPACE

KERNELSPACE

PACKETS PROGRAM XDP PASS

x
D
•o

NETWORK
STACK

Figure 2.18: Usage of e B P F maps wi th in X D P .

2.4.3 P F _ R I N G ™

P F R I N G ™ is a type of network socket and a kernel module developed by company
n top ' . It enables high-speed packet capture and analysis. S imi lar ly to mmap version of
A F _ P A C K E T , module creates a r ing buffer shared between the user space and the kernel,
as can be noted i n Figure 2.19. It is a free open source project, and it is available since
L i n u x 2.6.32. Ke rne l module is licensed under the G N U G P L v 2 license, L G P L v 2 . 1 for the
user-space P F R I N G ™ library. Thanks to the modular architecture of P F R I N G ™ it is
possible to add addi t ional closed-source, pa id ntop modules such as Zero Copy, F P G A or
other modules. Modules can further increase performance.

Internally it uses L i n u x New A P I (N A P I) to po l l packets from the N I C , copy them to
the circular buffer from where the applicat ion (in the user space) can retrieve a l l packets.

2.4.4 P C A P

Running mode P C A P reads the specified pcap files and replaying them to Suricata for
offline analysis. It allows to test rules or configuration on real-life traffic i n situations where
deployment in live networks is not possible.

2.4.5 D P D K

D a t a Plane Development K i t (D P D K) [12] is a framework to enable high-speed packet
processing. It is an open source project, licensed under the Open Source B S D License.
It was originally developed by Intel, i n 2017 it was joined to L i n u x Foundat ion. Packet
processing workloads are accelerated on a wide range of device architectures like x86, A R M
or P o w e r P C . Currently, D P D K only supports L i n u x and F r e e B S D operating systems. It is

7 h t t p s : //www.ntop.org/

18

http://www.ntop.org/

important to note that the framework needs to have access to advanced parts of the N I C .
These parts are accessible v ia the device driver. Therefore, some N I C s require a custom
driver to be installed i n order to work wi th the D P D K library. However, majority of N I C
manufacturers like Intel, Mel lanox or Napatech support the D P D K on their cards. D P D K
might not be supported especially on lower-end N I C s .

Officially, Suricata does not support D P D K , however, there has been discussions about
supporting the framework and also an effort to implement i t 8 . Unfortunately, at the time
of wr i t ing this thesis, it was s t i l l not publ ic ly available.

Lack of D P D K support i n Suricata was motivat ion for bachelor thesis of Igor
Mjasojedov led by Jan K u č e r a . Thesis analyses different intrusion detection systems, out
of which Suricata is considered as the best candidate for further development. There are
also described possible options to add a support for D P D K wi th final performance tests at
the end. It was implemented following the common architecture of D P D K applications [9].

In general, D P D K enables packet processing i n user space, s imilar ly to previous packet
capture running modes. B y bypassing the kernel, more resources can be concentrated on
the user space applicat ion processing the packets. The D P D K architecture can be seen in
Figure 2.20. Packets are transferred direct ly from the N I C to the user applicat ion while
kernel space is only used to store N I C s driver and to configure the N I C .

A s can be seen i n Figure 2.20, from the large part D P D K architecture bypasses kernel
and uses the kernel loaded N I C s drivers only for the configuration. The transfer of packets
from the N I C to the applicat ion is managed by the P o l l Mode Dr iver (P M D) which provides
a direct connection between these two parts. However, it must be supported by the network
interface. Other capture interfaces use C P U interrupts. This is shown i n Figures 2.13, 2.14,
2.19 as Deferred reception. Po l l ing method has direct access to the Buffer and repeatedly
queries the N I C for new data. This method is more performance oriented as no forced
context switching is required and packets are transferred straight to the applicat ion. To
ensure high por tabi l i ty of D P D K applications Environment Abs t rac t ion Layer (E A L) is
present in the D P D K A P I . E A L provides a unifying layer between the applicat ion and the
N I C to prevent tight dependencies on the architecture the applicat ion was developed upon.
The D P D K framework therefore allows zero-copy transfer of packets from the N I C to the
application, while providing support for cross-platform and architecture independent usage.

;https: //github.com/vipinpv85/DPDK_SURICATA-4_l_l

19

N I C

N I C

Network driver
(configuration)

CONFIGURATION

^1

Kernel space

DATA
POLLING

DPDK API

Application

User space

Figure 2.19: Packet flow in P F R I N G
capture interface.

Figure 2.20: Packet flow in D P D K
capture interface.

20

2.5 Bypass and flow shunting

Traffic bypass is one of the Suricata features to lower the delay and enable higher packet
processing throughput. The idea behind bypass is fairly simple and straightforward. Div ide
network traffic into flows and, using rules or other techniques, mark flows that can be
bypassed. The next packets of these flows are not inspected anymore and we drop/redirect
them as fast as we can. In Suricata, bypassing a packet can be done on mult iple levels.
Performance benefits of bypass can vary depending on where packet inspection stops. The
sooner the packet processing of the given flows is stopped, the more the enhancement is
efficient. Bypass can be executed internally i n Suricata (local bypass) or i n a capture
interface as mentioned, for example, i n Subsection 2.4.2. Since local bypass is implemented
directly i n Suricata, it is capture interface agnostic and therefore it can be always used.
O n the other side, capture interface bypass must be supported directly in capture interface
implementation by providing functions that should execute on bypass. F r o m currently
implemented capture interfaces there are only 2 that supports it - A F P A C K E T and N F Q .
A F P A C K E T makes use of key-value storage of e B P F hash table to tel l the filter program
in the kernel to drop or redirect packets. Ke rne l capture bypass is more effective because it
saves not only Suricata from reading the packet, decoding it and rules classification but it
also frees kernel from processing the packet i n the network stack (allocating skb, interrupt
handling and more). In case of X D P hook i n the hardware (NIC) bypass function can ever
more boost performance.

Flow shunting is a technique that classifies traffic into flows and then it uses bypass to
flag flows that meet a certain condit ion. Usual ly it is activated for long flows once a certain
(preset) number of packets is reached. It is not common for attacks and threats to send
pre-packets (packets before the attack) and they usually occur on the very beginning. This
makes long flows less interesting for Suricata and they can be considered as safer compared
to short aggressive flows. Alternat ively, it can be used for safe domains (e.g. products of
Google, Amazon) . More details can be found i n reference [3, 14].

2.6 Outputs

In suricata. y•ami you can also set which properties and features of the analyzed traffic
network are logged and sent to the outputs. Suricata can send data off to:

• eve.json - stores information about analyzed data i n J S O N format. A s it contains
many details, it is not suitable for manual inspection but rather it can be accessed by
certain tools for a better analysis. F r o m this file an administrator can identify sources
of the attack and mitigate the threat. The file can be fed to the E L K (Elastic search,
Logstrash, Kibana) stack and Evebox to conveniently view alerts i n a web browser.

• stats.log - holds the basics statistics, which are exported i n fixed intervals and
appended at the end of file. It can serve well for a quick manual inspection. The
results of this file are later used in analysis of Suricata performance. Stats can be
logged at different levels of granularity - from per thread to cumulative results.

• fast .log - a line based alerts log.

• Syslog - a line based alert log sent to Syslog.

21

A s is shown in L i s t ing 2.2 outputs can be customized independently in the Suricata's
configuration file w i th options to include extra fields into the output.

default-log-dir: yes
stats:

enabled: yes
i n t e r v a l : 8

Configure the type of a l e r t (and other) logging you would l i k e ,
outputs:

- f a s t :
enabled: yes
filename: f a s t . l o g
append: yes # after Suricata starts do not create new f i l e

Extensible Event Format (nicknamed EVE) event log i n JSON format
- eve-log:

enabled: yes

Lis t i ng 2.2: A n extract of Suricata output configuration from suricata.yami.

22

Chapter 3

Setting up the environment

Sometimes it is hard to configure Suricata well . B u t focusing solely on Suricata most l ikely
yields i n unsatisfactory performance results. Tuning is a complex process that includes an
examination of other parts of the system and even the other network devices and many
other factors to consider. Therefore, i n this chapter, common bottlenecks of packet capture
and packet processing are described in more detail w i th their possible explanations.

3.1 Network architecture

A s Suricata tuning is a complicated process of adjusting t ight ly coupled hardware and
software requirements and capabilities, it is important to define an architecture of
network, where Suricata is planned to be deployed. A s the tuned settings are not generic,
focus on the designed architecture is essential. Components need to be wisely selected as
bui lding the infrastructure can be costly. Incorrectly chosen components (e.g., due to
some incompatibil i t ies) can lead to unwanted bottlenecks, which add extra expenses to fix.

A testbed is an implementat ion of the designed architecture. It serves especially as
a platform for experiments where easily repeatable, transparent and accurate tests are
possible. It can disprove or confirm theories and ideas. The term i n various industries can
have different shapes. In networking it is usually a mesh of different devices needed for test
purposes. It is common practice that in software engineering testbeds are not connected to
the live network. It attempts to prevent any damage to product ion services and to shield
the testbed from potential intruders.

Testbed shown i n Figure 3.1 is used for measurements i n this thesis. It connects two
machines named Pinot and Claret.

$ $
Pinot Claret

Figure 3.1: Archi tecture of the testbed used for measurements.

23

Pinot:

• OS : Scientific L i n u x 7.3 (kernel version 3.10.0)

. C P U : 6 cores Intel(R) Xeon(R) C P U E5-2620 0 @ 2.00 G H z

. R A M : 64 G B

• N I C : internally made replicator rated for 100 Gbps

• Role: replay P C A P file of captured traffic w i th destination M A C addresses changed
to claret ' s N I C M A C address. P C A P size is approximately 300 G B . Replicator
does not respect relative timestamps i n the P C A P and transmission speed can be set
arbitrarily.

Claret:

. OS : Cen tOS 8.1 (kernel version 4.18)

• Suricata: version 6.0.3-dev

. C P U : 10 cores In te l® X e o n ® Silver 4114 @ 2.20 G H z

. R A M : 64 G B

. N I C : 2 port Mel lanox Connec tX-5 MT27800 card rated for 100 Gbps

• Role: receive packets on the N I C , let Suricata inspect them

3.2 Configuration tool — ethtool

E t h t o o l 1 is a smal l u t i l i ty supported by many vendors of N I C s . It attempts to create a
unifying interface to query and configure settings of N I C s . It is not always true because
not a l l options are implemented by the manufacturer of the N I C or not a l l options are
supported or configurable by the N I C itself.

N I C s settings are ini t ia l ized by the network driver w i th default settings from the
manufacturer. A l t e r ing some parts of the configuration can lead to an increase in
throughput or latency. However, it is important to clearly decide on priorities
(throughput vs latency) before the configuration process as reaching a goal in one (e.g.,
throughput) usually decreases results of the other (e.g., latency). In this thesis, the goal
was to achieve balanced results, w i t h a possibil i ty to focus more on the throughput.

E th too l groups similar settings into ind iv idua l switches. Lower letter switches (e.g., -g)
query data from the N I C and capi tal letter switches (e.g., - G) configure the N I C . W h e n
adjusting settings, a set of options are commonly found after the specified interface. L i s t
of few frequently used switches, which are described below:

• -g | -G - r ing buffer settings,

• -a | -A - pause frames settings,

• -c | -C - interrupt coalescing settings,

x h t t p s : //linux.die.net/man/8/ethtool

24

• - k I - K - offload settings,

• -n | - N - receive network flow classification,

• -1 | - L - N I C queues count settings,

• -x | - X - receive flow hash settings,

• -S - statistics.

3.2.1 R i n g buffer size

R i n g buffer is an important component i n receiving packets. It is a buffer where the
N I C stores a l l packets as they are received. Overwri t ing of existing data happens when
the applicat ion is not able to drain the packets from the r ing buffer quickly enough. In
A F P A C K E T packet capture interface, the applicat ion must communicate w i th the driver
as the r ing buffer is shared only between the driver and the N I C . The driver sends the
packets to the higher layer of kernels and then to the applicat ion which holds the relevant
socket. R i n g buffer is shown i n Figures 2.13, 2.14 and 2.19 as a component named Buffer.
Enlarg ing the buffer size requires more operating memory because it is allocated i n the
kernel-space. C o m m a n d bellow sets size of the r ing buffer to max imum.

ethtool -G eth4 rx 8192

3.2.2 Pause frames

W h e n the receiver's N I C is getting overwhelmed by the incoming packets and the buffer is
about to overflow, it can send a pause frame to let the sender know to stop t ransmit t ing
packets for a specified period of t ime. The switch can then buffer some packets that are
later sent. Historical ly, there were attempts in adopting this technique by manufacturers,
however, it was never widely used and additionally, it caused problems. C o m m a n d bellow
disables receive (rx) and transmit (tx) pause frames.

ethtool -A eth4 rx off tx off

3.2.3 In terrupt coalescing

In networking, interrupt coalescing is a technique that holds interrupts for a specified
amount of t ime and then they are aggregated into one. It aims to reduce interrupt load
by not firing them too frequently (by default, each received packet generates one
interrupt). Potentially, this can have throughput benefits as the C P U handles batch of
packets at once. However, it can lead to an increase i n latency. The command bellow sets
t ime for received interrupt coalescing to 125 milliseconds. It also disables adaptive
moderation to ensure replicable results. Us ing the option rx-frames (example:
rx-frames 100) it is also possible to configure the N I C to send interrupt either after
timeout or packet count is reached.

ethtool -C eth4 adaptive-rx off adaptive-tx off rx-usecs 125

25

3.2.4 Off loading

In modern network cards, there are several offloading features. It means that part of the
network traffic is not processed by the C P U but rather it is direct ly processed on the chip
of the N I C . It can then reduce load on the C P U .
For instance, General Receive Offload (G R O) can reduce processing overheads of small
packets. Network card reassembles short packets into larger and then sends them to the
applicat ion. A s a result, C P U processes fewer packets. There are various kinds of
offloading libraries, however, network traffic offloading usually means packet manipulat ion
or modification. R a w packets, in the form as they are transferred over the network, are
very important for intrusion detection/prevetion systems as rules (signatures) may not
match the offloaded (and thus modified) traffic. For this reason, it is better to tu rn off
every possible offload the network card may have.

for i i n rx tx tso ufo gso gro l r o tx nocache copy sg txvlan rxvlan; do
ethtool -K eth4 $i off;

done

Options rxhash and ntuple allow classification of incoming network flows upon the
results of the hash function. It is covered i n more detail in Sections 3.2.5 and 3.2.6 but it
is advised to enable them.

ethtool -K e t M rxhash on ntuple on

3.2.5 Rece ive side scal ing

To fully comprehend for what receive flow hash is used, it is first required to understand
basic concepts of interrupt affinity and receive side scaling (RSS) . B o t h techniques are
commonly combined to maximize throughput of N I C s .

Interrupt affinity

Interrupt (IRQ) is sent from a device (hardware level) to a C P U as a form of a request for
some action to execute. In terms of N I C s , it is usually meant to po l l packets from the N I C ' s
r ing buffer. Packet acquisit ion through interrupt handling is shown i n Figures 2.13 or 2.19
as deferred reception because the N I C inserts packets into the r ing buffer and notifies the
C P U by an interrupt. The described process is i l lustrated in Figure 2.12. Addi t ional ly , in
the same diagram (2.12), component C P U O is representing core number zero of the C P U .
The default behavior is the same between single and multi-core systems. A s a result, core
0 can be easily overloaded under high packet load and that leads to packet drops.

The term interrupt affinity means binding an applicat ion or a device to a specified set
of C P U cores. Th is means the interrupt is not handled only by core 0 but it is distr ibuted
among a l l specified C P U cores. A s a consequence, latency improvements and higher network
throughput can be expected. Bash script /usr/sbin/set_irq_affinity.sh is included in
the instal lat ion of Mel lanox driver. After executing the script w i t h a specified interface,
it balances the load of interrupts among a l l cores. It is also possible to use other Bash
scripts (set_irq_af f inity_bynode. sh or set_irq_af f i n i t y _ c p u l i s t . sh) to distribute
IRQs among the selected set of C P U cores only.

