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Abstract 
Machine Vision methods benefit from improving models, tuning trained 
parameters, or labeling representative data. In a series of experiments, 
this work validates the hypothesis that Active Learning improves the 
accuracy of these models. By extending the pseudolabel framework 
to Active Learning, this work includes a One-shot-learning approach 
to learn novel image categories by utilising an algorithmic recom-
mender, an online Graphical User Interface to optimise the online 
Exploration/Exploitation tradeoff for tagging, and a two-step offline 
binary Active Learning framework to improve the quality of data used 
for Font Capture. By demonstrating the benefit of Active Learning in 
these approaches, this work contributes to the hypothesis, as well as 
concrete Machine Vision applications. 

Abstrakt 
Metody strojového vidění se zdokonalují zlepšením modelů, laděním 
trénovaných parametrů nebo anotací reprezentativních dat. Tato 
práce řadou experimentů potvrzuje hypotézu že aktivní učení zvyšuje 
přesnost těchto modelů. Rozšířením přístupu pseudolabelů o ak
tivní učení přispívá tato práce přístupem „one-shot-learning" k učení 
nových kategorií obrazů s použitím algoritmických doporučení, dále 
online grafickým uživatelským rozhraním pro optimalizaci dilema Ex
ploration/Exploitation pro online tagování, a dvoukrokovým offline 
binárním přístupem aktivního učení pro zlepšení kvality dat použí
vaných pro snímání fontů. Tím, že demonstruje přínos aktivního učení 
v těchto přístupech, přispívá tato práce k hypotéze i konkrétním ap
likacím strojového vidění. 
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CHAPTER 1 

Introduction 

Machine Learning in general and Computer Vision in particular are 
highly sensitive to the amount and quality of data presented. Repro
ducible improvements in results and abilities of created models can be 
wholly attributed to the following factors: a model's prior and ability 
to fit, a model's actual fit to data, and representativity of training data. 

With the vast majority of research focused on the first factor, and 
the vast majority of engineering work focusing on the second, the third 
factor receives far less attention. As quality data for various critical 
tasks is known to be costly to create, this work focuses on how this 
can be done most effectively. The optimisation of expert labelling and 
assessment of the resulting benefits is achieved via Active Learning. 

A hypothesis regarding the benefit of Active Learning in Machine 
Vision is experimentally validated under these scenarios: when the 
labelling oracle is a human expert, and when the oracle is a pre-trained 
algorithm for another task. A large dataset, such as personal photos or 
hundreds of thousands of fonts, is most effectively labelled by using 
a human-in-the-loop approach. Facilitated by per-sample certainty 



analysis during training, the expert labelling effort achieves higher 
label quality with significantly fewer annotations. The second case, 
where existing models can preprocess useful information, requires 
systematic labelling and confidence tracking, or practical mappings. I 
have successfully used these approaches in my own published work, 
as presented in this thesis. 

The hypothesis is experimentally validated in several contempo
rary scenarios, such as fully automated labelling (section 3.2) to create 
a dataset with combined information not available elsewhere, but with 
models trained on several other datasets. My work demonstrates that 
filtering data by retraining a model to select valuable examples only is 
shown to be usable to minimise human effort in creating new, useful 
datasets, and models. 

In addition to four cases validating the hypothesis that Active 
Learning benefits contemporary Computer Vision, at the core of this 
work lies another practical contribution: an improvement to the accu
racy to work ratio achieved through a new pseudolabels Active Learn
ing framework to integrate labelling by existing models, human experts, 
and a trained agent. 



CHAPTER 2 

Hypothesis & Contribution 

Generative and discriminative algorithms in Computer Vision are de
signed and trained to maximize their ability to generalize. This is 
tested on unseen data, and maximized by improving the model prior, 
improving the quality of the labelled and unlabeled data used, and by 
hyperparameter tuning. A tangential approach, compatible with im
proving the model and hyperparameters, is Active Learning, by which 
the gathered data is improved during training-time by effectively man
aging the labelling and selection effort of an expert. 

2.1 Hypothesis 

As it is desirable to optimally transfer knowledge and existing models 
to new tasks where data is limited, the following hypothesis is put 
forward: 



Human and algorithmic expert annotation using Active 
Learning improves the accuracy of contemporary Computer 
Vision methods. 

The hypothesis is put forward with the expected result of achiev
ing a significant margin, thus being both useful and demonstrably 
achievable. The term contemporary is taken to mean algorithms per
forming state-of-the-art accuracy in the case of discriminative models, 
or output quality for generative models, but not expecting to produce 
comparable results to next-generation models. The hypothesis refers 
to human and algorithmic experts because Active Learning is expected 
to be applicable both in the context of green-field datasets and ap
plications and in Transfer Learning applications where one or more 
useful weak learners already exist. The concepts of accuracy, quality, 
and labor time are context-specific, referring to a context-dependent 
relevant applicable metric of generalization, and to the time and effort 
taken to achieve said results. 

2.2 Method 

The hypothesis is tested by comparing the achieved accuracy of this 
approach, as opposed to hyperparameter tuning, model tuning, and 
extended training time. These alternative approaches are known to 
hold the potential to improve accuracy and reduce labour time for 
Machine Vision tasks, and they are widely studied elsewhere [15, 35, 
32, 14, 5, 27, 26, 20, 17]. The experimental proofs presented further 
are divided by approach and refer to my own relevant published work. 
These are experiments to demonstrate the benefit of Active Learning 
via sample selection, via human and algorithmic labelling, via feature 
selection and adaptive visualization, and pseudolabels. 

The standard supervised, unsupervised, or semi-supervised setting 
can be formulated as training a model M with parameters p on two 
sets of data: 



p = argmin M(XK u Xv) ( 2.1) 

Where Xk are datapoints with known labels, and Xu datapoints 
with unknown labels. The Active Learning approach has the additional 
Xc,i subset of Xu, which contains the datapoints chosen to be labeled: 

Xc,i = Si{M,pi,XK,i,XUti) 
Pi = argminM{XK>i u XUyi u XCyi) { 2 2 ) 

p 
And the hypothesis is therefore simply that there exists a selection 

mechanism S such that 

Vi 3S | L(M(XK U Xu)) < L(M(XK>i U XUyi U XCyi)) (2.3) 

Where L is an appropriately chosen loss function for the given 
model. 

