BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCEN| TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

FAKULTA INFORMACNICH TECHNOLOGIi
USTAV INTELIGENTNICH SYSTEMU

RESEARCH IN FINGERPRINT DAMAGE
SIMULATIONS

VYZKUM V OBLASTI SIMULACI POSKOZENI OTISKU PRSTU

DOCTORAL THESIS
DISERTACNI PRACE

AUTHOR Ing. ONDREJ KANICH
AUTOR PRACE

SUPERVISOR prof. Ing., Dipl.-lng. MARTIN DRAHANSKY, Ph.D.
VEDOUCI PRACE

BRNO 2018

Abstract

The goal of this research is to develop methods for fingerprint damage simulations. In the first part of
this thesis the emphasis is placed on a summary of the current knowledge of synthetic fingerprint
generation and the damage to these fingerprints. Moreover, general information about fingerprints,
fingerprint recognition, and phenomena that damage fingerprints including skin diseases are stated
herein. This thesis contains the design and implementation of the SyFDaS application for generation
and modular damaging of fingerprints. The next part is a description of methods for damage by swipe
mode, narrow sensor, damaged sensor, pressure and moisture, skin distortion, warts, atopic eczema,
and psoriasis. Several other types of damage, including fingerprint spoofs, are analysed. Overall, there
are 43 basic damages which were visually verified. Due to damage combinations, there are 1,171 types
of damage and 348,300 fingerprint images generated, which were evaluated by four different quality
measurement methods.

Abstrakt

Cilem této prace je vyvinout metody simulaci poskozovani otiska prsti. V prvni ¢asti je kladen duraz
na shmuti stavajicich znalosti v oblasti generovani syntetickych otiskii prstii a jejich poskozovani. Dale
jsou uvedeny informace o otiscich prstii obecné, jejich rozpoznavani a vlivy, které otisky poskozuji,
vcetné onemocnéni kize. Prace obsahuje navrh a implementaci aplikace SyFDaS pro generovani a
modulami poskozovani otiskt prsti. Dalsi Casti je popis metod pro poskozovani vlivem pratahového
rezimu, zazeného snimace, posSkozen¢ho snimace, pfitlaku a vlhkosti, zkresleni pokozky, bradavic,
atopického ekzému a lupénky. Dale je analyzovano né¢kolik dalSich typu poskozeni vcetné falzifikata
otiskii prsti. Celkové je uvedeno 43 zakladnich poskozeni, ktera jsou vizudln¢ verifikovana. Diky
kombinovani poskozeni je vyuzito 1 171 typt poskozeni a vygenerovano 348 300 obrazki otisku prstii,
které jsou vyhodnoceny ¢tyfmi riznymi metodami posuzovani kvality.

Keywords

fingerprint, synthetic fingerprint, fingerprint generation, damage simulation, sensors, skin disease,
fingerprint spoof, Petri net

Klicova slova

otisk prstu, synteticky otisk prstu, generovani otisku prstu, simulace poskozeni, senzory, onemocnéni
kuze, falzifikat otisku prstu, Petriho sit

Citation

Ondrej Kanich: Research in Fingerprint Damage Simulations, doctoral thesis, Brno, FIT BUT, Brno,
Czech Republic, 2018

Research in Fingerprint Damage Simulations

Declaration

I hereby declare that this thesis is my original work and has been created under the supervision of prof.
Ing., Dipl.-Ing. Martin Drahansky, Ph.D. Some results were achieved in cooperation with bachelor’s or
master’s degree students led by my supervisor or myself. Where other sources of information have been
used, they have been duly acknowledged.

Ondrej Kanich
May 30, 2018

Acknowledgements

I wish to thank Martin Drahansky for his support, advice, and his valuable and inspiring consultations
during his supervision of this work. I would also like to thank my whole family for their endless support,
great hints, strong motivation, and ceaseless patience. I appreciate Eva Bfezinova for her advice and
insight of the medical part of my work. I acknowledge all students that have helped with this work,
namely Milan Barta, Tomas Oravec, gtépémka Barotova, and David Kostak. Last but not least, I wish
to thank all former and current members of the STRaDe research group for fruitful discussions, advice,
and other assistance which was immensely helpful.

This thesis was supported by several projects: New solutions for multimodal biometrics —
enhancement of security and reliability of biometric technologies (COST LD14013), Reliability and
Security in IT (FIT-S-14-2486), IT4Innovations excellence in science (LQ1602), Tools and methods for
video and image processing to improve effectivity of rescue and security services operations
(VI20172020068), Secure and Reliable Computer Systems (FIT-S-17-4014).

© Ondrfej Kanich, 2018.

Contents

| §3 V5 o 1¢ 10 1o3 5 [0) 1 RO OO OO OO PO OO PU PP 4
2 State of the Art Fingerprint TeChnology.........cccccviiiiiiiniiiiiiii e 6
2.1 Introduction tO BIOMEIIICS ...ccveeueeieeieeriiereieeetcetiete ettt er e sabe s s e s 6
2.2 FINZETIPTINES .eueeeiieitieteie ettt sttt sttt e ae et e a e sb s et sb e s e e sa et bbbt s 7
2.2.1 Ridges (Papillary LINES)ccccoiviiiiiiiiiiiiiiiiiii et 7
222 Classification of FINZETPIINLScceviriiiuiiiiiiiiiiiienriee et 8
223 Fingerprint MINULIACccooiiiiiiiiiiiiie ettt 9

2.3 Sensor Technologies for Fingerprint ACQUITEMENLt........c.ovueevieiiiieiiiiiiieeieiie e 10
2.3.1 Optical TEChNOIOZYcveuviuiiiiiiiiiiiiiiii et 11
232 Capacitive TeChnologycccccuiiiiiiiiiiiiiii e 12
233 Thermal TEChNOIOZYc.vevvirieeiiiiiiiiiiiit i 13
234 Ultrasonic TeChNOLOZYcceeuiiriiriniiiiiiiiiiie it 14
235 Pressure Sensitive TEChNOLIOZYcoovieiiiiiiiiiiiiiiiiiii e 15
2.3.6 E-field TeChNOLOZY ..c.veevvereiriiieiiiitiiiiiiectit ettt s e 15
2.3.7 Electro-Optical TeChNOlOZY......cccovieviiviiiiiiiiiiiiiiie e 15
238 MEMS TECHNOLOZY ...ueeuvevieiiieeiieiientieie sttt ettt sb e st s 16

2.4 Fingerprint Recognition ProCESS.........ccoovuiiiiiiiiiiiiiiiii i 17

3 Synthetic FINEIPIINtccccuiiiiiiiiiiiiiiciet s 18
3.1 Methods for Generating Synthetic FINgerprints...........cccooeevuiiiiiiiiiiiniiniiienceie e 18
3.2 Phenomena Influencing a FINGErPrint.........occeouiviiiiiiiiiiniiiiiit i 19
3.3 STFINGE .ottt ettt ettt ettt sa e saa e saae s e ae b as s r b e b en e st enee 21

4 SyFDaS — Synthetic Fingerprint Damage Simulator...........coooeiiiiiniiiinniiis 23
4.1 Fingerprint Generation Petri Netcccooiiiiiiiiiiiiini s 23
4.1.1 Design of the Fingerprint Generation Petri Net.........ocoovoiiiiiiiiiniiii 24
4.1.2 Examples of the Initial Marking for Various Conditionsc.coeeeveiieniniincnnncnn 29

4.2 SyFDaS Core Design and Graphical User Interface ... 30
4.3 Enhancement of Fingerprint GENeration...........ccccueviiviiiuiiieniioe ettt 32
4.4 Touch-based Sensor Damage SImulationcccccovviniiniiiiiniiniciieni s 33
4.4.1 DAamMAZEd SENSOToueiuieiiiiiiiiiiiitieiet ettt 33
4.4.2 Pressure and IMOISTUIEeeveerueereieiecieeeeeie ettt st sate et et eae e s s e s e s e seens 33
443 Fingerprint DIStOTTIONcc.coiiiiiiiiiiiiiinicieii e 34

4.5 DatADASE GENETATION c.vvvvveeeeeeeeeeeeeeeeeeeeeeesestesratareeeesersssrsaaeesesessssssssssesseesessnsenessesssersmmssenss 42

Swipe Sensor Damage SIMUIALIONcc.oviiiiiiiiiiiiiie i 45
5.1 Damage ANALYSIS .c..coveuviiiuiiiiiiiii ittt s 45
5.2 SWIPE MOGE ..coveviietiiet ettt s 46

5.2.1 Swipe Sensor Definition in SWipe Mode..........cccoviiiiiiiiiiiiiieninicee 47
5.3 Damages EXclusive t0 SWIPE SENSOTSc.ccoiviiiiniiiiniiiie i 49

5.3.1 INAITOW SENSOT ...vivveeerreieeeteesteeseeesseeseeeuteebeeneeetesseesssesssesasesaaesaaeeabeetbesssassanssasssans 50
5.4 Examples Of DAmages.........cccciiiiiiiiiiiiiiiiiitiitiiet i 51

54.1 Pressure and Moisture in SWipe MOdeoceeeieviiiiiiiiiiiiiiiiii e 51

542 Narrow Sensor in SWipe MOde........ccccuvieiiriniiiiiiiiiiiii e 53

543 Damaged Sensor in SWipe MOdE..........c.ooviuiiiiiiiiiiiiiiee e 55

544 Distortion in SWipe MOde.........cceveeuiriiiiiiiiiiiiiiie et 56
5.5 EVAIUATION .ottt ettt et s 57

5.5.1 Synthetic Database Used for Evaluation ..o 58

552 Methods Used for Quality Measurement...........ceeveerivueerienieiieirientne et 58

553 Evaluation of Generated Narrow Images..........cccceevviviiiiiiiiiiiiniiiciceceeeeeceiens 60

554 Evaluation of Generated Normal Width Images...........ccccceevveviiniiinniniiininnienienne 73

SKin Disease SIMUIALIONcciiiieuieeeiieeiteeie et e stte ettt e saaeeesaaeerareesbe e e ssbs e saessnaessseasssseenns 88
6.1 Database of Fingerprints with SKin DiSases..........ccocueviiiimiiiiiiniiiieniiie s 89

6.1.1 Database ANALYSIS......c.euuruerirreieeriieeee ittt es e 90

6.1.2 Description of Diseases in the Database............ccooiiiiiiiiiiiiii 92

6.1.3 SKin DiSeases DELECTIONccveererveriereireeie ettt sttt st er e eabe b e enes 97
6.2 Directly Simulated DISEASESccoeirrririiiiierieieee e 101

6.2.1 Verruca Vulgaris (WArts)c..ccveeeieiiiiiiiiiiiiiniee st 101

6.2.2 ALOPIC DEIMALILES ...t 107
6.3 Simulation Based on Learning from Diseased Imagesccccoeveviiiiniiniiiiininniinine 113

6.3.1 PSOTIASIS ... v vt ettt ettt et et sate et e et et et e et s e s e e sa e st b e sbbeeabesabe s be e e e e e e s 114
6.4 EVAIUALON ..ottt ettt ettt et et ettt a e sa b st er e aeeh bbb e r e s e e st 117

6.4.1 Evaluation by the Dermatologistc.cceviiuiriiriimiieenieiee e 118

6.4.2 Warts Damage Evaluationcccooeeiiviiiiiiiiniiciniiee e 118

64.3 Atopic Eczema Damage Evaluation ... 121

6.44 Psoriasis Damage Evaluationc.ccoiiiiiiniiiiininiiee e 125

Other Inspected Damagescccouiiiiiiiiiiiiiiiiiti s 128
7.1 FIngerprint SPOOLSco.ecuioiiiiiiiiiiiie e 128

7.1.1 SPOOT PrOAUCTION ...ceceiiiiiniecacieisis s 128

7.1.2 SPOOL TMAZES .. veeiiiiiiiritce ettt e 129
7.1.3 Spoof DAamMAage ANALYSISc.ovrveiiiiriiieretitees e 132

7.2 Detergents OF LOtONS.c.o.uiiiiiiiiteiitiiis st 133

S 031 Te) L3 10 s DUURUOU U TR OO PSP PP PP P TSP PPRTPRPPRTPR 134
Research and Development ACHVITIESc.cvoiriirieriiiientesteti e 145

1 Introduction

In the past decade, fingerprint technology has experienced an incredible boom. They moved from sci-
fi movies to just about every personal device. Nowadays, almost every smartphone has a fingerprint
reader and their placement in laptops now comes standard. The usage of these technologies in civil
areas, like access control or security systems, is now a reality. With this massive expansion, however,
there are problems that emerge. Mobile devices are focusing on minimalistic solutions. That usually
means the cheapest (for example, the sensor has to be as small as possible), but still workable solutions.
On the other hand, security and access control systems are focusing on the highest level of security. [1]

Keeping the performance with the smaller sensors means that algorithms must use every possible
information in the sensing area. Cracking these devices (usually smartphones) is a prestigious thing.
Producers of biometric systems have to react with new or better liveness detection subsystems.
Algorithms that extract features then have to work with liveness detection as well. As a result,
algorithms are becoming more sophisticated and complex. This leads to larger demands on testing and
testing requires fingerprint database — large databases with not only many fingerprints from one finger
but also many fingers. That means that many people (volunteers) are involved in the creation of various
databases. The capture of so many fingerprints is a very time-consuming operation. It might seem like
that when the database is finished, it can be used everywhere and everything is solved, but that is not
true. And that is because fingerprints are considered as personal data and as such they are protected by
various laws. The details of these laws can differ from country to country, so generally it can be said
that usage of these databases is difficult. [1]

If only there would be a way to get huge databases without these legal concerns, with a lot of
challenging fingerprints, and so on. There is one possibility and that is a synthetic fingerprint database.
There are already ways to generate a synthetic fingerprint. It is not connected to any real person, thus
it is not protected by legislation. The only problem is that they are usually perfect or only slightly
damaged. What is needed is challenging fingerprints — damaged ones, and not only with some damage
but with a specific damage. The challenge for mobile usage is small sensors (small sensing area); for
security and access systems it could be skin disease. When someone has a skin disease that influences
the fingerprint, the situation can occur where this person cannot use the access system or cannot get
past the security. Fingerprint spoofing is also a problem for all applications. The potential damage done
by successful spoofing to break into a smartphone or a highly secure building is different, but it is the
same problem.

There are fingerprints that are not so common in the population and these should be in the
databases as well. The situation where some kind of fingerprint has not been tested because it just did
not appear in the database is unthinkable. This topic is closely related to the so-called Doddington's zoo
[2] [3], which stated that the difficulty of comparing two biometric traits is not the same. The fingerprint
on a user’s left thumb could be easy to compare and the fingerprint on the user’s right thumb could
wreak havoc for the algorithms. Synthetic database could be prepared so it only contains the worst from
the worst. This challenging database could be very beneficial for all types of testing. The usage of
synthetic databases is not constricted only to test the algorithms — they can also be used as an educational

tool. Police experts on dactyloscopy can learn what diseased fingerprints looks like, developers of new
systems can see the most challenging fingerprints in advance, etc.

This work focuses on how to specifically damage the perfect synthetic fingerprint so it can be
used in these exemplary applications. The main aim is to describe the present technology in generating
synthetic fingerprints with an emphasis placed on the simulation of a damaged fingerprint and to design
and implement methods that take the perfect fingerprint and transform it into a more realistic damaged
representation. These methods take in the input from various types of sensors as well as other
phenomena in order to simulate a very specific damage done to a real fingerprint when it is acquired.
This way it cannot only simulate a specific damage but also generate a fingerprint exposed to different
environments.

In the second chapter, the current state of the art is described. There is information about
biometrics, fingerprints, the process of fingerprint acquirement, and the sensor technologies associated
with it. The third chapter is dedicated to synthetic fingerprints and everything connected with it, i.e. a
way of generating a synthetic fingerprint, various data that can be used as inputs for the generator, the
current available generators, and their functionality. The phenomena that influences a real fingerprint
during the capturing process are also described. In the fourth chapter there is the design and
implementation of the SyFDaS application. Starting with the theoretical Petri net background to the
core design of the application, there are some basic touch-based damages and database generation
methods listed. The fifth chapter is dedicated to damage simulations for swipe sensors. It shows the
way in which the swipe sensor influences the phenomena created for touch sensors and describes new
phenomena that are specific only to swipe sensors. Methods for implementation of these phenomena
are included as well as examples and their evaluation. This chapter also includes an extensive
introduction of evaluation methods. In the sixth chapter, skin diseases that influence fingerprints are
described. The available database is analysed as well as the method of detecting skin disease. This
chapter also contains information about the simulations of some diseases and their examples and
evaluations. The seventh chapter is an introduction to other potential damages. A big part is dedicated
to fingerprint spoofs. The last chapter is the conclusion, which sums up all essential information.

2 State of the Art Fingerprint Technology

This chapter describes the general information needed to understand the rest of the work that was done
in this research. The main goal of this thesis is closely related to the fingerprints used in biometrics,
thus the basic knowledge of biometrics with an emphasis on fingerprints and methods to acquiring them
is covered. An integral part is also the way the recognition of fingerprints works, i.e. the processes that
are necessary to acquire a fingerprint. All terms related to biometrics are consulted with [4]. [1]

2.1 Introduction to Biometrics

Before going further, an explanation is required as to what “biometrics™ is. This term has a different
meaning in information technology and in biology. Biometrics [4] [5] in the context of this work is an
automated recognition of people based on their characteristic physiological and behavioural features.
There are three basic approaches on how one can prove his or her electronic identity: (i) reveal
something only he/she knows (knowledge), (ii) something he/she possesses (possession), and (iii)
something he/she is (biometrics). In that order, the level of comfort and safety ascends when using these
approaches. [1] [3]

The main advantage of biometric systems is that the biometric characteristic that is used to
identify an individual cannot be lost or forgotten. This fact is also the greatest disadvantage of biometric
characteristics. Whenever it is revealed, there is no way to change or delete it. Some biometric
characteristics can also tell a lot about the individual’s health condition, so it violates one's privacy. [1]
[5]

There are a few concepts that are important to biometrics. One is inter- and intra-class variability.
Inter-class variability tells us how big the difference is between traits from different classes (people).
On the contrary, intra-class variability tells us how big the difference is between traits from the same
class (individual). When biometric characteristics are compared, there are nine basic properties [5] [6]:

o Universality, i.e. everyone should have this trait.

e Uniqueness, i.e. two persons should not have the same trait.

e Permanence, i.e. this trait should not vary over time.

e Measurability, i.e. this trait should be easy to acquire.

e Performance, i.e. this trait should not be changed or altered.

o Acceptability, i.e. the willingness of people to capture this trait.

e Circumvention, i.e. how difficult it is to falsify.

e Price, i.e. how much it costs to deploy a biometric system with this trait.

e Maintenance, i.e. how much it costs to maintain a biometric system with this trait.

