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ABSTRACT
The doctoral thesis is focused on analysing the distribution of optical intensity within
a radiated laser beam at the plane of the transmitting (TXA) and receiving (RXA)
aperture which is affected by propagation through free space as well as through the
atmosphere. The aim of the thesis is to determine the optimal intensity distribution
of the laser beam at the transmitter plane which is less affected by turbulence during
propagation and transmitter aperture itself. In order to analyse the propagation of an
optical wave through atmospheric turbulence, the simulation based on the Split-Step
method is utilized. The propagation of the Flattened Gaussian beam was analysed for
weak and moderate turbulence regimes. The thesis discusses usage of multimode fiber
with large diameter as a shaping element and includes a design of the refraction beam
shaper which is able to convert the Gaussian beam to a flattened Gaussian beam. Finally,
a model of a fully photonic transmitter and receiver was built. The system is used for
generating and receiving an optical coherent wave.

KEYWORDS
Top-hat beam, Gaussian beam, scintillation index, atmospheric turbulence, refraction
beam shaper, aspheric optical elements.

ABSTRAKT
Dizertačná práca je zameraná na štúdium a analýzu rozloženia optickej intenzity v
laserovom zväzku v rovine vysielacej (TXA) a prijímacej apertúry (RXA), ktorý podlieha
zmenám ako pri šírení voľným priestorom, tak pri šírení atmosférou. Cieľom práce je nájsť
optimálne rozloženie optickej intezity v rovine vysielacej apertúry, ktoré bude minimálne
ovplyvnené apertúrou vysielača a atmosférickými turbulenciami. Za účelom analýzy
šírenia optickej vlny atmosférou bola využitá simulácia založená na metóde Split-Step.
Šírenie Flattened Gaussian zväzku bolo analyzované pre režim slabých a stredných tur-
bulencií. Práca sa zaoberá použitím multimódového vlákna s veľkým priemerom jadra
ako tvarujúceho elementu a obsahuje návrh refrakčného tvarovača, pomocou ktorého
je možno konvertovať Gaussovský zväzok na zväzok s uniformným rozložením optickej
intenzity. Nakoniec je pomocou získaných poznatkov zostavený plne fotonický vysielač
a prijímač, ktorých použitie spočíva v generovaní a príjmaní optickej koherentnej vlny
prenášajúcej presnú fázu.
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Top-hat zväzok, Gaussovský zväzok, index scintilácie, atmosferické turbulencie, refrakčný
tvarovač zväzku, asférické optické prvky.
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INTRODUCTION

For about 30 years, Free-Space Optical (FSO) systems have been gaining a specific

place in the wireless technology area. The FSO system is line of sight technology

which is designed to transmit information with a modulated infrared laser beam from

one point to another in free space. On the other side of the link the information

is received and demodulated. The application of these systems is advantageous for

high speed point to point communication links in an urban area where the last

mile problem arises. Another application of FSO system is in space-to-ground links.

FSO technology brings advantages, e.g. high bandwidth, a license free band, no

electromagnetic interference, and quick deployment. High directivity of the laser

beam ensures more security of conveyed information but also brings a more difficult

alignment procedure in comparison with the Radio Frequency (RF) system. The

most serious drawback of FSO systems is their dependence on the state of the

atmosphere causing deterioration of the FSO system’s availability. Hence, the FSO

system can be regarded as an atmospheric sensor. The performance of the FSO

terminals and transmission of the optical wave through the atmosphere are affected

mainly by atmospheric turbulence, fog, snow, wind, rain, background radiation, etc.

Constituent particles of the atmosphere cause absorption and scattering. These

phenomena have the most serious impact on the FSO link availability. A power mar-

gin of the link working in foggy conditions has to be set appropriately to overcome

fog attenuation and thus reduce the probability of fade. Another atmospheric effect

which has an essential impact on the performance of FSO systems is atmospheric

turbulence. Atmospheric turbulence leads to fluctuation of the optical intensity in

the plane of the receiving aperture. A more detailed description of the atmospheric

turbulence phenomenon is mentioned in Chapter 1.

This unwanted effect caused by atmospheric turbulence can be mitigated by a

number of techniques. Basic techniques for mitigating received power fluctuations

include aperture averaging and spatial diversity [1, 2, 3, 4, 5] in transmission as well

as in reception. Another widely discussed technique is the usage of random optical

beams. It is already known that the application of different beam shapes (Flat-

tened Gaussian (FG) beams, Bessel-Gaussian beams, etc.) increases the reliability

and availability of FSO systems. The scintillation index of Bessel-Gaussian beams

propagating in turbulent media was studied theoretically in [6, 7]. The application

of nondiffracting beams with different degrees of coherence in FSO systems was

experimentally tested in [8].

In this thesis we are focusing only on usage of FG beams in FSO systems. The

propagation of the FG beam in a turbulent atmosphere has been extensively stud-

ied theoretically in [9, 10, 11]. The usage of FG beams is advantageous from a
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practical point of view. The generation of Airy beams, Bessel-Gaussian beams, etc.

requires special optical devices such as an axicon or spatial light modulator. On the

other hand, generating an FG beam is relatively inexpensive with optical compo-

nents such as a diffuser, refraction optics and lenslet array. This thesis will discuss

the propagation of FG beams in a turbulent atmosphere. We simulated propaga-

tion of the Gaussian and FG beam in a weak and moderate atmospheric turbulent

medium. The thesis also discusses the selection of appropriate FG beam width in

FSO transmitters and aperture averaging effect in FSO receivers.

Photonic components usually used for optical fiber communication are nowadays

utilized in fully optical FSO links. It means that the light is not converted from

optical to electrical domain, but the received light is directly coupled into the optical

fiber. The received light can be advantageously amplified by an EDFA and filtered

by a fiber filter. In the sixth chapter the concept of the fully photonic receiver and

transmitter is discussed.
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1 STATE OF THE ART

This chapter gives an overall view on problem of propagation of optical wave in ran-

dom atmospheric media. A laser beam propagating in the atmosphere experiences

energy losses owing to absorption and scattering on gases and particulates of the

atmosphere. Scattering of the optical wave is divided into two groups. When the

particles are smaller than the wavelength of the light we are talking about Rayleigh

scattering. Scattering by particles comparable in size with wavelength is called Mie

scattering. Scattering by much larger particles is described by geometrical optics

models. Attenuation caused by absorption (AA) and scattering (AS) is called ex-

tinction α(λ) [12].

α(λ) = AA + AS. (1.1)

The attenuation due to absorption or scattering has the most serious impact on

the FSO link availability and reliability. Because the atmospheric absorption and

scattering are strongly dependent on wavelength, the attenuation can be minimized

by correct wavelength selection. Another usually used method is to increase the

power of the transmitter. If the attenuation is caused by fog, which has local char-

acter, route diversity scheme can be used. In that case, communication is rerouted

through other link which is not affected by foggy condition [13].

A laser beam is not affected only by absorption and scattering, but also experi-

ences amplitude and phase fluctuations due to random distribution of the refractive

index of air. The distribution is random in time and in space too. The next section

deals with the problem of atmospheric turbulences.

1.1 Atmospheric turbulences

Air movements in the atmosphere can be laminar or turbulent or both at the same

time. The parameter which defines the transition from laminar to turbulent motion

is Reynolds number [14]

Re =
uL

vm

, (1.2)

where u is an air velocity, L is a space scale of the flow process, and vm is an air

kinematic viscosity. When the flow of the atmosphere exceed the critical Reynolds

number, the flow becomes chaotic and changes from laminar to turbulent [12].

Atmospheric turbulence is one of the most significant phenomena in atmospheric

transmission medium. Temperature (T ) and index of refraction (n) differences be-

tween the earth’s surface and the atmosphere with wind variations create local

unstable air masses which are broken up into turbulent whirls sometimes called ed-

dies. The linear size of these eddies (l) varies from millimetres (small scales l0) to
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hundreds of meters (large scales L0). The continuous cascade of eddies is formed

between this two scales (l0 < l < L0) and is called inertial range. The eddies smaller

than small scales (l < l0) belong to dissipation interval where they are changed to

heat. The eddies bigger than large scales (l > L0) are broken and the turbulence

disappear. The characteristics of the fluctuations may be expressed by a structure

function of refractive index Dn(r)

Dn(r1, r2) = 〈[n(r1) − n(r2)]
2〉, (1.3)

where n(r1) is refractive index at point r1 and n(r2) is refractive index at point

r2. Sharp brackets denote an ensemble average. For homogeneous and isotropic

turbulences the dependency on distance r can be written as

Dn(r) = C2
nr2/3, l0 ≪ r ≪ L0 (1.4)

and

Dn(r) = C2
nl

−4/3
0 r2, r ≪ l0, (1.5)

where l0 is inner scale and L0 is outer scale of turbulences [12].

The refractive index structure parameter C2
n constitutes a measure of the tur-

bulence. Typically, the values of C2
n range from 10−16 m−2/3 for weak turbulence

to 10−12 m−2/3 for strong turbulence. It has to be taken into account that the pa-

rameter C2
n is dependent on height. The value of the parameter C2

n is decreasing

with increasing heigh. There are number of models which describes this dependency

[15, 16]. This is very important especially for designing the space-to-ground (ver-

tical) communication links. However for designing the horizontal free space optical

link the parameter C2
n is assumed to be constant over the entire propagation path.

Sometimes one has to estimate strength of turbulences from measured tempera-

ture gradient. For that case, the C2
n parameter could be calculated from C2

T which

is structural characteristic of the temperature field. For dry air C2
T to C2

n can be

recalculated according to following relation [14]

Cn =
10−6

T

(

77.6 Patm

T
+

0.584 Patm

T λ2

)

CT , (1.6)

where Patm [mbar] is atmospheric pressure, T[K] is temperature and λ is the wave-

length.

Atmospheric turbulence leads to irradiance fluctuations, beam spreading, beam

wandering and loss of spatial coherence of a laser beam [12].

Various frequency component in time varying electrical signal could be deter-

mined by Fourier transform method. Similar concept can be used in determining

the different eddy sizes contributing to the refractive index of random medium [17].
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In order to simulate refractive index fluctuations, different power spectrum models

can be used. The turbulence spectrum links random fluctuations in the refractive

index with optical turbulence effects on laser propagation [18]. The first and widely

used model is Kolmogorov power spectrum which is valid only over the inertial range

Φn(κ) = 0.003C2
nκ−11/3, 1/L0 ≪ κ ≪ 1/l0, (1.7)

where κ is wave number defined by κl = 2π/l0 or κ0 = 2π/L0. The spectrum

wavenumber κ is not the same as wavenumber for electromagnetic propagation

k = 2π/λ. If inner and outer scale effects must be taken into account, von Kármán

spectrum [8]

Φn(κ) = 0.003C2
n

exp (−κ2/κ2
m)

(κ2 + κ2
0)

11/6
, 0 ≤ κ < ∞ (1.8)

or modified von Kármán spectrum can be applied where κm = 5.92/l0 and κ0 = 1/L0.

1.2 Propagation of optical wave through turbu-

lent medium

As was stated before, the three phenomena that affect laser beam propagation

through the atmosphere are scattering, absorption and atmospheric turbulence [12].

A laser beam can quickly lose a part of its energy and, moreover, this loss can lead

to beam quality degradation. Signal amplitude is randomly modulated and phase

front is distorted.

1.2.1 Coherence

As known, a laser is a source of light with high temporal and spatial coherence.

Coherence of light is reduced by passing through the turbulent media, where the

wavefront is randomly distorted. This random process has to be treated statistically

by using theory of optical coherence. Spatial coherence is the correlation of the

electric fields at two different positions (r1, r2) on the same wave front. Temporal

coherence is the correlation between the fields at two different times (t1, t2 = t1 + τ)

in the same wave train. We can simply say that spatial coherence is the ability of

light interfere with spatial shifted version of itself and temporal coherence is the

ability of light interfere with time delayed version of itself. The mutual coherence

function Γ combines both spatial and temporal characteristics in one single term. It

is defined as

Γ(r1, r2, τ) = 〈U(r1, t + τ)U∗(r2, t)〉 (1.9)
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where U(r1, t) is the complex electric field at position r1, U(r2, t) is the complex

electric field at position r2, t is time and τ is time delay [12]. If the time delay is set

to τ = 0, the mutual coherence at the receiver plane is only function of position

Γ(r1, r2, L) = 〈U(r1, L)U∗(r2, L)〉 (1.10)

where L is the propagation distance. It is called mutual intensity.

