

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE

KONDENZAČNÍ PARNÍ TURBINA

CONDENSING STEAM TURBINE

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. RADIM SIUDA

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. JAN FIEDLER, Dr.

BRNO 2014

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Energetický ústav Akademický rok: 2013/2014

ZADÁNÍ DIPLOMOVÉ PRÁCE

student(ka): Bc. Radim Siuda

který/která studuje v magisterském navazujícím studijním programu

obor: Energetické inženýrství (2301T035)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Kondenzační parní turbina

v anglickém jazyce:

Condesing Steam Turbine

Stručná charakteristika problematiky úkolu:

S rostoucími cenami paliv a energie a se zvyšujícími se tlaky na ochranu životního prostředí, se zvyšuje tlak na využívání obnovitelných zdrojů energie a dokonalejší využívání zdrojů stávajících.

Nejedná se pouze o zařízení velkých výkonů, ale tento trend se promítá i do zařízení výkonů menších.

V oblasti výroby spalovacích motorů, lze sledovat zvýšenou poptávku po vznětových motorech výkonu nad 10 MW. Jejich odpadní tepelnou energii lze využít v navazujícím Rankin - Clausově oběhu k významnému zvýšení jejich tepelné účinnosti.

V oblasti parních turbin se uvedené směry promítají na zvyšujícím se počtu poptávek po strojích menšího výkonu.

Navrhněte vysokootáčkovou turbinu s integrovanou převodovkou pro následující parametry:

- tlak páry na vstupu do turbiny: 30 bar

- teplota páry na vstupu do turbiny: 400 °C

- Tlak v kondenzátoru: 0,1 bar

Hmotnostní průtok páry: 25 tun /hod

Cíle diplomové práce:

1) Turbinu navrhněte odděleně s vysokotlakovým a odpojitelným kondenzačním modulem.

2) Zpracujte termodynamický výpočet průtočného kanálu turbiny

3) Konstrukční výkresy řezů jednotlivými moduly a dispoziční uspořádání turbiny s generátorem

Seznam odborné literatury:

Firemní podklady PBS, ŠKODA, Siemens a G-Team Fiedler,J.: Parní turbiny -návrh a výpočet, CERM- Brno 2004 Kadrnožka, J.: Tepelné turbiny a turbokompresory, CERM- Brno, 2007 Krbek,J. Polesný,B. Fiedler,J.: Strojní zařízení tepelných centrál, PC-DIR, 1999

Vedoucí diplomové práce: doc. Ing. Jan Fiedler, Dr.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2013/2014. V Brně, dne

L.S.

doc. Ing. Zdeněk Skála, CSc. Ředitel ústavu prof. RNDr. Miroslav Doupovec, CSc., dr. h. c. Děkan fakulty

Abstrakt

Tématem diplomové práce je návrh vysokootáčkové parní turbíny s odpojitelným kondenzačním modulem a integrovanou převodovkou. Jako zdroj energie je uvažováno odpadní teplo vznikající činností vznětových motorů velkých výkonů. V diplomové práci jsou rozebrány důležité volby ovlivňující koncepci turbosoustrojí, na které navazuje termodynamický výpočet pro jednotlivá tělesa. Součástí práce je zjednodušený výpočet převodovky. V závislosti na termodynamickém výpočtu byly sestrojeny konstrukční výkresy řezů všech těles a výkres konstrukčního uspořádání turbosoustrojí s generátorem.

Klíčová slova

Parní turbína, radiální stupeň, rovnotlaká turbína, převodovka.

Abstract

This master's thesis deals with design of a high speed steam turbine with detachable condensation module and integrated gearbox. As a source of energy is used heat waste, which is a result of the diesel engines function. Important options concerning conception of the turbo set are discussed in the master's thesis. Subsequently, thermodynamic calculations for each module are done. Part of the thesis is also simplified calculation of the integral gearbox. Construction drawings of all modules and of the complete turbo set with electrical generator were created based on thermodynamic calculation.

Key words

Steam turbine, radial stage, impulse turbine, gearbox.

Bibliografická citace

SIUDA, R. *Kondenzační parní turbina*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2014. 71 s. Vedoucí diplomové práce doc. Ing. Jan Fiedler, Dr..

Čestné prohlášení

Prohlašuji, že jsem diplomovou práci vypracoval samostatně s použitím odborné literatury, pod vedením doc. Ing. Jan Fiedlera, Dr., Ing. Stanislava Kubiše, CSc a za pomoci vlastních znalostí.

V Brně dne 30. května 2014

.....

Radim Siuda

Poděkování

Tímto způsobem bych chtěl poděkovat vedoucímu práce doc. Ing. Janu Fiedlerovi, Dr. a Ing. Stanislavu Kubišovi, CSc za odborné rady, pomoc, připomínky, ochotu a vstřícnost při vypracování této diplomové práce.

Obsah

1	Ú	vod		11
2	Z	adání č	liplomové práce	12
	2.1	Roz	bor zadání diplomové práce	12
	2.2	Pop	is a volba konstrukční koncepce	13
	2.	.2.1	Volba typu stupně	13
	2.	.2.2	Volba počtu stupňů	15
	2.	.2.3	Volba otáček turbíny	15
	2.	.2.4	Volba otáček generátoru	15
	2.	.2.5	Volba uložení	16
	2.	.2.6	Volba spojky	16
3	V	ýpočet	parametrů pracovní látky	17
	3.1	Pop	is výpočtu parní turbíny	17
	3.2	Výp	očet vstupních a výstupních tlaků	18
	3.3	Před	lběžný výpočet stavů páry	19
	3.4	Před	lběžný výkon a maximální otáčky těles	20
4	Т	ermody	ynamický výpočet průtočného kanálu	23
	4.1	Výp	očet vysokotlakého tělesa	23
	4.	.1.1	Výpočet rozváděcí lopatkové řady	28
	4.	.1.2	Výpočet oběžné lopatkové řady	32
	4.	.1.3	Rozměry stupně a profily lopatkování	34
	4.	.1.4	Účinnost a výkon VT tělesa	36
	4.2	Výp	očet středotlakého tělesa	45
	4.	.2.1	Rozměry stupně a profily lopatkování	47
	4.	.2.2	Účinnost a výkon ST tělesa	48
	4.3	Výp	očet nízkotlakého tělesa	53
5	V	ýkon t	urbíny a průběh expanze	60
6	Pi	řevodo	vka	61
7	Z	ávěr		64
8	S	eznam	použitých zdrojů	66
Se	eznar	n přílo	h	67
Se	eznar	n použ	itých zkratek	68
Se	eznar	n použ	itých veličin	68
Se	eznar	n index	κů	69
	Hor	ní inde	ху	69
	Doli	ní inde	xy	69
Se	eznar	n obráz	zků	70

Seznam tabulek	71
Seznam grafů	71

1 Úvod

V současnosti tvoří stroje a mechanismy poháněné elektrickou energií nedílnou a každodenní součást našeho života. Tato energie může být získávána mnoha způsoby: od přeměny energie slunečního záření, využívání větrné, vodní energie až po energii získávanou z fosilních paliv. Mezi všemi možnostmi dominuje zisk elektrické energie za pomoci přechodu mezi kapalným a plynným skupenstvím vody.

V poslední době rapidně roste snaha o zlepšování životního prostředí. Toho lze z pohledu energetiky docílit mnoha způsoby. Zaváděním nových, obnovitelných zdrojů, u kterých ovšem nemusí být urychlená instalace výhodná z hlediska nákladů a především z hlediska akumulace přebytečné energie. Další možností je vylepšování procesů již uvedených do provozu. V neposlední řadě roste úsilí lépe využívat dostupné zdroje, na což navazuje řešení této diplomové práce.

Ta je zaměřena na využívání odpadního tepla, které vzniká produkcí vznětových motorů velkých výkonů. Takovéto motory jsou hojně využívány především v lodní dopravě, ale také v průmyslových aplikacích. Vhodné vstupní parametry páry jsou ale například schopné produkovat kotle zařazené ve spalovnách odpadů. Tím se značně rozšiřuje spektrum aplikací, ve kterých je možné turbínu uplatnit.

Parní turbína byla navrhnuta jako tří tělesová, s odpojitelným kondenzačním modulem. Uspořádání tohoto typu skýtá řadu výhod, především možnost využití páry pro technologické či topné potřeby. V diplomové práci je proveden termodynamický návrh všech těles s ohledem na použití turbíny a její konkurenceschopnosti z finančního hlediska. Součástí je také výkresová dokumentace všech stupňů včetně dispozice převodovek a elektrického generátoru.

2 Zadání diplomové práce

2.1 Rozbor zadání diplomové práce

Úkolem diplomové práce je navrhnout vysokootáčkovou parní turbínu s integrovanou převodovkou pro zadané parametry uvedené v tabulce 2.1.

Název	Veličina	Jednotka	Hodnota
Tlak páry na vstupu do turbíny	p _A	[bar]	30
Teplota páry na přírubě regulačního ventilu	t _A	[°C]	400
Tlak v kondenzátoru	р _К	[bar]	0,1
Hmotnostní průtok páry	ṁ	[t/h]	25

Tab. 2.1 – Zadané hodnoty diplomové práce

V zadání jsou také stanoveny cíle, kterých by mělo být dosaženo:

- 1) Turbínu navrhněte odděleně s vysokotlakovým a odpojitelným kondenzačním modulem.
- 2) Zpracujte termodynamický výpočet průtočného kanálu turbíny.
- Sestrojte konstrukční výkresy řezů jednotlivými moduly a dispoziční uspořádání turbíny s generátorem.

V současnosti je stále častěji kladen větší důraz na ochranu životního prostředí, s čímž úzce souvisí snaha o co nejvyšší využitelnost zdrojů. Toho lze dosáhnout zvyšováním účinnosti celého procesu zisku elektrické a tepelné energie. Diplomová práce se zabývá možností využití odpadního tepla ze vznětových motorů o výkonech řádově jednotek až desítek MW. Takto výkonné stroje se objevují v průmyslu a velice často v lodní dopravě pro transport rozměrných a hmotných nákladů. Používané motory jsou nejčastěji pomaloběžné (řádově do 100 min⁻¹) a dosahují účinností až přes 50 %. Současný nejvýkonnější vznětový motor s maximálním výkonem 80 080 kW slouží v lodní dopravě a je dodáván firmou Wärtsilä [11]. Aby bylo dosaženo požadovaných hodnot teploty a tlaku páry za kotlem na odpadní teplo, musí být použit vznětový motor o výkonu desítek MW nebo více motorů o menších výkonech. To je dáno nejenom ztrátami vzniklými chlazením vznětových motorů, ale především malým množstvím spalin odcházejících z motoru. Poměr výkonu vznětového motoru a výkonu parní turbíny je tedy větší než například poměr výkonu spalovacích a parních turbín u paroplynových cyklů.

Pro výrobu elektrické energie je na lodích využíván nejčastěji rychloběžný čtyřdobý vznětový motor, jehož úlohu by měla do jisté míry navrhovaná turbína nahradit. Dopravní lodě velkých rozměrů se plaví napříč oceány v různých zeměpisných šířkách. Z hlediska návrhu je tedy velkou výhodou možnost odpojitelného kondenzačního modulu. Ten lze zapojit v období, kdy není nutné vytápění lodi, zajistit tak výrobu elektrické energie a ušetřit náklady na palivo. Naopak, je-li teplota okolí chladnější a je třeba lod' vytápět, kondenzační modul je odpojen a pára za středotlakým dílem je využívána například pro vytápění lodi, ohřevu vody a paliva.

Vzhledem ke vstupním parametrům se nabízí možnost použití turbíny také například pro proces spaloven odpadu, kde lze také dosáhnout podobných hodnot.

2.2 Popis a volba konstrukční koncepce

Navrhované turbosoustrojí se skládá z vysokotlakého, středotlakého a nízkotlakého modulu (dále VT, ST a NT). Třítělesová koncepce byla zvolena za účelem zpracování daného tepelného spádu s co možná nejmenším počtem stupňů při dosažení dobré účinnosti. Předností tohoto uspořádání je možnost odběru technologické a topné páry a především volba rozdílných otáček pro každý modul.

Zvolením vyšších otáček je umožněno zpracovat vyšší entalpický spád na stupni turbíny. Volba otáček je ovšem omezena vlastnostmi použitých materiálů, které mají své pevnostní limity. Maximální dovolená obvodová rychlost tedy závisí hlavně na namáhání lopatek a jejich závěsů od odstředivé síly.

Obr. 2.1 – Schéma turbosoustrojí

Pára je přiváděna vstupním potrubím do VT dílu. Zde expanduje a dochází k přeměně tepelné energie na mechanickou práci na hřídeli. Část výstupní páry lze použít pro technologické účely nebo je možné všechnu páru nechat vyexpandovat v ST dílu, který je přichycen ke společné převodové skříni s VT dílem.

NT díl je koncipován jako odpojitelný, s předpokladem využití výsuvné spojky. Zařazením tohoto typu spojky mezi generátor a převodovku NT dílu odpadá nutnost zastavení celého turbosoustrojí. Jinými slovy je umožněno spojení nebo rozpojení hnaného a hnacího hřídele za chodu. Je-li požadavek na vytápění či ohřev teplé užitkové vody (TUV), NT modul se jednoduše odstaví. V případě, že je pára využita k výrobě elektrické energie, expanduje NT dílem až do kondenzátoru na daný tlak.

Popsané turbosoustrojí může být konstruováno v mnoha variantách. Vlastnosti turbíny lze do značné míry ovlivnit volbou typu stupně, otáček, uložení a počtu stupňů. Výsledné řešení se tedy může lišit celkovou účinností, rozměry, kvalitou, provozní spolehlivostí a cenou. Všechny tyto aspekty je třeba vzít v potaz v závislosti na způsobu využití.

2.2.1 Volba typu stupně

S ohledem na uplatnění navrhované parní turbíny je kladen požadavek na kompaktnost a jednoduchost. U přetlakových turbín musí být za sebou zařazen značně větší počet stupňů než u rovnotlakých. To je dáno zpracováním mnohem nižšího spádu na stupeň. Délka rotoru je i přesto pro obě koncepce přibližně stejná. U přetlakových turbín odpadá nutnost složitějších rozváděcích a oběžných kol, a tudíž lze umístit jednotlivé stupně těsně za sebou. [3]

Obvodová účinnost stupně s rovnotlakým lopatkováním je nižší, to je ale do značné míry kompenzováno ostatními ztrátami, především okrajovými ztrátami. Navrhovaným turbosoustrojím má proudit malý objemový průtok páry, což má za následek velmi krátké lopatky v prvním stupni. Výhodou akčního stupně je možnost použití parciálního ostřiku. Ten je proveden přívodem páry pouze na část oběžné řady lopatek, jak je znázorněno na Obr. 2.2. [1]

Obr. 2.2 – Schéma parciálních ostřiků a totálního ostřiku

Akční lopatkování tedy zpracuje vyšší spád na jeden stupeň. Zároveň je z důvodu malé reakce tlak před i za oběžnou lopatkovou řadou přibližně stejný, čímž je dosaženo nepatrné osové síly působící na rotor. Další výhodou akčního stupně je možnost těsnění rotoru na malých průměrech, je-li zvolena disková koncepce. Tím je dosaženo malého průtoku páry ucpávkou a snížení ztráty vnitřní netěsností.

Účinnost čistě akčního stupně je snižována ztrátami při proudění v oběžné lopatkové řadě. Zvolením malé reakce lze tyto ztráty do značné míry eliminovat, přičemž rozdíl tlaků před a za oběžnou řadou není tak markantní. Další nevýhodou akčních turbín oproti reakčním je prudší pokles obvodové účinnosti pro nenávrhové stavy, mění-li se významně rychlostní poměr $x = \frac{u}{c_{iz}}$ (Obr. 2.3).

Z výše uvedených důvodů: zejména vyššího zpracovaného spádu, jednoduchosti, tlakových poměrů a možnosti použití parciálního ostřiku, bylo zvoleno

Obr. 2.3 – Srovnání obvodové účinnosti jednotlivých typů axialních turbín [3]

rovnotlaké (akční) lopatkování, i přes to, že zadavatel, firma Siemens, obvykle konstruuje turbíny jako přetlakové (reakční) s vyšším stupněm reakce.

2.2.2 Volba počtu stupňů

Volba počtu stupňů závisí na mnoha faktorech. Mezi ty nejdůležitější patří cena, požadovaná účinnost, otáčky, roční zatížení turbíny a požadavky na rozměry stroje. Teoreticky je možné konstruovat každý modul jako jednostupňový, což má ovšem dopad na celkovou účinnost. Zvolená parní turbína bude dosahovat výkonu jednotek MW. Pro zajištění přijatelné účinnosti byla zvolena vícestupňová koncepce. Obecně platí, že s narůstajícím počtem stupňů klesá spád zpracovaný jednotlivými stupni, ale roste délka lopatky a cena stroje. S nárůstem počtu stupňů také souvisí náročnost konstrukce, což je v rozporu s požadavkem na vysokou provozní spolehlivost. Případné poruchy a nutnost odstávky nestojí pro uvažovaný případ za cenu zvýšené účinnosti. U turbíny použitelné v lodní dopravě (jako přídavný zdroj elektrické a tepelné energie) nebo ve spalovnách odpadu je předpoklad ročního vytížení v řádu tisíců hodin, s čímž jde ruku v ruce snaha o vysokou účinnost. Na druhou stranu je nutno uvážit axiální stavební délku turbíny a její technologickou náročnost, aby dosahovala kompaktních rozměrů a přiměřené ceny z hlediska konkurenceschopnosti. Tyto předpoklady vedly k následujícímu výběru počtu stupňů:

- 1) VT díl byl na základě požadavku zadavatele, firmy Siemens Industrial Turbomachinery, zvolen jako radiální, dvoustupňový.
- 2) ST díl byl zvolen jako axiální, dvoustupňový.
- 3) NT díl byl zvolen jako axiální, třístupňový.

2.2.3 Volba otáček turbíny

Volba otáček je dalším důležitým faktorem ovlivňujícím celou konstrukci turbosoustrojí. U turbín vyšších výkonů jsou nejčastěji otáčky voleny stejné jako otáčky generátoru, čímž odpadá nutnost zařazení převodovky, turbosoustrojí je jednodušší a z tohoto hlediska levnější. Volba otáček tedy v závislosti na typu elektrického generátoru může být nejčastěji 1 500 či 3 000 min⁻¹. Pro menší turbíny o výkonech do 20 až 30 MW [4] je výhodnější zvolit vyšší otáčky. To vede ke zpracování vyššího entalpického spádu ve stupni, zvýšení účinnosti, snížení průměru rotoru a celkově ke snížení hmotnosti turbíny. Použitím vyšších otáček lze tedy snížit náklady na pořízení turbíny, a tudíž nevýhoda týkající se ceny za pořízení převodovky odpadá. Při volbě otáček je nutné respektovat technické omezení pro danou převodovku: převodový poměr, měrné tlaky v ložiscích a obvodové rychlosti v ozubení.

Navrhovaná turbína spadá díky malému hmotnostnímu průtoku a daným vstupním parametrům do oblasti turbín s malými výkony. Z tohoto důvodu je cílem návrhu dosáhnout vysokých otáček, při dodržení pevnostních limitů.

