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A B S T R A C T 
In this work, connections between statistical physics and machine learning are stu­

died wi th emphasis on the most basic principles and their implications. Also, the 

general properties of spectroscopic data are revealed and used beneficially for impro­

ving automatized processing of the data. In the beginning, the parti t ion function of 

a Bol tzmann distribution is derived and used to study the Ising model uti l izing the 

mean field theory approach. Later, the equivalence between the Ising model and the 

Hopfield network (machine learning model) is shown, along wi th an introduction for 

machine learning in general. A t the end of a theoretical part, Restricted Boltzmann 

Machine ( R B M ) is obtained from the Hopfield network. Suitability of applying R B M 

to the processing of spectroscopic data is discussed and revealed by uti l ization of 

R B M to dimension reduction of the data. Results are compared to the standard tool 

(Principal Component Analysis), wi th discussing possible further improvements. 

K E Y W O R D S 
Machine Learning, L I B S , Spectroscopic Data, Art i f ic ia l Neural Networks, Deep Lear­

ning, Restricted Bol tzmann Machine, R B M , Dimension Reduction, Statistical Phy­

sics. 

A B S T R A K T 
P r á c a sa zaoberá spojeniami medzi š ta t is t ickou fyzikou a s t ro jovým učením s 

dôrazom na základné pr incípy a ich dôsledky. Ďalej sa venuje obecným vlastnos­

t iam spektroskopických dá t a ich zohľadnení pri pokroči lom spracovaní dá t . Začiatok 

práce je venovaný odvodeniu par t ičnej sumy šta t is t ického sys tému a š túdiu Isingo-

vho modelu pomocou "mean field" p r í s tupu . Následne, popri zák ladnom úvode do 

s t rojového učenia, je u k á z a n á ekvivalencia medzi Is ingovým modelom a Hopfieldovou 

sieťou - modelom strojového učenia. N a konci teoretickej časti je z Hopfieldovej siete 

odvodený model Restricted Boltzmann Machine ( R B M ) . Vhodnosť použi t ia R B M 

na spracovanie spektroskopických dá t je d iskutovaná a p r eukázaná na znížení dimen­

zie tých to dá t . Výsledky sú porovnané s bežne používanou Metódou Hlavných K o m ­

ponent ( P C A ) , spolu so zhodno ten ím p r í s tupu a možnosťami ďalšieho zlepšovania. 
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INTRODUCTION 
During the last years, Machine Learning ( M L ) obtained exponential growth of its 

popularity. Everything begins with silicon boom a few decades ago when computers 

were created. Hand to hand with computers, sensing of various events (experiments, 

industrial measurements, weather, etc.) became much easier and digitalized. Nowa­

days, nearly everything is sensed and measurements are stored. This results in a 

huge amount of data, which has to be analyzed. Modern data are rather different 

from data which were assumed by statisticians during the creation of classical statis­

tics. Whi le in classical statistics, there is a relatively small amount of measurements 

wi th only one or few variables. Now we have data containing many more measure­

ments and number of variables can be comparable to the number of samples. These 

high-dimensional data require completely new methodologies for analysis. 

Machine learning is a big family of methods, while part of them are suitable 

for this usage. Machine learning is generally understood as a study of mathematical 

models or computational algorithms which are built (learned) on available (training) 

data using computers. Models could be used for regression, classification, dimensi­

onality reduction and other specific tasks. The diagram on Figure 1 shows M L as 

part of Art i f ic ial Intelligence (AI) and further divides M L models to supervised and 

unsupervised. According to the state of art research in M L field, one of the most 

promising models is Neural Networks (NN) and especially Deep Neural Networks 

( D N N ) . D N N has achieved numerous records in challenging tasks (image classifi­

cation, text classification, speech recognition, classification of scientific data, game 

playing, etc.) competing to other methods. Further description of N N and D N N 

wil l be presented later. A s it was stated, M L is a different approach to classical 

statistical analysis. However, Its important part holds on classical statistics. This 

strong connection is more visible from the Bayesian perspective. Alongside wi th clas­

sical statistics, there is also a strong connection of the M L with statistical physics. 

M L takes not only inspiration from statistical physics approaches, but many of M L 

methods has its roots directly in statistical physics. 

Following subsections serves just as a brief illustration of this connection and 

every important part wi l l be studied more detailed later. 
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Fig . 1: Venn diagram wi th Machine Learning relations. 

Why we want to apply stat. phys point of view to 
ML? 

There is a great amount of knowledge as a result of intensive research in statistical 

physics since the time of Bol tzmann and Gibbs to the modern era and its numerous 

applied sub-parts. Statistical physics, in a nutshell, is just a study of collective 

behavior of the system composed of many parts. This collective behavior appears 

only while there is a huge number of parts present and is mostly quite different 

from the behavior of its single or few parts. Under the concept of the system, we 

can understand many things as a collection of atoms (for example in solid material), 

collection of spins (in Ising model), etc. but also more non-physical or abstract terms 

as information theoretical bits, neurons (in Neural Network). This abstraction of 

statistical physics is building a bridge between communities and making possible to 

better understand why and how M L algorithms work. 
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How we can use ML models in the processing of 
spectroscopic data? 
Spectroscopy in its general meaning is a collection of methods studying the inter­

action of electromagnetic radiation wi th matter [1]. Result of such spectroscopic 

measurement is a spectrum where we scope dependence of intensity (or the number 

of photons/counts on the detector) on a specific wavelength. Despite considerable 

differences in each spectroscopic methods, there are a common features in spectra 

from the data point of view. Spectroscopic data have usually high dimension (num­

ber of variables = wavelength resolution) and sparsity. Sparsity means that there is 

a relatively small amount of information wi th respect to insignificant parts of the 

spectra (consisting of background and noise). Sparsity is nearly always originated of 

high dimensionality, but spectroscopic data are special also due to other property. 

Peaks which are present in spectra are correlated by itself in the data sense. This 

means that the surrounding values of the peak are dependent on its central value. 

Using these properties, It is obvious that dimensionality reduction can be perfor­

med wi th only small losses in information, theoretically. In spectroscopy, we often 

would like to separate our measurements according to the material of samples, for 

example. If we provide labeled (chemical elements, molecules, materials) dataset of 

spectra, we can bui ld a model for further classification of unlabeled data. This type 

of analysis is called supervised classification and it is easy to imagine a lot of ap­

plications. Machine learning methods suitable for this task are for example Neural 

Networks, Support Vector Machines, and many more. Whi le technical possibilities 

are increasing and spectroscopic analysis became much faster (kHz frequency of me­

asurements) we are obtaining millions of spectra. This amount of data is not possible 

to explore by looking at each spectrum separately. Also storing and handling such 

datasets is challenging. So other important applications of M L in spectroscopy are 

revealing: dimensionality reduction and visualization of high dimensional data. 

3 





1 STATISTICAL PHYSICS 
This section serves only as a summary of essential principles and ideas of statistical 

physics, but cannot provide a proper introduction to the subject. Whi le some parts 

here are exactly and hierarchically derived from the first principles, others may be 

ripped out of context and serve more like a definition. Unfortunately, the range of 

this thesis cannot cover the whole subject and for further information, reader is 

advised to great courses [2-4]. A s foundations of statistical physics largely rely on 

principles and terminology of theoretical mechanics, It can be also useful to review 

basics from Landau's course on the topic [5]. Approach presented in this chapter is 

based on [6] and [4]. 

To begin explanation of what statistical physics is, we should start from historical 

motivation. The main goal of statistical physics is the study of collective behavior 

of systems containing a large number of particles. Even while, laws of statistical 

physics were historically developed for classical mechanics, they can be generalized 

and hold even for quantum systems. To describe the behavior of a mechanical system 

completely, we have to solve the corresponding number of equations of motion, 

depending on degrees of freedom. Dealing wi th common problems in macroscopic 

bodies, we are facing a huge number of particles (e.g. 10 2 2 atoms 1 cm cube of 

C u lattice). We can easily conclude impossibility of solving comparable number of 

equations and also specifying init ial conditions for every particle. A remarkable fact 

is that in contrary to intuition taken from previous consideration, with a rising 

number of particles the complexity of system properties is not increasing. However, 

we observe completely new behavior of the system, arisen from a very high number of 

its particles. This new collective behavior cannot be explained in purely mechanical 

terms but can be treated by statistical physics approach. [4] 

In statistical physics, objects of our interest are macroscopic systems consisting 

of a large number of various particles. Generally, there is no restriction on the type 

of these particles. Most common are of course atoms, spins, bits and many more. 

We can describe the system using phase space, a concept from classical mechanics, 

where one uses n generalized coordinates qi and corresponding velocities qiy where 

index i is representing degrees of freedom. In practice for building theory, it is more 

convenient to use momenta pi than velocity, at least because of conservation law. 

State of the system is described by a point in 2ni dimensional phase space and 

evolution of the system is described by its phase trajectory (line in phase space). A 

small part of system w.r.t. itself, but still possibly macroscopic, we call subsystem. 

If we consider the whole system as closed, i.e. it cannot interact wi th other systems, 

the subsystem is not closed. According to an application, the subsystem can be 

exchanging energy or even particles wi th the rest of the system through various 
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complicated interactions. Let 's imagine subsystem as a small region of phase space 

ApAq called phase volume. During the time, the system is evolving and the phase 

trajectory wi l l pass through this region many times. We define the probability of 

finding subsystem in this phase volume and corresponding state as 

w = l im —^, (1.1) 

where A t is time section of the subsystem being in mentioned phase space region 

and T is total time. Infinitesimal element of phase volume d0 is defined as 

d(f> = dqdp = dqi dq2... dqi dpi dp 2 . . . dp, = dqi dpiy (1.2) 

where last equality is fulfilled by using Einstein's sum convention. Finally, we can 

define probability dw as 

dw = p(pi, qi) dqi dpiy (1.3) 

where p(piy q^) is probability density of probability distribution. It is representing 

density number of states inside phase space element dw. According to general requi­

rements on distribution function, the normalization condition 

/ p dqidpi = 1, (1.4) 

has to be fulfilled. Integration is taken all over the phase space. 

For calculating average values of dynamical variables, we usually scope system 

for during long period and obtain time average. However, J . W . Gibbs brought a 

neat solution in which time averages are replaced by so-called ensemble averages, 

also known as thermal averages. The ensemble of a system is a vir tual group of 

many identical systems. The number of vir tual systems in ensemble is selected wi th 

respect to the number of accessible states of such physical system. A l l systems in 

the ensemble are equivalent and hold for conditions required by the original system. 

In this construction, we assume that averages taken over the ensemble can correctly 

substitute time averages of a single (original) system after a sufficiently long time. 

Justification of this equality is a point of interest in ergodic theory. Whi le equality 

holds for many common cases, it was not yet proven for all mechanical systems. 

(A) = A (1.5) 

Equation 1.5 is representing this ergodic problem, where L H S is ensemble average 

and R H S time average defined as 

(A) = / Aiq^pApip^qAdcf), (1.6) 
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A=]im- [ f(qi(t)Pi(t))dt= l im - [ f(gi(t)Pi(t)) dt. (1.7) 
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to 0 
There is an important assumption in time averaging, that statistical distribution 

of the dynamic variable is independent of the ini t ial state. This is satisfied after a 

sufficiently long time passed. 

In contrary to the probabilistic nature of systems consisting of many particles, we 

know experimentally that dynamical variables of macroscopic bodies in stationary 

state are measured practically constant with only small fluctuations. This follows 

from the shape of probability density function p which have a very sharp peak at 

average value. The peak is sharper the larger macroscopic body we study. This 

basic principle wi l l be explained in further sections. The state of a system where 

its physical quantities can be described by their mean values is called statistical 

equilibrium. If we interact with the system in time to and change its state, it wi l l 

relax to equilibrium. Dynamics of these transitions to equilibrium state is outside of 

scope of this thesis. 

Before moving forward, we have to note special case of statistical independence 

between subsystems. Subsystems were defined as smaller parts of the system, which 

are generally not closed. If we consider only short periods of time and also fact 

that subsystem can still form a macroscopic body, we can think of them as "quasi-

closed" or weakly interacting wi th surrounding space. [4] In this case of short time 

periods, subsystems are considered as statistically independent. That is, the state 

of one subsystem is independent on the state of other and its probabilities. From 

probability theory and statistical independence assumption we get 

p12 dg ( 1> 2 ) d p ( 1 ' 2 ) = p i d g ( 1 ) dp{1) p2 d g ( 2 ) d p ( 2 ) , (1.8) 

Pu = P\Pi- (1-9) 

So probability density of combined system (from 2 subsystems) is a direct product 

of subsystems prob. density. 

1.1 Liouville's theorem 

Equation of the continuity may be written in form 

% + div(pv) = 0, (1.10) 
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where divergence can be generalized for more dimensions as 

2s 

i=l 

djpvj 
Ox; 0. '1.111 

Upper bound of summation is 2s because of using full phase space and then X j are 

generalized " coordinates" q and p and corresponding generalized velocities Vi are q 

and p. So for our case, we obtain 

dp y 
dt ^ 

i=l 

d(pqi) djppi 
dq,t dp,i 0. ; i . i 2 ) 

where we carry out derivations and get 

s 

£ dp 
dt 

i=l 

.dp dqi . dp dpi 
Qijr + PIT + Pia~ + PIT 

dqi dqi dpi dpi 
0. ; i . i 3 ) 

Now, we are using Hamil ton canonical equations to obtain 

&H_ . _ _ m 
dpi dqi 

; i . i 4 ) 

where is the Hamiltonian of the subsystem. Due to the interchangeability of 

second partial derivative, it is easy to find that 

dqi _ d2n 
dqi dpidqi 

dp\ 
dpi 

; i . i 5 ) 

After this substitution, the terms wi th p in equation 1.13 are canceling each other 

and we get 
dp dp . dp 
at dqi dpi 

; i . i 6 ) 

We know that p = p(t, qi,Pi) so Equation 1.16 is clearly total differential of p. Finally, 

we have 
dp 
d l = ° ' 

; i . i 7 ) 

which is called Liouville's theorem. It says that probability density is constant and 

the probability of systems is behaving as incompressible fluid and has great impor­

tance in statistical mechanics as we wi l l see in the following section. 

1.2 Energy 
From Liouville 's theorem follows that probability density p is constant with time. 

So in case of the closed system, it can only be a function of variables, which are 

constant in time. In classical mechanics, we call these variables integrals of motion. 
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If we consider previously derived equality for probability density function p12 = pip2, 

is has to be fulfilled also for its logarithm 

logpi2 = logp i + logp 2 - (1-18) 

Therefore, it is obvious that the logarithm of probability density is an additive 

quantity. Then logarithm of p can be a function, depending only on additive integrals 

of motion. Fortunately, there are exactly seven additive integrals of motion (energy, 

momentum and angular momentum): 

p = p(E,p,L). (1.19) 

Even more, we can always select reference frame moving and rotating with the 

system center of gravity. So finally, we have left only one quantity, probability density 

is depending on - the energy: 

p = p(E). (1.20) 

This observation has far-reaching consequences and reveals the unique role of energy 

in statistics. It is possible to describe an equilibrium state of the macroscopic body, 

consisting of a very large number of degrees of freedom, wi th just its energy. We wi l l 

use this principle even in machine learning part of this work, which on first sight 

may look completely different from presented material from physics. 

1.2.1 Density of states 

W i t h previous observations about the constant value of phase volume and only 

energy dependence of probability density, we may conclude that also phase volume 

is depending only on the energy of system 0 = 4>(E). Let 's define dimensionless 

phase volume as 

d r - T ^ r - ( i . 2 i ) 

Normalizing coefficient (2ith)s represents the size of one state in s dimensions. 

However, we put it here just as a definition, its shape can be exactly derived from 

quantum mechanical considerations. Finally, density of states 7 is 

1(E) s i § . (1.22) 
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Fig . 1.1: Gibbs canonical ensemble. 

1.2.2 Gibbs canonical ensemble 

Let's define a system S consisting of TV particles and energy E which is allowed 

to interact (exchange energy) wi th its surroundings (reservoir) 1Z. Such a system 

is schematically shown in Figure 1.1. Exchange of particles is forbidden, so TV = 

const = JV 0. A s a simplification, we do not take into account the surface effects of 

the system, that means we consider the energy of system surface small w.r.t. the 

total energy of the system: Egy E. From the first law of thermodynamics [7] we 

have 

dU = 5Q - 5A + 5UN, (1.23) 

where dU is internal energy of a system (dU is total differential), 5Q heat supplied 

to the system, 5A net work done by the system and SUN internal energy of particle 

exchange. In case of heat differential form SQ, it is possible to find integration 

factor to create total differential. This integration factor is reciprocal temperature 

and created total differential is entropy dS defined as 

dS=±5Q. (1.24) 

For our purpose, we may restrict net work done by the system just to mechanical 

work 

5 A = Fdl = pS'dl = pdV, (1.25) 

here F is a force, dl is infinitesimal length element in direction of applied force, p 

is pressure, S' is surface and V is volume taken by system particles. If we have the 

system consisting only of one type particles, particle exchange internal energy is 

5Un = n5N (1.26) 

H is called chemical potential. However, /x is not potential from a mathematical point 

of view, so it is just a factor of energy change. TV is again the number of particles. 