The normalized mutual coherence function γ12 is given with relation (1.11) and

is called the complex degree of coherence [12]

γ12(r1, r2, L) =
Γ(r1, r2, L))

√

Γ(r1, r1, L))Γ(r2, r2, L))
, (1.11)

where Γ(r1, r1, L) is intensity at the point r1 and Γ(r2, r2, L) is intensity at point

r2. The spatial coherence radius of the wave is defined where the modulus of the

complex degree of coherence falls to 1/e [19].

Loss of spatial coherence limits the effective aperture size of heterodyne detec-

tion optical receivers [12]. The coherence radius is useful for determining the size

of the receiver aperture through a process called aperture averaging and also for

determining the separation distance of detectors in a multiple receiver system [20].

In Ref. [12] spatial coherence radius for the infinity plane wave ρpl and spherical

wave ρsp is given by

ρpl = (1.46 C2
nk2L)−3/5, l0 ≪ ρpl ≪ L0, (1.12)

ρsp = (0.55 C2
nk2L)−3/5, l0 ≪ ρsp ≪ L0 (1.13)

where k is the wave number and L is the distance between the optical transmitter

and receiver. For a collimated Gaussian-beam wave, the spatial coherence radius ρg

is approximated by [12]

ρg = (0.55 C2
nk2L(a + 0.62Λ11/6))−3/5, l0 ≪ ρg ≪ L0 (1.14)

where the Fresnel ratio Λ is for a beam half width at the receiver plane w defined

by

Λ =
2L

kw2
. (1.15)

Parameter a is defined by

a =
1 − Θ8/3

1 − Θ
, Θ ≥ 0 (1.16)

where Θ is the refractive beam parameter and can be calculated by

Θ =
1

[

1 +
(

2L
kw2

0

)2
] (1.17)

17



where w0 is beam half width at the waist.

Usually the statistical measure of coherence is determined by atmospheric coher-

ence width r0. This parameter is known as Fried parameter. The Fried parameter

could be interpreted as the aperture over which there is approximately one radian of

root–mean–square phase aberration. The second interpretation is that, it is aperture

which has the same resolution as a diffraction limited aperture in the absence of the

turbulence [21]. In astronomical seeing this parameter is called "seeing parameter".

Large value of the r0 means good seeing and small value of the r0 bad seeing. This

parameter is related to the plane wave spatial coherence by [22]

r0 = 2.1 ρpl = (0.423 C2
nk2L)−3/5. (1.18)

The Fried parameter is described as a function of wavelength, refractive index

structure parameter and propagation distance. If an undisturbed plane wave inci-

dent on receiver lens with diameter DRXA and focal length f , the spot size at the

focal plane is given by relation [21]

dspot, ideal =
λ

DRXA

f. (1.19)

Due to atmospheric turbulence the incident plane wave is distorted and spot at

the focal plane of the receiver became blurry. The spot size at the focal plane of the

receiver is larger and has diameter

dspot, turb =
λ

r0

f. (1.20)

According to [23], when the diameter DRXA is smaller than Fried parameter r0

the resolution of the receiver is limited by the optics. The resolution is limited by

the atmosphere when diameter of the receiver DRXA is larger than r0. A typical

value of the Fried parameter for wavelengths from visible spectrum is between 10

to 20 cm. However thanks to dependency of r0 on wavelength, the Fried parameter

is bigger for infra–red spectrum. The Fried parameter for wavelength 1550 nm lies

between 30 to 70 cm.

1.2.2 Beam spreading

Small scale turbulence eddies cause distortion of the propagated optical wave (loss

of spatial coherence) which leads to beam divergence beyond the pure diffraction

predicted by theory. Then the beam diameter could be bigger than aperture of the

receiver which decrease received power.
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1.2.3 Beam wandering

The effect of beam wandering is caused by the turbulent cells with size larger than

the laser beam diameter [12]. Laser beam passing through the turbulent cell is di-

verted from the original direction because of different refractive index of the turbu-

lent cell. The redirection depends on the distance between transmitter and receiver

plane, position of the turbulent cell in laser beam path, refractive index and the

size of turbulent cell. Beam wandering can be evaluated by the root-mean square

centroid displacement [24] which describes how laser beam moves at receiver plane.

The rms displacement is given by the relationship

〈

r2
c

〉

= 2.87L3C2
nw

−1/3
0 , (1.21)

where L is the propagation distance and w0 is radius of the collimated Gaussian

beam [12].

W
LT

W
ST

<r ²>¹ ²
c

/

Short-term

beam

radius

Long-term

beam

radius

Fig. 1.1: Beam wander [12]

1.2.4 Angle of arrival

One of the effects caused by atmospheric turbulences, which have an essential impact

on availability of the free space optical link, is fluctuations of the angle of arrival.

The incident angle is defined as the angle between the direction of propagation of

an optical wave which is incident to the plane of the receiving aperture and optical

axis of the receiver [12]. As a consequence of angle of arrival fluctuation, the focused

optical wave is shifted from the optical axis (image jitter) in the focal plane of the

receiving system. Variance of the angle of arrival βa for a plane wave is defined as

βa,pl =

√

2.91C2
nLD

− 1

3

RXA (1.22)

where L is distance between the transmitter and the receiver and DRXA is diameter

of the receiving aperture. According to Churnside it is possible to estimate variance
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of the angle of arrival for a spherical wave [25]

βa,sp =

√

3

8
2.91C2

nLD
− 1

3

RXA. (1.23)

The equation 1.23 will be considered in the last chapter. The variance of the

angle of arrival will be very important parameter during the assessment of the fully

photonic receiver.

1.2.5 Optical scintillation

Atmospheric turbulences have also an effect on the distribution of the optical in-

tensity in the propagated laser beam. Laser radiation is affected by turbulence and

develops temporal and spatial fluctuations of irradiance observable at the receiver

side. The degree of the fluctuation of the received signal is usually measured by

scintillation index [18]

σ2
I =

var(I)

mean(I2)
=

〈I2〉
〈I〉2 − 1, (1.24)

where var means variance and I is optical intensity. From equation 1.24 is apparent

that scintillation index means normalized variance of optical intensity.

When an undisturbed plane wave or a spherical wave model is used, it is possible

to describe optical scintillation by means of the Rytov variance [8]

σ2
1 = KC2

nk7/6L11/6, (1.25)

where K is the constant for plane wave 1.23 or for spherical wave 0.5, k is the wave

number. Rytov variance σ2
1 represents the index of scintillation σ2

I associated with

plane wave or spherical wave during the weak fluctuation regime. Weak fluctuations

of the optical intensity are characterized by σ2
1 < 1 , whereas strong fluctuations

are associated with σ2
1 > 1. For horizontal communication link the strength of the

turbulence defined by C2
n is taken to be constant whereas in case of vertical or slant

path link the C2
n(h) is function of altitude h. The previous scintillation equations

(1.24, 1.25) are valid for point receiver. If aperture of the receiver has diameter D

the aperture averaging effect has to be taken into account. The scintillation index

for point receiver is then multiplied with parameter A also called Aperture Averaging

Factor

A =
σ2

I (D)

σ2
I (0)

. (1.26)

For weak fluctuation theory this factor can be estimated from following equation

[26]

A =

(

1 + 1.062
kD2

4L

)−7/8

. (1.27)
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Aperture averaging is one of the basic techniques that is used for mitigation of

turbulence induced scintillation.

The equation 1.25 defines scintillation index of plane wave or spherical wave

respectively for weak fluctuations condition. In FSO communications as a light

source the lasers and laser diodes are usually used. The irradiation emanated from

the laser can be defined as a circularly symmetrical Gaussian beam wave. The

Gaussian beam wave at the transmitter plane is characterized by beam radius W0, on

axis intensity I0, radius of curvature F0 and wave number k. The wave is represented

by following equation [12]

U (r, 0) = I0 exp

(

− r2

W 2
0

− ikr2

2F0

)

. (1.28)

If the wave is propagated through the free space, Gaussian beam wave at the receiver

side is given by

U (r, L) =
I0

Θ0 + iΛ0

exp

(

ikL − r2

W2

− i
kr2

2F

)

, (1.29)

where Θ0 = 1−L/F0 is refraction parameter, Λ0 = 2L/kW 2
0 is diffraction parameter

in the plane of the transmitter, W is beam width and F is radius of curvature at

the receiver side.

Thereafter the refraction and diffraction parameters are Θ = 1 − L/F ,

Λ = 2L/kW 2, beam width and radius of curvature are defined by W = W0

√

Θ2
0 + Λ2

0

or

F = F0(Θ
2
0+Λ2

0)(Θ0−1)/(Θ2
0+Λ2

0−Θ0). In presence of turbulence within the propa-

gation path the effective parameters have to be defined: effective diffraction param-

eter Λe = Λ/(1 + 1.63σ
12/5
1 Λ) and effective beam width We = W

√

(1 + 1.63σ
12/5
1 Λ).

The radial and longitudinal component of Gaussian beam wave scintillation index

for weak and strong turbulence regime is represented by [12, 27]

σ2
I (r, L) = 4.42σ2

1Λ5/6
e

r2

W 2
e

+ exp







0.49σ2
B

(

1 + 0.56σ
12/5
B

)7/6
+

0.51σ2
B

(

1 + 0.69σ
12/5
B

)5/6





 − 1,

(1.30)

where σ2
B is Rytov variance for a beam wave defined by

σ2
B

∼= 3.86σ2
1

{

0.4
[

(1 + 2Θ)2 + 4Λ2
]5/12

cos

[

5

6
arctan

(

1 + 2Θ

2Λ

)]

− 11

6
Λ5/6

}

.

(1.31)

The formation of irradiance fluctuation is involved by inner scale and outer scale

components of the turbulences as well. For that case, scintillation index which

consider both scales are proposed by [12]. In weak fluctuation regime outer and

inner scales have negligible effect on scintillation index.
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1.3 Beam shapes

The intensity distribution at the plane of the transmitter in FSO link can be defined

by number of beam shapes. During the propagation in free space or in atmosphere

each of the beam shapes exhibit different properties. For instance, different scin-

tillation index, spreading, beam wandering and others. The various types of beam

shapes have been extensively studied, e.g., Hermite – Gaussian beams, Cos Gaussian

beams, Cosh Gaussian beams, Laguerre Gaussian beams, Dark Hollow beams, J0 –

Bessel beams, I0 – Bessel beams, Flattened – Gaussian beams, etc.

Hermite – Gaussian beams

The field of the higher order of the Hermite – Gaussian modes (Fig. 1.7)of a laser

is given by

U(x, y, z = 0) = Hm

(√
2

x

w0

)

Hn

(√
2

y

w0

)

exp

(

−x2 + y2

w2
0

)

, (1.32)

where m, n = 0, 1, 2, .., w0 is the radius of the beam and Hm(x) is the m-th Hermite

polynomial [23]. It was showed in literature [23], that the Hermite Gaussian beams

and Laguerre Gaussians beam suffer less on beam spreading caused by turbulence

than Gaussian beams. From the longitudinal intensity distribution is obvious that

the shape of the beam is not changing during propagation without atmospheric

turbulence (Fig. 1.3).

Laguerre Gaussian beams

Laguerre Gaussian beam (Fig. 1.4) at the transmitter plane is defined as follows

[28]

U(s, φ, z = 0) =

(√
2s

w0

)l

Ll
p

(

2s2

w2
0

)

exp

[

− s2

w2
0

+ ilφ

]

(1.33)

where Ll
p is the associate Laguerre polynomial, w0 is the radius of the beam, and(s, φ)

is cylindrical coordinate system. When the angular mode number l and radial mode

number p are set to zero, the field is reduced to the fundamental Gaussian mode.

