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Abstract

The master’s thesis deals with a stabilization of a discrete logistic model via several control
methods. In particular, the stabilization of equilibria, 2-period orbits and 3-period orbits
is performed. For this stabilization purpose, a proportional feedback control, delayed
feedback control and prediction based control are utilized. For each of the methods, the
stabilization sets for a control gain parameter are derived together with stability ranges of
corresponding controlled orbits. Each of the theoretical results is illustrated by a graphical
interpretation created in the software MATLAB. The supporting computations are done
by the software Maple.

Abstrakt

Diplomova prace pojednava o stabilizaci diskrétniho logistického modelu pomoci nékolika
fidicich metod. Je zde provedena predevsim stabilizace rovnovah, 2-periodickych cykla
a 3-periodickych cyklu. Ke stabilizaci systému je vyuzito proporéniho zpétné-vazebniho
fizeni, zpétné-vazebniho tizeni s ¢asovym zpozdénim a fizeni zalozeného na predikci. U
kazdé metody je diskutovana stabiliza¢ni mnozina pro fidici zesilovac¢ spolu s oblastmi sta-
bility pro odpovidajici kontrolovand reseni. VSechny teoretické vysledky jsou ilustrovany
grafickymi interpretacemi v softwaru MATLAB. Podpurné vypocty jsou provedeny po-
moci softwaru Maple.
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control.

Klicova slova

Diskrétni dynamicky model, logisticky model, diferen¢ni rovnice, zpozdéni, rovnovaha, pe-
riodicky cyklus, stabilita feseni, chaotické chovani, analyza bifurkace, stabilizace systému,
stabilizované feseni, proporéni zpétné-vazebni fizeni, casové zpozdéné zpétné-vazebni fizeni,
fizeni zalozené na predikei.

ONDROVA, L. Stabilization methods for unstable solutions of the discrete logistic equa-
tion: Master’s thesis. Brno: Brno University of Technology, Faculty of Mechanical Engi-
neering, Institute of Mathematics, 2019. 71 p. Supervised by prof. RNDr. Jan Cermak,

CSec.






I declare that I have written my Master’s thesis Stabilization methods for unstable solu-
tions of the discrete logistic equation independently, under the guidance of my supervisor
prof. RNDr. Jan Cermak, CSc., and using the sources listed in references.

May 23, 2019 Lucie Ondrova






I would like to express my sincere gratitude to my supervisor prof. RNDr. Jan Cermék,
CSc. for supervising my Master’s thesis, for all his support, patience, advice, suggestions
and valuable comments.

I would also like to thank doc. Ing. Ludék Nechvatal, Ph.D. for his help with MAT-
LAB. My special thanks belong to my parents and Tomas for their support, love and
patience.

Lucie Ondrova






Contents

1

2

9

Introduction

Mathematical Background

2.1 Equilibrium and Its Stability . . . . .. ... ... ... ... ..
2.2 Period Orbits . . . . . ... ...
2.3 Bifurcation . . ... ...
2.4 Control of System . . . . . . .. ...

Studied Model

3.1 Logistic Model . . . . . .. ...
3.2 Dynamical Traffic Model . . . . . ... .. ... ... ... ...

Stabilization of Equilibria

4.1 Proportional Feedback Control Method . . . . . . . . ... ...
4.2 Delayed Feedback Control Method . . . . . .. ... ... ...
4.3 Prediction Based Control Method . . . . . . .. ... ... ...

Stabilization of 2-Period Orbits

5.1 Proportional Feedback Control . . . . . . . . ... ... .. ...
5.2 Delayed Feedback Control . . . . ... ... ... ... ... ...
5.3 Prediction Based Control . . . . . . .. .. ... ... .. .. ..

Stabilization of 3-Period Orbits

6.1 Delayed Feedback Control . . . . . .. .. ... ... ... ...
6.2 Prediction Based Control . . . . . . . . . .. ... ... ...

Advanced Stabilization of Equilibria

7.1 Proportional Feedback Control . . . . . . . . ... ... .....
7.2 Delayed Feedback Control . . . . .. .. ... ... .......
7.3 Prediction Based Control . . . . . . ... ... ... ... ....

Parity of Delay and Its Connection to Eigenvalues

8.1 Justification of PBC . . . . . . ...
8.2 Justification of DFC . . . . . . ...
8.3 Justification of PFC . . . . . . .

Comparison of Control Methods

10 Conclusion

References

List of Symbols

11

12

14
15
18
20
22

26
26
27

29
29
31
33

35
35
38
42

44
44
48

50
50
52
95

57
o7
60
62

65

68

69

71



1 Introduction

The current world can be characterized in a very simple way. Namely, that it offers an
incredibly fast development of everything - including the development of technologies,
science, industry, medicine. All of this has a positive impact on life standards. On the
other hand, it takes its costs. The human population is starting to be overcrowded and
so far there is no development that could increase a capacity of the environment, which
we are inhabiting. We cannot increase the Earth’s area or provide infinity food support.

In fact, the expansion of this problem during the last century was for mathematicians
one of the impulses to start studying a discipline called population biology in more detail.
Among other things, this field studies also a time evolution of size of population. There are
specific models describing such an evolution of different species, either of a single-species
or the multiple-species. The well known multiple-species model is, e.g, the predator-prey
model (or the Lotka—Volterra equations). The most famous single-species model is the
logistic model and such a model will be discussed in detail later in this thesis.

One may object, that the logistic model has been already discussed and studied in
a lot of works and papers. In spite of this fact, the mathematicians are still amazed at
this model. Mainly the version in a discrete time domain is so interesting. Such a model
predicts a size of population in n-th time unit. Although its formulation is very simple, it
has a rich scale of different types of solutions. According to the input data, the population
would tend to its equilibrium, it would keep repeating of some states all over again (i.e.,
it would behave periodically), or it would even behave totally chaotic.

In [11], we already discussed the types of solutions (mention above) in a very detail,
together with their stability ranges. A property of ‘to be stable/unstable’ is very important
in a description of evolution of some species. It determines the ability of model to stay
in some state even if the varying input data are (slightly) changed. In the case of logistic
model, such a varying parameter is a so-called growth parameter. The results of [11] (i.e.,
a dependence of the types of solutions on values of this parameter) are summarized in
Chapter 3 together with corresponding stability ranges.

In fact, exactly these ranges are the main aims of interest in this thesis. Particularly,
we will try to enlarge them as much as possible. In other words, what we will do is the
stabilization of chosen states (solutions). In general, a stabilization of dynamical models
is a relatively new question in a field of modern mathematical analysis (approximately 20
years old). There are already several methods of stabilization, usually based on adding
some control to the system. To be honest, the analysis of dynamical systems may be
sometimes very difficult, and so do the analysis of corresponding controlled systems.

Later in the text we will use three different control methods described in Chapter 2
(where all the necessary mathematical tools are given), in order to stabilize the logistic
model. Naturally, our first step will be the stabilization of equilibrium. For each control
method there will be given a discussion about the stabilization set, i.e., the set of all
values of control parameter(s), for which we are able to stabilize the system’s equilibrium.
Moreover, we will determine a new range of stability, formulated by explicit dependence
on general growth parameter. It is possible to find it in Chapter 4 or Chapter 7 (there
are two different approaches on controls).

Analogously, the same results (i.e., the stabilization set and, if possible, a formula-
tion of new range of stability) will be discussed also for 2-period orbit (see Chapter 5)
and 3-period orbit (see Chapter 6). In a lot of papers and works, that studied such a
problematic, there is given only the analysis of stabilization of equilibria. In few of them,
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there is also mentioned a stabilization of period orbits. However, in such a case there are
given just concrete results based on numerical experiments, mostly without any analytical
justification.

Therefore, the main contribution of this thesis is in its general analytical approach
in solving of problem of stability and controllability of the system. General results are
then justified by simulations of bifurcation diagrams, that describe each controlled system
separately. A stabilization by implementing of different controls into system is, in fact, a
practical approach to this problem. In Chapter 8 we will give a theoretical justification
of each control method, based mainly on a discussion of the eigenvalues of corresponding
system. At the end of this work, we summarize all results and compare them in Chapter 9.

Note that we have chosen a logistic model as a testing model for this thesis just because
of several reasons. First, we know this model in detail from [11]. Second, in spite of the
simplicity of the model (meaning in comparison with other discrete dynamical models),
this model has all types of solutions. Hence, we are able to test a stabilization of any
solution. Moreover, this model has also other applications, where these results may be
very useful. For example, the application into a traffic flow (so called dynamical traffic
flow model) is very interesting and it will be described in Chapter 3.

13



2 Mathematical Background

Herein the chapter, a mathematical background necessary for this thesis is given. The
following theory can be found in more details in [5], [6], [14]. As the title suggests, a main
part of thesis deals with a logistic model, together with its analysis and stabilization. To
assure the reader will understand content of this thesis well and will be able to apply it
for more complex problems, the following sections are necessary to be built.

In fact, a logistic model is a discrete chaotic model. For a description of a discrete
model we are using the difference equations. In general, a first-order difference equation
is in form

y(n) = f(n,y(n —1)), f:NxR =R, n e N,
with an initial condition
y(()) = Y-

Such an equation is called nonautonomous (or time-variant) equation. If the difference
equation with an initial condition g is in form

y(n) = f(y(n —1)), f:R—=R, n €N, (2.1)

it is called autonomous (or time-invariant). From now, we will restrict only to the au-
tonomous difference equations, since there will be studied only logistic model, which is
explicitly independent on time steps.
In general, a discrete dynamical model is a system of m difference equations and it is
given by
y(n)=F(y(n—1)), F:R™—R™ m,n € N, (2.2)

with the system of initial conditions
Y(O) = Yo,

where y(n) = (y1(n),y2(n), ..., ym(n)). A dynamical model (or system) describes a single-
species population if m = 1 and such a model is studied deeply in this thesis. On contrary,
the system describes a multi-species population if m > 1.

The simplest case of (2.2) is a linear system. In general, a linear nonhomogeneous
discrete system with the initial conditions y is given by

y(n)=Ay(n —1) + B, n €N,

where A is m x m real matrix (assumed to be a non-zero matrix) and B is m x 1 real
matrix. If the matrix B is a zero matrix, then the system is called homogeneous.

As well as the differential equations may be of higher order, the difference equations
may be too. We say that the difference equation is of a kth-order if it is in form

y(n) = fly(n =1),y(n—2),...,y(n - k)).

The normal form of a kth-order nonhomogeneous linear difference equation is given by

y(n) +py(n —1) + pay(n —2) + -+ + pry(n — k) = g,

where p;,g € R for i =1,2,...k and pi, # 0. If g =0, i.e., we have
y(n) +pry(n — 1)+ pay(n —2) + -+ py(n — k) = 0, (2.3)

14



we say that it is a homogeneous equation. A specific form of (2.3), written as

y(n) = fly(n =1),y(n-w)), 1<w<k, (2.4)

meaning that the only non-zero coefficients of (2.3) are p; and p,, is usually called as a
delayed difference equation. Here, a symbol w denotes a delay of the difference equation.

Note that in a case of differential equations, we can rewrite a kth-order differential
equation into a system of £ first-order differential equations. Analogously, the same we can
do with a kth-order difference equation (in later, it will be shown in computations). The
introduction of delayed equation is important, since it can be very useful for a description
of discrete models (as we will see further). In fact, if we describe a model in such a
way, it can give us better results in a prediction of the term y(n). However, a delayed
term y(n — w) represents some information about the system from the past and such an
information should be known. Therefore, a number of initial conditions has been increased
and thus, it is some kind of payment for getting the better results.

2.1 Equilibrium and Its Stability

There are few important questions in a field of population models (where the logistic
model obviously belongs). One of them is whether there exists a steady state in given
system. Such a state is called an equilibrium and it is defined consequently:

Definition 2.1. An equilibrium y* of a given discrete model (2.2) is a point y* € D(F)
satisfying

y = F{y").
In fact, each equilibrium represents a constant solution of system.

Remark 2.2. In a case of discrete model given by (2.4), the equilibrium y* € D(f)
satisfies

v = fy"y).

This is an analogy to equilibrium of system, given by the preceding definition.

Once an equilibrium exists in the system, another question arises. Namely, if such a
state is stable. A stability of equilibrium describes how much the system is sensitive to
disturbances of given data (e.g., in the initial conditions). A precise definition of stability
follows.

Definition 2.3. Let y* € R™ be an equilibrium of system (2.2). We say that the equilib-
rium y* is stable, if for each neighbourhood O of point y* € R™ there exists a neighbour-
hood O; C O of point y* € O, such that for each solution y(n) together with an initial
condition y(0) € Oy, holds y(n) € O for each n € N.

Moreover, if the following holds

lim y(n) =y",

n—0o0

then the equilibrium y* is called asymptotically stable (attractive). If the equilibrium y*
is not stable, then it is called unstable.

15



A determination of stability of * can be based on the knowledge of the eigenvalues of
Jacobi matrix of corresponding linearized system (more about linearization of system in
[5]). A Jacobi matrix of discrete linearized system is given by

Oh oy . O
Dy (n) Dym(n)
Ofom Ofm

(y")

Oy (n) OYpm (1) )

i

dy;(n)
tion F' = (fy, ..., fm) by j-th component of vector y(n) = (y1(n),...,ym(n)). A classifica-
tion of stability of y* based on the eigenvalues of DF(y*) is given by following theorem.

where the symbol represents a partial derivative of i-th component of vector func-

Theorem 2.4. Let y* be an equilibrium and Ay, ..., \,,, be the eigenvalues of Jacobi matrix
DF(y*) of system (2.2). If \; lies inside a unit circle (i.e., if |N;| <1 ) foralli=1,...,m,
then we say the equilibrium y* is asymptotically stable. If at least one \; lies outside a unit
circle (i.e., if |N;| > 1) for some i = 1,...,m, then we say the equilibrium y* is unstable.
If at least one \; lies on a boundary of unit circle (i.e., if |\;| = 1) and no other \; lies
outside a unit circle, then we are not able to decide about the stability of equilibrium y*
via this criterion.

However, in thesis is studied just a logistic model, which is a single-species model.
Therefore, in such a case the Jacobi matrix is simplified to a form

af )
Df(y*) = y ).
107 = ()
Remark 2.5. The stability conditions given by Theorem 2.4 can be simplified due to
simpler form of Jacobi matrix in following way:

e the equilibrium y* of a discrete logistic model is asymptotically stable if | f'(y*)| < 1,
e the equilibrium y* of a discrete logistic model is unstable if | f'(y*)| > 1.