There is no perfect biometric characteristic. Each one has its advantages and disadvantages based on
these properties. [1] [5] [7] [8]

2.2 Fingerprints

This work is mainly focused on fingerprints, therefore, this subchapter studies them in more detail. The
fingerprint, since 1880, is one of the biometric characteristics that has been used to identify people.
Almost a hundred years earlier, it was already known that fingerprints are unique. Francis Galton
counted the likelihood of two fingerprints being the same as 1 in 64 billion. That is one of the reasons
why it is one of the most basic and widespread biometric characteristics that can be seen in everyday
life. [1] [5]

In comparison with other biometric characteristics, its main advantages are its uniqueness,
permanence, performance, circumvention, and price. It is pretty decent in other properties as well, but
there are better characteristics for that (e.g. retina, DNA). One of them is acceptability. People very
narrowly connect fingerprint scanning with criminal television shows and movies. When it comes to a
larger acquirement processes, many of them have the inner feelings that they have done something
really bad. Some people are also afraid of the forgery of their fingerprints, so they want to go through
acquirement process only when serious crime is investigated. These are some reasons why fingerprints
do not have a great acceptability. Nowadays, the position of fingerprint technology is getting better and
people are more willing to accept this technology because of its everyday use. However, it is still very
difficult to acquire a fingerprint database. [1] [5]

2.2.1 Ridges (Papillary Lines)

A fingerprint is created by capturing ridges (papillary lines), [5]1 [6] [9] [10] which are protrusions in
the internal side of hands (and feet as well). In Figure 2.1 the structure of the top side of the skin can be
seen. In the epidermis portion, some types of minutiae and sweat pores are shown, which are described
in Subchapter 2.2.3. The curvatures of the ridges are formed in the deeper layer — the dermis. The real
ridges in the epidermis, which can be seen and captured as a fingerprint, are just a projection from the
deeper layer (for example, wrinkles are formed in the same layer). This means that one cannot alter or
delete the fingerprint by damaging the epidermis, for instance by a burn, abrasion, or cut. If damage
like that is done, it will regenerate with the growth of skin in the surface of the finger. The only way to
change ridges is by damaging the dermis. This will permanently alter that part of the ridges, thus
creating new unique pattern. [1] [3] [5] [10] [11] [12] [13] [14] [15] [16] [17]

Ridges are created in the fourth month of a baby’s development, and for the rest of their life these
ridges will remain relatively the same [11]. It is assumed that there were no major injuries. Small
injuries, wrinkles, and other effects interrupt ridges, but their continuity and minutiae will remain
unchanged. Physiologically, ridges are responsible for better sensitivity to touch and also for a better
grip of objects. The height of a ridge ranges from 0.1 to 0.4 mm and their width is around 0.2 to 0.6 mm.
(11 [ST[91 [11] [12] [13] [14] [15] [16] [17]

! According to Harmonized Biometric Vocabulary (http://www.christoph-busch.de/standards.html)

http://www.christoph-busch.de/standards.html

ENCLOSURE

ENDING BIFURCATION
RIGDE -.__ X

SWEAT

EPIDERMIS { :
i

DERMIS J :

. SWEAT
\} GLAND
N

PAPILLAE

Figure 2.1: Skin Structure (taken and modified from [5]).

2.2.2 Classification of Fingerprints

By simply comparing two images, the identification would be a difficult task, therefore fingerprints can
be divided into several particular classes. Using this classification system, it is possible to quickly reject
fingerprints from another class, which greatly accelerates the identification. This is necessary in big
databases, such as those that the FBI uses. Their system, IAFIS (Integrated Automated Fingerprint
Identification System), [18] uses the Henry's classification system [5], which contains three classes.
These are arch, loop, and whorl. Nowadays, extended versions, where these three classes are split into
more specific ones, are used. In Figure 2.3 two subclasses for every class can be seen. In [3], [14], etc.,
it is possible to find more subclasses usually derived from the whorl class. All these classes are not
equally frequent in fingers. Arches are the most unique ones with a probability of around 6.6 %. In the
middle, there are whorls in 27.9 % of fingers. The most frequent are loops which can be found in almost
two-thirds of all fingers (65.5 %). [1] [5] [9] [11] [19] [A1]

To understand how these classes can be distinguished, it is necessary to define some objects of
interest. The first of them is delta [5] [6]. It is a place where ridges run in three different directions; it
forms a triangular shape. The second of them is core [5] [6]. Core is the centre of the fingerprint and it
can be found in the innermost loop or in the middle of the spiral in the whorl class. In Figure 2.2 the
core is marked with a blue colour, the direction of the core is marked with a red arrow, and the delta is
marked with a green triangle. Six classes in Figure 2.3 all differ in the quantity of cores and deltas or in

Figure 2.2: Singular points — core and delta.

the direction of the cores. An arch does not have any cores or deltas. A tented arch has one core, one
delta, and the direction of the core points to the delta. Loops are like the tented arch, but with a different
direction that specifies them. In general, whorls have two deltas and one or two cores. With all this
information, the fingerprint in Figure 2.2 can be classified as a right loop. [1] [5] [6] [9] [11] [20] [A1]

Tented Arch

—y

Left Lop

- =
Right Loop Twin Loop

Figure 2.3: Classes of fingerprints (taken and modified from [19]).

223 Fingerprint Minutiae

Classes alone are not sufficient enough to identify a person. The characteristic that is detailed enough
to distinguish every finger in the world is the fingerprint minutia. Minutia [5] is a special formation
created by ridges. In dactyloscopy huge amounts of these formations are distinguished. Some of them
can be seen in Figure 2.4. From left to the right it is [5]: ridge ending, bifurcation, double bifurcation,
triple bifurcation, spur (or hook), ridge crossing, opposed bifurcation (or side contact), dot, island (short
ridge), enclosure (or single whorl), double whorl, bridge, twin bridge, through line. Each type of minutia
has a different likelihood of appearance in the fingerprint. [1] [5] [9] [11] [21] [A1]

Computers can find and save all these types of minutiae to recognize fingerprints, but it is very
demanding. The recognition of these complicated patterns will only prolong the fingerprint
acquirement. Unlike people, computers do not have a problem with saving greater numbers of minutiae
or their location and orientation. For these reasons, in automated processing only two basic types of
minutiae are recognized: ridge ending and bifurcation (in Figure 2.4 marked with a red frame). There
are specialized dactyloscopic tools which can recognize more types of minutiae. [1] [S] [9] [11] [22]
[Al]

=—==="=S
====—===

Figure 2.4: Basic types of minutiae (taken and modified from [19]).

23 Sensor Technologies for Fingerprint Acquirement

Nowadays, when fingerprint recognition technology is used, regardless of the precise usage (i.e.
verification or identification) the first thing to do is to get a fingerprint from the finger to the computer.
There are several methods of obtaining a digitalized fingerprint. The traditional dactyloscopic card,
where the fingerprint is obtained by moistening the fingertip in ink or a chemical substance (clean
fingerprinting), can be scanned. This method leaves fingers dirty and there is no certainty of making a
good fingerprint. It is better to have fingers scanned directly into the computer. The principle of these
direct methods can be found in the following subchapters. [1] [5] [10]

Fingerprint capturing sensors are divided into three main categories. They are swipe, contactless,
and touch (or area) sensors. When using touch sensors the finger is placed on the sensor area and left
there for a few seconds without moving it. These sensors are very easy to use, even for inexperienced
users. The only thing that could go wrong is a bad rotation or position of the finger. A bad rotation often
occurs when the thumb is being scanned (20° is usually enough for matching algorithms to stop
working). People with longer fingers frequently do not properly estimate the sensor’s area, and then the
core of the fingerprint is not scanned or appears in the edge of the scan, which is not an optimal position
for many matching algorithms. The biggest disadvantage of touch sensors is that latent fingerprints can
remain on them. Some technologies can get tricked by the reactivation of the last finger from a latent
fingerprint. In this matter, a related problem is that the sensor gets dirty with each scan and must be
cleaned, depending on the frequency of scanning. Dirty sensors produce dirty fingerprints, which can
result in a higher false rejection rate [10]. A good sensor should also have an area large enough to fit
everyone's finger. However, a larger area usually means a higher cost. [1] [10]

Swipe sensors are usually a little bit wider than a finger, but their height is only several
millimetres. When using swipe sensors, the finger is swiped vertically over the sensing area. The sensor
will then reconstruct the fingerprint from each smaller part captured when the finger was swiped, as
can be seen in Figure 2.5. The advantage of this type of sensor is its lower cost, because of the much
smaller area. Also, there is no latent fingerprint available (only the last part of it) and finger movement
basically cleans the sensor each time it is used. The rotation of the fingerprint, thanks to the vertical
movement, is almost non-existent. On the other hand, the sensor is harder to use. There are many things
that can go wrong when swiping a finger. The exact speed, position, and steadiness of the movement
have to be maintained. In case of the wrong speed or unsteadiness of the finger movement, the final

10

image is discontinuous or unrealistically long. In addition, when the finger is in the wrong position, the
final image is simply only half of a fingerprint. The sensor must be able to scan very quickly to permit
a suitable swiping speed. The image reconstruction is time-consuming and it is also a source of
inaccuracy and errors in the final image. The first swiping sensor was used with thermal technology,
but nowadays the most widely used technology is capacitive or RF capacitive. [1] [10] [23] [24] [25]
[26] [27] [28] [29]

The last type of sensor is a contactless one. These sensors scan ridges even without a finger
touching the sensor. Usually they work in a similar way to touch sensors. Because of that, there are no
worries of a latent fingerprint, dirt on the sensor, or a bad speed or unsteadiness of the fingerprint
movement. On the other hand, the device is usually placed around the whole finger, which implies a
higher cost and a lower acceptability. The only thing that is needed is the right position of the finger in
the device. That could be tricky because one has to align his/her fingers in three dimensions. [1]

= =)

o
NS

NSNS
ZRNTRNR
RN

§ @

——

Figure 2.5: Swipe sensor principle.

2.3.1 Optical Technology

Optical fingerprint capture devices are one of the oldest ones; they have existed since the 1970s. They
are based on the Frustrated Total Internal Reflection (FTIR) [10] principle. Figure 2.6 shows this
technology in detail. The finger is placed on the protective glass so that the ridges touch the glass and
its valleys are in the distance. The ray from the light source is reflected by the ridges and absorbed
(scattered) at the valleys. The reflected rays are channelled through the optics to a charge-coupled
device (CCD) or complementary metal-oxide-semiconductor (CMOS) camera. The protective glass is
illuminated by the light source, as can be seen in Figure 2.6. When the protective glass is replaced by a
transparent roller tube and optics, the camera and light source are in it and then a simple swipe optical
sensor is designed. It is also possible that such roller functions, like optics or a camera with a light
source, are beneath it. Some optical devices utilize contactless technology. These devices work very
similarly to primitive photographic devices. The advantages of this technology are that its sensors can
withstand temperature fluctuations. They basically operate in three dimensions, so they are more
resistant to photograph or fingerprint image attacks. Another type of optical sensor uses optical
coherence tomography (OCT) [30]. It is very expensive, but it gets the image from a deeper layer of

11

the skin, which is harder to spoof. It can also obtain an image where the sweat pores are clearly visible.
The disadvantages of the optical technology in general is that the sensor is sensitive to dirty fingers and
that latent fingerprints are a big problem — with the exception of contactless devices and optical
coherence tomography. [1] [5] [9] [10] [15] [24] [29] [30] [31]

Finger — ridges

Protective glass

Light source

CCD/CMOS
camera

Figure 2.6: Optical technology principle (taken and modified from [19]).

2.3.2 Capacitive Technology

The capacitive sensor is created by a two-dimensional array of a micro-capacitor plate. Ridges and
valleys create the second part of these micro-capacitors. In Figure 2.7 the difference between the
distances of a ridge and a valley can be seen, because the capacitors have another electrical behaviour,
which can be measured. When height of the sensing area is small then it is a swipe sensor. Despite its
wide usage, they do have some disadvantages. There is the danger of damaging the whole device when
one’s finger is electrostatically charged. There are also chemicals in sweat that can damage the silicon
chip. For these purposes there has to be a protective layer, but this layer has to be as thin as possible to
have the smallest impact on the measurement of differences between ridges and valleys. [1] [5] [9] [10]
[22] [29]

' Metal plate

I 1"

N

Figure 2.7: Capacitive technology principle [19].

12

However, there is one modification of the capacitive sensor that is worth mentioning. It is a
combination of e-field and capacitive technology. It uses a low radio frequency signal and because of
that, it is often known as radio frequency (RF) technology. This signal is sent to the skin, and due to
that, an electrical RF field is created between the signal reference plane and the live (conductive) layer
of the skin. Its equipotential contours mimic the shape of the live layer of the skin, so when it is
measured by the antennae array a fingerprint image is acquired. This principle can be seen in Figure 2.8.
Another interesting principle is using thin-film transistors on a capacitive touch panel. That way it is
possible to have a touch sensitive area (i.e. a smartphone can be controlled this way) and fingerprint
sensing at the same time. [9] [24] [29] [31] [32] [33]

Skin cutout

——Live skin cell layer

——OQuter dead skin layer
‘——Surface of skin

RF Field

Peak [
Slope [___~Pixel sensor plates
Valley B 3 : ¥ Excitation signal
Output e : 7 X reference plane
Semiconductor [EaeEs

- TruePrint®
Sense Amps substrate

—

Figure 2.8: An example of the RF capacitive technology principle (taken and modified from [32]).

2.3.3 Thermal Technology

Thermal technology is based on differential thermal radiation. Pyroelectric materials generate the
current according to various temperatures. Ridges have higher thermal radiation than valleys, so they
have a higher temperature. Since temperatures quickly equalize, it is necessary to use swiping sensors,
as can be seen in Figure 2.9. Despite quick equalization, there is a company (NEXT Biometrics) that is
using the heat pulse and provides a touch thermal sensor? [34]. The main advantage of thermal
technology is that it is very resistant to electrostatic discharge. The protective layer can be very thick
as well. [1] [5] [9] [10] [29] [31]

2 https://www.nextbiometrics.com/products/fingerprint_sensor_modules/nb-2023-s2-v-and-nb-2023-u2-v/

13

https://www.nextbiometrics.com/products/fingerprint_sensor_modules/nb-2023-s2-v-and-nb-2023-u2-v/

Insulation Pyroelectric
layer cell

Figure 2.9: Thermal technology principle [19].

234 Ultrasonic Technology

Ultrasonic capture devices consist of a transmitter and a receiver. The transmitter sends acoustic signals,
which are reflected by the ridges (skin) and valleys (air) differently. The transmitter and the receiver
move around the finger as it is shown in Figure 2.10. The receiver then receives echo signals, and thanks
to the different acoustic impedance, measures the distance and consequently acquires an image of the
fingerprint. The frequency used by these sensors is between 20 kHz and several GHz. Higher
frequencies help to obtain a higher resolution. Ultrasonic sensors have one of the best image quality
and accuracy rates (ten times better than any other technology). The ultrasonic technology penetrates
the upper part of the skin, which results in the better detection of spoofed fingers and it is also less
influenced by dirt on the fingers, surface damage, and dirt on the sensors. The main disadvantages are
the very high cost and the large size of the device. Another problem is also that the ultrasonic technology
cannot operate properly at low temperatures. [1] [5] [10] [24]

——-—\—_._.

‘g tf
Sound wave >

pulse transmission —,______[_

Echoes of sound wave

B
Echo #1 4—

——————

O e —

Echo #2 4—
SN,

PR ———
Echo #3 11117111 \\ Structure of
‘ ridges
\\ Air gap

Plate

Figure 2.10: Ultrasonic technology sensor movement (taken and modified from [19]).

14

235 Pressure Sensitive Technology

The pressure sensitive (or piezoelectric) sensor is composed of three layers. There is a non-conductive
gel added between the electro-conductive layers. The whole sensor, with the finger ready to scan, is
shown in Figure 2.11. The non-conductive gel is pressed by the finger ridges, which causes the electro
conductive layers to touch. The sensor then measures the current created by the finger and creates an
image of the fingerprint from it. The protective layer creates a blur on the whole fingerprint. Also,
materials have to be sufficiently sensitive to detect the differences between valleys and ridges. [1] [3]

[6] [9][10]

Ridges and valleys Finger

L

[

1

1
1
!

Lo

O @

Electro-conductive Non-conductive gel
layer

Figure 2.11: Pressure sensitive technology principle [19].

2.3.6 E-field Technology

With this technology, the sensor consists of a drive ring and a matrix of antennae. The drive ring
generates a sinusoidal radio frequency signal and the matrix of active antennae receives that signal
modulated by the skin’s structure or, more precisely, modulated by the dermis structure, because the
electric field passes through the upper parts of the skin (the epidermis). Similar to the ultrasonic
technology, this technology is also resistant to fingerprint spoofs and ignores the dirt and light injuries
on the finger. The image quality here is better than the one from capacitive or electro-optical sensors.
The disadvantage is that the sensor is very sensitive to electrostatic charges and there is the possibility

of a sensitivity to disturbance in its RF modulation. [1] [6] [9] [10]

2.3.7 Electro-Optical Technology

The electro-optical sensor consists of four layers, which are clearly shown in Figure 2.12. There is an
isolation layer, a black coaxial layer, a light-emitting layer, and a basic layer. Underneath there is a
CCD/CMOS camera. The light-emitting layer is made from a polymer that emits light when polarized
with the proper voltage. When ridges touch the sensor it causes the black coaxial layer to touch the

15

phosphor layer, which then emits light in the places of ridges. This light passes the basic layer and then
a camera captures it. [1] [5] [6] [9] [10]

w ‘ Insulation layer “
. ‘ Black coaxial layer “
Phosphor layer

\. emitting light

\
.
\
\
.
\
\\
\
\
.
\
\
.
\
\
.
.
\
.
.
\\
X -
\ Basic layer
)
\
.
.
\
.
\

Output

anxn

Figure 2.12: Electro-optical technology principle (taken and modified from [19]).

2.38 MEMS Technology

The MEMS (Micro-Electro-Mechanical-System) [10] uses micro parts to scan a fingerprint. One of the
methods uses piezo-resistive micro beams. The user swipes his/her finger along the sensor, which
consists of three rows of piezo-resistive gauges. Their parallel deflection will create a voltage variation
which is measured and transformed into the fingerprint. The resulting image is only binary-coloured,
which is the big disadvantage of this type of technology. This pressure-based MEMS swipe sensor
principle can be seen in Figure 2.13. Another method is to use micro-heaters. This method slightly heats
the finger and measures the temperature changes of the heating element. A ridge works as a heat sink
so that the heat element, which is connected to the ridge, shows a lower rise in temperature. [1] [6] [9]
[10] [29] [31]

Figure 2.13: Tactile MEMS technology principle (taken and modified from [35]).

16

2.4 Fingerprint Recognition Process

How to obtain a digitized fingerprint has been explained, but there is still one process yet to be
described — the process of recognizing the fingerprint. In Figure 2.14 an overview of this process can
be seen. First, a digitalized image of a fingerprint is needed. Nowadays, sensors tend to have liveness
detection (anti-spoofing) as a part of the scanning process. The next phase is the enhancement of image
quality. In each point of the image, including its surroundings, the direction of the ridges is counted. If
this point is on the ridge, it determines (with a high probability) the direction of it. This phase can be
divided into smaller ones — the orientation field estimation for each point, the estimation of the block
orientation field, and then the final mapping on the original image. Using this information, the image
is then enhanced. In this step many various methods can be applied on the image. Usually, the method
for adjusting the histogram is used. Image quality enhancements are used, like the Gabor filter,
frequency filters (after using FFT) such as the Butterworth filter or the Ikonomopoulos filter, etc. (after
the application of the filter IFFT is used). [1] [5] [9] [10] [14] [A1]

The next step is binarization. It is usually done by some thresholding method, e.g. by regional
average thresholding or by adaptive thresholding. At the end of this step is a binary image, where ridges
are black and valleys white. The following process is minutiae detection, and for this purpose only
ridges are needed. So in this step the ridges are thinned to be only one pixel wide. The only problem is
that the ridges should not decline in any direction — that could cause a problem with the precise minutiae
position. The last phase is minutiae detection and extraction. Specialized algorithms are used for this
purpose, one of them being the Hong method [5]. In this phase minutiae are detected (in verification
systems usually only ridge ending and bifurcation) and its properties (position, type, and gradient) are
extracted. After that, different approaches for recognition could be used; for example, global and local
minutia alignment, minutia cylinder-code, etc. [36]. [1] [5] [9] [10] [14] [A1]

Fingerprint Fingerprint image Thresholding
acquirement enhancement (binarization)

Ridges thinning Minutiae extraction

Figure 2.14: An overview of fingerprint recognition process (taken and modified from [19]).