26

Receive side scaling

Knowledge from previous paragraphs can help to better understand basics behind receive
side scaling (RSS) . It relies on mult iple hardware queues to which it can distribute
incoming packets. Contemporary N I C s support mult iple receive and transmit descriptor
queues (multi-queues). Sometimes queues are not differentiated and are labeled as
combined. It is generally advised to assign one queue to one physical C P U core as
opposed to assigning more queues to one C P U or using hyper-threaded logical cores.
Switches "-1|-L" are used to view settings and manage the number of enabled queues. A n
example of command to configure the N I C to use 20 combined queues is:

ethtool -L e t M combined 20

W h e n R S S is enabled, it might use X O R or Toepli tz hash algorithms to appropriately
balance packets into the queues. Toepli tz hash algori thm allows specification of R a n d o m
Secret K e y (R S K) wi th a length of 40 bytes to determine how the packets are distr ibuted.
It serves as a seed that gets mixed wi th input values inside the hash algori thm. Input values
are packet features aligned into n-tuples and described i n more detail i n Subsection 3.2.6.
The algori thm provides load-balancing statistically. That means hashes of packets w i th
different properties result i n different queues bound to specific cores. The more random the
traffic is (different IPs, protocol ports), the more uniform the dis t r ibut ion is.

It is sufficient for generic applications like web applications or streaming applications
concerned about the transferred data only. However, for I D S / I P S to monitor and analyze
passing network traffic, bo th directions of communicat ion is required. Flow-based rules
depend on packets from both inward and outward directions. A s it is demonstrated in
Figure 3.2, using the default hash algori thm, packets of different directions end up in
different queues because hash of incoming 5-tuple is different from outgoing 5-tuple. 5-
tuple 2 is a set of five different values usually consisting of source I P address, source port,
destination IP address, destination port and transport protocol. It can be optionally set to
n-tuple configured according to 3.2.6. Th is would lead to huge number of cache misses as
it would be v i t a l for detect threads to fetch data out of caches of different cores to get the
most recent data of network flows.

To tackle this problem, use the key from Lis t ing 3.1. It is an absolutely symmetric
key for R S S . It puts packets of the same flow i n the equivalent queues [16]. Toepli tz hash
algori thm wi th symmetric hashing is demonstrated i n Figure 3.3 as packets from both
directions are put into the same queue. A s stated before, one C P U core is bound to one
queue and because of that, cache of each C P U core is occupied by packets of the same flow.
A s a result, cache misses are minimized since cores are not required to transfer data out of
caches of different C P U cores.

0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a
0x6d5a 0x6d5a 0x6d5a 0x6d5a

Lis t ing 3.1: Symmetr ic receive side scaling key.

Commands i n L i s t i ng 3.2 set the R S S function to Toepli tz and its hash key to the
previously mentioned key. After applying latency and cache misses should be lowered.

2 h t t p s : //www. ie t f . o r g / r f c/rf c6146.txt

27

WAN

Toeplitz hash
function

Figure 3.2: Receive side scaling wi th asymmetric hashing.

echo t o e p l i t z > /sys/class/net/eth4/settings/hfunc
ethtool -X eth4 hkey \

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:\
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 20

Lis t ing 3.2: Sett ing a symmetric receive side scaling key on an interface.

28

WAN

Figure 3.3: Receive side scaling wi th symmetric hashing.

3.2.6 Rece ive network flow classif ication

A s mentioned before, Toepli tz hash function uses certain parameters of the packet formed
into n-tuple where n specifies the number of parameters that are used as input parameters
to the hash function. These parameters can be set using
ethtool -N <iface> rx-flow-hash <flow type> <options>
command wi th flow types (e.g., ip4, tcp4, udp4, ip6, tcp6, udp6) and options:

• m - Layer 2 destination (M A C) address,

. v - Layer 2 V L A N tag,

• t - Layer 3 protocol,

• s - Layer 3 I P source address,

• d - Layer 3 I P destination address,

• f - Layer 4 bytes 0 and 1 (source port i n T C P and U D P) ,

• n - Layer 4 bytes 2 and 3 (destination port in T C P and U D P) ,

• r - Discarding packets of the flow type.

Commonly used are combinations of options "sd" and "sdfn". Example of the command
might look like:

ethtool -N eth4 rx-flow-hash tcp6 sdfn

29

3.2.7 Statist ics

Counters of acquired or dropped packets can be seen on several places i n L i n u x . Tools like
i f c o n f i g are not always accurate as they are mainly designed as log tools and may not
always have access to correct memory chunks. O n the other hand, as ethtool is more tied
to network drivers, results should be more favorable. It has direct access to N I C ' s counters
and offers a wide variety of stats from packet/bytes counters for each separate queue to
cumulative results of the whole N I C . It can be used to verify the number of packets received
by the N I C . However, it is incorrect to verify count of dropped packets.

For measurements connected wi th dropped and received packets, a term buffer overflow
(BO) was defined. A s shown i n Equa t ion 3.1, BO is calculated as percentage of packets
received (Prx) d ivided by packets t ransmit ted (Ptx)-

Packets received (Prx) is the difference of components acquired from the ethtool stats
counter "rx_packets" . Equa t ion 3.2 shows that minuend is the number of received packets
after a l l packets were transmit ted and the subtrahend is the number of received packets
before the transmission. For easier calculat ion a l i t t le script in L i s t ing 3.3 is used. It is
expected to run this script before any measurements, afterwards it should be run after each
separate measurement.

Packets t ransmit ted (Ptx) is the number of packets t ransmit ted by the specified device/s
and it is expected the number is either gathered from the statistics of the t ransmit t ing
N I C or gathered from the number of packets contained in the P C A P file. Ca lcu la t ion is
therefore very similar to Equa t ion 3.2. It is expected that measurements run i n an isolated
environment where packets of sources different from the specified transmit device/s are not
present.

expr $(ethtool -S eth4 I grep rx_packets: | grep -o "[0-9]*") - $ETHLAST;
ETHLAST=$(ethtool -S eth4 | grep rx_packets: I grep -o "[0-9]*");

Lis t ing 3.3: Bash script for getting Prx after separate measurements.

3.3 Testing framework

To reach the final configuration, many options need to be explored. M a n u a l testing can
be rather labor-intensive and repetitive work for researchers. It also opens a possibil i ty to
introduce a human error i n measurements. To eliminate these problems, automated testing
is viewed as a better approach. Section introduces the proposed architecture of the testing
wi th the design of the testing framework.

For tests to be replicable, it is essential to replay the same traffic. For this reason,
tuning process can not be just tapped into the live network. For consistent results, a
large P C A P file is recorded from the live traffic and that is used i n a l l tests. This ensures
that configurations are measured under the usual traffic load that goes through the tapped
interface.

(3.1)

rx_stop — rx_start (3.2)

30

3.3.1 A r c h i t e c t u r e

High-level architecture in Figure 3.4 shows how the control station connects to the servers
and executes measurements. Connections to the machines are made over Secure Shell (SSH)
and Secure Copy Pro toco l (S C P) . Commands to control the servers are executed over S S H
and files are transferred over S C P . Con t ro l stat ion can be any computer that has access to
these servers and has a Bash shell.

Internal framework structure i n Figure 3.4 shows modular design wi th a configuration
file. Cer ta in modules (e.g., transmit module) can be replaced or reconfigured in case the
hardware architecture is altered. This enables flexibil i ty and removes dependencies in
testing. Individual components are implemented in Bash scripting language.

Sequence diagram in Figure 3.5 shows a proposed testing scenario. Cont ro l station
starts the Suricata instance on Claret and then after Suricata warm-up t ime it connects
to P inot , reconfigures and starts the transmission of packets w i t h addi t ional parameters as
transmission speed and a specified P C A P file. U p o n finish, P ino t transmit log is transferred
to the control station and similarly, control station stops Suricata on Claret and pulls
statistics. The downloaded files are parsed and data are stored i n a file of comma-separated
values (C S V) . The results can later be processed wi th graph imaging tool to visualize and
merge several measurements together into one graph.

Transmit modules

MODULE

TCPREPLAY

MODULE

REPLICATOR

Receive modules

MODULE

SURICATA

Config
Hostname

|username|

[

Testing framework

MODULE

MAIN

Config
llHostnamel

|username|

C Z 3
Config

I I
L"

Figure 3.4: Internal structure of the testing framework.

31

TestingFramework

K -

K -

<-

start Suricata

finish

stop Suricata

download log file

1
parse logs

&
save results

:Claret :Pinot

wait to get ready

configure TX interface

finish

start TX

download log file

transmit

J
—I
save log

1
wait to stop

save log

Figure 3.5: Sequence diagram of the usual testing scenario.

32

3.3.2 R e p l i c a t o r

Replicator, as mentioned i n the earlier paragraphs, is a custom made F P G A network card.
It resides on P inot , from where packets are t ransmit ted to Claret as shown in Figure
3.1. Broad variety of options for packet transmission is one of the ma in advantage of the
replicator. Ou t of the most highlighted ones are abi l i ty to:

• replay the same P C A P file over and over i n a loop,

• set number of loops (infinite is also an option),

• set the transmission speed,

• set the number of replications (up to 10),

• modify the ind iv idua l replications.

The last two points are making the replicator very special as they allow to amplify the
bandwidth of t ransmit ted traffic up to 10 times where a single replication can transmit up
to 10 Gbps . A s noted, ind iv idua l replications can be modified. For instance, that includes
change in source or destination M A C , IPv4 or IPv6 address. The basic principle is shown
in Figure 3.6 where incoming packet is processed and ind iv idua l replications change the
value of packet properties. This not only results i n higher bandwidth but it also creates
more network flows. Th is behavior better simulates conditions of heavy loaded network.

Replication 1

Replication 2

Replication 3

ipv4.src

ipv4.src += 1

ipv4.src += 2

REPLICATOR

Replication 10 —> ipv4.src += 9

Figure 3.6: Repl icator - transmission of a mul t ip l ied packet.

3.3.3 P C A P

For repeatable experiments it is essential to have a stable environment and an abi l i ty to
make changes independently step by step. In the proposed architecture of the testbed
(Figure 3.1) there are 2 components - replicator on P ino t and Suricata on Claret . Change
i n any of these can affect results of measurements. However, it is unl ikely that change

33

occurs on P ino t as this machine is rated for sufficient throughput of 100 Gbps . Thus, the
only point where change is expected and anticipated is Claret .

Except stable connection between devices, it is also crucial to have easily repeatable
traffic. Th is problem can be easily solved by capturing live traffic on a selected network
and then storing it into P C A P file. In comparison to the traffic created artificially (i.e.
using Scapy 3) , it has a benefit of being more authentic. P C A P files are data files that
contain ind iv idua l packets captured from the live network. These files can be used for later
analysis or, as i n this case, for controlled retransmission.

L is t ing 3.4 shows prel iminary analysis of the P C A P file used i n a l l later
measurements. Packets were captured from a live network and therefore the P C A P file
consists of mixed traffic. However, the traffic should not contain too many malicious
activities since it is an internal network. A s described in Subsection 3.3.2, replicator is
able to set arbi trary transmission speed. Therefore, data bit rate of the P C A P causes no
problem for retransmission of the P C A P . The data size and amount of packets captured
in the P C A P ensure there are enough data to replay.

To have a better picture of what is included in the P C A P , it is better to make an analysis
of possible threats captured i n the file. Th is helps us evaluate how successful Suricata is in
dealing wi th these threats. Analys is provides a set of indiv idual ly generated alerts that are
grouped together to get their sum. L i s t i ng B . l shows a l l alerts generated by Suricata after
P C A P was transmit ted from Pinot from one replication. A l l rules that are used in later
measurements were enabled. Retransmission was done w i t h one replication and was fully
successful w i th a l l packets received on Claret . F r o m the generated alerts, it can be noted
that the traffic is not malicious, most of the alerts are connected wi th inval id packets of
T C P connection.

F i l e encapsulation: Ethernet
Packet size l i m i t : f i l e hdr: 65535 bytes
Number of packets: 509 M
F i l e s i z e : 393 GB
Data siz e : 385 GB
Capture duration: 1166 seconds
Data byte rate: 330 MBps
Data b i t rate: 2 642 Mbps
Average packet si z e : 756,18 bytes
Average packet rate: 436 kpackets/sec

Lis t ing 3.4: P C A P analysis by capinfos.

For P C A P analysis, it is suitable to use offline Suricata, as shown in L i s t ing 3.5 to
prevent any problems wi th packet transmission. In offline mode, Suricata only reads the
P C A P file and raises alerts i f a rule is matched. Configured outputs are used to store
the information from analysis. The command on the bo t tom in L i s t ing 3.5 extracts alert
messages from fast.log file, sorts them and groups them. The analysis report can be used
later to compare wi th Suricata outputs.

suricata - r ~/pcap/testdata.pcap
cut -c 48- f a s t . l o g I grep -Eo ".*}" | grep -Eo " . * \ [\ * \ * \] " I sort | uniq -c

Lis t ing 3.5: P C A P analysis by Suricata.

However, since replicator uses replications in a way as explained i n 3.3.2, it creates new
traffic flows by adjusting certain properties of packets. To see how Suricata reacts to this

3 h t t p s : //scapy.net/

34

k ind of traffic, further analysis was done by using 4 replications. Packets were transmitted
at speed 900 M b p s per replication. Purpose of the second analysis was to test theory that
the number of alerts generated by 4 t ransmit t ing replications is equal to the quadrupled
number of alerts generated by 1 replication. W i t h 4 replications enabled, one replication
sends the original P C A P and the others send altered P C A P (changing bit in source I P
address). The L i s t ing B.2 shows results of the second analysis.

F rom the analysis, it is possible to obtain that count of alerts have total ly disproved
the theory. Therefore an increase i n the number of replications does not dramatical ly
increase count of generated alerts. In some cases (e.g. ET POLICY rule) the number of
alerts have quadrupled. However, majority of generated alerts do not follow this pattern.
This assumption was therefore dismissed. The results of this comparative analysis does not
affect future measurements. Suricata can s t i l l be under a heavy load of incoming packets.
Suricata's goal is to inspect a l l incoming packets.

It is also possible to see that majority of alerts are from Suricata rulesets, two alerts are
from Emerging Threats rulesets.

3.4 Performance tuning of A F _ P A C K E T

Implementing any k ind of opt imizat ion without a possibil i ty to compare wi th already
existing solutions would not tel l much. A s discussed in sections before, it is crucial to
have a solid and stable testing environment to move forward any settings in current
solutions. Similar ly, it is necessary to evaluate newly proposed design step by step
whether implementat ion is on the right track and is competent enough compared to other
existing solutions.

This section present steps taken to achieve the best results that were captured wi th
the current hardware. To decide what configuration suits the best the designed network
architecture, it is v i t a l to i teratively perform various tests of the deployed Suricata instance.
A s stated before, tuning the Suricata is a complex process and has no generic settings for
the top performance. The process consists of an evaluation of results gathered from tests
of Suricata loaded under various configurations. Group of steps are then coupled wi th
measurements that are displayed on the graphs. Individual graphs can serve as a baseline
results for a proposed opt imizat ion.

3.4.1 P e r f o r m a n c e m e a s u r i n g tools

Configuring Suricata correctly is usually a lengthy process. K n o w i n g its architecture helps
but since it is a very complex piece of software, it is often hard to understand. Even then
it does not guarantee fast configuration process. Another (,ynachine learning like")
approach would be to take Suricata almost as a black box that takes in i t i a l configuration
file, starts processing packets and then according to the feedback, adjust ind iv idua l
settings of the configuration file and repeat. It is obvious this approach would not be
feasible in human version. The usual way of configuration is somewhere i n the middle -
li t t le bit of architectural knowledge combined w i t h trial-and-error approach w i t h focus
onto certain areas of the configuration file. Cer ta in settings can be generally applied for
better performance but some must be tuned per environment where Suricata is deployed
(e.g. hardware Suricata is running on or popular type of traffic that occurs on the
network). Ge t t ing feedback in form of received/dropped packets would s t i l l leave us b l ind

35

in many areas. Therefore, this subsection presents performance measuring/ tuning tools to
gather valuable information and uncover details of these

Performance Counters for L inux (perf)

Perf is a popular performance analysis tool among L i n u x developers to see at what places
spends the running program the most t ime. It can detect possible bottlenecks or places
that can be improved. It has been in i t ia l ly released i n 2009 and it is s t i l l widely used today.
To report actual performance usage, it is based on event counting statistical methods. It
has various sub-commands such as:

• stat - measures events statistics of one specific command/program,

• top - dynamical ly updated list of top used (hot) functions (Figure 3.7),

• record - record and save sampling data of the program to a file (to be processed
later),

• report - reads a file of sampling data and generates different kinds of reports.