Later in the text we will deal not only with a classical form of logistic model, but also
with its delayed forms (in order to stabilize it). In such a case, i.e., when the system is
controlled, we cannot use previous criterion from Remark 2.5 to determine the stability
of equilibrium. Therefore, we have to employ another criterion verifying the conditions
of Theorem 2.4.

Consider the kth-order difference equation (2.3). Due to its linearity, any solution of
(2.3) is stable (asymptotically stable) if and only if the zero solution of (2.3) is stable
(asymptotically stable). On this account, when discussing stability of (2.3), we restrict
to stability of its zero solution.

The zero solution of (2.3) is asymptotically stable if and only if all characteristic roots
A (sometimes called as zeros) of characteristic polynomial

p(A) = N p N (2.5)

satisfy |A\| < 1. For this, the exact expression of A is needed. In case of higher-order
difference equation it may be difficult to find them explicitly. Hence, further we state a
useful criterion for determining the stability of zero solution without any knowledge of
characteristic roots (see [5]).
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Theorem 2.6. (Schur-Cohn Criterion).
The zeros of the characteristic polynomial (2.5) lie inside the unit circle if and only if the
following conditions hold:

(i) p(1) >0,
(i) (=1)"p(=1) >0,
(iii) the (k — 1) x (k — 1) real matrices B | are positive innerwise, where

1 0 .- 0 0 0 0 - 0 Dk
D1 r -0 0 0 0 - pr Pra
Pk-3 Pk—4 -+ 1 0 O pr -+ P+ D3
Pk—2 Prk-3 - p1 1 Pk DPk—1 ‘' D3 D2

The Schur-Cohn criterion gives necessary and sufficient conditions for the coefficients
pi, that assure the asymptotic stability of zero solution of (2.3). Moreover, for a lower-
order difference equations there is a possibility to state these conditions in more neat and
compact form. These forms are derived in [6]. We will introduce them for the difference
equations of order 2, 3 and 4 in following remarks.

Remark 2.7. The zero solution of second-order difference equation
y(n) +pry(n —1) +pay(n —2) = 0
is asymptotically stable if and only if
1] < 1+ps <2
Remark 2.8. The zero solution of third-order difference equation
y(n) + pry(n — 1) + pay(n — 2) + psy(n — 3) = 0
is asymptotically stable if and only if

|p1 +p3‘ <14+ po and
Ip2 — pips| < 1— (p3)*.

Remark 2.9. The zero solution of fourth-order difference equation

y(n) + pry(n — 1) + pay(n — 2) + psy(n — 3) + pay(n —4) =0

is asymptotically stable if and only if

‘p4‘ < 17
Ipr+p3l <1+py+ps  and
p2(1 = pa) + pa(l — (p4)?) + p1(papr — ps)| < pap2(1 — pa) + (1 — (pa)*) + p3(papr — ps3).
Nevertheless, the Schur-Cohn criterion is usable only if the order of difference equation
is given (i.e., the order/delay is known before the analysis of system is done). As we will

see later in the text, there is a possibility to assume a delay in system as a general delay
w, and determine it by the analysis of system in order to be suitable to stabilize the
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model. For this purpose we state another theorem, usable to determine a stability of zero
solution.
Consider a linearized system of delayed difference equations in form

y(n) = Aiy(n—p)+ Asy(n—w),  neN, (2.6)

where A, Ay are m x m real matrices and p, w are positive integer delays, such that
p < w. Regarding its stability, the following criterion holds (see [3]).

Theorem 2.10. Let Ay, Ay be commutative m X m real matrices and let p, w be positive
integers, such that p < w. Further, let (o, 5;), i = 1,...,m be simultaneously ordered
couples of eigenvalues of Ay, As. The zero solution of (2.6) is asymptotically stable if and
only if any of the couples (o, 5;), i = 1,...,m satisfies either

|| + |8i] < 1, (2.7)
or
au| + |Bi] > 1, il —1 < |Bs] < 1 and (2.8)
1 > — 18] 1 — | + |Bi]? i) — ;
W arccos all il 154 + parccos jsl” + 1] < jarccos | cos w arg(o) . parg(5i)

2| 2|8l J
(2.9)

where j = ged(p,w).

Because of the logistic model, we state here also version of Theorem 2.10 for a single-
species model. In this case, the system (2.6) is simplified into a form

y(n) =pyy(n — p) + puy(n —w), p<w, pweN, p,,p, €R. (2.10)

Remark 2.11. For the equation (2.10), the conditions given by Theorem 2.10 are sim-
plified in following way:
‘pp’ + ’pw‘ <1 or

Pl +lpul =21, pl =1 <Ipu| <1,  (pp)“(p.)’ <0  and
1 2 _ " 2 1 — 2 » 2
W arccos + (pp) <p ) —I— ,Oarccos (pp) + (p ) < Tr.
2(pp) 2(pw)

2.2 Period Orbits

One may ask whether there exists some other significant states of a model (besides an
equilibrium). A natural question arises, namely if there is some repetition in a develop-
ment of studied species. If it is so, we say that such a model has a periodic solution.
Although in a continuous time domain the introduction of periodic solution is intuitive,
in a discrete one it might not be so clear. Therefore, further we will show how to deal
with this type of solution for discrete systems.

Definition 2.12. We say that a mapping f : R — R has an orbit of period T (or T-period
orbit), if there exist distinct points v1,...,7yr € D(f), T € N, such that

f(n) =2, f(2) =3, -  fOr-1) =, fOr) =7

The numbers 7, ...,y are called the points of T-period orbit of mapping f.

18



Remark 2.13. If a mapping f describes a right-hand side of (2.1) and if it has a T-period
orbit, then by a suitable choice of initial condition there exists a periodic solution of (2.1)
with period T', where T' € N.

Remark 2.14. In a very similar way as in Definition 2.12, the period orbit can be
introduced also for a mapping F' : R™ — R™. If F' describes a right-hand side of (2.2),
then by a suitable choice of initial conditions there exists a periodic solution of (2.2) with
period T'. Analogously, the same can be introduced for (2.4).

Note that a notion of 1-period orbit of mapping f is equivalent to equilibrium of the
system described by this mapping. Also, it is possible that the system has more period
orbits of different periods. If it is so, there is a rule that gives a specific ordering of their
appearance as solutions. Such an ordering was stated by Sharkovsky in 1964 (see [6]).

Theorem 2.15. (Sharkovsky Ordering).

Let f is a continuous map, such that f : I — I for some interval I C R (may be finite or
infinite). Let i,5,T,S € N. The Sharkovsky ordering is the following ordering of natural
numbers

12222 =2  »7-20-5.20-3.20  »7.2-5.2%3.-2% .5 3.

Moreover, if the map f has a T-period orbit and T < S, then the map f has also S-period
orbit.

A consequence of Theorem 2.15 was formulated into theorem and independently proved
by Li and Yorke in 1975 (see [6]).

Theorem 2.16. (Li and Yorke).
Let f: I — I be a continuous map on an interval I. If there is a point of 3-period orbit
in I, then for every T'=1,2,... there is a point of T-period orbit in I.

In other words, the preceding theorem says, that if there exists a 3-period orbit of
mapping f, then there exist period orbits of all periods. Indeed, even completely chaotic
orbits exist as well. Therefore, as next we state a definition of chaos (defined according
to Devaney, see [6]).

Definition 2.17. A map f : I — I, where [ is an interval, is said to be chaotic if:
1. f is transitive,
2. the set of periodic points P is dense in I,
3. f has sensitive dependence on initial conditions.

For more about transitive maps, dense sets and sensitive dependence on initial condi-
tions see [6].

Remark 2.18. To be able to find points of T-period orbit, it is necessary to know a
concept of iteration: Let f?(y) be a notation for function f(f(y)). Function f%(y) is called
as second iteration of function f(y). In a similar way (by induction) we can introduce the
notion of T-th iteration of function f(y) as f7(y).

Then, the points creating a T-period orbit of function f(y) can be found in following
way: A point v* € D(f) is a point of T-period orbit of f, if holds f7(y*) = ~* and
fi(y) #~* forall S =1,2,...,T — 1.
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Remark 2.19. In whole thesis, by notation f7(y), where T' € N, we understand T-th
iteration of function f(y) and not T-th power of this function. Other notations like a”
we understand in usual way as T-th powers (e.g., y*,77, (v*)7).

As was argued before with equilibrium, once there exist some periodic solution of
system, there arises a question about its stability. Using Remark 2.18, we state here a
definition about stability of period orbit.

Definition 2.20. Let f be a continuous function f : I — I and let 7,...,77 be the
points of T-period orbit. Then, such an orbit is
e asymptotically stable (attractive), if all points vy, ...,y are asymptotically stable
equilibria of its iteration f7;
e unstable, if all points 71, ...,y are unstable equilibria of its iteration f7.

Remark 2.21. It is possible to verify (by direct computation and using Remark 2.5),
that if there is one asymptotically stable (unstable) point of T-period orbit of f, then all
points of this orbit are asymptotically stable (unstable). A procedure for verification of
stability of given period orbit leads from Remark 2.5 and Remark 2.18.

Remark 2.22. If a point 7* is an equilibrium of (2.1) (i.e., v* is a point of 1-period orbit
of f), then v* is also a point of T-period orbit of f, where T" € N (if such an orbit exists).
Similarly, this property holds also for other cases, e.g., if v* is a point of 2-period orbit,
then it is also a point of any 2"-period orbit, where n € N (if such an orbit exists).

Remark 2.23. We have introduced a notion of stability for T-period orbit of f via
stability of equilibria of T-th iteration of f. A notion of stability of periodic solution
of (2.1) may be interpreted just like a stability of corresponding period orbit. Namely,
a periodic solution of (2.1) is asymptotically stable, if the corresponding period orbit of
f is asymptotically stable, where f describes the right-hand side of (2.1). Conversely, a
periodic solution of (2.1) is unstable, if the corresponding period orbit of f is unstable.

2.3 Bifurcation

We have introduced the notions of equilibria and period orbits. They are equivalent to
different types of solutions that may occur for some system. In fact, they determine
a dynamical behaviour of model. As we have already said, several period orbits with
different orders of period can appear as a solution of model.

A phenomenon of exhibiting of new dynamical behaviour from the old one is described
by a term bifurcation. In fact, bifurcation occurs, when the data characterizing a model
are changed. Usually, just a slight modification of some system’s parameter causes a
bifurcation. If it is so, such a parameter is called as bifurcation parameter, and is usually
denoted by u.

Consider, that there is a bifurcation parameter p in a system described by a map f(y),
we denote it by f,(y). Such a one-parameter family may be written as a function f(u,y)
of two variables, i.e., f(u,y) : R x R — R. There is a couple of types of bifurcation. We
will introduce these types for a function f(u,y) (see [6]).

Theorem 2.24. (Saddle-Node Bifurcation).
Suppose that f,(y) = f(p,y) is a C* one-parameter family of one-dimensional maps (i.e.,
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both giy{ and gi/j; exist and are continuous), and y* is a fived point (equilibrium) of f,~,

with f/.(y*) = 1. Assume further that

of 0% f

oY) # an RIE
Then there exists an interval I around y* and a C* map p = p(y), where p : I — R,
such that p(y*) = p*, and fyy)(y) = y. Moreover, if AB < 0, the fived points exist for
w > p*, and, if AB > 0, the fived points exist for u < p*. We say that the system has a
saddle-node bifurcation at the fixed point y* for p = u*.

(1" y") #0.

Remark 2.25. Consider the same assumptions as in preceding theorem with only change
in A, namely
of

A= —"(u"y*)=0.
aM(M,y) 0

Then we say the system has a transcritical bifurcation at the fixed point y* for u = p*.
Furthermore, let also the assumption on B is modified, namely

_
=07
Then we say the system has a pitchfork bifurcation at the fixed point y* for p = p*.

Theorem 2.26. (Period-Doubling Bifurcation).
Suppose that
1. fu(y*) =y* for all p in an interval around p*,

2. f-(y") =—1,
82f2
3. ——(u*,y*) #0.
&may(“ yr) #
Then, there is an interval I around y* and a function p : I — R such that fpu)(y) # v,
but fz?(y) (y) = y. We say that the system has a period-doubling bifurcation at the fized
point y* for p = u*.
Remark 2.27. In fact, the sign of AB determines the direction of saddle-node bifur-
cation (see Figure la and Figure 1b). The transcritical, pitchfork and period-doubling
bifurcations are depicted in Figure lc, Figure 1d, Figure le, respectively.

(w*,y*) = 0.

We introduced these types of bifurcations just for one-dimensional maps. However, it
is possible to extend them into multi-dimensional maps (using center manifold theorem,
more about this in [5],[6]). Note that although we will study just logistic map that is
one-dimensional, we have to assume also two-dimensional maps, because of its further
stabilization via delayed terms (it will increase the dimension). For multi-dimensional
maps there exists another type of bifurcation, namely the Neimark-Sacker bifurcation.
Since such a bifurcation appears only when the advanced stabilization is done (see Chapter
7), we will introduce its notion just briefly (especially, just how to determine it).

We will restrict just to two-dimensional maps. Consider the one-parameter map
F(u,y), F: RxR* - R? is C", r > 3, on some sufficiently large open set in R x R?
with y € R, y € R Let (u*,y*) be a fixed point, i.e.,

Fp",y) =y"
Denote J as linearized map
J = DyF(,y").
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Remark 2.28. Following statements were deduced in [6]:
1. Suppose J has an eigenvalue A\ = 1. Then we have either saddle-node, transcritical,
or pitchfork bifurcation (depending on fulfilled assumptions stated above).
2. If J has an eigenvalue A = —1, then we have a period-doubling bifurcation.
3. Suppose J has a pair of complex conjugate eigenvalues such that |[A\| = 1. Then the
Neimark-Sacker bifurcation appears (phase portrait of such a bifurcation is depicted
in Figure 1f).

(a) Saddle-node b., AB > 0. (b) Saddle-node b., AB < 0. (c) Transcritical bif.

v y
A N

(d) Pitchfork bif. (e) Period-doubling bif. (f) Neimark-Sacker bif.

Figure 1: Types of bifurcations.