17

3 Synthetic Fingerprint

Fingerprint recognition technology is being used more and more in this day and age. Along with it,
many methods have come into light that make fingerprint recognition more resistant to impostors. The
amount of various recognition algorithms is greater, too. These algorithms need testing and are usually
tested on small databases. Larger databases (datasets with thousands, or even better, tens of thousands
of fingerprints) are very hard to get because making them is very time consuming and expensive. It
demands a very well-trusted organization to attempt to collect a database like that, because people tend
not to give out their fingerprints to anyone. Collecting such a database is also very tiresome, both for
the technician and the users. In this monotonous environment it is easy to make a mistake. Even when
such a large database is available, there are usually problems with sharing it because of privacy
legislation that protects this type of data. When these databases are not available, algorithms are tested
on smaller databases and it is very easy to make them data dependent. So they are very accurate when
it comes to a common fingerprint (e.g. loop class), but with an extraordinary fingerprint (like twin loop
class) their accuracy collapses. [1] [6] [37] [38]

In these cases it would be great to have some generator (application) that would create a large
synthetic fingerprint database. If a synthetic database consists of images very similar to human
fingerprints, then that can be used instead of a large database of real fingerprints. It also opens up the
possibility for testing a specific type of fingerprint or adapting algorithms to them. This is possible
because fingerprints that resemble those from specific workplace environments can be generated.
Generating such a database would save a lot of resources (human, money, time) that can be used to
create better algorithms. So this is the motivation for creating synthetic fingerprints. [1] [6] [37] [38]

3.1 Methods for Generating Synthetic Fingerprints

Synthetic fingerprint generation is an inverse biometrics problem [39]. According to input variables, it
is essentially the fingerprint recognition process (Subchapter 2.4) from the end to the start. Several
methods of how to generate a synthetic fingerprint can be found in [6] [11] [21] [40] [41] [42] [43], and
when these methods are thoroughly studied, one can find that they are all based on the same principle.
The method used by the SFinGe® seems to be the oldest one and also the most commonly known, so it
will be described as a template for others. For example, very similar methods are used by Anguli, which
is an Indian Institute of Science fingerprint generator. [1] [16] [44] [A1]

To gain a better understanding, the upper part in Figure 3.1 (figure is located at the end of
Subchapter 3.3) shows the generation process. The generating part ends with the so-called master
fingerprint (a perfect fingerprint, equivalent to the phase extracted lines from Figure 2.14). First, the
fingerprint’s shape is determined. The basic shape is oval and each elliptical segment can be changed

3 http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12&pathSubj=111%7C%7C12&

18

http://biolab.csr.unibo.it/research.asp?organize=Activities&select=&selObj=12&pathSubj=l

to create the required shape. The second step is the directional field model. In this step the fingerprint
class is chosen together with the position of cores and deltas. This step uses the Sherlock and Monroe
ridge [6] flow model to generate a consistent direction field. The third step creates a density map. If the
fingerprint is thoroughly examined, it can be seen that the density of ridges is not the same throughout
the whole area. After examining several real fingerprints some heuristic criteria could be made. These
criteria are based on the position of singularities (cores and deltas) and according to them the density
map is generated. The last step is ridge pattern generation. This phase uses all previous steps along with
some initial seeds. Iteratively, the image with the initial seeds is refined with the Gabor filter. The filter
orientation and frequency are adjusted according to the directional field and density map. Minutiae are
automatically generated at random places with random types (dactyloscopic ones, not only ridge ending
and bifurcation). After that phase, the master fingerprint is finished. [1] [11] [16] [21] [40] [44] [45]
[Al]

As can be seen, the SFinGe generating process is not exactly an inverted recognition process. If
this process is strictly followed, so-called fingerprint reconstruction is then performed. These are
methods that focus on the creation of a whole fingerprint from only the minutiae saved as a template in
fingerprint recognition [46] [47]. Another method lies between these two. It states that fingerprint
features are dependent on each other [21]. It follows the same scheme, but with dependencies on the
other steps. The orientation field is influenced by singular points. The minutiae density is higher around
singularities and their appearance is not random, but rather statistically driven. The minutiae direction
is also dependent on their types and on the orientation of the ridges around it. This method firstly
determines singular points, after that it is the orientation field, and finally the minutiae. Each step is
dependent on the previous one. After all of the steps are completed, the master fingerprint is made with
the use of the AM-FM (amplitude modulation, frequency modulation) method. [1] [16] [21] [42] [44]
[Al]

The last described method (from SyFDaS generator) uses minutiae as an input. The creation of a
whole fingerprint is based on only these minutiae. The biggest difference is that the orientation field is
generated from minutiae and not from classes or singular points as it was in the previous methods. It is
generated from the minutiae direction and each minutia has a weight based on the distance of it from
the point where the orientation field is determined. The disadvantage of this method is that the final
fingerprint could have a class that does not exist in the real world. In this method, the density map can
be manually changed. The default state is the uniform density map. After that, using a similar method
of Gabor filter as in SFinGe, a master fingerprint is generated. Note that instead of the initial seeds, this
method uses minutiae as these seeds and the generation starts with them, so precisely defined minutiae
do not change in the generation process. [1] [11] [16] [44] [A1]

3.2 Phenomena Influencing a Fingerprint

This chapter tries to sum up all the phenomena that can influence a fingerprint. This information is
needed in order to fully revert from the master fingerprint (i.e. the final stage of the extracted lines
phase in the fingerprint recognition process) to a realistic looking fingerprint (i.e. the acquired
fingerprint phase of the recognition process). There are three main groups of phenomena that can

19

damage the quality of a fingerprint. They are finger condition, sensor condition, and environment. The
influencing factors connected to the user and his/her finger will be described in the following text. [1]

Almost all fingerprint scanners are influenced by dirt on the finger, be it a small particle, a few
grains of dust, or simply an oily finger. Conductive materials and liquids are usually the most
problematic types of dirt. Only ultrasonic, contactless, and e-field technologies are resistant to this type
of damage. The dry or moist finger is one of the most typical cases of damage done to a fingerprint.
Whether it is because the users wash their hands, if they are nervous and their fingers are sweating, or
if they have very dry hands and lotion was applied, skin resistance can increase or decrease to ten times
the normal value. This usually plays a huge role in the recognition of optical, capacitive, and e-field
sensors. The physical damage of a finger, such as cuts or abrasions, is obviously damaging to a
fingerprint. There is a combination of physical damage and non-cooperative behaviour, which is often
called altered fingerprints [48] [49] [50]. This category includes surgeries that alter or replace ridges,
intentional cuts, mutilation by acid, attempts to change fingerprint class, or scorching. If it is not a deep
wound that permanently influences the ridges, there are ultrasonic and e-field technologies that scan
the finger in the deeper (dermis) layer where the fingerprint is undamaged. There are numerous skin
diseases [12], but it is hard to tell how many people are affected by these. There are skin diseases that
can change ridges. In these cases, only the ultrasonic and the e-field technology can reconstruct the
original fingerprint from that user. And if the disease is severe enough to damage the dermis structure
of ridges, there is no way of obtaining the original structure. Skin diseases are explained further in
Chapter 6. Pressure can turn the fingerprint into a big black oval. Only contactless sensors are fully
immune to pressure damage. Optical, ultrasonic, and e-field technologies are also resistant to this type
of damage. The change of pressure, a very big or a very low pressure, is also considered to be part of
the next category: non-cooperative behaviour. All these activities lead to very thick, thin, or blurred
images. The non-cooperative behaviour of the user is typical when the user dislikes biometric
technology or simply tries to find the limits of its functionality. The user usually exerts unexpected
pressure, moves when the device is scanning, or places the finger in the wrong place or with a wrong
rotation. None of these technologies are fully resistant to this type of behaviour. The contact region is
a phenomenon which occurs when the user intentionally or unintentionally presents their finger to a
sensor in such way that only a part of it can be acquired. [1] [9] [10] [15] [16] [17] [44] [48] [49] [50]
[51][52] [53] [A1] [S1]

Another group of factors affecting the fingerprint images are those connected to the sensor. Dirt
on the surface has the same effect as dirt on the finger. The problem is that it affects everyone who
uses that device. Therefore, in the registration phase, it can create a common error for every user and
there is a danger that these users will not be able to be identified after cleaning up the device. Apart
from fingers, there are other things that can pollute sensor area: metallic dust, wooden dust, earth dust,
fine sand, or excrement (in outdoor use). These could be on fingers as well, but they are easily pictured
on the sensor. In addition to ultrasonic and e-field technologies, every swipe sensor is also more
resistant to this type of damage. The latent fingerprint is closely related to the previous topic. In some
way it is a type of dirt on the surface of the sensor. More than damaging a new fingerprint, there is also
a security hazard. These latent fingerprints can be copied or reactivated to breach the biometric device.
The technologies that are resistant to latent fingerprints are the same as those in the previous topic.
Physical damage is an extreme but possible influencing factor of the resulting fingerprint. There is no

20

easy way to prevent the sensor from getting damaged. The damage of the sensor will have different
effects on every technology. In optical technology, for example, a glass crack can be seen in the
fingerprint. Sensor technology itself has a large impact on how the fingerprint looks (there are a lot of
things that could go wrong [54]). For instance, some technologies like ultrasonic or optical tomography
can access an image from a deeper level of skin and the resulting image is then shown without shallow
scars. [1] [9] [10] [15] [16] [17] [44] [51] [52] [53] [A1] [S1]

The last category of influencing factors are those that can be found in the surrounding
environment. Vibration in some degree is not a problem, but when the vibrations have a high amplitude
they can unfasten some internal components, causing the device to break down. Sometimes they can
also slightly change the position of a finger. This movement, as it was described in the user influencing
factors, can blur the fingerprint. The temperature can be different for the sensor, the finger, and the
environment. Typically there are no problems, with the exception of thermal technology. Taking into
account extreme temperatures, it is possible to have very dry or very moist fingers which can affect the
resulting image. It is also known that the ultrasonic technology does not operate properly in extremely
low temperatures. Surrounding light only affects optical and electro-optical technologies because they
have a light-sensing unit. The sensor area is usually small in order to keep the cost of the sensor low.
Therefore, the finger covers it and there is no problem with the surrounding light. However, when the
sensor area is larger, or if the finger of the user is smaller or a smaller finger like a pinkie is used, or if
contactless technology is used then the influence of the surrounding light can be immense. Electro-
magnetic radiation is an influencing factor that affects every technology. The device as a whole can
be influenced by electro-magnetic radiation. Wires inside and outside the sensor connecting it to the
other parts of the biometric system, as well as all electronic components, can be influenced by electro-
magnetic radiation. Some devices will, for example, create a blurred image. [1] [9] [10] [15] [16] [17]
[44] [51] [52] [53] [A1] [S1]

3.3 SFinGe

SFinGe (Synthetic Fingerprint Generator) [55] is an application for synthetic fingerprint generation
implemented at the University of Bologna, Italy. It is currently in its 5.0 version. The fingerprint
database generated from different versions of SFinGe was one of the four databases of the FVC
(Fingerprint Verification Contest) [6]. Each year (2000, 2002, 2004 and 2006), contestants had similar
results in synthetic and real fingerprint databases. This implies that SFinGe has the inter-class and intra-
class variation of synthetic fingerprints very similar to real ones. [1] [45] [55]

The process of fingerprint generation is shown in Figure 3.1. The upper part, i.e. the part that
ends with the generated master fingerprint, is described in Subchapter 3.1. For a more realistic looking
fingerprint, certain damage simulation methods are applied. These are in the lower part of Figure 3.1.
The first step is the selection of the contact region. To simulate the different placements of the finger
on the sensor area a random translation of the ridge pattern is made. This is done without modifying the
global fingerprint’s shape and position. The next step is the variation in ridge thickness. Ridge thickness
is modified to simulate various skin dampness and finger pressure. Wet skin and higher pressure cause
ridges to appear thicker, and in that case an erosion operator is used. Dry skin and lower pressure make

21

these ridges thinner, so in this case a dilatation operator is required. A randomly selected magnitude of
dampness and pressure determines which square box will be used and also which morphological
operator will be implemented. The next phase is fingerprint distortion. In this phase, skin deformation
according to different finger placements over the sensor is simulated. The skin plasticity (compression
or stretching) and a different force is applied to each part of the finger to create a non-linear distortion.
Lagrange interpolation is used for this distortion. The next step is noising and rendering. In this step
many small factors are simulated. Unfortunately, these small factors damage fingerprints the most.
These include irregularities in the ridges, non-uniform pressure of the finger, different contact of ridges
with the sensor, presence of small pores, and other noise. Noise is generated in four substeps. First,
valleys (or white pixels) are saved separately. Second, noise in the form of various types of stains is
added. Third, the whole image is smoothed with 3x3 windows. Finally, valleys saved in the first step
are returned back to the image (to prevent excessive smoothing in the third step). Another phase is
global translation or rotation. This phase simulates an imperfectly placed finger on the sensor, so it
slightly translates and/or rotates the whole image. The last step is the generation of a realistic
background. There is a set of background images and a mathematical method based on the principle of
“KL transform™ [40]. Applying this method to the set of images creates new background images. At the
end of that step, the fingerprint impression is made. For the generation of databases, several impressions
are made from one master fingerprint. [1] [6] [16] [21] [40] [45] [A1]

Shape Class and Average Singularities
parameters singularities density
Fingerprint Directional map Density map
shape model model model

F#ngerprint \ que:echonal Density
shape p map
Ridge pattern Initial
generation «seeds
\ Level
: _ Contact Erosion «
i Master-fingerprint (region J - [Dilation }
= ’Posftfon
== 4
Fingerprint
Background « Translation h Noising & - Skin deforma-
generator rotation rendering tion model

image
Background type dx.dv.@ Noise Deformation
and noise level g probability parameters

Figure 3.1: SFinGe process of fingerprint generation (taken from [40]).

&

-

L

22

4 SyFDaS — Synthetic Fingerprint

Damage Simulator

When designing an application for damaging synthetic fingerprints, it was determined to first create a
simulation of this application using P/T Petri nets. This simulation is called Fingerprint Generation Petri
Net (FGN). After that, the application is described; the primary focus is laid upon the core design and
graphical user interface. In this chapter, the enhancement of the generator is described. The biggest
portion of this chapter is dedicated to touch-based damages. Lastly, database generation options are
discussed.

4.1 Fingerprint Generation Petri Net

Petri nets [56] are specific modelling techniques. They can be defined either by graphs or by a purely
mathematical notation. The graphic notation is usually easily understandable, while the mathematical
one can be used for various analyses and proofs. As the Petri net is a very old technique, it can be better
viewed as a group of various techniques with a similar basis. For the purposes of this article, the P/T
Petri net [56] [57] will be used. Petri nets are primarily used in distributed and discrete systems. [44]
[Al]

The definition of Petri net is a sextuplet N = (P, T, F, W, K, My) where: P, T, F denote places,
transitions, and arcs, respectively, PNT = @, F € (P X T) U (T x P) is a binary relation, P, T, F are
finite, W: F — N\ {0} is the weight of each arc, K: P - N U {w} is the capacity of each place, and
My: P = N U {w} is the initial marking so that Vp € P: My(p) < K(p). Note that w is the supremum of
the set N with these properties: Vn e N:in < w and Vm e NU{w} m+w=w+m=w—m = w.
The graphic representation of the Petri net could look like the one in Figure 4.1. Circles denote places,
full rectangles denote transitions, and arrows denote arcs in their direction. PO, P, and 70 are labels of
each place or transition, numbers above arcs represent weights, and the small dot inside place PO
denotes a token. The equivalent notation of the Petri net in Figure 4.1 is N = ({PO, P1}, {T0}, {(PO, T0),
(TO, P1)}, {W(PO, TO) = 1, W(TO, P1) = 1}, {K(P0O) = w, K(P1) = 0w}, {My(P0) = 1, My(P1) = 0}). [44]
[56] [57] [58] [59] [A1]

PO P1

TO

Figure 4.1: An example of the graphical representation of Petri net.

23

With the structure of the net defined, the only definition missing is that of the transition firing.
This definition can be better described using a preset and a postset. The preset °x is defined as Vx €
(P UT):*x = {y| yFx} and the postset x°*is defined as Vx € (P UT): x* = {y| xFy}. Similarly, for sets
X is the union of °x for each x in X and X is the union of x* for each x in X. Note that the marking M
is defined by the same definition as the initial marking M,. The transition t € T is enabled from the
marking of M when these conditions are met: Vp € ®t: M(p) = W(p,t) and Vp € t®: M(p) <
K(p) — W (t, p). When this transition is fired, one gets the marking of M’, which is defined in this way
(Eq. 4.1) [56] [57] [58] [59]: [44] [A1]

M(p) —W(p,t) ifpe %\ ¢®
ey —) M@ +W(Ep) ifpe t®\ %
vpEePMp)= M) —-W(p,t) +W(t,p) ifpe ®tnt® (Eq. 4.1)
M(p) otherwise

The result of the transition 70 firing from the net shown in Figure 4.1 is demonstrated in Figure 4.2.

PO P
1 1 M

TO
Figure 4.2: An example of the graphical representation of the firing of the transition T0 from Figure
4.1

4.1.1 Design of the Fingerprint Generation Petri Net

The goal of this subchapter is to create a Petri net that will simulate the generation of a synthetic
fingerprint. The Petri net that will be used is defined in Subchapter 4.1 and the fingerprint generation
process is thoroughly described in the previous Chapter 3. Petri nets are often used to simplify complex
distributed systems. This is a similar case — it is important to know that the Petri net only simulates the
fingerprint generation process. It is advantageous to use them as a clear way of showing all of the
possibilities in synthetic fingerprint damage simulation. They can also be used to show specific
scenarios. The scenario can then be recreated in software with all the necessary damage simulations
implemented. These are the main reasons for choosing Petri nets. [44] [A1]

To make Petri net creation clearer, the generation process will be divided into four distinct parts.
The first part is the master fingerprint generation, the second part simulates the state of the environment,
the third part simulates the user and finger condition with the respective fingerprint damage, and the
last part simulates the sensor conditions that affect the fingerprint. [44] [A1]

The process starts with the place Start where the initial token is placed, as can be seen in
Figure 4.3 (images are generated from the PIPE* software which exports raster images). After firing the
Input definition transition, four other transitions are enabled. Class input defines (fires the transition)
Class and then Cores and Deltas are defined. After that, the first token is in the All input data place. To
create the synthetic fingerprint, the Gabor filter transition needs to be used. But that is possible only

4 https://github.com/sarahtattersall/PIPE

24

https://github.com/sarahtattersall/PIPE

when four tokens are in the All input data place. Another three tokens get here by defining Shape,
Density, and Initial Seeds. Then the Gabor filter is fired and the token in Synthetic Fingerprint shows
that the generation of a master fingerprint is complete. [44] [A1]

Fingerprint Generation
Process

Cla

n|:|nut1

Cores & Deltas
Class Specified

Class All input data

Gabor filter

4

Synthetic Fipgerprint

Input Definitions Density Input Density

Seed Input Seed

Figure 4.3: The first part of the proposed Petri net — the fingerprint generation process.

The second part is focused on influence of the environment and is shown in Figure 4.4. The initial
marking is set to each of the environmental phenomena. After the firing, a value representing each
phenomenon should be prepared. After that, all of these values should be saved in the structure
representing all phenomena at once, in the place named All Environmental Effects. [44] [A1]

Influence of the Environment

Vib Eff Vibration Vib Input

Surr Light Input
Surrounding Light

Surr Light Eff

Temper Eff Temperature Temper Input

EMR Eff EMR Input
Electro-Magnetic Radiation

Figure 4.4: The second part of the proposed Petri net — the influence of the environment.