Figure 3.7 shows usage of sub-command top (perf top). O n the top, i n the blue-colored
frame, we can see details about event sampling. The second line of the output describes of
what ind iv idua l rows i n the list is composed of. Below, the most used functions are listed
i n descending order according to its overhead percentage. Color of overhead percentage
also gives a clue to how serious the usage is. Star t ing from the bo t tom - no to low usage is
white, low to medium usage is green and medium to high usage is red. Symbol hints what
part of the program uses the most of the C P U time.

Samples:
Overhead

2H o f e v e r t
Shared Obj

' c y c l e s ' i
e c t

4930 Hz, Event count (a p p r o x .) : 333466299469 l o s t : 3 /3 d r o p : 3 /3
Symbol.

25 87% su r i c a t a DetectRun.pa rt.16
9 09% s u r i c a t a DetectEnginelnspectRulePacketMatches

86% s u r i c a t a FlowGet FlowF romHa s h
23% s u r i c a t a Detect EnginePktIns pectionRun
98% s u r i c a t a D e t e c t P r o t o C o n t a i n s P r o t o
62% l i b h s . s o . 5 .3.0 0x0000000000612fa6
14% s u r i c a t a DetectEngineEventMatch
07% [kernel] t p a c k e t _ r c v
01% l i b c - 2 . 2 8 . 50 memmove avx unaligned erms

0 99% l i b c 2.28. 50 msort_with_tmp.pa r t . 0
G 88% [kernel] memcpy erms
0 86% l i b p t h read -2.28.so pth read_mutex_lock
0 73% [kernel] b u i l d skb
0 60% s u r i c a t a hashword
0 59% s u r i c a t a DetectFlowMatch
0 49% [kernel] [k] f i b _ t a b l e _ l o o k u p
0 45% [kernel] [k] t a s k l e t a c t i o n common.isra.14
0 43% [ke r n e l] [k] i n e t lookup e s t a b l i s h e d
0 41% l i b h s . s o . 5 .3.0 0x00000000005799d2
0 40% su r i c a t a AFPReadFromRingV3

Figure 3.7: Screenshot of running perf top.

htop

H t o p ° (shown i n Figure 3.8) as an interactive performance monitor/process manager is
the Swiss army knife of L i n u x administrators for diagnosing problems of the server. It is

4 h t t p s : //man7.org/linux/man-pages/manl/perf .l.html
5 h t t p s : //man7.org/linux/man-pages/manl/htop.l.html

36

well known tool among L i n u x users. A s seen i n Figure 3.8 the first part of the output
represents a load of ind iv idua l processor's cores between the squared brackets. In this case,
there are 40 cores (physical and logical cores are combined) w i th a significant load on the
odd numbers since Suricata is set to run only on N U M A node 0. Representation of core
numbers w i th respect to N U M A nodes locat ion differs between the operating systems. L o a d
in the squared brackets is d ivided i n two colors - red and green. R e d color denotes load
of kernel related tasks (e.g. interrupt handling) and green represents load from user space
applications (e.g. packet inspection i n Suricata).
How much memory is left can be viewed between the squared brackets at lines denoted as
Mem and Swp. L a b e l Mem represents a load of R a n d o m Access Memory (R A M) whereas Swp
stands for addi t ional Swap memory.
The green-colored line denotes descriptions of ind iv idua l columns. The list of rows described
ind iv idua l processes that are run on the machine wi th respective usage of resources.

] H I I I I I I I I I I I I] 211
] 12[1 22[
] 131 I I I I I I I I I I I I I I I I I I] 23[| I I I I I I I I I I I I I I I I I
] 14|] 24|
1 15[I] 25[I I I I I I I I I I I I I I I I I I I
] 16[] 26[
1 " I I I I I I I I I I I I II I I I I I I] 27|| I I I I I I I I I I I I II I I I
] 18[] 28[
] 191 I 1 29[|I I I I I I I I I I I I I I I I I I
] 2Q[] 30[

] Tasks: 49, 51 t h r ; 18 run
] Load average: 8.82 5.49 2

Uptime: 81:27:14

PID USER PRI NI VIRT RES SHR S CPUli MEM%v TIME+ Command
10085 root 20 0 13 6G 12 .5G 3767M S 752 . 19 6 lh06 56 /us r/bin/su r i c B t a - c /home/cu rrent/xsismiQl/messure- su r i /
10115 18 -2 13 6G 12 .5G 3767H 41. • 19 6 3 :57 81 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10116 IS -2 13 6G 12 .5G 3767M R 49. 7 19. 6 3 :33 78 /us r/bin/su r i c s t a -c /home/cu rrent/xsismiGl/messure su r i /
10117 18 -2 13 6G 12 .5G 3767H S 46. 4 19 6 4 :21 18 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10118 18 -2 13 6G 12 .5G 3767H S 31. 2 19 6 3 :37 62 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10119 18 -2 13 6G 12 .5G 3767M R 31. 2 19. 6 3 :25 52 /us r/bin/su r i c s t a -c /home/cu rrent/xsismiQl/messure su r i /
10120 18 -2 13 6G 12 .5G 3767H S 37. 8 19 6 3 :49 56 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10121 18 -2 13. 6G 12 .5G 3767H S 43. 1 19 6 3 :24 27 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10122 18 -2 13 •:,(-. 12 .5G 3767M R 41. a 19. 6 3 :14 72 /us r/bin/su r i c s t a -c /home/cu rrent/xsismiQl/messure su r i /
10123 18 -2 13. 6G 12 .5G 3767H S 45. i 19 6 4:01.62 /us r/bin/su r i c s t a - c /home/current/xsismiQl/messu re- s u r i /
10124 18 :• 3767H _ /us r/bin/su r i c s t a /home/current/xsismiQl/messu re- s u r i /

Figure 3.8: Example of running htop.

Intel Performance Counter M o n i t o r (pcm)

Similar ly to previously mentioned tools, Intel P C M 6 is a performance monitor that provides
deeper insight into how ind iv idua l components of Intel platform are busy. In the first section
of Figure 3.9, ind iv idua l cores of available processors are displayed along w i t h respective
statistics to each core. W h e n performance tuning is a goal, it is useful to look at columns
I P C and L 3 H I T . Under the core list there are averaged statistics/counters per processor
socket (N U M A node).

I P C stands for Instruction per Cyc le and it is equal to the average number of executed
instructions per C P U cycle. If I P C counter equals to 4, it means the core is 100% uti l ized.
Because of Hyper thread ing ' , on 1 physical core resides 2 logical cores. A s a result their
I P C counters are summed when calculat ing actual I P C on physical core.

6https://software, intel.com/content/www/us/en/develop/articles/intel-performance-counter-
monitor, html

7https://www. intel.com/content/www/us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html

37

https://software
http://intel.com/
https://www
http://intel.com/

L 3 H I T is a ratio between successful and failed lookups i n L 3 cache. Cache i n the C P U
design serves as a temporary storage of data that C P U might use later. There are
different levels of cache implemented. Ranging from L I up to L 3 cache, each level
provides different levels of access times (the lowest is the fastest) and different sizes (the
highest is the biggest). D a t a that does not fit into these caches are pushed into operating
memory. Fetching the data from operating memory requires huge amount of time
compared to Lx cache of the processor. For this reason, it is i n the best intentions to keep
majority of the data i n cache. However, because of the great amount of traffic and l imited
size of Lx caches it is not possible to have 100% hit rate. It is indeed favored to be as
close as possible.

Under the core list we can find dis t r ibut ion of cores C-states 8 . Cores i n Intel architecture
have different power and performance strategies. These strategies are called C-states and
go from CO (the most performant, the least power saving) through C I up to C 6 (the least
performant, the most power saving). A s a l imi ted number of cores can run in C-state CO,
other cores can run at C-state C I . In Figure 3.9 it is possible to notice that half of the
cores run i n C 0 / C 1 (cores of the socket where Suricata is running) and the other half is in
power saving mode (the other N U M A node).

The next section shows statistics of Intel U l t r a P a t h Interconnect 9 (UPI) which is a
successor of Intel Quick P a t h Interconnect (QPI) . There are two sockets displayed i n Figure
3.9 wi th 2 U P I links w i th close to no data transfers between the sockets. B a n d w i d t h of
respective l inks in absolute and relative numbers is displayed in the relevant cells.

The very last section shows counters for the main operating memory controller and
ind iv idua l processor sockets. R E A D / W R I T E columns denote the amount of gigabytes
(G B) that are transferred from or to the main memory controller. C o l u m n L O C A L shows
ratio of memory request to local memory controller.

https://software, intel.com/content/www/us/en/develop/documentation/vtune-help/top/
reference/energy-analysis-metrics-reference/c-state.html

9 h t t p s : //en.wikipedia.org/wiki/Intel_Ultra_Path_Interconnect

38

https://software
http://intel.com/
http://wikipedia.org/wiki/Intel_Ultra_Path_Inter

Core (SKT) | EXEC | IPC | FREQ | AFREQ | L3MISS | L2MISS | L3HIT | L3MPI | L2MPI | L30CC | TEMP

2 0 0.41 1.61 0.25 1.00 261 K
4 0 0.56 1.52 0.37 1.00 385 K
6 0 1.64 2.08 B.79 1.00 368 K
8 0 1.44 1.97 0.73 1.00 294 K
10 0 0.76 1.89 0.37 1.00 253 K
12 0 0.45 1.53 0.29 1.00 273 K
14 0 0.45 1.77 0.25 1.00 260 K
16 0 0.34 1.51 0.22 1.00 288 K
18 0 0.52 1.63 0.32 1.00 344 K
22 0 0.72 1.90 0.38 1.00 265 K
24 0 0.66 1.77 0.37 1.00 273 K
26 0 0.37 1.34 0.28 1.00 252 K
28 0 0.60 1.50 0.40 1.00 276 K
30 0 0.48 1.62 0.24 1.00 245 K
32 0 0.60 1.74 0.34 1.00 260 K
34 0 0.48 1.68 0.24 1.00 245 K
36 0 0.49 1.71 0.29 1.00 292 K
38 0 0.68 1.86 0.36 1.00 269 K

SKT 0 0.57 1.74 0.33 1.00 5150 K
SKT 1 0.00 0.54 0.00 0.48 129 K

TOTAL * 0.29 1.73 0.17 0.99 5279 K

678 < 0 68 8 33 8 88 289 57
996 K 0 61 8 99 9 88 1899 55
1182 < 0 66 8 99 8 88 923 54
8 59 K 0 64 8 99 9 88 299 57
••135 < 0 71 8 99 8 88 633 57
772 K 8 63 8 99 9 88 499 57
770 < 0 65 8 99 8 88 443 57
814 K 8 64 8 99 9 88 649 56
988 < 8 61 8 99 8 88 483 55
826 K 8 67 8 99 9 88 1129 57
987 < 8 69 8 99 9 88 233 55
6 28 < 8 59 8 99 9 88 129 54
766 < 8 63 8 99 9 88 43 57
653 < 8 62 8 99 9 88 169 57
733 < 8 63 8 99 9 88 433 57
727 < 8 65 8 99 9 88 699 57
897 < 8 67 8 99 0 88 849 56
857 K 8 67 8 99 9 88 233 55

14 M 0 64 8 00 8 00 9800 54
612 K 8 78 8 99 0 02 12200 62

15 n 8 65 8 99 0 88 N/A N/l

Instructions r e t i r e d : 25 G ; Active cycles: 14 G ; Time (TSC): 2195 Mticks ; CO (active,non-halted] core residency: 16.67

CI core residency: 38.68 %; C6 core residency: 44.66
C6 package residency: 1OO.00 %; C2 package residency: 8.00 %; C6 package residency: 0.08

Core C-state distribution1000088880000011111111111111111111111111111116666666666666666666666666666666666661

Package C-state d i s t r i b u t i o n 000000000000009000

PHYSICAL CORE IPC : 3.47 => corresponds to 86.66 % u t i l i z a t i o n f o r cores i n active state
Instructions per nominal CPU cycle: 0.57 -> corresponds to 14.35 % core u t i l i z a t i o n over time i n t e r v a l
SMI count: 0

In t e l (r) UPI data t r a f f i c estimation i n bytes (data t r a f f i c coming to CPU/socket through UPI l i n k s) :

UPI0 UPI1 | UPI0 UPI1

SKT 0 27 M 26 M | 0% 0%
SKT 1 11 M 12 M | 0% 0%

Total UPI incoming data t r a f f i c : 78 M UPI data traffic/Memory c o n t r o l l e r t r a f f i c : 0.03

In t e l (r) UPI t r a f f i c estimation i n bytes (data and non-data t r a f f i c outgoing from CPU/socket through UPI l i n k s) :

UPI0 UPI1 I UPIO UPI1

SKT 0 222 M 225 M | 1% 1%
SKT 1 236 M 232 M 1% 1%

Total UPI outgoing data and non-data t r a f f i c : 917 M
MEM (GB) >I READ | WRITE | LOCAL | CPU energy | DIMM energy |

SKT 0 1.77 1.31 99 % 42.01 3.91
SKT 1 0.03 0.02 11 % 19.23 2.37

« 1.80 1.34 98 % 61.24 6.27

Figure 3.9: Screenshot of pern.

39

3.4.2 Pre-base l ine measurements

In the beginning, setting a goal that is not too hard to grasp was crucial . A s mentioned
earlier, it is important to gradually move forward. The goal was to measure buffer overflow
of Suricata w i th A F P A C K E T capture interface and with no rules applied. For the later
measurements, the results might be considered as potential top performance for Suricata
(although it certainly is not taken as a fact) as enabling rules degrade performance of
Suricata. However, the main point was to test functionality and rel iabil i ty of the testing
framework architecture. It also proved that P C A P s acquired for the replicated tests and
other l imitat ions of hardware/software cause no problems.

A t this stage, progress was made i n iterative steps, start ing wi th successful packet
transmission and reception. Even wi th no rules enabled, Suricata handles and decodes a l l
incoming packets. In these tests, only the detection module was not tested. It continued
wi th picking the seemingly best N I C configuration according to ethtool statistics
mentioned i n Subsection 3.2.7. After many experiments, configuration that can be found
in L i s t ing A . l was used. This configuration remained through a l l measurements of
A F P A C K E T runmode. Section 3.2 explains ind iv idua l settings in more detail . A l l
measurements were performed wi th the testing framework mentioned i n Section 3.3. A s
rules were disabled, some already implemented opt imizat ion techniques such as Hyperscan
or X D P were not yet applicable as the performance enhancement is l inked to more
efficient ruleset usage. D u r i n g this process, version of Suricata together w i th a version of
operating system got fixed to values mentioned in Section 3.1.
A F P A C K E T results of the tuned configuration can be seen in Figure 3.10. In the
figure, it is possible to observe that packet reception is consistently reliable up un t i l 22
Gbps w i t h buffer overflow from 0 to 1 percent. A l l three variants of measurements
received 100% packets i n sub-20 Gbps receive speeds. After that, the number of dropped
packets starts to increase. It is possible to notice that 8 replications (8 times more flows
than in the original P C A P file) puts more stress on Suricata than 4 replications at the
same transfer rates. A s the goal of this test was to ensure a l l machines are set up
correctly, there was enough data to stop the measurements. It was certain Suricata
handles traffic very well up unt i l 22 Gbps . It was possible to enable rules and start
measurements.

40

1.2

1.0

2.0.6
Q-
s
•

0.4

0.2

Claret CentOS8 Suricata V6.0.1 AF-PACKET 2 replications

Claret CentOS8 Suricata V6.0.1 AF-PACKET 4 replications

18 NIC queues

18 NIC queues

HT NUMAO

HT NUMAO no r ules

abled) no rules Claret CentOS8 Suricata V6.0.1 AF-PACKET 8 replications 18 NIC queues, NUMAO (HT En

ules

abled) no rules

J
1

j
6000 8000 10000 12000 14000 16000 18000 20000 22000

Transmit speed [Mbps]

Figure 3.10: Opt imized A F P A C K E T capture interface wi th no rules enabled.