10 



In previously considered system (Gibbs canonical ensemble), there is not allowed 

exchange of particles with reservoir, therefore we may write first law of thermody­

namics as 

dU = TdS -pdV (1.27) 

According to previous observations, probability of finding system and its surroun­

dings in the state of specific energy follows from energy additivity and phase space 

multiplicativity as 

ductal = p(^totai) d r t o t a l = p{E + E') dT d r ' , (1.28) 

but from Equation 1.9 we know that p(E + E') = p(E)p(E'). Then there is only one 

possibility of function dependance fulfilling all these conditions - the exponential 

function: 

p(E) = ea-?E. (1.29) 

Constants a and /3 wi l l be found from thermodynamics (limit case of statistical 

physics). The average value of energy is determined by 

U = J Edw = J Ep(E)dT = JEp{E)1{E)dE. (1.30) 

If we compute differential for this equation, we may compare it to the first law of 

thermodynamics (Equation 1.27). In this case, the only external parameter for each 

system in the ensemble is volume V. Thus we may write 

dU = J ^d(V)pdT + J Ed(p)dT, (1.31) 

where brackets after differential symbol d() are used to distinguish between total 

differential made by differentiation, from integration variables. Using supplementary 

relation for work dW done by force F acting on infinitesimal length element dl. 

pressure p, area A and volume V: 

dW = Fdl = pAdl =pdV, (1.32) 

the first term of equation 1.31 may be rewritten to the form: — JpdVpdT. For 

second term, we use trick of rewriting energy E using expected shape for probability 

density p (Eq. 1.29): 

p ( E ) = e a ^ E ^ E = ^-^\ogp. (1.33) 

Put t ing all together, we have 

dU = - J pd(V)pdT + ^ J d(p)dT-^J d ( p ) l o g p d r . (1.34) 
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Clearly in the first term we have formula for average value of the pressure, which 

is equal to the "macroscopic"pressure. In second term, order of integration and 

differentiation may be reversed. Whi le integral of probability density over phase 

space is equal to 1, its differential has to be zero. For the last (third) term we use 

well known "per partes"formula f dg — d(fg) — gdf. Rearranged E q . 1.34 is 

dU = -pd(V) - ^d(J plogpdT) + ^ J pd(logp)dT. (1.35) 

In the last term, we do differentiation of logarithm and we have f p-p d(p) dT. 

Again, after changing the order of differentiation and integration, the term is 

equal to 0. Finally, we have a relation for the differential of internal energy derived 

only from statistical physics consideration, which is possible to compare with well 

experimentally proven relation of thermodynamics (Eq. 1.27): 

dU =-pd(V) - ^d(JplogpdT). (1.36) 

Using this comparison, it is obvious that factor (3 has to be equal to the reciprocal 

temperature up to a multiplicative parameter (constant) k-Q 

kBT 

and differentiated part of the second term is relation for entropy 

S = - f c B / p l o g p d r . (1.38) 

Parameter ks is called Boltzmann constant and its value can be obtained only by 

doing an experiment. A requirement for experimental determination of one con­

stant parameter is a common sign of all well-defined physical theories (quantum 

theory, classical electrodynamics, general theory of relativity, ...). The physical in­

terpretation of k-B is heat capacity of one degree of freedom in the system. This 

intuitively follows from further considerations in many statistical physics texts [4], 

but unfortunately not this work. Obtained entropy relation serves as a guideline 

to understanding what entropy is. After an integration, we may see that entropy 

is equal to the average value of the logarithm of probability density (multiplied 

by constant). This relation (especially in the discrete case, where we replace p for 

probability w) is similar to Boltzmann's definition of entropy: 

S = kB\ogP, (1.39) 

P being a probability. Whi le this formula is engraved on his famous memorial in 

Vienna, he never wrote this equation in present form. Also, the Boltzmann constant 

ks (with the formula 1.39) was introduced by Planck [7]. 
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There is still unrevealed constant a left in relation for the probability density p 

in Equation 1.29. Now we use Equation 1.38 for entropy and rewrite logarithm in 

terms of p expectation (p = ea~^E). 

S = -kB / p l o g p d r (1.40) 

S = -kBa + kB(3 J EpdT. (1.41) 

Integral in the second term is clearly an average value of energy U: 

S =-kBa + kB/3U. (1.42) 

Rearranging previous equation (using (3 = l/(kBT) and expressing a there is 

S + kB(3U U-TS F 
a = i = i nr = T^f- L 4 3 

kB kBT kBT 
Last equality follows from thermodynamics, where F is Gibbs free energy (thermo­

dynamic potential) defined as F = U — TS. Now we have got both constants of 

previous expectation on function, describing probability density in Gibbs canonical 

ensemble: 

p{E) = e^F~E\ (1.44) 

The same derivation would be possible in a discrete case, where energies are quanti­

zed and integration is replaced by sum. Then, probability for finding system in state 

wi th energy En is 

wn(E) = e^F~En). (1.45) 

1.2.3 Part i t ion function 
Of course, sum of all partial probabilities has to be equal to 1 

n 
where term independent on n can be taken out of summation and moved to R H S of 

the equation: 

= e-?F =^ F = -kBTlog ( X > - ^ ) (!-47) 
n n 

In the end, there is a definition of the Gibbs free energy in the sense of statistical 

physics. More importantly, term inside logarithm is called partition function Z 

Z = Y,eßEn] or Z = J, eßEdT (1.48) 
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and plays a crucial role in the whole framework. Importance and detailed meaning of 

the parti t ion function is revealed in the following section about Bol tzmann distribu­

tion. However, even now it can be said that, if we are able to compute the parti t ion 

function of the statistical system, then we know nearly everything about the system 

through simple relation F = —k-sTlogZ. W i t h knowledge of the Gibbs free energy, 

one can easily compute entropy, internal energy, and pressure (state equation). 

1.2.4 Boltzmann distribution 

In practice, many classical systems may be modeled using Gibbs canonical ensemble. 

We call that these systems are described by Boltzmann statistics or Boltzmann 

distribution. However, the second term is incorrect from a strictly mathematical 

point of view, where distribution is defined as integral from probability density. In 

physics, authors sometimes use term distribution function or statistical distribution 

function with the meaning of probability density (especially in older works [4]) and 

the reader should carefully decide its meaning from the context. There are also 

other names used for Bol tzmann distribution in various areas, in mathematics it is 

Gibbs measure, in statistics log-linear model and in machine learning they use term 

softmax. 

Historically this "distribution"was derived by Bol tzmann using a different ap­

proach to presented one (through Gibbs canonical ensemble). A s we wi l l see later, 

it can be also derived from a completely different approach in information theory 

as the most probable distribution in a case when there is not any prior information 

about the system. It is the Bol tzmann distribution and mentioned fact, what is con­

necting such distinct research areas as statistical physics and machine learning (or 

generally information science). However, it is not only one connection, later there 

wi l l be revealed more nontrivial connections. 

There would be also the possibility to start text about machine learning wi th a 

definition of Bol tzmann distribution, out of nowhere, and bui ld everything else on 

this "axiom". O n the contrary, I believe that this common approach is dismissing 

many interesting consequences and limitations, which are clear after detailed ab 

initio derivation. Just to follow up, let's define the probability of finding a system 

in the state wi th energy E as 

-/3E(n) 
Pp{n) = (1.49) 

where factor (3 = -^f, where k-Q is Bol tzmann constant and T temperature. The 

numerator in R H S of Equation 1.49 is called Boltzmann factor and Zp is the parti t ion 
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function defined as 

n 
In this form, it is easy to see that partition function is a sum over all Bol tzmann 

factors, serving as a norm for probability. For the continuous case, the sum is replaced 

wi th integration (generally, the system of interest may have part of energy levels 

discrete and rest continuous). 

Whi le the description of a physical system may seem easy when we "only"have to 

compute parti t ion function and everything else is obtained from it, in practice, it is 

not that straightforward. Such a system can have infinitely many energy states which 

have to be taken into account. A s a result of those complications, there are only a 

few systems where we can find an analytical expression for the parti t ion function. 

Systems in higher dimensions (or) with various interactions can be studied only 

numerically or wi th proper approximations in field theory. It is worth to mention 

that in quantum systems, energy levels are degenerate and thus Bol tzmann factor 

have to be appended by degeneration factor g as Pp(n) = gn exp (—j3E(n))/Zp. A s an 

example of systems described by Bol tzmann statistics we note ideal gas, particles 

in an external field, but also interestingly a dilute plasma (which is central 

topic and source of spectroscopic information in L I B S ) . Last mentioned example 

reveals really interesting connections inside presented work. We are using statistical 

physics method to improve and understand machine learning algorithms, which are 

behaving in correspondence wi th Bol tzmann statistics. Afterward, we use those M L 

algorithms to process spectroscopic data originated from the process, guided by the 

same Boltzmann statistics. 

It should be emphasized that there exist different statistics describing systems 

above limitations specified for Gibbs canonical ensemble. In further sections, we 

briefly mention statistics describing systems beyond Boltzmann statistic, but we 

wi l l not derive them in detail as in the previous case. 
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1.2.5 Grand canonical ensemble 

Grand canonical ensemble is another model situation of equilibrium statistical me­

chanics. In contrast to Gibbs canonical ensemble, exchange of particles between 

system and reservoir is allowed. Rest of assumptions required for the former ensem­

ble are still demanded. After exhaustive derivation, similar to the Gibbs ensemble, 

we obtain 
W n > N = em-EnN+»N) . p N = em-EN+,N)^ ( 1 5 1 ) 

for continuous or discrete case, respectively. A s was mentioned before, \i is the 

chemical potential, N is an actual number of particles in the system and Q is grand-

canonical potential, fi has a similar meaning to Gibbs free energy in Gibbs canonical 

ensemble. It is easy to see that 

Q = -kBT l ogS , (1.52) 

where S is grand-canonical partition function or shortly grand sum defined as 

E = J2 e - ^ + W ; S = J2 [ e-PE»+^N dTN. (1.53) 

Clearly, the role of the parti t ion function is the same as before. 

1.2.6 Statistical description of identical particles 

In quantum theory, one cannot distinguish identical particles from each other. That 

means, if we interchange 2 identical particles, the system remains the same. Only 

different states of the system can be distinguished. According to the mentioned 

mechanism, quantum systems are described in a different way according to the 

nature of its particles. There is Bose-Einstein distribution describing the behavior 
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of bosons, which have symmetrical wave functions in its coordinates. Second is Fermi-

Dirac distribution for fermions wi th antisymmetrical wave functions. [8]. Derivation 

of the corresponding statistics is based on a principle, where, due to the property of 

identical particles, we have to count all permutations in parti t ion function as only 

one state. 

In Fermi-Dirac distribution, Pauli 's exclusion principle has to hold. The mean 

number of particles in the i - th state is 

Ni = ro(

 1 yj~~T> (1-54) 

where £j is energy of the i - th state. This type of a function is in mathematics called 

logistic function or (especially in machine learning) sigmoid. In low-temperature 

limit (/3 —> oo), we may easily inspect that all states are filled wi th one particle 

(actually there are 2 with opposite spins) unti l reaching state £f = \i called Fermi 

energy. Every state wi th higher energy than Fermi energy is vacant. Most prominent 

application for this statistics is the behavior of electrons in metals. 

In the case of bosons, they are not guided by Pauli 's principle so there is not any 

restriction on the number of particles in one state. In Bose-Einstein distribution, 

the mean number of particles in the i - th state is 

exp[/3( £ i - / / ) ] - 1 v ; 

There is a condition on chemical potential \x < EQ (following from the parti t ion 

function convergence). Again , we may construct low-temperature limit ((3 —> oo) 

and inspect, that every particle is in ground energy state. This behavior is a sign 

of the state of matter called Bose-Einstein Condensate. Another example of B - E 

statistics are photons. 

Apparently, the two mentioned distributions are different only in sign ± before 

1 inside denominator. Considering a system wi th higher distances between particles 

(dilute gas), not affecting each other or system with high temperatures and a great 

number of accessible energy states, we could suppose a " classical" behavior described 

by the Bol tzmann statistics. This assumption wi l l be confirmed by the following 

steps. To obtain the same limit dependence of both statistics, we have to get r id of 

term ± 1 in the combined equation: 

Ni = 77T,—~ r; • (1-56) 

This can be done if exponential part of the denominator is much larger in comparison 

wi th 1, which means that JVj 1. In such case 

Ni ^ - v (1.57) 
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what is classical Gibbs distribution and even more if we forbid particle exchange 

(/x = 0) there is the Bol tzmann distribution 

Ni ^ r . (1-58) 

A t this point, we have covered all important topics of equilibrium statistical physics 

of particles (except fluctuations) and we may move slightly to statistical physics of 

fields, where we only gather the most important topics and tools usable for machine 

learning. 
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2 STATISTICAL PHYSICS OF FIELDS 
In the previous chapter, we have studied the behavior of macroscopic systems com­

posed of a huge number of particles. A s it was discussed, classic-mechanical approach 

(computing equations of motion) is impossible considering the number of particles. 

Solution for this problem was to focus on the collective behavior of particles and 

regularities which have appeared. Many useful results were obtained, but we have 

dealt mostly wi th non-interacting systems in an equilibrium state. However, in the 

real world, we experience problems wi th various interactions between system par­

ticles, overreaching limitations of the statistical-mechanical approach. Field Theory 

became one of the most useful and precise physical theory of all time with applicati­

ons in Quantum Theory and also Statistical Physics, enabling to deal wi th much 

more complex systems. Fie ld Theory approach is many times based on outstanding 

ideas as using symmetries of the system and locality of interactions. Approximations 

taken wi th consideration of these ideas may rapidly simplify the description of the 

problem in comparison to ab initio approach, which could be often impracticable. 

Basic course on Statistical Physics of Fields usually covers phase transitions, 

criticality, fluctuations, renormalization group, and other branches, not covered in 

this thesis. We introduce only the concept of the Lattice Systems, Mean Field Theory, 

and slightly cover more general variational free energy approach. For a deeper insight 

to the topic is recommended to study book by M.Karda r [9] or introductory/review 

text [10]. 

2.1 Lattice models 

Lattice models of statistical physics play a crucial role in various areas of interest, 

ranging from condensed matter physics to theoretical physics. A s the name suggests, 

they are defined at lattice (e.g. atoms in crystalic structure) in contrast to continuous 

models. Their great importance is based on computability of complex physical sys­

tems consisting of many particles. In a few cases, there are exactly solvable models, 

besides to perturbatively solvable models. Another application is in computational 

physics where they serve as discretization tools for continuous problems. Especially 

for our topic, 2D Ising model reveals the connection between energy-based machine 

learning models and statistical physics, what is exactly the topic of presented work. 

A s a lattice model, we understand model defined on graph G = (V, E) where V 

are vertices and E edges (see figure 2.1). Most commonly G is regular D dimensional 

square (or hyper-cubic) lattice, but we can imagine even more general geometries. 

[10] 
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Fig . 2.1: Graph of lattice model. 

In the vertex points, there are placed statistical degrees of freedom (e.g. discrete 

spins or more generally continuous variables). Spins are interacting wi th each other, 

but commonly interaction is restricted w.r.t. position (to nearest neighbors). We 

assign an energy functional (Hamiltonian) TL = E/{kBT) to every spin configuration 

depending on interaction strength and action of external fields. If our model lives 

in dimension D > 2 we observe phase transition at T c . However, even if we have 

restricted interaction to short ranges, correlation length between spins can reach 

long distances close to T c . More about critical behavior of the statistical systems 

could be found in [9]. 

2.1.1 Ising model 

Most representative candidate of lattice models is the Ising model (fig. 2.2). Hami l ­

tonian for 2 dimensional Ising model is defined as 

where Si = ± 1 stands for a spin, Jj is a coupling constant and hi is external mag­

netic field acting on element i. The sum is taken only over the nearest neighbors. 

Ising model is exactly solvable only for ID and 2D, while in 2D there is required 

h = 0. Despite non-analytical solutions for D > 2 and nonzero h, there is good 

understanding of model behavior based on approximations from field theory. 

To examine properties of the Ising model we have to compute its parti t ion 

function and correlation functions. Probabil i ty of finding system in specific con­

figuration follows Boltzmann distribution 

e-m(s) 
(2.2) 

here factor (3 = j^f, where / C B is Bol tzmann constant and T temperature. Zp is 
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F g. 2.2: Ising model in 2D. 

partition function defined as 

Zp = Y.e~ms) (2-3) 
s 

Ising model can be further generalized for a case where coupling (Jij) and ex­

ternal field (hi) are no more constant. We call this system spin glass and it wi l l be 

mentioned in connection with Machine Learning. 

2.2 Mean Field Theory (MFT) 

We describe Mean Fie ld Theory on an example of the Ising model, taken from [10]. 

A s was stated, it is impossible to analytically compute parti t ion function for the 2D 

Ising model in the external field. Suppose 2D Ising model wi th constant external 

field h and constant coupling J 0 . The energy of specific spin configuration (s) is 

E(s) = -J0J2sisJ-hJ2si, (2.4) 

where summation is over pairs of neighbor sites. 

For selected spin inside Ising model, M F T is replacing interactions wi th neighbors 

by placing it into an effective field created by neighbor spins. For our 2D case, mean 

field is h + 4 J 0 m , where rh is local magnetization of the spin (m = (s)). That can 

be expressed by replacing the first sum in equation 2.4 by by 4m J2i Sj. The energy 

of spin configuration is then transformed to a sum of independent terms 

E(s) -»• E(s) = J ^ ( 4 J 0 m + h)si = -(h + Ah) ^ s*. (2.5) 
i i 
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Now, when we got r id of interaction, partition function could be computed for a 

single spin as 

ZSi = e~^h+Ah) = 2cosh(f3(h + Ah)). (2.6) 
Si=±l 

For a system consisting of TV spins we have Z^F = (ZSi)N. Local mean energy may 

be defined as = ( 4 J 0 m + h)si. Using the Bol tzmann distribution we obtain a local 

magnetization 

m = ^ e ( + ) - = tanh(/?(4J 0 m + h)). (2.7) 

2.2.1 Variational Free Energy Minimizat ion 

Mean Fie ld Theory described above is only a special case of more general appro­

ach by Feynman and Bogoliubov, using variational free energy [11]. Previous re­

sults of M F T may be also obtained by approximating complex distribution P(x) = 

exp[—f3E(x)]/Z by simpler distribution Qe(x) = exp[—J3E\{X)\/ZQ. Such an appro­

ximation is done by adjusting parameters 9. We need to define the relative entropy 

(or Kullback-Leibler divergence) as 

DKL(Q\\p) = J 2 ^ ( x ^ % r l - ^ 

It describes a similarity of two probability distributions (more exactly, it measure 

information loss by using approximation Q instead of true probability distribution 

P in bits or nats). DKL(Q\\P) = 0 if and only if Qd = P, else DKL > 0. Using 

definition 2.8 and taking /3 — 1, we obtain 

DKL(Q\\P) = J2Qo(x)logQe(x) - ^ Q e ( x ) l o g P ( x ) 
x 

= S(Qe) -J2Qe(x)[-E(x) - logZ] ( 2 ' 9 ) 

= {E{x))Q-S{Qe)+\ogZ, 

where S(Qe) is the Shannon's entropy, { )Q is an average over distribution Q and we 

may notice last term, which is well-known "true"/ree energy (3F = —logZ (derived 

previously in discussion of Bol tzmann distribution). Using equation 2.9, variational 

free energy Fd is defined in relation 

PFo = DKL(Q\\P) + PF, (2.10) 

PF6 EE P(E(x))Q - S Q = J2 Qe(x) log e x p f ^ ( x ) ] • ( 2 ' U ) 
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Equation 2.10 is implying the key idea of this approach. B y varying parameters 6 

in order to minimize /3FQ, we improve our approximation Q of true distribution P 

(because of minimizing Kullback-Leibler divergence). This result wi l l be extremely 

useful for consideration of unsupervised neural networks and their possibility to 

"learn"probability distribution, studied in chapter 5. 