2.4 Control of System

As we have already mentioned, the main part of thesis is about a stabilization of discrete
model. This is usually done by control of the system. A principle of stabilization is based
on an implementation of control into the studied system. To make the control useful, it is
necessary to set it with convenient parameters. Therefore, later in the text, we derive the
conditions assuring the right choice of parameters. A field of mathematics, which studies
the problem of control of systems, is called control theory. We will introduce here just
basics, that are necessary for understanding this problematic. For more about discrete
control theory, see for example [5], [12].
A control of the system (2.2) is a map U, such that

U:R™ — RF, m,k € N,
which is used for a stabilization of the system. Usually, a controlled system is given by

y(n) = F(y(n— 1)) + Uly(n — 1)). (2.11)
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Note that using the iteration scheme from the uncontrolled system, the control U may
depend also on states y(n —2),...,y(n —w), where w € N is a delay.

Ideally, a control should be non-invasive, i.e., the equilibria or period orbits remain the
same for both the uncontrolled system (2.2) and the controlled system (2.11). Rigorously,
let y* be the equilibrium of the system, i.e.,

y = F(y).
A control U is called non-invasive (with respect to the equilibrium), if the property
y' =Fy)+U®y")

holds as well. Similarly, we can define non-invasiveness with respect to the orbits of higher
periods.

There are several ways how to introduce appropriate controls. Usually, the control

depends on two terms:
First, it is a feedback amplitude (the so-called gain of the controlled system), denoted
as K. In general, a gain K(y(n — 1)) € N x R™ — R™*™ is possibly time-varying and
state-dependent. The choice of this matrix gain K is a difficult matter and it is a subject
of current investigations. The most frequent choice is a linear dependence of K on y(n).
In the scalar case, this choice is reduced to searching for a suitable gain parameter K € R.
Also in this text, we will discuss an appropriate choice of a constant gain K.

The second control parameter is a delay w € N. There are two ways how the delay
can be used. Firstly, we can set w = T', where T' is exactly the period of orbit that we
wish to stabilize. On contrary, we can left the delay to be not specified and analyze the
controlled system with respect to varying w.

For these parameters, we will derive the conditions guaranteeing the usefulness of
control. We will gather them into the sets of all possible values of parameters of some
control, for which the selected orbit can be stabilized. Let us call these sets as stabilization
sets. There are several control methods (i.e., several definitions of controls), that can be
used for a stabilization of discrete system. Let us introduce those, which are used in
thesis, together with a notation of corresponding stabilization sets. Note that we will
introduce them in a general way, i.e., for the systems. Nevertheless, in this thesis we will
apply controls just to difference equations, and in such a case we will denote it a control
as u : RY — R, where ¢ € N denotes a number of control state inputs. Also, since we
are primarily interested in stabilization of scalar logistic equation, we restrict on the case
y : N — R in our next considerations.

Proportional feedback control

A proportional feedback control with a gain K is given by
u(y(n —w)) = Kly(n —w) — 1], (2.12)

where w € N denotes a delay (the choice w = 1 is the most frequent one). This control
reacts on some targeted value ¢t € R, that we wish to stabilize. Usually, a target ¢ is taken
as an unstable equilibrium or a point of unstable period orbit of the system. Note that
for using of such a control, the a priori knowledge of ¢ is required. In fact, this may be
a problem for some systems (it can be hard to find the point explicitly). In text, this
method will be abbreviated as PFC.
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A claim about the non-invasiveness of any control in fact means, that when the system
reaches the selected orbit, the control is switched off. This is usually done by a specifica-
tion of type of orbit (meaning by specification of its period). However, in this method, we
are supplying the control with the information on the values of ¢ determining the whole
orbit. Hence, regardless of the value of a period T of orbit, we will use PFC either given
by

u(y(n —1)) = Kly(n — 1) = t], (2.13)

or given by (2.12) with other values of w (for a comparison if assuming of some information
from the past can predict better results).
Delayed feedback control

A delayed feedback control with a gain K is usually given by

u(y(n —p),y(n —p—w)) =Klyn—p—-w)—yn-p)],

where p,w € N denote the delays, such that p < w. In text, this method will be abbrevi-
ated as DFC. From now we will restrict on p = 1. Therefore, we get

u(y(n —1),y(n — @) = K [y(n — o) —y(n - 1)], (2.14)

where @ = w + 1 (for a simpler notation).

Similarly as in a case of PFC, we can supply the control with the information about
the orbit, which we wish to stabilize. To do this, we consider a delay w as a period of
corresponding orbit. In this case, let us assign a delay with 7" (for a distinction between
these definitions). We get a control defined by

uyn—1),yln=1-T)) = K[yln —1=T) —y(n - 1)]. (2.15)

Since a periodical solution of period T of system satisfies y(n) = y(n+1T'), the control is
switched off after reaching this orbit. Here, a priori knowledge of existence of a T-period
orbit is required, but a prior: knowledge of its single points is not required.

Prediction based control

A prediction based control is an improvement of DFC given by

u(y(n —1),y(n —w)) = K[y(n —w) = f (y(n—1))], (2.16)

where w € N and f : R — R denotes a right-hand side of system, into which the control
is implemented. In text, this method will be abbreviated as PBC. This control compares
a delayed term with values along the trajectories of a free (uncontrolled) system.

Similarly, by assigning w with a period of selected orbit, we get another definition of
this control. Namely, we get

u(y(n—1),y(n=T)) = K[y(n—=T) = f (y(n - 1))], (2.17)

where T is a corresponding period.
For PBC, the usage of constant or time-varying, state-dependent gain K makes a sig-
nificant difference (the difference between using constant or non-constant gain in previous
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control methods is not so significant). By defining the gain K, we can assign to a control
the so-called control law, that is proposed for a stabilization of specific orbits. Some con-
trol laws are proposed in [2]. In fact, such a time-varying, state-dependent gain was just
firstly proposed there. In [2], there is introduced also another definition of PBC, namely

u(y(n)) = K(y(n — D)(f" (y(n = 1)) = y(n - 1)).

We will show here just one of the proposed control laws, to see that its formulation (in a
vector form) is very complex:

K(y,) = — (DUF (Y U)|U:U(yn))_1 Dy F (v, U(yn))|y=yn (DyFT(Y) - I)_1|y=yn7

where [ is m X m unit matrix and y, = y(n) (for a neater form). We do not utilize this
type of control in our thesis, because it might be useful especially for stabilization of more
complex systems.
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3 Studied Model

This chapter is for a brief introduction into the problematic of discrete model studied
further in this thesis. Therefore, we state here the form of logistic model used in later
discussions, and we give the meaning to notation used in this model. We summarize
here the results of analysis of a free system (meaning the analysis of system, that is not
controlled). In other words, we give here a list of types of possible behaviour of solutions
(e.g., equilibria, period orbits) and corresponding ranges of stability.

3.1 Logistic Model

A discrete logistic model is one of the basic models studied in a theory of differential and
difference equations, and in a theory of chaos. In [11], there was analyzed in detail the
logistic model given by a logistic map in form

z(n + 1) = 2(n) + ra(n) (1 - @) . (3.1)

For a simplicity and unification with other works and papers, from now we assume the
logistic map given as
y(n) = py(n —1) (1 —y(n—1)). (3.2)
One can verify, that (3.1) is possible to obtained from (3.2) by using the following substi-
tutions:
yin) = aln). b=, p=1tr

We can interpret the evolution of population as the change of its size between gen-
erations. A population size (or population density) in n-th time period, i.e., the n-th
generation, is denoted by y(n) (or, in the previous notation, by z(n)). A parameter
w (or r) is a bifurcation parameter, denoting the population growth rate from one genera-
tion to another. A parameter C' > 0 denotes the storage capacity of the environment and
b > 0 denotes the proportional constant of the interaction among members of the species.

It is well-known, that the logistic map (3.2) has different behaviour of solution, with
dependence on the bifurcation parameter p. The solution of model can either tends to its
equilibrium, or behaves periodically, or behaves chaotically. The stability dependence of
behaviour of solution on the bifurcation parameter p is shown in the following table:

’ Discrete Logistic Model ‘

Type of Solution Range of Stability
Equilibrium y; =0 O<pu<l

1
Equilibrium y5 =1 — — l<pu<3

1
2-period orbit 3<pu<14++6
4-period orbit 146 < p < 3.544
8-period orbit 3.544 < < 3.564
16-period orbit 3.564 < p < 3.568
3-period orbit w=1+ V8

Table 1: Types of solutions and corresponding ranges of stability.
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Although it is interesting, from a mathematical point of view, to see such a rich scale
of behaviour of the system, from a biological point of view it is better to have more stable
systems. Therefore it is compulsory to try to stabilize the model (3.2), i.e., to ‘enlarge’
the range of stability of its steady states as much as possible. To do this, the knowledge
of control theory is very useful. Further in the thesis, a stabilization will be done by
adding a control u to our free system (3.2). Note that this control should be non-invasive.
We will analyze such a new controlled system, to see how it behaves in dependence with
changes of bifurcation parameter p and control parameter(s).

Firstly, we will analyze a stabilization of the equilibria of (3.2) via controls (2.13),
(2.15) and (2.17). Next, a stabilization of 2-period orbit and 3-period orbit via the same
controls will be discussed. After this, we will stabilize again equilibria, but via controls
(2.12), (2.14) and (2.16), in order to compare the different approaches on delay w.

Doing this, we introduce the following notations:

For PFC given by (2.13), let us denote the stabilization set of all gain parameters K as
PFCg . Here, T denotes a period of a stabilized orbit of (3.2) and pu > ur is arbitrary real
parameter, where pur is the upper bound of stability interval corresponding to period T
(see the right column of Table 1 describing stability of a free system).

Analogously, for DFC given by (2.15), let us denote the stabilization set of all gain
parameters K as DF' C‘Z . For PBC given by (2.17), let us denote the stabilization set of
all gain parameters K as PBCZ . The argumentation on symbols 7" and p is the same as
in the previous paragraph.

3.2 Dynamical Traffic Model

Herein the section, we will derive an application of logistic model into a traffic flow to see,
where it is possible to utilize the aim and results of this thesis. In general, without any
interference and given rules, a traffic flow would be totally unstable and unpredictable,
and so completely chaotic. Such a state would be very dangerous, not only for the drivers,
but also for everyone in close neighbourhood of a traffic (which is in current world almost
everywhere). Hence, the implementation of chaotic control is needed. Further information
and description of this model come from [8].

We can consider a traffic flow as a dynamical model, either describing the flow on a
single link, or on a more complex network. There are two approaches in a description of
a system. First, a microscopic one, in which the system’s variables are the position and
speed of each vehicle. Second, a macroscopic one, where the system’s variables are the
total number of trips between two places, the rate of traffic flow, density and speed. We
will introduce the model from a macroscopic point of view.

Let g be a traffic flow, d its density and s its speed. Moreover, assume that speed
depends on density, i.e., s = s(d). Since the fundamental flow-density-speed diagram is
given by q = ds, the flow should be therefore also dependent on density. Hence,

q(d) = ds(d).

Furthermore, assume that the traffic flow satisfies the Greenshield’s model. In other
words, a relation between speed and density is known, namely

() =55 (1- 7).
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where sy denotes a speed of free flow, and d; a density of traffic jam. Next, we assume
that the current flow is decided by the traffic conditions in previous time unit. Under
these assumptions, we get

d(n—1
q(n,d) =d(n—1)sy (1 — %) : (3.3)
J
Note that the variables are ¢ and d.
Let o denote an occupancy, which is the ratio of actual occupied time and available
time of a certain place. Hence, the value of occupancy is o € (0, 1). It is defined as

where 5 is an average speed and L is an average vehicle length. From this, we can rewrite
the variables ¢ and d in following way:
oS

= — d:
q 7

SIS

Therefore, the equation (3.3) of two variables ¢, d can be rewritten into equation

o3 _, 2nb (ot

=Sy E

3 0L
of a single variable. Denoting 6 = L_, we get
d;L
~ Sf . ~
g(n)=—=6(n—1)(1-a(n—1)). (3.4)
S

By comparing the equation (3.2) with (3.4), it is clear that they have the same form.
s

Indeed, a ratio Tf represents the bifurcation parameter. Therefore, just this ratio may
5

raise a chaotic behaviour.
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4 Stabilization of Equilibria

Herein the chapter, the analysis of a stabilization of equilibria of a controlled logistic map
is studied. Although there are two equilibria (see Table 1) for (3.2), from a biological
point of view it makes sense to study just a stabilization of the equilibrium 3, since we
are not interested in the extinction of a species (meaning a stabilization of the equilibrium
yi)-

As first, we apply controls to a free system; these controls involve the exact period of
orbit that should be stabilized. That means, we apply controls (2.13), (2.15) and (2.17)
with T'= 1. For each type of control, the description of the stabilization sets PF' C’i, DF C’L
and PBC’}L, where p > py = 3, will be performed. Moreover, a new (explicit) formulation
of ranges of stability will be given.

4.1 Proportional Feedback Control Method

The PFC is a simple control method. Its form (2.13) was proposed, e.g, by Franco and
Liz in [7]. In order to stabilize the equilibrium, we set the targeted value on which the
control reacts as t = y;5. The logistic map controlled by a control (2.13) is given by

y(n) = py(n = (1 —y(n = 1)) + Kly(n — 1) — 5], (4.1)

The usage of this type of control for a stabilization of the equilibrium is non-invasive with
respect to the targeted equilibrium. More precisely, the equilibria of (4.1) are given by

., K
M=

o
v=1-—.

? 7

Thus, the chosen equilibrium remains the same for the controlled and free system, but
the other equilibrium is now varying with respect to K and pu.

Notice that the system (4.1) is in form of classical, non-delayed difference equation
with a linear control. Thus, in this case, the analysis of stability of y; is analogous to [11].
That means, the stability problem is reduced just to the analysis of first derivative of the
right-hand side of (4.1) (see Remark 2.5). Following this, we get that y5 is asymptotically
stable if

Pl = [2— p+ K] < 1.

Solving preceding stability condition, we get that y; of (4.1) is asymptotically stable if
I+K<pu<3+K. (4.2)

There is no further specification on value of gain, so there is possible to take it as an
arbitrary K € R. However, one can see that the crucial choice stands on the sign of
feedback, i.e, if we set K > 0 or K < 0. By this we are determining the direction of
‘shifting the range of stability’ 1 < p < 3, either to the right or left. Let us discuss a
bifurcation diagram for (4.1) to see the behaviour of solution in dependence on the sign
of K.

In Figure 2a and Figure 2b, there are depicted bifurcation diagrams to (4.1) for chosen
values of a gain K. As we said, we will discuss mainly the difference in usage of negative
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and positive gain K. In both the figures, there are some values that are highlighted. In
fact, they are representing the endpoints of intervals of stability of orbits. Particularly,
in Figure 2b, the range 1.1 < p < 3.1 represents the asymptotically stable equilibrium
ys of (4.1) with K = 0.1. On contrary, in Figure 2a, the range 0.9 < pu < 2.9 represents
the same, but for K = —0.1. This verifies the stability condition (4.2), but what can be
deduced from it?