3.4.3 Base l ine measurements

After the in i t i a l measurements and tests, it was possible to set a new goal - measure
Suricata buffer overflow with rules enabled. D u r i n g this stage it was important to
establish a set of rules (ruleset) and use it throughout a l l measurements. Performance could
vary due to the always changing set of Emerging Threats rules. This could further cause
imprecise measurements because of a different number of rules enabled. Chosen ruleset
stored in suricata. rules was added to the source control system of the testing framework to
be easily accessible for future installations.

A s described i n the previous subsection, the configuration file was updated i n iterative
steps according to the feedback i n the form of dropped packets. W i t h the help of profiling
tools described i n Subsection 3.4.1 it was possible to reach great results even on the available
hardware described in Figure 3.1. Figure 3.11 represents Suricata performance wi th traffic
sent from 4 replications. N U M A node 0 had 18 cores allocated for Suricata worker threads
and 2 cores for management threads. N I C was configured wi th commands of L i s t ing A . l
- 18 combined queues, 10ms interrupt coalescing, enabled R S S . Suricata runs in workers
mode and A F P A C K E T is set to cluster_qm mode. C l u s t e r _ q m mode binds R S S queues
wi th ind iv idua l C P U cores in one-to-one relationship. Packets from 1 queue always lands
on the 1 bound C P U core. Therefore, R S S also acts as a load balancer. 1 core inspects
packets from both directions because of the special symmetric R S S hash key (Lis t ing 3.1).
F rom the output of P C M (Subsection 3.4.1) displayed i n Figure 3.9 it was possible to
observe I P C (Instruction Per Cycle) hovering around 3.3 instructions per cycle (topping at
3.5 I P C) . Th is means Suricata is greatly tuned and even surpasses I P C of 2.7 from Suricata
Extreme Performance Tuning (S E P T u n) [13]. L 3 H I T rate was around 65% which is s t i l l
very good result at this amount of traffic. Inter-processor communicat ion (UPI) was almost
zero and i n 99% of memory requests local N U M A memory controller was able to provide
the requested data.

Hyperscan was also enabled to speedup rule matching. e B P F filter program was also

41

available. If needed, it was hooked to the kernel v i a X D P . In case flow shunting is enabled,
it stops packet inspection after 20 packets of the given flow. Suricata uses special flow rules
to count number of packets of the given flow. W h e n the number of packets reaches the
l imi t (20), a bypass rule is activated. The flow is then bypassed at the driver level.

G raph in Figure 3.11 displays three different measurements. Blue line is tuned Suricata
wi th previously mentioned settings and finely tuned suricata.yaml configuration file. Orange
line had addi t ional ly enabled X D P bypass as described in Subsections 2.4.2 and 2.5. Green
line had enabled both X D P bypass and flow shunting - also described i n Subsection 2.5.
Classic Suricata (blue line) handles traffic up to 6 Gbps . X D P located in the driver helps
to push performance even further to almost 7.5 Gbps . Emerging Threats rules do not use
bypass very often. Dropping packets had the same characteristics i n both versions. O n the
other hand, aggressive flow shunting method proves very high packet throughput - reaching
up to 18.5 Gbps . Higher receive speeds results i n a slight increase i n packet drop.

Graph in Figure 3.12 proves the same packet processing behavior of Suricata happens
even i f Suricata is under a load of different number of replications. It can handle very well
even high amounts of flows. These results were achieved after careful tuning of Suricata
over t ime. Number of different tuning paths were explored. These results are reference
results and new capture interfaces or other Suricata enhancements can be compared wi th
these performance graphs. Alternat ively, it is also possible to reuse the configuration files
for later measurements.

70

60

50

i 40

Q-30 o
Q

10

Claret AF-PACKET 4 replications, 18 NIC queues HT NUMA0

3

^^^^
Claret AF-PACKET 4 replication XDP BYPASS

Claret AF-PACKET 4 replications XDP BYPASS FLOW SHUNTIN 3

Claret AF-PACKET 4 replication XDP BYPASS

Claret AF-PACKET 4 replications XDP BYPASS FLOW SHUNTIN 3

2500 5000 75 00 10()00 12500 15()oo 17; >00 20000
Transmit speed [Mbps]

Figure 3.11: A F P A C K E T capture interface wi th rules enabled.

42

Claret A F - P A C K E T 2 rep l ica t ions , 18 NIC queues HT NUMAO

Clare t A F - P A C K E T 2 rep l ica t ion X D P BYPASS

Claret A F - P A C K E T 2 rep l ica t ions X D P BYPASS FLOW SHUNTING

Clare t A F - P A C K E T 4 rep l ica t ions , 18 NIC queues HT NUMAO

Claret A F - P A C K E T 4 rep l ica t ion X D P BYPASS

Clare t A F - P A C K E T 4 rep l ica t ions X D P BYPASS FLOW SHUNTING

Claret C e n t O S 8 Sur ica ta V6.0.1 A F - P A C K E T 8 rep l ica t ions , 18 NIC q u e u e s , NUMAO (HT Enab led)

Claret C e n t O S 8 Sur i ca ta V6.0.1 A F - P A C K E T 8 rep l ica t ions X D P BYPASS

Claret C e n t O S S Sur ica ta V6.0.1 A F - P A C K E T 8 rep l ica t ions XDP BYPASS FLOW SHUNTING

10000 12500
Transmi t s p e e d [Mbps]

Figure 3.12: A F P A C K E T capture interface w i t h rules enabled wi th tested under different
number of replications.

43

Chapter 4

Design of the proposed
optimization

To figure out how to improve system's performance, it is crucial to use a set of suitable tools
for such tasks. Some of these tools were presented i n Subsection 3.4.1. In each applicat ion,
there are always mult iple places to optimize. W h e n using such tools, it is possible to
pinpoint the biggest bottlenecks of the applicat ion. After choosing a single bottleneck to
focus on, investigation of the problem follows. Th is process results either in el iminat ion of
the bottleneck or inabi l i ty to overcome the selected bottleneck. However, the former option
happens much more often. In most quick ad hoc solution is to add more resources.
Th is might be sometimes impossible and, among other things, it implies higher operation
costs of such systems.

The problem of finding the root cause of the bottleneck and implementing a solution
to eliminate it can look often more challenging upfront but it can easily pay off i n the
future. It requires deep understanding of not only the applicat ion but also the stack the
application is running on and technology that it uses. The whole opt imizat ion process can
be longer than, e.g. increasing available resources. A s a result, the upfront costs can be
higher. Removing the root cause of the bottleneck can pay off i n the long run. It might
imply that it lowers service expenses and speeds up processing/response time.

A s a result, the former approach is better suited for short fixes or onetime operations
such as data migrat ion. The direct mi t igat ion of the bottleneck can therefore be more
worthy in the long running applications. A n example can be Suricata. Instances of Suricata
deployed i n product ion operate continuously and uninterrupted for 24/7.

Therefore, ind iv idua l modules of Suricata should be highly opt imized and use as much
resources as possible to provide the best performance. Suricata already tries to do its part
well by opt imiz ing ind iv idua l modules. For example, Suricata uses a high-level of
parallelism thanks to being a multi-threaded program - this was more elaborated in
Section 2.3. Another popular I D S / I P S applicat ion - Snor t 1 uses for detection a single
thread. It is therefore l imi ted by the single-core performance of the C P U (to scale up to
100 Gbps it would require 250 cores [17]). In detection module, Suricata addi t ional ly uses
an open-source, high-performance, regular expression-matching l ibrary from Intel
described i n Subsection 2.2.3. The l ibrary improves detection i n Suricata instances w i th
large rulesets thanks to S I M D instructions. Suricata also uses various opt imized capture

x h t t p s : //www.snort.org/

44

http://www.snort.org/

interfaces either implemented by either Suricata developers or other companies. These
capture interfaces were more described i n Section 2.4.

4.1 Motivat ion

Previous chapters introduce topics such as Suricata architecture or various capture
interfaces. It is first required to fully comprehend a l l of them, to be able to successfully
move towards any opt imizat ion of Suricata. A s Suricata is open-source and public, there
have been efforts to speed certain modules of Suricata. These attempts were not always
successful as some of them might not have yielded the best results or have been
abandoned over t ime. D P D K capture interface or G P U (C U D A) acceleration are
examples of such failed efforts.

After tuning of settings of Suricata w i t h A F P A C K E T capture interface, I performed
an analysis of Suricata performance wi th tools mentioned in Subsection 3.4.1. H i g h load
of kernel tasks (red-colored ticks) shown i n Figure 4.1 has sparked my attention and
I decided to inspect it a l i t t le further. These kernel calls are at t r ibuted to interrupt
handling. Interrupts originate in A F P A C K E T capture interface as a way to signal
kernel to handle packets from the N I C . This can result i n a load as high as 20% of the
to ta l applicat ion load. A m o n g other things, this analysis has helped to set a proposal for
Suricata opt imizat ion for this master thesis. I w i l l attempt to lower the load of capture
interface by implementing a new one - based on the D P D K framework.

H I 1] 1 1 [| | | | | | | | | [3 1 (1 1 1 1 1 1 1 1 1 1
2[12 [22[32[
3111 1 M i l l 1 1 3 [| | | | | | | • • • • [M M 3311 1 I I I I
4[14 [24[34[
511 1 1 1 1 1 1 1 1 1 5 I I I I I I I I 2 5 [| I | | I | | I 3511 1 1 1 1 1 1 1 1
6[16[26[36[
7 (1 1 1 1 1 1 1 1 17 [| | | | | | | | || 2 7 [| | | | | | | | | 3 7 [| | | | | | | |
8[1S[28[38[
9 (1 1 1 1 1 1 1 1 1 C 19 [2 9 (1 1 1 1 1 1 1 1 39| |

10 [20[30[40 [
Mem:62.4G used:2 8.2G b u f f e r s : i :ache: T a s k s : 4 2 , 49 t h r ; 10 r u n n i n g
Swp[] Load a v e r a g e : 7 . 3 9 6. 38 5.72

Uptime: 9 1 : 1 9 : 9 6

PID USER PR I NI VIRT RES SHR S CPU%vMEM% TIME+ Command
11439 r o o t 20 0 11.4G 10.2G 3588M s 783. 16.0 13:19.11 / h o m e / l o c a l / x s i s m i 0 1 / s u r i c a t
11551 18 -2 11.4G 10.2G 3588M s 58.8 16.0 0:49.25 / h o m e / l o c a l / x s i s m i 0 1 / s u r i c a t
11553 18 3588M 58.8 16.0 0:42.02 / h o m e / l o c a l / x s i s m i G l / s u r i c a t

Figure 4.1: Prof i l ing Suricata i n htop (A F _ P A C K E T capture interface enabled).

4.2 Analysis of the current implementation

A s mentioned earlier, there have been attempts to implement D P D K interface into Suricata.
It was a rejected pu l l request 2 and a bachelor thesis of a student [9].

The author of the previously mentioned pu l l request is maintaining the implementat ion
in a new separate b ranch 3 . However, this implementat ion is based on Suricata 4.1.4 and

2 h t t p s : //github.com/OISF/suricata/pull/4902
3 h t t p s : //github.com/vipinpv85/DPDK_SURICATA-4_l_l

45

uses D P D K of version 19.11.3. Addi t ional ly , lack of documentation contributed to closing
the pu l l request. It is in my best effort to follow Suricata design and code guidelines for
a successful integration. W i t h thorough documentation it might be used by a broader
audience.

The bachelor thesis successfully proved the possibil i ty of implementat ion of D P D K
into the Suricata and Suricata integration wi th in the D D o S Protector (ex D C P r o) ' 1

system. However, it lacks certain attributes of performance-oriented and maintainable
capture interface. W i t h results of the mentioned thesis, I was unable to select capture
interface other than D P D K . A l though the implementat ion provides a way to configure
Environment Abs t rac t ion Layer (E A L) , it is not possible to adjust parameters of other
things related to D P D K such as packet mempool size.

Current implementat ion also uses packet copy, which, i f avoided, can br ing further
performance benefits. It also follows old architecture of IPS wi th a verdict module. Th is
is explained in more detai l in the next section. The new architecture should leave
responsibility of releasing and t ransmit t ing a packet to Suricata release function.

The listed problems, among other things, increased the motivat ion for the new
implementation of D P D K capture interface.

4.3 Idea proposal

A s mentioned i n the introduct ion of this chapter, to successfully design an opt imizat ion
for Suricata, deep understanding of topics presented i n the previous chapters are required.
Knowledge of Suricata architecture presented i n Section 2.1 is crucial to implement a new
capture interface. Addi t ional ly , insight acquired from Subsection 2.4.5 can aid reader in
comprehending the presented proposal.

Suricata architecture, as shown i n Figure 2.4 consist of 4 main thread modules. These
are described i n more detail i n Section 2.1. Figure 2.4 presents a high-level overview that
not always reflects the actual implementat ion of the ind iv idua l modules.

L i s t ing 4.1 is an extract from the main configuration file that contains the threading
part of the configuration. F r o m there, it is possible to notice 4 main C P U sets of threads.
Names of the thread groups expose how the Suricata is implemented internally. Individual
thread groups serve for specific purposes. Figure 4.2 illustrates more in-depth architecture
of Suricata. Individual parts are also explained in Suricata documentation[10].

threading:
se t - c p u - a f f i n i t y : yes
cpu- a f f i n i t y :

- management-cpu-set:
cpu: [0, 2]

- receive-cpu-set:
cpu: [4, 6]

- worker-cpu-set:
cpu: [8, 10, 12, 14]

- verdict-cpu-set:
cpu: [4, 6]

Lis t ing 4.1: Threading part of suricata.yaml configuration file.

4 h t t p s : //www.liberouter.org/technologies/ddos-protector/

46

http://www.liberouter.org/technologies/ddos-protector/

Incoming data i n Figure 4.2 are first passed to the receive C P U set. Th is thread group
handles data reception and decodes it to the format Suricata can understand. Packets
decoded from this group serve as an input for the next thread group. They are put in
packet pools to be processed by worker threads. Worker C P U set handles, for example,
reassembling T C P streams, defragmentation, detection or logging. Packets leaving the
worker thread can either be handed over to the verdict C P U set (in case of IPS) or freed
from Suricata memory (in case of IDS) . Verdict threads receives packet and according to
the information in the packet structure it executes the desired action. These verdict threads
can either drop packet or transmit it v ia a configured N I C .

Management C P U set takes mainly care of flow tables that are also used i n the detection
process. These threads access memory of a l l threads and thus are not direct ly incorporated
in the processing pipeline.

Some capture interface like A F P A C K E T simplifies the module architecture by using a
callback function. This function is called by Suricata when a packet is being released from
internal packet pools. The capture interface can implement not only release of the packet's
data from the interface but also a transmit functionality to support IPS mode. Us ing this
method, Verdict module can be removed from the pipeline shown in Figure 4.2.

The D P D K capture interface is designed to follow the presented architecture. It
focuses on workers runmode, which is more described i n Section 2.3. It essentially means
that a l l modules are bundled together i n one thread. This implies that one module is
directly connected to the next module without switching between threads. Suricata then
consists of many worker threads that avoid inter-thread communicat ion.
Before ind iv idua l modules are created, D P D K applicat ion needs to have environment
abstraction layer ini t ia l ized. In D P D K framework, this is handled by a main lcore.
Sequence diagram in Figure 4.3 shows the process of D P D K ini t ia l izat ion. It is expected
that this lcore is separated from Suricata completely or that it is assigned to the
management thread set. A s Suricata starts, the main lcore initializes E A L . Packet
processing/Worker threads are created later i n the process of Suricata ini t ia l izat ion.
Dur ing spawning of these threads, separate N I C s are configured wi th the loaded interface
configuration. D P D K packet memory pools are created indiv idual ly by each thread.
These are filled w i th packets received by the N I C . L o a d is distr ibuted to separate packet
mempools by receive side scaling (RSS) of the N I C .