2.2.4 Volba otáček generátoru

Obecně převládají 2 typy generátorů – dvou a čtyřpólový. Turbíny o velkých výkonech se lépe konstruují na nižší otáčky [4]. Těch je dosaženo zařazením čtyřpólového generátoru, s výslednými otáčkami 1 500 min⁻¹. Čtyřpólové generátory jsou menší a lehčí než dvoupólové, což může hrát důležitou roli při výběru zejména u aplikací s omezeným prostorem. Také dosahují při stejných zatíženích vyšších účinností, jak je znázorněno na Obr. 2.4. Především z tohoto hlediska byl zvolen generátor čtyřpólový. [9]

Graf 1 - Učinnost elektrických generátorů, převzato z [4]

- A čtyřpólový generátor, vzduchové chlazení, 1 500 min⁻¹
- B dvoupólový generátor, vzduchové chlazení, 3 000 min⁻¹
- C dvoupólový generátor, vodíkové chlazení, 3 000 min⁻¹

2.2.5 Volba uložení

U turbín vysokých výkonů je ve většině případů použito pevné uložení turbíny mezi dva ložiskové stojany. Druhou možností je zvolení uložení letmo, které bylo vybráno pro jednotlivá tělesa v konstrukčním návrhu uvažovaného turbosoustrojí. Letmé uložení poskytuje řadu výhod. Zkrácení rotoru, čímž je dosaženo snížení celkové axiální stavební délky. Dále je použito ucpávek pouze na straně turbíny sousedící s ložisky, čímž vznikají menší ztráty netěsností. Uložení letmo je obzvláště výhodné pro koncepci s integrovanou převodovkou, kdy je mezi ložiska umístěno ozubené kolo převodovky. Pro uložení letmo se zvyšuje riziko nárůstu deformací v ozubení. Proto je vhodnější volit kola se šikmým ozubením místo kol s přímými zuby. Pro své výhody pro uvažovanou koncepci bylo zvoleno uložení letmo.

Obr. 2.4 – Vlevo schéma pevného uložení, vpravo letmé uložení s ozubeným kolem

2.2.6 Volba spojky

Pro spojení VT-ST převodovky s generátorem je uvažováno použití pevné spojky. U NT převodovky je požadavek na její odpojitelnost za chodu. Této potřebě plně vyhovuje například výsuvná SSS (Synchro-Self-Shifting) spojka [13].

3 Výpočet parametrů pracovní látky

3.1 Popis výpočtu parní turbíny

Celý výpočet byl proveden v programu MS Excel, do kterého byl začleněn program X Steam sloužící k výpočtu základních parametrů pracovní látky. Tento program je volně dostupný [12] a umožňuje určení vlastností vody a páry na základě IAPWS-IF97 (tabulky vlastností vody a páry podle průmyslové formulace). X Steam byl použit pro výpočet následujících veličin:

Veličina	Označení	Jednotka
Tlak	р	[bar]
Teplota	t	[°C]
Měrná entalpie	i	[kJ/kg]
Měrná entropie	S	[kJ/kg·K]
Měrný objem	V	$[m^3/kg]$
Suchost páry	Х	[-]
Rychlost zvuku	а	[m/s]

Tab. 3.1 – Veličiny vypočtené za pomoci programu X Steam

<u>Pozn.</u>: Rychlost zvuku se vypočítá za pomoci X Steamu pouze tehdy, je-li suchost páry rovna 1, v opačném případě je použito vzorce (4.1.1-13) [1].

Výpočty byly provedeny postupně, v souladu s průtokem pracovního média turbosoustrojím. Nejdříve tedy VT těleso, na jehož výstup navazuje výpočet ST tělesa a nakonec NT tělesa. Z dostupných vzorců byl sestaven postup výpočtu turbíny. Tyto vzorce jsou uvedeny podle toho, jak za sebou následují, a výsledky pro každé těleso jsou shrnuty v tabulce na konci příslušné kapitoly. Záměrem je zpřehlednění výsledků a jejich snadné dohledání.

Hodnoty vypočítaných veličin jsou uvažovány na střední proudnici a také ve výpočtových rovinách mezi jednotlivými lopatkovými řadami, jak je znázorněno na Obr. 3.1.

Obr. 3.1 – Zobrazení výpočtových rovin

3.2 Výpočet vstupních a výstupních tlaků

Základní úvahou při výpočtu tlaků na vstupu do jednotlivých modulů (a tedy i dalších parametrů páry) bylo rozdělení dostupného izoentropického spádu tak, aby každý modul zpracoval přibližně třetinu. Z veličin uvedených v zadání (tlak a teplota na vstupu do VT tělesa, tlak na vstupu do kondenzátoru) byl vypočten celkový izoentropický spád jako rozdíl entalpií na vstupu do VT tělesa a vstupu do kondenzátoru. Dané entalpie byly určeny za pomoci programu X Steam.

$$H_{c,iz} = i_{VT,A} - i_{NT,K}$$
(3.2-1)

Tlak pro odběr topné páry byl stanoven na 1,5 bar (na základě doporučení zadavatele v rozsahu 1,5 \div 2,5 bar), aby byla zajištěna dostatečná teplota páry pro ohřev vody, která by se dala použít pro vytápění. Zbylý entalpický spád byl přerozdělen mezi VT a ST díl, přičemž tlak na vstupu do ST dílu byl zvolen 8 bar.

Pro samotný výpočet je nutné zahrnout ztráty vznikající na přívodních a výstupních potrubích, ventilech a hrdlech.

Tlakové ztráty před vstupem do VT tělesa

Před vstupem do samotné lopatkové části VT dílu musí pára projít regulačním rychlozávěrným ventilem. (RV) a Při průchodu páry kuželkou RV vznikají tlakové ztráty, které jsou dále zahrnuty ve výpočtu. Dochází k izoentalpickému seškrcení páry a poklesu z původního tlaku p_A na tlak p_0 Celý proces je znázorněn na Obr. 3.2. Tyto ztráty nejsou závislé pouze na tvaru ventilu, ale také na konstrukci vstupního ústrojí, případném parním sítu a aerodynamice vstupního kanálu. Hodnota ztrát 3 % byla volena dle literatury [2].

Obr. 3.2 – Znázornění seškrcení páry v důsledku tlakových ztrát

$$p_0 = p_{VT,in} = (0.95 \div 0.98) \cdot p_A = 0.97 \cdot p_A \tag{3.2-2}$$

kde
$$p_0$$
 je tlak před rozváděcí řadou lopatek [bar],

 p_A je tlak na přírubě spouštěcího ventilu [bar].

<u>Tlakové ztráty před vstupem do ST tělesa</u>

Pro zajištění předem daného tlaku na vstupu do ST tělesa a pro případný technologický odběr páry je nezbytné, aby byly zařazeny do výpočetního algoritmu tlakové ztráty. Ty vznikají v důsledku proudění pracovní látky výstupním hrdlem VT tělesa a také průchodem spojovacím potrubím mezi jednotlivými moduly. Uvažované ztráty představují 3% ztrátu [2]. Jako u VT tělesa je uvažován izoentalpický děj. Hodnotu tlaku na výstupu z VT dílu lze tedy stanovit jako:

$$p_{VT,out} = \frac{p_{ST,in}}{0.95 \div 0.98} = \frac{p_{ST,in}}{0.97}$$
(3.2-3)

<u>Tlakové ztráty před vstupem do NT tělesa</u>

I v případě kondenzačního modulu je nutné zahrnout tlakové ztráty pro docílení vstupní hodnoty tlaku. Opět jsou uvažovány ztráty na výstupním hrdle ST tělesa i přívodním potrubí k NT tělesu. Hodnota ztrát byla volena 3 %, v souladu s doporučením literatury [2].

$$p_{ST,out} = \frac{p_{NT,in}}{0.95 \div 0.98} = \frac{p_{NT,in}}{0.97}$$
(3.2-4)

Tlakové ztráty před vstupem do kondenzátoru

Jakmile pracovní látka projde expanzí ve všech turbínových tělesech, dochází ke kondenzaci. Jelikož tlak v kondenzátoru je předem dán (průtokem chladící vody, její teplotou a plochou výměníku), je nezbytné neopomenout tlakové ztráty na výstupním hrdle NT tělesa a v potrubí na něm navazujícím. Volená hodnota ztrát je 3 % [2].

$$p_{NT,out} = \frac{p_K}{0.95 \div 0.98} = \frac{p_K}{0.97}$$
(3.2-5)

3.3 Předběžný výpočet stavů páry

Pro určení entalpií a entropií byl použit program X Steam. Tyto hodnoty dále slouží pro předběžný výpočet výkonu jednotlivých těles. Hodnoty účinností byly odhadnuty a v detailním výpočtu potom upřesněny.

VT těleso

Na vstupu do VT tělesa je dán tlak $p_{VT,in}$ a teplota $t_{VT,in}$. Z nich je možné dopočítat entalpii na vstupu $i_{VT,in}$ a entropii $s_{VT,in}$. Pro určení entalpie pro izoentropický děj $i_{VT,iz}$ je použit tlak na výstupu z VT tělesa $p_{VT,out}$, na který pára průchodem VT tělesa expanduje. Výstupní entalpie je dopočtena za pomoci odhadované účinnosti η_{VT} dle vzorce 3.3-1.

$$i_{VT,out} = i_{VT,in} - (i_{VT,in} - i_{VT,iz}) \cdot \eta_{VT}$$
(3.3-1)

ST těleso

Tlak na vstupu do ST tělesa $p_{ST,in}$ je snížen o ztráty popsané vzorcem (3.2-3). Entalpie na vstupu do ST dílu $i_{ST,in}$ je rovna entalpii na výstupu z VT dílu $i_{VT,out}$. Z tlaku a entalpie lze určit entropii $s_{ST,in}$. Ze stanoveného tlaku na výstupu ze ST tělesa $p_{ST,out}$ lze určit výstupní entalpii pro izoentropický děj. Skutečná výstupní entalpie je poté stanovena obdobně jako u VT dílu, s tím rozdílem, že odhadovaná účinnost η_{ST} dosahuje vyšších hodnot. Vzhledem k tomu, že ST dílem proudí pára o nižších parametrech, nedochází k tak značným okrajovým ztrátám. Lopatky nejsou natolik dlouhé, aby došlo k výraznému snížení účinnosti vlivem ztráty rozvějířením. Současně je pára stále ve velké míře v přehřátém stavu, tudíž nevznikají ztráty vlhkostí, nebo nedosahují tak velkých hodnot jako u nízkotlakových těles. [4]

$$i_{ST,out} = i_{ST,in} - (i_{ST,in} - i_{ST,iz}) \cdot \eta_{ST}$$
(3.3-2)

NT těleso

I u NT tělesa je pro stanovení výstupní entalpie $i_{NT,out}$ třeba určení entropie na vstupu $s_{NT,in}$. Obdobně jako u ST tělesa k tomu postačí tlak na vstupu do NT dílu $p_{NT,in}$ a entalpie na výstupu z ST dílu $i_{ST,out}$. Entalpie pro izoentropickou expanzi je funkcí tlaku za NT dílem $p_{NT,out}$ a dané entropie. K určení skutečné entalpie stačí od počátečního stavu odečíst izoentropický spád vynásobený účinností η_{NT} .

$$i_{NT,out} = i_{NT,in} - (i_{NT,in} - i_{NT,iz}) \cdot \eta_{NT}$$
(3.3-3)

3.4 Předběžný výkon a maximální otáčky těles

Jelikož je každý tlakový modul usazen na samostatné hřídeli s otáčkami vyššími, než jsou otáčky čtyřpólového generátoru, je nutné zařazení převodovky. Díky tomu lze dosáhnout vysokých hodnot zpracovaného spádu na menším počtu stupňů, zvýšených účinností, zmenšení průměrů rotorů a zkrácení celkové axiální stavební délky každého z těles.

Jsou-li známy odhadnuté hodnoty entalpií za posledními lopatkami každého dílu, je možné stanovit předpokládaný výkon. Tento výkon je v předběžném návrhu důležitý zejména z hlediska stanovení maximálních přípustných otáček, které je převodovka bezpečně schopna zpracovat. Vynesením hodnot výkonu do obecné charakteristiky převodovky poskytnuté firmou Siemens (Graf 2), lze tyto otáčky stanovit. Pro další výpočty bude uvažována maximální obvodová rychlost v ozubení u_z 120 m/s.

Graf 2 – Obecná charakteristika převodovky [7]

Maximální přípustné otáčky z hlediska konstrukce převodovky se nicméně nemusejí rovnat skutečným otáčkám těles, ba naopak měly by být z hlediska bezpečnosti voleny s dostatečnou rezervou. Otáčky pastorku převodovky, a tedy i rotoru turbíny, jsou limitovány i dalšími faktory. Jedná se například o pevnostní limity lopatek, které jsou silně namáhány odstředivou silou, volbu závěsů a také materiálu. Dalším omezením může být také potřeba

vtěsnat více radiálních stupňů, což při daném průměru dovoluje pouze určitou hodnotu obvodové rychlosti na prvním stupni a tím pádem i maximální otáčky.

Výkon VT tělesa

Odhadovaný výkon VT tělesa P_{VT} je dán funkcí entalpického spádu a průtoku pracovní látky tělesem. Předběžný entalpický spád je roven rozdílu vstupní $i_{VT,in}$ a výstupní entalpie $i_{VT,out}$, přičemž stanovení výstupní entalpie bylo za pomoci odhadované účinnosti provedeno v předchozí podkapitole.

$$P_{VT} = \dot{m} \cdot (i_{VT,in} - i_{VT,out})$$
(3.4-1)

Z této hodnoty výkonu lze za pomoci obecné charakteristiky převodovky určit maximální přípustné otáčky $n_{VT,max}$.

Výkon ST tělesa

Výhodou integrované převodovky se dvěma pastorky je možnost zvolení rozdílných otáček pro VT a ST díl. Obdobně jako u VT tělesa je předběžný výkon P_{ST} stanoven na základě hmotnostního průtoku a entalpického spádu. Vstupní hodnota entalpie $i_{ST,in}$ je rovna entalpii na výstupu z vysokotlakého tělesa a výstupní hodnota entalpie $i_{ST,out}$ závisí na odhadované účinnosti. Výkon je dopočítat dle vzorce:

$$P_{ST} = \dot{m} \cdot (i_{ST,in} - i_{ST,out}) \tag{3.4-2}$$

Maximální přípustné otáčky pro ST díl $n_{ST,max}$ a převodovku jsou stanoveny obdobně jako pro VT těleso.

Výkon NT tělesa

NT těleso je napojeno skrz pastorek na samostatnou převodovku, která dále za pomoci výsuvné spojky předává mechanickou práci na hřídel generátoru. Otáčky NT dílu proto také mohou dosahovat vyšších hodnot, než by tomu bylo při přímém napojení na generátor. Zejména u NT dílu, který je koncipován, jako kondenzační odpojitelný modul, je třeba provést kontrolu na obvodovou rychlost posledních lopatek, které bývají značně namáhány. Obvodová rychlost na středním průměru by neměla přesahovat hodnotu 330 m/s [2]. Výkon P_{NT} je určen součinem hmotnostního průtoku *m* a entalpického spádu daného rozdílem vstupní a výstupní entalpie $i_{NT,in}$ a $i_{NT,out}$. Výstupní entalpie je vypočtena na základě odhadnuté účinnosti NT tělesa.

$$P_{NT} = \dot{m} \cdot (i_{NT,in} - i_{NT,out})$$
(3.4-3)

Maximální přípustné otáčky NT tělesa $n_{NT,max}$ jsou stanoveny z obecné charakteristiky převodovky (Graf 2). Všechny výsledky jsou uvedeny v následující tabulce.

Název	Veličina	Jednotka	Vzorec	Hodnota
Entalpie před vstupem do VT dílu	i _{VT,A}	[kJ/kg]	(X Steam)	3 231,57
Entropie před vstupem do VT dílu	S _{VT,A}	[kJ/kg·K]	(X Steam)	6,937
Entalpie při izoentropické expanzi na vstupu do kondenzátoru	i _K	[kJ/kg]	(X Steam)	2 197,34
Celkový entalpický spád při izoentropické expanzi	H _{c,iz}	[kJ/kg]	(3.2-1)	1 034,23
Tlak před první rozváděcí řadou ST tělesa	p _{ST,in}	[bar]	(voleno)	8,00
Tlak před první rozváděcí řadou NT tělesa	p _{NT,in}	[bar]	(voleno)	1,50
Tlak před první rozváděcí řadou VT tělesa	$p_{VT,in}$	[bar]	(3.2-2)	29,10
Tlak za poslední oběžnou řadou VT tělesa	p _{VT,out}	[bar]	(3.2-3)	8,247
Tlak za poslední oběžnou řadou ST tělesa	p _{ST,out}	[bar]	(3.2-4)	1,546
Tlak za poslední oběžnou řadou NT tělesa	p _{NT,out}	[bar]	(3.2-5)	0,103
Odhadovaná účinnost VT tělesa	η_{VT}	[-]	(voleno)	0,8
Odhadovaná účinnost ST tělesa	η_{ST}	[-]	(voleno)	0,88
Odhadovaná účinnost NT tělesa	η_{NT}	[-]	(voleno)	0,82
Entalpie před první rozváděcí řadou VT tělesa	$i_{\rm VT,in}$	[kJ/kg]	(X Steam)	3 231,57
Entropie před první rozváděcí řadou VT tělesa	S _{VT,in}	[kJ/kg·K]	(X Steam)	6,937
Entalpie za poslední oběžnou řadou VT tělesa při izoentropické expanzi	i _{VT,out,iz}	[kJ/kg]	(X Steam)	2 904,44
Entalpie za poslední oběžnou řadou VT tělesa	$i_{VT,out}$	[kJ/kg]	(3.3-1)	2 969,87
Entalpie před první rozváděcí řadou ST tělesa	$i_{\mathrm{ST,in}}$	[kJ/kg]		2 969,87
Entropie před první rozváděcí řadou ST tělesa	S _{ST,in}	[kJ/kg·K]	(X Steam)	7,077
Entalpie za poslední oběžnou řadou ST tělesa při izoentropické expanzi	i _{ST,out,iz}	[kJ/kg]	(X Steam)	2 642,14
Entalpie za poslední oběžnou řadou ST tělesa	i _{ST,out}	[kJ/kg]	(3.3-2)	2 681,46
Entalpie před první rozváděcí řadou NT tělesa	i _{NT,in}	[kJ/kg]		2 681,46
Entropie před první rozváděcí řadou NT tělesa	$\mathbf{S}_{\mathrm{NT,in}}$	[kJ/kg·K]	(X Steam)	7,193
Entalpie za poslední oběžnou řadou NT tělesa při izoentropické expanzi	i _{NT,out,iz}	[kJ/kg]	(X Steam)	2 282,79
Entalpie za poslední oběžnou řadou NT tělesa	i _{NT,out}	[kJ/kg]	(3.3-3)	2 354,55
Předběžný výkon VT tělesa	P_{VT}	[kW]	(3.4-1)	1 817,37
Maximální přípustné otáčky VT tělesa	n _{VT,max}	[ot/min]		24 000
Předběžný výkon ST tělesa	\mathbf{P}_{ST}	[kW]	(3.4-2)	2 002,81
Maximální přípustné otáčky ST tělesa	n _{ST,max}	[ot/min]		23 000
Předběžný výkon NT tělesa	P _{NT}	[kW]	(3.4-3)	2 270,23
Maximální přípustné otáčky NT tělesa	n _{NT,max}	[ot/min]		22 000

Tab. 3.2 – Souhrn zvolených a vypočtených hodnot v kapitole 3

4 Termodynamický výpočet průtočného kanálu

Cílem termodynamického výpočtu je stanovit základní rozměry stupně, pracovní stavy látky, rychlosti před a za lopatkami (rychlostní trojúhelníky), rozměry lopatek, jednotlivé úhly a ztráty ve stupni. Výstupem výše zmíněných parametrů je průtočný kanál, termodynamická účinnost stupně a té odpovídající vnitřní výkon. Celý výpočet by měl ve své podstatě odpovídat požadavkům kladeným na turbínu z hlediska spolehlivosti provozu, ročního využití, rozměrů, ceny a konkurenceschopnosti.