The results of the demonstration of the hypothesis have a wide 
array of applications, such as Association-rule Learning used by com
paring the quality of texture synthesis algorithms over inputs with 
selected properties [KDC17, KCD15]. 

In the following chapter, I will test the hypothesis in various sce
narios. These tests correspond to various perspectives under which 
Active Learning can be utilised, namely online training with an op
timized graphical interface [HKL+12] in section 3.3, iterative dataset 
optimisation [KHZ20] in section 3.1, and active transfer learning with 
an algorithmic expert [KHZ16] in section 3.4. 

2.3 Contribution and Proof Outline 

The theoretical contribution is that these results irrevocably demon
strate that the systematic application of Active Learning improves the 
accuracy of contemporary Computer Vision models. A practical con
tribution is also made, in the form of an algorithmic process usable 



for Zero-shot Learning and One-shot Learning for image classification, 
given that a weak retrieval system is available from a large set, such as 
online image search indexing the Web. 

Furthermore, applied contributions are made in the fields where 
the hypothesis has been tested: an improved dataset and algorithm 
for Font Capture and a GUI for image tagging with Active Learning. 

Specifically, the existence claim of equation 2.3 is demonstrated by 
finding S for various scenarios of (L, M, X). For each, the contemporary 
Machine Vision approach is considered in comparison with the Active 
Learning alternative. These two options are then compared, with the 
desired objective of showing 

3S | (L,M,X) (2.4) 

under the conditions of equation 2.3. By demonstrating this for 
four important problems of current research, the hypothesis is vali
dated in a limited context. In order to validate the hypothesis with 
respect to all problems of Computer Vision, the argument by analogy 
is made that every Computer Vision problem can be aided by applying 
these Active Learning principles. 

The cases under consideration are: 

1. Tagging of closed-domain information by optimizing an Active 
Learning Graphical User Interface 

2. One-shot learning with pseudolabels and a weak algorithmic 
expert 

3. Active Learning for human experts to create data for Generative 
Adversarial Neural networks 

4. Transfer Learning of algorithmic experts for Generative Adver
sarial Neural networks 

These four cases correspond to sections of the following chapter, 
where they are treated in more detail. An overview of the intercon
nections of these sections and how they jointly support the thesis is 



as follows: Active Learning benefits the model and users directly by 
allowing them to more efficiently label data with general classes, as 
well as domain-specific information (1. - published in 2012). Moreover, 
sufficiently well-preprocessed image data allows high-quality training 
of classes without any human expert, by using an online image search 
algorithm and pseudolabels to train a Convolutional Neural Network 
(2. - published 2016). The filtering of existing datasets by humans 
(3. - under review), as well as the labelling of unsupervised datasets 
by algorithms (4.) can be performed with Active Learning, enabling 
improved generative quality as well as entirely new applications. 

Therefore, these four problems present a holistic approach to the 
application of Active Learning in contemporary Computer Vision. Be
yond the contribution made to the hypothesis, these have also served 
to further the fields of research they have been applied in, as detailed 
in the following chapter. 



CHAPTER 3 

Active Learning for Machine Vision 

The cases in which Active Learning has been tested to support the hy
pothesis are described in this chapter. The presented work is divided 
into four sections, loosely corresponding to my own published work. 
By using a combination of Uncertainty Sampling and Diversity Sam
pling, the sections below focus on creating improved data and models 
by sampling from all datapoints while optimizing labelling. Each of 
the following four cases is an experiment to test the hypothesis, and 
thus to serve as a quantitative proof. 

In the context of labelled image datasets, image-wise tagging is 
not limited to pre-training annotation. In fact, the required expert 
input can be reduced by judicious initialization with an external sys
tem [KHZ16], by asking the annotator to verify rather than label [15], 
and by in-the-loop training to identify samples with low certainty [HKL+12]. 

This chapter describes my own work, in which the first approach 
has been tested and published, as detailed in section 3.4, the second 
approach has been tested in the context of generating fonts 3.1, and 
the last approach has been experimentally validated through imple-



mentation and user experiments 3.3. Similarly to the first approach, 
work in section 3.2 also shows that beneficial results can be achieved 
with pure Transfer Learning, where a set of labels is created from spe
cialized pre-trained models, serving new tasks not possible before. 
Section 3.2 presents work made public as a freely available dataset at 
https : //github.com/DCGM/f f hq-f eatures-dataset. 

These three of sections correspond to peer-reviewed work, as fol
lows: Section 3.1 contains work currently under review at The Visual 
Computer as Font Capture in the Wild [KHZ20], section 3.3 was pub
lished as Annotating images with suggestions—user study of a tagging 
system [HKL+12], and section 3.4 describes the method published as 
Deep learning on small datasets using online image search [KHZ 16]. 

Finally, section 3.5 summarizes how these individual contributions 
support the hypothesis of the thesis, and integrates the findings into a 
cohesive methodical validation. 

3.1 Improvements via Dataset Size and Quality 

Font Capture is a task in Computer Vision and Computer Graphics, in 
which text present in an image is replaced with new text in the same 
font. Worldwide, 750 million people are native speakers of a language 
written in a Latin-derived alphabet with diacritics such as accents, 
subscripts, and superscripts [4]. However, out of an estimated 100 
thousand digital fonts widely available, only a few hundred include 
these non-English characters. 

Font extraction on characters of the Latin alphabet has been at
tempted before, either with limited applications to classical fonts [11], 
or with blurry or noisy results [9, 33], and always by using individual 
characters as input. Thanks to an improved dataset and method for 
generating training samples, this work creates sharp fonts extracted 
directly from a line of text, suitable for use in photo editing as well 
as vectorization. This approach makes it possible to take an existing 
TrueType font, render new characters, convert them to vector graphics, 
and incorporate them in the original, thus effectively closing the loop. 



Active Learning has been used to create a large high accuracy dataset 
of fonts, thus improving the quality of the method. 

Generating fonts cannot be replaced by font search over a large 
enough dataset, as shown. Although fonts are widely shared on the 
internet, and font search engines are freely available, few fonts can be 
acquired to perfectly match the desired input. Finding a font given an 
image is a challenging task, undertaken by domain experts or auto
mated processes. Identification methods range from pixel differences 
on detected aligned characters [2] to matching manually entered de
tailed features [3] based on standard font classification techniques [13], 
or automatically extracted attributes [23]. If these methods fail, fonts 
can be identified by a community of experts, such as Fontid.co. How
ever, exotic fonts may be unknown to experts, unavailable to iden
tification systems, or non-digitized. For example, Figure 3.1 shows 
a query text, along with nearest retrieved fonts by existing methods. 
This demonstrates that pixel difference and others are not a sufficient 
metric in font style matching. 