Scintillation analysis carried out by [29] proved that scintillation index of this beam

is lower than scintillation index of the Gaussian beam. The lowest scintillation

index was achieved when parameter l is equal to zero and parameter p is as high as

possible.
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(a) m = 0, n = 0 (b) m = 0, n = 1 (c) m = 1, n = 1

(d) m = 0, n = 2 (e) m = 1, n = 2 (f) m = 2, n = 2

Fig. 1.2: Simulated field distribution of the Hermite–Gaussian beams for different

m and n parameters

Fig. 1.3: Longitudinal intensity distribution of the Hermite – Gaussian beam (m,

n=2) beam for vacuum propagation

Cos and Cosh Gaussian beams

Rectangular Cos Gaussian beam (Fig. 1.5) and Cosh Gaussian beam (Fig. 1.6) at

the transmitter plane is defined by

U(x, y, z = 0) = exp

(

−x2 + y2

w2
0

)

cos(βxx) cos(βyy) (1.34)
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(a) l = 0, p = 0 (b) l = 0, p = 1 (c) l = 1, p = 0

(d) l = 1, p = 1 (e) l = 0, p = 2 (f) l = 2, p = 0

Fig. 1.4: Simulated field distribution of the Laguerre Gaussian beams for different l

and p parameters

and

U(x, y, z = 0) = exp

(

−x2 + y2

w2
0

)

cosh(Ω0x) cosh(Ω0y) (1.35)

where w0 is radius of the beam, β is the parameter associated with cos part and Ω0

is the parameter associated with the cosh part. The interesting thing about cos and

cosh Gaussian beams is that they are reciprocal during propagation in free space.

It means that the Cos Gaussian beam is transformed during propagation to Cosh

Gaussian beam and vice versa [30].

(a) β = π/2 (b) β = π (c) β = 2π

Fig. 1.5: Simulated field distribution of the Cos Gaussian beams for different β

parameters
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(a) Ω0 = 0.2π (b) Ω0 = 0.5π (c) Ω0 = 0.7π

Fig. 1.6: Simulated field distribution of the Cosh Gaussian beams for different Ω0

parameters

Scintillation index of the Cosh Gaussian beam is lower for longer propagation dis-

tance and lower source size; on the contrary, scintillation index of the Cos Gaussian

beam is lower for lower propagation distance and large source size [31].

Dark hollow beams

Dark hollow beams (Fig. 1.7 ) are significant for zero central intensity. They are

usually used in applications like optical tweezers, optical trapping of particles, etc.

The computer generated hologram and spatial filtering is normally used to generate

these beams [32]. The field of the dark hollow beam is given by subtraction of

primary and secondary Gaussian beam.

E(s, z = 0) =

[

exp

(

−2 s2

w2
1

)

− exp

(

−2 s2

w2
2

)]

(1.36)

where w1 and w2 is half – width of the primary and secondary Gaussian beam and

s is transverse vector. The intensity distribution within the beam is changed during

propagation in vacuum. The doughnut shape is transformed to Gaussian Fig. 1.8.

According to [33], dark hollow beam shows lower scintillation level in comparison

with Gaussian beam in weak turbulence regime for longer propagation distance.
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Fig. 1.7: Simulated field distribution of the dark hollow beam for w1 = 0.5 mm and

w2 = 0.3 mm

Fig. 1.8: Longitudinal intensity distribution of the Dark hollow beam for vacuum

propagation

Bessel – Gaussian beams

Bessel beams (Fig. 1.9, Fig. 1.10) are important for their non – diffractive properties.

Field of the Bessel – Gaussian beam is given by

E(s, z = 0, ω) = Jn(α s) exp(inθ) exp

(

− s2

w2
0

)

(1.37)

where n denotes the topological charge, Jn is the Bessel function, α and w0 are the

width parameters and ω is the angular frequency and s is transverse vector. From

the scintillation analysis [7] of the lowest order Bessel – Gaussian beams is clear that

scintillation index in weakly turbulent atmosphere is lower than scintillation of the

Gaussian beam. However, at long propagation distances and large beam widths the

scintillation index become higher in comparison with Gaussian beam.
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(a) n = 0 (b) n = 1

Fig. 1.9: Simulated field distribution of the first kind Bessel – Gaussian beams

Fig. 1.10: Longitudinal intensity distribution of the Bessel – Gaussian beam (n=1)

for vacuum propagation
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2 OBJECTIVES OF THE THESIS

The dissertation thesis is focused on analysing the distribution of optical intensity

within a radiated laser beam at the transmitter and receiver plane which is affected

by propagation through free space as well as through the atmosphere. The aim of

the thesis is to determine the optimal intensity distribution of a laser beam at the

transmitter plane which is minimally affected by turbulence during the propagation

process. As a consequence, the scintillation index should be reduced. There are a

number of theoretical studies aimed at propagation of the Flattened Gaussian beam

(top-hat beam), despite the lack of experimental work in this area. The novelty of

this dissertation thesis consists in the utilization of a top-hat beam shaper of the

FSO link. The most important objectives of the thesis are as follows:

• The first aim is to create a simulation program for studying the propagation

of an arbitrary optical wave through the atmosphere. The program will be

able to simulate different strengths of turbulences with a specified turbulence

power spectrum.

• Based on the findings of the theoretical analysis and simulations, the second

aim is to design a laser beam transmitter with the ability to shape a Gaussian

beam to a top-hat beam.

• The third aim is to design and practically validate properties of a fully photonic

link which will be able to transmit an optical signal without the need to convert

it into the electrical domain. Data gathered during experimental testing will

be compared with theoretical assumptions.
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3 NUMERICAL SIMULATION OF OPTICAL

WAVE PROPAGATION

In order to study propagation properties of the arbitrary optical wave, the simulation

program in MATLAB was utilized. The program was based on Split-step method

[34]. This method is widely used for simulation of optical waves in inhomogeneous

media like atmosphere. Algorithm for single step ∆z can be written as [35]

U(x, y, z + ∆z) = exp(−i∆nk∆z)F−1

{

exp

[

i(k2
x + k2

y)∆z

2k

]

F {U(x, y, z)}
}

. (3.1)

An initial wave is located at a source plane (z = 0) and propagates along the z

axis (Fig.3.1). Path length L is then divided into a series of Mstep step. Width of

each step can be calculated as ∆z = L/Mstep. In the centre of this interval (∆z/2)

the phase screen was placed. From (3.1) it is clear that propagation between every

step takes place in transformed domain (frequency domain). After each step the

optical wavefront is transformed back to spatial domain, where a phase screen is

used to simulate the atmospheric effect.

Perturbed

wavefront
Source 

wavefront

Propagation length

Detector

U(x, y, 0) U(x, y, z)

Δ z

0 L

z

Fig. 3.1: Split-step propagation method interpretation [36]

3.1 Phase screen modeling

For the simulation of propagation of the optical beam through turbulent media, spa-

tial statistic of refractive turbulences is needed, because of randomly varying index

of refraction. The initial wavefront is propagated through regions of turbulences

which cause variations in phase across the reference wavefront. As a result a varia-

tion in irradiance across the wavefront is observed. The problem of creating phase

screens is one of generation individual realizations of a random process [34]. There

are many available options how to generate phase screens. In [37] algorithm based
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on Zernike expansion of randomly weighted Karhunen-Loeve functions is presented.

The advantage of this method is faster execution time in comparing with FFT based

method however restriction to a circular aperture can be problematic. The simplest

way is to generate phase screen with FFT-based method, where the screen is gener-

ated in spectral domain with the selected spectral turbulence model. Shortcoming

of this method is that do not reflect low frequency phase variations such as tilt

because the spatial frequency grid is not sampling low enough. This problem can

be overcome with sub-harmonics method, where limited number of sub-harmonics

is used at low frequencies [34]. Phase screen created by this method is depicted in

Fig. 3.2.
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Fig. 3.2: One realization of the phase screen created by sub-harmonics method

3.2 Gaussian beam propagation simulation

The numerical simulation was used to simulate propagation of collimated Gaussian

beam with wavelength 1550 nm in turbulent atmosphere with C2
n = 10−14 m−2/3.

The on-axis scintillation index was calculated according equation (1.24) from 100

random runs. I performed simulation with 30 random phase screens each one has

256x256 grid points. The simulated results were compared with theoretical predic-

tions specified by (1.30). One of the random realizations is depicted in Fig. 3.3.
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Fig. 3.3: Initial Gaussian beam (a) and irradiance resulting from turbulence propa-

gation (b) for C2
n = 10−14 m−2/3.
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Fig. 3.4: Theoretical and simulated scintillation index of collimated Gaussian beam

as a function of propagation length

From Fig. 3.4 it is evident that the simulated scintillation values are overspread

as a consequence of low number of random runs. However good agreement between

the simulation and theoretical expectation was achieved. This method of beam

propagation simulation is relevant but the parameters of the simulation have to be

set appropriately.
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4 FLATTENED-GAUSSIAN BEAM

I need to define a beam with a uniform distribution of optical intensity in the profile.

Fermi-Dirac, Super-Gaussian or flattened Lorentzian approximations can be used for

mathematical expressions of a top-hat beam. The following expression describes a

field of the Fermi-Dirac beam UF D(s) [38]

UF D(s, z = 0) =
1

1 + exp[γ( s
R0

− 1)]
, (4.1)

where s is transverse vector, R0 is the radius at which the intensity has fallen to half

of its value on the axis,γ is a dimensionless parameter which determines the degree

of beam flatness and g0 is the maximal value of optical intensity on the beam axis.

The next possible approximation of the top-hat beam can be provided by the

Super-Gaussian function USG [38]

USG(s, z = 0) = exp
[

−2
(

s

R0

)p]

, (4.2)

where p is a dimensionless parameter which determines the degree of beam flatness.

Fig.4.1a shows Super-Gaussian functions with different parameters p. The flatness

of the beam profiles increases with increasing values of the parameters γ and p. The

output beam distribution can be characterized by the flattened Lorentzian function

as well

UF L(s, z = 0) =

(

1

πR2
F L

)









1
[

1 +
(

s
RF L

)q]
2

q









, (4.3)

where RF L is width of the flattened beam profile. Steepness of the beam is de-

termined by shape parameter q. The distribution of optical field UF L for different

parameters q is shown in Fig. 4.1b. The top-hat beam can be also represented as a

superposition of N Gaussian beams [39]

UF G(s, z = 0) =
N

∑

n=1

(−1)n−1

N

(

N

n

)

exp

(

−ns2

2a2
s

)

, (4.4)

where as is beam radius.

For a mathematical expression of the circularly symmetrical FG beam at the

transmitter plane (TXA) located in z = 0, approximation proposed by Bagini et al.

[40] can be used

UT XA(s, z = 0) = A exp

(

−(N + 1) s2

w2
0

)

N
∑

m=0

1

m!