B y minimizing variational free energy function of Ising model wi th respect to 

variational parameters a, we would obtain (for details see [11]) the same equations 

as were derived by simple mean field theory approach in section 2.2. However, now 

we use more general form 

To identify the new notation wi th 2D Ising example, the field am = /3(4J 0 m + h) 

(the factor 4 originated from summation) and obviously xn — fh — (s). Satisfying 

equations 2.12 and 2.13, extremization of variational free energy FQ is guaranteed. 

Generally, stationary points of Fg could be also maximum or saddle (not only mini­

mum). This could be treated by asynchronous updating of parameters. [11] 

(2.12) 

(2.13) 
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3 SPECTROSCOPIC DATA 
In the introduction, we have defined spectroscopy in general as a collection of me­

thods studying the interaction of electromagnetic radiation wi th matter. Since this 

term could cover big amount of techniques wi th considerably distinct underlying 

physics and processes, it is difficult to define some common properties of spectrosco­

pic methods. However, the result of any spectroscopic measurement is spectrum. For 

example, the spectrum may represent a number of detected photons on specific wa­

velength over a defined range of wavelengths, but also a number of detected particles 

wi th specific energy (in case of spectrometry). Generally, it describes the dependency 

of "something"on "something". Even for such uncertain definition, we may collect 

some "data-related"properties of spectroscopic data, which holds for almost all ty­

pes of spectra. Probably the most common imagination about spectroscopic method 

would be emission spectroscopy or absorption spectroscopy. In our approach, we sup­

pose spectra of emission spectroscopy, but it can be easily generalized to other types. 

Here we present basic properties of spectroscopic data (note that some undefined 

terms are used for brevity, but wi l l be properly explained in Appendix about L I B S ) : 

• high-dimensionality 

Dimension of spectroscopic data is dependent on the resolution of a spectrome­

ter, used for measurement. It is not unusual to have tens of thousands variables 

in spectral data, requiring special approaches to their processing. 

• sparsity 

In spectral data, we usually observe peak-like structures (spectral lines) of 

known shape and positions. This structure is material-specific and offers va­

luable information. However, lines are covering relatively minor part of wa­

velength range and they are surrounded by "unimportant"information (noise, 

continuum, ...). A trained spectroscopic specialist wi l l surely distil l only impor­

tant features, but in the case of automatized spectra processing, this became a 

problem. The simple computational model cannot easily recognize what is im­

portant and what is noise, special techniques are required to make it possible. 

This motivation is one of the cornerstones of whole Machine Learning as we 

study in the corresponding chapter. Also, the computational time required to 

process such a high dimensional data is growing rapidly. To sum it up, finding 

a universal tool for recognizing important parts of spectra and suppressing 

noise would be beneficial to automatized processing of spectra. 

• redundancy of spectral information 

Considering atomic emission spectroscopy (for example), there are usually 

many spectral lines corresponding to one element present in a single spectrum. 

If our goal is to decide the presence of a specific element in the measured sam-
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pie, we don't have to identify all lines, but one or two (for confirmation) is 

enough. This fact implies that spectral data are highly redundant for specific 

tasks (classification, detection of elements, ...), and can be used wi th advantage 

to improve analysis of spectra. 

Different type of redundancy is present inside a single spectral line. A s we 

derive later, line is not infinitely thin, but have peak-shape determined by 

line-broadening mechanisms. From the data point of view, there are many 

variables corresponding to a single peak, which are correlated together. This 

needless extent of variables can be represented by only a few variables (central 

position/wavelength of the line, total intensity, and width of Voigt line profile -

discussed later). Amount of necessary variables is determined by task, we aim 

to solve. For determination of the presence of a specific element in the sample, 

only one variable is enough, while for quantification we naturally need more 

information. Property of spectral redundancy is motivating to use dimension 

reduction techniques for spectral data. 

Respecting simple properties of data, generally valid for most spectroscopic tech­

niques, it is theoretically possible (and beneficial) to extract only important infor­

mation about spectral lines and drop surrounding positions wi th only noise. Com­

plementary to this, we may "shrink"peaks to single intensity values (keeping aside 

information about shape and width of peak) for reducing dimension even more. In 

practice (for example of simplest classification), we may end wi th only a few resul­

t ing variables representing the presence or absence of selected elements. This is a 

huge reduction of dimension from tens of thousands of variables to just a few relia­

ble elements (binary values for presence/absence). Of course, the described process 

is commonly employed by a spectroscopic specialist, without ambiguity. But con­

sidering the automatization of spectra processing, finding correct and interpretable 

method is very challenging and matter of active research. 

In appendix, we describe underlying physical processes of spectra creation for 

representative atomic emission spectroscopy method - Laser-Induced Breakdown 

Spectroscopy (LIBS) . Naturally, those processes are method-specific and cannot 

be taken as valid for other methods generally. L I B S was selected as an example 

to describe complex processes responsible for the shape of measured spectroscopic 

data. So, even when some following mechanisms may not be generalizable to other 

spectroscopic techniques, is important to remind that previously mentioned proper­

ties are valid in general. 
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3.1 Laser-Induced Breakdown Spectroscopy 
(LIBS) 

L I B S is an analytic spectroscopic technique for obtaining the elemental composition 

of the sample. High power laser pulse, focused on the target, is used for sample 

analysis. Concisely, the process of laser-matter interaction consists of few following 

stages. Firstly, a small volume of material is heated, evaporated and atomized -

microplasma is created (see Figure 3.1). 
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Fig . 3.1: Schematic representation of plasma creation process. After evaporation of 

material due to the applied electromagnetic field, molecular gas is formed. Addi t ion 

of thermal energy to the system results in the formation of atomic gas and further 

after ionization of atoms, the creation of plasma. 

Exact process is dependent on used wavelength and time, for which radiation 

is emitted. For clarity, let's suppose the case of nanosecond pulsed laser (this me­

ans, that photons are radiated during timescale ranging in few nanoseconds). After 

plasma creation, radiation is still "on"and atoms are excited to higher energy levels. 

In the plasma plume, there are competing various mechanisms of energy transfer 

and dissipation. A t this stage, plasma mostly consists of free electrons, ions, atoms, 

but st i l l possibly some molecular structures. Common temperature of such laser-

induced plasma could be cca 10 000 - 20 000 K . Plasma plume is naturally ex­

panding to surrounding space and during this expansion, plasma is cooling down. 

During this process, electrons are recombining back to atoms and binded excited 

electrons undergo radiative transitions to lower energy levels. Photons created du­

ring these transitions have specific wavelengths, depending on the energy difference 

of corresponding levels. In L I B S we collect radiation of plasma and guide it to the 

spectrometer. Result of L I B S measurement is a line spectrum, what can be though 

as a "chemical fingerprint" of examined material. One of the greatest advantages of 

L I B S comparing to other techniques of similar interests ( I C P - M S , L A - I C P - M S , . . . ) 

is the speed of the analysis (currently up to 1 kHz) . This feature makes it suitable 
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for mapping bigger surfaces wi th a lateral resolution in the order of tens of micro­

meters. Analysis by L I B S usually doesn't require any sample preparation and cost 

practically nothing. Thus, it is possible to provide L I B S analysis at great distances 

(up to 30 meters) and outside the lab. The great advantage of L I B S is also a possi­

bili ty to measure samples in l iquid or gas phase. Applications of L I B S ranging from 

the metal industry, environmental studies, geology to space exploration. Nowadays, 

there is also a growing interest in biological application of L I B S , which resulted in 

many technological improvements. For example, special techniques for lowering the 

size of the laser spot and preserving the adequate environment for samples during 

analysis can rapidly improve obtained results. 
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4 MACHINE LEARNING 
It has already been mentioned that in contrast wi th traditional statistical analysis 

of data, Machine Learning is aiming primarily on prediction and not to estimation 

of some parameters describing data. Even more, methods of M L are more suitable 

for use in case of high-dimensional data. Of course, there are many aspects those 

two fields have in common, such as using an observable x representing the system of 

interest. This system is guided by a generating process (or model) wi th parameters 

w and then the probability of observing a system in state x is given by conditional 

probability p(x\w). If we perform an experiment on the system, we measure a set 

of observables X, which are used to fit a model of parameters w. Surely, a model 

obtained from fitting data and real model are generally distinct due to noise and 

error originated from the measurement. Thus we are searching for parameters that 

maximize the probability of observing X as w = argmax m p(X|u>). F ina l remark 

to the difference of M L and statistical analysis is that while in case of statistical 

analysis one is considering the accuracy of w used for estimation, in M L interest 

is placed to the possibility of the model to predict behavior for new observation, 

also called generalizability of the model. To reach a goal of M L (good generalizabi-

li ty of model), different and "new"approaches has to be used. New approaches and 

techniques to deal with large high-dimensional datasets raised from many different 

fields as computer science, statistics, biology and importantly physics. Whi le M L is 

a young and fast developing branch, it may sometimes rely on more empirical ob­

servation and formal mathematical proofs may be lacking. However, similar cases are 

well known also in physics, where we may have good intuition and empirical results 

for the theory, but internally it is inconsistent (e.g. Q M Dirac's equation, path inte­

grals, Ising model for higher dimensions and many more). Fortunately, physics have 

good potential wi th helping to define and understand the behavior of M L models. 

To mention parts where M L strongly rely on physics, there are notoriously known 

examples as Monte-Carlo methods, variational methods and finally so-called energy-

based models of M L which are topic of main interest in the thesis. The way of using 

physics to the understanding of M L is searching for connections between structures 

and using abstraction to explain its behavior. Besides the influence of physics to 

M L , surely there are other contributing fields and approaches to M L which are not 

presented here. Greatest importance wi l l be taken to describe basic cornerstones of 

M L as-is the process of learning in 2 most basic cases (supervised and unsupervised) 

generally. The task of supervised learning is usually a classification of data or regres­

sion, while unsupervised learning is more abstract and looking for some patterns or 

new regularities in original data. After defining basic concepts, we move to a subset 

of M L which is Art i f ic ial Neural Networks, leaving many important topics and sub-
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branches untouched. To obtain a consistent and complete understanding of M L , the 

reader is encouraged to see monograph by C M . B i s h o p [12] or recent well-written 

introduction to the topic by P.Mehta et al. [13]. Our presentation of the topic in the 

thesis is partially inspired and hierarchically consistent with the second mentioned 

reference. 

Our treatment starts wi th the procedure of ML-rela ted analysis. Fi rs t ly suppose that 

there is dataset X originated from some generating process, which we would like to 

learn about. To learn about the process, we build a parametric model g{w) based on 

our knowledge of the generating process. If we have a model, there is a need for some 

figure of merit describing how well can model describe observed data X. This figure 

of merit is called cost function C(X, g{w)). A simple example, for the cost function 

is often used squared error (which is a good metric for low dimension, but as we wi l l 

see later problematic in higher dimensions). Learning process could be defined as the 

changing of model parameters to minimize the cost function. Standard approach of 

learning arbitrary M L model is a separation of dataset X disjunct subsets, training 

strain, validation X v a i i d and test X t e s t . Model training is done on the training and 

validation data (sometimes collectively called train data X t m i n ' ) , while test data 

are used to obtain final performance. To compare the performance of model on the 

training set with performance on the test set, we introduce in-sample error and out-

sample error respectively. In-sample error is just value of cost function for model wi th 

best fit, Ein = C(Xtridn>,g(w)), where w = a r g m i n w C ( X t r a i n , g ( w ) ) . Similarly, out-

sample error is defined as Eout = C(Xtest,g(w)). It is obvious that Ein is generally 

always lower than Eont, because of the way how the model was trained. During 

the learning process, the model could become overtrained, which means that in-

sample error is lowering while the out-sample error is growing rapidly. Overtraining 

is an unwanted effect preventing the model from good generalizability. In further 

sections, we closer discuss mechanisms of how to control and prevent overtraining 

in the learning process. 

In order to clarify abstract definition of M L model, we demonstrate mentioned 

terms on a simple model of polynomial regression, where cost function wi l l be the 

basic squared error. Let's suppose dataset obtained from some generating process 

( ID function f(xi) in this case) affected by additive Gaussian noise. Thus data are 

described by equation 

4.1 Model and Cost Function 
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where rji is normally distributed additive noise wi th an average value equal to zero 

and variance a. 

0 5 10 15 
X 

F ig . 4.1: Noisy observation of data produced by I D function with constant sampling 

and fitted polynomials of different orders. 

In the picture 4.1, we may see such observation of noisy data wi th fitted poly­

nomials of 1st, 3rd and 30th order. We use this example for an explanation of the 

difference between fitting and prediction. It is clearly visible that fitting by line (1st 

order polynomial) is taking into account the only global trend of data, but ignores the 

true shape of function and noise. This behavior is well expected, due to the simpli­

city of a model with only one parameter. Whi le the fitting performance of the linear 

model is really poor (computed squared error would be high), its predictive power is 

not worst (in comparison wi th high-order polynomials). Considering the polynomial 

of 3rd order, both fitting and predictive performance is improved. Even more, in the 

presented example, it seems that 3rd order polynomial is best for regression of data 

and thus best for revealing generative process (function). Last curve representing 

fitting by 30th polynomial obtained the best result in fitting (lowest squared error), 

but it is easy to see that the predictive power of such model is worst. This is a nice 

example of overtraining or overfitting in this case. To conclude, the function used for 

dataset generation was a cubic polynomial with additive noise superposed. Thus, it 

is not surprising that the best predictive power was obtained by model consisting of 

3 parameters. This discovery is easily extendible to other M L models (more compli­

cated than polynomial regression). If the generating process of data is simple, using 

a model wi th many parameters wi l l tend to overfit and capture the noise of the data. 

This simple statement acquired big importance especially in Art i f ic ial Neural Ne­

tworks, where the model is consisting millions of parameters and special techniques 

to prevent overfitting has to be applied. However, it is worth to mention that while 

considering large dataset containing a huge number of observations, the role of noise 
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and overfitting is restrained by good statistical behavior. More extensive treatment 

of polynomial regression could be found in the mentioned work [13], where authors 

also discuss the role of the number of observations and model complexity to errors 

(in-sample and out-sample). Figure 4.2 is introducing so-called bias and variance 

of M L model. Generally, it can be said that we are looking for a model wi th high 

bias and lowest possible variance, which of course comes for a price. Bias is l imiting 

the best possible performance for the case of having infinitely many observations 

(training data) and variance is setting fluctuations in performance. 

Number of data points Model Complexity 

Fig . 4.2: (left)Error dependence on number of observations, (right) Error as a 

function of model complexity. The figure is introducing competing bias and vari­

ance of the M L model, wi th optimal value for model complexity. ( [13]) 

4.1.1 Gradient Descent 

Previously, we have mentioned essential aspects of M L analysis, data division, mo­

del building, and model-parameter dependence. Now, let's move to description of 

learning process itself, considering multi-parametric model g(w) wi th cost function 

C(X, g(w)). Training (learning) of a model is done by minimizing the cost function 

for observations X. The actual state of the model could be imagined as a point in 

multi-dimensional parametric space (similar to phase space of statistical physics). 

Obviously, it is impracticable to compute cost function for every point in space for 

models containing a large number of parameters. But if we imagine this or consi­

der the model of only a few parameters, we obtain multi-dimensional landscape of 

cost function wi th many local minima, saddles, and complicated structure. A simi­

lar problem is well known in statistical physics - spin glass theory, where energy 

landscapes are considered especially for saddle points. Back to M L , optimization of 

the cost function in such glassy landscape is clearly challenging problem requiring 

a nontrivial approach. Even more, while considering datasets wi th multi-categorical 
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inputs and varying samples inside the category, is extensively difficult to capture 

this complexity inside simple model. 

Define energy function of a model as E(0) = C(X,g(w)), what is just another 

nomenclature for the cost function. One of the reasons for using term energy is 

also additivity of this variable. Thus, for example in polynomial regression discussed 

above, the energy function is a sum of mean squared error for al l data points %. 

Generally 
n 

£ ( 0 ) = J > ( X „ 0 ) , (4.2) 
i=l 

Bi being mean squared error of i - th data point. Generalizing gradient operator of 

differential calculus to more dimensions ( V / = J ^ g ^ e , ) , we have a tool of finding 

local minima in energy landscapes (formally gradient is defined as the direction of 

biggest growth, what can be easily fixed by including minus sign). In M L we call 

gradient descent (GD) an algorithm which iteratively translates model in parameter 

space to lower energy. Initial state of the model 60, is changing according to 

0o = 0o - vt, (4.3) 

where one iteration is 

vt=r]tVeE(0t), (4.4) 

T)t being so-called learning rate which is regulating the size of translation step in 

parametric space. Using a small learning rate wi l l ensure convergence to a local 

minimum of the energy function, but the price for it is extensive computational 

time. Middle-to-big learning rates may cause oscillation around minima or even 

divergence, respectively. Thus, it is clear that the setting of acceptable learning rate 

is crucial stability of gradient descent algorithm and so for learning a model. L e C u n 

et al. in their work [14] had shown that the optimal learning rate could be found as 

This derivation was done by using insight from more complicated (w.r.t. gradient 

descent) Newton's optimization method. According to used learning rate, 4 learning 

regimes of model exist (see Figure 4.3). A s was mentioned earlier, we should try 

to keep the learning rate at optimal value, because too low or high learning rate is 

preventing the model from successful training. 
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Fig . 4.3: Convergence of a model to a local minimum for various learning rates. The 

energy function is I D quadratic potential, (taken from [14]) 

Now, after obtaining a tool for learning a model, limitations of such an algorithm 

should be noted. It is clear, that the gradient descent method is finding only local 

minima of the energy landscape, which can be really poor for overall performance of a 

model. Even more, it is a deterministic algorithm, so it ends up in the same minimum 

for specific ini t ial conditions (0o). Other problems of G D are the computational 

cost of gradients computing for large datasets, strong dependence on learning rate, 

isotropy of learning rate and the possibility of exponential times for escaping saddle 

points. These limitations are restricting the G D method from use in multi-parametric 

models for treating large datasets. However, there exist many improvements of the 

method to make it capable deal with such problems, especially in Neural Networks. 