25

The third part of the net simulates the user and finger phenomena and is represented in Figure 4.5.
Transitions in the middle are individual phenomena that are connected to the user or the finger. The
places near the transitions have two purposes. First, they enable or disable this type of damage. Second,
they ensure that each phenomenon will be used only once. Also, notice that the places Synthetic
Fingerprint and All Environmental Effects are the last places of the previous parts. When these previous
parts are done, the process continues after the application of 0 to n damages to the synthetic fingerprint.
When the damage is done, transition User and finger damage done can be fired and token get to
Synthetic fingerprint with user and finger phenomena and effects of the environment place. This
situation can be seen in Figure 4.6. Note that the place Return with the transition Return of Synthetic
Fingerprint and Environmental Effects are returning the damaged synthetic fingerprint and the
information about the environment so that 0 or n damages can be done. [44] [A1]

al Dagnage Finger

Synthetic Fingerpfip

User and Finger Damage Done

Return
Return of Synthetic Fingerprint and Envirenmental Effects

Figure 4.5: The third part of the proposed Petri net — the user and finger phenomena.

26

The last part starts where the previous one ended and it is focused on the sensor condition. As
can be seen in Figure 4.6, there is a similar structure as in the previous part. Using the damaged
fingerprint from the previous steps and the same structure of the environment values, it further damages
the fingerprint image. Individual conditions of the sensor can be switched on or off and are used only
once by the switch places near them. From the Refurn 2 place, the token goes by transition back to All
Environmental Effects and another token representing the generated fingerprint also goes back to its
place. Again, the Sensor Damage Done transition is fired after 0 or n damages and the synthetic
fingerprint generation is complete. One part of this final step is taking the environment into account. In
the rare case when the user, finger, and sensor are all in perfect condition then this step is the only way
for the environment to influence the final synthetic fingerprint. Generally speaking, the environment
influences other damages more often than it has an effect on its own. [44] [A1]

All Environmental Effects

User and Finger Damage Done 1

1 p Dirt on the Sensor

Acquired Damaged Fingerprint 1 5T
- 1 .
; Sensor Condition Latefit Fingerprint
1
4 1
1 1 nsor Technology PDm Sww
Sensor Damage Done 1 .
1
Synthetic Fingerprint with User and Finger Phenomena Effects of the Fnvironment 1
Retyr Physical Damage Sensor

4

Return of Damaged Fingerprint and Enwironmental Effects
Figure 4.6: The fourth part of the proposed Petri net — the sensor condition.

Figure 4.7 shows the whole proposed Petri net. All four parts are connected together and from a
mathematical point of view. The definition of the net is: [44] [A1]
FGN=(P, T, F, W, K, My), where

P = {Start, Class Input, Class Specified, Shape Input, Density Input, Seed Input, All Input data,
Synthetic Fingerprint, PDmg_Sw, P_Sw, ConReg_Sw, Dry_Sw, NoCoop_Sw, Dis_Sw, Dirt_Sw,
Return, All Environmental Effects, Vib Eff, Surr Light Eff, Temper Eff, EMR Eff, Vib Input, Surr Light
Input, Temper Input, EMR Input, Acquired Damaged Fingerprint, Synthetic Fingerprint with User and
Finger Phenomena and Effects of the Environment, Return2, DirtS_Sw, L_Sw, ST_Sw, PdmgS_Sw}.

T = {Input Definitions, Class, Cores & Deltas, Shape, Density, Seed, Gabor filter, User and
Finger Damage Done, Physical Damage Finger, Pressure, Contact Region, Dry or Moist Finger, Non-
cooperative behaviour, Skin disease, Dirt on the finger, Return of Synthetic Fingerprint and
Environmental Effects, Effects Merger, Vibration, Surrounding Light, Temperature, Electro-Magnetic
Radiation, Sensor Damage Done, Return of Damaged Fingerprint and Environmental Effects, Dirt on
the Sensor, Latent Fingerprint, Sensor Technology, Physical Damage Sensor}.

27

PDmp_%

Influence of the Environmen
el Qamags Fingsr

Fingerprint Generation
Process

1 1

User and Finger Phenomens | F sl

Class Input 1

VIDETT \ibration Vib Input
1 1

1
_'___,_[: I sunL;{ lut

—T surLight M Sumounaing Light
1 1

Ditzs AN Input dats

Tempsr EfTemperaturs

Temipsr input

EMATnput
Electro-Magnetic Ramation

User and Finger Damags Done

Sansor Damags Done
Synthetic Fingerprint with Ussr and Fingsr P

1
¥
\‘(7______ .(' -

Rasturn of Damagsd Fingsrprint and Environmantal Effects

Figure 4.7: The whole proposed Fingerprint generation Petri net.

F = {(Start, Input Definitions), (Input Definitions, Class Input), (Input Definitions, Shape Input),
(Input Definitions, Density Input), (Input Definitions, Seed Input), (Class Input, Class), (Shape Input,
Shape), (Density Input, Density), (Seed Input, Seed), (Class, Class Specified), (Shape, All Input data),
(Density, All Input data), (Seed, All Input data), (Class Specified, Cores & Deltas), (Cores & Deltas,
All Input data), (All Input data, Gabor filter), (Gabor filter, Synthetic Fingerprint), (Synthetic
Fingerprint, Physical Damage Finger), (PDmg_Sw, Physical Damage Finger), (Physical Damage
Finger, Return), (Synthetic Fingerprint, Pressure), (P_Sw, Pressure), (Pressure, Return), (Synthetic
Fingerprint, Contact Region), (ConReg_Sw, Contact Region), (Contact Region, Return), (Synthetic
Fingerprint, Dry or Moist Finger), (Dry_Sw, Dry or Moist Finger), (Dry or Moist Finger, Return),
(Synthetic Fingerprint, Non-cooperative behaviour), (NoCoop_Sw, Non-cooperative behaviour), (Non-
cooperative behaviour, Return), (Synthetic Fingerprint, Skin disease), (Dis_Sw, Skin disease), (Skin
disease, Return), (Synthetic Fingerprint, Dirt on the finger), (Dirt_Sw, Dirt on the finger), (Dirt on the
finger, Return), (Return, Return of Synthetic Fingerprint and Environmental Effects), (Return of
Synthetic Fingerprint and Environmental Effects, Synthetic Fingerprint), (Vib Input, Vibration),
(SurrLight Input, Surrounding Light), (Temper Input, Temperature), (EMR Input, Electro-Magnetic
Radiation), (Vibration, Vib Eff), (Surrounding Light, Surr Light Eff), (Temperature, Temper Eff),
(Electro-Magnetic Radiation, EMR Eff), (Vib Eff, Effects Merger), (Surr Light Eff, Effects Merger),
(Temper Eff, Effects Merger), (EMR Eff, Effects Merger), (Effects Merger, All Environmental Effects),
(All Environmental Effects, Physical Damage Finger), (All Environmental Effects, Pressure), (All
Environmental Effects, Contact Region), (All Environmental Effects, Dry or Moist Finger), (All

28

Environmental Effects, Non-cooperative behaviour), (All Environmental Effects, Skin disease), (All
Environmental Effects, Dirt on the finger), (All Environmental Effects, Dirt on the Sensor), (All
Environmental Effects, Latent Fingerprint), (All Environmental Effects, Sensor Technology), (All
Environmental Effects, Physical Damage Sensor), (Return of Synthetic Fingerprint and Environmental
Effects, All Environmental Effects), (Return of Damaged Fingerprint and Environmental Effects, All
Environmental Effects), (Synthetic Fingerprint, User and Finger Damage Done), (User and Finger
Damage Done, Synthetic Fingerprint with User and Finger Phenomena and Effects of the
Environment), (Synthetic Fingerprint with User and Finger Phenomena and Effects of the Environment,
Dirt on the Sensor), (DirtS_Sw, Dirt on the Sensor), (Dirt on the Sensor, Return2), (Synthetic
Fingerprint with User and Finger Phenomena and Effects of the Environment, Latent Fingerprint),
(L_Sw, Latent Fingerprint), (Latent Fingerprint, Return2), (Synthetic Fingerprint with User and Finger
Phenomena and Effects of the Environment, Sensor Technology), (ST_Sw, Sensor Technology),
(Sensor Technology, Return2), (Synthetic Fingerprint with User and Finger Phenomena and Effects of
the Environment, Physical Damage Sensor), (PDmgS_Sw, Physical Damage Sensor), (Physical
Damage Sensor, Return2), (Return2, Return of Damaged Fingerprint and Environmental Effects),
(Return of Damaged Fingerprint and Environmental Effect, Synthetic Fingerprint with User and Finger
Phenomena and Effects of the Environment), (Synthetic Fingerprint with User and Finger Phenomena
and Effects of the Environment, Sensor Damage Done), (All Environmental Effects, Sensor Damage
Done), (Sensor Damage Done, Acquired Damaged Fingerprint) }.

W=vte T\ {(All Input data, Gabor filter)}: W(t) = 1, W{(All Input data, Gabor filter)} =4.

K=Vp € P:P(p) = w.

My=vp € P:My(p") =1,vp" € PNP:My(p") = 0, where

P’ = {Start, Vib Input, Surr Light Input, EMR Input, PDmg_Sw, P_Sw, ConReg_Sw, Dry_Sw,
NoCoop_Sw, Dis_Sw, Dirt_Sw, DirtS_Sw, L._Sw, ST_Sw, PDmgS_Sw}.

4.1.2 Examples of the Initial Marking for Various Conditions

The proposed FGN covers fingerprint generation and all possible phenomena that can influence the
fingerprint image acquired by a real sensor. The real sensor here is supposed to be understood as a
general sensor. In a real case scenario with a specific sensor technology and a specific use, the use of
the FGN could be reduced. The used technology could be resistant to some phenomena or the user could
be experienced and trained in creating almost perfect fingerprint images. For these simulations of real
case scenarios, the net can either be reduced or the initial marking can be changed to reflect the real
situation. [44] [A1]

Some of these real case scenarios will now be described with a changed initial marking to cover
that situation.

Example 1: The user is healthy, working in the office, and the fingerprint image was acquired
with a touchless optical sensor. The skin diseases part is not needed, there is probably no dirt on the
finger, or physical fingerprint damage. The use of touchless technology will prevent any latent
fingerprints and pressure is impossible to apply. This scenario could be simulated by the net
FGNsc1 = (P, T, F, W, K, Myscr), where P, T, F, W, K have the same definitions as in the first definition
of the FGN and Mosc: =Vpscy € Psci:Mosc1(Psc1) = 1, Vpsci’ € P N Pscy: Mosc1(Pscr’) = 0, where

29

Pgscr = {Start, Vib Input, Surr Light Input, EMR Input, ConReg_Sw, Dry_Sw, NoCoop_Sw, DirtS_Sw,
ST_Sw, PDmgS_Sw}. [44] [A1]

Example 2: The user is trying a brand new swipe capacitive technology sensor. This capacitive
technology is not influenced by surrounding light and the usage of the swipe technology greatly reduces
the risk of dirt on the sensor or a possible latent fingerprint. In addition, a brand new sensor is used,
therefore it will not likely be physically damaged. The definition of FGNsc, = (P, T, F, W, K, Moscz) is
very similar to the previous cases (Mosc> is identical to Mosc; when psci, Psci, Mosci, psci’ are renamed
respectively, to psc2, Psc2, Moscz, psc2’) and Pscz = {Start, Vib Input, Surr Light Input, EMR Input,
PDmg_Sw, P_Sw, ConReg_Sw, Dry_Sw, NoCoop_Sw, Dis_Sw, Dirt_Sw, ST_Sw}. In this case it is
important to note that although the surrounding light has no impact, the token in the Surr Light Input
place remains there. [44] [A1]

Example 3: A skilled user is using the ultrasonic-capacitive swipe technology. The user’s finger
is without deep scars or heavy disease. In addition to the swipe technology, which is very resistant to
dirt on the sensor and latent fingerprints, the ultrasonic technology ignores any damage or disease on
the surface of the finger. A skilled user should achieve an exceptional contact region and some parts of
non-cooperative behaviour should not be present. FGNscs = (P, T, F, W, K, Mosc3) with Pscz = {Start,
Vib Input, Surr Light Input, EMR Input, Dry_Sw, NoCoop_Sw, Dirt_Sw, ST_Sw, PDmgS_Sw}. [44]
[Al]

4.2 SyFDaS Core Design and Graphical User Interface

Following the simulation in Subchapter 4.1, the application can be divided into two parts. The first part
creates the synthetic fingerprint, and the second part takes care of all damage simulations. For the
purpose of fingerprint generation, the base generator (Chaloupka's fingerprint generator) from [11] is
used. This generator is using minutiae as an input (as covered in Subchapter 3.1). This generator is
further enhanced as is described in Subchapter 4.3. The final graphical user interface (GUI) can be seen
in Figure 4.8. By setting the filter, orientation (with fingerprint class), mask, and density in their
respective parts of the GUIL the generation is prepared. The most important step is to define some
minutiae. After that, generation of the fingerprint can begin. There is, of course, the possibility to save
and load minutiae (or the whole fingerprint image).

Consequently, all possible damage simulations must be held in one clean interface. To do that, it
is essential to use the modular approach on this interface. The information about a sensor, a type of
sensor, damage and all the controls related to it has to be easily accessible. There is also a possibility
that more damage simulations or sensors will be added to this application, so the interface has to be
prepared for it. Other ancillary operations are part of the solution as well. These are the loading of a
prearranged synthetic fingerprint image, saving the current image, the possibility to quickly save and
load an image, and to undo/redo. Undo/redo is very useful because there are usually a lot of experiments
with fingerprint damages and sometimes experiments can go wrong. [1]

30

SyFDaS = X
File Options Help
Fiter Settings
Densty detta: |1.0 | Lambda (wavelength): |50
- Gamma (aspect ratio): (25 |
[] Calculate Fiters : !2 0

l Recalculate Fiters

["] Show Orientation Fingerprint Resolution:
320x440
Minutia Power: 0 J
: [“] Show Progress
: . Whor v
Fingerprint class: Of Calculate . Moot
Mask Settings
[[] Edit Fingerprint Mask Minutiae Settings
Apply Fingerprint Mask Reset Mask Edit Minutiae
Minutia Type:
Denstty Settings Q () bifurcation
Edit Density (®) ridge ending

] Alpha Blending:
Size: Type: Angle: Minutiae:

Reset Density Next Save

Figure 4.8: Screenshot of SyFDaS — generation part.

The starting point is the generation window. There is not much space for extensions, so the
fingerprint damage simulation window is in a new section. This part can theoretically contain all
influential factors and it is implemented as a new window as a next step to the generation. To
summarize, before the damage simulation can start, information about the sensor technology
(Subchapter 2.3), sensor type (touch, swipe, contactless), and damage (which is simulated) are needed.
As it was previously said, the number of damages is theoretically overwhelming, so it will be better to
divide them as it was in Subchapter 3.2. So the first part of the application deals with the sensor, the
second with the damage, and the third part is reserved for the options and input values of individual
damage simulations. The next part (on the right) is the fingerprint image that is carried on from the
generating window. The last section is between controls and fingerprint imaging, and that is the main
control part. There are options for applying the damage, cycle through input values if needed, etc. The
final form of the window can be seen in Figure 4.9. [1]

Modularity is achieved by several abstract classes joined with the main GUI. If there is no need
to change the GUIL then it is only necessary to create a newly derived class to get new behaviour. For
example, the proper settings of the compulsory parts of the abstract class ensures that all available
sensors and damage simulations are filled to the GUI. They are also enabled and disabled as needed.
Two main abstract classes are Sensor Type (that encapsulates information about sensor, mainly name,
type and order of damage simulations) and Damage Type (that contains all about damages, mainly
implementation of the damage and connection to the input part of GUI). As for the other functionalities,
the supported formats for saving and loading are bmp, png, tif, gif, and jpg. Basic batch processing is
also implemented (more information in Subchapter 4.5).

31

SyFDas

File oOptions Help
Sensor Type

General Swipe Sensor ~ (® Sweep
Damage Type

(®) Sensor Effects (O User Effects
Namow Sensor ~ v
Controls 1/40 Main Controls

Smooth region width
' [[] Random « »

Opx 32px [Preview

Namow cut in %

' EI Copy Further

Namow Wider

Central width of namowing

160 =

Pravious Next Save =y

Figure 4.9: Screenshot of SyFDaS — simulation part.

4.3 Enhancement of Fingerprint Generation

The original version of the SyFDaS generator was using only defined minutiae for determining the
orientation field. Unfortunately, it was hard to create realistic looking fingerprints because of that. Too
often the orientation field was not from one of the fingerprint classes, which had a great impact on the
look of the generated image. It was decided to add the desired fingerprint class as one of the inputs for
the generator. The methodology of generation had to be preserved — the main inputs should be defined
as minutiae. The original algorithm started with an orientation field at 0° in point of the field, after that
it was changed based on the given minutiae. The new version changes this part of the algorithm. If a
fingerprint class is given an orientation field, it is first processed by the field generation for that
particular class. This initialization defines cores and deltas somewhere in the image. That is done by
several random generation functions with the presumption that middle of the fingerprint should be in
the centre of generated image. The power of minutiae is also taken into account. This power determines
how much each minutia should influence this initialized orientation field. If the power is 0, the defined
orientation of the minutia is basically irrelevant and it is given new according to the orientation field.
Otherwise, following the formula (Eq. 4.2) for the determination of the orientation of the given point
(and its surroundings) is used:

32

angledif f

1 Eq. 4.2
max (1’ dlstance) (Eq. 4.2)
power

orientation(i, j) = orientation(i, j) —

Where power is user defined as the power of minutiae, distance is the distance of the point (i, j)
from the minutia, and anglediff is the difference of current angle from the orientation field and the
defined orientation of minutia. With this extension, fingerprints generated by SyFDaS are much more
realistic looking. Paradoxically, the user gets the feeling that the process of generation is more
influenced by input settings. It is “casier” to make a desired change in the generated fingerprints.

4.4 Touch-based Sensor Damage Simulation

The application has some of the damage simulations implemented. All of them are implemented for a
hypothetical general sensor. In reality, they are close to a capacitive or optical touch sensor. In the
subchapters below, each of the completed damage simulations will be discussed. Some of these are
taken into account in Chapter 5 when designing complicated damage simulations.