(√
N + 1s

w0

)2m

. (4.5)
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Fig. 4.1: Mathematical functions for representation top-hat beams

The parameter A is amplitude of the field distribution, s is transverse vector at

TXA plane, s is radial distance from the optical axis, w0 is beam half-width at TXA

and N ≥ 0 is flatness order [41]. With increasing N , the FG profile becomes flatter

(Fig. 4.2). If the parameter N is equal to zero, the FG beam turns into a Gaussian

beam. I used this expression in order to determine intensity distribution UT XA at

the transmitter plane.
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Fig. 4.2: FG beam for various N parameters as a function of radial distance nor-

malized with beam half-width

The intensity distribution at the receiver plane URXA can be determined by using
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the Huygens-Fresnel diffraction integral as follows

URXA(r, z) =
−ik

2πz
exp(ikz)

∞
∫

−∞

∞
∫

−∞

UT XA(s, 0) exp

(

ik

2z
|s − r|2

)

ds2, (4.6)

where z is the distance between the TXA and RXA plane, r is transverse vector

at the RXA plane, k is wave number, UT XA(s, 0) is the intensity distribution and

s is transverse vector at the TXA plane. The scheme of propagation is depicted in

Fig. 4.3. In order to simulate the propagation of the FG beam in a vacuum, it is

convenient to rewrite Eq. 4.6 as a convolution of the field at the TXA plane with

the free-space amplitude spread function [34]

URXA(r, z) = UT XA(s, 0) ∗
(

−ik

2πz
exp

(

ikz +
ik

2z
|s − r|

))

. (4.7)

Fig. 4.4: Longitudinal intensity distribution of the FG beam for vacuum propagation

I performed the simulation of Eq. 4.7 to evaluate the intensity distribution across

the propagation length. The FG beam half-width was set to w0= 40 mm, flatness
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parameter N=10 and wavelength 1550 nm. In Fig. 4.4, it can be seen that the

FG beam with high flatness parameter N acts like a plane wave diffracted on a

circular aperture with a radius equal to the FG beam half-width. As the beam

is propagated, the transverse optical intensity distribution changes and the middle

part of the beam reaches its minimum. From this minimum point, two Fresnel zones

are observed exactly at the TXA plane. The Fresnel zone, in our case, can be defined

as follows

NF resnel =
w2

0

Lλ
, (4.8)

where NF resnel is the number of Fresnel zone and L is the distance between the plane

with minimum and the TXA plane. If the FG beam is further propagated, its shape

turns into a Gaussian or Airy function.

4.1 Flattened Gaussian beam scintillation

The propagation of the FG beam in a turbulent atmosphere has been extensively

studied theoretically [9, 10, 11]. Baykal and Eyyuboglu [39] derive equation 4.9 for

scintillation index of flattened Gaussian beam defined by equation 4.4 propagated

in weak turbulence regime. I used this equation in order to study the optimal size

of the beam at TXA.

σ2
I (0, L) = 4.884C2

nk7/6L ℜ
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where a = 1/(ka2
s). If the parameter N is set to 1 the scintillation index is reduced

to the well-known equation 1.25.

4.2 Simulation of Flattened Gaussian beam prop-

agation

The numerical simulation was also used to simulate propagation of the FG beam

through weak and moderate atmospheric turbulences (Fig. 4.5).
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Fig. 4.5: Initial top-hat beam (a) and irradiance resulting from turbulence propa-

gation (b) for C2
n = 10−14 m−2/3

The initial wavefront is propagated through regions of turbulences which are

represented by random phase screens [34]. As a result, a variation in irradiance

across the wavefront is observed. The on-axis scintillation index was calculated

according to Eq. (1.24) from 500 random runs.

The simulation was carried out for an FG beam with beam radius 10 mm and 40

mm at TXA plane and for flatness parameter N = 0 (Gaussian beam) and N = 10

(FG beam).

From Fig. 4.6, a very interesting fact is notable. The FG beam with radius 10

mm at TXA plane has almost the same on-axis scintillation index as the Gaussian

beam. However, this fact is not valid for beam radius 40 mm at TXA plane (Fig.

4.7), where the on-axis scintillation index is lower in comparison with a Gaussian

beam for reasonable link lengths. Another interesting fact is that there is a peak

of the on-axis scintillation index around 600 m. The peak is located at the place

in which two Fresnel zones on TXA plane are observed. The height of the peak is
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Fig. 4.6: Simulated on-axis scintillation index as a function of propagation length

for the FG beam with radius 10 mm at TXA plane
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Fig. 4.7: Simulated on-axis scintillation index as a function of propagation length

for the FG beam with radius 40 mm at TXA plane

dependent on the order of the flatness parameter of the FG beam. The higher the

value of the flatness parameter N is, the higher the scintillation peak is observed.

Simulation data for FG beam on-axis scintillation as a function of beam radius

at TXA plane for two N parameters are depicted in Fig. 4.8. One can see that the

size of the FG beam at the TXA plane plays an important role in the scintillation

analysis. Note, that the on-axis scintillation for N=0 is firstly almost constant and

then increasing slightly for beam radius above 0.05 m. On the other hand, on-axis

scintillation for N=10 is slightly decreasing and then reaches minimum around the

radius 0.05 m. If the radius of the beam is further increased the scintillation starts

to increase rapidly and then falls to the same value as for N=0. Therefore, one can

estimate the optimal radius of the FG beam, where scintillation for the propagation

length 4 km is minimal. The optimal radius for weak and moderate turbulence
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Fig. 4.8: Simulated scintillation index for the FG beam as a function of beam radius

at the TXA

regime should be slightly bigger than the radius of the first Fresnel zone, which is

also defined by
√

L/k.
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Fig. 4.9: Simulated scintillation index for the FG beam as a function of flatness

parameter N

For the sake of maximal reduction of scintillation, I plot the scintillation index

as a function of flatness parameter N (Fig. 4.9). It is obvious that the scintillation

index is decreasing with increasing parameter N . Thus the N parameter should be

high enough.
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4.3 Aperture averaging

In this section I analysed effect of the aperture averaging on the scintillation for

the FG beam with flatness parameter N=10. The simulation was carried out for

circular receiving aperture with radius up to 150 mm. The increasing radius of a

receiving aperture, for given beam divergence, wavelength and propagation distance,

has noticeable impact on power scintillation reduction, as shown in Fig. 4.10. For

the receiving aperture with radius bigger than 50 mm the scintillation peak is di-

minished completely. As was stated above, the scintillation reduction is quantified

by parameter called the aperture averaging factor. The aperture averaging factor

as a function of radius of the receiving aperture for three different beam half-widths

at the TXA plane is depicted in Fig. 4.11. With increasing radius of the receiving
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Fig. 4.10: Power scintillation index as a function of propagation length for different

radius of receiving aperture
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Fig. 4.11: Aperture averaging factor as a function of radius of the receiving aperture

aperture the aperture averaging factor decreases and thus the scintillation of the
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received power decreases. It can be seen that value of aperture averaging factor de-

pends on beam half-width at the TXA and beam divergence. The scintillation of the

power is averaged out more for the FG beam with half-width 40 mm in comparison

with half-width 10 mm. In case of using receiving aperture with radius above 0.15 m,

aperture averaging factor is almost the same for FG beam with half-width 40 mm

and 80 mm. The previous statements are valid for weak and moderate turbulence

regime.

4.4 Probability of fade

Reliability of the optical communication link could be assessed by probability of

fades models [12, 24]. Fade probability is calculated only for intensity fluctuations

caused by atmospheric turbulence. The presented results are valid for point receiver.

Because the scintillation was simulated only for weak atmospheric turbulence, the

lognormal model was used.

The lognormal model is given by [12]

PI(I) =
1

I σI(r, L)
√

2
exp







−
ln

(

I
〈I(r,L)〉

)

+ 0.5 σ2
I (r, L)

2 σ2
I (r, L)







(4.10)

where σ2
I (r, L) is the scintillation index and 〈I(r, L)〉 is the mean irradiance. Prob-

ability of fade is then determined as follows [24]

Pr(I ≤ IT ) = 0.5

{

1 + erf

[

0.5 σ2
I (r, L) − 0.23 FT√

2 σI(r, L)

]}

, (4.11)

where erf(x) is the error function. FT is the fade threshold parameter defined as

FT = 10 log

(

〈I(0, L)〉
IT

)

, (4.12)

where IT is the threshold level of irradiance and 〈I(0, L)〉 is on–axis mean irradiance

at distance L. Expected number of fades per second is defined as [12]

〈n(IT )〉 = ν0 exp

[

−(0.5 σ2
I − 0.23 FT )

2

2 σ2
I

]

, (4.13)

where ν0 is quasi–frequency. According to [22] the quasi–frequency is taken as

550 Hz.
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Fig. 4.12: Probability of fade as a function of treshold level
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Fig. 4.13: Expected number of fades as a function of threshold level

In this section the probability of fade and expected number of fades per second

for Flattened Gaussian beam with radius 10 mm and 40 mm was estimated. The

level of scintillation was determined from the simulated results which were presented

in Section 4.2 (Fig. 4.6 , Fig. 4.7).

The probability of fades for FG beam half–width w0 = 10 mm is depicted in Fig.

4.12. There is no significant advantage in probability of fades between FG beam

with parameter N = 0 and N = 10. On the other hand when the beam radius is

set to w0 = 40 mm, one can see more significant difference in probability of fades.

The similar results are obtained for expected number of fades (Fig. 4.13). As a

conclusion it is possible to say, that FG beam brings advantage over the Gaussian

beam, however the parameters of the FG beam has to be set carefully.
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4.5 Summary

In this chapter, propagation of the FG beam through weak and moderate turbulent

atmosphere was simulated. The simulation was based on the split-step beam propa-

gation method. It was shown that propagation of the FG beam with a high flatness

parameter can be analysed as a diffraction of an incident plane wave on a circular

aperture with a radius equal to the radius of the FG beam at the TXA plane. Using

this approach, I was able to determine optimal parameters in terms of reducing on

axis scintillation index. For reducing on-axis scintillation, the optimal radius of the

FG beam at the TXA plane for a particular propagation length has to be set. As a

result of the simulation, I also found that the receiver has to be placed in the far field

(NFresnel ≪ 1) and the flatness parameter has to be high enough. The simulations

also showed that the aperture averaging effect has essential impact on scintillation

reduction. Therefore, the signal-to-noise ratio at the receiver increases and bit error

rate decreases. It was found that the scintillations were averaged out maximally for

bigger half-width of the beam at TXA as well as for bigger radius of the receiving

aperture. However, the optimal radius of the receiving aperture depends on partic-

ular system demands. From the probability of fades analysis, it is clear that there is

an advantage over the Gaussian beam for FG beams with half–width w0 = 40 mm.
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5 BEAM SHAPER FOR FREE SPACE OPTI-

CAL COMMUNICATION TRANSMITTER

After the results presented in the previous chapter, it can be stated that the optimal

distribution of optical intensity within a laser beam at the TXA is uniform. However,

coherent optical sources like lasers and laser diodes emit a light whose intensity

profile can be approximated by a Gaussian function. So the intensity distribution

has to be transformed into a uniform function. There exist several transformation

methods to obtain the uniform optical intensity distribution at the output plane of

beam shaping optics. Some of the methods are appropriate for laser beams with a

high degree of coherence, and other methods are applicable to non coherent optical

sources. The transformation techniques can also be divided according to the measure

of conversion losses. One group of shaping techniques is known as field mapping.

It is suitable for coherent optical sources [42]. The other methods, which are cost

effective and also applicable for non coherent sources, are beam integrators [42].

One of the basic techniques for laser beam shaping is a method which uses a

lenslet array as a shaping element. The method belongs to the group of beam inte-

grators. The basic concept of the usage of the lenslet array is in dividing the input

Gaussian beam into sub-beams. The diameter of particular sub-beams depends on

the lenslet structure. Afterwards, I fold particular sub-beams by an optical lens,

which is called a Fourier lens [42]. The sub-beams are visible from the experimen-

tally measured intensity profile in Fig. 5.1.

Fig. 5.1: Experimentally measured intensity profile of FG beam - lenslet array shap-

ing technique [43]

Diffractive diffusers, also so-called homogenizers, are the next option how to get

a desired distribution of the optical intensity at a chosen plane [44]. These diffusers

belong to the group of field mappers [42]. This type of diffractive optics is typically
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used when the monochromatic laser beam is applied. Among other advantages, we

take into account the fact that they are not sensitive to alignment and do not affect

the polarization of the input beam. The most common shapes of diffusers are square,

round, rectangular and elliptical. The edges of the diffuser beam are generally steep.

The disadvantage of this method is that the intensity profile of the output beam is

speckled due to the pseudo-random energy diffusion (Fig. 5.2).

Fig. 5.2: Experimentaly measured intensity profile of FG beam - diffractive diffuser

shaping technique [43]

5.1 Refraction beam shaper

A couple of plano-aspheric lenses seem to be promising beam shaping method [38,

45, 46, 47, 48] for FSO communications. The advantage of this beam shaper is

low loss in optical power in comparison with previously mentioned techniques. The

Keplerian configuration [38] consists of two plano-convex lenses, the first aspheric

surface reshapes the intensity profile and the second one corrects the beam phase [49].