These limits of finding existing fonts sparked an interest in extrap
olating the entire style of a font from a single example. Font extrapo
lation with warp mappings dates to the nineties [30], inspired by the 
effect on the shape of charge on ink particles. A manifold over fonts 
has allowed smooth traversal of the font space [11] and was applied 
to classical typefaces to interpolate fonts. Extrapolation of numerals 
on the MNIST and SVHN datasets was made possible by deep gen
erative models, creating a latent space which allows traversal across 
glyphs [18]. 

More recently, a fully connected deep net has been used to cre
ate an embedding of 50 thousand fonts [10]. A feed-forward neural 
network has been used to generate the entire font from four charac
ters [9], with poor quality results. In addition to limited quality, this 
technique suffers from requiring specific characters, which may not 
occur in the sample text. Variational Autoencoders have been used 
to generate fonts from a single example glyph [33], but with a small 
dataset of 1'839 fonts and a fully connected network, the results are 



TOY MUSEUM HRACEK 
(a) Query text from image - hand-drawn 

TOY MUSEUM HRACEK 
(b) Nearest match by pixel difference - JollyGood Sans Condensed 

(c) Nearest match by property matching - Keynote (caron unavailable) 

TOV MUSEUM HRAČEK. 
(d) Nearest match by expert community - Krinkes 

Figure 3.1: Comparison of font retrieval methods 

still blurry. The 50k fonts dataset [10] has been used to train a VAE 
and a GAN [1], using the principles outlined in [26]. Fonts are extrapo
lated from varying characters with a Multi-Content GAN [7], in colour. 
However, existing methods require segmented characters rather than 
analyzing text directly. Most crucially, results of all existing methods 
are blurry or noisy for all but the most standard fonts. 

While the existing methods train various architectures of neural 
networks with millions of parameters, I anticipate that increased qual
ity may be reached through the application of Active Learning to create 
a larger, more representative dataset on which similar methods may 
be trained. The dataset was made by assembling a large pool of .ttf 
font files, iteratively training and annotating data for a binary classi
fier of usability, and thresholding the ensuing classifier to produce a 



dataset of usable quality fonts. This procedure utilizes a combination 
of Uncertainty Sampling and Diversity sampling, by focusing the an-
notator's attention on cases with high certainty, as well as cases of very 
low certainty. 

The dataset is filtered through a shallow Convolutional Neural 
Network over three iterations. At each iteration, four representative 
characters of every font in the unlabeled dataset are rendered, classi
fied, some are annotated, and the process repeats. The representative 
characters are „a", „1", „1", and „?". 

The initialization proceeds as follows: The representative charac
ters are rendered for all fonts and placed into a single image named 
with the unique font ID. If any of the characters „a-z", ,A-Z", and „0-9" 
is blank or undefined (rendered as in figure 3.2), the font is discarded 
immediately. Similarly, if any two characters are equal pixel-for-pixel, 
the font is discarded. All remaining fonts are viewed in a directory, 
allowing quick preview and easy group selection. 

DDOD 

Figure 3.2: Undefined characters render as Unicode error codes 

The fonts which do not contain readable Latin characters are man
ually selected and labelled as negative. This is performed for 0.5% of 
the data, or 1 300 fonts, which requires about two hours of annotation 
time. The other seen examples are marked as positive. This annotated 
data is then used to train a shallow Convolutional Neural Network. The 
network, used to classify usable fonts on four characters of fixed size, 
has two convolutional layers of 8 and 2 channels, and a last dense layer 
with a sigmoid activation function. This simple network is trained 
on the annotated data. Negatively annotated fonts include non-Latin 
fonts, dingbats, emojis, and highly ornamental typefaces, which may 
produce unexpected characters for standard glyphs. 

Then, the network is used to make predictions on the unlabeled 
data. The 99.5% of unlabelled data receives ratings from 0 to 1, for 
which two tasks are semi-manually performed: the establishment of 



a threshold T\ where positive examples outweigh the negative, and 
manual labelling of unlabeled fonts near this threshold (uncertainty 
sampling), and near the 0 and 1 ratings (diversity sampling). 

This for of uncertainty sampling is very effective, producing a high 
percentage of samples to be re-labelled. On the other hand, this sim
plified form of diversity sampling does not produce many examples to 
be re-labelled. This can be interpreted in two ways: 

1. The classifier is very effective and has few high-certainty incor
rect cases 

2. This diversity sampling method is not effective at finding new 
types of cases needing re-labeling 

After three iterations, the re-labelled fonts are once again thresh-
olded with T3, and the effectivity of the combination of the sampling 
methods is evaluated as follows. A random sample of positive fonts 
is taken and manually evaluated until a false-positive is present (an 
incorrect font selected as correct). Using this method, the first false 
positive in random data was found at position 349, giving an expected 
accuracy of over 99.3%. 

The dataset is then processed further, to create a specialized sec
tion of fonts with diacritical marks. This process is performed as in the 
initialization stage of the full unlabeled dataset, but over a different set 
of representative characters: „a", „c", „£)", „c", >fk", „a", „e", and „1". If 
any of these characters were blank, undefined, or initialized with an 
error Unicode as in figure 3.2, the font was not selected. Upon manual 
assessment of the quality of this data, it was judged that no further 
Active Learning was necessary to improve the quality of this portion of 
the dataset with diacriticals. 

In summary, fonts used in this method have been acquired online, 
with 222 462 used out of 272 849 unique fonts, including 7 089 fonts 
with selected diacritical marks (an acute accentcircle °, or caron" 
on eight characters). The fonts have been downloaded from various 
sources, such as multiple unofficial datasets, Open Source libraries of 



fonts and font families, and official repositories of font-sharing web
sites. A font family is typically a group of related fonts which vary only 
in weight, orientation, width, etc., so in order to create a highly repre
sentative dataset, it is desirable to include fonts with similar variations. 
Downloaded fonts have been filtered with the deep net described ear
lier. 