4.4.1 Damaged Sensor

There are databases (specifically with optical sensors) where this type of damage is clearly shown. It is
a thin black line usually connected to the edge of the acquired fingerprint. This line corresponds with
the crack on the protective glass. In extreme cases there could be a web of broken glass instead of one
crack. Some types of dirt on the sensor look like this crack. For example, an eyelash of straight hair
leaves the same trace on the acquired fingerprint. This phenomenon was also listed in Subchapter 3.2.
[1]

It is simulated by simply drawing a line in the desired area on the fingerprint. It is necessary to
find the right thickness of the line to properly simulate the crack or hair on the sensor. This method is
required to be fully determined by a starting point (Xsar, Ysar), @ direction, a length, and a thickness.
The end point of the line is determined by Eq. 4.3. [1]

Xena = Sin(angle) - length

Eq. 4.3
Vena = cos(angle) - length (Eq. 4.3)
Length is defined relatively to the image width by Eq. 4.4.
ImageWidth length ive " 2
lengthapsopre = 971N (1 4 NG relative) (Eq. 4.4)
10 10
4.4.2 Pressure and Moisture

When it comes to applying intentional damage to the fingerprint, too much pressure is the first thing
that comes to mind. Similarly, as in the simulation of a damaged sensor, moisture influences the final

33

image in the same way as pressure. Both dampness and pressure increase the thickness and the contrast
of the ridges. The more pressure the user applies or the damper their finger is, the thicker the lines are.
In extreme cases almost no lines are visible on the fingerprint, because the fingerprint is either entirely
black or white. This factor was also mentioned in Subchapter 3.2. [1]

Morphological operations of erosion and dilation [60] will be used to simulate these effects.
These operators are commonly used in image processing, for example to increase readability of the text
or thinning the lines as in the same part of the fingerprint recognition process (Subchapter 2.4). They
are defined and used only on binary-coloured or greyscale images. Applying pressure does the same
thing as morphological operators, which enlarge or shrink ridges. Morphological operators only need a
structure element to determine their magnitude. The structural elements used can be seen on
Figure 4.10. When creating dilatation, structural elements are used to thin the ridges. On the other hand,
when creating erosion the same structural elements are used to thicken up the ridges. The exact formulas
(presuming that image is defined by Eq. 4.5) are Eq. 4.6 for erosion and Eq. 4.7 for dilatation. [1]

a) b) c) d e)

Figure 4.10: A demonstration of all structure elements used [1].

f (x,¥) = intensity (Eq. 4.5)

The image in point x, y is defined by its colour intensity. In this case, only greyscale images are
used so only one intensity is defined. S in following formulas is an input — structure element.

erosion (x,y) = v(1r11171)n€ S(x +u,y+v) (Eq. 4.6)
dilatation (x,y) = v(um%)(e S(x +u,y+v) (Eq. 4.7)

The structure element consists of pixels in the neighbourhood of the investigated pixel x, y. In
this application it should be evenly distributed around the one being investigated. After defining the
smallest structure element that is evenly distributed (which can be seen in Figure 4.10c) it turns out that
it has too great of an impact on the fingerprint image. Because of that it was necessary to include the
structure element in Figure 4.10b despite the fact that its damage to the fingerprint is inaccurate. [1]

4.4.3 Fingerprint Distortion

Fingerprint distortion is typically done unintentionally. This type of damage is so common that it is
almost impossible to make a fingerprint image without it. It is created due to skin deformation and the
non-orthogonal finger pressure to the sensor. In fact, every little finger movement when touching the
sensor glass creates this distortion. The skin is very elastic, and with the exception of extreme cases,

34

users do not even feel it. To make a non-distorted image the major focus would have to be on not
moving the finger and on applying the pressure exactly orthogonally. Even this might not be enough,
because two-dimensional images are created out of a three-dimensional finger, so the skin is stretching
and compressing and thus creating distortion. Fingerprint distortion is one of the few damages that can
change the position of the minutia and even change the distance among the minutiae themselves. This
is a problem for fingerprint recognition algorithms that use the minutiae position as one of their main
recognition elements. Despite that fact, distortion is almost invisible to an untrained eye. Specialized
images with marked minutiae or using a square grid are necessary. In Subchapter 3.2 the non-
cooperative behaviour of the user is described. If the user is forced to give his/her fingerprints or wants
to inconspicuously damage the fingerprint by small movements and changes of pressure, that can lead
to distortion. [1]

The same distortion model as in SFinGe will be used to simulate this distortion. In [61] a model
was designed and also verified. The model divides the fingerprint into three areas (as can be seen in
Figure 4.11). The internal area (shown by the red colour) where the finger is pushed so hard that the
skin cannot be deformed. The second is the external area (shown by the yellow colour) where the
pressure is so low that the skin is maximally distorted. And the third area is the transition area (shown
by the orange colour), which combines the two previous areas. The greater the intensity of the orange
colour is shown, the lower distortion is applied. Each image in Figure 4.11 shows that a different level
of skin plasticity has been set. After this, the angle and the translation in each axis are needed to fully
determine and apply the distortion. Because it can be made worse by intentionally trying to achieve this
type of damage, the range of input values was increased to cover these cases. For input, models need 3
values: a skin plasticity coefficient, translation in x and y, and a rotation angle. [1]

_—— _—
N %

\\\\.
=
o d

=
i
=

~

Figure 4.11: Various fingerprint distortion areas [1].

The mathematical background for this damage is provided. For easy recognition, the rotation
angle will be labelled as € and the translation value as dx and dy. For the definition of all areas, skin
plasticity (labelled as sp) and ellipse defined by the centre of ellipse (ellip. and ellip,) and semi-axes
(semiy and semi,) are used. More information can be found in the following paragraphs. The method,
or more precisely the distortion model, is defined by these basic formulas [61]: [1]

35

distortion: R2 - R2, coef: RxR - R, 4:R2 > R?, dist:R2->R

. : . (Eq. 4.8)
distortion(v) = v + A(v) - coef (dist(v), sp)
) 1 dist(v)m
coef (dist(v), sp) = 5 [1 — cos (T>] (Eq. 4.9)

A(W) = [Ry(v — ellip) + ellip + d] — v,

a=[o) ro=[Zy ol cwe=lum) T

semi? 0
| g 411

. _ —ellio) A1 (v — ellin) — =
dist(v) = /(v —ellip)T AT (v—ellip) —1, A [0 semiy

Special cases: AreaA:coef = 0, dist = 0 AreaC:coef =1

As indicated, the model is not changing the intensity of the pixels, butitis changing their position.

. vx . . 7 vx,

So each pixel v = [v] is transformed to new coordinates v' = v
Y y

At first the ellipse usage is explained. The model is calculating the distortion of a finger when creating
two-dimensional images. As can be seen, the elevated part of the fingertips is more or less elliptical.

] following the formula Eq. 4.8.

That part is determining the individual areas which the model uses to create distortion. The shape was
generalized to ellipse with the centre of the image and semi-axes values semi, = 60 and semi, = 100.
These values were determined experimentally because there is no information about fingerprint images
and there is no better way of determining them in this state. All other input values are taken from the
user. [1]

In the next paragraphs, all formulas (Eq. 4.8, Eq. 4.9, Eq. 4.10, and Eq. 4.11) are explained.
Although the mathematical formulas listed above are very comprehensible for humans, they are not
comprehensible for a computer. Matrix and vector operations are usually very slow and have limited
power. For these reasons most of the formulas were modified and their modified versions are shown
below. Area A corresponds with the internal area (red area in Figure 4.11) and it is represented by a
defined ellipse (including boundaries). Area B corresponds with the transition area (orange area in
Figure 4.11) and it is represented by points around the ellipse that are in a certain distance, i.e. a distance
which must be lower or equal to skin plasticity. Finally, area C is the external area (yellow area in
Figure 4.11) and it is represented by other pixels. [1]

Formula Eq. 4.11 determines the distance of the current pixel from the nearest point of the
ellipse (area A). The Mahalanobis distance decreased by one is used (as it was in [61]). In the method
dist the Eq. 4.11 is adjusted to (Eq. 4.12): [1]

.2 0
[semlx ,| (v —ellip) — 1

0 semiy,

1
dist(v) = \/(v —ellip)” ——

semiy - semiy,

36

semiy? 0
. — _ . T X _ . _
dist(v) \/(v ellip) [0 semi;z (v—ellip) — 1
— ellip,) - 72
dist(v) = (e e _lpx) sem%,iz (v —ellip) -1
(vy - elllpy) * semi,,

dist(v) = \/[(vx — ellip,)?- semiz? + (vy — ellipy)2 . semi;z] -1 (Eq. 4.12)

Formula Eq. 4.9 basically specifies where the point is (in area B) between area A and C. The
coefficient effect can be seen in Figure 4.11 where it is used to define the intensity of the orange colour
representing area B. The formula itself remains as is. [1]

Formula Eq. 4.10 is representing the effect of rotation and translation. It shifts the image so that
it has the centre of rotation (centre of ellipse) in the coordinates (0, 0)T. Then it uses the Ry matrix to
rotate and shift the image back to the original coordinates. After that it does translation by adding the
respective value and subtracts the original value of the pixel to create a differential value. The adjusted
formula in its final form is below (Eq. 4.13). [1]

A(vy) = [(vx —ellip,) - cos(8) + (vy - ellipy) . sin(@)] +ellip, +dx — v,

.41
A(vy) = [(vx —ellip,) - (—sin(6)) + (vy - ellipy) . cos(@)] + ellip, +dy —v, (F.-4.13)

Formula Eq. 4.8 puts all things together. The difference is modified by a coefficient and added
to the original value. If v is in area A, it stays as it was. If v is in area C, it is maximally translated and
rotated because the coef'is 1. If v is in area B, it is translated and rotated to some degree depending on
the accurate location. [1]

When real fingers stretch or compress, the sensor acquires a distorted image, but even when a
perfect non-distorted image is acquired, there is a limited number of points. In spots where the finger is
stretching, it is not certain that the model will have points to distort. To fill in these places, interpolation
is required. In order to calculate the interpolation, the original (undistorted) coordinates of the points
are also required. This means that the calculation of the inversion model must be done. This is
complicated because this model cannot be analytically inverted. To determine its inverted value a
numerical method is required. For this model the Newton-Raphson method [62] [63], which can
numerically compute the inversion of multiple variable functions, was used. Its variant for two variables
can be written as [62] [63]: [1]

06,0 0,

i 1 - i 3] F]
[;('1:] B [;(’1] - o [Egg] wherex = E{’l] J= 0 fz?X) 0 fzzx) (Eq. 4.14)
d X dy

37

Now it is necessary to prepare the formula Eq. 4.8 which represents the model to use in the
formula Eq. 4.14. As can be seen, two functions are needed. They are done by adjusting the formula

Eq. 4.8 to not use vectors: [1]

distort, (v) = v, + A(v,) - coef (dist(v), sp)

Eq. 4.1
distort, (v) = vy, + A(vy) - coef (dist(v), sp) (Eg. 4.15)
After that the formulas from Eq. 4.15 are inserted into the formula Eq. 4.14:
[Vx(i+1)] _ [Ux(i)] _ gt [distortx(v)]
Uya+nl |Vy@) distort,, (v)
d distort, (v) 0 distort, (v)
5 = 5 = (Eq. 4.16)
where v = [vx(i)]] = o Y
Vywml’ d distort, (v) 0 distort, (v)
d v, d vy

A further modification will be divided by area where current x is located. When x is in area A
there is no distortion, so points are the same as in the original picture and no interpolation nor distortion
is needed to be calculated. If x is in area C, it means that the coefficient is equal to one and the Jacobian

matrix Jc for area C will be (Eq. 4.17): [1]

dv, 0A4(v,) 0dv, 0A4A(v,)
0 v, 0 v, vy vy

Je= 0 vy 0 A(vy) 0 vy 9 A(Uy) (Eq. 4.17)
avx+ d v, avy+ avy
’ ss,vx) = [((vx —ellipy) - cos(8)) + (0—0)-0] + 0+ 0 —1 = cos(8) — 1
- sij) =[(0—0)- 0+ ((vy — ellipy) -sin(6))'] +0+0—0=sin(6)
9 A(v)y (Eq. 4.18)
2 — (v~ ellipy) - (~sin(@)))' + (0= 0)-0] +0+0 — 0 = —sin()
d s:;ly) =[(0-0)-(-0) + ((vy —ellipy) - cos(0))'] +0+0—1 = cos(9) — 1
_[1+cos(@)—1 0+sin(6)
Je= [0 — sin(8) 1+ cos(0) — 1]
__[cos(8) sin(0)
Je = [—sin(@) cos(G)] (Eq. 4.19)

Now the formula Eq. 4.19 can be inserted into Eq. 4.16 and deduce the final recurrent formula

for the area C.

38

x(i+ x(i 1 (6) —sin(0) distort, (v)
[ZyEHi;] - [Zyil;] B (cosz(e) + sin2(0) . [Z(i)r?(e) ccs)lsrze)]) ' [d;:tgity(z)]

x(i+ x(i —Ssi di x()
[ogien] = [onco) = [sne) cont@)) atorts o)

Vy(i) — (cos(@) - distort, (v) — sin(0) - distort,, (v))
- (Eq. 4.20)

[Ux(i+1)]
Vy(i) — (sin(@) - distorty (v) + cos(6) - distorty(v))

Vy(i+1)

The formula Eq. 4.20 can, after some iterations, come up with the inverted value for the pixel
(0, 0)" in area C for any input values. The next step that is needed is to generalize that formula to invert
any pixel in area C. Fortunately, that can be easily done by shifting the Eq. 4.20 by the value of the
pixel, which is inverted and marked as (vxo, vy0). The final formula for the numerical inverting of any
pixel of any input value in area C is: [1]

0 (cos(@) - (distort, (v) — vy o) — sin(6) - (distort, (v) — v, 0))

Ux(i+1)
[] B [Vy(i) - (sin(@) - (distort, (v) — vy o) + cos(6) - (distort,, (v) — v, 0))

Poes (Eq. 4.21)

If x is in area B, then the evaluation of the Jacobian matrix gets rather complicated. Thus, for the
inversion of all values in image it is needed to determine the Jz — Jacobian matrix for area B. [1]

0 vy N 0[A(vy) - coef (dist(v),sp)] 0 vy N olA(vy) - coef (dist(v), sp)]

d v, d v, d vy d vy
T8 =150, o[a(wv,)- coef (dist dv, 0[A(vy) - coef (dist (Fq.4.22)
vy N [(vy) - coef (dist(v), sp)] vy N [(vy) - coef (dist(v), sp)]
0 v, 0 v, d vy vy

To ensure a higher readability, each element of the matrix Jg (Eq. 4.22) is discussed separately.

Jp = [jbl ibz]

Their labels are:

Jbs Jba
dA4(v d coef (dist(v),s
jpr =1+ W) coef (dist(v),sp) + A(vy) f(dist(v), sp)
0 vy 30,
dA4(v d coef (dist(v),s
jp2 =0+ aij) - coef (dist(v),sp) + A(vy) f(av (), sp)
" y
jb3 = 30 coef (dist(v), sp) (vy) T
dA(v d coef (dist(v),s
jba =1+ (y) . coef(dist(v), sp) + A(Uy) f(() P)
d vy v,

As can be seen, to evaluate these elements it is needed to find out partial derivatives of the
function 4 from the formula Eq. 4.18 and partial derivatives of the function coef. [1]

39

d coef (dist(v),sp) 1 [(dist(v) -n)]' 1 [, (dist(v) -n) (dist(v) -n)']
=—[1—-cos|————]| ==[—cos . =
0 vy 2 sp sp sp

1| [dist(v) m (dist(v) -m)' - sp ' 1 (dist(v) - dist(v)' - m-sp (Eq.
s () () el (55) (5552 58

From the last result (Eq. 4.24) it can be seen that the derivation of coefficient is the same for Ox

and Oy and it is:

d coef (dist(v), sp) _ d coef (dist(v), sp) _ l[sin (dist(v) -11) _ (dist(v)' . n)] (Eq. 4.25)
0 v, vy 2 sp sp

But it is still needed to compute the derivation of the function dist.

14!
2

0 dist(v) _ ((vx — ellip,)? . (vy — ellipy)2>

2 2
0 v, semix semiy,

1 1 ((vx — ellip,)® | (v — ellipy)2>’
) 2 2 =
2 (v, — ellip,)? N (vy — ellipy)? semiy semiy,
semi’Z semi;
1 1 [(v, — ellip,)?] - semi?
= — ” —
? e = ellip)? | vy — ellip,)? semiy (Eq. 4.26)
semi? semis;
1 2(v — ellipy)
_ 2 semi?Z B (ve — ellipy)
: - . Eq. 4.27
J(vx — ellip,)? (vy — ellip))? ., J(vx — ellip,)® (vy — ellip,)” (Ba-4.27)
i)) x]]
semi? semi;; semi? semi;

The only difference in computing partial derivatives of function dist with respect to vy is in the
last step in the formula, Eq. 4.26. Without inferring again, here is the result:

ddist(v) (vy — ellipy)

a B . .
> semi2 (v, — ellip,)? + (vy — ellip,)? (Eq. 4.28)

g semiz semiZ

40

Now it is possible to complete the formula Eq. 4.25 for partial derivatives by the substitution of
the results in the formula Eq. 4.27 and Eq. 4.28. [1]

(v, — ellipy)
Zj(vx — ellip,)? + (vy — ellip))?

semi - -
x semi? semis;

0 coef (dist(v),sp) 1

in (dist(v) . n) _

0 vy sp

Sp

n (M) (v, — ellipy) -

0 coef (dist(v),sp) sp
v B : . Eq. 4.29
x 2-sp-semiz . | ellip)? | (vy = ellip,)’ (Eq. 4.29)
x semi? semi;
dist(v) - .
d coef (dist(v),sp) _ 1n(sp) “(vy — ellipy)-m
dv B : . (Eq. 4.30)
Y 2-sp-semi2- | ellip,)? | (v, — ellip))? q
Y semi? semis;

Partial derivatives of the function coef and A in formulas Eq. 4.29, Eq. 4.30, Eq. 4.18 can now
be substituted to the formula Eq. 4.23 of elements of the Jacobian matrix for area B Jp. In the result
there are no ways to reduce the complexity, so for the sake of readability the final formula stays in the
format without substitution and uses labelling from the Eq. 4.23. The Jacobian matrix J (in the formula
Eq. 4.16) is used to get the recurrent formula (Eq. 4.31): [1]

[Ux(i+1)] _ [Ux(i)] _ 1) b]4 _b]2) [dlstortx(v)] (E 4 31)
Vya+nl T Wy @ bj;bjs —bjpbjs [~bjs by distort, (v) 4
As with the formula Eq. 4.21, for this formula to work properly on any input pixels adding

shifting parameters is required, (vxo, vy0)" which denotes coordinates from which the calculation of the
inverse formula starts. [1]

(b]-4 (distorty(v) — vy) bjp(distorty(v) — vy 0))
Ux(i) — -

[”x(iﬂ)] _ bj1bjs — bj2bj3 bj1bjs — bjzbj (o 4.3
Vy(i+1) —bis(distort, (v) — v) bi;(distorty (v) — vy ¢ 4
v — [L y y
= bjibjs — bjabjs bj;bjs — bjzbjs

The formula Eq. 4.32 with the substituted function A from the formula Eq. 4.23 corresponds with
the method used in the implementation. Each numerical method must have an ending condition. In this
case if the following condition (Eq. 4.33) is satisfied, it ends the iterations. [1]

41

Uyirn) — Vxi| < 107% A [vygag) — vy <107% (Eq. 4.33)

As it experimentally shows up, although that method should be by [63] convergent, it sometimes
cycles between some solutions. To prevent this behaviour, after 100 iterations it does 10 more and uses
the best solution thus far (the best is the one with the smallest cumulative error when computing the
inverted value back using the original model). All these fixed values can be changed. [1]

After this, it is finally possible to use the interpolation to approximate the value that should be in
this point. For this purpose, bilinear interpolation is used. The basic formula for this interpolation of
point (vy, vy) (vy, vy can be in this case real numbers) is (Eq. 4.34) [64]: [1]

intensity(vx, vy) =1 -t)1 —wi; +t(1 —wi, + tuiz + (1 — hui,
i = intenSitY(xlow' ylow)
i, = intensity (x;ow + 1, Viow) (Eq. 4.34)
i; = intensity (x50 + 1, Viow + 1)

14 = intenSitY(xlow; Yiow + 1)

Where x;, and yio, are integer parts of numbers v, and v,, respectively. Because pixels of the
original image are creating a uniform square grid it can be used as a simplified definition of values ¢
and u. Values ¢t and u are fractional parts of the numbers v, and v,. After the interpolation of all marked
points, the distortion is done. As it is known from the previous paragraphs, the pixel coordinates are
integers, but the model returns real numbers. To achieve a more precise distortion it is better to use the
interpolation to all points of the image (with the exception of that in area A). However, the computing
of inverted values and interpolation takes time, so this fully interpolated variant is slower than the
applied model, which interpolates only the required points. [1]

4.5 Database Generation

In addition to a single image processing it is often required to have a possibility to create a database (or
a batch) from several images. Massive processing is one of the biggest advantages of synthetic
fingerprints. The preparation of damage could be time-consuming (especially for swipe sensors)
because there has to be a way to save the damage. For saving, the .xml format was chosen. All input
data (sensor information, damage information, etc.) is saved, the only exception is the image itself.
After all, that path to the folder with images has to be defined that way it would be possible to damage
each image once. Often it is interesting to combine damages. For this, there is the full combination
setting. This means that all damages will be combined to all damages. If one image is taken then all one
damage combinations are done to it, all two damages combinations, etc. Let num denote the number of
damaged images generated from one source image, d the number of damages, and FC the full
combination setting.