The design can be performed by a geometric design method which is based on the

numerical calculation of two plano-aspheric lenses. However, other techniques might

be used as well e.g. the functional differential equation based design approach where

the rotational symmetric lens profiles are described by two-point Taylor polynomials

[50]. I have performed the design of such a beam shaper. The design was verified in

optical design system ZEMAX [51].

As an input beam I supposed collimated Gaussian beam with irradiance distri-

bution given with relation

Iin(x) =
2

πw2
0

.e
−2

(

x
w0

)2

. (5.1)

44



r

w0

z(r)
Z(R) RFL

R

d

Lens 1 Lens 2

I I

x x

Fig. 5.3: Scheme of refraction beam shaper based on Keplerian design [52]. z(r) -

sagita of the first aspherical surface, Z(R) - sagita of the second aspherical surface,

r - distance from the optical axis of the input ray, R - distance from the optical axis

of the ray in the output plane, w0 - input beam radius, RF L - output beam half

radius, d - distance between two aspherical lenses

The function of the output beam shape is optional and depends on the usage of

the shaper. I used flattened Lorentzian function [53]

Iout(x) =

(

1

πR2
F L

)









1
[

1 +
(

x
RF L

)q]
2

q









, (5.2)

where RF L is the beam half width.

According to Kreuzer patent [54] the first condition which has to be fulfilled

is conservation of the energy (5.3), where energy of the incident beam is equal to

energy of the output beam.

∫ r

0
Iin(x)xdx =

∫ R

0
Iout(x)xdx, (5.3)

where Iin is intensity of input beam and Iout is intensity of output beam. I assume

the ideal lens elements without the reflection and absorption losses. After symbolical

integration of left and right side of the equation (5.3) the mapping functions for the

first and the second aspheric lens may be obtained.

R(r) =
RF L

q

√

√

√

√

√−1 +



1 − e
−2

(

r
w0

)2




q

−2

(5.4)

r(R) = w0

√

√

√

√

√−0.5



1 −
[

1 +
(

RF L

R

)q
]

−2

q



 (5.5)
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Fig. 5.4: Sag of the lenses

The profile of the aspheric lenses z(r), Z(R) are determined in terms of n, d, r

and R as follows [54]

z(r) =
∫ r

0



(n2 − 1) +

[

(n − 1)d

(R − r)

]2




−1

2

dr, (5.6)

Z(R) =
∫ R

0



(n2 − 1) +

[

(n − 1)d

(R − r)

]2




−1

2

dR, (5.7)

where n is refractive index of lens material, d is separation of the two lenses, r and

R is the radius of the first and the second element from optical axis.

The parameters of our design are as follows: wavelength 1550 nm, material of the

lenses CAF2 with refractive index n = 1.433489, separation distance between lenses

d was set to 150 mm, Gaussian beam waist w0 = 2.6 mm, beam width of flattened

output beam RF L = 3 mm for q parameter 6. After the numerical integration of

the equations (5.6) and (5.7) I got profile of the both aspheric surfaces which are

depicted in Fig. 5.4.

Because optical design software like ZEMAX needs parameters of the lens in

terms of polynomial equation (5.8), I had to fit the equation to the obtained curves

from Fig. 5.4.

z(r) =
r2

R

1 +
√

1 − (1 + k) r2

R2

+ A1r
4 + A2r

6 + A3r
8

+A4r
10 + A5r

12. (5.8)
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The fitting was performed by Weighted Least Squares method. The resulting pa-

rameters are listed in Tab. 6.2.

Tab. 5.1: Parameters of the Lenses

Lens 1 [mm] Lens 2 [mm]

Vertex radius R 23.2365 42.4596

Conic constant k −1.0679 −1.0407

A1 −4.9277x10−4 9.0003x10−5

A2 3.5893x10−5 −1.8609x10−6

A3 −1.1531x10−6 −5.4168x10−8

A4 2.1961x10−8 2.4074x10−9

A5 −1.65038x10−10 2.4234x10−11

Designed beam shaper was verified in ZEMAX software. The resulting optical

layout is depicted in Fig. 5.5. The refractive beam shaper is not achromatic. If we

want to change the wavelength of the incident light, we have to change the separation

distance between two lenses [46].

Fig. 5.5: Layout of the beam shaper

47



(a) Input Gaussian beam

(b) Output top-hat beam

Fig. 5.6: Zemax simulation results

The output FG beam (at the TXA plane) in Fig.5.6b has diameter 3 mm, however

beam radius at TXA plays very important role in scintillation analysis. Assume that

FSO link has length 4000 m, wavelength 1550 nm and refraction structure parameter

is set to 10−14 m−2/3. The optimal size of the beam at the TXA plane to achieve

minimal scintillation can be estimated from Fig. 5.7a, where a function of top-hat

beam scintillation index (from equation 4.9) on beam radius at TXA is depicted.

From enlarged figure section the optimal radius of the beam is around 40 mm, where

the scintillation index reaches minimum. The beam at the output of the refraction
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beam shaper has radius 3 mm which means that using of beam expander behind the

shaper to achieve optimal beam size is needed. In Fig. 5.7b the scintillation indexes

for a Gaussian beam and FG beam is compared. For this particular FG beam radius

the obtained result reveals that the scintillation index become larger for link distance

lower than 2000 m. Situation changes for greater distances, where the scintillation

index is approximately 30 % lower than the Gaussian beam scintillation index. I

obtained very similar results by simulating the system in Chapter 4.
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Fig. 5.7: The scintillation index at RXA for both beams as a function of beam radius

at TXA (a) and the scintillation index for both beams with radius of 40 mm at RXA

as a function of propagation length (b).

As was stated in [24] this slight decrease of scintillation index leads to significant

improvement of a fade statistic.

5.2 Optical fiber as a beam shaper

In previous sections I deal with the case where the optical intensity has uniform dis-

tribution at the TXA plane. If the coherent beam with uniform intensity distribution

is propagated then the intensity distribution at the RXA plane becomes Gaussian

due to diffraction. The intensity distribution depends on FG beam halfwidth at the

TXA plane, wavelength of the light source and propagation length.

In this section I am dealing with problem how to achieve uniform distribution of

the optical intensity at the receiver plane. One of the possibility is using of optical

fiber as a transmitting fiber. The intensity of light emanating from three different

fibers was studied. For the comparison the single mode fiber is also included. There-

after I analysed multi-mode gradient index fiber and multimode step index fiber with
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Tab. 5.2: Parameters of the optical fibers

Fiber 1 Fiber 2 Fiber 3

Type Single - mode
Multi - mode

gradient index

Multi - mode

step index

Core diameter [µm] 10 62.5 1000

Core material Fused silica Fused silica Fused silica

Numerical aperture (NA) 0.130 0.275 0.220

Attenuation @ 1550 nm [dB/km] 0.18 0.6 400

Wavelength range [nm] 980 − 1550 800 − 1600 350 − 2500

large core diameter. The technical parameters of the fibers are summarized in Tab.

5.2.

In Fig. 5.8 is depicted intensity distribution emanating from the single mode

fiber. Only one fundamental mode is propagated and intensity distribution has

Gaussian character with peak at the center. The optical intensity distribution of

multi-mode gradient index fiber is depicted in Fig. 5.9. It is clear that there are

dozens of modes propagated inside the fiber. In order to excite as many modes as

possible the fiber was scrambled with mode scrambler. The mode scrambler has to

be used because fiber was only 2 meters long and single mode laser was used as a

light source.

The third fiber is multi mode step index fiber with large core diameter. The

diameter of the core is 1000 µm. A large core fibers are usually used as a spectrom-

eter probes. Due to high attenuation of the fibers, they are used for short distance

(a) (b)

Fig. 5.8: Optical intensity distribution of the single mode fiber

50



(a) (b)

Fig. 5.9: Optical intensity distribution of the multimode fiber

communication and car communication inside a car. Even the lenght of the fiber

was only 2 meters all modes were excited without any mode scrambler. When the

intensity distribution was depicted, very interesting fact was observed. The intensity

distribution is created with million of modes and the envelope of this modes looks

like top–hat beam (see Fig. 5.10). The short fiber can be used in the transmitter

as a shaping element. As a result one get more uniform distribution of the optical

intensity at the RXA plane.

(a) (b)

Fig. 5.10: Optical intensity distribution of the plastic fiber

Another feature of the large core fiber is that it acts like a phase diffuser and

emanating light became partially coherent. It was shown in many publications that

partially coherent beam is less affected by atmospheric turbulences [55, 56].
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5.3 Summary

This chapter introduced the beam shaping techniques, which is suitable for convert-

ing Gaussian beam optical intensity distribution to Flattened Gaussian beam optical

intensity distribution. Within this chapter the pros and cons of the shaping tech-

niques were mentioned. I designed the refractive beam shaper which consists of two

plano convex aspheric lenses. Thereafter, the design was verified with the optical

and illumination design software ZEMAX. The output FG beam has good quality.

However, the price of the beam shaper would be very high because the aspheric

lenses have to be custom made. Because the beam shaper should be implemented

inside a free space optics terminal, the price should be very low. The next possible

option is using a plastic optical fiber with large core diameter as a beam shaping

element. For that case I have examined the output optical intensity distribution of

three different optical fibers, among which single mode fiber, multimode fiber and

plastic optical fiber. The plastic optical fiber exhibits an appropriate output opti-

cal intensity distribution. The distribution is created by thousand of modes whose

envelope is similar to the FG beam. Because the light emanating from the plastic

optical fiber is partially coherent, the scintillation level could be even more reduced.
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6 FULLY PHOTONIC LINK

The perspective technology, which can increase resistance of the FSO link to atmo-

spheric effects, is concept of the fully photonic FSO terminals [57, 58]. The outdoor

unit of the fully photonic FSO terminal consists of only passive optical components.

Active components like lasers, photodiodes, fiber amplifiers, fiber couplers and sup-

ply parts are placed in the indoor unit, which does not suffer on weather changes.

6.1 Transmitter with large core optical fiber

The fully photonic concept of the transmitter offers many possibilities in improving

optical wireless communication. The transmitted beam may include multiple optical

channels obtained by using the WDM technique.

Optical

Fiber

o

θ
1

θ
2

y
2

y
1

Collimating

lens

d

TXA

Fig. 6.1: Design of the transmitter

The purpose of the Fully Photonic Transmitter (FPT) is to create a transmitted

optical beam by an optical fiber irradiating the transmitting lens (achromatic dou-

blet lens). If the multimode fiber (plastic or glass) is used as a final fiber, the optical

intensity distribution in the transmitted beam will generate a so-called ”top-hat”

beam [58], which is more resistant to the negative effects of atmospheric turbulence

in comparison with the standard Gaussian beam.

An optical fiber AVANTES FC-IR1000-2-FC/PC with core diameter 1 mm and

numerical aperture NA = 0.22 was used as the transmitting fiber in our model. The

attenuation of the fiber 2 meters long is approximately 0.8 dB. For modeling the

FPT function, it is sufficient to apply the matrix optics methods.

The translation matrix describing the free space propagation of the optical ray

through the distance d between the output aperture of the optical fiber and principal

plane of the transmitting optical system (achromatic doublet lens) is expressed as
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follows [59]

MT =





1 d

0 1



 . (6.1)

The transmitting optical system (Fig. 6.1) is modeled as a thin ideal lens with

focal length fTXA. Propagation of the optical ray through this lens is described by

the refraction matrix MR

MR =





1 0

− 1
fTXA

1



 . (6.2)

The resulting transfer matrix, between the output aperture of the optical fiber

and output plane of the achromatic doublet lens, could be expressed by transfer

matrix (6.1) and refraction matrix (6.2). The output ray parameters at the output

of the collimating lens (transmitting aperture) are given by (Fig. 6.1)





y2

θ2



 = MR MT





y1

θ1



 . (6.3)

Therefore, parameters of the transmitted ray (yj and θj, j = 1, 2) can characterize

the parameters of the transmitted beam: distance of the ray from the optical axis

yj corresponds to beam radius, and angle between the ray and optical axis θj agree

with beam divergence. After substituting matrices (6.1) and (6.2) into equation

(6.3) we get the relations for beam radius y2 and beam divergence θ2

y2 = y1 + d θ1, (6.4)

θ2 = − y1

fTXA

+ θ1

(

d

fTXA

− 1

)

. (6.5)

An achromatic doublet lens THORLABS AC508-075-C with focal length

fTXA = 75 mm and diameter DTXA = 50 mm, which is suitable for the transmitting

optical system, was chosen as the collimating lens from commercially available lenses.