A Generative Adversarial Network was trained on this dataset to 
render any of the characters with and without diacriticals. While ren
dering data for training, the input was rendered as ordinary text with 
correct kerning and English letter statistics, by sampling phrases from 
a Harry Potter book. The GAN was simultaneously trained to generate 
diacritics, by using non-diacritics at the input with fonts containing 
diacritics, and a random accented character at the output. An outline 
of the trained GAN can be seen in figure 3.3, and further details on this 
standard process can be seen in the original publication [KHZ20]. 

Style source 

•s in studying for Transj 
Discriminator 

Real 
>• or 

Fake 

character id -^-l_2 loss 

Output 

Figure 3.3: GAN structure, with sample inputs and outputs 

3.1.1 User Study 

A user study with 17 participants compared generated characters from 
state-of-the-art methods: VAE [18], ADV-VAE [33], and this work. The 
study was performed with three triplets of characters, as shown in 



Figure 3.4. Each participant received 72 rows of triplets, printed on 
four sheets, and was asked to identify the different triplet. If the user 
fails to identify the generated triplet, the output of the method can 
be considered indistinguishable from the original font. Correct and 
incorrect user classifications are summed for each method, and results 
are presented in Table 3.1. The proposed method recreates fonts con
vincingly in 51% of cases, compared to 3% and 9% for the previous 
methods. According to the randomization permutation test, these 
results are highly significant (p<0.0001). Furthermore, tests show that 
VAE outperforms ADV-VAE with p-value 0.059. 

h f Y 
* , i 

B t Z 
z N 3 
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L c M 
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Figure 3.4: User Study Setup. Each row contains three triplets, two 
of which are ground truth, and one is generated by one of the three 
methods. Their order is randomized, except for the middle triplet, 
which is always the ground truth. 

Using this approach, fonts maybe extended to other alphabets and 
non-alphabetic languages for the benefit of billions of people whose 
native languages are not written in Latin alphabets. Unicode defines 
136 900 characters [31], all of which can be generated in any font using 

o n u 



Method success rate adjusted success rate 

VAE [18] 
ADV-VAE [33] 
Ours 

4.7% 
1.6% 

25.6% 

9.4% 
3.1% 
51% 

Table 3.1: User Study Results. If the method produces indistinguishable 
outputs with respect to the ground truth, the user performs a random 
binary choice. This corresponds to a 100% method success rate for an 
ideal output, versus 50% measured in the experiment. The adjusted 
success rate is doubled accordingly. 

this approach. Office suites such as Microsoft Office & Google Docs 
can benefit from incorporating such tools in the future. 

A limitation of this work is the lack of kerning information. Cur
rently, kerning is being done manually, so automated letter spacing is 
only possible for monospaced fonts, but this can be incorporated as 
an additional specialized task. 

The hypothesis has been tested by comparing similar generative 
neural networks under similar conditions, but the network shown 
here has been trained with an improved larger and higher quality 
datasets thanks to the application of Active Learning. The method 
trained on the dataset produced via Active Learning has demonstrably 
outperformed the other, as shown in table 3.1. 

3.2 Unsupervised Active Learning 

Another practical application of Active Learning principles is Transfer 
Learning, enabling effective algorithmic annotation of unlabeled data. 
The Flick Faces HQ (FFHQ) dataset [16] has been successfully used 
in generating faces by training GANs, but the images lack annotation, 
which would provide useful information in guiding face generation 
via features. Due to this limitation, faces can only be generated by 



randomly sampling the latent space, or by selecting latent space points 
corresponding to known faces. However, it has been previously impos
sible to generate random faces with specific attributes. 

The FFHQ dataset contains 70 000 unlabeled unique faces in high 
resolution, making it well suited for applications in graphics. See 
figure 3.5 for a random sample of these images. These images, even 
when annotated, would be impractical for training other tasks, such as 
gender recognition or orientation, because of the unnecessarily high 
definition and low sample count. 

However, by combining state-of-the-art feature extractors with the 
high-resolution dataset, it is possible to create a dataset of labelled 
faces with useful information for guided generation of faces with spe
cific features. 

3.2.1 Transferring features 

The dataset was created by running these pre-trained models to ex
tract features: VGG-Face [25], Facenet [28], OpenFace [8], and Deep-
Face [29]. These pre-trained models detect faces and then produce 
features. These are geometrical features (landmarks and orientation), 
and well as categorical features (facial hair, emotion, eye colour, etc.). 
The 70 000 faces in were processed by these four models, and all but 
528 very detected and annotated. The remaining faces are excluded 
from additional training in order to maintain the system's full auton
omy. Transfer learning from pre-trained experts enables the creation 
of data labels by applying other algorithms, without human labels or 
supervision. 

See figure 3.6 for a random annotated face. The resulting dataset, 
FFHQ-features, is available online1. 

3.2.2 Generative Faces with Features 

The dataset was used to train a conditional Generative Adversarial 
Network. Unlike traditional GANs, which randomly sample the latent 

^ttps^/github.com/DCGM/ffhq-features-dataset 



Figure 3.5: A sample from the Flickr Faces HQ dataset (FFHQ) [16] 

"faceRectangle": { 
"top": 48, 
" l e f t " : 25, 
"width": 76, 
"height": 76 

}, 
" f a c e A t t r i b u t e s " : 

"smile": 1, 
"headPose": { 

• p i t c h " : -7.3 
" r o l l " : -0.8, 
"yaw": 

}, 
"gender": 
"age": 26, 
" f a c i a l H a i r " 

"moustache 
"beard": 8 
"sideburns 

}, 
"glasses 
"emotion 

'anger 

{ 

-0.3 

female", 

{ 
0, 

0 

"Nodlasses" 
{ 
0, 

contempt": 0, 
disgust": 0, 
fe a r " : 0, 
happiness": 1, 
n e u t r a l " : 0, 
sadness": 0, 
c u m r i t p " • PI 

Figure 3.6: A random face from FFHQ dataset, with some extracted 
annotations in .json format 

space to generate samples indistinguishable from training data with-



Figure 3.7: ProGAN-generated faces with age and gender restrictions. 
Rows alternate genders, columns hold incremental age groups [34] 

out control over the features, conditional GANs are trained with an 
additional control vector, allowing them to set the desired properties 
of the output, given that this information was known during training. 