Termodynamický výpočet vychází z parametrů pracovní látky stanových v kapitole 3. Některé z těchto hodnot slouží jako vstupní pro detailní výpočet. Pro každé těleso byl v programu Microsoft Excel sestaven podrobný výpočetní algoritmus. Pro splnění okrajové podmínky hodnoty tlaku za oběžnou řadou byla použita funkce *řešitel*. Výpočet VT tělesa je principiálně jiný od výpočtu ST a NT tělesa. Výpočet VT tělesa je uveden kompletně, u ST a NT tělesa jsou potom uvedeny rozdíly v postupu. Dosažené výsledky jsou prezentovány na konci každé kapitoly v podobě tabulky.

Jelikož bylo zvoleno akční lopatkování, byl výpočet proveden stupeň po stupni. Všechny uvedené vzorce pro výpočet průtočné části parní turbíny byly čerpány z literatury [2], není-li jinak uvedeno přímo v textu. U NT tělesa, kde jsou lopatky posledních stupňů relativně dlouhé a poměr l/D překračuje hodnotu pro volbu prizmatických lopatek 0,1, dochází ke značnému rozvějíření. Současně dosahují rozdíly obvodových rychlostí na různých poloměrech značně rozdílných hodnot, vzrůstá odstředivá síla, mění se tlak po délce lopatky. V takovém případě je nutné uvažovat prostorové proudění, což vede ke značně složitějšímu a podrobnějšímu výpočtu, který přesahuje rámec této diplomové práce, a není proto její součástí.

4.1 Výpočet vysokotlakého tělesa

VT těleso je koncipováno jako dvoustupňové radiální. Turbíny s radiálními stupni jsou obvykle jednostupňové nebo je radiálního stupně využíváno jako předřazeného regulačního stupně za účelem snížení počtu stupňů, a tím pádem i vzdálenosti mezi ložisky turbíny [3]. Radiální stupně jsou schopny zpracovat vyšší tepelný spád oproti axiálním a také dosahují vysoké účinnosti.

Radiální stupně využívají na rozdíl od axiálních stupňů i práci setrvačných sil, jak vyplývá z Eulerovy rovnice:

$$l_u = \underbrace{\frac{c_1^2 - c_2^2}{2}}_{A} + \underbrace{\frac{w_2^2 - w_1^2}{2}}_{B} + \underbrace{\frac{u_1^2 - u_2^2}{2}}_{C}$$
(4.1-1)

kde l_u představuje obvodovou práci ve stupni [J/kg],

c představuje absolutní rychlost [m/s],

w představuje relativní rychlost [m/s],

u představuje obvodovou rychlost [m/s].

Člen A představuje v Eulerově rovnici práci vykonanou změnou absolutních rychlostí. U stupňů s teoretickým stupněm reakce 0 (předpoklad $w_1 = w_2$) a pro proudění na válcových

plochách (předpoklad $u_1 = u_2$) je tedy obvodová práce závislá pouze na rozdílu mocnin absolutních rychlostí.

Člen *B* představuje v Eulerově rovnici práci vykonanou změnou relativních rychlostí. U stupňů s teoretickým stupněm reakce 1 (předpoklad $c_1 = c_2$) a pro proudění na válcových plochách (předpoklad $u_1 = u_2$) je tedy obvodová práce závislá pouze na rozdílu mocnin relativních rychlostí.

Člen *C* představuje v Eulerově rovnici práci vykonanou změnou obvodových rychlostí. Má-li být tato práce kladná, musí být obvodová rychlost u_1 větší než u_2 , což platí pro centripetální uspořádání. U něj proudí pára v osovém řezu od většího k menšímu průměru. Proudí-li pára směrem od osy rotace, tedy od menšího k většímu průměru, jedná se o turbínu centrifugální.

K porovnání byl použit axiální stupeň, pro který platí vzorec (4.1-2). Současně je předpokládána stejná hodnota obvodové práce vlivem změny kinetických energií absolutních rychlostí.

$$l_u = \frac{c_1^2 - c_2^2}{2} + \frac{w_2^2 - w_1^2}{2}$$
(4.1-2)

Pro centripetální stupeň platí, že práce setrvačných sil a_s je větší než 0 (jelikož $u_1 > u_2$). Z rovnice (4.1-1) tedy vyplývá, že pro dosažení stejné hodnoty obvodové práce jako u axiálního stupně dochází ke snížení kinetické energie od relativních rychlostí.

$$l_u = \left(\frac{c_1^2 - c_2^2}{2}\right) + \left(\frac{w_2^2 - w_1^2}{2}\right) \downarrow + \left(\frac{u_1^2 - u_2^2}{2}\right) \uparrow$$
(4.1-3)

Pro centrifugální stupeň platí, že práce setrvačných sil a_s je menší než 0. Z rovnice (4.1-1) tedy vyplývá, že pro dosažení stejné hodnoty obvodové práce jako u axiálního stupně dochází ke zvýšení kinetické energie od relativních rychlostí.

$$l_u = \left(\frac{c_1^2 - c_2^2}{2}\right) + \left(\frac{w_2^2 - w_1^2}{2}\right) \uparrow + \left(\frac{u_1^2 - u_2^2}{2}\right) \downarrow$$
(4.1-4)

Centripetální uspořádání je tedy oproti centrifugálnímu výhodné z hlediska snížení ztrát, jelikož je kinetická energie od výstupní rychlosti w_2 nižší. Oba typy uspořádání jsou znázorněny na následujícím obrázku:

Obr. 4.1 – Vlevo schéma centripetálního stupně, vpravo centrifugálního

Oběžné kolo turbíny je umístěno na prodlouženém pastorku převodovky, jedná se tedy o uložení letmo. Skříň turbíny je přichycena k samotné převodovce. Využitím tohoto uspořádání jsou společná ložiska pro turbínu i převodovku. Odpadá tím potřeba ložiskových stojanů turbíny a případné zařazení spojky mezi turbínu a převodovou skříň. To vede ke zkrácení délky stroje. Možnost volby samostatných otáček pro VT těleso přináší řadu výhod spojených s minimalizací investičních nákladů, optimalizací rozměrů a také vede v konečném důsledku ke snížení hmotnosti.

Obr. 4.2 – I-s diagram radiálního centipetálního stupně

Nevýhodou radiálních stupňů je nárůst odstředivé síly se vzdáleností od osy rotace. Tím dochází ke značnému namáhání lopatek. Z tohoto důvodu se také radiální turbíny většinou konstruují jako jednostupňové.

Pro samotný výpočet byly použity hodnoty dané zadáním a vypočtené v kapitole 3. Je tedy známo:

Název	Veličina	Jednotka
Hmotnostní tok pracovní látky	ṁ	[kg/s]
Tlak pracovní látky před první rozváděcí řadou VT tělesa	p _{VT,in}	[bar]
Teplota před první rozváděcí řadou VT tělesa	t _{VT,in}	[°C]
Tlak pracovní látky za poslední oběžnou řadou VT tělesa	p _{VT,out}	[bar]

Tab. 4.1 – Známé hodnoty pro výpočet VT tělesa

Obr. 4.3 – Schéma expanze pracovní látky ve VT tělesu

Pokud není stanoveno jinak, jsou stavy pracovní látky na vstupu do rozváděcí lopatkové řady (RLŘ) označeny dolním indexem 0, stavy na vstupu do oběžné lopatkové řady (OLŘ) indexem 1 a stavy na výstupu z oběžné lopatkové řady indexem 2.

Pro tlak p_0 a teplotu t_0 na vstupu lze pomoci stavové funkce v programu X Steam stanovit entalpii i_0 , entropii s_0 a měrný objem v_0 .

Celková entalpie na vstupu je dána vztahem:

 $i_{0c} = i_0 + \frac{c_0^2}{2} \tag{4.1-5}$

kde c_0 je *volená* vstupní rychlost páry do stupně [m/s], závisí na geometrii vstupního hrdla.

Volba vstupních a výstupních průměrů oběžné lopatkové řady:

U radiálních turbín se dvěma stupni je důležité stanovit průměr na vstupu do první oběžné lopatkové řady D_1 . Musí být volen s ohledem na pevnostní hledisko a také, aby byla zajištěna dostatečná rozměrová rezerva i pro druhý stupeň. Na základě firemních zkušeností *Siemens Industrial Turbomachinery* byl tento průměr zvolen 400 mm.

Průměr na výstupu z prvního stupně D_2 byl zvolen 360 mm. Šířka radiálních mezer mezi statorovou a rotorovou lopatkovou mříží byla stanovena na 5 mm.

Průměr na vstupu do OLŘ druhého stupně byl zvolen 310 mm a průměr na výstupu 270 mm. Schématické znázornění rozměrů VT tělesa je uvedeno v kapitole (4.1.3) na Obr. 4.6.

Volba otáček VT tělesa:

Volba otáček VT tělesa vychází z maximální dovolené obvodové rychlosti. U moderních turbín dovolená obvodová rychlost dosahuje i hodnot 320 m/s [7], která bude pro potřeby této diplomové práce brána jako maximální. Obvodovou rychlost lze stanovit ze známého vztahu:

$$u_1 = \pi \cdot D_1 \cdot n \tag{4.1-6}$$

Dosadíme-li za obvodovou rychlost hodnotu 320 m/s a za průměr 0,4 m, maximální otáčky mají hodnotu 15 278,9 min⁻¹. Je patrné, že jsou tyto otáčky nižší než maximální limitní otáčky stanovené z obecné charakteristiky převodovky (kapitola 3.4), a proto je možné použít daný typ převodovky. V dalším výpočtu bude počítáno s volenými otáčkami 15 000 min⁻¹.

Entalpický spád při izoentropické expanzi a jeho přerozdělení ve stupni:

Celkový spád na stupeň turbíny:

$$h_{iz} = \frac{1}{2} \cdot \left(\frac{u_1}{x}\right) \tag{4.1-7}$$

kde *x* je *volený* rychlostní poměr [-]. Rychlostní poměr ovlivňuje tlak za stupněm a je tedy volen tak, aby bylo dosaženo požadovaného tlaku na výstupu z VT tělesa při dobré účinnosti.

Celkový tepelný spád je dále přerozdělen mezi statorovou a rotorovou část v závislosti na stupni reakce ρ , který je pro VT těleso zvolen 0,1, aby nedocházelo ke zpomalování proudu, což by mělo za následek jeho destabilizaci a zvyšování ztrát.

Entalpický spád při izoentropické expanzi zpracovaný v rozváděcí řadě:

$$h_{iz}^{S} = (1 - \rho) \cdot h_{iz} \tag{4.1-8}$$

Entalpický spád při izoentropické expanzi zpracovaný v oběžné řadě:

$$h_{iz}^{R} = \rho \cdot h_{iz} \tag{4.1-9}$$

Tlak za rozváděcí lopatkovou řadou:

Tlak za RLŘ p_1 odpovídá entropii s_0 a entalpii $i_{1,iz}$. Tuto entalpii lze určit pomocí entalpického spádu h_{iz}^S zpracovaného ve statoru.

$$i_{1,iz} = i_0 - h_{iz}^S \tag{4.1-10}$$

$$p = f(i, s)$$
 (4.1-11)

<u>Tlak za oběžnou lopatkovou řadou:</u>

Tlak za OLŘ p_2 je vypočten analogicky jako tlak p_1 a odpovídá entropii s_0 a entalpii $i_{2,iz}$. Tuto entalpii lze určit pomocí celkového entalpického spádu h_{iz} zpracovaného ve statoru.

$$i_{2,iz} = i_0 - h_{iz} \tag{4.1-12}$$

4.1.1 Výpočet rozváděcí lopatkové řady

Rychlostní součinitel:

Z literatury [2] byl převzat graf, na jehož základě lze hodnotu součinitele vypočítat ze závislosti na úhlu ohybu proudu $\Delta \alpha$. Proložením odečtených hodnot polynomickou spojnicí trendu byly získány koeficienty a_{φ} až f_{φ} .

$$\varphi = a_{\varphi} \cdot \Delta \alpha^{5} + b_{\varphi} \cdot \Delta \alpha^{4} + c_{\varphi} \cdot \Delta \alpha^{3} + d_{\varphi} \cdot \Delta \alpha^{2} + e_{\varphi} \cdot \Delta \alpha + f_{\varphi}$$
(4.1.1-1)

Úhel ohybu proudu se vypočte podle rovnice (4.1.1-2) za předpokladu, že pracovní látka vstupuje do oběžných lopatek stupně radiálně.

$$\Delta \alpha = 90 - \alpha_1 \tag{4.1.1-2}$$

Graf 3 – Závislost rychlostních součinitelů na ohybu proudu [2]

Rychlosti a úhly v následujících výpočtech jsou značeny podle rychlostních trojúhelníků uvedených níže:

Obr. 4.4 – Znázornění rychlostních trojúhelníků pro radiální VT těleso

Absolutní rychlost na výstupu z dýzy při izoentropické expanzi:

$$c_{1iz} = \sqrt{2 \cdot (1 - \rho) \cdot h_{iz} + c_0^2}$$
(4.1.1-3)

Absolutní rychlost na výstupu z RLŘ:

$$c_1 = \varphi \cdot c_{1iz} \tag{4.1.1-4}$$

Složka absolutní rychlosti v obvodovém směru:

$$c_{1u} = c_1 \cdot \cos\alpha_1 \tag{4.1.1-5}$$

Složka absolutní rychlosti v radiálním směru:

$$c_{1r} = c_1 \cdot \sin\alpha_1 \tag{4.1.1-6}$$

Relativní rychlost na výstupu z RLŘ:

$$w_1 = \sqrt{c_1^2 + u_1^2 - 2 \cdot c_1 \cdot u_1 \cdot \cos \alpha_1} \tag{4.1.1-7}$$

Složka relativní rychlosti v obvodovém směru:

$$w_{1u} = c_{1u} - u \tag{4.1.1-8}$$

Složka relativní rychlosti v radiálním směru:

$$w_{1r} = c_{1r} = c_1 \cdot \sin\alpha_1 \tag{4.1.1-9}$$

Úhel relativní rychlosti na výstupu z RLŘ:

$$\beta_1 = \arccos \frac{w_{1u}}{w_1} \tag{4.1.1-10}$$

Energetická ztráta v RLŘ:

$$z_0 = \frac{c_{1iz}^2}{2} \cdot (1 - \varphi^2) \tag{4.1.1-11}$$

Známe-li energetickou ztrátu v rozváděcí mříži, lze určit stavy pracovní látky na výstupu z rozváděcí lopatkové řady.

Entalpie za rozváděcí lopatkovou řadou:

$$i_1 = i_0 - h_{iz}^S + z_0 \tag{4.1.1-12}$$

Z hodnot tlaku p_1 a entalpie i_1 za rozváděcí řadou lze stanovit další veličiny: entropii s_1 , teplotu t_1 , měrný objem v_1 a suchost páry x_1 .

Rychlost zvuku na výstupu z RLŘ:

$$a = \sqrt{\kappa \cdot r \cdot T_1} = \sqrt{\kappa \cdot p_1 \cdot v_1} \tag{4.1.1-13}$$

kde κ je Poissonova konstanta pro přehřátou páru [m/s],

r je individuální plynová konstanta [J/kg·K],

 T_1 je absolutní teplota plynu [K].

V sestaveném programu byla pro výpočet rychlosti zvuku v oblasti přehřáté páry použita funkce programu X Steam ve tvaru f_ph(A;B). Pro případ, kdy k expanzi dochází v oblasti mokré páry, byl použit vzorec zmíněný výše. Tehdy je nutné dopočítat Poissonovu konstantu v závislosti na suchosti páry za pomoci empirického vztahu [1]:

$$\kappa = 1,035 + 0,1 \cdot x \tag{4.1.1-14}$$

K popisu typu proudění je často používáno bezrozměrného Machova čísla, charakterizovaného poměrem rychlosti proudění (tělesa) c k rychlosti šíření zvuku v daném prostředí a.

$$Ma_1 = \frac{c_1}{a_1} \tag{4.1.1-15}$$

V závislosti na velikosti Machova čísla lze proudění rozdělit na [8]:

- Subsonické neboli podzvukové Ma < 1, tudíž rychlost proudění je menší než rychlost zvuku
- Transsonické Ma dosahuje hodnot okolo 1 od dosažení rychlosti zvuku pouze na určitých místech ve sledovaném poli až po rychlost, při které je všude rychlost proudění větší nebo rovna rychlosti zvuku.
- 3) Supersonické Ma >1, nadzvuková rychlost proudění.

Pro hodnoty Machova čísla větší než 1 dochází v lopatkové mříži ke kritickému proudění. To je možné charakterizovat také poměrem tlaků π_{krit} před a za rozváděcí lopatkovou řadou. Je-li tento poměr menší než 0,546 (pro přehřátou páru), dochází ke kritickému proudění.

$$\pi = \frac{p_1}{p_0} \tag{4.1.1-16}$$

$$\pi_{krit} = \frac{p_{krit}}{p_0} \tag{4.1.1-17}$$

$$p_{krit} = \pi_{krit} \cdot p_0 \tag{4.1.1-18}$$

Je-li tlak za mříží menší než tlak kritický nastavený v minimálním průřezu mříže, dochází k odklonu proudu, zvětšování deviačního úhlu, vzrůstu rychlosti a tím pádem i Machova čísla. Překročí-li rychlost proudění na výstupu z mříže rychlost zvuku, je počítáno s novou hodnotou úhlu absolutní rychlosti na výstupu z oběžné lopatkové řady α_{Io} podle vztahu (4.1.1-19). Tento výpočet je řešen iteračně. Iterační výpočet je možné restartovat změnou hodnoty buňky *restart odklonu proudu* z hodnoty 0 na hodnotu 1 a zpět, přičemž je využito podmínky *Když*. Výpočet v sešitu aplikace Excel byl nastaven tak, aby se provedl ihned po spuštění.

$$\alpha_{1o} = \arcsin\left(\frac{v_1}{v_{krit}} \cdot \frac{c_{krit}}{c_1} \cdot \sin\alpha_1\right) \tag{4.1.1-19}$$

kde α_1 je původní úhel na výstupu z rozváděcí oběžné řady [°],

 v_{krit} je objem při kritickém tlakovém poměru [kg/m³],

c_{krit} je absolutní rychlost při kritickém tlakovém poměru [m/s].

Pro stanovení kritické rychlosti c_{krit} je třeba znát hodnotu kritické entalpie při izoentropické expanzi (funkce kritického tlaku p_{krit} a entropie s_0).

$$c_{krit} = \varphi \cdot \sqrt{2 \cdot \left(i_{o,c} - i_{krit,iz}\right)} \tag{4.1.1-20}$$

Kondenzační parní turbína

Kritická entalpie poté vychází ze vztahu:

$$i_{krit} = i_{0,c} - \frac{c_{krit}^2}{2} \tag{4.1.1-21}$$

Kritický objem v_{krit} je dán funkcí kritického tlaku p_{krit} a kritické entalpie i_{krit} .