The lens is coated for C-band 1050 - 1700 nm. After substituting the angle θ1, which

is given by the numerical aperture of the transmitting fiber and core radius of the

transmitting fiber y1, into (6.4) and (6.5) we get the divergence of the transmitted

optical beam 1 mrad.

From the energetic point of view it is need to check whether the NA of the fiber

is lower than NA of the transmitting lens. Numerical aperture of the transmitting

lens can be calculated as follows

NAlens ≈ 1

2 f#
, (6.6)
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Fig. 6.2: Transmitter with plastic optical fiber.

Fig. 6.3: Transmitter with plastic optical fiber.

where f# is f number of the lens given by ratio of the focal lenght f and diameter

of the lens D. After the substitution of the lens parameters into the 6.6 we get

NAlens = 0.33. The numerical aperture of the transmitting lens is bigger than

numerical aperture of the fiber, therefore the energetic condition is fulfilled.
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6.2 Fully photonic receiver

The most challenging part of the fully photonic terminal is to design the fully pho-

tonic receiver (FPR). The purpose of the FPR is to focus the received optical power

to the core of a receiving optical fiber with diameter of only few micrometers. In

order to estimate the coupling efficiency in laboratory condition it is needed to de-

sign the testbed (Fig. 6.13). In the section, I numerically design the testbed for

measuring the coupling efficiency of the FPR. The testbed consists of the Testing

Transmitter (TT) and FPR under test. The numerical model is based on trans-

formation of the Gaussian beam through optical system described by ray transfer

matrix. The step by step design process is added and finally the coupling efficiency

of the FPR is theoretically estimated for single-mode fiber.

The FPR concept is shown in Fig. 6.13. The optical wave captured by the

Cassegrain telescope is collimated using an aspheric collimating lens and guided to

the GRIN lens, which is connected to an receiving optical fiber at its output. The

outgoing collimated optical wave from the aspherical lens is ensured by tuning the

focal length ftel of the Cassegrain telescope (Fig. 6.4).

Fig. 6.4: Prototype of the FPR.

The critical optical system requirements include diameter of the receiver aper-

ture, field of view of the receiver, operating wavelength , f-number of the aspheric

collimating lens, core diameter and acceptance angle of the receiving fibre [17, 60, 58].

This section presents considerations and requirements on the FPR design used for

optical beam coupling from free-space to an optical fiber at λ = 1550 nm.

The FPR model was created using matrix optics methods, which assumes beam

propagation in Gaussian paraxial space (rays are propagated near the optical axis

with a small deviation from the direction of the axis).
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In order to get the whole ray transfer matrix of the system, the Cassegrain

telescope is modelled as a thin positive lens, whose refraction matrix

M1′ =





1 0

−1/ftel
1



 (6.7)

is situated at the principal plane of the receiving lens. The ray transfer between the

principal plane of the receiving lens and the principal plane of the aspherical lens is

expressed by the translation matrix

M1′2′ =





1 ftel + fA

0 1



 . (6.8)

For the refraction matrix of the aspherical lens situated at the principal plane of the

lens, it is possible to write

M2′3′ =





1 0

−1/fA
1



 . (6.9)

The distance between the principal plane of the aspherical lens and input aperture

of the GRIN element is given by the translation matrix

M3′4′ =





1 d3

0 1



 . (6.10)

The GRIN lens refraction matrix can be expressed as follows [61]

M5′6′ =





cos (g lg) 1
g ng

sin (g lg)

g ng sin (g lg) cos (g lg)



 , (6.11)

where g is gradient constant, lg is length and ng is refraction index at the center

of the GRIN lens. For the maximum coupling efficiency the fiber is placed at the

working distance of the GRIN lens. Working distance dw is represented by the

following translation matrix

M7′8′ =





1 dw

0 1



 . (6.12)

The ray transfer matrix of the complete receiving optical system MR is given by

multiplying all the elementary matrices in the correct order

MR = M7′8′ · M5′6′ · M3′4′ · M2′3′ · M1′2′ · M1′ . (6.13)

After rearrangement we obtain

MR =





AR BR

CR DR



 , (6.14)
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where elements of the matrix are

AR = −fA (cos (glg)) − dwgng sin (glg)

ftel

, (6.15)

BR = (cos (glg) − dwgng sin (glg))

×
[

fA − ftel(d3−fA)
fA

] ftel

(

sin(glg)
g

+ngdw cos(glg)

)

fAng
, (6.16)

CR =
fAgng sin (glg)

ftel

, (6.17)

DR = −ftel cos (glg)

fA

− gng sin (glg)

[

fA − ftel (d3 − fA)

fA

]

. (6.18)

From the obtained relations, it is possible to calculate crucial parameters and

make a design of the FPR.

6.3 Estimation of received power by the Schmidt

Cassegrain telescope

After propagation through the free space channel, the beam is received by the

Schmidt-Cassegrain telescope 6.5 (primary mirror diameter D1,RXA = 125 mm, sec-

ondary mirror diameter D2,RXA = 50 mm). Due to construction of the Schmidt-

Cassegrain telescope, 16 % of the area of the receiving aperture is obscured by

secondary mirror. The amount of the received power by telescope can be calculated

as follows

PRXA =









D1,RXA

2
∫

0

I0 exp
[

−2
(

r

wRXA

)]

2πr dr









− I0π
D2,RXA

2

4
, (6.19)

where wRXA is half beam width at the plane of the receiving aperture; r is per-

pendicular distance from the optical axis of the receiver and I0 is optical intensity

on the optical axis at the plane of the receiving aperture. After evaluation of the

integral 6.19 we get the relation for received power

PRXA =
1

2
I0π







w2
RXA



1 − exp

(

−2
(

D1,RXA

2 wRXA

)2
)



 − D2
RXA

2







. (6.20)

In Fig. 6.5 is depicted the dependency of measure of the received power on the

half beam width wRXA at the receiver plane normalized by receiver aperture radius
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Fig. 6.5: Measure of the received power as a function of half beam width at the

receiver plane normalized by receiver aperture radius.

Fig. 6.6: Schmidt Cassegrain telescope

D1,RXA/2. The power received by hypotetical receiving lens with the same radius as

Cassegrain telescope is also depicted for comparison.

From the Fig. 6.5 the effect of obscuration is clearly visible. The received power

is maximal when the radius of the beam is the same as the radius of the receiving

aperture. However, the radius of the beam in real scenario has to be larger than

receiver aperture because of pointing losses or beam wandering due to atmospheric

turbulence. If the beam will be 4 times larger than receiver aperture then the

received power by Cassegrain telescope will be almost the same as power received

by hypothetical lens and the obscuration by secondary mirror is negligible.
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6.4 Diffraction of the optical wave caused by Schmidt

Cassegrain telescope

In FSO link, the receiver is irradiated by plane monochromatic wave with constant

distribution of optical intensity. In our case the Schmidt Cassegrain telescope is used

as a optical receiver system. This section deals with annular aperture diffraction

caused by the circular aperture and secondary mirror obstruction of the Schmidt

Cassegrain telescope. The central obstruction of the telescope affects the optical

intensity distribution at the focal plane of the telescope. Because the light in fully

photonic receiver is coupled to the optical fiber, one has to know to what extent the

effect of diffraction on annular aperture influence the coupling efficiency of the Fully

Photonic Link.

z

ρ

η

ξ w

q

p

z=0

ωθ ψ

Q

Fig. 6.7: Scheme for circular aperture diffraction

If the circular aperture is irradiated by a plane wave (Fig. 6.7), the Fraunhofer

diffraction pattern formed at the focal plane of the telescope is called an Airy disk.

The diffraction integral is written as [62]

U(Q) = C
∫ a

0

∫ 2π

0
exp [−i k ρ cos (θ − ψ)] ρ dρ dθ, (6.21)

where (ρ, θ) are polar coordinates of the point at the plane of the aperture and

(w, ψ) are coordinates of the point Q at the plane of the diffraction pattern. After

integration it follows that for small angle ω the function is [62]

U(Q) = C π a2

[

2 J1(k a ω)

(k a ω)

]

. (6.22)

The constant C is defined by the power within the circular aperture P , diameter

of the circular aperture D and distance of the diffraction pattern from the aperture
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plane R [62]

C =
1

λ R

√

P

D
. (6.23)

The intensity distribution within the diffraction pattern in the case of a clear circular

aperture is characterized by the following relation [63]

I(Q) = |U(Q)|2 = I0

[

2 J1(k a ω)

k a ω

]2

, (6.24)

where I0 is optical intensity at the maximum of the diffraction pattern, k is wave

number of the incident optical wave, a is radius of the aperture and ω angular radius.

The angular radius of the Airy disk ωA is determined by the first minimum of the

function (6.24). The first minimum of the function (6.24) occurs at k a ωA = 3.832

(see Fig. 6.8).
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Fig. 6.8: Circular aperture diffraction

Angular radius of the Airy disk ωA is then given by

ωA =
1.22 λ

D
(6.25)

where D is receiving aperture diameter. Radius of the Airy disk at the focal plane

of the telescope can be calculated from the focal length of the telescope f

rA = f ωA =
1.22 λ f

D
. (6.26)

When the obstruction of the telescope aperture by the secondary mirror is taken

into account (Fig. 6.9), the aperture is not circular but annular. The diffraction on

the mirrors of the Schmidt Cassegrain telescope was in our case approximated by
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Fig. 6.9: Telescope aperture with central obstruction

diffraction on the annular aperture. If the annular aperture is irradiated by a plane

wave, the diffraction pattern at the focal plane has the following character [62]

U(Q) = C
∫ a

ǫ a

∫ 2π

0
exp [−i k ρ cos (θ − ψ)] ρ dρ dθ, (6.27)

where ǫ is the ratio between the radius of the central obstruction o and aperture of

the telescope D

ǫ =
o

D
. (6.28)

After integration, [62] is obtained

U(Q) = C π a2

{[

2 J1(k a ω)

(k a ω)

]

− ǫ2

[

2 J1(k ǫ, a ω)

(k ǫ a ω)

]}

. (6.29)

The intensity at the diffraction pattern is represented as [62]

I(Q) =
I0

(1 − ǫ2)2

[

J1(k a ω) − ǫ J1(ǫ k a ω)

k a ω

]2

, (6.30)

where I0 is optical intensity at the maximum of the diffraction pattern.

In Fig. 6.10, the function (6.30) is depicted for three different ratios between

the radius of the central obstruction and aperture of the telescope. It is clear that

the size of the secondary mirror plays an important role in optical distribution at

the focal plane. By increasing the ǫ parameter, the optical intensity within the

diffraction pattern is distributed from the central disk to the diffraction rings. The

resolving power of the system is increase because by increasing the parameter ǫ the

radius of the central disk decreases. From Fig. 6.10, it can be seen that by increasing

the ǫ parameter the power within the central disk decreases respectively. According

to [64], the ratio of the power within the central diffraction disk to the total power

is defined as

Prel =

ωCD
∫

0
I ω dω

∞
∫

0
I ω dω

, (6.31)
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Fig. 6.10: Annular aperture diffraction

Tab. 6.1: Radius and relative power within the central diffraction disk [64]

ǫ k a ω Prel [−]

0 3.832 0.838

0.10 3.786 0.818

0.15 3.733 0.795

0.20 3.665 0.764

0.25 3.586 0.732

0.30 3.501 0.682

0.40 3.323 0.584

0.50 3.144 0.479

where ωCD is the angular radius of the central diffraction disk.

In Tab. 6.1 from [64], the positions of the first minimum for different ǫ and

relative power within the central diffraction disk are listed.