08

021

n =

(a) K = —0.1 (b) K = 0.1

Figure 2: Bifurcation diagrams to (4.1).

Let us remind that for the free system (3.2), y; is asymptotically stable for 1 < u < 3
and the overall range of usable growth parameter is 0 < g < 4. However, this overall
range has been broadened by using K > 0 and, conversely, it has been shortened by using
K < 0. Particularly, the maximal usable growth parameter for K = 0.1 is = 4.1 and for
K = —0.11it is p = 3.9. Moreover, the stability of modified equilibrium ~7 is lost when
= 1.1 (the case of K =0.1), or when p = 0.9 (the case of K = —0.1).

All in all, the control (2.13) mainly affects ~;, since its stability range is either reduced
(the case K < 0) or increased (the case K > 0). Paradoxically, the length of the stability
range for y5 remains the same; it is just shifted by the value K. In fact, the same holds
also for the other orbits. For instance, a 2-period orbit of a free system is asymptotically
stable for 1 < g < /6 + 1 = 3.449, so the labelled values p = 3.549 (see Figure 2b) and
= 3.349 (see Figure 2a) confirm previous observation.

A description of stabilizing set PF C}L highly depends on a formulation of the task. We
are not able to answer the question, whether it is possible to enlarge the stability range
of y3, since it is not literally enlarged, but just shifted. If we take K € PF Cib, where

1
PFC, = (0,00),

the equilibrium y; is asymptotically stable for higher values of growth parameter p (but
the length of the stability range for  remains the same). As a by-product, the prolonged
stability of y; is obtained.

Conversely, if we take K € PFC;, where

il
PFC, = (—00,0),

the equilibrium y; that is asymptotically stable for lower values of growth parameter .
We get the shorter stability range of yj. Finally, if we wish to literally enlarge the range
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Figure 3: Bifurcation diagram to (4.1) with K = 5.

of stability of y3, then
PFC,, = 0.

Moreover, the choice of K >> 1 is very specific (see Figure 3). In fact, it causes that
the system firstly behaves chaotically, with increasing p its behaviour is calming down
(something like ‘reverse’ bifurcation), and after a certain value of p it started bifurcate in a
classical way of period-doubling bifurcation. To avoid this, we can restrict a stabilization
set, namely to PF CL C (—1,1). Taking this into a consideration, we are able to get a
maximal range of stability of controlled y; as

2< <4 for K — 1, or O<pu<?2 for K — —1,

depending on a formulation of the task.

4.2 Delayed Feedback Control Method

The DFC is a control used in a lot of papers and works. It was introduced in the papers
of Pyragas [13] and Ushio [16]. We apply a control (2.15) to a free system and in order
to stabilize the equilibrium, we set 7' = 1. The controlled logistic map is thus given by

y(n) = py(n =11 —y(n - 1)) + Kly(n = 2) —y(n - 1)]. (4.3)

The usage of DFC is fully non-invasive, i.e., both equilibria y; and y; remain the same
for controlled and uncontrolled system.

Notice that the system (4.3) is now in form of second-order difference equation with
the linear control. Therefore, the analysis following a Schur-Cohn criterion (see Theorem
2.6) is needed. In particular, we will use a Remark 2.7. For further studying of condition
given in this remark, the coefficients p; and py have to be known. We can easily get them
from a linearization of (4.3) at y3. We get

Of ()= 2myn =11 —y(n = 1) + Ky(n =2) —y(n = 1))
dy(n — 1) dy(n —1)

y(n—1)=y;
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of (45) = Olpy(n —1)(1 —y(n —1)) + K(y(n —2) —y(n—1))]
dy(n —2) dy(n —2) y(n—2)=y3
= K.
Hence, because of the form of equation in Remark 2.7, the coefficients are
m=K+pu-—2 and = —K.
The stability condition gives
|IK4+p—2<1—-K<2.
Solving this, we get that y; is asymptotically stable if
1l<pu<3-2K.

(4.4)

Moreover, a requirement on the values of gain now arises from (4.4). Particularly, it gives
K € (—1,1). Nevertheless, in order to enlarge the range of stability for the equilibrium
y5, the gain should be negative. Therefore, we get the following description of stabilizing

set

DFC;, = (—1,0).

The following bifurcation diagrams to (4.3) confirm this observation. It is obvious
that the stability range of y3 is enlarged (see Figure 4a) by the control with a negative
gain. However, it has an influence on other orbits, namely it causes a contraction of the
rest of bifurcation diagram. In fact, the contraction happens no matter on which sign of
gain we set (see Figure 4a, 4b). On contrary, the stability range for y5 is diminished by

the control with a positive gain (see Figure 4b).

L I I L L L L L I L
1 15 2 25 3 35 4 1 1.5 2 25 3 35 4

" K

(a) K = —0.1 (b) K = 0.1

Figure 4: Bifurcation diagrams to (4.3).

A natural question arises, namely how much the range of stability can be exten
The control (2.15) with T'=1 and K € DF C’i stabilizes the equilibrium y; for

3<pu<3—-2K
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(for 1 < p < 3, this equilibrium is asymptotically stable naturally, i.e., with K = 0).
Hence, as the most largest values, vy is stabilizes when

3<pu<b

(as K — —1). It leads to a critical value of u, we denote it as pj = 5, for which the set
DFCi becomes an empty set. In other words, for © > p} there exists no value of K such
that this control is able to stabilize ;.

4.3 Prediction Based Control Method

The PBC originates from the DFC and it was proposed, e.g., in a paper of Buchner and
Zebrowski [1]. Also here, we set 7' = 1 and thus, after application of control (2.17), we
get the controlled logistic map in form

y(n) = py(n —1) (1 —yn — 1) + Kly(n —1) —py(n —1) (1 —y(n — 1))l (4.5)

The usage of PBC is again fully non-invasive. The system (4.5) is again in a form of
non-delayed equation, but in this case the control is nonlinear.

Since the system is not delayed, it is enough to analyze the stability of y; in the same
way as in the case of control of system by PFC in Section 4.1. Therefore, we get the
stabilization condition as

|f'(ws)| = |Kp— K —p+2] <1
Solving this condition gives that y3 is asymptotically stable if

3—-K

l<u< .
HS1TK

(4.6)

Moreover, we get that K < 1. Nevertheless, in order to extend the range of stability of
Y5, we put the requirement on gain as K € PBC}L, where

il
PBC = (0,1)

is the description of stabilizing set of y5 for the system (4.5).

0.9
0.8
07 r
06

E}:DS-
0.4 -
0.3F
021

01

Figure 5: Bifurcation diagrams to (4.5).
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A claim on a positive gain is verified in Figure 5b. It is clear that the range of
asymptotically stable y; is enlarged. Moreover, the overall range of 1 is extended, so as a
side effect we get that parts of bifurcation diagram corresponding to other asymptotically
stable orbits are also expanded a bit. Conversely, the usage of a negative gain causes a
contraction of bifurcation diagram (see Figure 5a). This is the reason why such a choice
of gain is not suitable for a broadening of stability.

We are able to answer the same question as we put in the previous control method.
The control (2.17) with 7'=1 and K € PBC'}L stabilizes y3 for

Jep< it
1ok

Hence, it stabilizes y5 when
3 < p <y,

where uj — oo as K — 1. So, for any p > pq, there is K € PBC'IIA such that this control
is able to stabilize y3. In the limit case (i.e., when K = 1) the whole bifurcation part
corresponding to period orbits and chaotic part is moved (postponed) to infinity. Thus
the discrete system (2.17) behaves like a continuous one (it has just equilibria and has no
period orbit).
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5 Stabilization of 2-Period Orbits

Herein the section, a stabilization of period orbits of the logistic map starts. Note that
for the logistic map there exist orbits of all periods. The ordering of their occurrence as
a solution of the system is given by Sharkovsky (see Theorem 2.15). From the summary
of results of [11] (see Table 1) it is clear, that when some period orbit looses its stability,
the next period orbit (given by the ordering) appears as a asymptotically stable solution.
Therefore, one may wonder if this property of a periodic solution of free system is preserved
also for the controlled system. In fact, this is true, as we will see in bifurcation diagrams
to corresponding controlled systems.

Let us remind how the analysis of period orbits is performed. Usually, it is done by the
analysis of fixed points of a corresponding iteration of map. That means, for a T-period
orbit we use a T-th iteration of studied map. Note that in [11] we were able to do a
discussion about stability of period orbits in detail just for the orbits of period 2, 4 and
3, as the other periods lead to the analysis of polynomials of high order (for a T-period
orbit we have to analyze a 27-iteration).

Due to the Sharkovsky ordering, we start with the analysis of 2-period orbit. In
general, a 2-period orbit is given by two generations, that are alternating from one to the
other. For the studied uncontrolled system (3.2), the 2-period orbit is given by

:U+1—\/ﬂ2—2M—3 72:,u+1—|—\/u2—2,u—3

20 ’ 24

T

Also here, we will firstly restrict on the stabilization via controls given by (2.13), (2.15)
and (2.17). As the results of this section we will describe the stabilization sets PFCi,

DF C’i and PBC?L, where p > iy = 14 /6. Moreover, we will determine a new range of
stability for each of controlled systems.

5.1 Proportional Feedback Control

For the purpose of stabilization of 2-period orbit via PFC, we choose as the targeted value
t one of the points that generate this orbit, i.e., either v, or v,. The application of control
(2.13) leads to the controlled system in form

y(n) = py(n — (1 —y(n—1)) + Kly(n — 1) — 7] (5.1)

Note that it does not matter if we choose v; or 75 as a target ¢, the results will remain
same for both cases (it follows from Remark 2.21).

However, for this purpose, the usage of such a control is invasive. It modifies not even
the forms of equilibria, but also forms of v; and ~,. To see this, let us find the fixed
points of a second iteration of (5.1). Denote a whole right-hand side of (5.1) as f(y). The
second iteration f2(y) is given by

4

FP) = pf @)1= FW) + K[f(y) =] =D af,

i=0
where the coeflicients a; are

3
Ay = — -,
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az = 2p°(p + K),

ay = —p2Kpm + (K + p) (K + p+ 1)),
a1 = (K + p) 2Kpn + K + p),

ag = —Kn(Kpn + K +p+1).

The fixed points of f2(y) are

. K+pu—1—/—4Kpy + K2+ 2Kp — 2K +p2 —2p+ 1
M=
2

K tpi—1— /K2~ 2K /i =2 — 3 — 4K + 2 — 20+ 1
_ -
7*_K+u—1+\/—4Kpm+K2+2Ku—2K+u2—2M+1
-
2p

K+u—1+\/KQ—QK\/M2—2/A—3—4K+M2—2u+1
= 2M Y
. K+p+1—\/—4Kuy + K2 +2Kp — 2K + p2 — 2u — 3
V3 =
20

Kt 1= \JK2 2K /4 = 25— 3 — AK + 2 — 2 — 3
_ o

KA pA 14/ AKpy + K2+ 2Kp — 2K + pi? — 20— 3
24

Kt 1+ K2 — 2K /) = 25— 3 4K + 2 — 2 — 3
21

For K = 0 (meaning that there is no control of system), we get v§ =i, v =v3, 75 =™
and 7y = 2. It is obvious, that their expressions are more complicated under the presents
of a control.

Nevertheless, a breaking of the assumption on non-invasiveness of control does not
explicitly mean that such a control is wrong and unusable. From Figure 6a we see that the
range of stability of 2-period orbit is ‘enlarged’, in the same sense as in the stabilization
of equilibrium via PFC, i.e., the range is shifted to the right. However, the length of
range of stability of 2-period orbit remains almost the same as the length of uncontrolled
2-period orbit. A labelled part between 3 < p < 3.129 corresponds to asymptotically
stable v3, i.e., to modified y;. Up to p = 3, the orbit v is asymptotically stable, i.e.,
modified y;. Hence, as main results, we obtain significantly prolonged stability range of
~1 and significantly shortened stability range of ~;.

A graphical interpretation of invaded points is depicted in Figure 6b. A 2-period orbit
of uncontrolled system (3.2) is depicted as red points. The invasiveness of control in
system (5.1) is clear from this figure. The blue points, corresponding to points 75 and
vi creating controlled 2-period orbit, should coincide with the red ones (in a case of non-
invasive control), but this is obviously not the case. The parameters used in Figure 6b
are K = 0.1 and p = 3.3 with initial condition y(0) = 0.4, the same for both the systems.

Although the mathematical correctness is not satisfied due to invasive control, it is
possible to deduce some contribution of it. Think about the system (either (3.2) or (5.1))

Y
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Y

Y

o

)
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(a) Bifurcation diagram to (5.1), K = 0.1. (b) 2-period orbit of (3.2) and (5.1).

Figure 6

as it is the prediction of n-th generation of some population. Then, by predicting the
population has behaviour as 2-period orbit given by generations (, £ we mean that after
a while, there will be just a repetition of these two generations. The difference |( — £|
means how many individuals are predicted to be born/to die during a single time unit.
Notice that
s =il <l =l

i.e., the generations 73 and 7, are closer to each other than generations ; and 2. There-
fore, the controlled system (5.1) predicts not so shocking behaviour as the system (3.2)
predicts (shocking in sense that many of individuals will die/be born during a time unit).

Since we have just given a logical justification of the usage of invasive control, it makes
sense to analyze a stability of controlled 2-period orbit precisely. The Jacobi matrix of f2
at point 73 is given by

of?

Df*(y3) = 8—y(7§)

= K24 2K \/p? =2 — 3+ 4K — pi® + 2u + 4.

Note that the analysis has to be done for a point 73 and not for a point 7, because it is
modified. The stability condition is given by

| = K*+ 2K \/p2 — 2 — 3+ 4K — pi® + 2u + 4] < 1. (5.2)

This condition is depicted in Figure 7. We highlighted just area of our interest, i.e., the
area, where > 0. It is clear that (5.2) is satisfied for g > ug if K > 0. The boundaries
of hatched area are

K=+\p2—-2u—-3+2— \/6+4W =K, (purple colour),
K:\/m+2—2\/1+\/m:f(u (red colour),
K=+12=2u—34+2+ 2\/1 V2 —2u -3 (blue colour),
K=+12—2u—3+2+ \/6 +4Vp2 =2 —3 (green colour).
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Also, as we discussed in Section 4.1, it is enough to assume |K| < 1. Hence, the stabiliza-
tion set PFCi C (0,1). Particularly, for p = uo, we get PFC%2 = (0, K,). With increasing
1, the stabilization set is given as

PFC: = (K, K,),

hence, in other words, an unstable 2-period orbit of (3.2) can be stabilized via (2.13) only
if
K,<K<K,<1.