4.1.2 Výpočet oběžné lopatkové řady

Rychlostní součinitel:

Rychlostní součinitel v rotorovém kanále vychází obdobně jako rychlostní součinitel pro stator z grafu 3 [2]. Hodnotu součinitele lze vypočítat v závislosti na úhlu ohybu proudu $\Delta\beta$ podle následující rovnice, přičemž koeficienty jsou totožné jako pro RLŘ.

$$\psi = a_{\varphi} \cdot \Delta\beta^{5} + b_{\varphi} \cdot \Delta\beta^{4} + c_{\varphi} \cdot \Delta\beta^{3} + d_{\varphi} \cdot \Delta\beta^{2} + e_{\varphi} \cdot \Delta\beta + f_{\varphi}$$
(4.1.2-1)

Úhel ohybu proudu se vypočte jako:

$$\Delta\beta = \beta_2 - \beta_1 \tag{4.1.2-2}$$

kde β_2 je *volený* úhel relativní rychlosti na výstupu z OLŘ [°], snahou bylo dosáhnout hodnoty padající do doporučeného rozmezí 180 – [β_1 – (3 ÷ 5)°], [2].

Obvodová rychlost na výstupu z OLŘ:

$$u_2 = u_1 \cdot \frac{D_2}{D_1} \tag{4.1.2-3}$$

Relativní rychlost na výstupu z OLŘ při izoentropické expanzi:

$$w_{2iz} = \sqrt{2 \cdot \rho \cdot h_{iz} + w_1^2 - (u_1^2 - u_2^2)}$$
(4.1.2-4)

Relativní rychlost na výstupu z OLŘ:

$$w_2 = \psi \cdot w_{2iz} \tag{4.1.2-5}$$

Složka relativní rychlosti v obvodovém směru:

$$w_{2u} = w_2 \cdot \cos(180 - \beta_2) \tag{4.1.2-6}$$

Složka relativní rychlosti v radiálním směru:

$$w_{2r} = w_2 \cdot \sin(180 - \beta_2) \tag{4.1.2-7}$$

Absolutní rychlost na výstupu z OLŘ:

$$c_2 = \sqrt{w_2^2 + u_2^2 - 2 \cdot w_2 \cdot u_2 \cdot \cos(180 - \beta_2)}$$
(4.1.2-8)

Složka absolutní rychlosti v obvodovém směru:

$$c_{2u} = w_{2u} - u_2 \tag{4.1.2-9}$$

Kondenzační parní turbína

Složka absolutní rychlosti v radiálním směru:

$$c_{2r} = w_{2r} = w_2 \cdot \sin(180 - \beta_2) \tag{4.1.2-10}$$

Úhel absolutní rychlosti na výstupu z OLŘ:

$$\alpha_2 = 90 + \arcsin\left(\frac{c_{2u}}{c_2}\right) \tag{4.1.2-11}$$

Energetická ztráta v OLŘ:

$$z_1 = \frac{w_{2iz}^2}{2} \cdot (1 - \psi^2) \tag{4.1.2-12}$$

Entalpie za OLŘ:

$$i_2 = i_1 - h_{iz}^R + z_1 \tag{4.1.2-13}$$

Z hodnot tlaku p_2 a entalpie i_2 za rozváděcí řadou lze stanovit další stavové veličiny: entropii s_2 , teplotu t_2 , měrný objem v_2 a suchost páry x_2 .

Rychlost zvuku na výstupu z OLŘ:

Pro výpočet rychlosti zvuku a_2 na výstupu z OLŘ byla použita funkce programu X Steam.

Machovo číslo:

$$Ma_2 = \frac{w_2}{a_2} \tag{4.1.2-14}$$

Na základě vypočtených úhlů a rychlostí na výstupu z rozváděcí a oběžné lopatkové řady lze sestrojit rychlostní trojúhelníky zobrazené na Obr. 4.5.

Obr. 4.5 – Rychlostní trojúhelníky VT tělesa

4.1.3 Rozměry stupně a profily lopatkování

Jak již bylo zmíněno, jsou voleny průměry D_1 a D_2 . Schéma rozměrů rozváděcí a oběžné lopatkové řady je znázorněno na Obr. 4.6.

Obr. 4.6 – Schéma rozměrů radiálního stupně

Průměr na výstupu z RLŘ: volen o 10 mm větší než vstupní průměr do OLŘ.

$$D_0 = D_1 + 0.01 \tag{4.1.3-1}$$

Vzhledem k malému objemovému průtoku pracovní látky, daným otáčkám a průměrům je nutná volba parciálního ostřiku, aby bylo dosaženo požadované minimální délky lopatky 15 mm [2].

Výstupní délka rozváděcí lopatky při totálním ostřiku:

$$l_{0t} = \frac{\dot{m} \cdot v_1}{\pi \cdot D_0 \cdot \varphi \cdot c_{1iz} \cdot \sin\alpha_1} \tag{4.1.3-2}$$

Parciální ostřik byl zvolen 50 %, podle následující rovnice, l_0 je uvažováno 15 mm [2]:

$$\varepsilon = \frac{l_{0t}}{l_0} \tag{4.1.3-3}$$

Výstupní délka rozváděcí lopatky při parciálním ostřiku:

$$l_0 = \frac{l_{0t}}{\varepsilon} = \frac{l_{0t}}{0.5}$$
(4.1.3-4)

Pro zajištění rovnoměrného ostřiku rozváděcích lopatek druhého stupně byl mezi první a druhý stupeň VT dílu zařazen vyrovnávací kanál. Tím se převádí část páry z oblasti dýz do oblastí rozváděcích lopatek 2. stupně, které jsou obvodově vzdálenější. Je zapotřebí zohlednit tlakové ztráty vznikající ve vyrovnávacím kanálu. Z tohoto důvodu byla na základě doporučení volena průměrná tlaková ztráta mezi 1. a 2. stupněm 0,5 bar. <u>Délka lopatky na vstupu do OLŘ</u>: volena o 2 mm více než l_0 [2].

$$l_1 = l_0 + 0,002 \tag{4.1.3-5}$$

Délka lopatky na výstupu z OLŘ:

$$l_2 = \frac{\dot{m} \cdot v_2}{\pi \cdot D_2 \cdot \varepsilon \cdot w_2 \cdot \sin(180 - \beta_2)} \tag{4.1.3-6}$$

Průměr na vstupu do RLŘ:

$$D_{S,in} = \frac{\dot{m} \cdot v_0}{\pi \cdot l_0 \cdot \varepsilon \cdot c_0} \tag{4.1.3-7}$$

Při určování vhodných profilů lopatkování se vychází z hodnot Machova čísla pro oběžnou a rozváděcí lopatkovou řadu. Vývoj zcela nových lopatek je velice náročný proces, jak finančně, tak časově. Z tohoto důvodu je snahou vybírat z dostupných profilů lopatek. Schématické znázornění geometrie RLŘ i OLŘ je uvedeno na následujícím obrázku:

Obr. 4.7 – Schéma geometrie profilů lopatek radiálního stupně

Pro vypočtené hodnoty Ma a úhly byly zvoleny následující profily lopatek pro rozváděcí lopatkovou řadu [2]. Z důvodu rozdílných Machových čísel byl zvolen pro každou lopatkovou řadu rozdílný typ mříže.

Tab. 4.2 – Volba rovnotlakých profilů pro RLŘ radiálního VT dílu	

RLŘ	Typ mříže	Rozsah Ma	Vstupní úhly do mříže [°]	Výstupní úhly z mříže [°]	Označení profilu	Optimální rozteč s/c	Optimální úhel nastavení γ [°]
I.	В	0,85 - 1,3	70 - 110	10 - 14	TS-1B	0,74 - 0,95	32 - 36
II.	А	0,3 - 0,9	70 - 100	10 - 14	TS-1A	0,74 - 0,90	32 - 36

Vzhledem k nízkým hodnotám Machových čísel u OLŘ byl zvolen pro obě lopatkové řady stejný typ mříže [2]:

OLŘ	Typ mříže	Rozsah Ma	Vstupní úhly do mříže [°]	Výstupní úhly z mříže [°]	Označení profilu	Optimální rozteč <i>s/c</i>	Optimální úhel nastavení γ [°]
I., II.	Α	0,3-0,9	18 - 33	16 - 19	TR-1A	0,6 - 0,7	11 - 14

Tab. 4.3 – Volba rovnotlakých profilů pro OLŘ radiálního VT dílu

Na základě hodnot v těchto tabulkách byla zvolena poměrná rozteč pro rozváděcí lopatkovou řadu $(s/c)_s$, poměrná rozteč pro oběžnou lopatkovou řadu $(s/c)_R$, úhel nastavení profilu v mříži pro rozváděcí lopatkovou řadu γ_s a úhel nastavení profilu v mříži pro oběžnou lopatkovou řadu γ_{s} .

Šířka rozváděcí lopatkové řady:

$$B_S = \frac{D_{S,in} - D_0}{2} \tag{4.1.3-8}$$

Šířka oběžné lopatkové řady:

$$B_R = \frac{D_1 - D_2}{2} \tag{4.1.3-9}$$

Délka tětivy rozváděcí lopatkové řady:

$$c_S = \frac{B_S}{\cos \gamma_S} \tag{4.1.3-10}$$

Délka tětivy oběžné lopatkové řady:

$$c_R = \frac{B_R}{\cos \gamma_R} \tag{4.1.3-11}$$

Rozteč rozváděcích lopatek:

$$s_S = c_S \cdot \left(\frac{s}{c}\right)_S \tag{4.1.3-12}$$

Rozteč oběžných lopatek:

$$s_R = c_R \cdot \left(\frac{s}{c}\right)_R \tag{4.1.3-13}$$

4.1.4 Účinnost a výkon VT tělesa

Obvodová účinnost stupně:

Obvodová účinnost stupně v sobě zahrnuje energetické ztráty v rozváděcí i oběžné lopatkové řadě a ztrátu výstupní rychlostí. Ta může být buď využita v dalším stupni, nebo může být mařena (např. ve výstupním hrdle tělesa). Energetická ztráta výstupní rychlostí se vypočte jako:

$$z_c = \frac{c_2^2}{2} \tag{4.1.4-1}$$

Kondenzační parní turbína

Obvodová účinnost je potom dána vztahem:

$$\eta_u = \frac{E_0 - z_1 - z_2 - z_c}{E_0} \tag{4.1.4-2}$$

kde E_0 představuje celkovou využitelnou energii na stupeň [kJ/kg].

$$E_0 = h_{iz} + \frac{c_0^2}{2} \tag{4.1.4-3}$$

Vnitřní termodynamická účinnost stupně:

Vnitřní termodynamická účinnost v porovnání s obvodovou účinností zahrnuje i ostatní ztráty, které se vztahují k celému stupni. V této diplomové práci jsou jako ostatní ztráty uvažovány: ztráta třením (ventilací) disku z_5 , ztráta parciálním ostřikem z_6 , ztráta axiální (radiální) mezerou z_7 , ztráta vlhkostí páry z_x a ztráta rozvějířením z_v . V následujících výpočtech jsou použity hodnoty poměrné ztráty ξ , která se rovná podílu absolutní hodnoty ztráty z a celkové využitelné energie E_0 .

$$\sum z_{ost} = z_5 + z_6 + z_7 + z_v + z_x \tag{4.1.4-4}$$

$$\eta_{tdi} = \eta_u - \xi_5 - \xi_6 - \xi_7 - \xi_v - \xi_x \tag{4.1.4-5}$$

Poměrná ztráta třením (ventilací) disku:

V mezeře mezi statorovou a rotorovou částí dochází k nárůstu rychlosti pracovní látky až na hodnotu obvodové rychlosti. Tento nárůst má za následek rozdílné rychlosti v různých vrstvách. Mezi těmito vrstvami následně dochází ke tření, přičemž každá vrstva je charakterizována rozdílnou obvodovou rychlostí. Odstředivá síla nabývá různých hodnot pro dané vrstvy, což je příčinou sekundárního proudění. [4]

Vzorec pro poměrnou ztrátu třením disku byl po dohodě s vedoucím práce převzat z literatury [2], přestože je uveden pro axiální stupeň s daným středním průměrem. Pro potřeby této diplomové práce byla tato hodnota zvolena jako aritmetický průměr průměrů D_1 a D_2 . Použitím tohoto vzorce dochází k jisté nepřesnosti ve výpočtu, která je ale pro potřeby této práce zanedbatelná.

$$\xi_5 = k_{t\check{r}} \cdot \frac{D}{S} \cdot \left(\frac{u}{\sqrt{2 \cdot h_{iz}}}\right)^3 \tag{4.1.4-6}$$

kde $k_{t\bar{t}}$ je třecí součinitel [-], $k_{t\bar{t}} = (0,45 - 0,8) \cdot 10^{-3}$, voleno $0,6 \cdot 10^{-3}$,

S je průtočný průřez pro páru $[m^2]$.

$$D = \frac{D_1 + D_2}{2} \tag{4.1.4-7}$$

$$u = \pi \cdot D \cdot n \tag{4.1.4-8}$$

$$S = \pi \cdot D \cdot l \cdot \varepsilon \cdot \sin \alpha_1 \tag{4.1.4-9}$$

l průměrná délka lopatky OLŘ [m], l je počítáno jako průměr hodnot l_1 a l_2 . Tato kde korekce opět vnáší do výpočtu nepřesnost.

Poměrná ztráta parciálním ostřikem:

Pro malé hmotnostní průtoky pracovní látky vycházejí velmi krátké lopatky, pro které jsou veliké okrajové ztráty. Z tohoto důvodu se pracovní látka přivádí pouze po části obvodu, čímž vzniká parciální ostřik. Vzhledem k tomu, že se ve vzorcích objevují hodnoty obvodové rychlosti a průtočného průřezu pro páru vypočtených podle rovnice (4.1.4-8), respektive (4.1.4-9) dochází ve výpočtu k další nepřesnosti.

Poměrná ztráta ventilací neostříknutých lopatek:

$$\xi_{61} = \frac{0.065}{\sin \alpha_1} \cdot \frac{(1-\varepsilon)}{\varepsilon} \cdot \left(\frac{u}{\sqrt{2 \cdot h_{iz}}}\right)^3 \tag{4.1.4-10}$$

Poměrná ztráta vznikající na okrajích pásma ostřiku:

$$\xi_{62} = 0.25 \cdot \frac{c_R \cdot l_2}{S} \cdot \left(\frac{u}{\sqrt{2 \cdot h_{iz}}}\right) \cdot \eta_u \cdot z_{segm}$$
(4.1.4-11)

kde z_{segm} je počet segmentů po obvodu [-], volen dělený ostřik – $z_{segm}=2$.

Celková poměrná ztráta parciálním ostřikem:

$$\xi_6 = \xi_{61} + \xi_{62} \tag{4.1.4-12}$$

Poměrná ztráta axiální mezerou:

Ztráta axiální mezerou je součástí ztrát vnitřní netěsností a vyplývá z úniku pracovní látky z hlavního proudu kolem okrajů lopatek. Tím se tato část pracovní látky nezapojuje do konání práce. Ztrátu axiální mezerou lze snížit použitím bandáže. Z hlediska vysokých obvodových rychlostí a parametrů páry není na prvním stupni VT dílu bandáž použita. Pro výpočty byl použit opět vzorec pro axiální stupeň, což do výpočtu vnáší již zmíněnou nepřesnost. Střední průměr je uvažován dle rovnice (4.1.4-7) a průtočný průřez dle rovnice (4.1.4-9).

Poměrná ztráta pro stupeň bez bandáže:

$$\xi_7 = 1.5 \cdot \frac{\mu_1 \cdot S_{1A} \cdot \eta_u}{S} \cdot \sqrt{\frac{\rho_{\check{s}}}{1 - \rho}}$$
(4.1.4-13)

kde

je průtokový součinitel [-], voleno 0,5 dle [2], μ_1 je střední průřez axiální mezery $[m^2]$,

 S_{1A}

je stupeň reakce na špici lopatky [-]. $ho_{\check{s}}$

$$S_{1A} = \pi \cdot (D+l) \cdot \delta_a \tag{4.1.4-14}$$

je zvolená axiální mezera [m]. kde δ_a

$$\delta_a \approx \frac{D}{1000} + 0.2 \ mm$$
 (4.1.4-15)

$$\rho_{\S} = 1 - \frac{(1-\rho) \cdot \frac{D}{l}}{1 + \frac{D}{l}}$$
(4.1.4-16)

Poměrná ztráta pro stupeň s bandáží:

$$\xi_7 = \delta_{ekv} \cdot \sqrt{\frac{\rho_{\check{s}}}{1 - \rho}} \cdot \eta_u \cdot \frac{\pi \cdot (D + l)}{S}$$
(4.1.4-17)

 δ_{ekv} je ekvivalentní mezera [m]. kde

$$\delta_{ekv} = \frac{1}{\sqrt{\frac{4}{\delta_a^2} + 1.5 \cdot \frac{Z_r}{\delta_r^2}}}$$
(4.1.4-18)

je počet břitů bandáže [-], voleny 2, kde Z_r je radiální mezera [m], volena 5 mm. δ_r

Poměrná ztráta vlhkostí páry:

Na ztrátě vlhkostí páry mají nejvýznamnější podíl energetické ztráty vzniklé urychlováním vodních kapiček, které mají menší rychlost než pára v mezeře mezi mřížemi (indirektní brzdění) a také ztráty nárazem kapiček na oběžné lopatky (direktní brzdění) [4]. Poměrnou ztrátu vlhkostí lze stanovit za pomoci měrných suchostí páry před a za stupněm x_0 a *x*₂.

$$\xi_x = 1 - \frac{x_0 + x_2}{2} \tag{4.1.4-19}$$

V případě vysokotlakého tělesa probíhá expanze v oblasti přehřáté páry, a proto není uvažována ztráta vlhkostí páry.

Poměrná ztráta rozvějířením:

Tato ztráta je dle [2] započítána pouze u stupňů s poměrně dlouhými lopatkami, kdy l/D je větší než 0,1. Pak je možné použít následující vzorec:

$$\xi_{\nu} = \left(\frac{l}{D}\right)^2 \tag{4.1.4-20}$$

Pro VT těleso nebude ztráta rozvějířením z důvodu použití prizmatických lopatek uvažována.

Entalpie na výstupu ze stupně:

$$i_{2V} = i_2 + (\xi_5 + \xi_6 + \xi_7) \cdot E_0 \tag{4.1.4-21}$$

Celková entalpie na výstupu ze stupně:

$$i_{2V,c} = i_{2V} + \frac{c_2^2}{2} \tag{4.1.4-22}$$

Vnitřní výkon stupně:

$$P_i = \dot{m} \cdot \left(\dot{i}_{0c} - \dot{i}_{2V,c} \right) \tag{4.1.4-23}$$

Vnitřní výkon stupňové části (SČ) VT tělesa:

$$P_i^{VT} = \sum P_i \tag{4.1.4-24}$$

Entalpický spád zpracovaný SČ VT tělesa při izoentropické expanzi:

$$H_{iz}^{VT} = (i_{0c})_1 - i_{VTout,iz}$$
(4.1.4-25)

kde *index 1* označuje první stupeň [-], $i_{VTout,iz}$ je entalpie za SČ VT tělesa při izoentropické expanzi [kJ/kg], určeno pro hodnoty entropie před SČ s_0 a tlaku za SČ p_2 .

Skutečný entalpický spád zpracovaný SČ VT tělesa:

$$H^{VT} = (i_{0c})_1 - (i_{2V,c})_n \tag{4.1.4-26}$$

kde *index n* označuje poslední stupeň [-].