42

d

nUMpe = Z (d) (Eq. 4.35)

4 l
i=1

That is correct, but a rather complicated formula. Because it is a combination of all damages
presented by all numbers of them, it is similar to a powerset. Here is a much clearer formula:

numpe = 2% (Eq. 4.36)

The only small difference between Eq. 4.35 and Eq. 4.36 is that the latter also counts no damage
at all (original image) as one of the variants. Now there is a difficult decision. If the full combinations
of given damages are done then it could be problematic if the same type of damage cannot be applied
to the same image, i.e., it makes no sense that the image would be distorted in two different ways at the
same time. That is the reason for the restricted combination setting. This setting allows only one of
each damage type in each combination. That way all damage combinations can happen without the
cases when there would be, for example, two distortions in one image. In this case the number (num)
of images generated by the number of damages from a particular damage type (d) from one image is a
bit lower. Let ¢ denote number of damage types and RC as the restricted combination setting.

i<t
nUMge = H(di + 1) (Eq. 4.37)
i=0

The +1 in the formula is to include no damage as an additional damage in all damage types.
Similarly to Eq. 4.36, this also counts with no damage at all as one of the variants. When discussing
possible damage combinations, fingerprint sensors could be damaged in two places at once. In that case
the image should be damaged by two damages of the same type. Without explicit semantics of the
combinations of all damage types, there is no general solution to this problem. Because of that, the last
level of combinations was introduced — it is no combination. Using this, all damages that are loaded
will be made in that order to all images. This is a possibility for some really specific combination to be
done to an image database. In this setting all images only have one damage impression. In Figure 4.12,
the batch input GUI could be seen.

The first damage in the list of all damages to use is very important, because it sets the order of
damages. This order is defined for each sensor and it could be a little different for each sensor. It could
also happen that some damages are not even listed in some sensors. If damage is not listed, then it is
used as a special damage type rest (no matter what its real damage type is). Structures for batch
generation are prepared in the defined order. After that, all combinations are generated by recursion.

43

Batch

" Damage Mame Damage Type Path
1 PM_slowhigh_to_low Pressure & Moisture C:\PM_slowhigh_to_low xml

L4 >
Load Damage
Order of damages is taken from the sensor order of first loaded damage.
Combinatorial level Each image will produce
(® Full - every damage combination 1image
(O) Restricted - every damage type combination 1image
{7 Mone - only listed combination used 1image

Folder with Images

| Image Folder

Cancel Start Batch

Figure 4.12: Examples of real fingerprints from swipe sensor.

44

S Swipe Sensor Damage Simulation

This chapter is focused on altering existing synthetic fingerprints in the master fingerprint phase to a
synthetic fingerprint that will look like a real fingerprint created by a swipe fingerprint sensor. At the
moment, there is no conclusive research on sensor specific variations of synthetic fingerprints. The only
efforts made in this area were some projects that tried to create a sensor specific background. A
description of swipe sensors could be found in Subchapter 2.3. The primary point is that the image
acquired by swipe sensors is a combination of several smaller images. These smaller images are from
different parts of the finger which is doing a swipe motion over the sensor unit. The reconstruction
algorithm [23] [24] [25] [26] [27] [28] [65] then merges these images into one final image.

5.1 Damage Analysis

The complexity of fingerprint acquirement using a swipe sensor is reflected in determining the new
influential factors for this type of sensor, and a skilled and trained user is capable of creating high-
quality results with it. That is because a reconstruction algorithm, which is merging individual acquired
images, can repair some damages done by the user. On the other hand, unskilled users can in the same
way create more damages because of bad cooperation between them and the algorithm. When observing
skilled and basic users using a swipe sensor, it was found that it is possible to simulate a swipe sensor
similar to the touch sensors. The main difference is that each factor can appear in each small image,
which are later merged to the final acquired image. That means that pressure can be very high in the
first few images and very low in the last one. The reason behind this type of behaviour is that the user
was applying high pressure at the start of a swipe and in the end, he stops applying pressure because
he thought that the sensor is not collecting data. This type of behaviour can be generalized to other
factors as well. Various damages from swipe sensors can be seen in Figure 5.1.

Figure 5.1: Examples of real fingerprints from swipe sensor.

45

Bearing that in mind, it is also very easy to extend the effects of non-cooperative behaviour.
Swiping a finger askew across the sensor, a very quick swipe, trying to swipe in the opposite direction,
or trying to swipe two fingers combined are only some ways of clearly exhibiting intentional, non-
cooperative behaviour, in spite of the fact that it could also be the contact region damage (see
Subchapter 3.2). Listed factors are so intentional that they should be included as non-cooperative
behaviour. On the contrary, there are factors that belong to the contact region even when they could be
seen as non-cooperative behaviour because they are really common among unskilled users. Users often
try to create a good fingerprint image but swipe incorrectly. Their motion often neglects important parts
of the fingerprint (like deltas), which are either missing or they are at the edge of the fingerprint (which
is common in the case of the thumb). Another example is when users try really hard to create a good
fingerprint image and they acquire another phalange of the finger. The sensor condition group of
influential factors can also be expanded. Swipe sensors are often used because they are small and cheap.
A cheap sensor can be made even cheaper by using even smaller sensing unit. However, some sensors
are then too small to fit even index fingers, which are the most commonly used. [29]

From the description above, important influential factors can be defined. These factors can be
divided into two groups: the first one with, the factors that are altering damages common with the touch
sensors, and the second group with factors that are completely new in swipe sensor usage. The first
group contains already known damages like pressure, contact region, and skin distortion used in swipe
mode (see Subchapter 5.2). In the second group, this work focuses only on narrowing the fingerprint
image. Successful simulation of these factors leads to creating a fingerprint which will be close to a
fingerprint taken from the swipe sensor.

5.2 Swipe Mode

This group focuses on the already created touch fingerprint damages, however, those are used in a swipe
mode. Swipe mode is basically the recreation of a reconstruction algorithm. The algorithm works in
this way: the sensor usually acquires a short and wide part of fingerprint (based on the size of sensing
unit). This small image is called a slice. By swipe motions, the sensor gets a lot of slices and it stores
them in the order of their acquirement. Its responsibility is to reconstruct the fingerprint image based
on correlation, the swipe speed, and the known parameters of sensing unit (as can be seen on
Figure 5.2). Synthetic fingerprints are generated without slices. It is necessary to take steps in the
inverse order. Synthetic images will be divided into slices. Each of them will be treated as an
independent image. After that, all slices will be merged together.

An important issue is how the input data will be transferred to these slices. There are several
solutions. Fully-automatic settings will be defined by the first (seed) settings as well as some optional
information about the trend of the values. Semi-automatic settings will be defined by the input data
spread out on a set of slices. Manual settings will be defined by providing input data for each slice.
Each option has its own pros and cons. Fully-automatic settings are the easiest to use, but very difficult

46

/ln W

// N
/ \
/ // // \\ \\ \\ Ir
[77NN L J"
1 1A 1 12

AT
1 \\ \\\\ll ////L I f
T~ "

Figure 5.2: Example of assembled slices to create a fingerprint (taken from [65])

to simulate. It is certain that there has to be a limit on how much the input can change in the two
following slices. It is possible to make a large, sudden change. However, to make these changes in one
swipe motion is rather difficult on the fine motor skills of the user. Also, maximum change in input
values between the two following slices is influenced by an overlap of the slices (closer the slices, closer
the values), the type of input value (skin elasticity would probably be constant, on the other hand the
rotation of the finger can change), the type of damage (generally, it is easier to make a change in
pressure then in skin distortion, for example), etc. Although it could be done, it was not chosen as an
option for this work. The semi-automatic solution is the middle ground among these choices. It is still
simpler to input all the values, but the big question is how to approximate values among them. If
something other than the default approximation is used, then it will probably be necessary to input all
the values, which leads to a manual setting solution. It provides the biggest flexibility, and a
disadvantage of this solution is that all input values must be filled, so the number of slices should stay
at some reasonable number. Nevertheless, manual settings will be used in this work.

5.2.1 Swipe Sensor Definition in Swipe Mode

Generally, there are only a few boundaries regarding how many slices there are in one image. It is
dependent on user swipe speed and sensing unit height. This general swipe mode would be difficult to
use, and the user would have to pay attention if another slice is a few pixels away or shifted to the right
or really far down. For that reason, swipe mode is simplified. Slices are uniformly distributed in the
image, and they are not moved in horizontal axis. After this simplification, the variables needed for this
swipe mode can be defined. Primarily, it is the height and overlap of the slices. With the given synthetic
image height it is possible to determine how many slices there will be in the image (Eq. 5.1).

Imagepeignt — SliceSpeigne +1

Slices = -
number Slicespeigne — Overlap

where Slices,ymper € N, (Eq. 5.1)
0 < Slicespeigne < Imagepeign, and
0 < Overlap < SliceSpeign:

47

In some cases, for example using a stored damage to another image, it is beneficial to have also
percent representation of slices height and overlap. That way the number of slices even with different
image height will stay the same = 1. Note that images usually have height in hundreds of pixels, in case
of images with extremely low height, e.g., 1 or 2 px the difference between number of slices could be
higher. If needed number of slices is rounded down. When that happen there is a part of original image
which is not covered by slices. If it was an image from real sensor that part would be non-existent. In
this case it was decided to fill this remainder with background colour of sensor. Height of remainder
(rem) can be computed as (Eq. 5.2):

Rem = Imagepeign: | | | (Eq.5.2)
- [(Sllcesnumber — D)(Slicespeigne — Overlap) + Sllcesheight]

After knowing all this information, the image can be easily divided into slices. All of them are
damaged independently. When damage is defined in swipe mode, each slice has its own settings for
damage. If the damage is applied, all slices are according to these settings damage separately. Now all
there is left to do is to merge all of the damaged slices together to one image. Unlike the real
reconstruction function, there is no need to calculate correlation between slices. The position of slices
in the image is already known.

Lastly, the merging function has to be defined. It reconstructs images line by line (a line is a slice
with a height of 1 px). Each line of the image has 1 to n contributing line in slices. Presume that line, pos)
defines the pixel in position pos in x-th line that contributes to the image, and point.s is the pixel on
position pos in the current line of the image. For each colour channel (red, green, blue, alpha) the value
is defined as (Eq. 5.3):

. 21_121 Line(i,pos)
Point posy = 17

(Eq.5.3)
After passing all lines of images and all positions in them, the merged image is done. It is
important to mention that this process is not semantically right for all damages (e.g. the damage sensor
will be damaged in all slices, not just one).
For testing slices, the settings were set as can be seen on Figure 5.3, with a 44 px slice height and
34 px overlap of slices. In real applications the redundancy (overlap) in relatively high. That is to cover
fast swipes and to have data for reconstruction if some slices are low quality or damaged. High overlap

Height in percent

Cwverlap in percent

Slices Settings
Height in pixels Cwverlap in pixels Image height
-

Image height covered

10,00 |

= 7727 =

-

=
#

Background colour |:|

Mumber of slices

Figure 5.3: GUI for slices settings when using swipe sensor.

48

values lead to an enormous number of slices, which is not reasonable with the manual settings of values.
Using of larger slices height allows bigger overlap. Designed values meet all these requirements,
overlap is rather high and number of slices is reasonable. The next subchapters will discuss the possible
usage of touch-based damages that were mentioned in Subchapter 4.4. It also shows the specific damage
settings used for testing in Subchapter 5.5.

5.3 Damages Exclusive to Swipe Sensors

This category describes the damages that are typical for swipe sensors. Of course, with some extra effort
and non-cooperative behaviour some of these damages can be replicated on touch sensors. Further
restriction is that damages in this category are not altered touch damages — these were described in
Subchapter 5.2.

The most important damage is the narrow sensor. The greatest advantage of this technology is
its price. To further leverage this advantage, the sensing unit is not only short, but also narrow. Only a
portion of the width of the finger is scanned. If the finger is swiped askew then the behaviour is
dependent on the reconstruction algorithms. Some of them are able to detect this anomaly and move
the next slice down and to the side (so translation in x and y axis). This results in images that have
higher widths than the sensing unit. However, most of the fingerprint images have a width the same as
the sensing unit. The exception is the part where there is information from more slices, and the
reconstruction algorithm is able to merge several of them (the width of the image would be a little bit
higher than the sensor unit width).

Closely connected to the movement and unskilled user is the acquirement of another phalange.
Acquired images often start in the middle of the fingerprint and continue over the joint as the user is
trying to make a long swipe. This is a very special type of “damage”. To simulate this, it is needed to
add a ridge line print from the inner side of the joint and the second phalanx. When prolonging a
synthetic fingerprint image, one can rely on the fact that the next phalange of the finger usually has a
very flat arch class. The best possible solution would be to additionally generate this fingerprint class
below the current fingerprint image with a gap representing the transition between phalanges. This
transition is often accompanied with a few deep wrinkles. Additional generation without the original
orientation field, cores, and deltas could be problematic. The contact region of the master fingerprint
can be set higher, and then the important part (like delta) should be generated. After that comes the
additional generation, and because of that, this type of damage is not simulated.

Faults or exploitation of reconstruction algorithm is heavily dependent on the specific
implementation and properties of the algorithm used inside of sensor. When someone has agile fingers,
it is possible to swipe two fingers at once. Some reconstruction algorithms work continuously, so with
some dexterity it is possible to make a very long fingerprint image with several fingers. Part of the
algorithm needs to approximate swipe speed. Whenever the motion of capture is done slow at the start
and then swiftly accelerates, it is possible to also create unrealistically long images or ridges. Because
of the similar reason as in previous point, this damage is also not simulated.

The last damage to be discussed is motion blur. Damage can be often seen on the edges of the
fingerprint, and the categorization is rather unclear. Motion blur can be caused by changing skin

49

distortion or movement (translation, rotation) of the finger during the swipe, causing problems with the
reconstruction algorithm. On the other hand, it could be caused by a fall of precision when a finger is
getting out of range on the edge of the sensing area. It was determined to deal with the motion blur as
a movement during the scan in Subchapter 5.4.4.

5.3.1 Narrow Sensor

This subchapter describes the implementation of damage done by the narrow sensor. The most
important part is to determine how much the image should be narrowed (narrow cut). When the results
are observed it can be seen that it does not look natural. Whenever the image is taken from a narrow
sensor, the edges are not sharply cut. There is a small overlap between the clear image and the blank
space where the sensor cannot take an image. Width of the overlap is the next input to this damage
simulation (smooth width). The last piece of information is the position of the centre of the sensor
(central width). After that, the left and right variable is determined (Eq. 5.4).

Narrow cut

100
Narrow cut

100

left = Widtheentral — Widthimage
(Eq. 5.4)
rlght = Widthcentral + Widthimage

If any of them is lower or higher than the width of the image, it is set to this minimum (or
maximum). Pixels in the area from left to right have the same colour as they had. Pixels in the area from
the image start to (left - smooth width) value are white. Pixels within the area from the
(right + smooth width) value to the image end are also white. The remaining pixels (i.e. inside the
smooth width range) have an additional alpha channel added to them. This makes transparency which
softens the edges. It is done gradually by this formula (Eq. 5.5):

maximal intensity

Alpha = smooth width

(Eq. 5.5)

where k is the number of pixels from the start of the smooth area (i.e. left or right). Figure 5.4 shows
how the fingerprint will be narrowed along with the resulting image. This damage simulation is now
looking very similar to a real fingerprint image. It can be added as touch-based damage to the
application.

Figure 5.4: Narrow sensor simulation (before damage, preview and after applying the damage).

50

5.4 Examples of Damages

To create examples of swipe sensor damages, the suitable database required for this task was acquired.
Focus was on acquiring fingerprints from all fingers and unskilled users. Using thumb, ring, or little
fingers often causes faults because users are not used to swiping with these fingers. Contrary to usual
habits, no images were deleted because of low quality. Users were told how to use the sensor, but they
were not instructed to do some intentional damage. The database contains over 1,000 fingerprints from
approximately 100 users. Fingerprints are from the Eikon II swipe capacitive sensor. Images from this
database are used as real examples later on in this subchapter.

As stated in Subchapter 5.3, swipe sensors are usually narrow. On the contrary, synthetic
fingerprints are usually generated as undamaged live prints (oval shaped) [42]. To create realistic-
looking fingerprints it is better to have them narrowed. For that, a narrow sensor touch-based damage
is used. Settings of narrow damage: smooth region width 5 px, narrow cut 25 %, central width 160 px
(half of the image). For the sake of comparing all damages in this work, the wide (normal width) and
narrowed synthetic fingerprint are tested. It is clear that narrow fingerprints are looking more realistic
and the effects of individual damages are easier to see. Also, some damages use absolute values for
their settings. In these cases, two variants of settings have to be defined for both narrow and wide
databases. Find out more about databases used for testing in Subchapter 5.5.1.

5.4.1 Pressure and Moisture in Swipe Mode

Pressure is one of the easiest place to see damage. In addition, a change of pressure is very frequent in
a swipe motion. There are a lot of combinations of greater or lower pressures in the database. In the
end, these seven were chosen. The list contains the damage name, the testing shortcut, and a short
description with settings. Settings is described as slice numbers (1-40) where 1 is the first slice on top
of the image, and pressure settings is (-4 to +4) where -4 is extremely low pressure (for more
information see Subchapter 4.4.2).

e Alllow (pm0): Caused by dry skin or low pressure in a whole swipe. Real and synthetic images
can be seen in Figure 5.5bc. Settings: slices 1-40 pressure -1.

o Extreme (pml): Extreme cases could be created by steady pressure changes when doing a
swipe motion. Real and synthetic images can be seen in Figure 5.5de. Settings: slices 1-3
pressure -4, sl. 4-6 pressure -3, sl. 7-9 pressure -2, sl. 10-12 pressure -1, sl. 13-15 pressure 0,
sl. 16-18 pressure +1, sl. 19-23 pressure +2, sl. 24-26 pressure +1, sl. 27-29 pressure 0, sl. 30-
32 pressure -1, sl. 33-35 pressure -2, sl. 36-38 pressure -3, sl. 39-40 pressure -4.

o High to normal (pm2): Damage caused by keen users who started the motion with a lot of
pressure and finished it with normal pressure. Real and synthetic images can be seen in
Figure 5.5fg. Settings: slices 1-14 pressure +3, sl. 15-17 pressure +2, sl. 18-20 pressure +1, sl.
21-35 pressure 0, sl. 36-40 pressure -1.

e Low to high to low (pm3): Very common damage where the user has low pressure until the
user’s finger gets to the sensor. After that, the pressure is raised and when the finger is at the

51

edge of the sensor the pressure is lowered again. Real and synthetic images can be seen in
Figure 5.6ab. Settings: slices 1-10 pressure -1, sl. 11-29 pressure +1, sl. 30-40 pressure -1.

e Normal to low (pm4): Similar to the high to normal variant. Instead of a keen user, there is
usually a very cautious one whose pressure levels are lower. Real and synthetic images can be
seen in Figure 5.6¢cd. Settings: slices 1-18 pressure 0, sl. 19-21 pressure -1, sl. 22-40 pressure -2.

e Recurrent normal to low (pmS): Cause by sudden drops of pressure or some slices that were
unable to reconstruct correctly. Real and synthetic images can be seen in Figure 5.6ef. Settings:
slices 1-12 pressure 0, sl. 13 pressure -1, sl. 14-18 pressure -2, sl. 19 pressure -1, sl. 20-24
pressure 0, sl. 25 pressure -1, sl. 26-31 pressure -2, sl. 32 pressure -1, sl. 33-40 pressure 0.

o Slowly high to low (pmé6): This is a combination of two factors. The user either applies greater
pressure or has moist fingers. After that, when the user feels a change in structure (start of the
sensing unit) an even greater pressure is applied. Real and synthetic images can be seen in
Figure 5.6gh. Settings: slices 1-8 pressure +1, sl. 9-14 pressure +2, sl. 15-17 pressure +1, sl.

18-33 pressure 0, sl. 34-40 pressure -1.