It is possible to say, that obscuration by the second mirror affect the diffraction

pattern at the focal plane of the telescope. The practical effect of having a central

obstruction in a telescope is that the central disc becomes slightly smaller, and the

first bright ring becomes brighter at the expense of the central disc. This becomes

more problematic with short focal length telescopes which require larger secondary

mirrors.[65]

The diameters of the primary and secondary mirrors of the Schmidt Cassegrain
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telescope, Fig. 6.6, used in the FPR are D1, RXA = 125 mm, D2, RXA = 50 mm

respectively. The position of the first minima of the function (6.30) for parameter

ǫ = 0.4 is theoretically 3.323. Therefore, the angular radius of the central diffraction

disk ωCD at the focal plane of the telescope can be calculated as

k D1, RXA ωCD = 3.232, (6.32)

then

ωCD =
1.05 λ

D1, RXA

. (6.33)

When the focal length of the telescope is taken into account, the radius of the central

diffraction disk rCD is obtained as

rCD =
1.05 λ f

D1, RXA

. (6.34)

The theoretical radius of the central disk at the focal plane of the Schmidt Cassegrain

telescope is approximately 15 µm. When the light is coupled to the SM optical fiber

with radius 5 µm, which is placed to the center of diffraction disk, one can estimate

that the theoretical coupling loss for a perfectly aligned system is around 5 dB.

Fig. 6.11: Workplace for measuring the diffraction disk at the focal plane of the

Schmidt Cassegrain telescope

In order to find out the real diameter of the central diffraction disk, an experi-

mental measurement was carried out (Fig. 6.11). The Schmidt Cassegrain telescope
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was irradiated by a coherent optical plane wave. Using the interference on the plane–

parallel plate the collimation of light incident on the Schmidt Cassegrain telescope

was checked. The optical intensity at the focal plane of the telescope was recorded

with a CCD beam profiler.

Fig. 6.12: Experimentally measured diffraction disk at the focal plane of the Schmidt

Cassegrain telescope

The diffraction pattern at the focal plane of the telescope is depicted in Fig.

6.12. The real radius of the central diffraction disc (white area in the center of the

diffraction pattern) is around 20 µm which is very close to the theoretical expecta-

tions. The power contained in this area is much bigger than the power in the rest

of the diffraction pattern.

In the case of FPR, the single mode optical fiber with collimating optics is placed

to the center of the diffraction pattern when the maximum power is achieved. From

a simple calculation, the coupling loss in the real scenario when the light from the

telescope is coupled into the SM fiber is around 6 dB. From Fig. 6.12, it is visible

that some parasitic diffraction effects are present. The bigger diffraction rings are

caused by diffraction of the optical wave on the central obstruction while the smaller

diffraction rings are caused by the finite aperture of the telescope.
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6.5 Testing Transmitter

For the estimation of the coupling efficiency of the FPR (free space to SM fiber),

it was necessary to design the Testing Transmitter (TT). The TT should irradiate

whole receiving aperture of the FPR under test.

Testing Transmitter Fully Photonic Receiver

SFL

1550 nm

d d1 2

6’ 7’ 8’

FC/PC

Transmitting

optical fiber
Lens 1 Lens 2

1 2 3 4 5

FC/APC

f TEL f A

1’ 3’2’

 l KT

d l d wg

Aspheric

collimating

lens

GRIN

lens
Receiving

optical fiber

4’ 5’

Cassegrain telescope

Optical 

axis

3

Fig. 6.13: Configuration of the testbed which consist of Testing Transmitter and

Fully Photonic Receiver. SFL - Single Frequency Laser, Lens 1 - plano-concave

lens with focal length f1 = −30 mm, Lens 2 - plano-convex lens with focal length

f2 = 300 mm, fT EL - focal length of the Cassegrain telescope, fA - focal length of

the aspheric collimating lens, lg - length of the GRIN lens, dw - working distance of

the GRIN lens.

The Single Frequency laser in TT with wavelength of 1550 nm was used as a

source and then it was coupled to the single-mode fiber with radius 5 µm. The

sufficient irradiation of the receiver (FPR) aperture is ensured with beam expander

which consist of two lenses Lens 1 and Lens 2 (Fig. 6.13). The design of the beam

expander was carried out with geometrical optics. The transmitting optical fiber

irradiates the Lens 1 from the distance d1. This distance is represented by translation

matrix

M12 =





1 d1

0 1



 . (6.35)

The Lens 1 was assumed as a thin lens with focal length f1 with refraction matrix

M23 =





1 0

−1/f1
1



 . (6.36)

In order to collimate the wave emanating from the transmitting fiber the distance

between the Lens 1 and Lens 2 is given by difference of the absolute value of their

focal lengths

M34 =





1 d2

0 1



 . (6.37)
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Then the Lens 2 was modelled as a refraction matrix of the thin lens with focal

length f2

M45 =





1 0

−1/f2
1



 . (6.38)

The ray transfer matrix of the TT can be calculated as follows

MT = M45 · M34 · M23 · M12. (6.39)

And finally the elements of the MT

MT =





AT BT

CT DT



 , (6.40)

are derived

AT = 1 − d2

f1

, (6.41)

BT = d2 − d1((d2 − f1)

f1

, (6.42)

CT =
d2 − f1

f1f2

− 1

f1

, (6.43)

DT =
d1 (d2 − f2)

f1f2

− d1 + d2 − f2

f2

. (6.44)

From the ray transfer matrix the TT was set up in order to get collimated beam at

the output.

6.6 Coupling efficiency

The complex envelope of a Gaussian beam is defined by the complex q parameter

1

q(z)
=

1

R(z)
− j

λ

πw2(z)
, (6.45)

where R(z) is the radius of the curvature and w(z) is the radius of the beam waist.

The properties of the optical system centered about the propagation axis can be

described by the ray transfer matrix. Therefore the q2 parameter of the Gaussian

beam after the passage through an optical system can be deduced from an ABCD

law as follows

q2 =
Aq1 + B

Cq1 + D
, (6.46)
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where q1 is the parameter of the input Gaussian beam and A, B, C, D are elements

of the ray transfer matrix. After substitution of the Eq. (6.45) into the previous

equation the radius of curvature and the beam waist radius can be derived as

R2 =
w4

1π2
(

A + B
R1

)2
+ B2λ2

w4
1π2

(

A + B
R1

) (

C + D
R1

)

+ BDλ2
, (6.47)

w2 =

√

√

√

√

√

w4
1π2

(

A + B
R1

)2
+ B2λ2

w2
1π2 (AD − BC)

. (6.48)

From these equations the q2 parameter of the output Gaussian beam can be obtained.

In order to estimate the coupling efficiency of the optical receiver I used analytical

Near-Field Method proposed by Kataoka [66]. The overlap integral characterizes the

coupling efficiency between incident light and SM optical fiber [66]

η =
| ∫

ψLψF dr |2
∫ | ψL |2 dr

∫ | ψF |2 dr
, (6.49)

where ψL is relative field amplitude of the incident light and ψF is relative field

amplitude of the optical fiber mode. It should be noted that the coupling efficiency

expressed by equation (6.49) does not take into account any optical abberation.

Equation (6.49) is only shown to be valid under assumption that the system is sta-

tionary and polarization independent and nonlinear effects does not occur. Optical

fiber field amplitude is [66]

ψF =

√

2

π

1

wF

exp

(

− r2

w2
F

)

, (6.50)

where wF is mode field radius of the fiber. I assume that the incident beam is a

circularly symmetrical in terms of the radial coordinate r. Then the field amplitude

of the incident light focused on the optical fiber is characterised as [66]

ψL =

√

2

πw2
L

exp

(

− r2

w2
L

)

, (6.51)

where wL is radius of the incident Gaussian beam. The coupling efficiency η is then

defined as [66]

η(∆x, ∆z) =
4

(

wF

wL
+ wL

wF

)2
+ λ2∆2

z

π2w2
F

w2
L

exp − 4∆2
x

w2
F + w2

L

, (6.52)

η(α) = exp

(

−2π2

λ2

α2w2
F w2

L

(w2
F + w2

L)

)

, (6.53)
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where ∆x is lateral deviation, ∆z is defocus deviation and α is angular deviation of

the receiving fiber (Fig. 6.14). Relation between FPR coupling efficiency and FPR

coupling loss can be defined by expression

αCL = 10 log
1

η
, (6.54)

where αCL is coupling loss in dB.

6’ 7’ 8’
GRIN 

lens
Receiving 

fiber

α

Δ 

Δ 

d w

x

z

Optical 

axis

Fig. 6.14: Receiving fiber alignment deviations

Testbed parameters are listed in Table 6.2. The parameters of the Gaussian

beam emanating from the transmitting fiber (at the plane 1) are w1 and R1. The

beam waist of the Gaussian beam was placed exactly to back focal point of the Lens

1. From these parameters it is possible to obtain parameter q1 from Eq. 6.45. I

used the ray transfer matrices MT and MR in order to transform the q1 into the

q2 parameter according to ABCD law (Eq. 6.46). Therefore I can calculate the

parameters of the Gaussian beam behind the receiver at the plane 8’. The radius of

curvature R2 and beam radius w2 of the transformed Gaussian beam was calculated

from Eq. 6.47 and Eq. 6.48. The beam radius at the focus point of the GRIN lens

is w2 = 17.4 µm and the radius of curvature R2 is infinite.

The FPR coupling efficiency was investigated for single-mode fiber with field

radius wF = 4.5 µm. Once we know the field amplitude distribution of the optical

fiber and incident light at the plane 8’, we can estimate coupling efficiency from

Eq. 6.52 and Eq. 6.53. The coupling loss in dB was determined according to Eq.

6.54. We obtained the coupling loss 5.2 dB for perfectly aligned system. To find out

how the system will be sensitive to the alignment procedure, the coupling loss as a

function of lateral deviation (Fig. 6.20), angular deviation (Fig. 6.21) and defocus

deviation (Fig. 6.17) are depicted.
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Tab. 6.2: Parameters of the testbed

TT parameters

Wavelength λ 1550 nm

Beam waist radius w1 4.5 µm

Radius of curvature R1 ∞

Focal length of the Lens 1 f1 -30 mm

Focal length of the Lens 2 f2 300 mm

Distance d1 30 mm

FPR parameters

Focal length of the Cassegrain telescope ftel 1250 mm

Aperture radius of the Cass. telescope DRXA/2 62.5 mm

Focal length of the aspheric lens fA 4.51 mm

Distance d3 1 mm

GRIN lens length lg 4.43 mm

Gradient constant of the GRIN lens g 326 m−1

Index of refraction at center of the GRIN lens ng 1.5901

Working distance of the GRIN lens dw 0.39 mm

0 0.005 0.01 0.015 0.02
5

10

15

20

25

30

35

40

Lateral displacement 
x
 [mm]

C
o
u
p
lin

g
 L

o
s
s
 [

d
B

]

Fig. 6.15: The coupling loss of the FPR as a function of the lateral deviation.
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Fig. 6.16: The coupling loss of the FPR as a function of the defocus deviation.
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Fig. 6.17: The coupling loss of the FPR as a function of angular deviation.

According to these figures it is clear that alignment of the system is quite chal-

lenging, which indicates that some kind of adaptive technique should be used. For

achievement of the sufficient power level the Erbium-doped Fiber Amplifier can be

used conveniently.

6.7 Experimental measurement of the coupling

loss

The system theoretically described in previous subsection was build up and tested.

The testbed is depicted in Fig. 6.18. Construction elements from Thorlabs were
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used to build the system.

Fig. 6.18: Testbed for testing of the fully photonic receiver

The coupling loss of the fully photonic receiver was measured for lateral and

defocus deviation (see Fig. 6.19). Mechanical arrangement of the receiver does not

allow movement of the fiber tip. The GRIN element which is attached to the fiber

and aspheric collimating lens are placed in one housing. Thus, we could move only

with whole element instead of fiber. For this reason the measured values of the

coupling loss are not the same. However, for the perfect alignment of the system

the coupling loss is about 6 dB, which is close to the theoretical estimation.