Termodynamická účinnost SČ VT tělesa:

$$\eta_{tdi}^{VT} = \frac{H^{VT}}{H_{iz}^{VT}}$$
(4.1.4-27)

Druhý stupeň pracuje s poměrně vysokým protitlakem. Proto byl použit na zadní straně disku vyrovnávací píst, který má za úkol snižovat axiální sílu působící na převodovku.

Následující graf zobrazuje průběh tlaku a měrného objemu pro danou expanzi ve VT tělesu.

Graf 4 – Průběh tlaku a měrného objemu ve VT tělesu

- 40 -

Názav	Valižina	In du otho	Vacas	Hodnota		
Nazev	Velicina	Jednotka	Vzorec	I. stupeň	II. stupeň	
Tlak páry před RLŘ	\mathbf{p}_0	[bar]		29,10	12,96	
Teplota páry před RLŘ	t_0	[°C]	(X Steam)	399,33	312,40	
Entalpie páry na vstupu do	1.	[]	(V Steam)	2 221 57	3 070 00	
RLŘ	10	[KJ/Kg]	(A Steam)	5 251,57	3 070,90	
Entropie páry před RLŘ	s ₀	$[kJ/kg \cdot K]$	(X Steam)	6,937	7,041	
Měrný objem páry před RLŘ	\mathbf{v}_0	[m ³ /kg]	(X Steam)	0,102	0,202	
Celková entalpie páry na vstupu do RLŘ	i _{0,c}	[kJ/kg]	(4.1-5)	3 233,95	3 078,46	
Hmotnostní průtok páry	m	[kg/s]	(zadání)	6,9	944	
Absolutní rychlost páry na vstupu do RLŘ	c ₀	[m/s]	(voleno)	69,00	122,98	
Stupeň reakce	ρ	[-]	(voleno)	0,1	0,1	
Rychlostní poměr	X	[-]	(voleno)	0,48	0,51	
Průměr na vstupu do OLŘ	D ₁	[m]	(voleno)	0,400	0,310	
Průměr na výstupu z OLŘ	D_2	[m]	(voleno)	0,360	0,270	
Otáčky	n	$[\min^{-1}]$	(voleno)	15 000	15 000	
Úhel absolutní rychlosti na výstupu z RLŘ	α ₁	[°]	(voleno)	12	13	
Úhel relativní rychlosti na výstupu z OLŘ	β_2	[°]	(voleno)	157	155	
Obvodová rychlost	u ₁	[m/s]	(4.1-6)	314,16	243,47	
Izoentropický spád na stupeň	h _{iz}	[kJ/kg]	(4.1-7)	211,09	112,57	
Izoentropický spád na stator	h _{iz,S}	[kJ/kg]	(4.1-8)	189,98	101,31	
Izoentropický spád na rotor	h _{iz,R}	[kJ/kg]	(4.1-9)	21,11	11,26	
Entalpie za statorem pro izoentropickou expanzi	i _{1,iz}	[kJ/kg]	(4.1-10)	3 041,59	2 969,59	
Tlak páry za RLŘ	p ₁	[bar]	(X Steam)	14,63	8,65	
Entalpie za RLŘ pro izoentropickou expanzi	i _{2,iz}	[kJ/kg]	(4.1-12)	3 020,48	2 958,33	
Tlak páry za OLŘ	p ₂	[bar]	(X Steam)	13,46	8,25	
Úhel ohybu	Δα	[°]	(4.1.1-2)	77,93	77,00	
Rychlostní součinitel ve statorovém kanálu	φ	[-]	(4.1.1-1)	0,982	0,982	
Teoretická absolutní rychlost na výstupu z RLŘ	c _{1iz}	[m/s]	(4.1.1-3)	620,27	466,63	
Ábsolutní rychlost na výstupu RLŘ	c ₁	[m/s]	(4.1.1-4)	608,89	458,17	
Složka absolutní rychlosti v obvodovém směru	c _{1u}	[m/s]	(4.1.1-5)	595,42	446,43	
Složka absolutní rychlosti v radiálním směru	c _{1r}	[m/s]	(4.1.1-6)	127,35	103,07	

Relativní rychlost páry pa					
výstupu z dýzy	W ₁	[m/s]	(4.1.1-7)	308,75	227,63
Složka relativní rychlosti v	w _{1u}	[m/s]	(4.1.1-8)	281,26	202,96
Složka relativní rvchlosti v					
radiálním směru	w_{1r}	[m/s]	(4.1.1-9)	127,35	103,07
Úhel relativní rychlosti na výstupu z RLŘ	β_1	[°]	(4.1.1-10)	24,36	26,92
Energetická ztráta v RLŘ	Z ₀	[kJ/kg]	(4.1.1-11)	6,992	3,909
Entalpie za RLŘ	i ₁	[kJ/kg]	(4.1.1-12)	3 048,58	2 973,50
Entropie za RLŘ	S ₁	[kJ/kg·K]	(X Steam)	6,949	7,049
Teplota páry za RLŘ	t ₁	[°C]	(X Steam)	304,19	261,69
Měrný obiem páry za RLŘ	V1	$[m^3/kg]$	(X Steam)	0,176	0.277
Suchost páry za RLŘ	X1	[-]	(X Steam)	1	1
Rvchlost zvuku na výstupu	1	с.) г. / ј			550 54
z RLŘ	a_1	[m/s]	(X Steam)	576,99	558,54
Machovo číslo na výstupu z RLŘ	Ma ₁	[-]	(4.1.1-15)	1,06	0,82
Tlakový poměr	π	[-]	(4.1.1-16)	0,503	0,667
Kritický tlakový poměr	π_{krit}	[-]	(4.1.1-17)	0,546	0,546
Kritický tlak	p _{krit}	[bar]	(4.1.1-18)	15,89	7,08
Entalpie pro kritický tlak při izoentropické expanzi	i _{krit, iz}	[kJ/kg]	(X Steam)	3 062,85	2 922,74
Kritická absolutní rychlost párv	c _{krit}	[m/s]	(4.1.1-20)	574,26	547,95
Entalpie pro kritický tlak	i _{krit}	[kJ/kg]	(4.1.1-21)	3 069,07	2 928,33
Kritický měrný objem páry	V _{krit}	$[m^3/kg]$	(X Steam)	0,165	0,324
Výstupní úhel proudu	α_{10}	[°]	(4.1.1-19)	12,07	13,31
Úhel ohybu	Δβ	[°]	(4.1.2-2)	132,64	128,08
Rychlostní součinitel v		<u>г</u> 1	$(4 \ 1 \ 2 \ 1)$	0.012	0.024
rotorovém kanálu	Ψ	[-]	(4.1.2-1)	0,912	0,924
Obvodová rychlost na výstupu z OLŘ	u ₂	[m/s]	(4.1.2-3)	282,74	212,06
Teoretická výstupní relativní rychlost páry	w _{2iz}	[m/s]	(4.1.2-4)	344,67	244,98
Skutečná výstupní rychlost	W ₂	[m/s]	(4.1.2-5)	314,29	226,26
Složka relativní rychlosti v		F (.]		200.21	205.06
obvodovém směru	W _{2u}	[m/s]	(4.1.2-6)	289,31	205,06
Složka relativní rychlosti v radiálním směru	W _{2r}	[m/s]	(4.1.2-7)	122,80	95,62
Absolutní rychlost páry na	Ca	[m/s]	$(4 \ 1 \ 2_{-}8)$	177 98	05 88
výstupu z OLŘ	c_2	[111/5]	(4.1.2-0)	122,90	75,00
Složka absolutní rychlosti v obvodovém směru	c_{2u}	[m/s]	(4.1.2-9)	6,56	-6,99
Složka absolutní rychlosti v	-	[/a]	(4 1 2 10)	100.00	05.60
radiálním směru	c_{2r}	[m/s]	(4.1.2-10)	122,80	95,62

,					
Úhel absolutní rychlosti na výstupu z OLŘ	α_2	[°]	(4.1.2-11)	93,06	85,82
Energetická ztráta v OLŘ	Z ₁	[kJ/kg]	(4.1.2-12)	10,007	4,411
Entalpie za oběžnými	ia	[k]/ko]	$(4 \ 1 \ 2 - 13)$	3 037 48	2 966 65
lopatkami	12		(4.1.2 13)	5 057,40	2 700,05
Entropie za oběžnými lopatkami	s ₂	[kJ/kg·K]	(X Steam)	6,967	7,057
Teplota páry za OLŘ	t_2	[°C]	(X Steam)	297,73	257,88
Měrný objem páry za OLŘ	V ₂	$[m^3/kg]$	(X Steam)	0,189	0,289
Suchost páry za OLŘ	X ₂	[-]	(X Steam)	1	1
Rychlost zvuku na výstupu z OLŘ	a_2	[m/s]	(X Steam)	574,35	556,80
Machovo číslo na výstupu z OLŘ	Ma ₂	[-]	(4.1.2-14)	0,55	0,41
Průměr na vstupu do RLŘ	D _{S,in}	[m]	(4.1.3-7)	0,441	0,350
Průměr na výstupu ze RLŘ	D_0	[m]	(4.1.3-1)	0,410	0,320
Délka výstupní hrany rozváděcích lopatek při totálním ostřiku	l _{0t}	[m]	(4.1.3-2)	0,0074	0,019
Parciální ostřik	3	[-]	(4.1.3-3)	0,5	1
Délka rozváděcí lopatky na výstupu	l_0	[m]	(4.1.3-4)	0,015	0,019
Délka oběžné lopatky na vstupu	l_1	[m]	(4.1.3-5)	0,017	0,021
Délka oběžné lopatky na výstupu	l_2	[m]	(4.1.3-6)	0,019	0,025
Šířka rozváděcích lopatek	Bs	[m]	(4.1.3-8)	0.016	0.015
Šířka oběžných lopatek	B _R	[m]	(4.1.3-9)	0,020	0,020
Poměrná rozteč pro RLŘ	$(s/c)_s$	[-]	(voleno)	0.8	0.8
Poměrná rozteč pro OLŘ	$(S/C)_{R}$	[-]	(voleno)	0.65	0.65
Úhel nastavení profilu v mříži pro RLŘ	γs	[°]	(voleno)	32	32
Úhel nastavení profilu v mříži pro OLŘ	γr	[°]	(voleno)	12	12
Délka tětivy RLŘ	cs	[m]	(4.1.3-10)	0,019	0,018
Délka tětivy OLŘ	c _R	[m]	(4.1.3-11)	0,020	0,020
Rozteč rozváděcích lopatek	SS	[m]	(4.1.3-12)	0,015	0,014
Rozteč oběžných lopatek	SR	[m]	(4.1.3-13)	0,013	0,013
Energetická ztráta výstupní rychlostí	Z _C	[kJ/kg]	(4.1.4-1)	7,562	4,596
Celková využitelná energie na stupeň	E ₀	[kJ/kg]	(4.1.4-3)	213,47	120,13
Obvodová účinnost stupně	η_{u}	[-]	(4.1.4-2)	0,885	0,892
Koeficient poměrné ztráty třením disku	k _{tř}	[-]	(voleno)	0,0006	0,0006
Průtočný průřez pro páru	S	[m ²]	(4.1.4-9)	0,00225	0,00471

Poměrná ztráta třením disku	ξ5	[-]	(4.1.4-6)	0,0037	0,0012
Absolutní hodnota ztráty třením disku	Z5	[kJ/kg]		0,798	0,142
Poměrná ztráta ventilací	8	г <u>т</u>	(4.1.4.10)	0.0201	0
neostříknutých lopatek	ζ61	[-]	(4.1.4-10)	0,0301	0
Počet segmentů po obvodu	Z _{segm}	[-]	(voleno)	2	0
Poměrná ztráta na okrajích	Ea	[_]	$(4 \ 1 \ 4 - 11)$	0.0344	0
pásma ostřiku	50 ²	[.]	(7.1.7 11)	0,0544	U
Poměrná ztráta parciálním ostřikem	ξ6	[-]	(4.1.4-12)	0,0645	0
Absolutní hodnota ztráty	Z6	[kJ/kg]		13.766	0
parciálním ostříkem	-0	[~
Průtokový součinitel	μ ₁	[-]	(voleno)	0,5	-
Axiální mezera	δ_a	[m]	(4.1.4-15)	0,0005	0,0005
Průřez axiální mezery	S _{1A}	[m ²]	(4.1.4-14)	0,00063	-
Stupeň reakce na špici	Ωš	[-]	(4.1.4-16)	0.141	0.166
lopatky	г» 		(-,-	0.005
Radiální mezera	δ _r	[m]	(voleno)	-	0,005
Ekvivalentní mezera	δ_{ekv}	[m]	(4.1.4-18)	-	0,00029
Poměrná ztráta axiální	<u>ل</u> ح	[-]	(4.1.4-13,17)	0.0730	0.0228
mezerou	יר י	L.J.	(-,	-,
Absolutni hodnota ztraty	\mathbf{Z}_7	[kJ/kg]		15,585	2,738
axiaini mezerou					
účinnost stupně	η_{tdi}	[-]	(4.1.4-5)	0,744	0,869
Entalpie na výstupu ze	i _{2V}	[kJ/kg]	(4.1.4-21)	3 067,63	2 969,53
Stupne Collegyé ontalnie na výstupu		-			
ze stupně	i _{2V,c}	[kJ/kg]	(4.1.4-22)	3 075,19	2 974,13
Vnitřní výkon stupně	Pi	[kW]	(4.1.4-23)	1 102,53	724,52
Vnitřní výkon stupňové	P. vm	[ŀW]	$(4 \ 1 \ 4 - 24)$	1.82	7.05
části VT tělesa	1 1, V 1		(+.1.+-2+)	1.02	1,05
Skutečný spád zpracovaný VT tělesem	H _{VT}	[kJ/kg]	(4.1.4-26)	259	9,83
Entalpie za VT dílem při izoentropické expanzi	i _{VTout, iz}	[kJ/kg]	(X Steam)	2 90	94,44
Entalpický spád zpracovaný VT dílem při izoentropické expanzi	H _{VT,iz}	[kJ/kg]	(4.1.4-25)	329	9,51
Termodynamická účinnost SČ VT tělesa	$\eta_{VT,tdi}$	[-]	(4.1.4-27)	0,7	789

4.2 Výpočet středotlakého tělesa

Středotlaké těleso je koncipováno jako axiální, dvoustupňové. Cílem návrhu bylo dosažení dobré účinnosti, se kterou souvisí otáčky tělesa. Ty byly zvoleny 12 000 min⁻¹, aby bylo možné použít prizmatické lopatky a současně nebyla překročena obvodová rychlost na středním průměru 280 m/s [2].

Expanze v ST tělesu probíhá ze stavu pracovní látky, který je dán tlakem $p_{ST,in}$ a entalpií $i_{ST,in}=i_{VT,out}$. Ve výpočtu jsou dále tyto vstupní hodnoty označovány jako p_0 a i_0 . Pro ně je možné stanovit další veličiny: entropii s_0 , teplotu t_0 , měrný objem v_0 a suchost páry x_0 . Hodnota tlaku $p_{ST,in}$ byla zvolena 8 bar (kapitola 3.2) a entalpie je známá z výpočtu VT tělesa (kapitola 4.1).

Výpočet ST tělesa je proveden za pomoci vzorců použitých pro výpočet VT tělesa, a proto zde budou uvedeny pouze rozdíly. Tím hlavním je předpoklad výpočtu na středním průměru D_s , tudíž odpadá vliv setrvačných sil v Eulerově rovnici. Tím pádem je v celém výpočtu stupně uvažována pouze jedna obvodová rychlost. V důsledku toho dojde k upravení některých vzorců [např. vzorec pro w_{2iz} (4.1.2-4), ve kterém dojde k zanedbání účinku setrvačných sil]. Schéma předpokládané expanze ve stupňové části ST tělesa je znázorněno na Obr. 4.8.

Obr. 4.8 – Schéma expanze pracovní látky v ST tělesu

Oproti VT tělesu jsou indexy rychlostí a mezer zaměněny z radiálních na axiální a naopak. Rychlosti a úhly v následujících výpočtech jsou značeny podle rychlostních trojúhelníků uvedených níže:

Obr. 4.9 – Znázornění rychlostních trojúhelníků pro axiální ST těleso

V rozváděcích řadách středotlakého tělesa dosahují hodnoty Machova čísla hodnoty větší než 1. Proto je uvažováno s odklonem proudu obdobně jako v kapitole 4.1.1. K rozdílu ve výpočtu dochází, když expanze probíhá v oblasti mokré páry. V takovém případě je nutné stanovit kritický tlakový poměr dle vzorce (4.2-1), přičemž Poissonova konstanta je určena ze vzorce (4.1.1-14). Výsledné rychlostní trojúhelníky jsou znázorněny na Obr. 4.10.

$$\pi_{krit} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}} \tag{4.2-1}$$

Obr. 4.10 – Rychlostní trojúhelníky ST tělesa

4.2.1 Rozměry stupně a profily lopatkování

Jak již bylo zmíněno, výpočet probíhá na středním průměru D_s . Ten je na prvním stupni zvolen tak, aby obvodová rychlost nepřesáhla 280 m/s.

Vzhledem k dřívější expanzi pracovní látky ve vysokotlakém tělesu vychází požadovaná délka lopatky více než 15 mm [2], a tudíž odpadá nutnost parciálního ostřiku.

Délka rozváděcí lopatky na výstupu:

$$l_0 = \frac{\dot{m} \cdot v_1}{\pi \cdot D_s \cdot \varphi \cdot c_{1iz} \cdot \sin\alpha_1} \tag{4.2.1-1}$$

Patní průměr:

$$D_p = D_s - l_0 \tag{4.2.1-2}$$

Výpočet byl proveden tak, aby bylo dosaženo stejných patních průměrů na všech stupních, čemuž odpovídá i podmínka v *řešiteli*. Tento způsob řešení je vhodný zejména z technologického hlediska.

<u>Délka lopatky na vstupu do OLŘ</u>: volena o 2 mm více než l_0 [2].

$$l_1 = l_0 + 0,002 \tag{4.2.1-3}$$

<u>Délka lopatky na výstupu z OLŘ:</u>

$$l_{2} = \frac{\dot{m} \cdot v_{2}}{\pi \cdot D_{s} \cdot w_{2} \cdot sin(180 - \beta_{2})}$$
(4.2.1-4)

Pro vypočtené hodnoty Ma a úhly byly zvoleny následující profily lopatek pro rozváděcí a oběžnou lopatkovou řadu [2].

RLŘ	Typ	Rozsah	Vstupní úhly	Výstupní úhly	Označení	Optimální	Optimální úhel
	mříže	Ma	do mříže [°]	z mříže [°]	profilu	rozteč <i>s/c</i>	nastavení γ [°]
I., II.	В	0,85 - 1,3	70 - 110	13 - 17	TS-2B	0,70 - 0,90	37 - 41

Tab. 4.5 – Volba rovnotlakých profilů pro RLŘ axiálního ST dílu

Tab. 4.6 – Volba rovnotlakých profilů pro OLŘ axiálního ST dílu

OLŘ	Typ	Rozsah	Vstupní úhly	Výstupní úhly	Označení	Optimální	Optimální úhel
	mříže	Ma	do mříže [°]	z mříže [°]	profilu	rozteč s/c	nastavení γ [°]
I., II.	А	0,3-0,9	18 - 33	16 - 19	TR-1A	0,6 - 0,7	11 - 14

Na základě hodnot v těchto tabulkách byla zvolena poměrná rozteč pro rozváděcí lopatkovou řadu $(s/c)_s$, poměrná rozteč pro oběžnou lopatkovou řadu $(s/c)_R$, úhel nastavení profilu v mříži pro rozváděcí lopatkovou řadu γ_s a úhel nastavení profilu v mříži pro oběžnou lopatkovou řadu γ_s . Současně byla zvolena délka tětivy rozváděcí lopatkové řady c_s a délka tětivy oběžné lopatkové řady c_R .