One of the improved G D methods is Stochastic Gradient Descent (SGD) and as 

the name suggest there is stochasticity introduced. This is done by restricting sum 

in equation 4.2 for % e Bj, where Bk is a minibatch of the original dataset. Thus, the 

original dataset is divided into K mini-batches of equivalent size (k = 1,2, ...,K), 

batch size M being n/K, where n is the number of total observations (data-points 

in the presented example). Then the gradient of energy function is 

where WQE' is gradient over minibatch of the energy function. Rest of algorithm is 

identical to G D (vt = r}tVgE'(&t); 60 = 60 — vt). A s a result, S G D is replacing 

total gradient (considering all samples) wi th only approximative gradient and thus 

AI 

(4.6) 
iSBk 

34 



introducing stochasticity to the way of searching for the minimum of the energy 

landscape. Advantages of S G D are the following: preventing from being stuck in a 

local minimum, increasing the speed of calculation and regularization of M L model 

(preventing the model from overtraining), which wi l l be mentioned later. 

Another practice of improving S G D algorithm is "adding momentum" 

where 7 is a momentum parameter (0 < 7 < 1). This type of algorithm is called 

gradient descent with momentum ( G D M ) and is clear that for 7 = 1 we got back 

to S G D . A simple analogy from physics can be found in the motion of a particle 

(mass m) in viscous medium (drag //). After a detailed analysis of the analogy (see 

ref. [13]) we may found that momentum parameter is proportional to the mass of 

the particle and thus effectively generates inertia. Inertia helps to gain speed for the 

algorithm in flat parts of the energy landscape and oppositely reduce oscillations 

and smoothen the trajectory in changing parts of the landscape. 

There are also other more-advanced methods, usually based on using higher or­

der moments of the gradient. A s an example of a widely used algorithm, A D A M 

optimizer is the method using the first and second moment of the gradient to adap-

tively set the learning rate for different parameters, thus introducing anisotropy to 

parameter space. Learning rate is adapted proportionally to the signal-to-noise ratio, 

which is extremely beneficial in ignoring of small fluctuations in energy landscape 

and focusing to the general trend. In A D A M there are sti l l basic features as memory 

(inertia) or stochasticity included. 

4.1.2 Max imum Likelihood Estimation ( M L E ) 

. M L E is the method used to estimate parameters of a model for some known 

fixed data. It is based on maximizing the likelihood function p(X\w), describing 

the probability of observing the data X for varying parameters w of some prior 

distribution p(w). Thus in M L E , we choose parameters which maximize likelihood 

(or equivalently log-likelihood) of the observed data [13]: 

For this task, the Bayes theorem is used for obtaining a posterior distribution 

p(W\X). Even more, we need parti t ion function and tool for drawing samples from 

posterior distributions (usually done by Markov Chain Monte Carlo methods) [13]. 

(4.7) 
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4.1.3 Logistic Regression 

Unt i l this point, we have discussed properties of models wi th continuous outputs. 

However, many tasks of M L are dealing wi th categorically tagged data (classification 

tasks). Common applications of M L classification are: assigning spectra to specific 

materials, distinguishing pictures of cats and dogs, classifying critical phase of Ising 

model and many more. Logistic Regression is a basic representant of models wi th 

categorical output (binary). In spite of it's relative "simplicity"(or commonness) it 

is stil l widely used inside of complicated modern Deep Learning models. 

Simplest approach for obtaining binary output from continuous input would be 

setting of some threshold or rescaling values and using signum function (defined as 

f(x) = sign(a;) = 1 for x > 0 and sign(x) = 0 for x < 0). This type of classifier 

is called "hard", also known as perceptron in M L community. In contrary, Logistic 

Regression is a representative of "soft"classifiers. The output from logistic regression 

is interpreted as a probability of data sample bmxi belonging to a category y 4 = {0,1} 

as 

P(yi = l\xi,0) = - 1—FW, (4.9) 
1 + e i v v 

P{Vi = 0\Xi, 0) = 1 - P{Vi = 1\XÍ, 0), (4.10) 

where 0 are model parameters. Equation 4.9 is well known in statistical physics, for 

system consisting of two energy levels. 

There is possibility to generalize logistic regression to multi-category classifi­

cation model, called also softmax regression. Cost function to optimize in logistic 

regression is cross-entropy (see [11] and [10]). 

4.2 Artificial Neural Networks (ANN) 

A N N are one of the most used tools in modern M L . Common way of introducing 

A N N is a statement that inspiration for their design came from the human brain and 

its possibility to learn. However, the compatibility of this statement wi th modern 

observations in neuroscience is up to a discussion, but it is satisfactory enough for 

our considerations. 

Common architecture of such neural network consists of neurons (or nodes) grou­

ped in the input layer, hidden layers and output layer (see Figure 4.4). The input 

layer, consisting of nodes is representing training data, which are fed to the network, 

sample by sample. Roughly speaking, hidden layers transform inputs to output data 

of the different shape. 
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hidden layers 

Fig . 4.4: Example of the basic architecture of Art i f ic ia l Neural Network consisting 

input layer, hidden layers and output layer with 2 neurons. 

Nodes in each layer are connected to every node in the following and previous 

layer, but not wi th other nodes in the same layer. A number of hidden layers may 

vary and while there are more hidden layers present, we speak about Deep Learning. 

This name, originated by Hinton [15], was successfully used to rebrand and awake 

older field of A N N . Of course, reborn of the A N N was caused primarily by the ap­

pearance of the new approaches and efficient algorithms and not just by name. Back 

to the architecture of A N N , through the connections between neurons (or layers), 

simple mathematical operations (parametrized multiplication, sum, and nonlinear 

mapping) on inputs are evaluated and passed to the next layer. The whole mecha­

nism can be learned by a technique called backpropagation which is described in 

appendix. Learning of A N N can be though as showing labeled inputs or patterns 

to network wi th adjusting its parameters to obtain specific outputs. After learning 

procedure, the network can be used for example to classify unknown data - this is 

the case of supervised learning discussed later. There is also another big group (or 

groups) of A N N which in not totally compatible with the presented introduction. 

These are networks used for unsupervised learning (or Reinforcement Learning - not 

described in thesis), in this work treated separately later. 

A building block of A N N is a neuron, computational unit wi th n + 1 input 

connections and one output connection (see Figure 4.5). 
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Fig . 4.5: Schematic drawing of neuron wi th n + 1 inputs, weighted sum operation 

and nonlinear function before the output y. 

Input connections are supplying data (values) Xj and mult iplying them by weight 

factor Wi. There is one special input xo called bias. Inside of neuron, those values 

are summed up and passed to activation function a. Mathematically, for the fc-th 

neuron, we have 

z(k) =J2w(

i

k)x<

i

k) +b(k), (4.11) 
i. 

y « = o-(z^), (4.12) 

where is a weighted sum of inputs and y^ is output from the neuron. The 

output is calculated using the activation function, which is a non-linear function. 

Various types of activation function are used, while most common are perceptron 

(historically), sigmoid function and R e L U (have Rectified Linear Uni t ) , all shown 

in Figure 4.6. 

Perceptron Sigmoid ReLU 

- 5 0 5 - 5 0 5 - 5 0 

Fig . 4.6: Graphs of common activation functions, (taken from [13]) 

Considering the graph of functions, differences between them are obvious. First 

two mentioned have problems wi th saturation for large input values and treatment 

for this problem came in the form of R e L U . However, sigmoids as activation function 

are still used at specific places of neural network or wi th proper normalization. A s 

it was mentioned, learning is usually done wi th Gradient Descent methods which 
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have a different effect on different activation functions. Obviously, G D learning can­

not be used for perceptrons, due to non-zero derivative only at zero. Sigmoids are 

continuous well-behaved functions, but suffer from vanishing gradients effect. This 

is caused by saturation of function for larger values, where learning is rapidly slowed 

or stopped. Treatment for vanishing gradients came in the form of R e L U function, 

which is now one of most commonly used activation function even despite discon­

tinuity at zero. Selection of correct activation function or its combination depends 

on a specific application. Obviously, for classification tasks, the output layer has to 

consist of functions with possible categorical output as sigmoids, while in regres­

sion task we require some linear function at the single neuron of the output layer. 

However, there is not any exact or optimized way how to choose correct architecture 

because of dependence on a huge number of parameters, preventing to perform stan­

dard optimization. Of course, there are some recommended approaches, but often 

experience and heuristic are used. 

4.2.1 Deep Learning 

There exist a theorem, stating that arbitrary continuous function defined on M n can 

be approximated by single layer A N N wi th only modes requirements on activation 

functions [16]. However, a number of neurons in that single layer network has to be 

sufficiently large for obtaining required accuracy, which leads to impractible com­

putation. For a great advantage, it was found that increasing number of layers and 

reducing number of neurons in a single layer could bring demanded representative 

power and lower computational requirements drastically. Whi le the depth of the 

network is raising, also its complexity is growing rapidly and computing gradients 

for learning is quite challenging. That was probably one of the reasons for a succes­

sion of failures in attempts of applying A N N to M L task in early days and also the 

reason of great success in the modern era of A N N , where we have good approaches 

for this task. Algor i thm suitable for computing gradients in deep networks is called 

Backpropagation and was mostly popularized by G . Hinton [17], but originally was 

found even before him. 

4.3 Regularization techniques 

Problems wi th overtraining of M L models were repeatedly mentioned through the 

whole chapter and here we focus on special techniques developed to overcome this 

unwanted effect of learning. Collective names for those techniques is regularization. 

To refresh motivation and explanation of why models tend to overtrain, the example 

of polynomial regression from section 4.1 wi l l serve well. Models with the number 
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of parameters comparable to the number of data samples tend to overfit and de­

scribe intrinsic noise of the data, which is every time present. In extreme case, 

where the number of parameters is way higher than the number of samples (p > ti). 

models cannot learn. This is exactly the reason for poor performance of A N N to 

tasks, where only small datasets are available (but excellent for huge datasets). 

Most common forms of regularization are surely L 2 penalty (Ridge regression) and 

L i penalty(L J4S'S'(9), which were firstly used in linear regression and sti l l serve even 

for more complex models. Formally, methods are adding some penalty to regres­

sion problem, resulting in the following way of searching for model parameters. In 

Ridge-Regression we add L2 norm to the cost function (least square loss function) 

and so L\ norm for L A S S O Regression. The basic idea behind L A S S O is reducing 

complexity (by putt ing some parameter weights equal to zero) and Ridge is reducing 

the variance of model while increasing its bias. Unfortunately, detailed treatment of 

those methods is beyond the scope of this work, but an interested reader could find 

more in work [12] or [18]. 

In practice of Neural Networks training, basic regularization technique was already 

mentioned in the form of Stochastic Gradient Descent. It was the property of sto-

chasticity, that prevents the model from overfitting. To complement S G D , Dropout 

method could be used. A s the name suggests, we "drop"some amount of randomly 

selected neurons from the deep network at every S G D step. After this step, neurons 

are recovered and new ones are selected for dropping. Generally, this method is sup­

pressing correlations between hidden neurons. Besides improving generalization of 

the model, dropout also reduces the number of parameters to learn and thus rapidly 

shorten training time. [19] 

The widely used technique, that is achieving regularization in a slightly different 

way is Batch Normalization. The goal of Batch Normalization is to keep activations 

of neurons around zero mean to restrict vanishing (or exploding) of gradients due to 

saturation of activation functions. This is done by normalizing inputs to the network 

by subtracting it's mean and dividing by variance (of a batch). Speed of learning is 

also enhanced due to well-behaving gradients. [20] 

4.4 Supervised Learning 

Unt i l this point, every consideration of M L was valid for so-called supervised lear­

ning. However, as we wi l l see in further sections, part of the supervised learning 

framework is usable in more general unsupervised learning. To sum up the pro­

perties and meaning of supervised learning, the most significant fact is, that we are 

dealing wi th labeled data and usually we know what we are looking for. For example 
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in classification tasks, the model is trained on dataset separated to categories, try­

ing to distinguish between them. Afterward, unlabeled data may be passed through 

the model to obtain information whether they belong to some category or not. In 

tasks of regression, we know a continuous output value for specific training input 

and model tries to predict this value for unknown data. In both mentioned cases, 

the generalization of the model is a key to success. In other words, we have to make 

sure that the model wi l l be able to make valid predictions for previously unseen data 

samples. This requirement is sometimes not easy to achieve, but some techniques 

for doing so were mentioned before. The main problem of supervised learning is a 

lack of the labeled data and difficulties in creating such labels. Usually, it takes a 

huge amount of time, labeling data by humans and also their performance is not 

always 100% correct. 

It is important to mention, that there exists a special type of Neural Networks 

achieving state-of-art performance on (not only) image-related classification tasks. 

This type is called Convolutional Neural Networks ( C N N ) , but because it is not 

explicitly related to the goal of presented work, we are not covering this topic. 

However, at least motivation for the development of this type of networks should be 

mentioned. In physics, we understand the importance of symmetries inside physical 

laws or systems since Noether [21]. Similar case took place in M L classification 

problems. A s an example, If we try to recognize some objects inside an image, the 

position of the object is not important to the decision of its category. Thus, there is 

translational invariance in data. Basic "fully-connected networks"cannot take this 

symmetry as an advantage, while identical objects placed to different parts of the 

image are distinct inputs for them. This problem was recognized by M L community 

and successfully implemented as C N N . [13] 

4.5 Unsupervised Learning 

A more general version of learning is unsupervised learning, where the objective is to 

find some patterns or new regularities in unlabelled data. Objectives of unsupervised 

learning are really broad and it is hard to set some borders. Most common tasks 

belonging to this category are cluster analysis, dimensionality reduction, learning of 

probability distributions, repairing data, distill ing information from noise and much 

more. In the following sections, we are describing the basics of the topic, but surely 

not covering all aspects of unsupervised learning. Actually, only parts necessary to 

reveal connections wi th Statistical Physics and understand results of the thesis are 

covered. 
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4.5.1 Principal Component Analysis ( P C A ) 

P C A is an unsupervised technique commonly used to a reduction of dimension and 

visualization of high-dimensional data. Historically, it was invented by Pearson in 

the era when datasets were much less-dimensional and extensive. Nowadays, a big 

portion of the data-related analysis is starting wi th using P C A . This great spread 

of the method resulted in the implementation of P C A to almost every environment 

or programming language used for data processing. So performing P C A on data 

and obtaining results could be simply done by executing a single line of code. This 

simplicity of usage is sometimes resulting in a misunderstanding of the method, 

not-rarely seen in publications. 

Formally, P C A is just a linear transformation (rotation) of the original data to 

a new coordinate system. Rotations are described by special orthogonal matrices 

wi th determinant equal to one. However, the rotation in the P C A method is not 

taken arbitrary, but wi th conditions. The goal of P C A is to create new variables 

(directions) as a linear combination of original variables wi th few conditions. First 

is to keep total variance the same and second is a restriction on new variables to 

be uncorrelated between themselves. This can be also seen as representing data in 

a new orthonormal basis. New variables (principal components) are in the form 

Y1 = c n X i + c12X2 + 

Y2 = c2lXl + c22X2 + 

Yp = cv\X\ + cp2X2 + ... + CppXp = C p X , 

where Cu are coefficients (elements of transformation matrix) and are original 

variables. We have presented a case where the number of observables n is equal to 

the dimension of data d (represented by square matrix pxp) what is rarely satisfied 

in real problems. Even while n ^ d P C A could be computed, but the number of prin­

cipal components is equal to the lower number of n and d. Moreover, in P C A we put 

components (Yj) in order according to the variance, which is each component descri­

bing. There is a task of P C A during the search for principal components. Variance of 

first component (Yi) has to be maximized while satisfying normalization condition 

cjci = 1. Mathematically this is a problem of finding extrema with constraints, 

leading to the method of Lagrange multipliers. After solution of this problem 

var(Yi) = < £ c o v ( X ) c i , (4.14) 

we obtain result 

v a r ( Y ) = A l s (4.15) 

+ c\pXp 

+ c2pXp c ^ X 
(4.13) 
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A being eigenvalue of covariance matrix cov(X) and c x its eigenvector. This process is 

repeated for obtaining the rest of principal components. Due to ordering according 

to the variance explained in components, dimensionality reduction is performed 

by using only a reduced number of components. In practice, most of the variance 

contained in the dataset is covered in only the first few components. 

4.5.2 Dimension and Clustering 

A s was discussed throughout the thesis, we mostly deal wi th high dimensional data. 

W i t h increasing of the dimension, many problems start to occur and intuition from 

the real world is no longer viable. To mention some of the consequences, proximity 

and basic distance between high dimensional data makes no longer sense. This means 

if we repeatedly compute distance (e.g. using L 2 norm) of 2 pairs of random points 

in high-dimensional space, obtained values wi l l be nearly identical, no matter to 

" real" proximity of the points [22]. Data become sparse and geometry of space is 

counterintuitive. For uniformly distributed high-dimensional data can be proven, 

that they live mostly near the edge of the space, what is in opposite to everyday 

low-dimensional experience. However, real data describing our objects of interest 

usually lives in lower-dimensional spaces embedded to the original one. We may 

try to extract those important dimensions and throw away unimportant noise or 

redundant features. Various dimension reduction techniques are used to perform this 

task wi th different performance and usability range. During the reduction process, 

we would like to keep distances between points the same or at least proportional to 

the original space, what is impossible for most cases. Examining P C A as rotation, it 

preserves distance only unti l dimension reduction (throwing away components wi th 

lower variance). 