Several architectures of cGANs were trained, with a number of 
different tunings, loss functions, and hyperparameters [34]. The fea
tures used were only age and gender, but the process can be applied to 
any categorical and continuous features present in the FFHQ-features 
dataset. Figure 3.7 shows randomly generated faces with gender and 
age control. 

Instead of randomly sampling the latent space, and thus generating 
new faces, the network can also be used to generate the same face with 
different control features. In figure 3.8, the same random vector in 
latent space is rendered with different ages, resulting in the generated 
ageing process for a random, non-existent person. 

By extending the use of Active Learning methods to fully algorith
mic solutions via labelling with pre-trained networks, new results have 
been achieved. It was previously impossible to generate faces with spe-



Figure 3.8: ProGAN-generated faces, with varying age parameters [34] 

cific features due to the lack of such quality data, and by applying these 
techniques, the contemporary Machine Vision problem of generating 
faces has been quantitatively furthered. 

3.3 Optimising user annotations 

In this typical case of Adaptive Learning, a tagging system is presented 
such that it optimizes the annotation process with respect to two crite
ria: optimal adaptive recommendations based on prior actions, and an 
efficient interface for large-scale annotation. However, unlike Collabo
rative Filtering, this Active Learning use-case focuses on user-specific 
information, as opposed to preferences on globally known objects. 

Most generally, users are presented with the option of creating 
arbitrary tags and aligning them to their own images. As these can be 
user-specific, language-specific, or location-specific, the information 
is not necessarily known for other users and other objects, and every 
tag has to be predicted online based on current tags. 



By using Restricted Boltzmann Machines to provide labelling rec
ommendations in a web-based user interface, the annotation of images 
via Active Learning has been experimentally tested in a user study. The 
objective of the tag suggestion methods is to allow Image-wise tagging 
(assign tags to an image) rather than Class-domain-wise tagging (as
sign images to a tag). These results demonstrate that large datasets 
with semantic labels (such as in TRECVID Semantic Indexing) can be 
annotated much more efficiently with the proposed approach than 
with current class-domain-wise methods, and produce higher quality 
data. 

3.3.1 Local Tag Suggestion 

A Restricted Boltzmann Machine is used to predict labels, by the en
coding of the labels of surrounding tags and extracted features. Aside 
from the RBM suggestion method, tags are also suggested if they are 
positively annotated in nearby images in the gallery. A gallery is viewed 
as a chronological sequence, with images {Ii}f=r When generating 
suggestions for a given image It, each tag is given a weight a), given by 

N x 
a)=Y. 1—7 ~,—TT * has_tag{Ii), (3.1) 

fei log(\p-i\ + l) 

where 

{ 1 if the tag is positively annotated on 
-1 if the tag is negatively annotated on It 
0 if the tag is not annotated on It 

The /0g(|p_f-|+1) term ensures that closer annotations have more weight 
on (x), and the has_tag(It) term ensures that positive annotations have 
positive weight, negative annotations negative weight, and all others 
are ignored. Tags are then ordered by their oj from highest to lowest. 
Any tags with a) > 0 are then suggested, in this order. 



Tags 

Suggestion: 

y t u t X J primate X •/ aparDiielils X J male person X J race X S synthetic images X 

X / m a p h i c X / Luildiriu X J enTeilaiiimenl X / 

ne people X / waterscape waterfront X / windows X + MDI e suggestions 

Selected tags: 

adult X outdoor X person X iky X 

I Show me all available tags 

AUTOCOMPLETE SUGGESTED 
SEARCH TAGS 

Surrounding photos 

<- 0 Cur rem position 

Figure 3.9: Typical view of the ITS web interface. Annotation option 
parts are outlined in red. 

3.3.2 Integration of Suggestion and User Interface 

When suggesting n tags, [n/2\ are from the RBM model, [n/2\ from 
local tag suggestion, and if n is odd, the remaining one is chosen with 
either method with equal probability. That ensures that when only one 
tag is being added, neither method is favoured. 



When an image is loaded, 15 tags are chosen, and three annotating 
options are available to the user. As seen in Figure (picture of the Web), 
they are as follows: 

1. Each of the 15 suggested tags is presented with a „check" and a 
„cross". When clicking check, the tag is added as positive anno
tation, and the cross adds negative annotation. When clicking 
either, the tag disappears from the suggestion list, and a new one 
is added at the end of the list. 

2. The user can use an auto-completing text field, where any typed 
word or part of a word is matched with all occurrences in ex
isting tags as a substring. For example, when typing „person", 
the user is presented with „person", „male person", „female 
person", and others. This ensures that when no information is 
given yet, the user can easily add information that's compatible 
with the current collection of tags in the database. When any 
of these is clicked, it gets added to the current suggestion, and 
the suggested tags are refreshed accordingly. Users are allowed 
to enter new tags which are not yet in the database; however, 
such tags are not immediately considered by the RBM model. It 
is more appropriate to add new tags to the RBM model when 
the number of positive annotations of such tags increases over 
a certain threshold in order to prevent saturating the model by 
rare or otherwise irrelevant tags. 

3. Given the chronological sequence of images, three preceding 
and three succeeding images are shown on the right. When any 
of these is clicked, the positive tags that have been annotated 
on that image are copied over to the current image, and the 
suggested tags are refreshed accordingly. 

The suggestion operation takes on average 0.1 seconds, making 
the system responsive and allowing quick interaction with the user. In 
case of sequential video frames, this interface allows users to seam
lessly copy tags from previous images to the current one, either by 



copying tags from the three preceding and three succeeding images or 
by selecting the suggested local tags. 

Another use scenario is the annotation of holiday photos with 
recurring themes, people, and elements. In the case of unusual images 
and tags that are not a priory likely, the RBM suggestions may not be 
accurate very useful at first; however, by providing one or several tags 
relevant to the image (e.g. by using the auto-completing text field) will 
make co-occurring tags likely to be suggested. 

3.3.3 Experiments and Results 

In order to identify the usability and usefulness of this system, two 
experiments with users were performed: testing with untrained indi
viduals with minimal support, and testing with expert annotators for 
an extended period of time. In order to make the test replicable, only 
images and tags2 from the TRECVID 2011 Semantic Indexing task3 

were used, and the feature to add new tags was disabled. 
Besides the reproducibility of the experiments by others, there 

are several other advantages of using the TRECVID data. A part of 
the data is already annotated and can be used to learn the RBM tag-
dependency model. Further, the dataset was annotated manually [5], 
which provides a baseline for comparison. 