<u>Šířka rozváděcí lopatkové řady:</u>

$$B_S = c_S \cdot \cos \gamma_S \tag{4.2.1-5}$$

Šířka oběžné lopatkové řady:

$$B_R = c_R \cdot \cos \gamma_R \tag{4.2.1-6}$$

Rozteč rozváděcích lopatek:

$$s_S = c_S \cdot \left(\frac{s}{c}\right)_S \tag{4.2.1-7}$$

Rozteč oběžných lopatek:

$$s_R = c_R \cdot \left(\frac{s}{c}\right)_R \tag{4.2.1-8}$$

4.2.2 Účinnost a výkon ST tělesa

Obvodová účinnost pro ST těleso se dá stanovit dle vztahu (4.1.4-2). Výpočet vnitřní termodynamické účinnosti se liší oproti VT tělesu z hlediska uvažovaných ztrát. Ztráty parciálním ostřikem už v ST tělesu nejsou uvažovány, jelikož lopatky na prvním stupni jsou dostatečně dlouhé pro dané parametry pracovní látky. Ztráta radiální mezerou je brána pro případ použití bandáží obdobně jako u 2. stupně VT tělesa a z důvodu expanze pracovní látky v oblasti mokré páry je na 2. stupni uvažována ztráta vlhkostí. Díky použití prizmatických lopatek není uvažována ztráta rozvějířením. Vnitřní termodynamická účinnost je potom dána vztahem:

$$\eta_{tdi} = \eta_u - \xi_5 - \xi_7 - \xi_v - \xi_x \tag{4.2.2-1}$$

Pro stanovení výkonu a celkové vnitřní účinnosti stupňové části ST tělesa byl použit stejný výpočetní algoritmus jako u tělesa vysokotlakého. Následující graf zobrazuje průběh tlaku a měrného objemu ve ST tělesu.

Graf 5 – Průběh tlaku a měrného objemu v ST tělesu

Νότου	Valičina	Iadnotka	Vacroo	Hodnota		
INAZEV	Vencina	Jeunotka	v zorec	I. stupeň	II. stupeň	
Tlak páry před RLŘ	p_0	[bar]	(voleno)	8	3,84	
Teplota páry před RLŘ	t ₀	[°C]	(X Steam)	260,40	184,19	
Entalpie páry na vstupu do RLŘ	i ₀	[kJ/kg]	(X Steam)	2 972,88	2 828,51	
Entropie páry před RLŘ	s ₀	[kJ/kg·K]	(X Steam)	7,083	7,121	
Měrný objem páry před RLŘ	v ₀	[m ³ /kg]	(X Steam)	0,300	0,537	
Celková entalpie páry na vstupu do RLŘ	i _{0,c}	[kJ/kg]	(4.1-5)	2 974,13	2 834,35	
Hmotnostní průtok páry	ṁ	[kg/s]	(zadání)	6,9) 44	
Absolutní rychlost páry na vstupu do <u>RLŘ</u>	c ₀	[m/s]	(voleno)	50	108,14	
ěStupeň reakce	ρ	[-]	(voleno)	0,05	0,05	
Rychlostní poměr	X	[-]	(voleno)	0,48	0,48	
Střední průměr	D _s	[m]	(voleno)	0,430	0,443	
Otáčky	n	$[\min^{-1}]$	(voleno)	12 000	12 000	
Úhel absolutní rychlosti na výstupu z RLŘ	α ₁	[°]	(voleno)	13	15	
Úhel relativní rychlosti na výstupu z OLŘ	β2	[°]	(voleno)	158	154	
Obvodová rychlost	u	[m/s]	(4.1-6)	270,18	278,35	
Izoentropický spád na stupeň	h _{iz}	[kJ/kg]	(4.1-7)	161,76	169,40	
Izoentropický spád na stator	h _{iz,S}	[kJ/kg]	(4.1-8)	153,67	160,93	
Izoentropický spád na rotor	h _{iz,R}	[kJ/kg]	(4.1-9)	8,09	8,47	
Entalpie za statorem pro izoentropickou expanzi	i _{1,iz}	[kJ/kg]	(4.1-10)	2 819,20	2 667,57	
Tlak páry za RLŘ	p 1	[bar]	(X Steam)	4,00	1,62	
Entalpie za RLŘ pro izoentropickou expanzi	i _{2,iz}	[kJ/kg]	(4.1-12)	2 811,11	2 659,10	
Tlak páry za OLŘ	p ₂	[bar]	(X Steam)	3,84	1,55	
Úhel ohybu	Δα	[°]	(4.1.1-2)	76,92	74,02	
Rychlostní součinitel ve statorovém kanálu	φ	[-]	(4.1.1-1)	0,982	0,983	
Teoretická absolutní rychlost na výstupu z RLŘ	c _{1iz}	[m/s]	(4.1.1-3)	556,64	577,55	
Absolutní rychlost na výstupu RLŘ	c ₁	[m/s]	(4.1.1-4)	546,57	567,45	
Složka absolutní rychlosti v obvodovém směru	c _{1u}	[m/s]	(4.1.1-5)	532,39	545,53	
Složka absolutní rychlosti v axiálním směru	c _{1a}	[m/s]	(4.1.1-6)	123,69	156,21	

Relativní rychlost páry na					
výstupu z dýzy	w_1	[m/s]	(4.1.1-7)	289,92	309,50
Složka relativní rychlosti v		r / 1	(4.1.1.0)	2.52.01	2 (7 10
obvodovém směru	w_{1u}	[m/s]	(4.1.1-8)	262,21	267,18
Složka relativní rychlosti v		[m /a]	$(4 \ 1 \ 1 \ 0)$	102 60	156 01
axiálním směru	W _{1a}	[m/s]	(4.1.1-9)	123,09	130,21
Úhel relativní rychlosti na	ß.	٢٥٦	(4,1,1,10)	25.25	20 31
výstupu z RLŘ	P1	ĹĴ	(4.1.1-10)	23,23	30,31
Energetická ztráta v RLŘ	Z0	[kJ/kg]	(4.1.1-11)	5,56	5,78
Entalpie za RLŘ	i_1	[kJ/kg]	(4.1.1-12)	2 824,76	2 673,35
Entropie za RLŘ	<u>s</u> 1	$[kJ/kg \cdot K]$	(X Steam)	7,095	7,136
Teplota páry za RLŘ	t_1	[°C]	(X Steam)	182,85	113,76
Měrný objem páry za RLŘ	v ₁	$[m^3/kg]$	(X Steam)	0,513	1,065
Suchost páry za RLŘ	X1	[-]	(X Steam)	1,000	0,989
Rychlost zvuku na výstupu		г /_1	(4 1 1 12)	510.05	440.96
z RLŘ	a_1	[m/s]	(4.1.1-13)	518,05	442,80
Machovo číslo na výstupu z	Mo	ГI	(4 1 1 15)	1.06	1 78
RLŘ	Ivia ₁	[-]	(4.1.1-13)	1,00	1,20
Tlakový poměr	π	[-]	(4.1.1-16)	0,500	0,423
Kritický tlakový poměr	π_{krit}	[-]	(4.2-1)	0,546	0,578
Kritický tlak	p _{krit}	[bar]	(4.1.1-18)	4,37	2,22
Entalpie pro kritický tlak	i	[k]/ko]	(X Steam)	2 837 52	2 722 43
při izoentropické expanzi	¹ krit, iz	[13/12]		2 031,32	2122,73
Kritická absolutní rychlost	Clorit	[m/s]	(4 1 1 - 20)	513.23	464.85
páry	• KIII	[(1.1.1 = 0)	010,20	101,02
Entalpie pro kritický tlak	i _{krit}	[kJ/kg]	(4.1.1-21)	2 842,42	2 726,31
Kritický měrný objem páry	v _{krit}	[m³/kg]	(X Steam)	0,479	0,820
Výstupní úhel proudu	α_{1o}	[°]	(4.1.1-19)	13,08	15,98
Úhel ohybu	$\Delta \beta$	[°]	(4.1.2-2)	132,75	123,69
Rychlostní součinitel v	M	[_]	$(4 \ 1 \ 2 \ 1)$	0.912	0.934
rotorovém kanálu	Ψ	[.]	(7.1.2 1)	0,712	0,754
Teoretická výstupní	W2:7	[m/s]	(4, 1, 2-4)	316.59	335.75
relativní rychlost páry	** 21Z	[()	010,07	
Skutečná výstupní rychlost	W ₂	[m/s]	(4.1.2-5)	288,60	313,50
pary		-			
Slozka felativni rychiosu v	w _{2u}	[m/s]	(4.1.2-6)	267,59	281,77
Složka relativní rychlosti v					
axiálním směru	w _{2a}	[m/s]	(4.1.2-7)	108,11	137,43
Absolutní rvchlost páry na		- / -			
výstupu z OLŘ	c ₂	[m/s]	(4.1.2-8)	108,14	137,47
Složka absolutní rychlosti v	~	[m/a]	$(4 \ 1 \ 2 \ 0)$	2.50	2 4 2
obvodovém směru	c_{2u}	[III/S]	(4.1.2-9)	-2,39	3,42
Složka absolutní rychlosti v	Ca	[m/s]	$(4 \ 1 \ 2 \ 10)$	108 11	137 43
axiálním směru	c_{2a}	[111/3]	(4.1.2-10)	100,11	157,+5
Úhel absolutní rychlosti na	Пр	[٥]	$(4 \ 1 \ 2 - 11)$	88.63	91 43
výstupu z OLŘ	u 2	LJ	(7.1.2 11)	00,05	71,75

Bc. Radim Siuda

Energetická ztráta v OLŘ	Z ₁	[kJ/kg]	(4.1.2-12)	8,47	7,22
Entalpie za oběžnými lopatkami	i ₂	[kJ/kg]	(4.1.2-13)	2 825,14	2 672,11
Entropie za oběžnými lopatkami	s ₂	[kJ/kg·K]	(X Steam)	7,114	7,155
Teplota páry za OLŘ	t_2	[°C]	(X Steam)	182,60	112,27
Měrný objem páry za OLŘ	V ₂	$[m^3/kg]$	(X Steam)	0,535	1,115
Suchost páry za OLŘ	X ₂	[-]	(X Steam)	1,000	0,990
Rychlost zvuku na výstupu z OLŘ	a ₂	[m/s]	(X Steam)	518,22	442,27
Machovo číslo na výstupu z OLŘ	Ma ₂	[-]	(4.1.2-14)	0,56	0,71
Patní průměr	D _p	[m]	(4.2.1-2)	0,409	0,409
Délka rozváděcí lopatky na výstupu	l_0	[m]	(4.2.1-1)	0,021	0,034
Délka oběžné lopatky na vstupu	l_1	[m]	(4.2.1-3)	0,023	0,036
Délka oběžné lopatky na výstupu	l_2	[m]	(4.2.1-4)	0,025	0,041
Poměrná rozteč pro RLŘ	$(s/c)_S$	[-]	(voleno)	0,8	0,8
Poměrná rozteč pro OLŘ	$(s/c)_R$	[-]	(voleno)	0,6	0,6
Délka tětivy RLŘ	cs	[m]	(voleno)	0,025	0,030
Délka tětivy OLŘ	c _R	[m]	(voleno)	0,025	0,030
Úhel nastavení profilu v mříži pro RLŘ	γs	[°]	(voleno)	38	38
Úhel nastavení profilu v mříži pro OLŘ	γr	[°]	(voleno)	12	12
Šířka rozváděcích lopatek	Bs	[m]	(4.2.1-5)	0,020	0,024
Šířka oběžných lopatek	B _R	[m]	(4.2.1-6)	0,024	0,029
Rozteč rozváděcích lopatek	SS	[m]	(4.2.1-7)	0,020	0,024
Rozteč oběžných lopatek	SR	[m]	(4.2.1-8)	0,015	0,018
Energetická ztráta výstupní rychlostí	Z _C	[kJ/kg]	(4.1.4-1)	5,85	9,44
Čelková využitelná energie na stupeň	E ₀	[kJ/kg]	(4.1.4-3)	163,01	175,25
Obvodová účinnost stupně	η_{u}	[-]	(4.1.4-2)	0,878	0,872
Koeficient poměrné ztráty třením disku	k _{tř}	[-]	(voleno)	0,0006	0,0006
Průtočný průřez pro páru	S	[m ²]	(4.1.4-9)	0,00734	0,01475
Poměrná ztráta třením disku	ξ5	[-]	(4.1.4-6)	0,0016	0,0009
Absolutní hodnota ztráty třením disku	Z5	[kJ/kg]		0,264	0,153
Axiální mezera	δ_{a}	[m]	(voleno)	0,005	0,005
Radiální mezera	$\delta_{\rm r}$	[m]	(4.1.4-15)	0,0006	0,0006
Ekvivalentní mezera	δ_{ekv}	[m]	(4.1.4-18)	0,00034	0,00034

Bc. Radim Siuda

Stupeň reakce na špici					
lopatky	$ ho_{\check{s}}$	[-]	(4.1.4-16)	0,100	0,126
Poměrná ztráta radiální	٤٦	[_]	(4 1 4-17)	0.0190	0.0112
mezerou	ر ر	LJ	(4.1.4 17)	0,0170	0,0112
Absolutní hodnota ztráty	7-	[[]]		3 101	1 958
axiální mezerou	L 7	[KJ/Kg]		5,101	1,958
Měrná suchost páry před	Vo	[_]	(X-Steam)	1 000	1.000
stupněm	A()	[-]	(A-Steam)	1,000	1,000
Měrná suchost páry za	¥ a	[_]	(X-Steam)	1 000	0 990
stupněm	A2	[-]	(A-Steam)	1,000	0,770
Poměrná ztráta vlhkostí	٢	[_]	(4 1 4-19)	0	0.0050
páry	xح	[-]	(+.1.+-17)	0	0,0050
Absolutní hodnota ztráty	7	[k]/kg]		0	0.882
vlhkostí páry	$L_{\rm X}$			0	0,002
Vnitřní termodynamická	n	[_]	$(A \ 1 \ A_{-}5)$	0.857	0.855
účinnost stupně	Itdi	[_]	(4.1.4 5)	0,057	0,055
Entalpie na výstupu ze	iarr	[k]/kg]	$(4 \ 1 \ 4 \ 21)$	2 828 51	2 675 10
stupně	120		(4.1.4 21)	2 020,51	2 075,10
Celková entalpie na výstupu	iou	[k]/kg]	$(A \mid A_{-}22)$	2 834 35	2 684 54
ze stupně	12V,c		(4.1.4-22)	2 034,33	2 004,34
Vnitřní výkon stupně	\mathbf{P}_{i}	[kW]	(4.1.4-23)	970,65	1 040,35
Vnitřní výkon stupňové	D	[]-W/]	(4 1 4 24)	2.01	1.00
části ST tělesa	r _{i,ST}		(4.1.4-24)	2 01	1,00
Skutečný spád zpracovaný	Ц	[lt]/ltal	$(1 \ 1 \ 4 \ 26)$	200	59
ST tělesem	n _{ST}	[KJ/Kg]	(4.1.4-20)	289,58	
Entalpie za ST dílem při	;	[lt]/ltal	(V Steem)	2 644 21	
izoentropické expanzi	ISTout, iz	[KJ/Kg]	(A Steam)	2 644,31	
Entalpický spád zpracovaný					
ST dílem při izoentropické	H _{ST,iz}	[kJ/kg]	(4.1.4-25)	329,81	
expanzi				,	
Termodynamická účinnost	n	[]	$(4 \ 1 \ 4 \ 27)$	0.0	278
SČ ST tělesa	U ST,tdi	[-]	(4.1.4-27)	0,0	0/0

4.3 Výpočet nízkotlakého tělesa

Nízkotlaké těleso je koncipováno jako axiální, třístupňové. Pro dosažení kompaktnosti tělesa a dobré účinnosti byly zvoleny otáčky 7 500 min⁻¹. Jelikož jsou zejména poslední lopatky NT tělesa poměrně dlouhé, bylo nutné volit vyšší hodnoty stupňů reakce, aby nedocházelo ke zpomalování proudu.

Expanze v NT tělesu probíhá ze stavu pracovní látky, který je dán tlakem $p_{NT,in}$ a entalpií $i_{NT,in}=i_{ST,out}$. Ve výpočtu jsou dále tyto vstupní hodnoty označovány jako p_0 a i_0 . Pro ně je možné stanovit další veličiny: entropii s_0 , teplotu t_0 , měrný objem v_0 a suchost páry x_0 . Hodnota tlaku na vstupu byla zvolena 1,5 bar (kapitola 3.2) a entalpie je známá z výpočtu ST tělesa (kapitola 4.2).

Pro výpočet NT tělesa byl použit obdobný algoritmus jako pro výpočet ST tělesa. Na posledních dvou stupních NT tělesa nejsou uvažovány bandáže. Pro 2. stupeň byl použit vzorec (4.1.4-13), zatímco pro poslední stupeň byl z hlediska vysokého stupně reakce (ρ =0,5) použit vzorec pro výpočet ztráty radiální mezerou přetlakových turbín (4.3-1).

$$\xi_7 = \frac{0.3 + \delta_r}{l} \cdot 4.5 \tag{4.3-1}$$

$$\delta_r = \frac{D_v}{1000} + x_{v\acute{y}r} \tag{4.3-2}$$

kde D_v je vnější průměr lopatkování [-],

 x_{vvr} je výrobní tolerance [m], dle [2] volena 0,3 mm.

$$D_{\nu} = D_{s} + l \tag{4.3-3}$$

Dalším rozdílem ve výpočtu oproti ST tělesu bylo započítání ztrát vlivem rozvějíření. Současně pracovní látka expanduje dále do oblasti mokré páry, čímž také došlo k navýšení ztráty vlhkostí.

V rozváděcích řadách prvních dvou stupňů NT tělesa dosahují hodnoty Machova čísla hodnoty větší než 1. Proto je uvažováno s odklonem proudu stejně jako v kapitole 4.1.1. Byly zvoleny následující profily, přičemž pro poslední stupeň byly zvoleny stejné profily pro rozváděcí i oběžnou lopatkovou řadu. Výsledné rychlostní trojúhelníky jsou znázorněny na Obr. 4.12. Graf 6 zobrazuje průběh tlaku a měrného objemu v NT tělesu.