Dealing wi th unsupervised data, it would be beneficial into separate them to some 

groups according to their common properties. Whi le there exist many clustering me­

thods usable even for high-dimensional data, in practice, clustering is employed after 

reduction of dimension. Reason for this sequentiality is mostly because of distances, 

which has to be computed. Well-known representative is Hierarchical Clustering 

(HC) , where "clusters"starts as single data points and in every iteration are ag­

glomerated wi th other close clusters up to the specific distance. This is repeated 

unti l we obtain one big cluster consisting of all data. Result of this method is a 

hierarchical structure of data proximity, which could be visualized in the form of 

dendrogram [13]s. Hierarchical Clustering is a widely used method for its good in-

terpretability and possibility to select correct threshold distance from dendrogram. 

There is interesting equivalence between H C and Persistent Homology wi th zeroth 

Bet t i numbers, the tool of the way general Topological Data Analysis [23]. 
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5 INTERCONNECTION OF ML WITH STA­
TISTICAL PHYSICS 

Connection of physics wi th M L can be dated to Shannon, by defining the entropy of 

information in his seminal paper [24] . This complex work was recognized even by 

physicists, resulting in publications by Jaynes [25], where he developed the principle 

of maximum entropy and also shown that statistical mechanics could be obtained 

from more general statistical (Bayesian) inference. Such a deep connection, reaching 

to the roots of both branches have many consequences and ways of demonstration. 

Surely, we cannot cover al l of them and for a more general view on the topic, we 

suggest to study [13]. 

The presentation offered in this work is focusing to reach the goal (Restricted 

Boltzmann Machine) by revealing connections between Lattice Models and Hopfield 

Networks and their possibility to minimize energy. 

Neural Networks can be separated into two general categories according to connecti­

ons between neurons. Un t i l this point, we were describing networks wi th one-way 

connections, called feedforward networks. Now, our interest is moved to feedback 

networks wi th connections working in two-ways 5.1. 

F ig . 5.1: a) Feedforward network with one-way connections; b) Feedback network 

wi th two-way connections, (taken from [11]) 

Hopfield Networks are feedback networks wi th fully interconnected neurons and 

symmetrical two-way connections between neurons. Hopfield Networks as one of the 

building stones of modern unsupervised learning are well known also in the com­

munity of statistical physics. They are used famously as associative memory (or 

biological memory) and as solvers for optimization problems. The principle of asso­

ciative learning is captured by Hebbian learning, stating that if there are neurons 

5.1 Hopfield Networks 
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positively correlated, in the network, the weights of their connection is increased. 

Imaginable example (taken from D . M a c K a y ' s book [11] is a functionality of idealized 

"brain" detecting smell of banana along with another stimulus (yellow color, taste, 

. . . ) . Each stimulus is represented by a neuron in the network and weights between 

them are increasing during the learning process. Later, if only one of those correla­

ted neurons is active, also other neurons are activated afterward. This procedure is 

known as pattern completion and could be used for various error-correction tasks or 

data reparation. Is obvious, that Hebbian learning is an unsupervised process, pro­

ducing associative memory. In general, there are more variations and complications 

of Hopfield network, but basically, we may imagine neurons only wi th activations 1, 

-1 and activation functions as hard thresholds. Weights and other properties have 

the same meaning as in previously described N N . For complicated versions of H N 

we have to take into account order and time-dependency of activations updates, the 

stability of system, normalization, and capacity. 

There is a scalar value associated with continuous H N , called energy E, which 

have identical shape as spin glass model of statistical physics. This energy function 

is obtained by generalization of Ising model energy function (putting Jmn and hn 

non-constant) 

It can be found that stable H N wi l l converge to minimum of variational free 

energy, same as spins of Ising model (or spin glass) wi l l align to arrangement wi th 

minimal energy (depending on pairwise interaction Jmn and field hn). W i t h the 

activity rule (output) xn = t a n h ( a „ ) , H N is approximating probability distribution 

associated wi th this energy function, taking the form of Bol tzmann distribution. Here 

we may observe intimate relation between most general spin glasses and Hopfield 

Networks, opening connections between M L and physics. 

5.2 Boltzmann Machines 

We have stated that Hopfield Network minimizes the variational free energy function 

and can be viewed as approximating probability distribution (of Bol tzmann form) 

dependent on energy [11]. The core idea behind creating Boltzmann Machines was to 

implement this probability distribution into the network, forcing Hopfield Network to 

be stochastic. This is done by Gibbs sampling, Markov Chain Monte-Carlo technique 

for a sampling probability distribution. Implementing Gibbs sampling, we obtain 

activity rules of Bol tzmann machine: 

set Xi = +1 wi th probability 
1 

1 + e~2ai 

else set Xi = — 1. 
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Boltzmann Machine learns a probability distribution (of input data) by adjusting 

weights in a way such that the generative model (P(x\w)) is well matched to this 

probability distribution. Principle of generative models and generating samples are 

closely discussed later. A s it was mentioned in the case of Hopfield Network, B o l ­

tzmann Machine is viable to cover simple correlations between neurons ( x j and Xj 

of single inputs), but fails in covering higher-order correlations [11]. For real-world 

high-dimensional data, we may surely expect the presence of higher order correlati­

ons and thus the idea of Bol tzmann Machines have to be improved. Solution to this 

task may be reached by introducing latent variables. General importance and usage 

of models wi th latent variables (also called hidden variables) is reviewed in work [13]. 

We focus on a single method using latent variables wi th an additional condition on 

connections between specific neurons. 

5.3 Restricted Boltzmann Machine (RBM) 

Restricted Bol tzmann Machine (Figure 5.2) is a generative model (artificial neural 

network) wi th latent variables (hidden layer) where interaction (connections between 

neurons) are only between visible and hidden layer, but not between neurons inside 

one layer. The Energy function of this arrangement wi th binary units is of the form 

E(v, h) = aiVi - ^2 b»h» ~ z 2 WipVihfj,, (5.2) 
i fl ifl 

where v is configuration of visible units Vi, h is configuration of hidden units and 

are weights of connections between them. 

hidden (latent) variables 

visible variables 

Fig . 5.2: Restricted Bol tzmann Machine energy-based generative model wi th two-

way connections and symmetric weights. 

Introduction of latent variables to R B M is justified by so-called Hubbard-Stratonovich 

transformation, where visible units are decoupled by latent variables [13]. That me­

ans, complex interaction between visible units are now described by hidden units 
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with possibly simpler structure. R B M is an energy-based model of form 

E(v,h) 
p(v,h) 

Z' 
(5.3) 

where we recognize Bol tzmann distribution. Step back to Hopfield Model (and so 

Ising) may be done by integrating out (or marginalize over) latent variables 

f g — ^ H O P 

R B M is trained by using M a x i m u m Likelihood Est imation procedure 4.1.2, where 

the cost function (the negative log-likelihood function) is minimized by S G D (see 

section 4.1.1) [13]. A n effective implementation for training the R B M - contrastive di­

vergence, was developed by Hinton [15]. Constrastive divergence is improved version 

of Gibbs sampling, allowing to lower number of necessary iterations for converging 

to equilibrium distribution. More details about the method and training process is 

presented in [13] or [12]. 

Last thing to mention is an existence of more versions of the R B M according to 

allowed values in visible and hidden layer. Most basic type, Bernouli-Bernouli R B M 

have binary values in both (visible and hidden units). Another type is Gaussian-

Gaussian R B M wi th continuous values, and also mixed R B M s [13]. 

(5.4) 
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6 DIMENSIONALITY REDUCTION OF T H E 
SPECTROSCOPIC DATA 

To refresh motivation stated at the beginning of the chapter 3, we would like to 

exploit sparsity and redundancy of spectral data to lower dimension in a specific 

way, keeping only important information and dropping noise or non-unique infor­

mation. The idealized method, which meets all mentioned conditions, could be used 

to substitute or complement work of trained spectroscopic specialist partially. The 

necessity of automatization in data processing arises especially for big datasets, 

which we measure on a daily basis. W i t h the rapid improvement of instrumental 

capabilities, measurements (elemental mapping of the surface) could be done up to 

kHz repetition rate frequency, resulting in millions of spectra to process. Especially 

for heterogeneous samples, is not possible to inspect spectra-by-spectra manually, 

to select important parts of spectra or do other analyses. This chapter is presenting 

and interpreting results obtained by application of Restricted Bol tzmann Machine 

method to dimension reduction of spectroscopic data. The functioning of R B M was 

studied in chapter 5, and it seem as (at least theoretically) ideal candidate for di­

mension reduction of spectroscopic data, taking into account mentioned properties. 

We may imagine " i d e a l i z e d " R B M model, exploiting the sparsity of data by inactive 

connection (low weights) of units from unimportant spectral regions and redundancy 

by a correspondence of al l related visible units to the single hidden unit. If we were 

able to bui ld such a model, the effective reduction of dimension would be realized 

without loss of any important spectral information. 

Surely, such an idealized model is impracticable in reality, but even its approxi­

mation could be useful and able to compete wi th common approaches. Performance 

of R B M in dimension reduction wi l l be evaluated in comparison wi th most common 

P C A model. P C A as an " evergreen" of data analysis, especially dimension reduction, 

is widely applied tool with great performance and interpretability. The reason for 

searching alternative method to standard P C A is linearity of the method and com­

putational time. Since P C A is a linear model, it cannot cover complex non-linear 

dependencies in data. Keeping in mind strong non-linearities in spectra originating 

processes (due to material constants and matrix effect), a simple linear model must 

have significant limitations of use. Whi le a comparison of 2 substantially distinct 

methods is difficult task, partially empirical evidence is included in the discussion 

of results. 

Firstly, we try to reduce the dimension of a big spectroscopic dataset by both 

methods and later reconstruct "original"spectra with losing some information. A s 

a figure of merit we use absolute value of the distance between original and recon-
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structed spectra, but also a "visual"consideration of important structures. In the 

end, the possibility of generating new "unseen"spectra by R B M is explored. 

6.1 Samples, experiment, data 

To demonstrate the performance of both algorithms, a unique dataset was designed 

and measured. This dataset is containing L I B S spectra from 138 samples in total se­

parated to 12 categories according to dominant mineral composition (e.g. Hematite). 

The samples are O R E A S certified soil samples cast into gypsum for more convenient 

handling. For each sample in the dataset, there are 5000 spectra available. In one 

class (e.g. Hematite - F ig . 6.1) we have n samples wi th similar chemical composition. 

However, specific concentrations are varying in some range, so the resulting spectra 

are different. In addition to this, 2/3 of samples are produced as a mixture of the 

selected sample with some random part of any other class in ratio 3:1. 

F ig . 6.1: Representation of a dataset class in artificial parametric space. 

This dataset could be used for classification task after dividing to 2 subsets, 

training and test. We have selected 100 samples to serve for training a model and 

the remaining 38 was kept for test purpose. It should be noted that such dataset 
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is unique in L I B S community (and also in spectroscopy in general) due to its size 

and number of samples. It is worth to mention that this big dataset is difficult to 

handle wi th and effective dimension reduction could provide significant improvement 

in posterior processing of data. 

Dataset is freely accessible online wi th more detailed description at repository 

webpage [26]. The exact composition and categorical information cannot be provided 

currently (due to running contest using similar data), but wi l l be published shortly 

at the mentioned webpage. 

6.1.1 Measurement 

Measurement of the samples was provided by Sci-Trace instrument (Atomtrace, C Z ) , 

modular system suitable for complex L I B S analysis. Sci-Trase was equipped by a 

special interaction chamber, described in [27]. A s a light source, we have used Q-

Switch F P S S N d : Y A G laser Solar LQ-529a, with the wavelength 532 nm and pulse 

duration 10 ns. Plasma radiation was collected by B K 7 plano-convex (Thorlabs), 

focal length 75 m m , A R 350-700. The Echelle spectrometer Andor Mechelle 5000 

(resolution A / A A = 5000) was used to detect spectra wi th modified software, allowing 

higher speed of measurement. Rest of components were identical or similar to the 

mentioned setup [27]. 

Energy of laser was 20 m J and gate delay was 1 fis. Exposi t ion time was kept on 

default setting 50 (is. M a p of 75x75 points (spacing 30 fim) was created on surface 

of each sample and spectrum was obtained from each point (one shot - one point). 

This resulted in 5625 spectra per sample, but first 625 was deleted to ensure good 

stability of the system. 

6.1.2 Application of the R B M 

For an init ial demonstration of the method, the R B M model was trained on part 

of the original dataset. Used dataset consisted of spectra from 30 samples divided 

into 2 classes equally. Thus the partially similar structure of spectra belonging to 

one class was guaranteed. There was used 1000 spectra per sample, 30000 spectra 

in total. Original spectral dimension was 10000 wavelength values. Each spectrum 

was normalized by unit vector normalization ( U V N ) . 

For the computation, scripts wi th code in R and Python languages were created 

and are available online [26]. 

Gaussian-Gaussian R B M model was designed with a single hidden layer, consis­

t ing of 100 neurons. Learning rate was set to 0.01 and spectra were fed to model 

by minibatches (100 spectra each). Visible states were sampled wi th zero mean and 
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a = 0.7. After basic optimization, it was deduced that 4 epochs are enough (epochs 

are number of the repetitive pass of all data). 

After the training process, random spectra were selected and reconstructed by 

model. We have obtained similar results for all tested spectra and example is shown 

in figure 6.2. Progress of training is plotted on figure 6.3 a), and schematic diagram 

of reconstruction on figure 6.3 b). 

>,0.75-
(7) c 
CD 

0.50-

125-

0.00 

RBM — original spectrum 
(100 hidden nei jrons) reconstructed spectrum 

I 
II I 

i l u u r l l i i l i i l vi J (La Jill 9 A h m 

400 425 

Wavelength (nm) 

Fig . 6.2: Randomly selected spectra, reconstructed by using R B M model with 100 

hidden neurons. 

Iteration (-) 

Fig . 6.3: a) Training error during learning procedure of R B M , b) Diagram of recon­

struction procedure. 

Reconstruction of the spectra could be considered as successful. General features 

as line positions and ratios are well preserved, but the intensity is slightly modified. 

52 



Also a " background" or bias is higher than in original spectra, however, this could be 

easily treated by performing U V N normalization on the result. We may conclude, 

that the dimension of the dataset was effectively reduced and possible reconstruction 

of spectra provide satisfying results. 

Comparison of performance 

We have found that R B M is suitable for dimension reduction of spectroscopic data, 

but it is desirable to compare the method with something well known. For the com­

parison, we use Pr incipal Component Analysis method, a linear method described 

in section 4.5.1. 

Slightly different data were used for this comparison, reduced on size, because of 

the high computational cost of P C A algorithm. This time, spectra from 100 samples 

were used (100 spectra for each sample, 10000 in total), divided to 12 categories. 

Such parameters imply an increased complexity of the dataset. 

P C A was employed on the dataset and 6 different numbers of the components 

were kept to provide the reduction of the dimension. This was done in a similar way 

to article I have published earlier [28]. Thus dimension of the original data (10000 

wavelength values) was projected to lower dimension (5 - 30) and later reconstructed 

back. 

R B M was trained 6 times wi th a different number of hidden neurons (5 - 30). 

Learning rate was 0.01 for al l cases, batch size 100, and the number of epochs was 

5 (except the model with only 5 neurons, where 10 epochs were used). After the 

training, all data were reconstructed in the same way as was shown before. 

A s the figure-of-merit, we have selected the absolute distance (L I norm) of the 

reconstructed spectrum to the original one at each point (wavelength). To obtain 

representative values for whole dataset, one spectrum was selected for each sample in 

dataset and evaluated. So, the distance of 100 reconstructed spectra to their original 

ones was computed. Later, the mean value at each point was taken and the result 

is shown in the following figures, for R B M 6.4 and for P C A 6.5. 

Whi le exploring the performance of the R B M on this task, we may observe relati­

vely higher distance (error) of reconstructed spectra to the original one in comparison 

to P C A results. However, the position of the peaks in the R B M result is correspon­

ding to the lines frequently present in the dataset. A s we have stated, reconstruction 

error in the intensity of the spectral line is not a big problem, which could be easily 

treated by normalization. Red line in the figure 6.4 is showing the biggest error ob­

served in the corresponding P C A model (model wi th the same dimension reduction). 

Even while the P C A reconstruction error was lower, there are several weaknesses 
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Fig . 6.4: Mean absolute distance between original and reconstructed spectra by R B M 

model. 
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of the P C A approach. The first big disadvantage of P C A is extensive computatio­

nal cost. This makes the method unusable for really "big datasets". The problem 

is based in the P C A algorithm, where we need to have all data at once. Thus, we 

are l imited with memory of the computer and some statistical reduction of objects 

is necessary. In the case of R B M , we learn model by minibatches, so huge datasets 

could be easily used for training. Even more, it is desired to use as many as possible 

spectra for building the R B M (this is generally valid for all neural network models). 

It also means that this comparison was bit unfair to R B M , while smaller amount of 

the data was used. Also, approximate computational time was differing rapidly, for 

P C A it was cca 3 hours (in R) and for R B M , a single model took around 10 minutes 

(in Python). Only basic accessible processor was used for the computation (usage 

of the graphics card would make R B M training even faster). 

This is a good starting point for future research and improvement of R B M . A s 

it was mentioned, the bias of the R B M reconstruction could be improved by further 

normalization, Dimension could be reduced more effectively using deep-structure, 

where more hidden layers are introduced to the model. Such a structure is also 

suitable for direct classification of the data, just by replacing activation functions in 

the final layer. 

Generating unseen spectra 

We have defined the R B M as an energy-based generative model. The possibility to 

generate new spectra follows from sampling a probability distribution, which was 

learned by the model during the training process. The sampling is provided by Gibbs 

sampling technique (a detailed description of the technique is provided in [11]), in 

a simplified way just transforming visible units to hidden and back to the visible, 

given weights and probabilities. We have explored this possibility using the R B M 

model trained on the first mentioned dataset (figure 6.2). 

In the start of a generative process, a vector of only zero values is given to the 

input layer of the pre-trained network. Then a specific number of Gibbs sampling 

steps is performed between input and hidden layer. Finally, we may inspect the result 

in visible layer wi th probability given by the spectra examples from the training 

process. However, this new spectrum is not a copy of any original training spectra, It 

is a completely new unseen spectrum. Here we show (Fig. 6.6) a randomly generated 

spectrum corresponding to a class presented in the figure 6.2. 
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Fig . 6.6: Generated spectrum from the R B M model learned on 30000 spectra divided 

to 2 categories. 