4 -

K
-1.5 -1 -05 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9
-1

-2

Figure 7: Graphical interpretation of condition (5.2).

Conversely, from the condition (5.2), it is possible to derive a range of stability of u
for K € PFC},. Tt yields

3 < ik < p < i,

where

ﬁK:1+\/4+K2+4K+4K%,

i = 1+ 4/6+ K2+ 2K VIR $2 + 4K

Therefore, by applying a control (2.13) with K € PF C’i, we are able to stabilize an
unstable 2-period orbit at most for

3 < i < p < iy,
where [i}. is a critical value that is computed in K =1, i.e.,

[y = 4.987352441.

5.2 Delayed Feedback Control

Let us apply a control (2.15), for which we set 7" = 2 in order to stabilize a 2-period orbit.
Therefore, we get a controlled system in form

y(n) = py(n — 1)1 —y(n —1)) + Kly(n = 3) —y(n — 1)]. (5-3)

For a further analysis of stability of controlled 2-period orbit we need the second iteration
of (5.3). However, in the case of higher-order difference equation, one may get confused
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in a construction of the iteration. Note that the problem of discussing the stability
of equilibrium of higher-order difference equation is equivalent to the same problem for
corresponding system of first-order difference equations. Hence, we derive the required
second iteration precisely and rigorously from the system of difference equations.

By rewriting (5.3) into the system of three first-order difference equations, we get

yi(n) = ya(n — 1)

ya(n) = ys(n — 1)

ys(n) = pys(n — (1 = ya(n — 1)) + Ky (n — 1) — y3(n — 1)]
= f(ys(n = 1)) + K[y1(n — 1) —ys(n — 1)].

Thus, for some vector y = (y1, 92, y3)T € R3, a mapping F : R® — R3 is defined as

F(y) = (y2,y3, f(ys) + K[y1 — Z/3])T

The second iteration of F'is then given by

F*(y) = F (F(y)) = F(y2,y3, f(y3) + K[y1 — y3])
= (y3, f(y3) + Klyr — s, F(f(y3) + Kyn — ys]) + Ky — f(ys) — Ky — y3]])-

For a neat form of 2, let us make the substitutions

Y1 =ys,
Yo = f(1) + K(y1 — Y1),
Yy = f(Y2) + K(y2 — Ya).
Therefore, we have F?(y) = (Y1, Ys, Y3)". One may easily check from F? that the usage
of (2.15) for stabilization of 2-period orbit is fully non-invasive.
To be able to study a stability of 71 or 7o (thus to study a stability of 2-period
orbit), it is necessary to express the coefficients p; of the characteristic polynomial. These

coefficients are required as entries to Remark 2.8, which cover the following discussion.
The Jacobi matrix of F? at v = (71, 72)T is given as

)
oy 0 1

0
DF*(v)=|—5-() | = K 0 a — K :
ayé K(QQ—K) K (al—K)(aQ—K)

where a; = —1 — /2 =2 —3, a3 = —1 + /pu? — 2 — 3. In fact, a; and as can be

explicitly derived as
a; = Df(m) and as = Df(72).
The characteristic polynomial of DF?(~y;) has the form
pA) =N+ MK —a1)(az — K) + A[K(K — ap) + K(K — ay)] — K?

and corresponds exactly to the characteristic polynomial of the second iteration of (5.3).
The required coefficients are

p=(K—-a)(as—K), p»=K(K—a)+K(K—ay), ps=-K>
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so we are ready to use a Remark 2.8 for a discussion of stability of ;.
The stability conditions given by this remark after assigning p;, ps, p3 are in form

0 < p?—2u—3, (5.4)
0 <4K?+4K — p®> +2u + 5, (5.5)
0<2K?— (u* —2u—2)K* — 2K + 1, (5.6)
0< —2K*—2K*+ (u® — 2u — 2)K* + 2K + 1. (5.7)

First, let us discuss some preliminary facts on the form of DFCﬁ. Obviously, (5.4) is
equivalent to p > 3 (it allows also u < —1, but since y(n) should be non-negative, we
omit this case). Further, we denote by F,(K), G,(K) and H,(K) the right-hand sides of
(5.5), (5.6) and (5.7), respectively. It is clear that

0< H,(K)=-2K"+2-G,(K),
hence if G, (K) > 0, then for the validity of 0 < H,,(K) it is necessary to have
0<—2K"+2.

In other words, if K € DF C’i for appropriate K and g > ps (in order to have satisfied
condition (5.6)), then K € (—1,1). Furthermore, if (5.5) occurs for some K and p > puo,
then either K > 0, or K < —1. Summarizing these facts,

DFC%  (0;1).

Now we show that the validity of (5.6) implies the validity of (5.7). Equivalently, we
show that if G,(K) > 0 for K € (0,1) and p > p19, then G, (K) < —2K* + 2. Since

G,(1)=—p*+2u+3<0,
Gu(0)=1<2,
G,(0)=—-2<0,

" 2

this property is evident. Consequently, when analyzing (5.4)—(5.7), it is enough to restrict
to (5.5), (5.6). This conclusion we can also observe from Figure 8a, where the red colour
corresponds to condition (5.5), the blue one to (5.6) and the green one to (5.7). Since we
are interested in area of > ps, such an observation is obvious (see Figure 8b).

Let us describe the set DFC% more precisely. Firstly, we denote as K » such values
K > 0 that satisfy G,(K) = 0 for ;1 > 0 (depicted by blue colour in Figure 8b). The
quadratic polynomial F,(K) has two real roots, we denote the right of them by K,,, i.e.,

_ —14+/p?—=2p—4
K, = 5

(depicted by red colour in Figure 8b). It is clear that starting from o, we get DF Cﬁz =

(0, K,,). With increasing p we get that DFC',% = (K,, K,). In other words, an unstable
2-period orbit of (3.2) can be stabilized via (2.15) only if

K, <K<K,
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Figure 8: Graphical interpretations.

Obviously, in the area of interest (i.e., when pu > o) the values K, and K , are increasing
and decreasing, respectively, with respect to increasing pu. Thus the stabilization interval
DFCZ becomes smaller and smaller.

A natural question arises, namely what is the smallest value of yu when DF CZ becomes

empty (we denote such a critical value by p3). Obviously, p = ub just when K, = K,.
This characterization leads to a nonlinear planar system

4K? — 4K — 2 +2u+5=0, .
2K% + (u® —2u—2)K? —2K — 1 =0 (5:8)
for unknowns p and K. Solving (5.8), one can set up an algebraic equation of the fourth-
order for the unknown K (it is enough to express the term p? — 2y from the first equation
of (5.8) and substitute it into the second equation of (5.8)). Thus, as its root, we obtain
the value K as a critical value of gain for which v; has the widest range of stability with
respect to p. This root can be evaluated as

K3 = 0.3090169944,
and an appropriate critical value of y becomes
sy = 3.76007862.

An almost critical state is depicted in Figure 9a. The choice of K — K causes that it is
hard to make the bifurcation diagram ‘clean’ (meaning without ambient noise).

The stability of 2-period orbit of (5.3) was already discussed in paper [10] in a sim-
ilar way as here. Nevertheless, in [10] the results were based mostly on the numerical
experiments. Moreover, there is given just an estimate of u} as

3.76 < i < 3.77.

On contrary, we gave here a precise analytical discussion of this problem, supported by
graphical interpretations. We were able to derive the exact value p3, and even the value
K3. We were following this paper in such a way mainly to show our contribution to it
(thus, to make it for a reader easily comparable).
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Figure 9: Bifurcation diagrams.

5.3 Prediction Based Control

Applying a control (2.17) with T' = 2, we get a controlled system given as

y(n) = py(n =11 —y(n — 1)) + Kly(n = 2) — py(n — 1)(1 —y(n — 1))]. (5.9)

Also here it is necessary to analyze the second iteration of (5.9) instead of the equation

itself. Following the same argumentation as in the previous method, we will derive now
F?,
A system of two first-order difference equations corresponding to (5.9) is

y1(n) = ya(n —1)
ya(n) = pya(n = D)1 = ya(n — 1)) + Ky (n = 1) = pya(n = 1)(1 = ya(n — 1))]
= f(2(n = 1)) + K[y (n — 1) = f(g2(n = 1))].

Hence, for some vector y = (y1,72)" € R?, a mapping F' : R? — R? is defined as

F(y) = (4o, f(y2) + Ky1 — f(y2))"

The second iteration F? is given by

F*(y) = (f(y2) + K[yr— f ()], f(f (o) + K[yr — [ (y2)))+ K[y — F(f (y2) + K [y1 — f(2)])])-

The following substitutions

Yi = f(y2) + Ky — f(y2)],
Yo = f(V1) + Kly2 — f(Y1)],

give us a neat form of F%(y) = (Y}, Y3)T. It is easy to check the non-invasiveness of (2.17).
Since (5.9) is a second-order difference equation, to discuss a stability of its 2-period
orbit we use Remark 2.7. The Jacobi matrix of F? at v = (y1,72) is given by

M)
2 8_ K (]_ - K)CLQ
DF(v) = 8_3%(7) - <(1 — K)Ka; (1— K)2ayas + K) ’
Jy
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where a1 = Df(y1) = =1 —/p?2 —2u—3, as = Df(7) = =1+ \/u? —2u—3. The

characteristic polynomial is given by
p(A) =N =X (2K + (1 — K)’a1a2) + K>

Hence, the needed coefficients for Remark 2.7 are

p=—2K — (1 — K)*ayas, po = K*.
Assigning p; and py to this remark gives us the stability conditions
0<1—K? (5.10)
0< (p*—2u—3)(1—-K)? (5.11)
0<2(1+K?) — (u* —2u—3)(1 - K)* (5.12)

Firstly, some preliminary facts on the form of PBCﬁ will be discussed. Clearly, (5.10) is
equivalent to —1 < K < 1 and (5.11) results to g > 3 (1 < —1 is omitted with the same
argumentation as in previous method). We denote by 1,,(K’) the right-hand side of (5.12).
Further, rewriting (5.12) into

0<2(1—K)*—(u®—2u—3)(1 - K)? +4K
by completion the first term I, (/) on its square, we get
0<(1—K)?*(—p>+2u+5) +4K. (5.13)
Therefore, if (5.13) occurs for some K and g > pg, then K > 0. Summarizing these facts,
PBC:, C (0,1).

Let us describe the set PBC/% in detail. The quadratic polynomial [,,(K) has two real
roots, we denote the left of them by K, i.e.,

o pu?—2u—3 =2/ —2u—4
K, = Ry :
W =24 =95

Starting from u, we get PBC’IZL2 = (0,1). By increasing p we get PBCZ = (K,,1). An
unstable 2-period orbit of (3.2) can be stabilized via (2.17) only if

K,<K<1.

Obviously, the stabilization interval becomes smaller and smaller, but (in theoretical point
of view) there exists no pu > s such that this interval becomes empty.
Conversely, let us assume [ (p) instead of I,,(K') and denote its left root as ik, i.e.,

K—-1—-+vV6K2—-8K+6
K—-1 '

The control (2.17) with 7" = 2 and K € PBC% stabilizes an unstable 2-period orbit of
(3.2) for

fr =

M2:1+\/6<,u<ﬂ[(.
Hence, such a period orbit can be at most stabilized for
po < fr < pa,

where u5 — oo as K — 1. An almost critical state is depicted in Figure 9b. In this case
the bifurcation diagram is even more surrounded by a noise, that is hard to clear up.
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6 Stabilization of 3-Period Orbits

Because of the Sharkovsky ordering (see Theorem 2.15), it should be appropriate now to
be interested in analysis of stabilization of 4-period orbit. However, the analysis of such
an orbit leads to computations with a polynomial of order 16, which is a very tedious
matter. Moreover, by pure mathematical analysis, we are not able to get the final result
on stability, since for this we need the exact expression of points creating the orbit. In
[11], this problem was discussed by graphical approach, i.e., by studying the values of
slope of corresponding iteration in points crossing a first-quadrant axis. Hence, we omit
the analysis of stabilization of 4-period orbit and we will show just numerical experiments
simulating it.

Although even the points of 3-period orbit are not explicitly expressible, the compu-
tations with a third iteration, i.e., with a polynomial of order 8, are more pleasant. Note
that till now we were applying all introduced methods (PFC, DFC, PBC). Unfortunately,
in this case, we are not able to use a PFC method, since we do not know the exact form
of period points (so we do not know the target of stabilization). We will state at least
stability conditions of corresponding controlled systems in general form. We will try to
specify the stabilization sets DF C‘Z, PBC'Z as much as possible for > 3 = 1+ /8.

One may argue that a PFC is usable, because of the fact that a 3-period orbit of
uncontrolled system is asymptotically stable only if y =1+ \/@ (see Table 1). Hence,
it is possible to directly compute its points, i.e.,

v1 = 0.1599288184, v2 = 0.5143552771, v3 = 0.9563178420.

Therefore, one may take as the targeted value ¢, needed for a stabilization via PFC, one
of the computed points 71, v2 or v3. Nevertheless, for orbits of period higher than 1, this
method is invasive (as we have observed in stabilization of 2-period orbit). So in further
analysis on stability of controlled system via PFC we have no point, around which we
could make a linearization. Thus, we are not able to get any closer specification on u
or K, for which an unstable 3-period orbit can be stabilized, and so a PFC method is
unusable.

6.1 Delayed Feedback Control

Using a second method, i.e., applying a control (2.15) with setted 7' = 3, we get a
controlled system in the form

y(n) = py(n — 1)1 —y(n —1)) + Kly(n —4) —y(n - 1)]. (6.1)

Analogously, as in the case of stabilization of 2-period orbit, we derive a third iteration
of (6.1) in order to be able to discuss a stability of controlled 3-period orbit.