In addition to the user study, the ability of RBM to model dependen
cies among tags and the ability to estimate marginal tag probabilities 
by Gibbs sampling was tested on the TRECVID data. This experiment 
gives the objective information from the RBM suggestion system alone. 

Examples of the classes are Actor, Airplane Flying, Bicycling, Canoe, Doorway, 
Ground Vehicles, Stadium, Tennis, Armed Person, Door Opening, George Bush, Mili
tary Buildings, Researcher, Synthetic Images, Underwater and Violent Action. 

3 ht tp : / /www-nlpi r .n is t .gov/projects / tv2011/ tv2011.html 

http://www-nlpir.nist.gov/projects/tv2011/tv2011.html


Testing by Untrained Users 

Ten randomly selected technical university students were asked to use 
four different tag suggestion methods using this system, with as little 
training as possible. The four methods are: 

1. none — no suggestion method 

2. RBM — only Restricted Boltzmann Machine suggestion 

3. local — only local tag suggestion (Section 3.3.1) 

4. RBM+local — the combination of Restricted Bolzmann Machine 
and local tag suggestion, as presented in section 3.3.2 

The methods were ordered randomly, and the user was not told which 
is which. After using each method, the user was asked to answer a 
questionnaire with questions regarding the rating and usability of the 
method, and data regarding the number of annotations created was 
stored. 

According to the results (Figure 3.11), RBM and RBM+local sug
gestion methods allow significantly4 faster annotation. There were 
no significant differences between RBM and RBM+local, nor between 
none and local. According to the questionnaire, method none is found 
by the users to be significantly5 inferior to all the other methods in 
almost all aspects. No other significant differences were found, ex
cept that RBM and RBM+local received better marks in the ability to 
facilitate annotating more tags per image compared to local. 

Testing by Expert Users 

Three expert users were asked to use the combined tag suggestion 
method (Section 3.3.2). The users previously took part in TRECVID 

4Using the paired t-test at the 10% significance level. 
5 Using the Mann-Whitney U test at the 10% significance level. 



e f f e c t i v e p l e a s a n t more images 

none none none 

REM RBM RBM 

l o c a l l o c a l l o c a l 

RBM+local RBM+local RBM+local 

none RBM l o c a l RBM+local none RBM l o c a l RBM+local none REM l o c a l RBM+local 

more tags i n t e l l i g e n t saved time 

none none none 

REM RBM RBM 

l o c a l l o c a l l o c a l 

REM+local RBM+local RBM+local 

none REM l o c a l REM+local none RBM l o c a l RBM+local none REM l o c a l REM+local 

Figure 3.10: Black squares represent a significantly better outcome in 
the user evaluation, according to the questionnaire. The questions 
allowed a 1 - 5 rating on effectiveness, pleasantness, amount of images, 
amount of tags per image, perceived method intelligence, and whether 
the method saved time. 

2011 collaborative annotations [6] and had at least two hours expe
rience with ITS. The users spent a total of three hours annotating 
randomly selected videos from the TRECVID dataset. 

In this setting, the number of positive and negative annotations as
signed per hour was 448 and 3085, respectively, averaging 13.1 positive 
annotations per image. The annotating speed compares very favor
ably to Class-domain-wise tagging annotation for which the authors 
of [6] expect 2 seconds per annotation; moreover, only 2.5% of the 
annotations in the TRECVID 2011 SIN [24] dataset are positive. When 
compared to the original distribution of tags obtained by the Active 
Learning method [6], the ITS tags have a heavier tail distribution for 
both positive (kurtosis 8.35 in TRECVID and 4.18 by ITS), and negative 
annotations (kurtosis 2.18 in TRECVID and 1.98 by ITS). 

It has been shown that the presented method produces higher 
quality annotations in less time than comparable methods. Therefore, 
these results support the claim that Active Learning presents an im
provement over approaches without it and that the creation of labelled 
datasets will benefit from the approach presented here. 



none REM l o c a l REM+local none REM l o c a l REM+local 

Figure 3.11: The top graphs show the mean number of tags assigned 
per hour with confidence intervals at 90% significance level. The bot
tom graphs show black squares where the column methods annotate 
significantly more tags per hour than the row methods. 

3.4 Deep Learning on Small Datasets using Online 
Image Search 

Learning image tags and object detectors is a core task of Computer 
Vision, and the large amount of data required to train every visual 
class is prohibitive. Therefore, by reformulating the problem in a 
Weakly Supervised PU learning setting, image categories can instead 
be trained from algorithmically preprocessed noisy online data. The 
following approach, the core contribution of this thesis, was presented 
at SCCG2016 [KHZ 16]. 

The proposed algorithm utilizes Google Image Search in a Hybrid 
Action Learning, where active learning with a weak algorithmic expert 
is used after an unsupervised initialization. Thousands of images are 
retrieved for any search string. The resulting set of images is weakly an
notated, in the sense that numerous examples may be wrong or noisy. 
The data is stored statically for each given class, so this is not presented 
as a Online Learning problem but as an Incremental Learning problem. 



Figure 3.12: Pseudolabel selects useful additional images from an 
unreliable source, to help train a Deep Learning classifier 

The proposed algorithm (Algorithm 1) is composed of an initial 
pre-training, a selection process, and a repeated weighted training 
step. 

This section describes the data, the method, and the implementa
tion. 

In the original paper [21], pseudolabels are labels assigned during 
each epoch to any unlabeled images based on classifier responses. In 
the current setting, pseudolabels are weighted labels of the class used 
to query each image in online image search. 



Data: labeled images, queried images for each class 
Result: trained classifier 
initial training of CNN with labeled images only; 
while CNN not converged do 

for each queried image I do 
| select whether to use I for training 

end 
train CNN with labelled and selected images 

end 
Algorithm 1: Proposed pseudolabel algorithm 

Throughout this section, the following conventions are adopted: X 
is a set of images {Xi, X2, X3,...}, y is a set of labels {y\, y2, ̂ 3,...} where 
yn e {1,2,... C}. C denotes the number of categories. Training examples 
have the form (X,y). Every i model update iterations is referred to as 
one epoch, and a set of images and labels during the duration of epoch 
e is denoted (Xe,ye). 

labeled images are divided into a training set and testing set: (X t r a i n,y 
In addition to the train and test sets, query images are retrieved 

from an online image search engine separately for each category. The 
queried images are denoted (X q u e r y ,y q u e r y). 