Those generated "samples"of data are also called fantasy particles and they are 

valuable for the inspection of the model, repairing of corrupted data, and also for 

the cases where not many inputs are available. 

6.1.3 Further plans 

A n extensive exploration of the application of the R B M model to the processing 

of spectroscopic data was presented, but obviously there are many improvements 

possible. A s was already mentioned, building a deeper structure of the network 

(Deep Boltzmann Machine, consisting of more hidden layers), implementing super­

vised features, and visualization of the network features would improve the whole 

methodology. 
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7 CONCLUSION 
This work aimed to reveal connections between statistical physics and machine lear­

ning ( M L ) , which at first sight may seem like completely distinct branches of science. 

I have started wi th developing essential tools of statistical physics from ab initio ap­

proach. After obtaining the partition function of a Bol tzmann distribution, we have 

studied the Ising model of spins in 2D. Mean field approach, and later, more general 

variational free energy approach helped to show the behavior of the Ising model. 

O n the Ising model example was shown, that by minimizing the variational free 

energy, a Kullback-Leibler divergence is lowered. The Kullback-Leibler divergence 

measures a dissimilarity of two probability distributions and thus could be used 

to describe (and ensure) learning process of M L algorithms. A strong connection 

between machine learning and statistical physics appeared after observing equiva­

lence between the Ising model and Hopfield network, a basic model of unsupervised 

machine learning. Also, an introduction to the machine learning, in general, was 

provided. Basic principles originated in physics, but used in M L were mentioned 

(symmetries, locality, free energy, ...). From the Hopfield network, by adding sto-

chasticity and restricting specific connections, Restricted Bol tzmann Machine model 

was derived. Introduction of latent variables as one of R B M property was discussed 

to deal with higher-order correlations in the data. 

A considerable part of the thesis studied general properties of spectroscopic data 

as sparsity and redundancy in spectral lines. Spectra from Laser-Induced Breakdown 

Spectroscopy (LIBS) were selected as representants for spectroscopic data, and phy­

sical processes standing behind their creation were described (in appendix). Accor­

ding to mentioned properties, generally valid for most types of spectroscopic data, 

R B M method was deduced as a good candidate to deal wi th sparsity and redundancy 

of the data. 

In the practical part, an extensive unique spectra dataset was created. The da-

taset consisted of 138 samples, where for each sample, 5000 spectra were measured. 

Samples were related together partially, forming 12 distinct categories. Such a data-

set is suitable for challenging classification tasks, but due to the excessive number of 

measurements, the use of advanced classification algorithms is limited. This problem 

was treated by the effective reduction of dimension, using R B M . Performance of the 

R B M was evaluated by comparison to a commonly used method - Pr incipal Com­

ponent Analysis ( P C A ) . Comparison between methods was done on a smaller part 

of the original dataset, due to computational requirements of P C A . The dimension 

of the data was reduced from original 10000 values to a way lower dimension (5-30). 

Each spectrum was projected to this lower dimension and later reconstructed. In 

some aspects, the P C A reached better performance (reconstruction error, interpre-
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tabil i ty of reduced dimension, ...) but failed in other aspects, where R B M dominated 

(learning time, extensibility of the method, ...). R B M was proved to be suitable for 

dimension reduction of spectroscopic data, but further exploration of the method is 

desired. 

Beside of dimension reduction, R B M offers a possibility to generate new data 

(spectra) from the learned probability distribution of original data. This feature 

has potential applications in repairing of incomplete spectra or transfer of libraries 

between spectrometers. Generation of spectra was demonstrated by the R B M model 

learned on 30000 spectra. Results were discussed and generally evaluated. To provide 

all computations, several scripts wi th code were created in R and Python language. 

The objectives of the thesis were accomplished, but there is stil l space to improve 

the whole methodology. Since handling wi th such a huge amount of data is highly 

non-trivial and computationally-expensive, optimization of the method is difficult 

to provide and wi l l be the goal of my continuing research. 
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A BACKPROPAGATION M E T H O D 
For learning a Neural Network we still rely on "general truths"described in previous 

sections discussing M L as a whole. Cost function sti l l has to be selected and mini­

mized using the gradient descent method. Thus, backpropagation is just a method 

to overcome the computational difficulty of computing gradients in the complex and 

interconnected parametric model as a deep neural network is. In this section, we 

reveal basics of the backpropagation algorithm. 

In the start, we have to select proper cost function (called also loss function or 

energy function). For regression task and continuous data, we use basic L 2 norm 

(also possibly L\ norm) 

where yi is a real value (a category in classification) of the data and y~i(w) is pre­

diction dependent on parameters w. Classification tasks and categorical data requi­

res different treatment and cross-entropy is most commonly used (see the section 

about logistic regression). In case of data separated to more than two categories 

y G {0,1 ,2 , . . . , M — 1}, strategy one-versus-all is used defining yim — 1 if yi — m, 

otherwise yim = 0. Then we have categorical cross-entropy 

Actua l learning starts wi th feeding input data vector (representing one sample) to 

a deep neural network wi th parameters (weights) selected randomly in the range 

— 1 < Wi > 1. Because we are dealing wi th supervised learning, we know what desi­

red output is (specific value or category). After passing data through the network, 

"comparison"of output wi th desired output is provided by evaluating corresponding 

cost function. A t this point, we try to lower cost function but the explicit com­

putation of gradient over all parameters would be extremely costly. Taking into 

account the structure of a network, backpropagation is using rules of partial dif­

ferentiation for the cost function. Before we define proper notation and provide a 

formal derivation of backpropagation, we sketch the procedure intuitively. 

We want to scope how sensitive is cost function to small changes in every para­

meter of the model, final activation function depends on. After feeding data sample 

to network and passing it to output, the error of the final layer is easily computed by 

definition of the cost function (comparing to desired value). A t this point, we would 

like to make gradient descent step to lower cost function, so we need to compute the 

gradient of cost function dependent on model parameters. Error in final layer could 

n M-l 
E{w) = - ^2 yim\ogyim(w) + (1 - ?fenlog[l - yim{w)\). (A.2) 
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be propagated through connections to every neuron in the network and related to 

partial derivatives of corresponding parameters. Obtaining all partial derivatives, we 

may construct the gradient and lower the cost function. 

Formally, we have a neural network consisting of layers / = {1,2, . . . , L } , con­

nection weight between k-th neuron of / — 1 layer with j-th neuron of layer / is wl^k. 

The bias of j - t h neuron of Z-th layer is bly Finally, the activation function of neuron 

in the l-th layer may be expressed as a weighted sum of activations in previous layer 

I — 1 passed through activation function a 

4 = ^ E ^ ~ 1 + &5) (A-3) 
Denoting the sum as zlj, activation alj is a function of zlj, which is a further function 

of bias bj, weight wljk and activation of previous layer aJT1. In the output layer, we 

may compare real output to desired one, by computing cost function C. However, 

it is obvious that this value of the cost function C is also dependent on activations 

of all previous layers. What we want to seek is, how the cost function wi l l change 

upon a small change of any dependent parameter. It is useful to denote generalized 

error (change of cost function wi th respect to weighted sum zj) as 

4 = % = ̂  <A'4> 
where second equality follows from simple chain rule. Similarly, we may construct a 

change of cost function wi th respect to bias 

db\ ~ dz\ db\ ~ j' [ j 

provided by dz^/db^ = 1. There is a dependence on weight for cost function left. 

From previous definitions follows 

dwl

jk dz\ dwl

jk

 j k 

The error can be propagated to layer / inside the network, while we know that it 

depends on activations in following layer / + 1 and using chain rule we derive 

J k J J k J k 

Using Equations A . 4 - A . 7 we may backpropagate error to each neuron of the deep 

network. W i t h knowledge of errors, the gradient of cost function w.r.t. all model 

parameters (dC/dblj, dC/dw1^) is easily computed and gradient descent may be 

used for learning. [29] 
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B LIBS: PHYSICS, INSTRUMENTATION AND 
APPLICATIONS 

Here we present fundamentals of Laser-Induced Breakdown Spectroscopy, from laser-

matter interaction, through plasma processes, emission, the shape of spectral lines 

to instrumentation and applications. Emphasis is placed on the physical description 

of processes responsible for spectra shape and structure. Basic plasma diagnosis 

methods and approaches are also mentioned. 

B . l Laser-Matter Interaction 

In this section, we discuss basic properties of interactions between high power cohe­

rent light beam (laser) with a solid state of matter. Since this topic is so extensive 

and non-trivial, we provide just a brief explanation of the most important facts. 

Due to strong non-linearities in many material parameters, surrounding environ­

ment and wavelength dependence of this process, we have to restrict our focus just 

to nanosecond (and slightly covered femtosecond) laser sources with energies tens to 

hundreds m J , focused to spot of radius 10-100 pm. Mentioned parameters of laser 

radiation are forming a beam of sufficient flux density (or irradiance) ( G W / c m 2 ) , 

well above examined solid state material breakdown threshold (threshold of the ga­

seous or l iquid matter is generally higher than a solid state). In case of interaction 

such beam with material, laser-induced breakdown takes place and there is so-called 

ablation of material. Theories or models describing this process for gasses are mul-

tiphoton ionization (dominating at low pressures) and collisional cascade ionization 

(higher pressures) [30]. However, in a solid structure, one has to take into account 

more complex threshold dependence. Generation of plasma in solid structure is dela­

yed due to phonon excitations of the lattice and its transfer to heat. For example in 

metals, conduction electrons receive energy through inverse Bremsstrahlung effect 

and release it to a phonon system. 

In the ablation process, there is a small amount of material (up to tens of nano­

grams) transformed to plasma and some amount ejected around crater border. If the 

irradiance is below threshold value, material from the bulk sample is not removed. 

However, there can be some minor desorption of individual atoms from the surface. 

Considering the case of the nanosecond laser pulse, we assume that energy is 

absorbed just by the surface of the sample [31] and due to diffusion there is heating 

of bulk material. In solids, the penetration depth of radiation Sp wi th definition as 

reciprocal attenuation coefficient a (Beer-Lambert law), a = 4irn"/\, where n" is 

imaginary part of the refractive index of the material. The intensity of laser beam 
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inside solid material is described as 

I(z) = (l-R)I0e-az, ( B . l ) 

where z is the distance from surface on an axis parallel to the beam, J 0 is the 

laser intensity and R the reflectivity of the surface. For the visible wavelengths, 

the coefficient a is smaller in comparison to heat diffusion length ddif 

with r being laser pulse duration and K thermal diffusivity. K = K/pC, where K 

is thermal conductivity, p density and C specific heat per unit mass. [32] Through 

a lasting supply of energy, the material is melted and further evaporated. A t this 

point (in simplified sense), the system reached the gas phase and its treatment was 

described above. W i t h rising temperature, also pressure is increasing and as it was 

already mentioned, part of the l iquid matter is ejected to the open space. Schematic 

representation of this process is plotted on Figure B . l . 

F ig . B . l : Effect of high power pulsed (ns) laser on solid-state target, (taken and 

edited from [33]) 

In contrast wi th nanosecond ablation, the nature of femtosecond laser ablation 

process is fundamentally different. Diffusion length in this regime becomes compa­

rable to the absorption length. In such a short pulse wi th terawatt power, affected 

volume of material could be rapidly ionized and ejected from the surface by Coulomb 

explosion. [34] Comparison of ablation craters produced by both regimes is shown 

at Figure B.2 . 
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Nanosecond Femtosecond 

Fig . B.2: Comparison of ablation craters produced by nanosecond and femtosecond 

laser pulse, (taken and edited from [35]) 

To add even more complexity to the problem, there are more laser beam pro­

files used. The most common Gaussian profile has an advantage in manipulation 

(focusing, guidance) of the beam, while flat top profile has better-defined boundary 

of the crater and so spatial and axial resolution. Besides of the diffraction limit for 

smallest possible crater diameter, the character of a laser beam (pulse time, wave­

length, profile) is also contributing to total spot size and so to the resolution of the 

method. A more general and extensive study of laser ablation dependence on various 

parameters and its properties is presented in work [36]. 

B.2 Laser Induced Plasma (LIP) 

In the previous section, we have reviewed the basics of L I P formation mechanism. 

However, investigation of L I P properties could be started also by a different point of 

view, ignoring the process of its creation and focusing just on its behavior wi th given 

plasma parameters. Whi le plasma is considered as a statistical system, important 

parameters are temperature, electron density, volume, and pressure. W i t h some 

knowledge about plasma composition and surrounding environment, its dynamical 

evolution and properties are almost completely determined. Again , due to diverse 

external conditions, it is not possible to expect analytic solution simply covering the 

general case, but there are many eligible models describing plasma evolution (volume 

expansion, temperature evolution, interaction of internal particles and more). 

Plasma parameters may be determined experimentally, but there are several 

difficulties according to fast dynamics. To shortly review experimental techniques 

suitable for plasma diagnosis: electron density may be measured by shadowgraphy 

or Schlieren method or indirectly from emission lines, the electron temperature is 

determined indirectly from emission lines (this part wi l l be covered extensively in 

following sections), the volume could be taken from fast imaging techniques. 
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Now, the most important aspects of L IP , necessary for further considerations, 

wi l l be described: 

• plasma expansion 

A s it was mentioned earlier, expansion of plasma to background gas is complex 

phenomenon mostly due to various material and environmental characteristics. 

Consequently, its theoretical description and simulation are going hand to 

hand with experimental observations. There are more valid approaches on 

how to describe this temporal evolution of plasma plume, ranging from fluid-

dynamic models to Monte Carlo methods. Work of M . Capitel l i et al. ?? 

offers a review of suitable methods and deeper theoretical description of L I P 

expansion. To summarize most important observations, L I P expansion can 

reach relatively high velocities (up to 10 4 m/s) accompanied by electron density 

and temperature lowering. The lifetime of such plasma is approximately 2-3 

/is. Maybe the most general and interpretable approach to plasma expansion 

modeling is using Navier-Stokes equations (Fluid-dynamics) for a multispecies 

gas with using the symmetry of a problem (taking into account effects as 

viscosity and diffusion). Even simplified variation of fluid-dynamic code (Euler 

equations) could be used if it is not necessary to cover the full range of plasma 

lifetime and pressure of the surrounding environment is low. 

• optical depth In the further section we wi l l discuss emission of plasma, where 

absorption of light by plasma is not intrinsically taken into account. If we 

want to fit our models to match wi th reality, plasmas have to be thought of as 

optically thick. Fortunately, this fact doesn't imply that our simplified theory 

about plasma emission is not correct, but it has to be fixed sometimes to 

match real-world situations. The most reliable consequence of optically thick 

plasma existence is self-absorption of lines. This effect is observed for resonance 

lines, which are lines corresponding to the transition of some excited state % 

to ground state of an atom or ion. A self-absorbed line has different intensity 

and shape in comparison to the basic theory of radiation. A n extreme case of 

self-absorption is called self-reversion or splitting of a spectral line. Such lines 

are not suitable for quantitative analysis or plasma diagnostics. There was 

extensive work done to include optical depth into models describing plasma 

emission (see publication [37]). 

Therefore, the lines might be self-absorbed in the case of an optically thick 

plasma. In addition, temperature inhomogeneities exist along the line of sight 

of observation leading to self-reversed lines 

• LTE condition 

To ensure complete thermodynamic equilibrium, the optical depth of plasma 

must be large for all wavelengths, thus radiation cannot escape. Unfortunately, 
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due to a rapid expansion of laser-induced plasma and its complex dynamics 

wi th nontrivial internal processes, temperature gradients are present and con­

ditions for thermal equilibrium cannot be fulfilled. However, Planck's law could 

be valid at least locally. In such case a Local Thermodynamic Equilibrium takes 

place, satisfying specific conditions. The existence of L T E is guaranteed when 

radiation processes are negligible in comparison to collision processes. Also, 

collision processes should be balanced by its converse [38]. Under L T E , popu­

lations of atomic states are still described by Boltzmann distribution and Saha 

equation is also valid. To ensure the presence of L T E in plasma, McWhi r t e r 

criterion for electron density has to be fulfilled, which is 

ne being electron density. Limi ts and justifications of this criterion are studied 

in publication [39]. 

Plasmas reaching beyond L T E model could be described by Coronal model 

or Collisional-radiative model. First mentioned is dealing wi th plasmas of low 

electron density, where the optical thickness is small for all wavelengths and 

the collisional rate is small wi th respect to the spontaneous decay rate. Coronal 

model is usually of no interest in L I B S or L I P considerations. The second one, 

Collisional-radiative (C-R) model forms sort of transition between the Coronal 

model and L T E . This model takes into account every collisional process possi­

ble, but only two radiative (spontaneous decay and radiative recombination). 

In C - R model, the population of each energy level is described by a differential 

equation consisting of all transition processes. [40] Simulations of L I P using 

C - R model is providing many important insights about plasma dynamics and 

spectra simulations, but sometimes could be difficult to compute. There are as 

many differential equations, as is the number of accessible energy levels. Due 

to this complication, close energy levels could be grouped together and form 

only a few level systems as was suggested by Gornushkin in work [41]. 

A s it was mentioned before, L I P radiates light during its lifetime. Those photons ori­

ginating from various processes are carrying much useful information about plasma 

itself. Plasma emission can be divided into radiation of free electrons and boun­

ded electrons. Whi le free electrons usually have a continuous spectrum, bounded 

electrons have discrete energy states and so the spectrum is consisting of well-known 

peaks (spectral lines). In spectroscopic measurement, we obtain complex data where 

ne > 1.6 • 10 (B.2) 

B.3 LIP Emission 
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both processes are present with some additional instrument noise. Treatment of data 

is considered in section B.4.1. 

Time evolution of plasma is described in Figure B.3 . In the first nanoseconds 

after the end of a laser pulse, the temperature of the plasma is highest resulting in 

many collisions and highest radiation intensity. In this region, most of the atoms 

are ionized and free electrons radiation dominates over bounded electrons. This 

phenomenon is also caused by the optical density of plasma and shielding by dense 

electron gas. There are more non-trivial effects playing the role as ionization potential 

depression, resulting in the non-existence of suitable energy levels for commonly 

observable transitions. 