Figure 5.5: Examples of pressure damage (a — original synthetic image, b, d, f— real images, c, e, g —

damaged impressions).
d)

Figure 5.6: Examples of pressure damage 2 (a, c, e, g — real images, b, d, f, h— damaged

impressions).

52

5.4.2 Narrow Sensor in Swipe Mode

Usage of the narrow sensor in swipe mode can simulate different contact regions. The exact results of
contact region damage in swipe sensors are dependent on the used reconstruction algorithm. In this case
(same as in the acquired database), fixed sensing region is assumed. Wrong (not complete) contact
regions are in a high percentage of images. The use of non-traditional fingers in databases leads to a lot
of these damages. These are often made by the little finger or thumb.

In the end, 11 damages were chosen. The list contains the damage name, the testing shortcut, and
a short description with settings. Settings are described as slice numbers (1-40) where 1 is the first slice
on the top of the image, and the narrow settings, which contains the smooth region width (SRW) in px,
narrow cut (NC) in percentage, and central width (CW). For more information see Subchapter 5.3.1.
For simplicity, some slices are marked as no damage (that means SRW 0, NC 100 % and CW in half
of image width). This definition is little bit hard to use when inspecting real images, especially when
images are cut from both sides. The following formulas (Eq. 5.6 and Eq. 5.7) transform percentage
damages (cut from left and right) to define settings.

(100 — Cuty;gn,) — Cutyer,

Narrow cut = 5 (Eq. 5.6)
Imageyiatn Imageiatn
100 — Cutyjgpt) — X — Cut)pr —Fridtl
Central width = [(ron) 1002] o 100 (Eq. 5.7)
g. 5.
Imageyiacn
Cutjprp————
* Cthere ™50

If the results have a decimal point, it is rounded because the final value must be an integer. In
some examples, settings are defined by slices, left, and right percentages cut instead of the previously
stated settings. For further simplification, a shortcut for image width (IW) will be used. Images in the
narrow database have IW 170, images in standard database IW 320. In all damages, with exception to
no damage, the SRW is 3 px.

e All sideways sharp (narr0): Both sideway damages were created predominantly when using
a thumb. Users hold the sensor in hand and swipe the thumb over it, which is what created the
sideway swipe. Real and synthetic images can be seen in Figure 5.7bc. Settings: slices 1-15
CW IW, sl. 16-24 no damage, sl. 25-40 CW 0. Slices 1-15 NC 40, 44, 48, 52, 56, 60, 64, 68,
72,76, 80, 84, 88, 92, 96; slices 25-40 NC 99, 98, 97, 95, 93, 90, 87, 83, 79, 75, 70, 65, 59, 53,
46, 39.

o All sideways steady (narrl): This steady variant is a little more frequent in the database as
opposed to the sharp variant. Real and synthetic images can be seen in Figure 5.7de. Settings:
slices 1-20 CW 0, sl. 32-40 CW IW. Slices 1-20 NC 65, 66, 67, 68, 70, 71, 72,73, 74, 75, 77,
78,79, 80, 81, 82, 84, 85, 86, 87; slices 32-40 NC 77, 75, 73,71, 69, 67, 65, 63, 61. Slices 21-
31 left% 1, 3,5,7,9, 11, 13, 15, 17, 19, 21; right% 12, 11,9, 8,7, 6, 5, 4, 3, 2, 1.

e Cutdown (narr2): Caused by a sudden lift of the finger when the user thought that the swipe
was done. Real and synthetic images can be seen in Figure 5.7fg. Settings: slices 1-35 no
damage, 36-40 SRW 0, NC 0, CW 0.

53

Figure 5.7: Examples of narrow damage (a — original synthetic image, b, d, f — real images,

¢, e, g — damaged impressions).

e One side (narr3): Real and synthetic images can be seen in Figure 5.8ab. Settings: slices 1-14
CW IW, sl. 15-21 no damage, 22-40 CW IW. Slices 1-14 NC 52, 55, 59, 62, 66, 69, 73, 76, 80,
83, 87,90, 94, 97; slices 22-40 NC 98, 96, 94, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 72,70, 68,
60, 64, 62.

o Side zigzags (narr4): Real and synthetic images can be seen in Figure 5.8cd. Settings: slices
1-8 no damage, 23-40 no damage, 9-22 left% 15, 28, 39, 48, 55, 48, 39, 28, 15,0, 0, 0, 0, 0,
right% 0, 0,0, 0, 0, 7, 14, 28, 42, 56, 42, 28, 14, 7.

o Tip bottom jumpy (narr5): Real and synthetic images can be seen in Figure 5.8ef. Settings:
slices 1-20 CW 0, sl. 32-40 CW IW. Slices 1-20 NC 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77,
78,79, 80, 81, 82, 84, 85, 86, 87; slices 32-40 NC 77, 75, 73,71, 69, 67, 65, 63, 61. Slices 21-
31 left% 1, 3,5,7,9, 11, 13, 15, 17, 19, 21; right% 12, 11,9, 8,7, 6, 5,4, 3, 2, 1.

o Tip bottom one side (narr6): Real and synthetic images can be seen in Figure 5.8gh. Settings:
slices 1-20 CW 0, sl. 32-40 CW IW. Slices 1-20 NC 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77,
78,79, 80, 81, 82, 84, 85, 86, 87; slices 32-40 NC 77, 75, 73,71, 69, 67, 65, 63, 61. Slices 21-
31 left% 1, 3,5,7,9, 11, 13, 15, 17, 19, 21; right% 12, 11,9, 8,7, 6, 5,4, 3, 2, 1.

Figure 5.8: Examples of narrow damage 2 (a, c, e, g — real images, b, d, f, h — damaged impressions).

o Tip bottom standard (narr7): Real and synthetic images can be seen in Figure 5.9ab. Settings:
slices 1-17 no damage, slices 18-40 left% 0, 0,0, 1, 3,4, 6,7, 9, 10, 12, 13,9, 12, 17, 22, 27,
32,37,42,47,52,57,right% 3, 5,7, 8,9, 10, 14, 17, 17, 18, 18, 19, 19, 20, 21, 23, 25, 27, 29,
31, 33, 35, 36.

o Tip both sides (narr8): Real and synthetic images can be seen in Figure 5.9cd. Settings: slice
1-15 left% 40, 35, 30, 26, 22, 19, 17, 16, 15, 12,9, 6, 3, 0, 0, right% 30, 26, 22, 19, 16, 13, 11,
9,7,5,4,3,2,1, 1, sl. 16-19 no damage, sl. 20-40 left% 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 7,
9,11, 13,15, 17, 19, right% 4, 5, 6, 7, 8, 13, 14, 15, 16, 18, 21, 25, 30, 36, 44, 45, 46, 47, 48,
49, 50.

o Tip top round (narr9): Real and synthetic images can be seen in Figure 5.9ef. Settings: slices
19-40 no damage, slices 1-19 left% 52, 43, 35, 28, 21, 15,10, 6,3, 1,0, 0, 0,0, 0, 0, 0, 0, right%
35,31, 28,25,22,19, 16, 14,12, 10, 8,6, 5,4, 3,2, 1, 1.

o Tip top sharp (narr10): Real and synthetic images can be seen in Figure 5.9gh. Settings: slices
12-40 no damage, slice 1-12 left% 40, 38, 32, 24, 16, 8, 0, 0, 0, 0, 0, right% 40, 38, 36, 32, 28,
24,20, 16, 12, 8, 4.

b) c)

l

v

R \
:
- ".f
x
Z
%

-
Z.
-

\\\k((((@

Figure 5.9: Examples of narrow damage 3 (a, c, e, g — real images, b, d, f, h — damaged impressions).

5.4.3 Damaged Sensor in Swipe Mode

Swipe sensors, mainly because of their size, are more resistant to damage. Based on the previous
damages and the simplification of fixed sensing, region expected behaviour can be simulated. Two
types of damage were chosen for this simulation. This damage is the one which has the same settings
for all slices. If the sensor is damaged it will be in all slices and in the same place. As in previous parts,
the list contains the damage name, the testing shortcuts, and a short description with settings. Settings
is described as damaged settings which contains line length (1-15), direction (0-359°), and start position
x, y in pixels. For more information see Subchapter 4.4.1. Because the start point coordinates variable
is defined in absolute values, separate settings are required for standard and narrow images in the
database. Experience from touch sensors reveals that damage is usually close to the edge of the sensor
(respectively, protective glass). Designed damages show both short and long cracks.

[

5

o Long, narrow (dmg0): The synthetic image can be seen in Figure 5.10b. Settings: length 15,
direction 98°, start point x, y 0, 22.

o Long, wide (dmg0): The synthetic image can be seen in Figure 5.10c. Settings: length 9,
direction 98°, start point x, y 0, 22.

e Short, narrow (dmgl): The synthetic image can be seen in Figure 5.10d. Settings: length 6,
direction 300°, start point x, y 170, 3.

e Short, wide (dmgl): The synthetic image can be seen in Figure 5.10e. Settings: length 1,
direction 300°, start point x, y 320, 3.

a) b) c) d) €)
e — e ~
= —— = ——
=== F— = =

\

/@@> \

Figure 5.10: Examples of damaged sensor (a — original synthetic image, b, c, d, e — damaged

_‘1__/—_/

7

impressions).

5.4.4 Distortion in Swipe Mode

The final example is using skin distortion. This damage is probably the worst to correctly simulate. It
is certain that skin has to be distorted when doing the swipe motion. Distortions are also hard to see in
real images. On the other hand, if the finger is moving sideways or too fast, for example, there has to
be distortion and it can be seen as motion blur. That is because the correlation part of the reconstruction
algorithm finds non-distorted parts which are consistent with previous slices as well as the distorted
parts which are not. Some mistakes or inaccuracies will be surely made when this happens. Distortion
could also mean that part of the skin is not touching the sensing area, thereby creating contact region
damage. The chosen examples are a little extreme. On the other hand, they can be easily seen and the
motion blur (with translation or rotation) is obvious in each example. Real images with motion blur and
other damages can be seen in Figure 5.11efg.

In the end, three damages were chosen to be simulated. The list contains the damage name, the
testing shortcut, and the short description with settings. Settings are described as slice numbers (1-40)
where 1 is first slice on top of the image and distortion settings that contains skin elasticity coefficient
(1-30), rotation (-30-30°), translation dy, d, in pixels (could be negative), and usage of full interpolation.
For more information see Subchapter 4.4.3. For simplicity, the skin elasticity coefficient will be 10 for
every slice as well as usage of full interpolation.

56

o Extreme (dis0): In this example, an extreme case of rotation is used. It would mean that the
user made a 40° turn during the swipe. Some translation is also applied. The synthetic image
can be seen in Figure 5.11b. Settings: slices 1-40 translation d., d, 15, 2; rotation -20, -18, -17,
-16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, 4, -3, -2,-1,0,1,2,3,4,5,6,7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20.

e Move X (dis1): This example shows the steady translation on the x axis and small rotation. The
synthetic image can be seen in Figure 5.11c. Settings: slices 1-3 rotation 0, translation d., dy 0,
0; sl. 4-6 rotation 1, translation d., dy 1, 0; sl. 7-9 rotation 2, translation d., d, 2, 0; sl. 10-12
rotation 3, translation d., d, 3, 0; sl. 13-15 rotation 4, translation d., dy 4, 0; sl. 16-18 rotation 5,
translation d., d, 5, 0; sl. 19-21 rotation 6, translation dx, d, 6, 0; sl. 22-24 rotation 7, translation
dx, dy 7, 0; sl. 25-27 rotation 8, translation dx, d, 8, 0; sl. 28-30 rotation 9, translation d., dy 9, O;
sl. 31-33 rotation 10, translation dx, d, 10, O; sl. 34-36 rotation 11, translation d,, d, 11, 0; sl.
37-40 rotation 12, translation d., dy 12, 0;

e Move Y (dis2): Gradually raising translation in y axis shows uneven swipe speed. The synthetic
image can be seen in Figure 5.11d. Settings: slices 1-4 rotation 0, translation d,, d, 0, 0; sl. 5-8
rotation -1, translation dx, d, 0, (0, 1, 1, 1); sl. 9-12 rotation -2, translation d., d, 0, (1, 1, 2, 2);
sl. 13-16 rotation -3, translation d., d, 0, (2, 2, 3, 3); sl. 17-19 rotation -4, translation d., d, 0,
(3, 3, 4); sl. 20-23 rotation -5, translation d., d, 0, (4, 4, 5, 5); sl. 24-27 rotation -6, translation
dy, dy 0, (5, 6, 6, 7); sl. 28-31 rotation -7, translation d., dy 0, (7, 8, 9, 10); sl. 29-35 rotation -8,
translation d., d, 0, (8, 9, 10, 11, 13. 15. 18); sl. 36-39 rotation -9, translation d., d, 0, (21, 24,
28, 32); sl. 40 rotation -10, translation dx, dy 0, 36;

Figure 5.11: Examples of skin distortion damage (a — original synthetic image, b, ¢, d — damaged

impressions, e, f, g — real images).

5.5 Evaluation

The first part of the evaluation can be found in the previous subchapters. It was done by describing the
solution and its similarities with real applications and also by comparing damaged images with real
ones. However, in order to quantify how much damage was done to the synthetic fingerprints, it is

57

necessary to find out the quality of them. Several methods for quality determination are used and
described in the following subchapters. Even before that, however, it is necessary to present the testing
database.

5.5.1 Synthetic Database Used for Evaluation

All available synthetic generators were used to generate testing databases. This database has 150
synthetic images: 60 from SFinGe [40], 60 from Anguli [41], and 30 from SyFDaS. Fingerprints were
used in the state of master fingerprint. That means images without any damages, with exception to
contact region (i.e. images can have an oval shape). The database was generated with natural fingerprint
class distribution (arch 3.7 %, left loop 33.8 %, right loop 31.7 %, tented arch 2.9 %, whorl 27.9 %
[66]). The precise distribution of image classes is in Table 5.1.

Table 5.1: Distribution of classes in the testing database.

Anguli SFinGe SyFDaS Sum
Arch 3 2 1 6
Left Loop 20 20 10 50
Right Loop 19 19 10 48
Tented Arch 1 2 4
Whorl 17 17 8 42
Sum 60 60 30 150

Unfortunately, each generator creates images of different sizes. To unify that, all images were
scaled or cropped. The unified resolution was set to 320 px width and 440 px height. Images from
Anguli were expanded to the final resolution and scaled to 90 %. Images from SFinGe were generated
with an acquisition area 14.6 mm to 19.5 mm with 500 dots per cm. Generated images were set to full
size and the grey areas were deleted. This image was then scaled to 88 % and cropped to the final
resolution. Images from SyFDaS were generated with resolution of 320 px to 471 px. After that they
were scaled to 140 % and cropped to the final resolution.

5.5.2 Methods Used for Quality Measurement

Quality measurement is the second step of verifying the results. The first step was a visual check against
real fingerprint images. The premise is simple — damaged fingerprints should be of lower quality than
original images. Three different measurement methods are used here. The first one is the
NEUROtechnology VeriFinger’ — it is commercial software used primarily for fingerprint recognition,
however, a part of the algorithm quality is also determined. This quality measurement and comparison
score are used. The second method is from the National Institute of Standards and Technology (NIST)
called NFIQ° (NIST Fingerprint Image Quality). This algorithm is the only standard used for quality
measurement. It has its flaws, which is probably reason why NFIQ 2.0 is in development. Nevertheless,
the development of the new version is not yet complete and the draft version shows some flaws when

5 https://www .neurotechnology.com/verifinger.html
® https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis#NFIQ

58

https://www.neurotechnology.com/verifinger.html
https://www.nist.gOv/services-resources/software/nist-biometric-image-software-nbis%23NFIQ

dealing with the synthetic images as well (for more information see [67]). The last method used is the
algorithm of quality measurement designed by Mr. Oravec [68]. His method solves some of the
problems of the NFIQ method.

5.5.2.1 NEUROtechnology VeriFinger

There is not a lot of information about the algorithms used. Nevertheless, that is understandable because
it is a commercial product. Even the manual for VeriFinger’s API [69] has almost no information. The
only available source is the description enclosed to the results of the MM_FV 5.5 algorithm (it is
probable that the old version of VeriFinger used this algorithm) in FVC-onGoing (Fingerprint
Verification Competition) [70]. This competition evaluates algorithms and sorts them based on their
performance. Competitors can hide their result, despite that NEUROtechnology algorithm is now
ranked the second best in both EER (Equal Error Rate) and FMR (False Match Rate) [70]. The
description given for MM_FV 5.5 is that it uses minutiae, ridge count, and local ridge frequency for
matching. It is prepared to align displacement, rotation, and non-linear distortion [70]. The verification
process (by its definition) needs two images to get a comparison score. In this case the inspected image
and image without any damage was used to get this score. For example, image number 3 with pressure
and moisture damage was compared to image number 3 without any damage. The same rules were
applied to get the results from image without damage — these images were just verified against
themselves. Quality estimation is done as an optional part of the VeriFinger comparison process and it
is not described anywhere.

The results of the quality estimation are in the range of 0 to 100. The comparison score has a
much higher range; from 0 to 2,250. To be specific, the maximum is not defined precisely — it is likely
that some ideally created image could have an even higher score. VeriFinger version 10.0 from the
MegaMatcher package directly from NUEROtechnology was used.

5.5.2.2 NIST Fingerprint Image Quality

Quality by NFIQ is a “predictor of a matcher’s performance™ [71]. This decision has a great impact on
quality estimation. Because in its core it is not focused on quality, but on a matcher performance. That
leads to some flaws, causing inaccuracies. However, fingerprint quality is estimated by measuring the
feature vector and projecting this vector to quality classes via a neural network. The feature vector has
11 dimensions (foreground, total number of minutiae, minutiae that have quality over 0.5, 0.6, 0.75,
0.8, 0.9, and quality zone with the quality 1, 2, 3, 4) [72]. Two essential pieces of information are needed
— quality map and minutiae. The minutia point detection algorithm is rather benevolent, so there are a
lot of false detections. The quality map is a combination of the direction map (direction of ridges), the
low contrast map (focuses on the part of the image with low contrast, which is useful for the
differentiation of the fingerprint and the background), a low flow map (parts of image where direction
map must be estimated from surroundings), and a high curve map (parts with a high curvature of ridges).
This quality map is assigning values from O to 4 to a fingerprint image, where 0 is the background and
the higher number is a higher quality part of image. [68] [71] [72]

It uses five classes for quality. This was set as a middle value between 3 and 10, which is (based
on NIST research) the useable number of classes for fingerprint matchers [72]. NFIQ is used as a
standard and has its implementation available online. It is not surprising that the NFIQ algorithm is an

59

optional part of VeriFinger’s software. This same logic can be applied to Oravec’s quality estimate.
Surprisingly enough, values from each implementation are not the same, which is strange because they
should be based on the same standardized algorithm. Because of that, both results (from VeriFinger and
Oravec) are used in the evaluation process. As it turns out, statistical results (represented here by graphs)
are for both algorithms the same with only one exception. In this case both graphs are shown, otherwise
only one representing both cases is displayed.

5.5.2.3 Oravec’s Quality Measurement

This method is based on several factors which should contribute to the quality of a fingerprint. The
emphasis is on the clarity of ridges, their continuity, consistency of the fingerprint, and the size of it.
The source image is divided into blocks. When inspecting a block a wider area is considered. As a pre-
processing step, the orientation of the ridges is determined. After that, blocks are rotated so that ridges
are aligned vertically. This is based on the sum of the discrete Fourier transformation. Each of the blocks
that are not in the background is measured for six values. Orientation precision (the ratio between the
chosen rotation of blocks and other rotations), continuity of ridge structure within a block, the continuity
of orientation in scope of surrounding blocks, linear regression (used for determining overlap of the
colours of valleys and ridges), ridge and valley ratio (using some information from linear regression
method), and range of contrast. Each of these values can detect different damage to the fingerprint.
Weight averaging of these values then determines block quality. The generalization of these blocks is
a fingerprint quality. [68]

The quality score is in the form of a percentage, so the range is from 0 to 100. The original
implementation of this method by Mr. Oravec is used.