A rewriting of fourth-order difference equation into a system of four first-order dif-
ference equations is done in a similar way as before. Therefore, for some vector y =
(Y1, Y2, Y3, y4)T € R%, there is a mapping F' : R* — R* defined as

F(y) = (y2,y3,ys, [ (y3) + Kly1 — va]) ",

where the mapping f is again the logistic map. A third iteration of F' is given by

F3(y) = F? (y2, y3, ya, f(y3) + Kly1 — va])
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=F (Y3, ya, f(ya) + Kly1 — yal, £ (f(va) + Klyr — va]) + K [y2 — f(ya) — Kly1 — ya]])
=(V1,Y5,Y3,Ya),

where the substitutions are

Y1 =y,

Yo = f(V1) + Kly1 — Y1,
Yy = f(Ya) + Kly2 — Yo,
Vi = f(%) + Klys - Vi)

We can check a non-invasiveness of this control. Let a vector v* = (v§, 73,75, 75)T be
an equilibrium of F3(y). We will show that components ~;, 73, 74 are equilibria of third
iteration of free system (3.2), in other words that they are points of uncontrolled 3-period
orbit. Assumption on a vector v* to be an equilibrium means that F'(y*) = v*, i.e.,

Yi=7=,

Yo=f(V1) + K[y —=Y1] =15 — f(n) =,
V3= f(Yo) + K[y, —Yo] =3 — f(3) =13,
Yi=f(Ys) + K[y —Y3] = — fp)=vn=mn

Therefore, it is clear (from the right column) that ~{, 75, 74 are actually the points of
uncontrolled 3-period orbit and that the control is non-invasive. We collect them into a
vector v = (71,72, 73) .

For determining the stability conditions given by Remark 2.9, we have to find required
coefficients p;. Let

ay = Df(y) = —2py+p, ag = Df(y2) = —2py2+u, as = Df(ys) = —2puy3+p.

Then, by straightforward computation, one may get the Jacobi matrix of I at ~ given

by

0 0 0 1
, K 0 0 a — K
DEEO =1 ke — k) K 0 (a-K)a-K)
K(ag—K)(ag—K> K(ag—K) K (CLl—K>(CL2—K)(a3—K)

The characteristic polynomial of DF3(v) is
p(A) = X'+ o1 A% + poA® + p3h + pu,
where the coefficients are

p=—(a1 — K)(az — K)(az — K),

pe=—K|[(a1 — K)(az — K) + (a1 — K)(a3 — K) + (a2 — K)(a3 — K)],
P3 = —K2[(6L1 —K) + (CLQ —K) + ((13 —K)],

ps=—K°.

The stability conditions given by Remark 2.9 after assigning py, p2, p3, ps are

-1 < K <1, (6.2)
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0<1-— aijasas, (63)
0<1+ a1aoas3 — 2K3

— 2K [(ay — K)(as — K) + (a1 — K)(as — K) + (as — K)(as — K)] (6.4)
0 < —(K° +1)%py — (K’p1 + p3)(ps — p1) + (K° +1)(1 = K°), (6.5)
0 < —(K° = 1)ps — (K’py + ps)(ps + p1) + (K° = 1)(K° = 1). (6.6)

Let us discuss some preliminaries, which will be useful later. Clearly, from (6.2) we have
DFC’Z C (—1,1). Furthermore, for u = us we are able to compute exact values of a;, i.e.,

al® = 2.603875472, ah? = —0.1099162645, af® = —3.493959201,

so ai®ah?ak® = 1. Tt is natural to assume that with a small increase u the values of 7,

2, 73 are not changed rapidly, so neither the values of ay, as, ag are. This assumption
will be later confirmed experimentally. However, all these small changes together imply
that as becomes a very small, but positive number, and that the condition (6.3) holds.
Moreover, for > ug, we get that —1 < ajasas < 0, s0 0 < 1+ ajaqsasz < 1.

Under preceding assumptions we are able to specify closer the stabilization set DFC‘Z,
namely the sign of K. It leads from preliminaries that the condition (6.4) holds if

0< —2K3 — 2K [(a1 - K)(a2 - K) + (a1 — K)(a3 — K) + (ag - K)(a3 - K)} (67)
holds. Using the assumption, one may find that (6.7) holds only for K > 0. Hence,
DFCS C (0,1).

Note that a; — K > 0 and a3 — K < 0 for every K € DFC’Z, because a; > 1 and a3 < 0.
However, since 0 < as < 1, we can have either as — K > 0 (if a3 > K) or as — K < 0
(otherwise). From these facts we may deduce following observations:

e 0 <p << 1lifay > K, otherwise p; << —1;
e py >0 for every K € DFC‘?L;
e p3 > 0 for every K € DFC‘Z.

Using preceding observations, we are able to discuss conditions (6.5), (6.6).

It is obvious from (6.5), that its first term is negative for all K € DF C‘i and the last
one is positive for all K € DF Cﬁ The middle term requires a more attention. If p; is
positive, then K is a very small (in the absolute value) number. Therefore, ps gives also
a small number, and even smaller then p; gives (because of the K? term involved in p3).
Hence, the middle term is positive for K < ay. On contrary, let p; be negative. We have
observed that in this case p; << —1, which in fact causes K3p; + p3 < 0. All in all, the
middle term is positive for all K € DF Cﬁ The only problem in validity of (6.5) may
cause the first term. To avoid this, we have to choose very small K (the first and the last
term will have almost same value, just with opposite signs). This fact is satisfied just by
the case of positive p;, hence ay > K and so

DFC} = (0, az).

The first and the last term of (6.6) are obviously positive for all K € DF C‘i For the
middle term, there is an argumentation in a very similar way. The both cases of sign p;
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leads to the negative sign of term, and so the problematic term in validity of (6.6) may be
only this term. However, it results to the same consequence as in the previous condition.
A choice of K being sufficiently small (i.e., K < ag) ensures that even though the middle
term is negative, it is very small and thus it does not cause any problem in validity of
this condition.

We are not able to discuss the range of stability of controlled 3-period orbit, because
without explicit expression of its points we are not able to proceed further in analysis.
Therefore, we will show it just in some numerical experiments. Unfortunately, in bifurca-
tion diagrams the range of stability of 3-period orbit (either of controlled or uncontrolled)
is not clear so much. In Figure 10 we have enlarged the part corresponding to 3-period
orbit. It clarifies the above assumption about values of points of this orbit. A graph of
evolution of y(n) verifies that usage of negative gain causes the 3-period orbit of (6.1)
(depicted by red colour in Figure 11a) became unstable for yu = 1 + v/8. On contrary,
a Figure 11b verifies that usage of positive gain stabilizes this orbit for g > 1 + /8.
Specially, for K = 0.05 we get its range of stability as 1 + /8 < p < 3.859 (see Figure
10).

.9 B :3.850 E
0.8 i : : 10.9616

0.6

£ 3.859
:0.4718

0.2

: 3.8569
101426 b

39

(a) K = —0.05, p=1++/8 (b) K = 0.05, 1 = 3.855

Figure 11: Evolution of y(n) for system (3.2) (blue) and (6.1) (red).
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6.2 Prediction Based Control

Application of the third method for stabilization of 3-period orbit leads to analysis of
controlled system given by

y(n) = py(n =11 —y(n — 1)) + Kly(n = 3) — py(n = 1)(1 —y(n — 1))]. (6.8)

Analogously, as in Chapter 5.3 we derive a third iteration of (6.8), and then discuss a
stability of 3-period orbit controlled via (2.17).

The system of three first-order difference equations equivalent to (6.8) is given by
mapping F' : R? — R3 such that for some vector y = (yy,ys,y3)" this map is defined by

F(y) = (y2,y3, f(y3) + K[y1 — f(y3)])T. The mapping f represents again a logistic map.
Therefore, the third iteration of I is given by

F(y) = F*(y2,ys, [ (y3) + K[y1 — f(y3)])
= F(ys, f(y3) + Klyr — f(ys)], f(f(ys) + Kly1 — f(y3)])

+ Ky — f(f(ys) + Kly1 — f(y3)])])
= (1,12, Y3),

where the substitutions are

Yi = f(ys) + Ky — f(y3)],
Yo =f(Y1) + K[y2 — f(Y1)],
Y3 = f(Yo) + Klys — f(Y2)].

We can quickly check a non-invasiveness of this control. Let v* = (7§,75,75)T be an
equilibrium of F3(y). Therefore, F(y*) = v*, i.e.,

Yi=f()+ K[y — f(93)] =1,

Yo = f(77) + K[y — f(71)] = 3,
Yy = f(rs) + K[y — f(3)] =

If the control is truly non-invasive, then ~j, 3, 73 should be exactly equal to 71, 72, 73,
respectively (it means that they are the points creating a 3-period orbit). Hence, because
of Definition 2.12, there should hold

fOD) =%,  fn)=%n  fln)=n

Clearly, the control is non-invasive. We collect these points in a vector v = (71, Y2, 73) .
Let ai, az, ag be the same as in Chapter 6.1. The Jacobi matrix of F'3 at v is given by

K 0 (1 - K)Clg
DF}(y)=| (1—-K)Ka K (1 — K)%aja3
(1-K)?Kaja, (1-K)Kay (1—K)3ajasa3 + K

One may check it by straightforward computation using the Definition 2.12 mentioned
above on points of period orbit. The characteristic polynomial of DF3(7y) is

p(A) = N + (K3ayasa3 — 3K?a1a0a3 + 3K ayasas — ajasas — 3K)\* + 3K\ — K3,
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so the coefficients p; needed to discussion of stability conditions given by Remark 2.8 are

P1 = a1a2a3(K3 —3K2 +3K— 1) —SK,
b2 = 3K27
p3 = ~-K°.

The stability conditions after assigning the values pq, po, p3 are given by

ajazaz(l — K)* < (1 — K)?, (6.9)
arazaz(K — 1) < (K + 1), (6.10)
araza3 K3 (K —1)° < (1 — K?)3, (6.11)
arazas K*(1 — K)* < (1 — K)(K + 1)(K* 4+ 4K 4+ 1). (6.12)

Recall from Section 6.1, that the condition (6.3) holds for p > ps, and that a;, as,
as remain unchanged. Therefore, the condition (6.9) should hold as well. It gives that
(1-K)*>0,s0 K < 1and PBC) C (—o0,1). Also, we already know that —1 < ajasas <
0 for > p3, and (K —1)* < 0 for K € PBC‘z. Hence, the left-hand side of condition
(6.10) is positive, so this condition is satisfied when 0 < (K + 1)3. Consequently, we
get —1 < K < 1, ie., PBC’Z C (—1,1). Furthermore, the right-hand sides of remaining
conditions (6.11), (6.12) are positive for K € PBC’Z. Nevertheless, the only thing that
we are able to deduce is that for K > 0, a validity of these conditions is ensured in both
cases.

Unfortunately, for K > 0 the numerical experiments showed that the chaotic part
(including also a part of 3-period orbit) has been suppressed. Therefore, the set of points
creating a 3-period orbit is a void set. Since the void set may have any property, then it is
also possible to stabilize it trivially. Hence, the deduction on a specification of stabilizing
set PBC‘?L is correct from a theoretical point of view. Practically, the stabilization of 3-
period orbit via (2.17) does not make sense, unless its main aim was not to suppress the
chaotic behaviour. If yes, then such a control works perfectly.

49



7 Advanced Stabilization of Equilibria

Herein the chapter, a stabilization of equilibria via controls PFC, DFC, PBC will be done,
but with an emphasise put on delay w. In other words, we will state here three different
controlled systems with two varying parameters K, w. For this purpose, let us introduce
following notations:

For PFC given by (2.12), let us denote the stabilization set of all admissible couples
(K,w), where K is a gain parameter and w is a delay, as PFC,. Here, p > p; is an
arbitrary real parameter, where py is the upper bound of stability interval corresponding
to equilibrium y3 (see the right column of Table 1 describing stability of a free system).

Similarly, for DFC given by (2.14), let us denote the stabilization set of all admissible
couples (K,w), where K is a gain parameter and w is a delay, as DFC,. For PBC given
by (2.16), we denote the stabilization set as PBC,,. Also here, 1 > 1y is considered as an
arbitrary real parameter.

Therefore, our main aim in this chapter will be the description of stabilization sets
PFC,, DFC,, PBC,. Note that the limitations on values of w will arise from Theorem
2.10. After this, we will be able to discuss whether the implementation of information
about the past to system may be useful for getting better results in stabilization.

7.1 Proportional Feedback Control

The application of control is done in a similar way as in Section 4.1 and is also non-
invasive. However, now we implement a general w to the system, where w > 1. Thus, the
controlled system has the form

y(n) = py(n — (1 —y(n — 1)) + K[y(n — w) — y5]. (7.1)

As we have already indicated in the mathematical background part, for varying w we
are not able to use Schur-Cohn criterion when analyzing the stability. Therefore, we use
Theorem 2.10 for this purpose (see also [4]).

Since the controlled system (7.1) is nonlinear, we make a linearization around y;:

O (=2 [ny(n = (1 —y(n = 1)) + Kly(n — w) — 45|
dy(n —1) ’ dy(n —1) y(n—1)=y3;
=2—p,
Of (= Qy(n= DU =y(n— 1)) + Kly(n =) = y3]]
Ay(n —w) 2 dy(n — w) y(n—w)=y}
=K.

This leads to a linearized controlled system
y(n) = (2= py(n —1) + Ky(n — w). (7.2)

Comparing the equation (7.2) with the equation (2.6), we get A; = 2 — u, Ay = K with
a dimension m = 1 and delays p = 1 and a general w. Hence, the eigenvalues are

a1:2_/~1’7 BIZK

Note that (7.2) satisfies all assumptions of Theorem 2.10 (see also Remark 2.11). Thus,
application of this theorem to (7.2) enables the analysis of stability of y5. We already know
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that y; is asymptotically stable for 1 < p < 3. However, in the previous argumentation of
case w = 1 we have shown that the lower bound of stability can be slightly modified. Our
aim will be now to discuss whether there exists some pair of control parameters (K, w)
such that y3 is asymptotically stable when p > py = 3.

Analysis of stability condition (2.7)

Assigning the eigenvalues «q, 3 into the condition (2.7) we get
|2 —p|l + K| < 1.
This inequality is depicted in Figure 12a as the blue area bounded by functions
w=3—-K, w=3+K and uw=1—-K, pw=1+ K.

From Figure 12a it is clear that this inequality is never satisfied for p > 3 (depicted as
the red area).

(a) Condition (2.7) for system (7.1). (b) Condition (2.8) for system (7.1).

Figure 12

Analysis of stability conditions (2.8), (2.9)
Clearly, for p > 3, the first part of the condition (2.8)
2 =y + K| >1

is satisfied for any K € R since its area may be depicted as the complement of the blue
region (see Figure 12a). The next part of this condition with assigned eigenvalues a1, (;
has the form

2—pul—1<|K|<1.