I. II. 

1ns 10 ns 100 ns 1 [is 10 LIS 100 LIS 

Elapsed time after pulse incident on target 

Fig . B.3: Time evolution of Laser-Induced Plasma, heuristically separated to 2 regi­

ons. Region I is representing time-range wi th the dominance of free electron radiation 

and hardly recognizable lines, while region II is usually suitable for spectra measu­

rement and obtaining elemental information about the sample, (taken and edited 

from [35]) 

It is well known that accelerated charged particles emit light. Those accelerations 

may occur due to the presence of external fields as a magnetic or electric field (always 

present inside plasmas). According to [38], most representative mechanisms of free 

electron radiation are cyclotron radiation and Bremsstrahlung. 

Cyclotron radiation is an effect taking place for example when a particle is mo­

ving perpendicular to external magnetic field B (v • B = 0). If we investigate mo­

tion equation (Lorentz) for this event, we shall see that the trajectory of a particle 

is spiral. Charged particles experiencing acceleration emits a directive beam of l i ­

ght with a specific frequency. Relativistic variation to cyclotron radiation (using 

electrons as particles) is called synchrotron radiation and has a broad range of use 

in spectroscopy, computed tomography (as a source of light with good coherence 
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and frequency range) and more. Whi le the frequency range of such emitted light de­

pends on broadening mechanism as Doppler or relativistic, in plasma there are even 

more significant broadening effects due to strongly varying magnetic field B. Thus, 

on the contrary to the expected result of cyclotron radiation as series of narrow 

spectral lines. Bremsstrahlung is a German word for "braking radiation"describing 

collisional effects between the electron and charged particles. In this interaction, we 

recognize 2 different situations: 

• free-free transition 

This occurs when electron after its collision wi th ion remains unbounded, but 

its energy and direction of the motion is generally changed. The total energy of 

electron after the collision is greater than zero. It is easy to see that this type of 

collision results in a continuous spectrum, while there is not any quantization 

of free electron energy levels. 

• free-bound transition (recombination) 

In this interaction, colliding electron is bound to ion and rest of electron energy 

can be emitted as a photon or transferred to heat. The total energy of electron 

wi l l be lower than zero. Thus there are both types, radiative and non-radiative 

free-bound transitions. Regardless of bounded electron states are quantized, 

the spectrum is again continuous, because there is not any restriction on the 

init ial state of an electron. 

It should be noted that for our purpose, electron-electron collisions may be omit­

ted since their contribution to radiation is negligible for non-relativistic plasma. In 

L I B S practice, the continuum of free electrons is rarely used and it is considered 

as some parasitic effect. However, it may contain some useful information about 

temperature and electron density of the plasma and further possibilities are still a 

matter of research. 

From the spectroscopic point of view, bounded electron radiation of plasma is the 

most important effect. Characteristic spectral lines are products of electron transi­

tion between two energy levels in atom or ion. Wavelength A (related to frequency as 

v = c /A) is dependent on the energy difference between those levels as hv^ = Ei—Ej. 

h being Planck's constant, photon frequency and (Ej) energy of upper (lower) 

level of transition. Note that % wi l l be used as index of higher level and j as lower. 

In plasma, we are dealing with a huge number of atoms and ions experiencing 

various transitions. A s it was mentioned before, the probability of finding an atom 

(or ion) at a specific energy level is guided by Boltzmann distribution. Then, number 

density of particles n(E) (atoms or ions of one specific chemical element) in state 

wi th energy E is proportional to Bol tzmann factor multiplied by degeneration factor 

9 

n(E) oc ge~pE. (B.3) 
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To change the proportionality symbol in the equation to equality, the parti t ion 

function is needed. However, there is another trick or possibility of how to treat this 

problem. For the ratio of two populations corresponding to upper and lower level of 

transition (for atoms/ions representing specific element inside plasma) we have 

n(Ej) = gj exp(-/3Ej) 
n(Ej) gJexp(-f3Ej)- 1 ' j 

Let's introduce coefficients A+j, E>ij and Bjiy called Einstein's coefficients represen­

ting probabilities of specific transitions. is a probability that spontaneous tran­

sition from level % to j take place for a unit time. Let's also note p(v) as the energy 

density of electromagnetic radiation acting on the particle (dependent on frequency 

of light v). Then probability (per unit time) of absorption a photon by a particle (= 

atom or ion) is noted as Bjipiyij). The last coefficient stays for stimulated emission, 

where the probability of this event is B^piyij). In thermal equilibrium, the energy 

density of radiation is given by blackbody radiation as 

87rhv3 

M = [ e x p ( W T ) - l ] c 3 - ( R 5 ) 

To satisfy equilibrium condition, rate of atoms making the transition from level % to 

j has to be equal to the rate of vice versa transitions. Then we obtain an equation 

for this detailed balance principle 

(Aij + Bijp)ni = Bjipnj. (B.6) 

Rearranging the previous equation to obtain dependency for p we have 

A • • A • • 
P (Nj/NABji-Bij (gj/gAexpihvij/TjBji-Bi/ 1 ' 1 

If the principle of detailed balance has to be fulfilled (for all temperatures) using 

the relationship for blackbody radiation, it is possible if and only if 

A^ = ———By (B-8) 

and 

giBij = gjBji. (B.9) 

Whi le those coefficients are related to atoms itself, Equations B.8 and B.9 has to 

hold independently on thermal equilibrium. 

It is worth to note that in comparison with a high number of accessible energy 

levels inside atoms or ions, transitions may occur only between specific levels guided 

by selection rules. Restrictions produced by selection rule (total angular momen­

tum: A J = ± 1 ) are clearly visible from Grotr ian diagram (Figure B.4), where only 

allowed transitions are between adjacent columns. 
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Fig . B.4: Grotr ian diagram for atomic Hydrogen wi th allowed transitions, (taken 

from 

B.3.1 Spectral Lines 

Here we continue with a description of L I P emission in the form of bounded electron 

transitions (spectral lines). This section is based on works [38], [32] and [42]. Whi le 

considerable part presented in this section is heavily dependent on facts and forma­

lism described in sections B.2 and B.3 , we recommend to study those simultaneously. 

Let 's imagine laser-induced plasma under L T E conditions, wi th negligible optical 

depth, produced from target consisting of known elemental composition. Also, let's 

suppose that ablation process was stoichiometric, which means that elemental com­

position inside plasma plume is the same as in the sample. In such case, measured 

intensity of a spectral line corresponding to a transition from upper energy level % 

to lower level j is given by 

hj = FAijnh (B.10) 

where F is function aggregating every experimental aspect (spectrometer sensitivity, 

light collection efficiency and more), Aij is Einstein's coefficient for spontaneous 

emission and n« is population density of an upper state. It is remarkable that such 

a simple equation can describe spectra originated from complex mechanisms inside 

the plasma. However, there are further restrictions (with previously mentioned ones) 

for the validity of the equation, firstly plasma has to be optically thin to prevent 

self-absorption. Second one is non-importance of stimulated decay inside plasma. 

Even if the L I P satisfy al l conditions, the computing population of the upper level 

is not that straightforward. Expressing population density in Equation B.10, there 
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is 
_ e-Ei/(kBT) 
Iii = FAiiClgi , (B.11) 

C z being normalized concentration of element /, gi degeneracy of i - th level, e~Ei^k^T^ 

Boltzmann factor and Zl

k{T) Part i t ion function of element / wi th ionization k. 

Equation B . l l is inside L I B S community often called "Bol tzmann equation", but 

unfortunately that is inappropriate convention because this name stands for famous 

Boltzmann transport equation describing statistical behavior of non-equilibrium sys­

tems. Later in this work, we call Equation B . l l as Boltzmann formula for line 

intensity, which respects its meaning and derivation strictly from equilibrium sta­

tistical mechanics. Experimental term of Bol tzmann formula F could be obtained 

for example using calibration lamp (with known emissivity), while other terms as 

Aij,Ei,gi are collected in spectroscopic databases (e.g. N I S T [43]). There are two 

more terms (depending on temperature) to be determined, Bol tzmann factor and 

Part i t ion function. First mentioned is t r ivial to calculate if the temperature of the 

plasma is known (methods for plasma temperature measurements are studied be­

low), but the computation of Part i t ion function is problematic. A common way for 

obtaining parti t ion function is using the N I S T database, while correctness of obta­

ined values is up to a discussion, depending on chosen element and temperature. 

If we reverse the Bol tzmann formula, we were given a powerful tool for obtaining 

the elemental concentration of measured sample according to experimentally mea­

sured line intensities and temperatures. This possibility of quantitative analysis is 

reviewed in section B.4.2. 

General description and derivation of parti t ion function was mentioned in section 

1.2.3, but here we shortly investigate some specific challenges of parti t ion function 

computation related to LIP . A s was mentioned, parti t ion function values obtained 

from the N I S T database are generally lower to "real"or correct values. This is caused 

by non-presence of all accessible energy states of atom or ion in the database or only 

partial information. Importance of this variation is growing for heavier elements 

or experimentally unexplored ones. Seemingly best approach would be analytical 

computation of all energy states obtained as a solution of Schrodinger equation. 

But as could be easily verified, just for Hydrogen such a sum would diverge. This 

behavior may be treated by setting an upper limit to a sum, called cutoff criterion. 

There can be various selections for cutoff criterions as ionization energy, Bohr radius 

(highest energy level counted in sum is one corresponding to a specific semi-classical 

Bohr radius) or Debye length. Whi le ionization energy would be a good criterion for 

a single particle system, in plasma there are complex interactions between particles 

present and then also remaining mentioned criterions serve just as an approximation 

[44]. A n interesting method suitable for L I B S is so-called few level approximation for 

74 



partition function suggested by G . Colonna and M . Capitel l i in their work [45]. In 

few level approximation scheme (e.g. 3 level), the parti t ion function is summed from 

3 terms. The first term being a ground state wi th respective degeneracy function 

(statistical weight) Go- The second one is lumped energy level el consisting of low 

energy levels and the last th i rd is lumped of high energy levels: 

Z{T) = G0 + G i exp(-el/kBT) + G 2 exp(-e^/kBT). (B.12) 

Authors had compared results obtained by this approximation and concluded that 

errors are under 10% maximally. 

Among discussed theoretical intensity of a spectral line, there is another impor­

tant feature - shape of the line. W i d t h of a spectral line cannot be infinitesimal 

due to the nature of fundamental physical laws. Its shape is the result of more si­

multaneous mechanisms, taking place during plasma evolution. Let 's review most 

fundamental mechanisms of line broadening: 

• Natural broadening 

This mechanism is the most fundamental one and follows directly from Hei-

senberg's uncertainty principle. The lifetime of the excited state is finite, thus 

there is uncertainty in energy as 

A £ > A , b , 3 ) 

r being the lifetime of an atomic excited state before it undergoes radiative 

transition. Lifetime could be defined as 

l / r = 2 j ] A J . (B.14) 

j 

Result of a Natural line broadening is shape described by Lorentzian curve 

" " ' ^ i + l ^ - t W
 ( B

'
1 5 ) 

A common way of describing broadened lines is F W H M (Full width at half 

maximum) value vi/2, which is for natural broadening 

Al / i / 2 = 11 nr. (B.16) 

Doppler broadening 

Doppler broadening is caused by Doppler shift of moving particle. Conside­

ring the Maxwell ian distribution of particle velocity inside the plasma, this 

broadening results in Gaussian profile 

I(y) = J(z/0) exp 
2 « 

(B.17) 
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where v\a is squared velocity obtained from the kinetic energy of emitting atom 

a. F W H M for Gaussian profile is 

Practically, in time ranges commonly used for L I B S analysis, Doppler broade­

ning forms an only minor contribution to line width and could be neglected. 

• Stark broadening 

Another mechanism to study is Stark broadening, also called pressure broa­

dening. A s the second name is indicating, it is caused by collisions inside the 

plasma. Emission of a colliding particle is perturbed by the presence of electric 

field. Thus, the energy level of the particle is perturbed and so the wavelength is 

shifted. For hydrogen-like atoms, linear Stark effect is taking place (Au oc E). 

But for other atoms, the Stark effect is quadratic, where its computation is 

much complicated and outside of the scope of this thesis. A detailed study of 

the Stark effect is provided by Griem in his glorious work [46]. The F W H M 

of the Stark broadened line (in case of neutral atoms or singly charged ions), 

wi th neglecting the ion-contribution, can be expressed as 

W being Stark electron-impact broadening parameter (a weak function of tem­

perature), ne electron density and nr reference electron density (typically 10 1 6 

c m - 3 for neutral atoms and 10 1 7 c m - 3 for singly charged ions [47]). For con­

version of F W H M from frequency dependence to wavelength, simple relation 

A A / A = Avjv was used. 

• Instrumental broadening 

The last one to mention is instrumental broadening due to the finite resolution 

of the spectrometer. It can be determined experimentally, using a calibration 

lamp and it's resulting in Gaussian shape. 

Finally, if 2 independent profiles (or mechanisms) taking place similarly, the 

resulting profile is a convolution of both. Convolution of two Gaussian profiles 

is again Gaussian and the same is for 2 Lorentzian. But for the convolution 

of Gaussian wi th Lorentzian, we obtain a new profile called Voigt profile (see 

Figure B.5), which is the actual shape of spectral lines. 
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Fig . B.5: Line profiles resulting from various broadening mechanisms. Voigt profile 

results from a convolution of Gaussian profile with Lorentz profile, (taken from [35]) 

B.3.2 Plasma temperature estimation 

One of the simplest methods to obtain temperature is the two-line method. In this 

method, we use the trick mentioned in Equation B.4, where the ratio of 2 popu­

lations was taken. However, in two-line temperature measurement, we take ratio of 

2 integrated intensities for lines corresponding to the same element with identical 

ionization. App ly ing the trick to Equation B . l l and expressing it for T , we have 

E — E 
' "' (B.20) 

kn In 

Thus, we got r id of partition function dependence and other parameters could be 

easily found in spectroscopic databases. 

Maybe the most common tool for temperature estimation is Boltzmann plot 

method. For building a Bol tzmann plot, we linearize Equation B . l l and rearrange it 

to 

l n - ^ = l n 4 ^ T - 7 ^ - (B.21) 
9lAl3 Z{{T) kBT 1 ' 

Now, we are able to construct plot (Figure B.6) for more lines of the same element 

and identical ionization. Temperature is determined by linear regression of points 

inside the plot as a slope {—1/k^T) of the line. Logari thm term at R H S of Equation 

B.21 is just a constant term of linear regression and thus not affecting the slope. 

For obtaining the desired accuracy, it is important to select more lines wi th similar 
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upper energy levels. Also, spectrometer should be calibrated to provide consistent 

sensitivity across the wavelength range. 

2.5 

-0.5 
3.0 3.5 4.0 4.5 5.0 5.5 6.0 

Ej ( e V ) 

F ig . B.6: Bol tzmann plot of the neutral iron lines observed in the L I B S spectrum of 

an aluminum alloy sample. The line intensity values have been determined as the 

integral area of the best fitting analytical function. The values have been corrected 

for the wavelength response of the system. The resulting excitation temperature is 

There exist natural extension for combining atomic lines of an element wi th its 

ionic lines. This method is called Saha-Boltzmann plot and the core idea is Saha 

equation (determining relative populations of ionizations % adn % + 1 as 

For details about Saha equation, please see [38]. Saha-Boltzmann plot allows us to 

include ionic lines of the element besides atomic lines and thus improve the perfor­

mance of the model. More advanced util ization of multi-elemental Saha-Boltzmann 

plot was studied in work [49], making possible to use lines from distinct elements at 

once. 

1.24 • Í O 4 ^ ± 3% (taken from [48]) 

(B.22) 
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B.4 Instrumentation and Experiments 
A s it was mentioned in the introduction for L I B S section, it is a relatively easy 

utilizable method without any complicated instrumental requirements. However, a 

high power pulsed laser source is necessary with some guidance optics and spectro­

meter. Most commonly used are nanosecond N d : Y A G solid-state lasers, operating 

at 1064 nm (or higher harmonics). In the past few years, usage of femtosecond lasers 

is obtaining growing attention. 

There is a wide range of suitable spectrometers, cost ranging from hundreds 

of euros to tens of thousands euro. Due to this broad price range, also properties 

of such spectrometers differ rapidly. State-of-art spectrometers are offering good 

time synchronization and gating, variable detectors, sensitivity, possibility to work 

under a noble gas atmosphere and many more. For uti l izing plasma diagnostics 

experiments, it is necessary to use spectrometer wi th gating possibility (gating time 

range up to nanoseconds). Low-cost spectrometers are applicable to some specific 

tasks, lacking requirements on some mentioned properties. Also for simple qualitative 

analysis, where time synchronization and resolution are not that important, low-

cost spectrometers are good option. L I B S applicable spectrometers could be further 

divided to two most frequently used types: 

• Czerny-Turner configuration 

Czerny-Turner configuration of a spectrometer is the most common setup using 

relatively simple parts. It consists of a slit where light enters the spectrometer, 

then is reflected and collimated by a concave mirror to grating (groove density 

could range from 100 to 4800 grooves per millimeter). In the last step, light is 

diffracted from grating and later reflected and focused by the concave mirror to 

the detector. In the place of the detector, spectra are registered with resolution 

depending on groove density of grid and also camera resolution. In Czerny-

Turner setup, usually, first diffraction order is measured. The wavelength range 

could cover almost all visible wavelengths at once, but for higher wavelengths 

overlapping of first and second diffraction order may occur. There is a trade-off 

between spectral resolution and the range of covered wavelengths. 

• Echelle configuration 

In echelle configuration of the spectrometer, there are two dispersive elements 

(in comparison wi th only one grating in Cz . -T . ) . First grating is dispersing l i ­

ght in a similar manner to C z . - T . , but only high diffraction orders are collected 

and guided further. In case of using higher diffraction orders, there is intense 

overlapping between individual orders. This overlap is treated by using special 

"echelle"grating, dispersing light in an orthogonal direction to previous disper­

sion. Separated orders are forming a 2-dimensional pattern which is focused 
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to detector (usually C C D or C M O S camera). The main advantage of echelle 

spectrometer is simultaneous high (relatively) spectral resolution and the large 

range of covered wavelengths. However, the best obtainable resolution is not 

as good as in case of Czerny-Turner configuration, for many applications it 

is beneficial to have a large spectral bandpass and high spectral resolution 

at once. The more detailed description of mentioned spectrometers and more 

configurations suitable for L I B S can be found in [35] or [48]. 