Fig. 6.19: Scheme for the measurement of coupling loss
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Fig. 6.20: The coupling loss of the FPR as a function of the lateral deviation.
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Fig. 6.21: The coupling loss of the FPR as a function of the defocus deviation.

6.8 Channel Characterization

A schematic concept of the fully photonic link is shown in Fig. 6.22. The input

optical signal with wavelength 1550 nm is boosted in EDFA. The amplified sig-

nal (100 mW) is then led by single mode optical fiber to the transmitter, where

large core fiber irradiates the transmitting lens. The optical Gaussian beam ema-

nating from the transmitter (DTXA = 25.4 mm) has divergence θ = 1 mrad. After
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propagation through the free space channel, the beam is received by the Schmidt-

Cassegrain telescope (primary mirror diameter D1,RXA = 125 mm, secondary mirror

diameter D2,RXA = 50 mm). The amount of the received power can be calculated

by equation 6.19. The signal received by the Schmidt-Cassegrain telescope is then

amplified by EDFA and filtered by a tunable fiber filter. The filtered optical signal

is then distributed where it is needed. Example of possible energetic balance of the

link was calculated in a special program which takes into account the statistical

characteristics of the area. The results are shown in Tab. 6.3.
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EDFAAPCFC/

Input 

optical signal

(1550 nm)
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fiber
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Output 
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(1550 nm)

SM fiber

Transmitting 
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Receiving 
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SM fiber SM fiber

Free space channel

ReceiverTransmitter Outdoor unit

Indoor unitIndoor unit

Fig. 6.22: Concept of the fully photonic link.

One of the effects caused by atmospheric turbulences, which have an essential

impact on availability of the fully photonic link, is fluctuations of the angle of arrival.

The incident angle is defined as the angle between the direction of propagation of an

optical wave which is incident to the plane of the receiving aperture and optical axis

of the receiver [23]. Fluctuations of angle of arrival have direct impact on coupling

efficiency of a fully photonic link. As a consequence of angle of arrival fluctuation,

the focused optical wave is shifted from the optical axis (image jitter) in the focal

plane of the telescope. Due to this shift, the coupling loss increases.

The magnitude of angle of arrival fluctuation depends on the strength of the

atmospheric turbulence. The strength of atmospheric turbulence is characterized by

the refractive index structure parameter C2
n. In the area of operation we expected

values of the C2
n parameter between 10−13 m−2/3 and 10−14 m−2/3. It is assumed

that the receiver will be placed at the far field; therefore we used relations for a

spherical wave.

After substituting of the link parameters (Tab. 6.3) to the relation (1.23) we

obtain variance of the angle of arrival approximately 8 µrad. Fluctuations of the

angle of arrival in the focus plane of the telescope create an offset of the focus

sometimes called “image jitter” or “image dancing”. Owing to image jitter, the

direction of propagation of light is changed at the input plane of the receiving fiber

which causes coupling loss (αCL).
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Transmitted optical

power (mean)
Pm,TXA 19.5 dBm

Beam divergence θ 1 mrad

Link distance L 850 m

Wavelength λ 1550 nm

Transmitter system loss αtrans, syst 5.5 dB

Atmospheric loss αatm 1 dB

Propagation loss αprop 37 dB

Diameter of receiving antenna (the primary mirror) D1,RXA 125 mm

Diameter of receiving antenna (the secondary mirror) D1,RXA 50 mm

Equivalent diameter of the (receiving antenna) DEq, RXA 114 mm

Total gain of the receiver γtotal 17 dB

Received power PRXA -7 dBm

Receiver

system loss
αrec, syst 15.5 dB

Receiver sensitivity (mean) P0,RXA -38 dBm

Margin of the link M 15.5 dB

Tab. 6.3: Link budget.

The “image jitter” can be calculated as the root mean square angle of arrival

multiplied by the focal length of the receiving telescope [22]. However, we have

to take into account the whole receiving optical system including the collimating

aspheric lens and GRIN lens. For this, I used relation (6.2) for estimating of the

image displacement at the input plane of the receiving fiber. The value of image

jitter is approximately 5 µm. From this value one can estimate the additional

coupling loss caused by the angle of arrival from Fig. 6.21. The loss is about 2 dB.

For this particular application of the fully photonic link, the loss caused by the angle

of arrival fluctuations is fully acceptable (see link margin in Tab. 6.3).
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6.9 Summary

This chapter was focused on modeling and designing a fully photonic link which

is used primarily for transmitting a highly stable optical frequency – transmission

of time. The fully photonic concept of the link brings a number of benefits which

improve qualitative parameters of the link: creation of an optimal intensity profile

of the transmitting beam, usage of photonic devices such as WDM and EDFA, etc.

A fully photonic transceiver only uses passive optical components without any elec-

tronic and optoelectronic devices. Lasers, photodiodes, fiber amplifiers and supply

blocks are used in the indoor unit which is not so strongly affected by atmospheric

changes as the outdoor unit is. An extremely wide band can be achieved by exclud-

ing the blocks performing E/O conversion from the communication channel.

However, transmission of a highly stable optical frequency with a fully photonic

link requires good knowledge of the conditions under which the link will be working.

These include statistical parameters of the atmosphere like time dispersion and the

effect of random attenuation and turbulence.

The received power by the fully photonic receiver is highly dependent on the

fluctuation of the angle of the incident optical wave. The angle of arrival variance

caused by atmospheric turbulences was estimated within this chapter. From theoret-

ical prediction, it was assumed that the loss caused by the angle of arrival variance

does not exceed the margin of the particular link.
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7 CONCLUSION

The doctoral thesis was focused on analysing the distribution of optical intensity

within a laser beam at the transmitting aperture which is affected by propagation

through free space as well as through the atmosphere. The aim of the thesis was to

determine the optimal intensity distribution of the laser beam which is minimally

affected by turbulence during the propagation. In the first part of the thesis the

overall insight into the problem of Gaussian and Flattened Gaussian beam propaga-

tion through atmospheric turbulence was given. The numerical models of particular

effects which influence beam quality are discussed. The various types of beam shapes

were mentioned.

The numerical simulation of the arbitrary optical wave propagation through at-

mospheric turbulence was utilized and the results from the simulation were used in

order to verify the theoretical models. From the theoretical analysis, it is assumed

that the top-hat or Flattened Gaussian beam should have a lower scintillation in-

dex in comparison with the Gaussian beam. The simulation also showed that the

aperture averaging effect has essential impact on scintillation reduction. Therefore

the signal to noise ratio at the receiver increases.

Based on these findings, the available methods of beam shaping were studied. A

refraction beam shaper for an FSO communication transmitter was designed. The

design was performed by a geometric design method which is based on numerical

calculation of two plano-aspheric lenses. The final design was verified in the optical

design software ZEMAX. The next possible option is using the plastic optical fiber

as a beam shaper. For that case the optical intensity distribution of three different

optical fibers was investigated. The output from the plastic optical fiber is created

by thousand of modes whose envelope is similar to the Flattened Gaussian beam.

Because the light emanating from the plastic optical fiber is partially coherent, the

scintillation level could be reduced more.

The last chapter deals with modelling and designing a fully photonic link which

will be used primarily for transmitting a highly stable optical frequency. The concept

of a fully photonic transmitter was utilized. The optimal shape of the transmitted

optical beam is ensured by a plastic optical fiber which irradiates the transmitting

lens. The emanating optical beam has an optimal shape which is more resistant to

the negative effects of atmospheric turbulence. The most challenging part of the

fully photonic link is to design the fully photonic receiver. The aim of the receiver

is to couple the light captured by the Schmidt Cassegrain telescope to the single

mode optical fiber. The critical aspects which influence the coupling efficiency were

discussed and modelled. The optical intensity distribution at the focal plane of the

telescope and the effect of secondary mirror obscuration on resolving power was

77



investigated by Fraunhofer diffraction. It was found that the obscuration by the

secondary mirror improves the resolving power of the telescope which means that

the central diffraction disk has a lower radius in comparison with a clear aperture.

However, less energy is included within the central diffraction disk. The fully pho-

tonic receiver coupling efficiency was estimated for a perfectly aligned system and

for lateral, angular and defocus deviations. The modelled results were compared

with experimental measurement on a testbed. Lastly the link budget and concept

of the fully photonic link is given. The main contribution of this chapter is utilizing

a fully photonic link with a beam shaper which is ready for experimental testing.
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LIST OF SYMBOLS, PHYSICAL CONSTANTS

AND ABBREVIATIONS

EDFA Erbium Doped Fiber Amplifier

F Fourier transform

FG Flattened Gaussian Beam

FSO Free Space Optical

NA Numerical aperture

RF Radio Frequency

A Aperture averaging factor

a Parameter

AA Attenuation caused by absorption

a2
s Flattened beam radius

AS Attenuation caused by scattering

C2
n Refractive index structure parameter

CT Temperature structure parameter

D1,RXA Diameter of receiving antenna (the primary mirror)

D2,RXA Diameter of receiving antenna (the secondary mirror)

DEq,RXA Equivalent diameter of the receiving antenna

Dn(r) Structure function of the refractive index

DRXA, D Diameter of the receiving aperture

dspot, ideal Spot size at the focal plane of the receiving lens

dspot, turb Spot size at the focal plane of the receiving lens in case of atmospheric

turbulence

F0 Radius of curvature in the plane of the transmitter

Hm, Hn Hermite polynomial
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i Imaginary unit

I Optical intensity

I0 On axis intensity

Jn Bessel function

k Wave number of beam wave (k=2π/λ)

L Space scale of the flow process

l0 Small scale of the atmospheric turbulence

L0 Large scale of the atmospheric turbulence

Ll
p Laguerre polynomial

M Margin of the link

Mstep Number of steps of the optical wave propagation

N Flatness order of the Flattened Gaussian beam

n Index of refraction

NFresnel Number of Fresnel zone

o central obstruction diameter

p Flatness order of the Flattened Gaussian beam

P0,RXA Receiver sensitivity (mean)

Pm,TXA Transmitted optical power (mean)

Patm Atmospheric pressure

PRXA Received power

q Flatness order of the Flattened Gaussian beam

r Size of the turbulent eddie

r Transverse position of observation point

R0 Radius at which the intensity fall to half of its value on the axis

r0 Fried coherence diameter
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rA Radius of the Airy disk

rcd Radius of the central diffraction disk

r2
c Root–mean square centroid displacement

Re Reynolds number

RFL Width of the flattened beam

T Temperature

u Velocity of the flow

U Complex amplitude of the field in the plane of the transmitter

vm Kinematic viscosity

w0 Waist of the Gaussian beam

We Effective beam width in the plane of the receiver

α(λ) Extinction coefficient

αatm Atmospheric loss

αprop Propagation loss

αrec, syst Receiver system loss

αtrans, syst Transmitter system loss

βa Variance of the angle of arrival

βx, βx Parameter of the Cos Gaussian beam

Γ(r1, r2, τ) Mutual coherence function

γ(r1, r2, L) Complex degree of coherence

γtotal Total gain of the receiver

∆z Single step of the optical wave propagation

ǫ Ratio between the radius of the central obstruction and aperture of the

telescope

θ Beam divergence (half–angle)
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Θ Refractive beam parameter

Θ0 Refraction parameter in the plane of the transmitter

κ Spatial wave number

κm Small scale wave number parameter

κ0 Large scale wave number parameter

λ Wavelength

Λe Effective diffraction parameter in the plane of the receiver

Λ0 Diffraction parameter in the plane of the transmitter

ρG Spatial coherence radius of the Gaussian beam wave

ρpl Spatial coherence radius of the plane wave

ρsp Spatial coherence radius of the spherical wave

σ2
1 Rytov variance

σ2
B Rytov variance for beam wave

σ2
I Scintillation index - normalized variance of optical intensity

ωA Angular radius of the Airy disk

φn(κ) Spatial power spectrum of refractive index

ωA Angular radius of Airy beam

ωCD Angular radius of central diffraction disk

ω0, βx Parameter of the Cosh Gaussian beam
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