It is depicted in Figure 12b as the black area, so we can easily get the range of stability
of y5. There are two relations between K and p

“-1<K<3—-p<0 or O<p—-3<K<1,

so either the control parameter K is positive, or it is negative. Since we are interested in
the range of stability of y3, we get

nw<3—K for K <0 or w<3+K for K > 0.
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However, for the stability of y5 also the condition (2.9) needs to hold. It is clear that
arg(ag) = m and arg(f;) = 0if 0 < K < 1 or arg(f;) = 7 if —1 < K < 0. Note that
ged(ly, ls) = ged(1,w) = 1. Thus, we get

1 2 —u)?— K? 1—(2—pu)?2+ K2
W arccos + ( ,U) —I— arccos ( ,U) +
20— 2) K|

< arccos [cos(wm — arg(K))].

Note that the left-hand side of this inequality is always positive. For K > 0 the above
inequality has no solution for an even w, because in this case the right-hand side is zero.
On the other hand, for K < 0 there is no solution for an odd w.

Therefore, for a stabilization of y3, we need to have the controlled system (7.1) either
with the control parameters

1—(2—p)?+ K?

arccos 5K
-1<K <0 d < =W
an w TF 2=y — K7 w
arccos
2(p —2)
such that w is an even positive integer, or with the control parameters
(2—p)?®—1-K?
arccos Ve
0<K<1 d < =W
an w TF 2 ) = K w
arccos
2(p—2)

such that w is an odd positive integer. Note that when expressing w we have used the
relation arccos(—x) = m — arccos(z). Hence, we get two stabilization sets, namely

PFC, = {(K,w);—1 < K <0 and even w < @} or
PFC, = {(K,w);0 < K <1 and odd w < @}.

For the controlled system (7.1), we get that the equilibrium y; is asymptotically stable
on the interval

I+ K<pu<3-K for K <0 or
l1-K<pu<3+K for K > 0,

where (K,w) € PFC,. Note that the lower bounds of stability ranges can be confirmed
by Figure 12b. In fact, we are able to stabilize this equilibrium at most for

O<pu<4

using (K,w) € PFC,, where either K — 1 or K — —1.

7.2 Delayed Feedback Control

Analogously as in the previous section, after application of non-invasive control (2.14),
the controlled logistic map has the form

y(n) = py(n — 11 —y(n — 1)) + Kly(n — @) —y(n - 1)]. (7.3)
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Let @ > 2 (otherwise we are applying control (2.15) with 7" = 1). Due to the same
argumentation as in the case of previous control method, we make a linearization of system
(7.3) around y;:

of (%) = Olpy(n —1) (1 —y(n—1)) = Ky(n —1) + Ky(n — 0]
dy(n —1)72 dy(n —1) y(n—1)=y3
=2—-—pu—K,
of (1) = Opy(n —1) (A —yn—-1)) — Ky(n —1) + Ky(n — 0]
dy(n — @) dy(n — w) y(n—@)=y}
=K,

leading to the linearized controlled system
y(n) = (2 —p—Ky(n—1) + Ky(n — o). (7.4)

Comparing (7.4) with (2.6) we get A; = 2 — u— K, Ay = K with a dimension m = 1
and delays p = 1 and a general @. Hence, the eigenvalues needed for the application of
Theorem 2.10 are

ap=2—pu—K
b =K.

Again, with the same argumentation as in the previous control method, we apply this
theorem on (7.4) to analyze the stability of y3 for u > pu; = 3.
Analysis of stability condition (2.7)
Assigning the eigenvalues «y, f; into the condition (2.7) we get
2—p—K|+|K|<1.
This inequality is depicted in Figure 13a as the blue area, which is bounded by functions
pw=1-2K and pw=3—-2K.
From Figure 13a it is clear that this inequality is again never satisfied for u > 3 (depicted
as the red area).
Analysis of stability conditions (2.8), (2.9)
Clearly, for u > 3, the first part of the condition (2.8)
2 - p— K|+ K| > 1

is satisfied for any K € R. The next part of this condition with assigned eigenvalues oy,
[1 has the form
2—-pu—K|-1<|K|<1.

It is depicted in Figure 13b as the black area, so we can easily find the range of stability
of y5. The relation between K and p is (see also Figure 13b)

3 —
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Figure 13

and since we are interested in the range of the stability of the equilibrium ¥;, we get
p<3—2K.

Also, here it is necessary to analyze the condition (2.9), since the stability depends on w.
Now arg(a;) = 7 and arg(f;) = 7 as —1 < K < 0. Thus we get

N 1+(2—M—K)2—K2+ 1—(2—,u—K)2+K2< cos(c )
W arccos arccos arccos [cos(wm — )| .
2(K +p—2) —2K

Therefore, since 0 = w + 1, we get

1+2—pu—K)?— K? 1-2—p—K)?+ K?
W arccos +(2< K,u—i-,u—) 2) + arccos ( 'li 5K S+ < arccos [cos(wT)] .

For an even w (thus for an odd @), we get no solution of this inequality. Therefore, for a
stabilization of y5 we need to have the controlled system (7.3) with the control parameters

1—-2—pu—K)?+ K?
arccos oK
-1<K <O d 0 < =
e 1+2-—p-KP-—K? °
2K+ p—2)

arccos

such that @ is an even positive integer. Hence, the stabilization set is given by
DFC, = {(K,w); -1 < K <0 and even w < w}.

For the controlled system (7.3), we get that the unstable equilibrium yj can be stabi-
lized when

p=3<pu<3—-2K

for (K,w) € DFC,,. Consequently, it can be stabilized at most for
1 < p < 57
using control parameters (K,w) € DFC,,, where K — —1.
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7.3 Prediction Based Control
The logistic map controlled by a control (2.17) has the form
y(n) = (1= K)py(n —1) (1 —y(n — 1)) + Ky(n - w). (7.5)

Note that the non-invasiveness is satisfied also here. Let w > 1. After the linearization
of system (7.5) around y;5, where

of (45) = I[(1 = K)py(n—1) (1 —y(n—1)) + Ky(n —w)]
dy(n —1)72 dy(n —1) y(n—1)=y;
=(1-K)(2-p),
of (y*)za[(l—K)uy(n—l) (1—y(n—1) + Ky(n - w)]
dy(n —w) 7 dy(n —w) y(n—w)=y3

we get the linearized controlled system
y(n) = (1= K)(2 = py(n—1) + Ky(n — w). (7.6)

Comparing (7.6) with (2.6) we get A; = (1 — K)(2—pu), Ay = K, a dimension m = 1 and
delays p = 1 and a general w. Hence, the eigenvalues needed for application of Theorem
2.10 are

ar=(1-K)(2-p)

b =K.

In the sequel, we apply to Theorem 2.10 on (7.6) when analyzing the stability of y5 for
B2 =3

Analysis of stability condition (2.7)
Assigning the eigenvalues «y, f; into the condition (2.7), we get the inequality
(1= K)(2—p)|+|K] <1
This inequality is depicted as the blue area (see Figure 14a), where its left borders are

made of two functions

3—K 1-3K

F=1"x "¢ H=9°g

From Figure 14a it is clear that this condition is never satisfied for ;1 > 3 (depicted as the
red area).

Analysis of stability conditions (2.8), (2.9)
Clearly, for p > 3, the first part of the condition (2.8)

(1= K)(2 -] +[K[=>1
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(a) Condition (2.7) for system (7.6). (b) Condition (2.8) for system (7.6).

Figure 14

is satisfied for any K € R since its area can be depicted as the complement of the blue
region in Figure 14a. By assigning the eigenvalues a1, 1 into the next part of the condition
(2.8), we get the inequality

(1-K)2—-p)|-1<[K| <1

Figure 14b depicts this inequality as the black region, so we can easily get the relation
between ;1 and K for which the equilibrium g3 is asymptotically stable. The relation is

3

0< R o <K <1,

I —p
and since we are looking for a range of the stability of the equilibrium 3, we get
3—-K
1-K
It is clear that arg(a;) = 7, arg(f8;) = 0 as 0 < K < 1. Thus, we get the condition (2.9)
in the form

1+ K+ (1—-K)(2—p)? 1—(1-K)?*2—p)?+K?

W arccos a +2((,u — 2))( 1) +arccos ( )Q(K B+ < arccos [cos(wT)] .
For an even delay, this inequality has no solution. For an odd w, the right-hand side of the
inequality is equal to m. Therefore, for a stabilization of y5 we need to have the controlled
system (7.5) with the control parameters

w<

(1-K)P*2—p)?-1- K
arccos
2K

0<K<1 and w < =
1+ K+ (1-K)(2-p)?

2(p—2)
such that w is an odd positive integer. The stabilization set is given as

PBC, = {(K,w);0 < K <1 and w < @ being odd}.

arccos

For the controlled system (7.5), we get that the unstable equilibrium y; can be stabi-

lized when
3— K

1-K
for (K,w) € PBC,,. Hence, it can be stabilized at most for

=3 <p<

p1 < MT’
where uj — oo as K — 1.
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8 Parity of Delay and Its Connection to Eigenvalues

Up to now, we were able to get some stabilizing results based mostly on straightforward
(but tedious) computations. We have been interested in a reaction of the system on a
given control and we have decided if the reaction was desired (the system was stabilized)
or not. It was in fact rather a practical approach to the problem of stabilization.

In this chapter, we show a more general background. It was inspired by [1], but it
is enhanced by some detailed comments and graphical interpretations. The following
considerations will be performed with a general delay w (the second approach may be
obtained from this by setting w = T). Also, because of the complexity of justifications
for orbits of higher periods, we will justify only results on stability of equilibrium.

8.1 Justification of PBC

We have shown that y; may be stabilized via the control (2.17) with w > 1 only if it is
taken with an odd delay. For the even delays, there is no possibility how to stabilize it
via (2.17). This fact can be verified by the analysis of eigenvalues of the linearized model.
By this theoretical approach we will show also another interesting fact, which remains
hidden in the previous approach, namely a so-called quasi-periodic behaviour of solution.
We understand this notion in an intuitive sense; we have been motivated especially by
numerical outputs displaying a periodic-like behaviour.

Firstly, we take the system (7.5) and we rewrite it into the system of w difference
equations

— K)pya(n = D)(1 = g (n — 1) + Kyo(n — 1)

yi(n) = (1
ys(n — 1)

Yya(n)

Yo(n) =y1(n —1).

Note that a rewriting to a system done in previous sections is equivalent to this one. It
is clear that this system has the Jacobi matrix of linearization around y35 = (v3,...,95)
in the form

1-K)2-p) K 0 0 0

0 0 1 0 0

DF(y}) =
0 0 0 - 0 1

1 0 0 - 0 0

Obviously, its determinant is det(D) = K. Since the system should be dissipative, we get
the condition |K| < 1. The characteristic equation of the matrix D has the form

AN (1-K)2- ]! —-K=0.

There are eigenvalues A1, Ao, ..., A\, that can be hard to find explicitly for higher values
of the delay w, but still it is possible to get them numerically. Using the general Vieta’s
formula for the product of all roots we get

()P E =[N
j=1
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The eigenvalues can be either real or complex-conjugate pairs and K is a real number such
that | K| < 1, thus we can rewrite the above equation in the sense of complex numbers as

(1) D) Hu sy

Since Lyapunov exponents are defined as In |A;|, by applying of logarithm on the above
equation, we get

In|(-1D)*" K| +iarg((—1)*"'K) = Zln |l +1Zarg

Comparing of the imaginary parts, we can conclude that
- [0 if (=1)HK >0,
ZlargW) - {7r if (—1)**K < 0.
=

Thus, there exist two types of solution of how the eigenvalues can look like. For the first
type, we have either a control with the odd delay w and the feedback amplitude K > 0
or, on the contrary, a control with the even delay w and the feedback amplitude K < 0.
For the second type, we have either a control with the even delay w and the feedback
amplitude K > 0 or, on the contrary, a control with the odd delay w and the feedback
amplitude K < 0. Since we have shown that for the control (2.16) we can have only
K > 0, in the next discussion we omit the cases with K < 0.

We will analyze now how the eigenvalues behave in dependence on the parameters p
and w. Let us analyze instead of the eigenvalues their magnitudes, since for an asymptot-
ically stable equilibrium we need to have all eigenvalues with |\;| < 1. The magnitudes
of eigenvalues are depicted in the following pictures with respect to dependence on the
growth parameter p together with unit circle, meaning |A\| = 1 (depicted as the red line).

12 12 12
11 11 11
3129
3222 3222 a2z
09 09 09 \
= = =
08 08 08

Figure 15: Modules of eigenvalues of (7.5) for given odd w and K = 0.1.

For the PBC with an odd delay w (see Figure 15) we get that there is one real eigenvalue
and 2> complex conjugate pairs of eigenvalues. Later, one pair of them is converted into
two real eigenvalues. Here, the tangent bifurcation takes place. From Figure 15 we can
conclude that for w € {3,5,7,9,11} just the modulus of one of these two real eigenvalues
is greater than 1 after u = 3.22. Until this value, the equilibrium y3 is asymptotically
stable and after exceeding this value, it becomes unstable, where the first period-doubling
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(a) w=06 (b) w=10 (c)w=14

Figure 16: Modules of eigenvalues of (7.5) for given even w and K = 0.1.

bifurcation occurs. It means that after such a value we get a solution behaving as a
2-period orbit. We can see that for w > 11 both modules of these real eigenvalues
exceed 1 for a while. The phenomenon of exceeding of branch with the two modules
of real eigenvalues before the tangent bifurcation occurs (see Figure 15¢) is called as a
Neimark-Sacker bifurcation. While there is the Neimark-Sacker bifurcation, a solution
behaves quasi-periodically. When the quasi-periodical solution looses its stability, an
asymptotically stable 2-period orbit is found. We can see that in all cases of chosen odd
delays w we enlarge a bit the range of stability of the equilibrium y3.

For the PBC with an even delay w (see Figure 16), we get that there are two real
eigenvalues and “T_z complex conjugate pairs. The modulus of one of the real eigenvalues
exceeds 1 in p = 3 regardless of the value of w. Thus, this is why we are not able to
enlarge the range of stability of y3 with any even delay w. For p > 3 the equilibrium y?3
looses its stability and a solution behaves as an asymptotically stable 2-period orbit.

222 3.129 3.313
o

(a) w=T (b) w=11 (c)w=15

Figure 17: Bifurcation diagrams to (7.5) for given odd w and K = 0.1.