Tab. 4.8 – Volba profilů pro RLŘ NT tělesa

RLŘ	Typ	Rozsah	Vstupní úhly	Výstupní úhly	Označení	Optimální	Optimální úhel
	mříže	Ma	do mříže [°]	z mříže [°]	profilu	rozteč s/c	nastavení γ [°]
I., II.	В	0,85 - 1,3	70 - 110	13 - 17	TS-2B	0,70 - 0,90	37 - 41

Tab. 4.9 – Volba profilů pro OLR NT tělesa	
--	--

OLŘ	Typ	Rozsah	Vstupní úhly	Výstupní úhly	Označení	Optimální	Optimální úhel
	mříže	Ma	do mříže [°]	z mříže [°]	profilu	rozteč <i>s/c</i>	nastavení γ [°]
I., II.	A	0,3 – 0,9	18 - 33	16 - 19	TR-1A	0,6 - 0,7	11 - 14

Tab. 4.10 – Volba profilů posledního stupně NT tělesa

RLŘ, OLŘ	Profil	B [mm]	s/c	Úhel nastavení γ [°]
III.	PB 560	60	0,815	30

Obr. 4.11 – Schéma expanze pracovní látky v NT tělesu

Obr. 4.12 – Rychlostní trojúhelníky NT tělesa

Graf 6 – Průběh tlaku a měrného objemu v NT tělesu

140. T. 11 - DUMIN W	vouciny cir a zra	nungen nound	111 1000			
	Waližina	Todeocelso	V. TOWOOD		Hodnota	
INAZEV	V EIICINA	Jeanotka	v zorec	I. stupeň	II. stupeň	III. stupeň
Tlak páry před RLŘ	\mathbf{p}_0	[bar]	(voleno)	1,5	0,67	0,24
Teplota páry před RLŘ	t_0	[J°]	(X Steam)	111,35	88,75	64,44
Entalpie páry na vstupu do RLŘ	\mathbf{i}_0	[kJ/kg]	(X Steam)	2 683,29	2 567,75	2 443,70
Entropie páry před RLŘ	\mathbf{S}_{0}	[kJ/kg·K]	(X Steam)	7,197	7,246	7,326
Měrný objem páry před RLŘ	\mathbf{v}_0	[m ³ /kg]	(X Steam)	1,154	2,370	5,873
Celková entalpie páry na vstupu do RLŘ	$i_{0,c}$	[ga/kg]	(4.1-5)	2 684,54	2 573,33	2 455,32
Hmotnostní průtok páry	m	[kg/s]	(zadání)		6,944	
Absolutní rychlost páry na vstupu do RLŘ	\mathbf{c}_0	[s/m]	(voleno)	50	105,58	152,46
Stupeň reakce	ρ	[-]	(voleno)	0,1	0,2	0.5
Rychlostní poměr	Х	[-]	(voleno)	0,49	0,49	0,60
Střední průměr	$D_{\rm s}$	[m]	(voleno)	0,644	0,685	0,746
Otáčky	n	[min ⁻¹]	(voleno)	7 500	7 500	7 500
Úhel absolutní rychlosti na výstupu z RLŘ	α_1	[。]	(voleno)	13	16	24
Úhel relativní rychlosti na výstupu z OLŘ	β_2	[。]	(voleno)	157	153	150
Obvodová rychlost	n	[m/s]	(4.1-6)	252,90	269,00	292,95
Izoentropický spád na stupeň	$\mathrm{h_{iz}}$	[kJ/kg]	(4.1-7)	133,19	151,06	118, 24
Izoentropický spád na stator	$h_{iz,S}$	[kJ/kg]	(4.1-8)	119,87	120,85	59,12
Izoentropický spád na rotor	${\rm h}_{{\rm iz,R}}$	[kJ/kg]	(4.1-9)	13,32	30,21	59,12
Entalpie za statorem pro izoentropickou expanzi	${ m i}_{1,{ m iz}}$	[kJ/kg]	(4.1-10)	2 563,42	2 446,90	2 384,58
Tlak páry za RLŘ	p_1	[bar]	(X Steam)	0,73	0,30	0,16
Entalpie za RLŘ pro izoentropickou expanzi	$i_{2,iz}$	[kJ/kg]	(4.1-12)	2550,10	2 416,69	2 325,46
Tlak páry za OLŘ	p_2	[bar]	(X Steam)	0,67	0,24	0,103
Úhel ohybu	Δα	[0]	(4.1.1-2)	76,69	73,13	66
Rychlostní součinitel ve statorovém kanálu	φ	[-]	(4.1.1-1)	0,982	0,983	0,984
Teoretická absolutní rychlost na výstupu z RLŘ	$c_{\rm liz}$	[m/s]	(4.1.1-3)	492,18	502,84	376,14

Tab. 4.11 – Souhrn vvnočtených a zvolených hodnot NT tělesa

Absolutní rychlost na výstupu z RLŘ	c_1	[s/m]	(4.1.1-4)	483,30	494,13	370,02
Složka absolutní rychlosti v obvodovém směru	c_{1u}	[m/s]	(4.1.1-5)	470,32	472,88	338,03
Složka absolutní rychlosti v axiálním směru	c_{1a}	[s/m]	(4.1.1-6)	111,26	143,37	150,50
Relativní rychlost páry na výstupu z RLŘ	w_1	[m/s]	(4.1.1-7)	244,23	249,24	157,11
Složka relativní rychlosti v obvodovém směru	w _{1u}	[m/s]	(4.1.1-8)	217,42	203,88	45,08
Složka relativní rychlosti v axiálním směru	w_{1a}	[m/s]	(4.1.1-9)	111,26	143,37	150,50
Úhel relativní rychlosti na výstupu z RLŘ	β1	[0]	(4.1.1-10)	27,10	35,12	73,33
Energetická ztráta v RLŘ	\mathbf{z}_0	[kJ/kg]	(4.1.1-11)	4,33	4,34	2,28
Entalpie za RLŘ	i_1	[kJ/kg]	(4.1.1-12)	2 567,75	2 451,24	2 386,87
Entropie za RLŘ	$\mathbf{S}_{\mathbf{I}}$	[kJ/kg·K]	(X Steam)	7,209	7,259	7,333
Teplota páry za RLŘ	t_1	[]	(X Steam)	90,97	69,22	55,35
Měrný objem páry za RLŘ	v_1	[m ³ /kg]	(X Steam)	2,19	4,82	8,57
Suchost páry za RLŘ	\mathbf{X}_{1}	[-]	(X Steam)	0,959	0,926	0,910
Rychlost zvuku na výstupu z RLŘ	aı	[m/s]	(4.1.1-13)	424,27	404,70	393,17
Machovo číslo na výstupu z RLŘ	Ma_1	[-]	(4.1.1-15)	1,14	1,22	0,94
Tlakový poměr	π	[-]	(4.1.1-16)	0,49	0,45	0,66
Kritický tlakový poměr	$\pi_{ m krit}$	[-]	(4.2-1)	0,578	0,579	0,579
Kritický tlak	$\mathbf{p}_{\mathrm{krit}}$	[bar]	(4.1.1-18)	0,87	0,39	0,14
Entalpie pro kritický tlak při izoentropické expanzi	ikrit, iz	[kJ/kg]	(X Steam)	2 591,52	2 483,74	2 367,63
Kritická absolutní rychlost páry	c_{krit}	[m/s]	(4.1.1-20)	423,54	415,97	411,99
Entalpie pro kritický tlak	$\mathbf{i}_{\mathrm{krit}}$	[kJ/kg]	(4.1.1-21)	2 594,85	2 486,81	2 370,46
Kritický měrný objem páry	Vkrit	[m ³ /kg]	(X Steam)	1,872	3,852	9,580
Výstupní úhel proudu	α_{1o}	[0]	(4.1.1-19)	13,31	16,87	23,89
Úhel ohybu	$\Delta\beta$	[。]	(4.1.2-2)	129,90	117,88	76,67
Rychlostní součinitel v rotorovém kanálu	ψ	[-]	(4.1.2-1)	0,919	0,945	0,982
Teoretická výstupní relativní rychlost páry	\mathbf{W}_{2iz}	[s/m]	(4.1.2-3)	293,75	350,07	378,05
Skutečná výstupní rychlost páry	W_2	[m/s]	(4.1.2-4)	269,97	330,94	371,23
Složka relativní rychlosti v obvodovém směru	w_{2u}	[m/s]	(4.1.2-5)	248,51	294,87	321,50

Složka relativní rychlosti v axiálním směru	w _{2a}	[s/m]	(4.1.2-6)	105,49	150,24	185,62
Absolutní rychlost páry na výstupu z oběžných lopatek	c_2	[m/s]	(4.1.2-7)	105,58	152,46	187,80
Složka absolutní rychlosti v obvodovém směru	c_{2u}	[m/s]	(4.1.2-8)	-4,39	25,87	28,54
Složka absolutní rychlosti v axiálním směru	c_{2a}	[m/s]	(4.1.2-9)	105,49	150,24	185,62
Úhel absolutní rychlosti na výstupu z OLŘ	α_2	[0]	(4.1.2-10)	87,62	77,99	98,74
Energetická ztráta v OLŘ	\mathbf{z}_{1}	[kJ/kg]	(4.1.2-111)	6,70	6,51	2,56
Entalpie za oběžnými lopatkami	\mathbf{i}_2	[kJ/kg]	(4.1.2-12)	2 561,14	2 427,54	2 330,30
Entropie za oběžnými lopatkami	^{2}S	[kJ/kg·K]	(4.1.2-13)	7,228	7,278	7,341
Teplota páry za OLŘ	t_2	[J°]	(X Steam)	88,75	64,44	46,40
Měrný objem páry za OLŘ	2ν	[m ³ /kg]	(X Steam)	2,363	5,830	12,738
Suchost páry za OLŘ	2X	[-]	(X Steam)	0.958	0,919	0,893
Rychlost zvuku na výstupu z OLŘ	a_2	[m/s]	(X Steam)	422,83	400,58	384,25
Machovo číslo na výstupu z OLŘ	Ma_2	[-]	(4.1.2-14)	0,64	0,83	0,97
Patní průměr	D_p	[m]	(4.2.1-2)	0,577	0,577	0,577
Délka rozváděcí lopatky na výstupu	l_0	[m]	(4.2.1-1)	0,067	0,108	0,169
Délka oběžné lopatky na vstupu	1_1	[m]	(4.2.1-3)	0,069	0,114	0,181
Délka oběžné lopatky na výstupu	l_2	[m]	(4.2.1-4)	0,077	0,125	0,203
Poměrná rozteč pro RLŘ	$(s/c)_S$	[-]	(voleno)	0,8	0,8	0,815
Poměrná rozteč pro OLŘ	$(s/c)_R$	[-]	(voleno)	0,6	0.6	0,815
Délka tětivy RLŘ	cs	[m]	(voleno)	0,040	0,050	0,069
Délka tětivy OLŘ	cr	[m]	(voleno)	0,035	0,043	0,069
Úhel nastavení profilu v mříži pro RLŘ	γ_{S}	[o]	(voleno)	38	38	30
Úhel nastavení profilu v mříži pro OLŘ	$\lambda_{ m R}$	[o]	(voleno)	12	12	30
Šířka rozváděcích lopatek	\mathbf{B}_{s}	[ш]	(4.2.1-5)	0,032	0,039	0,060
Šířka oběžných lopatek	${\rm B_R}$	[m]	(4.2.1-6)	0,034	0,042	0,060
Rozteč rozváděcích lopatek	SS	[m]	(4.2.1-7)	0,032	0,040	0,056
Rozteč oběžných lopatek	$\mathbf{S}_{\mathbf{R}}$	[m]	(4.2.1-8)	0,021	0,026	0,056
Energetická ztráta výstupní rychlostí	$\mathbf{Z}_{\mathbf{C}}$	[kJ/kg]	(4.1.4-1)	5,57	11,29	17,23

Celková využitelná energie na stupeň	E_0	[kJ/kg]	(4.1.4-3)	134,44	156,64	129,86
Obvodová účinnost stupně	ηu	[-]	(4.2.2-1)	0,876	0,859	0,830
Koeficient poměrné ztráty třením disku	$\mathbf{k}_{t\check{t}}$	[-]	(voleno)	0,0006	9000'0	0,0006
Průtočný průřez pro páru	S	$[m^2]$	(4.1.4-9)	0,03400	0,07461	0,18302
Poměrná ztráta třením disku	ىر ج	<u>-</u>	(4.1.4-6)	0,0009	0,0004	0,0004
Absolutní hodnota ztráty třením disku	Z5	[kJ/kg]		0,12	0,07	0,05
Axiální mezera	$\delta_{\rm a}$	[m]	(voleno)	0,006	0,006	0,006
Radiální mezera	$\delta_{\rm r}$	[m]	(4.1.4-15)	0,0008	0,0009	0,0012
Ekvivalentní mezera	$\delta_{\rm ekv}$	[m]	(4.1.4-18)	0,00046	-	I
Stupeň reakce na špici lopatky	ρš	[-]	(4.1.4-16)	0,192	0,319	0,602
Vnější průměr lopatkování	\mathbf{D}_{v}	[-]	(4.3-3)	0,717	0,805	0,938
Poměrná ztráta radiální mezerou	ξ ₇	[-]	(4.1.4-17)	0,0122	0,0124	0,0360
Absolutní hodnota ztráty axiální mezerou	$\mathbf{Z}_{\mathcal{T}}$	[kJ/kg]		1,64	1,94	4,68
Měrná suchost páry před stupněm	\mathbf{X}_{0}	[-]	(X Steam)	0,996	0,961	0,926
Měrná suchost páry za stupněm	X2	[-]	(X Steam)	0,958	0,919	0,893
Poměrná ztráta vlhkostí páry	ξx	[-]	(4.1.4-19)	0,0233	0,0599	0,0901
Absolutní hodnota ztráty vlhkostí páry	$\mathbf{Z}_{\mathbf{X}}$	[kJ/kg]		3,13	9,38	11,70
Poměrná ztráta rozvějířením	ۍر مړ	[-]	(4.1.4-20)	0,0128	0,0304	0,0662
Absolutní hodnota ztráty rozvějířením	$\mathbf{Z}_{\mathbf{V}}$	[kJ/kg]		1,73	4,77	8,60
Vnitřní termodynamická účinnost stupně	η_{tdi}	[-]	(4.1.4-5)	0,827	0,755	0,637
Entalpie na výstupu ze stupně	$i_{2,V}$	[kJ/kg]	(4.1.4-21)	2 567,75	2 443,70	2 355,34
Celková entalpie na výstupu ze stupně	i_{2c}	[kJ/kg]	(4.1.4-22)	2 573,33	2 454,99	2 372,56
Vnitřní výkon stupně	P_i	[kW]	(4.1.4-23)	772,33	821,79	574,74
Vnitřní výkon stupňové části NT tělesa	$\mathrm{P}_{\mathrm{i,NT}}$	[kW]	(4.1.4-24)		2 168,86	
Skutečný spád zpracovaný NT tělesem	$H_{\rm NT}$	[kJ/kg]	(4.1.4-26)		311,98	
Entalpie za NT dílem při izoentripické expanzi	$i_{\rm NTout,\ iz}$	[kJ/kg]	(X Steam)		2 284,31	
Entalpický spád zpracovaný NT dílem při izoentr.expanzi	$\mathrm{H}_{\mathrm{NT,iz}}$	[kJ/kg]	(4.1.4-25)		400,23	
Termodynamická účinnost SČ NT tělesa	$\eta_{\rm NT,tdi}$	[-]	(4.1.4-27)		0,779	

5 Výkon turbíny a průběh expanze

Pro stanovení celkového výkonu parní turbíny je nutné započítat mechanickou účinnost převodovky (η_m voleno 0,99) a účinnost generátoru (η_G voleno 0,97). Výkon na svorkách generátoru je potom dán vztahem (5-1). Na následujícím obrázku je znázorněna expanze v turbosoustrojí v i-s diagramu.

$$P_{SV} = \left[\left(P_i^{VT} + P_i^{ST} + P_i^{NT} \right) \cdot \eta_m \right] \cdot \eta_G \tag{5-1}$$

Název	Veličina	Jednotka	Hodnota
Vnitřní výkon VT tělesa	P_i^{VT}	[kW]	1 827,05
Vnitřní výkon ST tělesa	P_i^{ST}	[kW]	2 011,00
Vnitřní výkon NT tělesa	P_i^{NT}	[kW]	2 168,86
Výkon na svorkách generátoru	P_{SV}	[kW]	5 768,44

Tab. 5.1 – Souhrn výkonů parní turbíny

Graf 7 – Expanze pracovní látky v turbíně

6 Převodovka

Za účelem snížení otáček na požadovanou hodnotu je mezi generátor a VT a ST těleso zařazena převodovka. Obdobně je tomu u NT tělesa. Byla zvolena kola se šikmým ozubením. Jejich výhodou je oproti ozubení čelnímu klidnější a tišší chod, zabírání více párů zubů najednou, čímž se zvyšuje únosnost v ozubení, odolnost proti deformacím a je možné přenášet větší výkony. Důsledkem toho mohou být kola menší, lehčí a tím i levnější. Nevýhodou je naopak vznik axiálních sil, na které je třeba dimenzovat axiální ložiska v převodové skříni. Jelikož je kompletní výpočet převodovky nad rámec této diplomové práce, byla provedena pouze jeho zjednodušená verze. Do výpočtu byly voleny hodnoty pro: otáčky generátoru n_G, obvodovou rychlost v ozubení u_z, obvodovou rychlost čepu kola u_k, obvodovou rychlost čepu pastorku u_p, úhel sklonu zubů β , úhel záběru α_n , osovou délku ložiska kola a_k a osovou délku ložiska pastorku a_p[6], [10]:

Nézov	Valičina	Inductiva		Hodnota	
INdZEV	vencina	Jeunotka	VT díl	ST díl	NT díl
Otáčky turbíny	n _T	$[\min^{-1}]$	15 000	12 000	7 500
Otáčky generátoru	n _G	$[\min^{-1}]$	1 500	1 500	1 500
Výkon tělesa	Pi	[kW]	1 827,1	2 011,0	2 168,9
Obvodová rychlost v ozubení	uz	[m/s]	119,38	119,38	119,77
Obvodová rychlost čepu kola	u _k	[m/s]	23,56	23,56	23,56
Obvodová rychlost čepu pastorku	u _p	[m/s]	78,54	75,40	78,54
Úhel sklonu zubů	β	[°]	25	25	25
Úhel záběru	α_n	[°]	20	20	20
Osová délka ložiska kola	a _k	[m]	0,1	0,1	0,15
Osová délka ložiska pastorku	a _p	[m]	0,1	0,1	0,15

Tab. 6.1 – Vstupní hodnoty pro výpočet převodovky se šikmými zuby

Obr. 6.1 – Znázornění silových poměrů v ozubení [6]

Bc. Radim Siuda

Obvodová rychlost na hřídeli byla na základě doporučení zvolena tak, aby nepřesáhla hodnotu 80 m/s. Pro výpočet byly použity vzorce dle literatury [6].

Převodový poměr:

$$i = \frac{n_T}{n_G} \tag{6-1}$$

Průměr roztečné kružnice kola:

$$D_k = \frac{u_z}{\pi \cdot n_G} \tag{6-2}$$

Průměr roztečné kružnice pastorku

$$D_p = \frac{u_z}{\pi \cdot n_T} \tag{6-3}$$

Průměr čepu kola

$$D_{\check{c},k} = \frac{u_k}{\pi \cdot n_G} \tag{6-4}$$

Průměr čepu pastorku:

$$D_{\check{c},p} = \frac{u_z}{\pi \cdot n_T} \tag{6-5}$$

Osová vzdálenost kola a pastorku:

$$L = \frac{D_k + D_p}{2} \tag{6-6}$$

Krouticí moment:

$$M_k = \frac{P_i}{2 \cdot \pi \cdot n_T} \tag{6-7}$$

Obvodová síla:

$$F_t = \frac{2 \cdot M_k}{D_p} \tag{6-8}$$

Radiální síla:

$$F_r = F_t \cdot \frac{\tan \alpha_n}{\cos \beta} \tag{6-9}$$

Axiální síla:

$$F_a = F_t \cdot \tan\beta \tag{6-10}$$

Celková síla:

$$F_n = \frac{F_t}{\cos \alpha_n \cdot \cos \beta} \tag{6-11}$$

Reakční síla působící na ložisko pastorku:

$$F_{p,reakčni} = \frac{\sqrt{F_t^2 + F_r^2}}{2} \tag{6-12}$$

Do reakční síly působící na ložisko pastorku není započítána axiální síla, jelikož se předpokládá, že bude skrze opěrné kruhy přenesena na ložiska kola.