Decision tree diagram i n Figure 4.4 presents how packets are received and forwarded
from the N I C to Suricata. It consists of 1 main loop that detects when Suricata is stopped.
Inside the ma in loop, pointers to ind iv idua l packet Mbufs are from the N I C i n an array.
The size of Mbuf array is variable and depends on the size of packet burst received by
the N I C . In the receive module, each packet i n the Mbuf array is assigned to an internal
packet structure returned from Suricata's packet queue. Cer ta in parts of in i t ia l iza t ion of
this packet structure are shared among a l l capture interfaces. D P D K capture interface then
also sets a pointer to the ind iv idua l Mbuf (stored i n the D P D K memory pool) and a pointer
to a packet release function.

Packet release function must be implemented in the receive module. Proposed idea of
the function is i l lustrated by a diagram i n Figure 4.5. In case of IPS mode, this function
handles the packet according to the action set by Suricata. If the packet is flagged by drop
action, packet is not forwarded further and is only released. In other cases, the packet is
t ransmit ted on the configured interface.
Regardless of the selected mode (I D S / I P S) , the packet release function then returns Mbuf
to the D P D K packet memory pool and also returns the packet structure to the Suricata

47

RECEIVE

RECEIVE CPU SET

THREAD

RECEIVE MODULE

DECODE MODULE

RECEIVE THREAD

RECEIVE MODULE

DECODE MODULE

WORKER CPU SET

WORKER THREAD

S U R I C A T A

WORKER THREAD

MANAGEMENT CPU SET

>
m

x 73
m
>
D

>
m

x
73
m
>
D

VERDICT CPU SET

VERDICT THREAD VERDICT THREAD

Figure 4.2: Suricata architecture through thread sets.

18

MainLcore

init DPDK

OK
init EAL

spawn DPDK threads;

loop)
[i < worker_cnt]

== last_worker]

spawn :WorkerLcore Ml

configure
NIC

create
mempool

Figure 4.3: Ini t ia l izat ion of D P D K capture
interface.

Yes

mbufs_cnt =
GetMbufs(port_id,

queue_id, mempool)
Deinit thread

3acketGetFromQueueOrAllocO

1L
lnitPacket(p, mempool[i])

ProcessPacket(p)

i++

Figure 4.4: D P D K receive loop function.

49

internal packet queue. This allows D P D K to assign Mbuf s to incoming packets, and it also
allows Suricata to be able to handle new packets acquired by the D P D K receive function.

NIC

not DROP
packet

structure

•H Transmit WORKER THREAD

Packet DROP

Hi
IPS ACTION/

Suricata / IDS
MODE / >Free Mbuf-

f
•A Free Pkt

return mbuf return packet"

DPDK MEMPOOL SURICATA QUEUE

Figure 4.5: D P D K release function.

The diagram i n Figure 4.6 presents connection of ind iv idua l modules and components
from the bigger picture. A packet received by the N I C is assigned to ind iv idua l queue.
Packets from this queue are fetched i n burst and assigned to ind iv idua l Mbufs stored in
a D P D K memory pool . A r r a y of Mbufs are then passed to ReceiveLoop function. The
purpose of the function is to iterate over the array and for each received Mbuf request a
packet structure from Suricata queue. W h e n the packet structure is obtained, its attributes
are ini t ia l ized. It also stores a pointer to the Mbuf and thus also to packet data. After
a l l attributes are set, packet structure is left to be processed by Suricata. Meanwhile
ReceiveLoop function continues i n the same process as described. Once Suricata executes
detection on the packet, it calls packet's release function. If Suricata runs i n an I P S mode
and packet's determined action is not a drop action, the packet can be transmit ted to the
configured interface. The release function always releases Mbuf that packet structure was
pointing to and the packet structure itself.

50

P a c k e t

NIC#1
QUEUE 0

•

QUEUE n

Worker thread #0
ReceiveLoop Suricata

engine ReleasePacket X
I P S NIC#2

Worker thread #n
ReceiveLoop Suricata

engine ReleasePacket X
I P S NIC#2

Figure 4.6: Packet lifecycle in Suricata.

51

Chapter 5

Implementation and benchmarks

Chapter 4 proposed a design how integration of D P D K capture interface could look like.
Knowledge gained i n the previous chapter serves as bui ld ing blocks for further development.
Th is chapter develops on the obtained insight i n this topic and describes the process of
implementation of D P D K capture interface into Suricata. M a n y references to previous
sections prove the importance of presented information.

Section 5.1 describes a series of actions that had to be gradually implemented and
combined into a working capture interface. It starts w i t h including files to Suricata bu i ld
system, then goes over to runmode registration and finally outline a process of implementing
the core of Suricata capture interface. It might even serve as guide to implement a new
packet capture interface.

Section 5.2 focuses pr imar i ly on benchmarking the newly implemented D P D K runnnig
mode. It presents a list of tests that measures performance of D P D K and A F P A C K E T
and then compares the results. The ind iv idua l measurements are always evaluated and
accompanied wi th a brief summary. The measurements mostly focus on performance, where
the ma in indicator is the rate of lost packets.

5.1 Implementation

5.1.1 C a p t u r e interface reg is trat ion

A d d i n g source files

Suricata code base is d ivided i n different folders. Folders store files that share some common
characteristics. They either combine source files that use the same programming language
(e.g. python/, rust/) or serve one designated purpose (e.g. doc/, qa/). A l l Suricata C
source files are stored a single folder named src/. Further hierarchy is achieved by source
filenames prefixes (e.g. detect-* or stream-*). Even though structure of Suricata code
base is mostly flat, it causes no problems in navigation between source files.

Suricata capture interfaces are implemented in the C programming language. The
source files need to be therefore stored i n s r c / folder. To actually support a new capture
interface it is required to add two source files associated w i t h their header files. The file
that w i l l implement the actual capture process have a prefix source-. The other file w i th a
prefix runmode- introduces the runmode to Suricata. To support D P D K , it was necessary
to create 4 files:

52

• src/runmode-dpdk.{c,h},

• src/source-dpdk.{c,h}.

Suricata would not be able to see these files unless they are added to its bu i ld system.
Makefile is the pr imary bui ld tool for Suricata. However, these Makefiles are generated
from templates. Files named like Makefile.am usually act as a template for future
Makefiles. These templates are generated by G N U A u t o m a k e 1 tool . The Automake tool
generates Makefile.in files from the Makefile.am files. Afterwards from these files the
final Makefile files are generated w i t h tool G N U Autoconf 2 .

Suricata uses G N U Autoconf to produce configure scripts for bui ld , instal or package
procedures. A template for creating a configure file is named configure.ac and is located
in the root folder of Suricata code base. The file consists of code wri t ten in Bourne shell
and specific Autoconf macros that are evaluated during the creation of the configure
script. Configure script accepts various parameters to produce the required Makefile.
These parameters determine how Suricata is buil t and compiled. B u t except C F L A G S
(build parameters), configure script also accepts parameters of ind iv idua l capture
interfaces. Accord ing to these parameters, ind iv idua l runmodes can be included
in /excluded from Suricata binary. A d d i t i o n a l features as extra debug information or
verbose stats can be also enabled wi th these parameters.

Code in L i s t i ng 5.1 adds a support for D P D K argument in the configure script. The
first argument in the macro AC_ARG_ENABLE creates a new feature (—enable-dpdk) i n the
configure script, the second argument includes a hint to show when help is called. The
last argument assigns the default value to the variable. Accord ing to the assigned value
in the variable, the configure script can also check i f a l l dependencies for the project are
present on the system. In case of D P D K it verifies that the D P D K l ibrary is available.

AC_ARG_ENABLE(dpdk,
AS_HELP_STRING([—enable-dpdk],

[Enable DPDK support [default=no]]),,
[enable_dpdk=no])

Lis t ing 5.1: A d d i n g a D P D K parameter to the configure script.

A s previously mentioned, Makefile. am act as a template to generate the final Makefile.
Therefore, to include the newly created D P D K source files to the compilat ion process,
it is required to add them to the list of Suricata sources i n Makefile.am. Source files
in Makefile.am are sorted i n ascending alphabetical order. This also has an effect that
ind iv idua l modules are grouped together. The convention can be seen in L i s t i ng 5.2 where
new source files are included to already existing list of other source files.

suricata_SOURCES =

runmode-dpdk.c runmode-dpdk.h \

source-dpdk.c source-dpdk.h \
Lis t ing 5.2: A d d i n g D P D K source files to the Makefile.am.

The whole process of generating the files and running the configure script also
defines constants that serve as directives. They are set according to default values and

x h t t p s : //www.gnu.org/sof tware/automake/
2https://www. gnu.org/software/autoconf/

53

http://www.gnu.org/sof
https://www
http://gnu.org/sof

parameters passed to the configure script. If —enable-dpdk parameter is used during
the configuration process, HAVE_DPDK constant is set. These constants determine what
parts of source code are available compiled into the binary file. This method excludes the
code that is not used from the source files (e.g. disabled capture interface) but also leaves
an option to include it i n the future. The example can be:

#ifdef HAVE_DPDK
// code that i s executed when DPDK i s enabled
#else
// code that i s executed when DPDK i s disabled
#endif /* HAVE_DPDK */

Registering the capture interface

Once the new source files are added to the buil t system, it is possible to move forward.
TmModule is a structure i n Suricata that contains attributes required to be ini t ia l ized in
order to register a new module. Suricata holds an array of these structures and according
to this array it is able to run ind iv idua l modules/capture interfaces. The array has a fixed
size equal to the number of implemented modules. Each module initializes the TmModule
structure on the assigned index number, s imilar ly as in L i s t ing 5.3. For D P D K , the array
contains space for two structures. One structure is for the receive module and can be
accessed by TMM_RECEIVEDPDK (Lis t ing 5.3) and the other structure is for the decode module
and can be accessed by TMM_DECODEDPDK.
void TmModuleReceiveDPDKRegister(void)
{

tmm_modules[TMM_RECEIVEDPDK].name = "ReceiveDPDK";
tmm_modules[TMM_RECEIVEDPDK].Threadlnit = ReceiveDPDKThreadlnit;
tmm_modules[TMM_RECEIVEDPDK].Func = NULL;
tmm_modules[TMM_RECEIVEDPDK].PktAcqLoop = ReceiveDPDKLoop;
tmm_modules[TMM_RECEIVEDPDK].PktAcqBreakLoop = NULL;
tmm_modules[TMM_RECEIVEDPDK].ThreadExitPrintStats = ReceiveDPDKThreadExitStat;
tmm_modules[TMM_RECEIVEDPDK].ThreadDeinit = ReceiveDPDKThreadDeinit;
tmm_modules[TMM_RECEIVEDPDK].cap_flags = SC_CAP_NET_RAW;
tmm_modules[TMM_RECEIVEDPDK].flags = TM_FLAG_RECEIVE_TM;

}

Lis t ing 5.3: Ini t ia l izat ion of T m M o d u l e structure for the D P D K receive module.

F rom L i s t i ng 5.3, it is possible to observe the module mainly consists of name and a
set of functions. The purpose of the module i n Suricata is determined by the assigned flag
(TM_FLAG_RECEIVE_TM). Functions can be assigned to the structure's attributes depending
on the purpose of the module. In case of a receive module, the main functions are:

• Thread Init - initializes thread during the startup,

• Packet Acquis i t ion Loop - the main capture method that receives packets and
forwards them to Suricata,

• Thread E x i t P r in t Stats - as Suricata stops, function is responsible to dump the
counters for the last t ime,

• Thread Deini t - frees memory of allocated objects or frees resources i n general.

54

Some functions of the list could have been already spotted i n Section 4.3. In the design
phase I had i n m i n d the architecture of the Suricata modules. These functions are described
i n more elaborate way i n the following sections.

However, the TmModule structure would be never ini t ia l ized if a function cal l of
TmModuleReceiveDPDKRegister would not be ini t ia ted from the Suricata core. It is
therefore required to also append the function ca l l at the end of setup functions in
src/suricata.c.

Runmode implementation

Runmodes as described in Section 2.3 offer a variety of options how ind iv idua l modules are
connected and how they inter-operate. A s discussed in Section 4.3, this thesis is focused
on workers runmode. B u t functionality of runmode single can also be acheived by only
enabling one worker thread. Source files w i th prefix runmode- can therefore suggest that
they contain source code related to registering and enabling the runmode. Each capture
interface must have this part implemented as in i t i a l configuration is often different from
interface to interface. In runmode-* source files capture interfaces are able to te l l Suricata
which runmodes are supported. They also load configuration for ind iv idua l runmodes.
In L i s t i ng 5.4 D P D K runmode registers workers running mode. The th i rd argument is
a helper text and the last argument is a function RunModeldsDpdkWorkers that is called
when D P D K workers runmode is selected.

RunModeRegisterNewRunMode(RUNMODE_DPDK, "workers",
"Workers DPDK mode, each thread does a l l "
" tasks from ac q u i s i t i o n to logging",
RunModeldsDpdkWorkers);

Lis t ing 5.4: D P D K runmode registration.

The name of the function RunModeldsDpdkWorkers follows naming conventions of
Suricata. IDS i n the middle of the name might suggest it is only suitable for detection
only. It is not true thanks to the architecture presented i n Section 4.3. Workers runmode
is fully functional also in IPS mode. Packets are t ransmit ted during release of their
resources of Suricata. It w i l l be described in more detai l in the following sections.

The main purpose of the function is to load the D P D K configuration and init ial ize
environment for the D P D K applicat ion. Once ready, it spawns a l l worker threads wi th
configurations of separate network interfaces. Fol lowing Section 5.1.2 describes how
configuration is loaded and D P D K ini t ial ized.

5.1.2 C o n f i g u r a t i o n a n d D P D K in i t ia l i zat ion

A l l runmodes need to be setup i n a certain way. Configurat ion allows us to adjust
behavior of these runmodes. The settings are usually stored i n the main configuration file
- suricata.yaml. Suricata has already functions that are able to retrieve values of this
configuration file. Suricata capture interfaces implement functions for parsing
configuration of ind iv idua l interfaces from a list of interfaces.

B u t before the list of interfaces is loaded, it is required to first ini t ial ize D P D K
environment abstraction layer (E A L) . To support D P D K parameters in Suricata, I added
a new section to the suricata.yaml file called dpdk:. Th is section should contain
settings that are globally applied to the D P D K applicat ion. E A L parameters are stored in
a subsection eal-params: . The subsection can consist of arbi trary E A L parameters that

55

can change the way E A L is configured. Code inside RunModeldsDpdkWorkers function
loads subsection dpdk. eal-params: and crafts an array of arguments. B o t h short and
long versions of argument names are supported. The array is required for the main D P D K
ini t ia l izat ion function - r t e _ e a l _ i n i t . The function usually accepts command line
arguments that are passed to the main function of applicat ion. The crafted array
simulates the usual contents of these arguments. Important arguments to mention can be:

• -1/—Icores - specifies what cores w i l l be available to the D P D K application,

• -a - specifies what N I C w i l l be available according to Peripheral Component
Interconnect Express 3 (PCIe) address. It can be used mult iple times.

After E A L is ini t ial ized, Suricata continues to load configuration of interfaces. In
section dpdk-ifaces: (Lis t ing 5.5) of suricata.yaml file it is possible to specify settings
of ind iv idua l interfaces. For convenience, it is also possible to leave some values of settings
to auto. For example, i n case of threads: setting, value auto assigns a l l available D P D K
Icores to the interface. Name of each interface must be specified wi th P C I e address of a
N I C that is allowed to be used wi th in D P D K . Settings from Lis t ing 5.5 are loaded to
internal D P D K structure of interface configuration (DPDKIf aceConf ig). Th is
configuration is passed to D P D K threads on spawn. F r o m Lis t ing 5.5 it is possible to
observe that implementat ion support various kinds of settings, from the basic settings as
enabling promiscuous mode (promise:) to more advanced as enabling offload
(checksum-checks-offload:). It also allows complete control over the size of D P D K
memory pool and the number of transmit or receive descriptors.

dpdk-ifaces:
- interface: 0000:3b:00.0

threads: auto
rx-queues: auto
tx-queues: auto
promise: true
multicast: true
checksum-checks: true # i f Suricata should validate checksums
checksum-checks-offload: true # i f possible, off l o a d checksum v a l i d a t i o n
mtu: 3000
mempool-size: 65535
mempool-cache-size: 250
rx-descriptors: 1024
tx-descriptors: 1024
IPS mode for Suricata works i n 3 modes - none, tap, ips
- none: disables IPS f u n c t i o n a l i t y (does not further forward packets)
- tap: forwards a l l packets and generates a l e r t s (omits DROP action)
- ip s : the same as tap mode but i t also drops packets that are flagged by
rules to be dropped
copy-mode: ips
copy-iface: 0000:3b:00.1

Lis t ing 5.5: The default configuration of D P D K interfaces section.