3.4.1 Training CNN 

CNNs are trained by Stochastic Gradient Descent, where training im
ages are propagated forward through the network in batches to pro
duce outputs, for which error gradients are calculated. To complete an 
iteration, these are backpropagated to calculate loss gradients, which 
are used to update network weights. This process is repeated until 
convergence. 

3.4.2 Pseudolabels with Query Images 

The method described here relies on a different pseudolabel selection 
mechanism and a different pseudolabel weighting to the original ap-



proach [21]. When training with pseudolabel data, the CNN is trained 
as described in section 3.4.1. However, X q u e r y images are repeatedly 
evaluated with the current network, and some are selected with pseu-
dolabels X p l , for training. 

At the beginning of training, XjJ1 is empty. 

X*f = 0 (3.2) 

For the first i iterations (during epoch 0), the CNN is trained only with 
(X t r a i n ,y t r a i n ) . Then, X[J u e r y is propagated forward through the CNN, to 
produce a set of vectors of beliefs for all labels bo for every query image. 
These beliefs correspond to the normalized outputs of the last fully 
connected layer, before applying the last softmax layer. 

Then, a randomized selection process chooses which predicted la
bels y q u e r y will be trusted. Pseudolabel examples X^ 1 from the previous 
epoch are excluded. 

» £ i > y £ i ) = selected®?***\xf,y^,be) (3.3) 

The selection method proposed here is explained in section 3.4.3. 
The rest of X q u e r y \ X^ 1 is unused in this epoch. 

This is the end of epoch 0. In each following epoch e, the CNN is 
trained with {(X^y^1), (X t r a i n,y t r a i n)}. Section 3.4.4 discusses howy^1 

can be weighted against y t r a i n for better convergence stability. 

3.4.3 Pseudolabel Selection 

Each example image is chosen with probability: 

(1 - A c) * be 

(3.4) 
2 

Where the accuracy A c for each class c on unlabeled data is the 
ratio of images classified as class c to the number of queried images in 
class c. By making the weak assumption that queried class accuracies 
across queried data are similar, class accuracies A c for the classifier are 
an indicator of training data and class complexity for each category. 



The classifier belief be is the activation of the image for the queried 
class, as predicted by the network. By using the normalized belief 
in the y q u e r y class, the selection favours images the classifier is more 
confident about, thus removing incorrect query images. This belief is 
normalized across network responses. 

Classes with higher accuracy on the query dataset are given lower 
pseudolabel priority. This is accomplished with the (1 - A c) factor. 

A number of factors affect the quantitative benefit of using pseu-
dolabeled images: dataset belief, the accuracy of the selection method, 
the difference between datasets, selection variability over epochs, and 
randomization. This selection method balances these by selecting 
images in a randomized order, which depends on class accuracies and 
classifier belief for the correct class. 

The last step is randomization. A portion of query images is ran
domly removed during selection. In these experiments, 50% were 
removed, and this was found to be beneficial. This is justified by a 
need to regularize across data when the CNN is trained. 

3.4.4 Pseudolabel Weighting 

Pseudolabels are likely to affect the classifier adversely when it hasn't 
yet reached a sufficient accuracy, just as the classifier would fail to 
train on raw query data. Self-training is prone to quickly converge to 
suboptimal solutions because the classifier assigns high confidence to 
wrong examples. How this is mitigated in this approach is explained 
below. 

In the original pseudolabel paper [21], images from the training set 
have constant weights, and the pseudolabel losses are weighted by a, 
where a increases with time according to two hyperparameters. 

Our experiments showed that this method is not more effective 
than setting a = 0 until the network reaches near-top accuracy and 
then setting a = 1. This method crucially relies on the network's ability 
to create a weak classifier from the training data alone, and it was found 
that this is the case with the previously published a tuning method 



Figure 3.13: Example images of the viaduct class 

as well. All shown results are achieved with this step function, thus 
demonstrating its usefulness. 

This weighting method, albeit crude, simplifies hyperparameter 
tuning, and at the cost of a few epochs, achieves the same accuracy. 

3.4.5 Dataset Belief 

For an automatically retrieved set of images, a crucial piece of informa
tion for deciding whether to train using pseudolabels is the accuracy 
of the queried data. The unknown proportion of images which belong 
to the queried category is B, or dataset belief. 
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Figure 3.14: Train and test accuracies with varying correct query im
ages, and varying train set sizes for each class 

Query images can be wrong, misleading, and/or contain correctly 
and incorrecdy labelled images from the training dataset, see Fig
ure 3.13. 

An imperfect selection must vary over epochs, in order to mitigate 
convergence to a non-median representation of the category. 

3.4.6 Difference Between Datasets 

If the training dataset and the images queried from online image search 
are the same, the method will not be of benefit. It is important that 
they are complementary, albeit with an overlap, and that they disagree 
to a degree. The disagreement creates jitter in the hyperspace between 
images where the classifier should not be divisive, and it supports 
convergence to a decision boundary elsewhere. 

We found that selecting (xquery,yquery) which fully agrees with 
the current classifier does not boost classifier accuracy over not using 
pseudolabels at all. This is because despite bringing new information, 
the data doesn't create disagreement, and therefore no novelty. In these 
experiments, it was found that a certain degree of wrong and randomly 
labelled images helped the classifier to converge to higher accuracy 
over the test set. Adding this form of noise achieves regularisation. 



3.4.7 Implementation 

All images x t r a i n , X t e s t , X q u e r y were resized so that the smaller dimension 
is 227 pixels, and a central crop of 227 x 227 pixels is extracted. This 
has been shown to work better than other cropping methods [12], and 
the value 227 was chosen because this is the input size of the AlexNet 
network [19]. Preprocessing details are discussed and evaluated in [12]. 

The AlexNet [19] architecture was used and initialized with weights 
trained on the ImageNet dataset. The network was retrained by keep
ing all but the last fully connected layer locked, and by updating 
weights on the last layer. 

The network was trained over 100 epochs of 500 iterations each 
with each combination of parameters. In a GPU-accelerated environ
ment, such a network on the full SUN dataset with all query images 
converged in 2 to 5 hours. 