The two most important mentioned instruments have to be synchronized and 

controlled by the operator. The device providing this functionality is Digital Delay 

Generator and sometimes could be implemented inside spectrometer or laser itself. 

Modern D D G s offer the possibility to synchronize more lasers and spectrometers at 

once wi th a precision below a nanosecond. Of course, all functionality is operated 

through P C through various automatized environments. 

In addition to the most necessary equipment for L I B S analysis, there are many 

possible improvements enlarging experimental possibilities or enhancing the user-

instrument experience. Maybe the most reliable example is motorized 3-axis stage 

or manipulator, essential for surface chemical mapping or precise depth profiling. 

B.4.1 Basic data processing 

Hand to hand wi th technological improvements in L I B S instrumentation, speed of 

measurement is increasing and thus the number of produced spectra is raising rapi­

dly. Measurement frequency had reached 1 kHz , enabling to obtain chemical maps 

from large areas (cm2) in minutes, resulting in millions of spectra. Such huge num­

bers of spectra are not possible to inspect by spectroscopic specialist one by one and 

new approaches are emerging. Methods of multi-variate data analysis ( M V D A ) and 

Machine Learning are applied to processing of spectra, which can be (in spectrosco­

pic applications) jointly called chemometry. 

The routine spectroscopic analysis starts wi th spectra inspecting and assigning 

peaks to corresponding elements and ionizations, using databases like N I S T . Nowa­

days, it is possible to assign spectra automatically wi th the help of various tools. 

Such assigned spectra provide valuable qualitative analysis of the sample with rela­

tively good sensitivity up to ppm (not for every element). 

More advanced way of data processing is required in qualitative analysis. The 

method is sometimes called semi-quantitative because of strong matrix effect and 

other complications. However, if we have a good set of calibration samples wi th 

matching matrices to unknown sample, quantification is carried out wi th sufficient 

precision (for many practical tasks in analytical chemistry). But sti l l , it should be 
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emphasized that the biggest advantage of the L I B S method is the speed of analy­

sis and no need for sample preparation. A more detailed review of possibilities and 

limitations of L I B S quantification is provided in last section dedicated to the ap­

plications. In the case where a calibration set is not available, quantitative analysis 

became challenging. There is a group of methods dealing wi th this k ind of pro­

blem representatively called Calibration-Free LIBS ( C F - L I B S ) firstly described in 

the work [50]. For C F - L I B S , more advanced instrumental equipment (spectrometer 

wi th gating possibility and suitable resolution in time and spectra) is essential. Be­

fore actual quantification, plasma parameters as temperature and electron density 

are determined (possibly by methods mentioned in the previous text). 

Using modern L I B S instruments wi th a high repetitive rate of measurements, 

M V D A algorithms are coming to hand. In large datasets with varying spectra, it 

is not possible to make visualization or assignation of lines in the usual way. Prin­

cipal Component Analysis ( P C A ) method became really popular and valuable for 

visualization and dimensionality reduction of high-dimensional data (spectra). We 

present this method more closely in section 4. A simple procedure for sorting or 

classification of high-dimensional spectral data could be done as follows: 1) Carry 

out P C A analysis on data to visualize important peaks (loadings plot, score plot), 

reduce dimension by keeping only a few P C s . 2) Cluster analysis, filtering of data, 

normalization. 3) The classification provided on clusters, testing performance. 

B.4.2 L I B S Applications 

In previous sections of this chapter, theoretical background and cornerstones of the 

L I B S method were presented, while applications were mentioned just marginally. For 

more than 50 years of existence, L I B S was utilized in numerous unique tasks, where 

other methods were not reliable and also served as a complementary method in other 

cases. Appl icabi l i ty of L I B S is bounded to the biggest advantages of the method. It 

is clear that for applications requiring below micrometer resolution and sensitivity 

up to P P B , L I B S won't serve the best. However, if the speed, cost and sample 

preparation are priorities, L I B S is the first option. Great success has been obtained 

by L I B S in 2D elemental mapping for geological and paleoclimate applications. Maps 

of several squared centimeters were measured on various minerals wi th resolution 

up to tens of micrometers. Obtaining precise elemental composition from each spot 

is enabling advanced geochemical analysis, now possible with unbeatable speed of 

measurement. [51] 

Besides geological mapping, there is a huge potential for L I B S in the biological 

mapping of plants (toxicology) or soft tissues (heavy metals distribution). 

Moving out from mapping, there are applications in environmental monitoring 
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(soils, air, water), automotive and industry (depth profiling, classification of metals) 

and many more, ending wi th space exploration (ChemCam). L I B S applications are 

well described in classic literature [32,35,48]. 

82 



BIBLIOGRAPHY 
[1] Douglas Skoog. Principles of instrumental analysis. Thomson Brooks/Cole . 

Belmont, C A , 2007. 

[2] Charles K i t t e l and Herbert Kroemer. Thermal physics. W . H . Freeman, San 

Francisco, 1980. 

[3] Charles Ki t t e l . Elementary statistical physics. Dover Publications, Mineola, 

N . Y , 2004. 

[4] L . D . Landau and E . M . Lifshitz. Statistical physics. Pergamon Press, Ox-

ford,New York, 1969. 

[5] L . D . Landau and E . M . Lifshitz. Mechanics. Pergamon Press, Oxford New 

York, 1976. 

[6] Petr Kulhánek . Vybrané kapitoly z teoretické fyziky. A G A , Praha, 2016. 

[7] Arno ld Sommerfeld. Thermodynamics and statistical mechanics. Academic 

Press, New York, 1964. 

[8] P. A . M . Dirac. The principles of quantum mechanics. Clarendon Press, Oxford, 

1958. 

[9] Mehran Kardar . Statistical physics of fields. Cambridge University Press, 

Cambridge New York, 2007. 

[10] Denis B E R N A R D . Statistical field theory and applications: A n introduction 

for (and by) amateurs, 2018. U R L : https://www.phys.ens.fr/~dbernard/ 

Publications/QFT_STAT_2018_vnew.pdf. 

[11] David MacKay . Information theory, inference, and learning algorithms. 

Cambridge University Press, Cambridge, U K New York, 2003. 

[12] Christopher Bishop. Pattern recognition and machine learning. Springer, New 

York, 2006. 

[13] Pankaj Mehta, M a r i n Bukov, Ching-Hao Wang, Alexandre G . R . Day, 

Clint Richardson, Charles K . Fisher, and David J . Schwab. A high-

bias, low-variance introduction to machine learning for physicists. Physics 

Reports, 2019. U R L : http://www.scienced: 

pii/S0370157319300766, doi:https://doi.org/10.1016/j.physrep.2019. 

03.001. 

83 

https://www.phys.ens.fr/~dbernard/
http://www.scienced
https://doi.org/10.1016/j.physrep.2019


[14] Yann LeCun , Leon Bottou, Genevieve B . Orr, and Klaus-Robert Müller. Effi­

cient backprop. In Neural Networks: Tricks of the Trade, This Book is an Out­

growth of a 1996 NIPS Workshop, pages 9-50, London, U K , U K , 1998. Springer-

Verlag. U R L : h / q i . acm. org/ c i t a t i o n . c fm?id=645754.668382. 

[15] G E Hinton and R R Salakhutdinov. Reducing the Dimensionality of Data wi th 

Neural Networks. Science, 313(5786):504 L P - 507, Jul 2006. U R L : 

science.sciencemag.org/content/313/5786/504.abstract, doi:10.1126/ 

science.1127647. 

[16] G . Cybenko. Approximat ion by superpositions of a sigmoidal function. Mathe­

matics of Control, Signals and Systems, 2(4):303-314, Dec 1989. U R L : 

//doi.org/10.1007/BF02551274, doi:10.1007/BF02551274. 

[17] David E . Rumelhart, Geoffrey E . Hinton, and Ronald J . Wil l iams. Learning re­

presentations by back-propagating errors. Nature, 323(6088) :533-536, October 

1986. U R L : https://doi.org/10.1038/323533a0, doi:10.1038/323533a0. 

[18] Andrew Y . Ng. Feature selection, 11 vs. 12 regularization, and rotati­

onal invariance. In Proceedings of the Twenty-first International Confe­

rence on Machine Learning, I C M L '04, pages 78-, New York, N Y , U S A , 

2004. A C M . U R L : http://doi.acm.Org/10.1145/l 15435, doi 

10.1145/1015330.1015435. 

[19] Geoffrey E . Hinton, Ni t i sh Srivastava, A lex Krizhevsky, Ilya Sutskever, and 

Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation 

of feature detectors. CoRR, abs/1207.0580, 2012. U R L : http://a 

abs/1207.0580, arXiv:1207.0580. 

[20] Sergey Ioffe and Christ ian Szegedy. Batch normalization: Accelerating deep 

network training by reducing internal covariate shift. CoRR, abs/1502.03167, 

2015. U R L : http://arxiv.org/abs/1502.03167, arXiv: 1502.03167. 

[21] E m m y Noether. Invariant variation problems. Transport The­

ory and Statistical Physics, 1(3): 186-207, 1971. U R L : 

doi.org/10.1080/00411457108231446, arXiv:https://doi.org/10.1080/ 

00411457108231446, doi:10.1080/00411457108231446. 

[22] C h a m C. Aggarwal, Alexander Hinneburg, and Daniel A . K e i m . O n the Surpri­

sing Behavior of Distance Metrics in High Dimensional Space, pages 420-434, 

2001. U R L : .}27, 

arXiv:0812.0624, doi:10.1007/3-540-44503-X.27. 

84 

https://doi.org/10.1038/323533a0
http://doi.acm.Org/10.1145/l
http://a
http://arxiv.org/abs/1502.03167
https://doi.org/10.1080/


[23] Peter Bubeník . Statistical topological data analysis using persistence lands­

capes, pages 1-26, 2012. U R L : http://arxiv. o: 57, arXiv: 

1207.6437. 

[24] Claude Elwood Shannon. A mathematical theory of communication. The Bell 

System Technical Journal, 27(3):379-423, 7 1948. U R L : https://i 

ieee.org/document/6773024/, doi:10.1002/j.1538-7305.1948.tb01338. 

. 

[25] E . T. Jaynes. Information theory and statistical mechanics. Phys. 

Rev., 106:620-630, M a y 1957. U R L : 

PhysRev.106.620, doi:10.1103/PhysRev.106.620. 

[26] Dataset. https://g )ma_thesis_attachements. 

[27] J . Novotný, M . Brada, M . Petrilak, D . Procházka, K . Novotný, A . Hr­

dlička, and J . Kaiser. A versatile interaction chamber for laser-based 

spectroscopic applications, wi th the emphasis on laser-induced breakdown 

spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 101:149 -

154, 2014. U R L : http://www.scienced: 

S0584854714001773, doi:https://doi.org/10.1016/j.sab.2014.08.004. 

[28] J . Vrábel , P. Pořízka, J . Klus , D . Procházka , J . Novotný, D . Kou tný , D . Pa-

loušek, and J . Kaiser. Classification of materials for selective laser mel­

t ing by laser-induced breakdown spectroscopy. Chemical Papers, October 

2018. U R L : https://doi.org/10.1007/sll696-018-0609-l, doi:10.1007/ 

S11696-018-0609-1. 

[29] M . A . Nielsen. Neural networks and deep learning, 2019. U R L : http:// 

neuralnetworksanddeeplearning.com/. 

[30] Magesh Thiyagarajan and Shane Thompson. Optical breakdown threshold 

investigation of 1064 nm laser induced air plasmas. Journal of Applied 

Physics, 111(7):073302, 2012. U R L : https://doi.org/10.1063/L3699368, 

arXiv:https://doi.org/10.1063/1.3699368, doi:10.1063/1.3699368. 

[31] W . Svendsen, O. Ellegaard, and J . Schou. Laser ablation deposition measu­

rements from silver and nickel. Applied Physics A, 63(3):247-255, Sep 1996. 

U R L : https://doi.org/10.1007/BF01567877, doi:10.1007/BF01567877. 

[32] Sergio Musazzi . Laser-induced breakdown spectroscopy : theory and applications. 

Springer, Berl in, Heidelberg, 2014. 

85 

http://arxiv
https://i
https://g
http://www.scienced
https://doi.org/10.1016/j.sab.2014.08.004
https://doi.org/10.1007/sll696-018-0609-l
https://doi.org/10.1063/L3699368
https://doi.org/10.1063/1.3699368
https://doi.org/10.1007/BF01567877


[33] Laser ablation figure. 

article857. 

[34] Richard E Russo, Xianglei Mao, Haichen L i u , Jhanis Gonzalez, and Samuel S 

Mao. Laser ablation in analytical chemistry—a review. Talanta, 57(3) :425 

451, 2002. U R L : 

pii/S003991400200053X, doi:https://doi.org/10.1016/S0039-9140(02) 

00053-X. 

[35] David Cremers. Handbook of laser-induced breakdown spectroscopy. Wiley, A 

John Wi ley & Sons, L t d , Publication, Chichester, West Sussex, 2013. 

[36] Lieselotte Blankenburg. Laser microanalysis. Wiley, New York, 1989. 

[37] Igor Gornushkin, C . L . Stevenson, B W . Smith, N Omenetto, and J . D . Wineford-

ner. Modeling an inhomogeneous optically thick laser induced plasma: A sim­

plified theoretical approach. Spectrochimica Acta Part B: Atomic Spectroscopy, 

56:1769-1785, 09 2001. doi:10.1016/S0584-8547(01)00254-3. 

[38] I. H . Hutchinson. Principles of plasma diagnostics. Cambridge University Press, 

Cambridge New York, 2002. 

[39] G . Cristoforetti, A . De Giacomo, M . Del l 'Agl io , S. Legnaioli, E . Tognoni, 

V . Palleschi, and N . Omenetto. Local Thermodynamic Equi l ibr ium in Laser-

Induced Breakdown Spectroscopy: Beyond the McWhi r t e r criterion. Spectro­

chimica Acta, 65:86-95, January 2010. doi : 10.1016/j .sab.2009.11.005. 

[40] Boris Vodar, Jacques Romand, and Nicole Damany. Some aspects of vacuum 

ultraviolet radiation physics / edited by boris vodar, nicole damany, Jacques 

romand. SERBIULA (sistema Librum 2.0), 05 2019. 

[41] Igor Gornushkin, Reto Glaus, and Lev Nagli . Stimulated emission in alu­

minum laser-induced plasma: kinetic model of population inversion. Appl. 

Opt., 56(3):695-701, Jan 2017. U R L : ] 

URI=ao-56-3-695, doi:10.1364/AO.56.000695. 

[42] Andrzej Miziolek. Laser-induced breakdown spectroscopy (LIBS) -.fundamentals 

and applications. Cambridge University Press, Cambridge, U K New York, 2006. 

[43] A . Kramida , Y u . Ralchenko, J . Reader, and and N I S T A S D Team. 

N I S T Atomic Spectra Database (ver. 5.6.1), [Online]. Available: 

https://physics.nist.gov/asd [2015, A p r i l 16]. National Institute of 

Standards and Technology, Gaithersburg, M D . , 2018. 

86 

https://doi.org/10.1016/S0039-9140(02
https://physics.nist.gov/asd


[44] D . Bruno, M . Capitel l i , C . Catalfamo, and A . Laricchiuta. Cutoff cri­

teria of electronic parti t ion functions and transport properties of ato­

mic hydrogen thermal plasmas. Physics of Plasmas, 15(11):112306, 2008. 

U R L : https://doi.org/10.1063/1.3012566, arXiv:https://doi.org/10. 

1063/1.3012566, doi:10.1063/1.3012566. 

[45] Gianpiero Colonna and Mar io Capitel l i . A few level approach for the electronic 

partition function of atomic systems. Spectrochimica Acta Part B: Atomic 

Spectroscopy, 64:863-873, 09 2009. doi : 10.1016/j . sab. 2009.07.002. 

[46] Hans Griem. Principles of Plasma Spectroscopy. Cambridge University Press, 

Cambridge, 1997. 

[47] Joaquin Juan Camacho, Jakub Vrabel , Sadia Manzoor, Luis Vicente Perez-

Arribas, Deseada Diaz, and Jorge O Caceres. Spatiotemporal diagnostics 

of laser induced plasma of potassium gallosilicate zeolite. J. Anal. At. 

Spectrom., pages - , 2019. U R L : http://dx . d 0 i . 0 r g / l >52F, 

doi:10.1039/C9JA00052F. 

[48] Andrzej Miziolek. Laser-induced breakdown spectroscopy (LIBS) .-fundamentals 

and applications. Cambridge University Press, Cambridge, U K New York, 2006. 

[49] J . A Aguilera and C. Aragon. Multi-element saha-boltzmann and bolt-

zmann plots in laser-induced plasmas. Spectrochimica Acta Part B: Ato­

mic Spectroscopy, 62(4):378 - 385, 2007. U R L : http://www.scienced: 

com/science/article/pii/S0584854707000924, d o i :https : / / d o i .org/10. 

1016/j.sab.2007.03.024. 

[50] A Ciucci , M Corsi, Vincenzo Palleschi, S Rastelli , A Salvetti, and E Tognoni. 

New procedure for quantitative elemental analysis by laser-induced plasma 

spectroscopy. Applied Spectroscopy - APPL SPECTROSC, 53:960-964, 08 1999. 

doi:10.1366/0003702991947612. 

[51] Jorge Caceres, Frederic Pelascini, V Motto-Ros, Samuel Moncayo, Flor ian Tr i -

chard, G Panczer, A Marin-Roldan, Juncal Cruz, Ismael Coronado, and Ja­

vier Martin-Chivelet . Megapixel multi-elemental imaging by laser-induced 

breakdown spectroscopy, a technology wi th considerable potential for pa-

leoclimate studies. Scientific Reports, 7:5080, 07 2017. 

S41598-017-05437-3. 

85 

https://doi.org/10.1063/1.3012566
https://doi.org/10
http://dx.d0i.0rg/l
http://www.scienced
https://doi.org/10