3https://www. intel.com/content/www/us/en/io/pci-express/pci-express-architecture-
general, html

56

https://www
http://intel.com/

5.1.3 W o r k e r threads d e / i n i t i a l i z a t i o n

Thread initialization

Once configuration is loaded into DPDKIf aceConf i g structure, Suricata then continues to
spawn worker threads. The number of threads for each interface is determined by the
threads : opt ion i n configuration of the interface. Suricata uses pthread l ibrary for
mult i threading. However, because of D P D K ' s special nature, it is required to use a
different approach to spawn a thread. In D P D K , it is possible to use function
rte_eal_remote_launch. D u r i n g creation of new threads Suricata also creates 2
per-thread variables. Ini t ia l izat ion of (ThreadVars) structure is shared among a l l capture
interfaces and runmodes. Structure DPDKThreadVars groups a l l attributes that are
capture mode specific (e.g. a pointer to D P D K packet mempool) . Structure
DPDKIf aceConf i g is referenced from the thread that spawned worker threads. In general,
Suricata avoids sharing variables among mult iple threads. Th is is the common and correct
approach to multi-threaded programming as mult i- thread synchronization brings a huge
performance penalty. Figure 5.1 visualizes the creation of thread variables (outlined
rounded rectangles) and referencing the interface configuration (dashed shapes). Worker
threads keep reference to DPDKIf aceConf i g only dur ing the ini t ia l izat ion phase.

MANAGEMENT
THREAD

DPDKIfaceConfig

WORKER THREAD #1
f ^

ThreadVars
t •»

DPDKIfaceConfig
V . J

DPDKThreadVars

ThreadVars

WORKER THREAD #N

DPDKIfaceConfig DPDKThreadVars

Figure 5.1: Thread ini t ia l izat ion in Suricata.

DPDKIfaceConfig contains an atomic counter which is incremented by each spawned
thread. Thanks to the counter, threads are synchronized. They are effectively wait ing
for the last thread to reset the counter and jo in them. Meanwhile, the last thread is
responsible for N I C configuration according to values of DPDKIfaceConfig structure. It
starts w i t h configuration of basic settings such as multicast or promiscuous mode.

It attempts to enable some offloads like checksum validat ion or R S S . Receive side
scaling is automatical ly enabled i f more than 1 worker thread is used. It uses symmetric
hash key described i n 3.1 to forward packets of the same to the same receive queues.
W h e n Suricata runs in IPS mode, it is also beneficial to enable
DEV_TX_OFFLOAD_MBUF_FAST_FREE and DEV_TX_OFFLOAD_MT_LOCKFREE offloads to speed
up transmission rates.

A s the last thread joins the wait ing threads, each thread creates an ind iv idua l D P D K
mempool according to settings stored in DPDKIfaceConfig structure. Reference to this

57

mempool is stored in DPDKThreadVars structure. Each thread also sets up its receive and
transmit queues of the selected port.

Before the start of the N I C , each thread is added to a list of peers. A peer i n the list
is a worker thread. The list contains every running worker thread and comes to its full
potential when Suricata runs in IPS mode. E a c h worker must have a peer to send packets
to. The copy-* options i n L i s t i ng 5.5 defines behavior of I P S . P C I e address i n copy-if ace:
specifies a N I C where received packets w i l l be forwarded after Suricata detection. Possible
modes of IPS (copy-mode:) are also described i n L i s t ing 5.5. If a free peer w i th a given N I C
is not found i n the list , the worker is only appended to the end of the list (and paired later).
After the list is completed, l inks between peers are verified. If a worker is left without any
peers to b ind , Suricata fails to start. Th i s technique is used to b ind a l l receive queues of
one N I C together w i th a l l transmit queues of the N I C . Figure 5.2 illustrates the result of a
successful peering. The whole process can look as follows.

Workers of N I C # 1 are spawned first, and they are appended to the peers list. Since
thread scheduling algorithms are not deterministic, workers are appended to the list in
random order. Workers of N I C # 1 then create receive and transmit queues and assign
them to their DPDKThreadVars structure. The process repeat for worker threads of N I C #2.
However, in this case workers are not only appended to the list but also t ry to look for a
free worker (of N I C # 1) wi l l ing to peer. After peering, workers have access to each others
transmit queues. Peers list operates w i t h workers to ensure only val id transmit queues
are used. In Figure 5.2 the same colored workers are peered and pointers to queues are
stored i n their DPDKThreadVars structure. Dot ted arrows are potential paths of packets
after peering if Suricata runs i n I P S mode.

To provide a more specific example, it is possible to assume there are 4 receive/transmit
queues per interface. Packet received by N I C # 1 is put into R X queue number 1. W o r k e r # l
reads the queue and processes a l l packets through its pipeline of modules. After that,
W o r k e r # l is ready to release the packet. If the packet is not evaluated to be dropped,
W o r k e r # l adds the packet to transmit queue number 1 of N I C # 2 .

RX Queue #1

NIC#1

TX Queue #1

NIC#1
• • • NIC#1

RX Queue #N

TX Queue #N

. Worker, th react .#1.
DPDKThreadVars

Worker thread #N
DPDKThreadVars

Worker thread #2N
DPDKThreadVars

Worker thread #N+1

\
DPDKThreadVars *

3d

TX Queue #1

RX Queue #1

NIC#2
• • • NIC#2

TX Queue #N

NIC#2

RX Queue #N

Figure 5.2: Peers list i n Suricata.

58

A s previously mentioned, worker threads t ry to minimize the inter-thread
communicat ion. U p to this point, it might seem they heavily rely on communicat ion v ia
mutexes and synchronization controls. However, this is not true after in i t ia l izat ion phase.
After a l l worker threads are added to the peers list, the N I C is started and threads enter
to a continuous capture (receive) loop.

T h r e a d deinitialization

After Suricata stops, worker threads go to deinit phase. Th is allows threads to release a l l
allocated resources. D P D K requires no special deini t ial izat ion actions. It first frees D P D K
packet memory pool created i n the ini t ia l izat ion phase and then frees DPDKThreadVars
structure.

5.1.4 Rece ive loop

Receive loop is the core function of the whole capture interface. It is repeatedly executed
unt i l interrupted by, for example Suricata exit signal. It must be performance oriented, as
inabi l i ty to capture a l l packets can lead to missed security events. W i t h this in mind , I was
able to design and implement the function. The design could have been seen already in
Figure 4.4.

A c t u a l implementat ion is not far from the proposed design. It only made it more
specific. Implementation of this part also makes use of some functions from D P D K library.
A s shown i n Figure 4.4, the functions start w i th in i t ia l iza t ion of variables. Execut ion
then enters the main loop. T h e n receive module fetches a list of received Mbuf s to thread's
DPDKThreadVars structure. This operation is accomplished by rte_eth_rx_burst function.
A place to retrieve packets from is determined by given port i d and queue i d . Combina t ion
of these two identification numbers is unique for every worker thread. Execut ion continues
if some packets are received, otherwise it jumps to the beginning of the main loop.

Receive module loops over each received Mbuf structure from the array. The module
needs to obtain a packet structure (Packet) from the internal Suricata queue, since the
modules following the receive module use generic packet structure. The same function as in
Figure 4.4 is used to receive the packet structure. PacketGetFromQueueOrAlloc attempts
to retrieve a free packet from the queue and if it fails, it w i l l allocate a new one.

The packet structure is then ini t ia l ized wi th various information, among others:

• packet release function,

• Suricata mode (I P S / I D S) ,

• internal checksum validation,

• pointer to the Mbuf structure i n memory,

• worker peer,

• packet data.

Packet data are set direct ly from the Mbuf structure. Since Mbuf is a large structure, it
might not always be easy to know where the actual packet data are and how long they are.
D P D K has macros like rte_pktmbuf _mtod or rte_pktmbuf _pkt_len to solve the problem.
Macro rte_pktmbuf _mtod returns actual packet data section of the passed Mbuf structure.
Macro rte_pktmbuf _pkt_len returns length of the packet data section.

59

Afterwards, packet is only sent for Suricata processing and execution continues i n either
next Mbuf structure processing or statistics update followed by a jump to the start of the
main loop.

5.1.5 Packet t ransmiss ion a n d release

After Suricata finishes processing the packet, it is no longer needed. It can be therefore
released from the system. In general, Suricata has 2 approaches - either v i a a Verdict
module or v ia a packet release function. A s discussed i n Section 4.3, D P D K is designed to
not use Verdict modules. Instead, a release function is assigned to each packet. Function 's
only required parameter is the packet structure. Since the packet structure comes out
of the Suricata engine, it contains results of the detection. Implementation of the D P D K
release function very closely corresponds wi th a function design proposed i n Figure 4.5. The
details are also described i n Section 4.3. Funct ion rte_eth_tx_burst is used i f a packet is
supposed to be transmitted. The function takes the same arguments as rte_eth_rx_burst
- port and queue identification number and an array of Mbuf structures. However, i n this
case, port and queue I D is fetched from the peer. A l so , array only contains one element -
the Mbuf structure.

The packet structure can be released as soon as the packet is sent. If Suricata does not
run i n I P S mode, the packet is released immediately. B u t before packet structure can be
released, it is required to free the Mbuf structure. D P D K function rte_pktmbuf _f ree takes
Mbuf pointer and frees space for incoming packets. If Mbuf structure is not freed, D P D K
would not be able to capture more packets because of depleted Mbuf pointers. After Mbuf is
freed, it is possible to cal l function PacketFreeOrRelease w i th the packet structure as the
only argument. The function frees the packet structure in case it is only allocated. If the
packet structure was obtained from the Suricata queue, it is released. The packet structure
can then hold information about a newly incoming packet.

5.1.6 Statist ics

It is important to have an overview of how the deployed Suricata instance performs.
Moni to r ing count of received/dropped packets can provide basic insights of Suricata's
health. For example, increase i n dropped packets can indicate some problem that should
be more investigated. Statistics i n Suricata are collected at a l l times. They are accessible
i n real t ime from various places. For instance, they can be accessed i n output files like
eve. log/stats. log or over U n i x socket.

In D P D K , statistics are updated continuously in a function DPDKDumpCounters. The
function fetches statistics of the configured N I C and then updates ind iv idua l thread
counters. Statistics are fetched on queue-basis. B y default, D P D K has statistic
information for only 16 queues. Th is can be configured by adjusting
RTE_ETHDEV_QUEUE_STAT_CNTRS dur ing bu i ld of the D P D K framework. If number of
queues is higher than RTE_ETHDEV_QUEUE_STAT_CNTRS, Suricata warns the user during
startup but continues i n execution.

Suricata has special receive module function to gather statistics and print them out at
the end. D P D K receive module required no special handling i n this case. Therefore, in
ReceiveDPDKThreadExitStats it only calls DPDKDumpCounters and prints out the
statistics.

60

5.2 Benchmarks

A s the name of this section suggests, the section presents achieved results of D P D K runmode
implementat ion to Suricata. It also compares the results w i th A F P A C K E T - the most
commonly used implementation of the receive module. W h e n measuring performance of
systems, it is crucial to have a stable environment. The testbed used for benchmarks
is presented i n Section 3.1. There have been problems like incomplete data transfers or
tedious measurement process (Section 3.3). These problems have been resolved pr io r /dur ing
performance tuning of A F P A C K E T running mode.

The test cases were executed under the same conditions as in the case of A F P A C K E T .
Tha t included over 20000 rules from E T Open ruleset as presented i n Subsection 2.2.2 and
the same P C A P file as analyzed i n Subsection 3.3.3. Flexible architecture of the testbed
allowed to switch between ind iv idua l running modes effortlessly.

Graph consists of two axis, horizontal axis displays transmission speed in megabits per
second and vert ical axis shows buffer overflow i n percentages. A s in previous measurements,
the ma in performance indicator is buffer overflow (BO) - the count of received packets
divided by the count of t ransmit ted packets. Section 3.2.7 describes the exact process of
BO calculation.

Tests are executed mainly in two variants - w i th disabled or enabled rules. Testing
performance without rules has proven to be a very efficient strategy. It provides a capabil i ty
to see how much rules affect the performance of Suricata. It can also show the top possible
performance of Suricata. O n the other hand, Suricata would not be helpful i f it would detect
nothing. For that reason, it is beneficial to see the actual, close to real-life performance of
Suricata.

Benchmarks start w i th 1 worker thread as the simplest testing scenario. To provide
more insight how Suricata scales, later tests are using more worker threads. The second
benchmark uses 8 worker threads and the th i rd uses 16 workers. Between ind iv idua l
benchmark runs no settings are changed, except thread section of the configuration file.

5.2.1 B e n c h m a r k w i t h 1 worker t h r e a d

Testing Suricata performance wi th 1 core can provide early insights to benefits and problems
of the new capture interface. Developing a single threaded programs is easier and helps to
exclude problems like thread synchronization or concurrency control. It therefore simplifies
debugging certain bugs. O n the other hand, some bugs may only appear in concurrent
environments.

The very first milestone in the implementat ion was to measure results of Suricata
packet capture. Th is means that rules were not applied. A s discussed i n Subsection 3.4.2
that Suricata only receives and discards packets. Suricata actually does full packet
decoding and creates/modifies records in flow tables. O n l y the detection part is skipped.
This further eliminates possible problem-causing parts. The test is heavily focused on
receive performance of the ind iv idua l capture interfaces.

Figure 5.3 presents results of the measurements. It is possible to see D P D K capture
interface (orange line) over-performs A F P A C K E T (blue line). Amoun t of received
packets by D P D K (8 Gbps) doubles the amount of received packets by A F P A C K E T (<4

61

Gbps) under 5% buffer overflow threshold. T h i s proves the implementat ion of D P D K
brings benefits of faster and more reliable capture method.

Graph i n Figure 5.4 presents results of a Suricata benchmark that also applied rules.
F u l l capture to detection pipeline is, again, placed i n 1 thread. Compared to 5.3, it is
possible to see a decrease in overall Suricata throughput to about 600-750 M b p s . Th is
proves how the detection part w i th large amount of rules is performance heavy. However,
D P D K implementat ion proves to be more efficient even i n this test. It continuously increases
Suricata throughput by addi t ional 100 M b p s compared to A F P A C K E T implementation.
Zero loss packet detection of D P D K goes up to 700 Mbps .

25

20

Q 10

5

Claret AF-PACKET, logs, no rules, 4 replications, 1 NIC queue

Claret DPL)K, logs, no rules, 4 re plications, 1 NIC queu e

2000 4000 6000 8000 10000 12000
Transmit speed [Mbps]

Figure 5.3: 1 queue and disabled rules.

62

5.2.2 B e n c h m a r k w i t h 8 worker threads

The next set of measurements are set to 8 workers. A l l threads are assigned to physical
cores on the same N U M A node as the N I C . Graphs resulting from these measurements are
in Figures 5.5 and 5.6.

In a benchmark without any rules applied (Figure 5.5), A F P A C K E T drop rate
steeply increases after input rate surpassesmusi 20 Gbps . O n the other hand, D P D K
performance have packet drop very close to zero unt i l 28 Gbps . F r o m that moment, buffer
overflow steadily increases to 2%. Compared to Figure 5.4, D P D K runmode does not
scale proportionately to the number of threads/cores. However, i n this case we can see a
large bump i n the overall performance - from zero-loss throughput of 7 Gbps w i t h 1
worker thread to 28 Gbps wi th 8 workers. In case of A F P A C K E T capture interface, the
throughput scales in proport ion to the number threads. F r o m Figure 5.3 it is possible to
see that 1 worker is able to receive traffic at rate of around 2 Gbps without any packet
loss whereas i n Figure 5.5 8 workers can receive traffic up to 16 Gbps .