Let us now take a look on the bifurcation diagrams for chosen delays. We have shown
the existence of a new type of behaviour of solution for odd w > 15. This fact is possible
to see in Figure 17c. There is a dark area between values p = 3.129 and p = 3.313,
which corresponds exactly to the quasi-periodical solution. However, we can see that
such a solution appears also in other bifurcation diagrams, namely before the 4-period
orbit occurs and even in a case of the even w (see Figures 17b, 17¢, 18¢c). By comparing
Figure 17 and Figure 18 we can clearly see how much the system is stabilized by using
the odd delay. The whole ‘messy’ part of a bifurcation diagram to the uncontrolled
system (see Figure 18a) is significantly suppressed in controlled system with an odd delay
(Figure 17). On contrary, there is no significant difference between the ‘messy’ parts of
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(a) Uncontrolled system

Figure 18: Bifurcation diagrams to (7.5) for given even w and K = 0.1.

the uncontrolled system and controlled system with an even delay (Figure 18).

One can object that we skipped the case with K < 0 only because of the results from
previous approach, even though the approach in eigenvalues tells us just that |K| < 1
and no other specifications on K. Let us discuss now what happens with the system if
we use K < 0 as a parameter of PBC. In this case, the modulus of the largest eigenvalue
exceeds 1 around p = 2.82 for odd w and for even w it exceeds 1 around p = 2.98. Thus,
the range of stability of y3 is diminished. So we get even worst results on stability.

8.2 Justification of DFC

Analogously, we can verify the practical approach for control (2.14) by the theoretical
one. The model (7.3), rewritten into the system of @ difference equations, is in form

yi(n) = pyr(n — 1)1 —yi(n — 1)) + Klga(n = 1) — pa(n — 1)]
y2(n) = ys(n — 1)

Yo(n) = y1(n —1).

The system has the Jacobi matrix of linearization around y5 = (v3,...,v3) in the form
2-pu—K) K 0 0 0
0 0 1 0 O
DF(y;) = e
0 0 0 0 1

—_
(@)
(e
(@)

with a characteristic equation

AN—Q2—-p—K)]X"'-K=0.
Following the same steps as in the first method, we get
= (0 if (1)K >0,
D> arg() = {7? if (—1)*K < 0.

J=1

Notice, that in a practical approach we have shown that for stabilization of y; we need a
control with K < 0, so we restrict only to this case. Therefore, the first type of solution
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of the eigenvalues leads from a control with an even delay @ and the second leads from
a control with an odd delay @. We will analyze now the dependence of the modules of
eigenvalues on parameters p and @.

For the DFC with an even delay @ (see Figure 19) we get that all eigenvalues are
complex conjugate pairs. Later, one pair of them is again converted into two real eigen-
values. For @ € {2,4,6,8,10} we get that also in this case the modulus of one of the two
real eigenvalues exceeds 1, but when p > 3.2. For @ > 10 we get that both modules of
real eigenvalues exceeds 1 for a while, so the Neimark-Sacker bifurcation (and thus the
quasi-periodical solution) appears also here. We can see that also with the DFC, taking
an even w, we have enlarged the range of stability of y3.

12 12 12
11 11 11
32 32 107 3120 |32

1 1 1

09 0.9 09
= = =

08 08 08

07 07 07

2 25 3 35 4 1 15 2 25 3 35 4 1 15 2 25 3 35
" " "

() @ =6 (b) @ = 10 (c) & =14

Figure 19: Modules of eigenvalues of (7.3) for given even @ and K = —0.1.
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Figure 20: Modules of eigenvalues of (7.3) for given odd @ and K = —0.1.

For the control DFC with an odd delay @ (see Figure 20) we get that there is one real
eigenvalue and % complex conjugates. We can see that regardless of w, a modulus of
the real eigenvalue always exceeds 1 exactly at p = 3.

Let us discuss the bifurcation diagrams for chosen delays. Firstly, notice that control
(2.14) slightly shortened the overall range of p. On the other hand, quasi-periodic be-
haviour (see Figure 21c) appears in solution for more delayed control (2.14) (compared
with PBC). The ‘messy’ part is again suppressed a lot (see Figure 21) for an even @, but it
is broader than in Figure 17. There is again no significant difference between the ‘messy’
parts of the uncontrolled system and controlled system by DFC with an odd delay @ (see
Figure 22).

Using K > 0 as a parameter of this control leads again to diminishing of the range of
stability of y5. The modulus of the real eigenvalue exceeds 1 around p = 2.8 for even w
and for odd @ around p = 2.95.
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Figure 21: Bifurcation diagrams to (7.3) for given even w and K = —0.1.
(a) =T (b) @ =11 ()@ =15

Figure 22: Bifurcation diagrams to (7.3) given odd @ and K = —0.1.

8.3 Justification of PFC

We can briefly illustrate the previous approach for control (2.12). The model (7.1), rewrit-
ten into the system of w difference equations, has the form

yi(n) = pyi(n = (1 —yi(n—1)) + K [W(” —b- (1 - %)}

ya(n) = ys3(n — 1)

Yo(n) = y(n —1).

The system has the Jacobi matrix of linearization around y5 = (v3,...,v3) in the form
2—p) K 0 0 0
0 0 1 0 0
DF(y3) = o
0 0 0 0 1
1 0 O 0 0

with a characteristic equation
A—Q2-w]\!—-K=0.

Following the same steps and discussions as for the PBC and DFC, we get that it is
necessary to analyze both cases K > 0 and K < 0.
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Analysis of the case K > 0:

For the PFC with an odd w there is one real eigenvalue and “T_l complex conjugates.
Later, one pair is again converted into two real eigenvalues. For w € {3,5,7,9,11}, a
modulus of one of two real eigenvalues exceeds 1 after u = 3.1 (see Figure 23a). For
w > 11 both modules of eigenvalues exceeds 1 for a while. Thus, the Neimark-Sacker
bifurcation occurs (see Figure 23c). It is clear that PFC with K > 0 and with an odd w
has enlarged the range of stability of y3. On contrary, PFC with an even w diminished
the range of stability (see Figure 23b). There are two real eigenvalues and 252 complex

2
conjugates. For arbitrary even w, a modulus of one real eigenvalue exceeds 1 after y = 2.9.

5
1 15 2 25 3 35 a 1 15 2 25 3 35 a 1 15 2 25 3 35 a
" " "
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Figure 23: Modules of eigenvalues of (7.1) for given w and K = 0.1.
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Figure 24: Bifurcation diagrams to (7.1) for given w and K = 0.1.

From the bifurcation diagrams (see Figure 24) we can conclude that also PFC slightly
modifies a behaviour of y(n) with respect to u. We can see that the overall range of p is
even more shortened.

Analysis of the case K < 0:

A discussion about how the eigenvalues behave (see Figure 25) is the same as in the
case K > 0, just here the roles of even w and odd w are switched (an even w enlarged
the range of stability, an odd w diminished it). The difference is just that for an even
w all eigenvalues are complex conjugates, where one pair later converts into two real
eigenvalues (see Figure 25c). For an odd w, there is one real eigenvalue and the rest are
complex conjugates.
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Figure 26: Bifurcation diagrams to (7.1) for given w and K = —0.1.
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9 Comparison of Control Methods

Throughout this thesis, various stabilization results have been derived. Therefore, we
create here a summarizing table (see Table 2) displaying the most important results.
Moreover, once they are together in a table, we can compare them each other. Firstly, we
can compare methods between themselves, and next, especially in the case of stabilization
of equilibrium, we can compare the same controls with respect to the value of its delay.
Particularly, we decide whether or not the implementation of general delay has some
contributions in stabilization process compared to a stabilization with implemented exact
period of orbit.

| [ PFC [ DFC | PBC |
Orbit Stab. K \ Crit. p || Stab. K \ Crit. p || Stab. K \ Crit. u
g | M v v %
w=T| PFC, 4 DFC, 5 PBC, 00
opo | NI X v v
w=T| PFC, [l DFC, 13 PBC, 00
5po | NI X v %
w=T| --- --- DFC} ? PBC, 0

Table 2: Significant results summary.

We add some explanations to Table 2:

In the preceding table, the equilibrium, 2-period orbit and 3-period orbit are abbreviated
as EQ, 2-PO and 3-PO, respectively. Further, there is emphasised whether the given
control method is non-invasive (v') or invasive (X) for corresponding stabilized orbit. The
actual stability sets for K and critical values of p can be specified as follows:

1
PFC,, = (0, 00),
DFC, = (—1,0),
PBC;, = (0,1),
(

PFC?L: [_(IUKN)’ Rﬂ:,/uQ_Q//L_3+2_\/6+4 /M2_2,U—37
K#:\/,LLQ—QM—3+2—2\/1+ w2 —2p — 3,

fi5, = 4.987352441,

- I N 7 I
DFC = (K,, K -t ’“‘2 i

o u)a K,
for the description of value K 4, see page 41,
sy = 3.76007862,

_ 2 —9u-3-2/i2—2u—4
PBC: = (K K, =5 5 F—=r—7

1
2 123 )7 MQ o 2,[,L . 5
DFC = (0, as), as ~ 0.08,
PBC, C (0,1),
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Since PFC is not usable for stabilization of 3-PO, we put there - - - . We put a question
mark into a critical value p of 3-PO corresponding to DFC, since this matter remains an
open problem (because of its computational difficulty).

The control methods used for a stabilization of equilibrium are compared in Figure
27a. For this simulation, we use K = 0.1 for PFC (depicted by magenta colour) and
PBC method (depicted as blue colour), and K = —0.1 for DFC method (depicted by
red colour). Other parameters like bifurcation parameter p and initial condition y(0) are
given under the graph. It is clear that control PFC is the slowest control. In fact, it
needs at least a hundreds of iterations to get completely into the equilibrium. On the
other hand, controls DFC and PBC have approximately the same speed of stabilization
(for such a chosen parameters). However, with increasing K, the speed of stabilization
is faster for both the methods and remain still similar. In fact, for |K| = 0.3, both the
methods are able to stabilize the equilibrium just in less then 7 iterations. With such a
parameter K, PFC needs around 60 iterations.

A speed of stabilization of 2-period orbit is compared in Figure 27b. Setted parameters
for this simulation are given under this figure. Firstly, notice the invasiveness of PFC.
Although it is clear that this method is now the fastest one, this observation is not
relevant and is not comparable with a speed of rest of methods, since it was settled down
in different 2-period orbit. Further, notice that DFC is now significantly slower than
PBC. Its speed is getting even slower for higher periods. In Figure 27c there is shown an
experiment on stabilization of 4-period orbit. For this, K = 0.1 was used for PBC and
K = —0.1 for DFC. Note that we are not able to simulate a stabilization of 4-period orbit
via PFC, since we do not know its points.

As the period of orbit is increasing, a time required for its stabilization is increasing
as well. In fact, for a stabilization of 3-period orbit we need at least 400 iterations. It is
simulated in Figure 27d. Note that we determined in Section 6.1 that in order to stabilize
a 3-period orbit via DFC, K should be very small (in the absolute value). Indeed, in this
experiment we used K = 0.06. However, we were not able to get range of stability larger
than 1+ /8 < p < 1.03+ /8. In fact, this experiment shows also a stabilization of chaos
that depicted in first 200 iterations by red. On the other hand, the blue points depict an
orbit of very high period. It is not a chaos literally, since we already know that PBC is
suppressing a chaotic behaviour.

In Table 2, we are not considering the stabilization of orbits via controls with a general
delay w, which was done in Chapter 7. It is especially because of the fact, that the
implementation of these controls does not provide a significant difference in stabilization
results compared to ones obtained for controls with a fixed delay (equal to the order
of a period). Based on numerical experiments and some results of Chapter 8, controls
involving a suitable delay are suppressing a chaotic behaviour more then controls stated
in Table 2. On the other hand, the arise of quasi-periodical behaviour may occur.

One may already conjecture that the worst stabilization method is PFC. Although
its simpleness, the requirements on prior knowledge of data cause this method unusable
for stabilization of orbits of higher periods. On contrary, PBC is very useful method.
It is also a very fast method as we seen, and it suppresses a chaos. Hence, some orbits
may disappear (e.g., a 3-period orbit). From this point of view, DFC is very interesting
method. It may stabilize orbits of any period, even a 3-period orbit, as we seen.
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10 Conclusion

As the main result of this work, we can consider Table 2 summarizing significant results
obtained throughout the thesis. These results are determined analytically, using just
knowledges of modern mathematical analysis. Moreover, all of them are immediately
justified by graphical interpretations and simulations. All of the figures were specially
made for this thesis. Most of them are done in MATLAB, few of them in Graph or
Inkscape. Because of the computational difficulty of particular problems, we mostly
compute them in Maple.

Our aim was to present results general enough in the sense that, for any data, we are
able to get immediately particular results on stability or controllability of the system. The
discussion on comparisons of the used controls was presented as well. All our theoretical
conclusions have been supported by numerous experiments.

A specific contribution of this thesis consists a further development of the topic dis-
cussed in [10]. In this paper, there is given an estimate of critical value of bifurcation
parameter p, for which an unstable 2-period orbit becomes unstabilizable via DFC. In
addition to this result, we have derived here a precise value of this critical parameter as
a solution of the algebraic equation of the fourth-order. In fact, this paper inspired us to
a current form of Chapter 5.

This thesis provides a base for a further investigation in this area. In particular, we
can analyze more advanced discrete chaotic models, including multiple-species models,
epidemiology models or Saturn’s rings model. Also, a potential of delay parameter on
stabilization property of a given control is far from being fully explored.
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List of Symbols
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Ai
D(f), D(F)
Df(y), DF(y")

Abbreviations

PFC
DFC
PBC
PFC,
PFC,
DFC;,
DFC,
PBC;,
PBC,

Set of positive integers (natural numbers)
Set of integers

Set of real numbers

Cartesian product R x --- x R (m-times)
Right-hand side of difference equation
Right-hand side of system of difference equations
Gain of control

Targeted value of PFC

Equilibrium of system

Matrix

T-th iteration of map f (or F)

Period of orbit

Control of system

Bifurcation parameter

Point of period orbit

Fixed point of orbit

Delay of system

Eigenvalue of system

Domain of dependence of map f (or map F')
Jacobi matrix of f at y* (or F at v*)

Proportional feedback control

Delayed feedback control

Prediction based control

Stabilization set of PFC according to period T
Stabilization set of PFC according to general delay w
Stabilization set of DFC according to period T'
Stabilization set of DFC according to general delay w
Stabilization set of PBC according to period T
Stabilization set of PBC according to general delay w
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