The ratio of testing data to queried data accuracies is an indicator of 
the queried datasets accuracy or similarity. Assuming no constructive 
errors, such as those CNNs have been demonstrated to fall to when 
synthesizing examples [22], the number of correctly classified images 
is a lower bound on how many really belong into the category. A large 
difference between this number and the actual number (£?), directly 
indicates how much further benefit the new data can have for training. 

As shown in the right table 3.14, over test data, it can be seen 
that when the number of labelled images is small, the Active Learning 
approach using pseudolabels and a weak classified image retrieval 
system is of significant benefit. The accuracy can increase by as much 
as 25%, thus demonstrating that Active Learning benefits the critical 
Computer Vision task of learning image classifiers. In fact, the broad 
spectrum of classes and the small amount of data shows that this 
general approach can benefit many further tasks, well beyond the 
scope of this experiment. 



3.5 Validating the Hypothesis 

This chapter lists several experiments in which Active Learning has 
benefited contemporary Computer Vision, complementing existing 
algorithms via the judicious application of human labelling effort, or 
the use of pre-trained models for other, similar tasks. 

Specifically, Active Learning has been shown to increase the qual
ity of Generative Adversarial Networks for Font Capture by allowing 
the preparation of a larger and more representative dataset, it has en
hanced the applicability of conditional GANs for generating faces by 
allowing the control of features, it has reduced the necessary time to 
manually annotate varied tags on images, and it has been shown to 
enable weak supervision to vastly improve the classification accuracy 
of image classifiers. 

In terms of the symbolic formulation of the hypothesis, the method 
has shown that for various problems M and their associated loss func
tions L, there exists an Active Learning approach S which takes data X 
to produce parameters for the model which increase its accuracy over 
L. In practice, S can often benefit M even without the need for signifi
cant additional manual annotation, but by efficiently using Transfer 
Learning of existing algorithms as annotation experts. 

The hypothesis, as stated in chapter 2, states that Human and algo
rithmic expert annotation using Active Learning improves the accuracy 
of contemporary Computer Vision methods. The work presented in this 
demonstrates this repeatedly for the human expert case, as well as for 
an algorithmic expert. 

Therefore, this work validates the hypothesis formulated in the 
last chapter, with improvements by a significant margin to several 
contemporary Computer Vision problems. 



CHAPTER 4 

Conclusion 

Machine Vision model quality is dependent on the versatility of the 
prior of the models used, on hyperparameters and parameter tuning, 
and the range and accuracy of data see during training. This work 
focuses on improving the accuracy of models by increasing data quality 
and quantity through Active Learning, validates the posed hypothesis, 
and demonstrates its benefits in a number of scenarios. 

These main scientific contribution is the validation of the hypoth
esis, which stipulates that Active Learning benefits Computer Vision. 
This hypothesis is validated in two sets of differing scenarios: increas
ing the efficiency of manual labour for annotation, and utilizing Trans
fer Learning principles by applying pre-trained models to benefit a 
task. The applied contribution of this work is a series of experimen
tal demonstrations of the hypothesis, and minor contributions are 
application-specific model improvements in Font Capture, One-shot-
learning for image classification, and a tagging GUI to simplify annota
tion. 



A system for human-assisted Image-wise tagging with suggestions 
was created, so that it could be used to obtain large semantically la
belled datasets. The suggestion methods, as well as the annotating 
system itself, could be applied in the context of public media databases. 
The obtained annotations contain a higher percentage of positive ex
amples of infrequent classes. 

In another application, font capture benefited from Active Learn
ing. Fonts are present in all forms of visual media, but working with 
them remains possible only for those with access to the type defini
tions. This work widens the possibilities for tools such as Photoshop 
and Google image translate, where recreating text in a given font is key. 
Automatically expanding the diacritical sets for existing fonts brings 
all fonts to a wider audience of hundreds of millions of users whose 
language includes diacritics. 

Generative Adversarial Networks for generating faces have also 
seen an improvement thanks to Active Learning, by which new faces 
can be rendered with explicitly set features, such as gender and age. 
This benefit has come thanks to applying knowledge from other pre-
trained models on existing data, showing that Active Learning is also 
beneficial in the case of algorithmic experts, rather than only with 
human annotators. 

Similarly, an algorithmic expert in image retrieval was integrated 
into an extended pseudolabel training framework for CNN classifiers, 
demonstrating that Active Learning will push forward challenging 
tasks like image classification. This new method also does not require 
human supervision or annotation, bringing forth the possibility of 
extended applications by which Active Learning is applied seamlessly 
in Transfer Learning and Life-long learning tasks. 

These specific tasks are some examples where my work has shown 
the benefit of Active Learning in increasing the quality of contemporary 
Computer Vision methods. While this validation is not a theoretical so
lution answering the hypothesis, this work will have demonstrated the 
general applicability of these principles and will enable a theoretical 



as well as a practical methodology to increase the quality of Computer 
Vision models at little cost. 

In future work, it may be interesting to explore the question in a 
fashion systematic enough to allow automatic application, thus allow
ing the creation of an algorithm which searches for trainable models 
and existing datasets, and semi-automatically improves them using 
other known data and models. It will be particularly interesting to 
apply these principles to the other unsolved tasks where a large knowl
edge base can be drawn upon, such as theorem-proving, Computer 
Vision in video, and hyperspectral. 



Glossary 

Active Learning Process of selecting which data needs to get an 
expert label, either by a human or by another algorithm. 3-8,12, 
18, 23, 28, 38 

Adaptive Learning Parameters are adjusted at runtime. 22 

Association-rule Learning Discovering information about 
relationships. 7 

Class-domain-wise tagging Assigning images to a tag. 23, 28 

Collaborative Filtering Predicting preferences of users for objects 
given sparse preferences by other users. 22 

Hybrid Action Learning Active Learning with unsupervised 
initialisation. 29 

Image-wise tagging Assigning tags to an image. 23, 39 

Incremental Learning Test-time input is used to improve the model. 
29 



One-shot Learning One or few examples while training. 8 

Online Learning Training data is not statically available. 29 

PU learning Positive and unlabeled data only. 29 

Transfer Learning Adapting a pre-trained model. 6,11,18,39 

Weakly Supervised Learning on data with noisy, limited, or 
imprecise labels. 29 

Zero-shot Learning Classifying to classes not seen during training. 
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