Results of measurements of 8 workers w i th enabled rules can be seen in Figure 5.6. It
shares the same behavior as portrayed in Figure 5.4 i n a sense of seriously decreased
performance compared to no-rule versions. However, it can be expected due to huge
amount of rules. Figure 5.6 that performance of both capture interfaces is rather similar.
Differences are more prevalent at higher transfer rates (6+ Gbps) where D P D K is
superior to A F P A C K E T . However, at this speed, drop rate of packets reaches 10+
percents in both runmodes. In pract ical terms, this means that Suricata can fail to detect
important security events. W h e n Figures 5.4 and 5.6 are compared, the increase i n count
of threads goes hand in hand w i t h a proport ional increase of Suricata throughput. O n
average, each added thread increases throughput of about 550 Mbps .

63

25

20

15

10

Claret AF-PACKET, logs, no rules 4 replications, 8 NIC queues

Claret DPDK, logs, no rules, 4 re plications, 8 NIC c ueue

5000 10000 15000 20000 25000
Transmit speed [Mbps]

30000 35000 40000

Figure 5.5: 8 queues and disabled rules.

Claret AF-PACKET, logs, rules, 4 replications, 8 NIC queues

Claret DPDK, logs, rules, 4 replications, 8 NIC queues
35

30

5 25

20

"15

3000 4000 5000 6000
Transmit speed [Mbps]

7000 8000

Figure 5.6: 8 queues and enabled rules.

64

5.2.3 B e n c h m a r k w i t h 16 worker threads

The last set of tests were executed on 16 worker threads. Workers were spread over 8
physical and 8 hyperthreaded cores. Because of the l imi ted number of physical cores,
Hyperthreading was enabled. Hav ing more cores (even hyperthreaded) brings more benefits.
W h i l e worker on one physical core waits for the packet or some other operation, the worker
on the same but hyperthreaded core can continue in the inspection. Hyperthreading is
explained in Subsection 3.4.1. The number of D P D K receive descriptors must have been
increased to 32768 because of performance drops.

Figure 5.7 shows, again, an increase in received packets. The more threads equal to
better performance. B u t performance gain is not as noticeable as in the previous case.
The bigger difference between performance of 1 and 8 workers is at t r ibuted to the higher
ut i l iza t ion of physical cores. In contrast, performance gained by increasing 8 to 16 workers
is less remarkable because the added cores are hyperthreaded. However, this step costs no
more i n terms of C P U occupancy as 16 worker variant uses 8 logical cores that are paired
wi th 8 physical cores.

In D P D K , 16 queues allow better data reception and thus handle speed of 40 Gbps wi th
practically zero packet loss. Further inspection was not needed as the goal is to mostly focus
on rule-based version. Improvement i n the performance can be also seen i n A F P A C K E T
implementation - from 16 Gbps to around 22 Gbps.

The results of the most performant version of Suricata w i th rules are featured in
Figure 5.8. D P D K implementat ion outperforms A F P A C K E T by addi t ional 500 M b p s in
zero/close to zero loss transmission speeds. The difference is even more apparent at higher
transfer rates. However, the drop of packets is again 10+%.
Figure 5.9 presents a graph wi th a different metric. X axis is the same as i n previous
graphs but Y axis represents average number of generated alerts per second. Even though
presented tests are executed for the same amount of time, d iv id ing count of alerts by
transmit durat ion (doing average) can be beneficial i n tests of different durat ion. F r o m
the graph, it is possible to observe almost the same behavior of A F P A C K E T and
D P D K . It is especially s t r iking between 4 Gbps and 6 Gbps . G r a p h in Figure 5.8 proves
that wi th in this range, bo th capture interfaces are able to receive almost a l l packets. W i t h
the given hardware and configuration, after 6 Gbps Suricata can not process packets fast
enough and dropped packets start to increase. W i t h i n transmit rate from 6 to 8 Gbps ,
Suricata drops up to 20% of packets (in A F P A C K E T running mode). Interestingly
enough, wi th in this range in Figure 5.9, graph's line shows the steepest increase in
generated alerts. Th i s might be caused by coincidence and transmission speeds of over 6
Gbps are able to reach P C A P section which triggers the most rules w i th alert actions.
Figure 5.9 also shows that A F P A C K E T runmode generates more alerts i n range from 6
to 7.5 Gbps . Results of this metric varied over several tests. In general, a l l measurements
followed the pattern. However, results of ind iv idua l runmodes fluctuated i n a certain
range. Therefore, the rate of generated alerts is rather similar i n both cases.

This 16 worker setup was analyzed wi th different performance tools. These tools, as
explained i n Subsection 3.4.1, can provide deeper insight into performance analysis of
Suricata. It is possible to compare outputs of ind iv idua l implementations to get more
detailed information about Suricata performance. List ings 5.6 and 5.7 show output of top
20 processes extracted from the output of perf top command. In both cases, the load is
spread among functions wi th s imilar responsibilities. Also , detect module takes up the
most resources. F r o m the output, it is also possible to notice that it is important to focus

65

Claret AF-PACKET, no logs, no rules, 4 replications, 16 NIC queues HT NUMAO

_

Claret DPDK, no logs, no rules 4 replications, 16 NIC queues HT NUMAO

_ _

10000 15000 20000 25000 30000 35000 40000
Transmit speed [Mbps]

Figure 5.7: 16 queues and disabled rules.

66

analysis not only around the applicat ion itself (e.g. suricata) but also include a load of
other related components (e.g. libhs.so.5.3.0, [kernel]).

A F P A C K E T functions i n L i s t i ng 5.6 are usually under processes like suricata or
[kernel]. In case of D P D K , processes like suricata w i th l ibr te_pmd_mlx5.so .20.0 .3 are
used. The latter process is part of D P D K P M D driver and is used to repeatedly fetch
packets from the N I C . It is interesting to observe that sum of capture interface's functions
usage is i n case D P D K (5.65%) higher than i n A F P A C K E T (4.57%). The listings may
provide incomplete information (only top 20 processes) but further processes are only
more lightweight than the presented ones. It is surprising since D P D K i n overall performs
better than A F P A C K E T .

The two runmodes were also under analysis of pern tool . The results were again quite
similar. In certain aspects - like L 3 H I T was A F P A C K E T (0.76%) better than D P D K
(0.67%). However, in terms of instruction per cycle metrics, D P D K w i t h 3.08 I P C per
physical core was better compared to A F P A C K E T w i t h 2.98 I P C per physical core. B o t h
running modes had U P I (QPI) equal or less than 1 percent.

67

29.077, suricata [.] DetectRun.part.16
10.027. suricata [.] DetectEnginelnspectRulePacketMatches
9.087. suricata [.] DetectEnginePktlnspectionRun
2.847. suricata [.] DetectProtoContainsProto
1.977. suricata [.] FlowGetFlowFromHash
1.487. libhs.so.5 3 0 [.] 0x0000000000612fa6
1.237. suricata [.] Dete ctEngineEventMat ch
1.147. [kernel] [k] tpacket_rcv
1.037. [kernel] [k] memcpy_erms
0.737. [kernel] [k] build_skb
0.687. libhs.so .5 3 0 [.] 0x0000000000612641
0.657. [kernel] [k] tasklet_action_common.isra.14
0.637. [kernel] [k] f ib_table_lookup
0.617. libpthread--2 28. so [.] pthread_mutex_lock
0.597. suricata [.] DetectFlowMatch
0.417. suricata [.] SCHSMatchEvent
0.407. libhs.so.5 3 0 [.] 0x0000000000579866
0.397. [kernel] [k] netif_receive_skb_core
0.387. libhs.so .5 3 0 [.] 0x0000000000579933
0.387. suricata [.] AFPReadFromRingV3

Lis t ing 5.6: Top 20 processes of perf top when Suricata runs wi th A F P A C K E T .

25.827. suricata .] DetectRun.part.16
8.587. suricata .] DetectEnginelnspectRulePacketMatches
8.227. suricata .] DetectEnginePktlnspectionRun
2.557. suricata .] DetectProtoContainsProto
2.377. suricata .] ReceiveDPDKLoop
1.987. suricata .] FlowGetFlowFromHash
1.217. libhs.so.5.3.0 .] 0x0000000000612fa6
0.977. suricata .] DetectEngineEventMatch
0.657. suricata .] rte_pktmbuf_free
0.627. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc6ac
0.497. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc6ce
0.477. suricata .] DetectFlowMatch
0.477. libpthread-2.28 so .] pthread_mutex_lock
0.467. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc2c9
0.467. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc72e
0.437. libhs.so.5.3.0 .] 0x0000000000612641
0.427. librte_pmd_mlx5 so 20 0 3 [.] OxOOOOOOOOOOlbcObb
0.427. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc404
0.417. librte_pmd_mlx5 so 20 0 3 [.] 0x00000000001bc2a6
0.407. suricata .] DecodeEthernet

Lis t ing 5.7: Top 20 processes of perf top when Suricata runs wi th D P D K .

68

5.2.4 O v e r a l l results evaulat ion

Several variants of benchmarks were executed to test Suricata performance.
A F P A C K E T and D P D K were the main tested capture interfaces. D P D K was able to
consistently outperform A F P A C K E T implementation by leaving more resources to other
modules. Performance improvements were big i n measurements without rules.
A bottleneck appeared after applying huge amount of rules. Th is diminished D P D K ' s
performance improvements. It led me to a conclusion that A F P A C K E T is able to
capture most of the packets and has a similar performance to D P D K because both
capture interfaces are blocked by the detection module. A s D P D K was more lightweight,
it sl ightly helped to improve the performance.

Look ing at 1 and 8 worker measurements w i th rules, it is possible to see that Suricata
scales appropriately to the number of enabled cores. E a c h worker was on a separate physical
core. Similar scaling does not apply to measurements of 8 and 16 workers. It is caused by
using Hyperthreading for 16 workers. B y creating 2 logical cores from 1 physical core it
allows better ut i l iza t ion of C P U cores. It does not reach performance gains of 2 physical
cores but it is better than 1 physical core only. It allowed to employ addi t ional N I C queues
into Suricata. In overall, Suricata scales well on physical cores. However, the same number
of Hyperthreaded physical cores allows even higher C P U ut i l iza t ion than the physical cores
only approach. This possibly suggest that implementing autofp may be also beneficial as
D P D K is able to receive great amount of traffic just on a few cores. Therefore, some threads
could be focused on packet reception and some work solely on packet inspection.

69

Chapter 6

Conclusion and future work

G o a l of this master thesis was to come up wi th a possible opt imizat ion for Suricata
I D S / I P S system. The goal could be divided i n two parts. P r io r to any opt imizat ion
proposals, I needed a baseline. Therefore, opt imizing A F P A C K E T running mode was
the first part. The second was to propose a Suricata opt imizat ion. Accord ing to my
performance analysis and previous efforts of C E S N E T , I have chosen to implement D P D K
capture interface.

Before I could even start w i t h the master thesis, I had to get comfortable w i th many
different things like Suricata, a network stack of U n i x systems or performance and
network analysis tools. Similarly, bui ld ing a proper and functional testing environment
was not less important . Th is included not only interconnecting ind iv idua l computers but
also, for example, implementing correct bu i ld and instal l scripts. The journey was
accompanied by many challenges to solve. Out of those, I could mention incomplete data
transfers due to a variety of reasons or Suricata compilat ion problems on o ld L i n u x kernel.
A s a result, I was able to gain huge amount knowledge i n a short time.

After the testbed was setup and I had a basic overview of Suricata I could proceed to the
in i t i a l phase of the thesis - performance experiments of Suricata A F P A C K E T running
mode. I realized very soon that repeatedly obtaining performance data is monotonous
and very t ime-consuming process. Th is resulted in a need of a new testing framework.
Because of very specific requirements of testbed's environment, it was not possible to use
some generic test framework. I had designed and implemented modular testing framework.
I chose Bash scripting language for the implementation. Output of the testing framework
are C S V files. Handl ing raw data and interpreting them in spreadsheet appl icat ion was
again tedious process. For this reason, Py thon3 graph making script was designed and
implemented i n parallel to the development of the testing framework. A s running ind iv idua l
tests i n the test framework can s t i l l be a t ime-consuming process, I also added a scheduler
to the testing framework. It allows to schedule long operations in an execution queue.

Previously mentioned things, al though time-consuming at first, provided essential
information through benchmarks and tests of Suricata. It then helped to steer the
configuration and opt imizat ion process in the right direction. D u r i n g the process, I was
able to deeply dive into Suricata internals and configuration of L i n u x network stack. That
included configuration of the N I C driver, B I O S and also adjustment in kernel settings. A l l
these steps were required to explore possible options to acheive the top performance of
Suricata. W h e n I reached high throughput and good performance results for the given

70

hardware and could not move further, I stopped. W i t h l imi ted t ime, possible opt imizat ion
techniques can be a very broad area to explore (and it is a very long process).

B y finishing the opt imizat ion process, I have reached the first milestone of the thesis -
achieve baseline results of A F P A C K E T running mode. After that, I performed an analysis
of the accomplished Suricata configuration. I have found out, capture interface can take as
much as 20% of processing power. D P D K framework seemed like an adequate candidate
for capture interface as in many regards it is considered to be one of the very efficient
capture interfaces. Also previously failed efforts of D P D K integration to Suricata increased
the mot ivat ion for this attempt. I proceeded to explore a source code of Suricata. That
included not only capture interface source codes but also parts remotely connected wi th
it. It was a lengthy process, but it helped to form a big picture of Suricata architecture.
Lack of comprehensive developer documentation requires s tudying internal implementat ion
of Suricata from the source code. B u t before any design proposals, I had to have good
understanding of D P D K framework. For that reason, I continued to study architecture of
D P D K applications and also tr ied to apply the knowledge to some applicat ion prototypes.

W i t h knowledge of both Suricata and D P D K , I was able to progress to the
implementation design. I followed common architectural practices applied in Suricata to
be consistent w i th other capture interfaces. A F P A C K E T architecture was chosen as the
main capture interface to follow. After consulting the proposed design, I started
implementation. The actual implementat ion sticks to the suggested design. I have
developed the capture interface wi th my best intentions to be performance oriented and
user friendly as well . It provides a wide variety of options i n the configuration file. A s can
be observed from benchmarks, it consistently outperforms A F P A C K E T capture
interface. However, A F P A C K E T s t i l l has a place i n Suricata as D P D K is supported
usually by modern N I C s . Results of measurements also show that while D P D K helped to
increase the overall performance of Suricata, the capture interface is not the main
bottleneck. Detect ion module wi th large amount of rules is the heaviest part i n Suricata
pipeline. In general, the results of the implementat ion are excit ing and future of D P D K
capture interface is looking very promising.

Even though D P D K implementat ion outperformed A F P A C K E T , I can s t i l l see a room
for improvement. The performance can be further enhanced by implementing bypass
functionality. Th is would skip the detection for certain flows of traffic. If implemented
properly, the N I C itself can already decide the fate of packet flow. It can work s imilar ly to
X D P bypass. For this use-case r t e _ f low l ibrary of D P D K might be used.

Then, for the integration of Suricata into other applications, it would be possible to
create some sort of A P I to connect Suricata w i th already existing applications. Th is can be
possibly be acheived by running Suricata as a secondary D P D K process and use r t e _ r i n g
for inter-application communication.

It was also possible to notice from the benchmarks that D P D K receives packets at higher
rates than A F P A C K E T . This also suggests an idea that implementing autofp can bring
addi t ional performance benefits. O n contrary to workers runmode, smal l amount of cores
could be dedicated to receive and decode modules while the majority of cores would receive
packets from these cores and focus on packet inspection.

I believe there are many possible paths how this project can further continue. Suricata
is always-evolving piece of software that also might come up w i t h even better
opt imizat ion ideas. To my best intentions, I w i l l work in cooperation wi th C E S N E T on
further improvements of D P D K running mode.

71

Bibliography

[1] B R U N E A U , G . The History and Evolution of Intrusion Detection [online]. S A N S
Institute, . 2001 [cit. 2020-11-02]. Available at: https://www.sans.org/reading-room/
whitepapers/detection/history-evolution-intrusion-detection-344.

[2] G H A F I R , I., P Ř E N O S I L , V . , S V O B O D A , J . and H A M M O U D E H , M . A Survey on Network
Security Moni to r ing Systems. August 2016. D O I : 10.1109/W-FiCloud.2016.30.
Available at: https://doi.org/10.1109/w-ficloud.2016.30.