<u>Tlak v ložisku pastorku:</u>

$$p_p = \frac{F_{p,reak\check{c}ni}}{D_{\check{c},p} \cdot a_p} \tag{6-13}$$

<u>Tlak v ložisku kola:</u>

$$p_k = \frac{F_n}{D_{\xi,k} \cdot a_k} \tag{6-14}$$

Nézav	Valičina	Inductivo	Vzoroo		Hodnota	
INAZEV	vencina	Jeunotka	vzorec	VT díl	ST díl	NT díl
Celkový převodový poměr	i	[-]	(6-1)	10	8	5
Průměr roztečné kružnice kola	D _k	[m]	(6-2)	1,520	1,520	1,525
Průměr roztečné kružnice pastorku	D_p	[m]	(6-3)	0,152	0,190	0,305
Průměr čepu kola	$D_{\check{c},k}$	[m]	(6-4)	0,300	0,300	0,300
Průměr čepu pastorku	D _{č,p}	[m]	(6-5)	0,100	0,120	0,200
Osová vzdálenost kola a pastorku	L	[m]	(6-6)	0,836	0,855	0,915
Krouticí moment	M _k	[kNm]	(6-7)	1,16	1,60	2,76
Obvodová síla na roztečné kružnici	F _t	[kN]	(6-8)	15,30	16,85	18,11
Radiální síla	F _r	[kN]	(6-9)	6,15	6,77	7,27
Axiální síla	Fa	[kN]	(6-10)	7,14	7,86	8,44
Celková síla	F _n	[kN]	(6-11)	17,97	19,78	21,26
Reakční síla působící na ložisko pastorku	F _{reakční}	[kN]	(6-12)	8,25	9,08	9,76
Tlak v ložisku pastorku	p _p	[MPa]	(6-13)	0,82	0,76	0,33
Tlak v ložisku kola	p_k	[MPa]	(6-14)	0,60	0,66	0,47

Tab. 6.2 – Souhrn vypočtených hodnot převodovky

7 Závěr

Předmětem diplomové práce byla turbína, která má za úkol zpracovat poměrně velké entalpické spády, v minimálním počtu stupňů a za přijatelné účinnosti. Pro tento účel je vhodná vysokootáčková turbína s integrovanou převodovkou. Předností tohoto řešení je možné využití rozdílných otáček pro každé těleso, čímž lze dosáhnout vysokých zpracovaných spádů a obvodových rychlostí na relativně malých průměrech. Typ lopatkování byl zvolen akční, pouze na posledních stupních nízkotlakého tělesa byl zvolen vyšší stupeň reakce, aby nedocházelo ke zpomalování proudu. Výpočet byl proveden stupeň po stupni.

Vysokotlaké těleso bylo navrženo jako radiální. Na letmo uchyceném disku turbíny jsou, poněkud netradičně, umístěny dva centripetální stupně. Oba jsou navržené jako akční, s malým stupněm reakce. Oproti axiálnímu stupni se u centripetálního radiálního stupně příznivě uplatňuje vliv setrvačných sil na účinnost stupně. Maximální obvodová rychlost byla volena tak, aby nepřekročila 320 m/s. Její velká hodnota umožňuje výsledné kompaktní rozměry tělesa a zpracování vysokého spádu při dobré účinnosti. Ta byla snížena o ztrátu parciálním ostřikem, který bylo nutné použít na prvním stupni z hlediska malých hmotnostních průtoku pracovní látky. Za prvním stupněm byl po obvodu zařazen vyrovnávací kanál umožňující plný ostřik lopatkování druhého stupně, který je umístěn na stejném disku jako stupeň první. Při volbě otáček byl brán zřetel nejenom na technická omezení převodovky, ale především na namáhání lopatek prvního stupně odstředivou silou. Otáčky VT tělesa je 78,9 % a výkon 1 827 kW. Vysoké otáčky a malé rozměry vedou k velké koncentraci výkonu. V případě VT tělesa je předpokládaný výkon vztažený na hmotnost rotoru mnohonásobně vyšší než u moderních parních turbín o velkých výkonů.

Středotlaké těleso bylo navrženo jako axiální, dvoustupňové. Maximální obvodová rychlost byla zvolena 280 m/s, čímž bylo dosaženo dobré účinnosti při totálním ostřiku. Byl zvolen minimální stupeň reakce. Tím je dosaženo urychlovaného proudu, který je stabilnější a vyznačuje se menšími ztrátami. Volba otáček vycházela z obdobných podmínek jako u VT tělesa, přičemž byla snaha dosáhnout co nejvyšších otáček při zachování prizmatických lopatek. Výsledkem byla volba otáček 12 000 min⁻¹. Vnitřní účinnost stupňové části ST tělesa dosahuje hodnoty 87,8 % a výkon 2 011 kW.

Nízkotlaké těleso je uvažováno jako axiální, třístupňové. Bylo snahou vybírat vyšší stupně reakce, aby nedocházelo ke zpomalování proudu a tím nárůstu ztrát. Byly zvoleny otáčky 7 500 min⁻¹. Podmínkou bylo nepřesáhnutí obvodové rychlosti 330 m/s na středním průměru posledního stupně. Zejména kvůli ztrátě vlhkostí a ztrátě rozvějířením vyšla vnitřní účinnost stupňové části NT tělesa 77,9 % a výkon 2 169 kW. Závěsy lopatek na výkresech slouží pouze pro znázornění, jelikož pevnostní výpočet nebyl součástí zadání této diplomové práce.

Za účelem zajištění vysoké funkční bezpečnosti a odolnosti proti opotřebení za všech provozních stavů bylo pro spojení rotoru s hřídelí převodovky použito Hirthovo ozubení, které je schopno přenést vysoké krouticí momenty. Spojení turbíny s převodovkou je provedeno příčnými klíny. Mezi výhody takového spojení patří zajištění souososti převodové skříně s turbínou a umožnění demontáže víka převodovky bez nutnosti demontovat turbínu. Současně také minimalizuje přestup tepla z turbíny do převodové skříně. Turbína byla umístěna co nejblíže převodové skříni, což by mělo zabránit přejíždění více vlastních frekvencí. Ke spojení VT-ST převodovky s generátorem je využito pevné spojky, zatímco pro spojení NT-převodovky s generátorem bylo použito spojky výsuvné. Tím je umožněno spojení nebo rozpojení hnaného a hnacího hřídele za chodu.

Byl proveden pouze zjednodušený výpočet převodovky zaměřený na rozměry a silové poměry. Pro uložení letmo se zvyšuje riziko nárůstu deformací v ozubení. Proto je vhodnější volit kola se šikmým ozubením místo kol s přímými zuby. K zachycení axiálních sil působících na rychloběžné pastorky byly použity opěrné kruhy, které tyto síly přenášejí na pomaluběžné axiální ložisko převodovky.

Vzhledem k malým výkonům a tím souvisejícím rozměrům je možné turbínu umístit spolu s převodovkami, generátorem a olejovým hospodářstvím na společný rám. Zařízení je kompletně smontováno ve výrobním závodu a dodáváno jako celek koncovému zákazníkovi.

Výsledkem diplomové práce je parní turbína dosahující poměrně dobré účinnosti, vysoké pracovní spolehlivosti a pracovní pružnosti. Současně jsou splněny požadavky na opravitelnost a snadnou montáž. Kompaktnost turbíny zaručuje krátké časy potřebné k nahřátí a najíždějí. Předpokládané uplatnění turbíny souvisí s využíváním odpadního tepla vznikajícího produkcí vznětových motorů velkých výkonů nebo ve spalovnách odpadů. Turbína je tedy vhodná pro decentralizovanou výrobu elektrické energie.

8 Seznam použitých zdrojů

- [1] AMBROŽ, Jaroslav. *Parní turbina za změněných podmínek*. 1.vyd. PRAHA: SNTL 1973. 249 s
- [2] FIEDLER, Jan. *Parní turbíny Návrh a výpočet*. 1.vyd. BRNO: Akademické nakladatelství CERM s.r.o 2004. 66 s. ISBN 80-214-2777-9
- [3] KADRNOŽKA, Jaroslav. *Lopatkové stroje*. 1.vyd. BRNO: Akademické nakladatelství CERM, s.r.o. 2003. 177 s. ISBN 80-7204-297-1
- [4] KADRNOŽKA, Jaroslav. Parní turbiny a kondenzace. 1.vyd. BRNO: Rektorát Vysokého učení technického v Brně, 1987. 268 s.
- [5] KADRNOŽKA, Jaroslav. *Tepelné turbíny a turbokompresory*. 1.vyd. BRNO: Akademické nakladatelství CERM, s.r.o. 2004. 308 s. ISBN 80-7204-346-3
- [6] SHIGLEY, Joseph Edward, Charles R MISCHKE a Richard G BUDYNAS. Konstruování strojních součástí. 1. vyd. Editor Martin Hartl, Miloš Vlk. Brno: VUTIUM, 2010, 1159 s. ISBN 978-80-214-2629-0.
- [7] Firemní podklady Siemens Industrial Turbomachinery, Brno, 2014.
- [8] ŠKORPÍK, Jiří. Efekty při proudění vysokými rychlostmi, *Transformační technologie*, 2006-01, [last updated 2013-10]. Brno: Jiří Škorpík, [online] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacni-technologie.cz/efekty-pri-proudenivysokymi-rychlostmi.html.
- [9] Comparison of 4-pole and 2-pole designs for large motors and generators (typically rated over 7 MW), ABB.com, [online]. 2011 [cit. 2014-04-07]. Dostupné z: http://www05.abb.com/global/scot/scot234.nsf/veritydisplay/73538d3f2dd243edc125788d003def44/\$file/technical_note_comparison_of_4pole_and_2pole_designs_for_large_m otors_and_generators_en_052011.pdf>
- [10] Čelní soukolí se šikmými zuby, Fakulta strojního inženýrství v Brně, Ústav konstruování [online]. 2014 [cit. 2014-05-13]. Dostupné z: http://old.uk.fme.vutbr.cz/kestazeni/6C2/prednasky/prednaska5_6c2.pdf
- [11] *Wärtsila RT-Flex96C and RTA96C*, Wartsila.com [online]. 2014 [cit. 2014-03-19]. Dostupné z: http://www.wartsila.com/en/engines/low-speed-engines/RT-flex96c
- [12] *Excel engineering*, x-eng.com [online]. 2012 [cit. 2012-11-15]. Dostupné z: http://www.x-eng.com
- [13] *SSS clutch operating*, sssclutch.com [online]. 2014 [cit. 2014-04-07]. Dostupné z: http://www.sssclutch.com/howitworks/100-2SSSPrinciples.pdf>

Seznam příloh

Příloha č. 1

Konstrukční řez VT tělesa je volně přiložen k diplomové práci.

Příloha č. 2

Konstrukční řez ST tělesa je volně přiložen k diplomové práci.

Příloha č. 3

Konstrukční řez NT tělesa je volně přiložen k diplomové práci.

Příloha č. 4

Dispozice VT, ST tělesa s převodovkou je volně přiložena k diplomové práci.

Příloha č. 5

Dispozice NT tělesa s převodovkou je volně přiložena k diplomové práci.

Příloha č. 6

Dispozice uspořádání turbín s generátorem je volně přiložena k diplomové práci.

Seznam použitých zkratek

Zkratka	Název
NT	nízkotlaké těleso
OLŘ	oběžná lopatková řada
RLŘ	rozváděcí lopatková řada
RV	regulační ventil
SČ	stupňová část
ST	středotlaké těleso
TUV	teplá užitková voda
VT	vysokotlaké těleso

Seznam použitých veličin

Veličina	Jednotka	Název
a	[m]	osová vzdálenost ložisek
a	[m/s]	rychlost zvuku
В	[m]	šířka lopatkové řady
с	[m/s]	absolutní rychlost
с	[m]	délka tětivy
D	[m]	průměr
E ₀	[kJ/kg]	celková využitelná energie na stupeň
F	[kN]	síla
h	[kJ/kg]	entalpický spád
Н	[kJ/kg]	entalpický spád stupňové části
i	[-]	celkový převodový poměr
i	[kJ/kg]	měrná entalpie
k _{tř}	[-]	koeficient poměrné ztráty třením disku
1	[m]	délka lopatky
L	[m]	osová vzdálenost
lu	[kJ/kg]	obvodová práce
'n	[kg/s]	hmotnostní tok pracovní látky
$\mathbf{M}_{\mathbf{k}}$	[kN·m]	krouticí moment
Ma	[-]	Machovo číslo
n	$[\min^{-1}]$	otáčky
р	[bar]	tlak
Р	[kW]	výkon
r	[J/kg·K]	individuální plynová konstanta
8	[kJ/kg·K]	měrná entropie
S	[m]	rozteč lopatek
S	$[m^2]$	průtočný průřez
t	[°C]	teplota
Т	[K]	teplota
u	[m/s]	obvodová rychlost
V	[m [°] /kg]	měrný objem
W	[m/s]	relativní rychlost
Х	[-]	měrná suchost páry
Х	[-]	rychlostní poměr

Х	[m]	tolerance
Z	[kJ/kg]	absolutní energetická ztráta
Z _{segm}	[-]	počet segmentů po obvodu
α	[°]	úhel absolutní rychlosti
α_n	[°]	úhel záběru
β	[°]	úhel relativní rychlosti
β	[°]	úhel sklonu zubů
γ	[°]	úhel nastavení profilu v mříži
δ	[m]	vůle
3	[-]	parciální ostřik
η	[-]	účinnost
κ	[-]	Poissonova konstanta
μ_1	[-]	průtokový součinitel
ξ	[-]	poměrná ztráta
π	[-]	tlakový poměr
ρ	[-]	stupeň reakce
φ	[-]	rychlostní součinitel pro RLŘ
Ψ	[-]	rychlostní součinitel pro OLŘ

Seznam indexů

Horní indexy

Index	Název
NT	nízkotlaké těleso
R	oběžná lopatková řada
S	rozváděcí lopatková řada
ST	středotlaké těleso
VT	vysokotlaké těleso

Dolní indexy

Index	Název
0	stav pracovní látky před RLŘ
1	stav pracovní látky za RLŘ
2	stav pracovní látky za OLŘ
5	ztráta třením disku
6	ztráta parciálním ostřikem
61	ztráta ventilací neostříknutých lopatek
62	ztráta vznikající na okrajích pásma ostřiku
7	ztráta mezerou
A	stav pracovní látky před turbínou, axiální mezera
a	axiální
с	celkový stav
č	čep
ekv	ekvivalentní
G	generátoru
i	vnitřní
in	stav pracovní látky na vstupu
	-

iz	stav pracovní látky při izoentropické expanzi
j	jmenovitý
K	stav pracovní látky v kondenzátoru
k	kolo
krit	kritická
m	mechanická
max	maximální
n	n-tý stupeň
n	normálová
NT	stav pracovní látky pro NT těleso
0	ohyb
ost	ostatní
out	stav pracovní látky na výstupu
р	pastorek
r	radiální
R	oběžná lopatková řada
reakční	reakční
S	setrvačný
S	střední
S	rozváděcí lopatková řada
ST	stav pracovní látky pro ST těleso
SV	svorkový
š	na špici lopatky
t	totální ostřik
Т	turbíny
tdi	termodynamická
u	obvodová
V	vnější
V	ztráta rozvějířením
V	výstup
výr	výrobní
VT	stav pracovní látky pro VT těleso
X	ztráta vlhkostí páry
Z	v ozubení

Seznam obrázků

Obr. 2.1 – Schema turbosoustroji	13
Obr. 2.2 – Schéma parciálních ostřiků a totálního ostřiku	14
Obr. 2.3 – Srovnání obvodové účinnosti jednotlivých typů axialních turbín [3]	14
Obr. 2.4 – Vlevo schéma pevného uložení, vpravo letmé uložení s ozubeným kolem	16
Obr. 3.1 – Zobrazení výpočtových rovin	17
Obr. 3.2 – Znázornění seškrcení páry v důsledku tlakových ztrát	18
Obr. 4.1 – Vlevo schéma centripetálního stupně, vpravo centrifugálního	25
Obr. 4.2 – I-s diagram radiálního centipetálního stupně	25
Obr. 4.3 – Schéma expanze pracovní látky ve VT tělesu	26
Obr. 4.4 – Znázornění rychlostních trojúhelníků pro radiální VT těleso	29
Obr. 4.5 – Rychlostní trojúhelníky VT tělesa	33
Obr. 4.6 – Schéma rozměrů radiálního stupně	34

Obr. 4.7 – Schéma geometrie profilů lopatek radiálního stupně	. 35
Obr. 4.8 – Schéma expanze pracovní látky v ST tělesu	. 45
Obr. 4.9 – Znázornění rychlostních trojúhelníků pro axiální ST těleso	. 46
Obr. 4.10 – Rychlostní trojúhelníky ST tělesa	. 46
Obr. 4.11 – Schéma expanze pracovní látky v NT tělesu	. 54
Obr. 4.12 – Rychlostní trojúhelníky NT tělesa	. 55
Obr. 6.1 – Znázornění silových poměrů v ozubení [6]	. 61

Seznam tabulek

Tab. 2.1 – Zadané hodnoty diplomové práce	12
Tab. 3.1 – Veličiny vypočtené za pomoci programu X Steam	. 17
Tab. 3.2 – Souhrn zvolených a vypočtených hodnot v kapitole 3	22
Tab. 4.1 – Známé hodnoty pro výpočet VT tělesa	. 26
Tab. 4.2 – Volba rovnotlakých profilů pro RLŘ radiálního VT dílu	. 35
Tab. 4.3 – Volba rovnotlakých profilů pro OLŘ radiálního VT dílu	36
Tab. 4.4 – Souhrn vypočtených a zvolených hodnot VT tělesa	. 41
Tab. 4.5 – Volba rovnotlakých profilů pro RLŘ axiálního ST dílu	47
Tab. 4.6 – Volba rovnotlakých profilů pro OLŘ axiálního ST dílu	47
Tab. 4.7 – Souhrn vypočtených a zvolených hodnot ST tělesa	49
Tab. 4.8 – Volba profilů pro RLŘ NT tělesa	. 53
Tab. 4.9 – Volba profilů pro OLŘ NT tělesa	. 53
Tab. 4.10 – Volba profilů posledního stupně NT tělesa	. 54
Tab. 4.11 – Souhrn vypočtených a zvolených hodnot NT tělesa	. 56
Tab. 5.1 – Souhrn výkonů parní turbíny	. 60
Tab. 6.1 – Vstupní hodnoty pro výpočet převodovky se šikmými zuby	. 61
Tab. 6.2 – Souhrn vypočtených hodnot převodovky	. 63

Seznam grafů

Graf 1 – Účinnost elektrických generátorů, převzato z [4]	
Graf 2 – Obecná charakteristika převodovky [7]	
Graf 3 – Závislost rychlostních součinitelů na ohybu proudu [2]	
Graf 4 – Průběh tlaku a měrného objemu ve VT tělesu	40
Graf 5 – Průběh tlaku a měrného objemu v ST tělesu	
Graf 6 – Průběh tlaku a měrného objemu v NT tělesu	55
Graf 7 – Expanze pracovní látky v turbíně	60
· · ·	