[3] G O N Z A L E Z , J . M . , P A X S O N , V . and W E A V E R , N . Shunting: A Hardware/Software
Archi tecture for Flexible , High-Performance Network Intrusion Prevention.
In: Proceedings of the lJ^th ACM Conference on Computer and Communications
Security. New York , N Y , U S A : Associat ion for Comput ing Machinery, 2007,
p. 139-149. C C S '07. D O I : 10.1145/1315245.1315264. I S B N 9781595937032.
Available at: https://doi.org/10.1145/1315245.1315264.

[4] K I C I N S K I , J . and V I L J O E N , N . E B P F Hardware Offload to Smar tNICs : clsbpf and
X D P . [online]. 2016, [cit. 2020-12-29]. Available at:
https://netdevconf .info/1.2/papers/eBPF_HW_0FFL0AD.pdf.

[5] L E B L O N D E r i c and M A N E V , P . Introduction to eBPF and XDP support in Suricata
[online]. 2020 [cit. 2020-12-30]. Available at: https://cdn2.hubspot.net/hubfs/
6344338/Resources/Stamus_WP_Intro_to_eBPF_and_XDP_in_Suricata_0nline.pdf.

[6] L U K A S I K , S. W h y the Arpanet Was B u i l t . IEEE Annals of the History of
Computing. 2011, vol . 33, no. 3, p. 4-21. D O I : 10 .1109 /MAHC.2010 .11 .

[7] M A R T E L L I N I , M . and M A L I Z I A , A . Cyber and Chemical, Biological, Radiological,
Nuclear, Explosives Challenges: Threats and Counter Efforts. 1st ed. Springer, 2017.
I S B N 978-3-319-62108-1.

[8] M I A N O , S., B E R T R O N E , M . , R I S S O , F . , T U M O L O , M . and B E R N A L , M . V . Creat ing
Complex Network Services w i th e B P F : Experience and Lessons Learned. In: 2018
IEEE 19th International Conference on High Performance Switching and Routing
(HPSR). 2018, p. 1-8 [cit. 2020-12-30]. D O I : 10.1109/HPSR.2018.8850758.

[9] M J A S O J E D O V , I. Systém pro ochranu před DoS útoky s využitím IDS. Brno , C Z , 2020.
Bachelor thesis. Vysoké učení t echn ické v B r n ě , Faku l ta in formačních technologi í .
Available at: https://www.fit.vut.cz/study/thesis-file/23110/23110.pdf.

[10] O I S F . Suricata projed [online]. 2020 [cit. 2020-10-21]. Available at:
https: / / suricata-ids.org/.

72

https://www.sans.org/reading-room/
https://doi.org/10.1109/w-ficloud.2016.30
https://doi.org/10.1145/1315245.1315264
https://netdevconf
https://cdn2.hubspot.net/hubfs/
https://www.fit.vut.cz/study/thesis-file/23110/23110.pdf
http://suricata-ids.org/

[11] O R M A N , H . The Morr i s worm: a fifteen-year perspective. IEEE Security Privacy.
2003, vol . 1, no. 5, p. 35-43. D O I : 10.1109/MSECP.2003.1236233.

[12] P R O J E C T S , L . Official site of Data Plane Development Kit project. 2021. [Online;
accessed 2021-01-06]. Available at: https://www.dpdk.org/.

[13] P U R Z Y N S K I , M . and M A N E V , P . Suricata Extreme Performance Tuning [online]. 2016
[cit. 2021-03-21]. Available at:
https: / / github. com/pevma/ SEPTun/blob/master/SEPTun.pdf.

[14] T E C H N O L O G Y , A . Shunt Away Unwanted Suricata Traffic with Accolade Adapters
[online]. 2016 [cit. 2020-12-03]. Available at: https://accoladetechnology.com/wp-
content/uploads/2018/07/Suricata-Flow-Bypass-Tech-Brief.pdf.

[15] W A N G , X . , H O N G , Y . , C H A N G , H . , P A R K , K . , L A N G D A L E , G . et a l . Hyperscan: A

Fast Mul t i -pa t te rn Regex Matcher for M o d e r n C P U s . In: 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI19). Boston, M A :
U S E N I X Associat ion, February 2019, p. 631-648. I S B N 978-1-931971-49-2. Available
at: https://www.usenix.org/conference/nsdil9/presentation/wang-xiang.

[16] W o o , S. and P A R K , K . Scalable TCP Session Monitoring with Symmetric
Receive-side Scaling [online]. 2012 [cit. 2020-12-21]. Available at:
http ://an.kaist.ac.kr/~shinae/paper/2012-srss.pdf.

[17] Z H A O , Z . , S A D O K , H . , A T R E , N . , H O E , J . C , S E K A R , V . et a l . Achieving lOOGbps
Intrusion Prevention on a Single Server. U S E N I X Associat ion, november 2020 [cit.
2021-04-04]. Available at:
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng.

73

https://www.dpdk.org/
https://accoladetechnology.com/wp-
https://www.usenix.org/conference/nsdil9/presentation/wang-xiang
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng

Appendix A

N I C settings

sudo systemctl stop irqbalance
sudo systemctl disable irqbalance
sudo service irqbalance stop
sudo chkconfig irqbalance off
sudo service f i r e w a l l d stop
sudo systemctl disable f i r e w a l l d
sudo service iptables stop
sudo s y s c t l -w net.ipv4.tcp_ecn=0
sudo s y s c t l -w net.ipv4.ip_forward=l
echo 0 I sudo tee cat /sys/bus/pci/devices/0000\:3b\:00.l/roce_enable
echo 0 I sudo tee /sys/bus/pci/devices/0000\:3b\:00.l/d3cold_allowed
sudo ip l i n k set e n s l f l mtu 3000
sudo ip l i n k set e n s l f l promise on arp off up
echo 1 I sudo tee /proc/sys/net/ipv6/conf/enslfl/disable_ipv6
for i i n rx tx tso ufo gso gro l r o tx nocache copy sg txvlan rxvlan \\

rx-udp_tunnel-port-offload r x - v l a n - f i l t e r ; do
sudo /usr/local/sbin/ethtool -K e n s l f l $ i off;

echo $i
done
for proto i n tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do

sudo /sbin/ethtool -N e n s l f l rx-flow-hash $proto sdfn
done
sudo /usr/local/sbin/ethtool \\

-C e n s l f l adaptive-rx off adaptive-tx off rx-usecs 10 rx-frames 64
sudo /usr/local/sbin/ethtool -G e n s l f l rx 8192
sudo /usr/local/sbin/ethtool -A e n s l f l rx off tx off
echo t o e p l i t z | sudo tee /sys/class/net/enslf1/settings/hfunc
sudo /usr/local/sbin/ethtool -K e n s l f l rxhash on ntuple on
sudo ethtool -L e n s l f l combined 18
sudo /usr/local/sbin/ethtool -X e n s l f l hkey \\

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:\\
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A equal 18

sudo / u s r / s b i n / s e t _ i r q _ a f f i n i t y _ c p u l i s t . s h
"2,4,6,8,10,12,14,16,18,22,24,26,28,30,32,34,36,38" e n s l f l

Lis t ing A . l : Op t imized settings for the mlx5 N I C

74

Appendix B

P C A P analysis

1 ET HUNTING Suspicious TLS SNI Request for Possible COVID-19 Domain M2
10 ET POLICY possible Xiaomi phone data leakage DNS

430 SURICATA Applayer Detect protocol only one d i r e c t i o n
107 SURICATA Applayer Protocol detection skipped

186180 SURICATA Applayer Wrong di r e c t i o n f i r s t Data
101 SURICATA FRAG IPv4 Fragmentation overlap
2 SURICATA HTTP Host header i n v a l i d
4 SURICATA HTTP METHOD terminated by non-compliant character
1 SURICATA HTTP Request abnormal Content-Encoding header

91 SURICATA HTTP Request l i n e incomplete
1 SURICATA HTTP Request l i n e with leading whitespace
2 SURICATA HTTP Request unrecognized authorization method
4 SURICATA HTTP Response i n v a l i d protocol
2 SURICATA HTTP Response i n v a l i d status
2 SURICATA HTTP URI terminated by non-compliant character

32 SURICATA HTTP Unexpected Request body
106 SURICATA HTTP gzip decompression f a i l e d
25 SURICATA HTTP i n v a l i d response chunk l en
2 SURICATA HTTP i n v a l i d response f i e l d f o l d i n g
1 SURICATA HTTP request f i e l d missing colon
1 SURICATA HTTP request header i n v a l i d
2 SURICATA HTTP response f i e l d missing colon
9 SURICATA HTTP response header i n v a l i d
2 SURICATA HTTP too many warnings

19194 SURICATA HTTP unable to match response to request
2 SURICATA IKEv2 weak cryptographic parameters (Auth)
2 SURICATA IKEv2 weak cryptographic parameters (Diffie-Hellman)
2 SURICATA IKEv2 weak cryptographic parameters (PRF)
2 SURICATA SMTP i n v a l i d pipelined sequence
1 SURICATA SMTP no server welcome message

53 SURICATA STREAM 3way handshake SYN resend d i f f e r e n t seq on SYN recv
277 SURICATA STREAM 3way handshake SYNACK i n wrong d i r e c t i o n
13 SURICATA STREAM 3way handshake SYNACK resend with d i f f e r e n t ack

130 SURICATA STREAM 3way handshake SYNACK with wrong ack
6 SURICATA STREAM 3way handshake excessive d i f f e r e n t SYN/ACKs

484 SURICATA STREAM 3way handshake righ t seq wrong ack evasion
18809496 SURICATA STREAM 3way handshake wrong seq wrong ack

27 SURICATA STREAM 4way handshake SYNACK with wrong ACK
155 SURICATA STREAM 4way handshake SYNACK with wrong SYN

75

8801 SURICATA STREAM CLOSEWAIT ACK out of window
24362 SURICATA STREAM CLOSEWAIT FIN out of window
4871 SURICATA STREAM CLOSEWAIT i n v a l i d ACK
191 SURICATA STREAM ESTABLISHED SYN resend
812 SURICATA STREAM ESTABLISHED SYN resend with d i f f e r e n t seq
129 SURICATA STREAM ESTABLISHED SYNACK resend
743 SURICATA STREAM ESTABLISHED SYNACK resend with d i f f e r e n t ACK

6593241 SURICATA STREAM ESTABLISHED i n v a l i d ack
16603512 SURICATA STREAM ESTABLISHED packet out of window
18442 SURICATA STREAM FIN i n v a l i d ack
22334 SURICATA STREAM FIN out of window
39852 SURICATA STREAM FIN1 FIN with wrong seq

8 SURICATA STREAM FIN1 ack with wrong seq
16101 SURICATA STREAM FIN1 i n v a l i d ack
450 SURICATA STREAM FIN2 FIN with wrong seq

10919 SURICATA STREAM FIN2 i n v a l i d ack
3 SURICATA STREAM Last ACK with wrong seq

6881283 SURICATA STREAM Packet with i n v a l i d ack
2095 SURICATA STREAM Packet with i n v a l i d timestamp

237709 SURICATA STREAM SHUTDOWN RST i n v a l i d ack
177 SURICATA STREAM TIMEWAIT ACK with wrong seq

35296 SURICATA STREAM bad window update
6660 SURICATA STREAM excessive retransmissions
1061 SURICATA STREAM reassembly overlap with d i f f e r e n t data

63 SURICATA TCP i n v a l i d option length
6 SURICATA TCP option i n v a l i d length

2006 SURICATA TLS i n v a l i d handshake message
679 SURICATA TLS i n v a l i d record type
2685 SURICATA TLS i n v a l i d r e c o r d / t r a f f i c
74 SURICATA TLS too many records i n packet
114 SURICATA UDP packet too small
3 SURICATA UDPv4 i n v a l i d checksum

Lis t ing B . l : Generated alerts from P C A P file that was transmit ted by 1 replication

1 ET HUNTING Suspicious TLS SNI Request for Possible COVID-19 Domain M2
40 ET POLICY possible Xiaomi phone data leakage DNS

434 SURICATA Applayer Detect protocol only one d i r e c t i o n
58 SURICATA Applayer Protocol detection skipped

188927 SURICATA Applayer Wrong d i r e c t i o n f i r s t Data
344 SURICATA FRAG IPv4 Fragmentation overlap
1568 SURICATA FRAG IPv6 Fragmentation overlap

2 SURICATA HTTP Host header i n v a l i d
4 SURICATA HTTP METHOD terminated by non-compliant character
1 SURICATA HTTP Request abnormal Content-Encoding header

32 SURICATA HTTP Request l i n e incomplete
2 SURICATA HTTP Request unrecognized authorization method
2 SURICATA HTTP Response i n v a l i d protocol
2 SURICATA HTTP Response i n v a l i d status
1 SURICATA HTTP URI terminated by non-compliant character

31 SURICATA HTTP Unexpected Request body
100 SURICATA HTTP gzip decompression f a i l e d

76

22 SURICATA HTTP i n v a l i d response chunk len
2 SURICATA HTTP i n v a l i d response f i e l d f o l d i n g
1 SURICATA HTTP request f i e l d missing colon
2 SURICATA HTTP response f i e l d missing colon
9 SURICATA HTTP response header i n v a l i d
2 SURICATA HTTP too many warnings

18516 SURICATA HTTP unable to match response to request
2 SURICATA IKEv2 weak cryptographic parameters (Auth)
2 SURICATA IKEv2 weak cryptographic parameters (Diffie-Hellman)
2 SURICATA IKEv2 weak cryptographic parameters (PRF)
2 SURICATA SMTP i n v a l i d pipelined sequence
1 SURICATA SMTP no server welcome message

33 SURICATA STREAM 3way handshake SYN resend d i f f e r e n t seq on SYN recv
174 SURICATA STREAM 3way handshake SYNACK i n wrong d i r e c t i o n
16 SURICATA STREAM 3way handshake SYNACK resend with d i f f e r e n t ack

109 SURICATA STREAM 3way handshake SYNACK with wrong ack
8 SURICATA STREAM 3way handshake right seq wrong ack evasion

16747892 SURICATA STREAM 3way handshake wrong seq wrong ack
19 SURICATA STREAM 4way handshake SYNACK with wrong ACK

287 SURICATA STREAM 4way handshake SYNACK with wrong SYN
5356 SURICATA STREAM CLOSEWAIT ACK out of window

12716 SURICATA STREAM CLOSEWAIT FIN out of window
4099 SURICATA STREAM CLOSEWAIT i n v a l i d ACK
194 SURICATA STREAM ESTABLISHED SYN resend
69 SURICATA STREAM ESTABLISHED SYN resend with d i f f e r e n t seq

113 SURICATA STREAM ESTABLISHED SYNACK resend
38 SURICATA STREAM ESTABLISHED SYNACK resend with d i f f e r e n t ACK

5615369 SURICATA STREAM ESTABLISHED i n v a l i d ack
15599046 SURICATA STREAM ESTABLISHED packet out of window

12621 SURICATA STREAM FIN i n v a l i d ack
17269 SURICATA STREAM FIN out of window
25883 SURICATA STREAM FIN1 FIN with wrong seq

1 SURICATA STREAM FIN1 ack with wrong seq
8704 SURICATA STREAM FIN1 i n v a l i d ack

7 SURICATA STREAM FIN2 FIN with wrong seq
91 SURICATA STREAM FIN2 i n v a l i d ack
12 SURICATA STREAM Last ACK i n v a l i d ACK

6338431 SURICATA STREAM Packet with i n v a l i d ack
26756 SURICATA STREAM Packet with i n v a l i d timestamp

697535 SURICATA STREAM SHUTDOWN RST i n v a l i d ack
226 SURICATA STREAM TIMEWAIT ACK with wrong seq

19999 SURICATA STREAM bad window update
4810 SURICATA STREAM excessive retransmissions
354 SURICATA STREAM reassembly overlap with d i f f e r e n t data
252 SURICATA TCP i n v a l i d option length
24 SURICATA TCP option i n v a l i d length

1642 SURICATA TLS i n v a l i d handshake message
545 SURICATA TLS i n v a l i d record type

2187 SURICATA TLS i n v a l i d r e c o r d / t r a f f i c
408 SURICATA UDP packet too small
126 SURICATA UDPv4 i n v a l i d checksum

Lis t ing B .2 : Generated alerts from P C A P file that was transmit ted by 4 replication

77