5.5.3 Evaluation of Generated Narrow Images

First, the evaluation of narrow images is presented. That is because narrow images for swipe sensors
are more common. Evaluation is structured to all basic options (as described in Subchapter 5.4.) and
then to extreme damages (the most damaging combinations of basic options). For each measurement of
evaluation there are graphs that show the minimal value for all fingerprint images, the maximal value
(red dots), and the median (shown as black dash). It is important to note that damage which has the
worst score (closer to minimal quality) has done a higher damage to an image, thus is treated as the best
damage. All graphs in the following subchapters have the same value range. Sometimes the graphs can
be unnecessarily large, but on the other hand all graphs are easily comparable.

5.5.3.1 Pressure and Moisture Damage Evaluation

Example images and more information about damages can be found in Subchapter 5.4.1. The Oravec
quality score is the first metric, which is shown in Figure 5.12. As can be seen, the worst result (hence
most damage done to images) is achieved by pm2 (high to normal pressure). That is interesting because
damages pm6 (slowly high to low) and pm/ (extreme) have a similar nature to pm2. Apparently, high
pressure in some cases can be worse than the low-contrast parts of the fingerprint.

60

NFIQ scores (shown in Figure 5.13) determine the best damage pm0O (all low). It is best only
because its maximal score (the NFIQ score is the only one where a higher score means lower quality)
is at 4. It is worth noting that there are damages which have in some parts lower pressure then pm0 and
their quality is not that low.

Oravec's Quality Score in Pressure and Moisture Damage
100

. f Pl

80

o

75

70

Quality score

65
60
55
50
45

40

Damage no damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.12: Graph of Oravec’s quality score in pressure and moisture damage (narrow).

NFIQ's Score in Pressure and Moisture Damage

5

o 4 ®

o

O

1%}

»n 3

o

[N

- I | I I I I I I
1 a

Damageno damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.13: Graph of NFIQ'’s score in pressure and moisture damage (narrow).

VeriFinger’s quality score (Figure 5.14) has a wide range of values. The absolute minimal score
is achieved by pm/ (extreme), but in the median values the best is pm2 (high to normal). Pm/ as an
extreme damage was expected to have low quality. It is the median result of the pm2, which hints that
this damage would probably be one of the best altogether from the pressure and moisture group. Worth
noting is also pm0, (all low) which has a better quality than no damage image.

61

VeriFinger's Quality Score in Pressure and Moisture Damage

100 L 4 w 4 4 L 4 v w A 4

95 T T == == == == T

90
85
80
75

70

Quality score

65

60

55

50
45

40

Damage no damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.14: Graph of VeriFinger’s quality score in pressure and moisture damage (narrow).

The last graph (Figure 5.15) shows results in the comparison score. An enormous gap between
no damage and damaged images can be seen. The lowest values for the median are practically the same
for pmO (all low), pm1 (extreme), and pm3 (low to high to low) — the exact numbers being 1005.5, 1009,
and 1007.5, respectively. By the minimal score values it can be declared that pm/ is the best in this

VeriFinger's Comparison Score in Pressure and Moisture Damage
2250

2000
1750
1500

1250

ty score

1000

Qual

750
500
250

0

Damage no damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.15: Graph of VeriFinger’s comparison score in pressure and moisture damage (narrow).

62

metric. Both damages with high pressure (pm2 — high to low and pm6 — slowly high to low) have shown
bad results in the comparison score.

Generally, the best results are achieved by pm0 (all low), pmi (extreme), and pm2 (high to low).
For most of the metrics, there is a substantial difference between no damage and damaged images,
which is another proof of verification.

5.5.3.2 Distortion and Damaged Sensor Damage Evaluation

Example images and more information about sensor damage can be found in Subchapter 5.4.3 and
information about distortion is in Subchapter 5.4.4. Similar to previous subchapters, the focus is on the
best damage in each metric.

The Oravec metric (Figure 5.16) clearly shows that the biggest damage is done by disO (extreme).
Dmg0 (long) and dmg! (short) show very similar lines as the no damage. The second in damage done
is dis2 (move Y), which shows minimal values the same as the dis0, but the median is quite higher.

Oravec's Quality Score in Distortion and Damaged Sensor
100

95
90
85
80
75

70

65

Quality score

60
55
50
45

40

Damage "© damage disO disl dis2 dmg0 dmgl

Figure 5.16: Graph of Oravec’s quality score in distortion and damaged sensor (narrow).

The same results can be seen by NFIQ (see in Figure 5.17). The only damages which have a
higher maximal damage are disO and dis2. The increase is one class lower than in the pressure and
moisture damage.

Figure 5.18 shows an interesting behaviour. Once again, the ranges are quite high. Dis0O (extreme)
shows the lowest median score. As far as the absolutely minimal score is concerned, the lowest values
have dmg0 (long) and no damage with dmg1 (short). It can be concluded that disO must constantly have
low scores to achieve that median value.

63

NFIQ's Score in Distortion and Damaged Sensor

NFIQ's score

L] I []

Damage N° damage disO disl dis2 dmg0 dmgl

Figure 5.17: Graph of NFIQ's score in distortion and damaged sensor (narrow).

VeriFinger's Quality Score in Distortion and Damaged Sensor

100 v v v v v v
95 = 4 _
90
85

80

75

70

65

Quality score

60 L]

55
50
45

40

Damage "© damage disO disl dis2 dmg0 dmgl

Figure 5.18: Graph of VeriFinger’s quality score in distortion and damaged sensor (narrow).

In Figure 5.19 VeriFinger’s comparison score (with the exception of no damage) sorted damages
from the best to the worst (from left to right). DisO (extreme) shows all basic damages with the worst
results.

The clear winner of the best damage in this category is the disO (extreme). Since this distortion
was prepared as extreme, this result is not a big surprise. On the other hand, pressure damage and the
edge parts of distortion look similar. This suggests that it is the rotation of minutiae points, which made
this damage so much worse. From the damaged sensor category, the better one would probably be dmg0
(long), but only narrowly. To sum up, all damages have lower results than the images without damage.
It is close in some metrics, but the difference is there.

64

VeriFinger's Comparison Score in Distortion and Damaged Sensor
2250

2000
1750
1500

1250

ty score

1000

Qual

750
500
250

0
Damage no damage disO disl dis2 dmg0 dmgl

Figure 5.19: Graph of VeriFinger’s comparison score in distortion and damaged sensor (narrow).

5.5.3.3 Narrow Damage Evaluation

This kind of damage is very interesting to examine. Deleting part of the image means deleting some of
the minutiae points, which should immediately result in a worse quality score. However, this score is
obtained from a single image (with the exception of the comparison score), so the information about
less minutiae points is not available for the quality measurement metrics. Also, algorithms do not have
to use the area of the fingerprint as an important part. In that case, there is a possibility to get a better
quality image than that of the original (if metrics like minutiae to area ratio are used). There are 11 basic
damages in this category, which means that there are two graphs (part 1 and 2) instead of only one for
each metric. Nevertheless, graphs are shown one after another and the results are discussed together.
Images and more information about specific damages are in Subchapter 5.4.2.

There are two damages (in the Figure 5.20 and Figure 5.21) with the same lowest median values
and one of them has a slightly better minimal (and maximal) score. They are narr4 (side zigzags) as the
slightly one and narrl (all sideways steady). It is worth noting that narr2 (cutdown), narr9 (tip top
round), and narrl0 (tip top sharp) have the same values as the no damage one. Basically, the algorithm
is treating these images as the same quality. It is true that damage done by these narrow cuts in the top
or bottom of the fingerprint image are very dependent on the exact size and location of the original
image (a bigger image will have a larger area cut by the damage), which should result in a higher quality
reduction.

65

100

95

90

85

80

75

70

Quality score

65

60

55

50

45

40

Damage

100

95

90

85

80

75

70

65

Quality score

60

55

50

45

40

Damage

Oravec's Quality Score in Narrow Damage Part 1

no damage narrO narrl narr2 narr3 narrd narr5

Figure 5.20: Graph of Oravec’s quality score in narrow damage — part 1 (narrow).

Oravec's Quality Score in Narrow Damage Part 2

no damage narré narr7 narr8 narr9 narrl0

Figure 5.21: Graph of Oravec’s quality score in narrow damage — part 2 (narrow).

66

NFIQ scores (Figure 5.22 and Figure 5.23) are not showing a lot of interesting results. Generally,
it can be said that narrl (all sideways steady) and narr5 (tip bottom jumpy) are a little bit better than
other damages, but it is only by the maximal value and only in one class.

NFIQ's Score in Narrow Damage Part 1

5
o 4
o
b
»n 3
g
[N
Z 5 I I I I I
1
Damage "° damage narr0 narrl narr2 narr3 narrd narr5
Figure 5.22: Graph of NFIQ's score in narrow damage — part I (narrow).
NFIQ's Score in Narrow Damage Part 2
5
v 4
S
»n 3
g
[N
[N B B B
1
Damage o damage narr6é narr7 narr8 narr9 narr10

Figure 5.23: Graph of NFIQ'’s score in narrow damage — part 2 (narrow).

The best damage in the VeriFinger quality metric (seen in Figure 5.24 and Figure 5.25) is,
without a doubt, narr4 (side zigzags). On the other hand, narr7 (tip bottom standard) exhibits better
results than no damage, and narri0 (tip top sharp) and narr2 (cutdown) also shows the same results as
the no damage.

The best damages by the comparison score (Figure 5.26 and Figure 5.27) are narr4 (side
zigzags), narr7 (tip bottom standard), and narr! (all sideways steady) in this order. Narr4 has the lowest
median score (barely), narr7 has the lowest minimal score, and narrl is very close to these values.
There are not any damages that would be better than the no damage. This is probably because in the
comparison score information about the missing minutiae points in the edges of the damaged images is
available. Thus, this small area reduction is influencing the score.

67

Quality score

Damage

Quality score

Damage

100
95
90
85
80
75
70
65
60
55
50
45

40

100

95

90

85

80

75

70

65

60

55

50

45

40

VeriFinger's Quality Score in Narrow Damage Part 1

no damage narrO narrl narr2 narr3 narr4 narr5

Figure 5.24: Graph of VeriFinger’s quality score in narrow damage — part 1 (narrow).

VeriFinger's Quality Score in Narrow Damage Part 2

no damage narré narr7 narr8 narr9 narrl0

Figure 5.25: Graph of VeriFinger’s quality score in narrow damage — part 2 (narrow).

68

VeriFinger's Comparison Score in Narrow Damage Part 1
2250

2000
1750

1500

ity score
[
N
w1
o

1000

Qual

750
500
250

0
Damage ho damage narrO narrl narr2 narr3 narrd narr5

Figure 5.26: Graph of VeriFinger’s comparison score in narrow damage — part 1 (narrow).

VeriFinger's Comparison Score in Narrow Damage Part 2
2250

2000
1750
1500

1250

ity score

1000

Qual

750
500
250

0
Damage no damage narré narr7 narr8 narr9 narrl0

Figure 5.27: Graph of VeriFinger’s comparison score in narrow damage — part 2 (narrow).

When examining all results, the best score in the narrow category is the narr4. In the second

place would be probably narrl. Narr4 is the only damage that could directly damage the fingerprint

core. That is a crucial point not only because of its importance for fingerprint classification, but also

because there is usually the highest density of minutiae points. Narrl presumably has the biggest area

cut, but that is heavily dependent on the exact location of the fingerprint.

69

5.5.34 Extreme Damages

The database generated for the evaluation was composed of basic damages (evaluated in previous
subchapters) and also from the combinations of these damages. Restricted combination settings were
used (for more information see Subchapter 4.5). This resulted in 1,152 combinations (8, 4, 12, 3 — see
Eq. 4.37). From Subchapter 5.5.1 it is known that there were 150 source images in the database. 150
images — each has 1,152 impressions, which gives 172,800 images in total. This subchapter picks the
seven best damage combinations to evaluate.

An important factor is how to pick the best damages. In the end the following methodology was
applied. For each quality metric (the Oravec quality score, the NFIQ, etc.) all damages were sorted by
median value and minimal (or maximal) value (so the result would be the best damage). From these
sorted damages, at least 10 results were taken. If there were the same results when all of them were
taken, sometimes more than 10 results were chosen. These chosen lists of damages from all metrics
were then joined together and the frequency and order on the original list were calculated. The most
frequent damages were marked as the best damages. If the situation occurred where more damages have
same frequency, then damage with a lower cumulative order number on the original list was taken. In
this case, the chosen damages (sorted from the most damaging) were:

e Pm2 disO narr4d dmgl: This damage is composed from high to normal pressure, extreme
distortion, side zigzag narrowing, and short sensor damage. Can be seen in Figure 5.28b.

e Pm2 disO narr4d dmg0: This damage is composed from high to normal pressure, extreme
distortion, side zigzags narrowing, and long sensor damage. Can be seen in Figure 5.28c.

e Pm2 disO narrl dmgl: This damage is composed from high to normal pressure, extreme
distortion, all sideways steady narrowing, and short sensor damage. Can be seen in
Figure 5.28d.

e Pml dis0 narr4 dmgl: This damage is composed from extreme pressure, extreme distortion,
side zigzags narrowing, and short sensor damage. Can be seen in Figure 5.28e.

e Pm2 disO narr5 dmg0: This damage is composed from high to normal pressure, extreme
distortion, tip bottom jumpy narrowing, and long sensor damage. Can be seen in Figure 5.28f.

a) b) 9) d) e) f) g) h)

no damage pm2disO pm2dis0 pm2disO pmldisO pm2disO pm2disO pm?2 disO

narr4 dmgl narr4 dmgO narrl dmgl narr4 dmgl narrS dmg0O narr8 dmg0 narrl dmg0O
- =

L o o —

Figure 5.28: Examples of extreme damages in narrow width images.

e Pm2 disO narr8 dmg0: This damage is composed from high to normal pressure, extreme
distortion, tip both sides narrowing, and long sensor damage. Can be seen in Figure 5.28g.

e Pm2 disO narrl dmg0: This damage is composed from high to normal pressure, extreme
distortion, all sideways steady narrowing, and long sensor damage. Can be seen in
Figure 5.28h.

Differences between the scores of basic damages and these extreme ones are significant. On the
other hand, the difference between extreme damages in Oravec’s quality (can be seen in Figure 5.29)
is small. The only exceptions are “pm?2 disO narr4 dmg0”, whose median value is lower and “pm! disO
narr4d dmgl”, whose values are higher.

Results in the NFIQ score (Figure 5.30) are different as well. However, for the sake of damage
comparison it is not much. The only score that stands out are the minimal values for “pm2 disO narr4
dmgl” and “pm?2 disO narrd dmg0”.

The first metric where it would be possible to sort damages is the VeriFinger quality score
(Figure 5.31). The first damage is “pm?2 disO narr4 dmgl”, the second “pm?2 disO narrl dmgl”, and the
third is “pml disO narr5 dmg0”.

Oravec's Quality Score in Extreme Damages
100

95
90
85
80
75 -

70

Quality score

65

60 ®
55
50
45

40
no damage pm2 disO pm2 disO pm2 disO pm1 disO pm2 disO pm2 disO pm2 disO

Damage
narrd dmgl narrd dmg0 narrl dmgl narrd dmgl narr5 dmg0 narr8 dmg0O narrl dmg0

Figure 5.29: Graph of Oravec’s quality score in extreme damages (narrow).

71

NFIQ's Score in Extreme Damages

5 w w w w w w w
o 4
o
O
1%}
»n 3
g
[N
=z 2 I S S == = == == ==
1 a a a a a
Damage "° damage pm2 disO pm2 disO pm?2 disO pm1 disO pm2 disO pm2 disO pm?2 disO
narrd dmgl narrd dmg0 narrl dmgl narrd dmgl narr5 dmgO narr8 dmg0O narrl dmg0
Figure 5.30: Graph of NFIQ'’s score in extreme damages (narrow).
VeriFinger's Quality Score in Extreme Damages
100 - v
®
95 = * * °
. .
90
85 -’ == =
80 =
o
s 75
O
1%}
= 70
s
()
S 65 { { {
S °
60 () o [)
55
50
45
40
Damage N° damage pm2 disO pm2 disO pm2 disO pm1 disO pm2 disO pm2 disO pm2 disO

narrd dmgl narrd dmg0 narrl dmgl narrd dmgl narr5 dmg0 narr8 dmg0O narrl dmg0
Figure 5.31: Graph of VeriFinger’s quality score in extreme damages (narrow).

Same damages are at the top 3 in the comparison score (Figure 5.32) as well. Only order is
different — it is “pm2 disO narr4 dmg0” followed by “pm2 disO narr4 dmgl” and “pml disO narrd
dmgl”. By combining results it can be said that the best damage is “pm?2 disO narr4 dmgl” and “pm2
disO narr4 dmg0”. Based on the occurrences of damages in the chosen combinations it is certain that
dis0 is the most important (it appears in all combinations); the second in that regard is pm2 (in all but
one). On the contrary, dmg0 and dmgl are doing some damage, but because they are evenly spread they
are not so important. In the case of a narrow category, it could be said that narr4 and narrl are better
than others, but perhaps not so much. Basically, if the best of the individual damages are combined they
create one of the most damaging combinations. There are, of course, different weights for each damage

72

category. Some damages which were not so good individually could excel in combinations, but there is
no specific combination that would cooperate so well to make the result vastly better then looking at
parts of that combination.

VeriFinger's Comparison Score in Extreme Damages
2250

2000
1750
1500

1250

ty score

1000

Qual

750
500
250

0
Damage nodamage pmz2 disO pm2 disO pm2 disO pm1 disO pm2 disO pm2 disO pm2 disO
narrd dmgl narrd dmg0 narrl dmgl narrd dmgl narr5 dmg0 narr8 dmg0O narrl dmg0

Figure 5.32: Graph of VeriFinger’s comparison score in extreme damages (narrow).

554 Evaluation of Generated Normal Width Images

The evaluation of normal width images is following the same structure as the narrow one; first, the
basic damages evaluation and then extreme ones made by combinations of the basics. Graphs for each
quality metric with minimal, maximal, and median values are shown. The range of values for all graphs
is the same as in the previous subchapters. The main reason for this evaluation is that the larger area of
the fingerprint image could mean more minutiae points, and the quality measurement should also be
more precise with more data. Furthermore, these results can be more easily comparable with other
damages which are usually made to the normal width images.

5.54.1 Pressure and Moisture Damage Evaluation

Once again, Subchapter 5.4.1 holds all the important information and images of the evaluated damages.
In the previous evaluation, the pressure and moisture category was the second most important factor,
so it would be interesting if the same applies for the normal width images.

This metric (Figure 5.33) is almost identical to Figure 5.12. It follows that the conclusions are
the same as well. The most damage done is from pm2 (high to normal). Now the result is much clearer
as the difference in the score is higher. Regardless of the visual similarities with other damages, this
damage is objectively better.

73

Figure 5.34 and Figure 5.35 are non-unified NFIQ scores. It is unclear whether one of the
implementations is from a different version or if there were some changes made. The difference is in
pmA4 (normal to low) and pm5 (recurrent normal to low). One graph shows maximal values at 3 and 2
respectively, while the other one shows a value at 4. It can be said that pm0 (all low) and pm6 (slowly
high to low) are the worst damages here or, based on the first graph, that pm/ (extreme), pm2 (high to
normal), and pm3 (low to high to low) are the best ones. Examining of narrow damages shows that
NFIQ is not good as a separating factor, so this is not a big issue.

Oravec's Quality Score in Pressure and Moisture Damage
100

95

: :]

80
75
70

65

Quality score

60
55
50
45

40

Damage no damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.33: Graph of Oravec’s quality score in pressure and moisture damage (normal).

Oravec's NFIQ Score in Pressure and Moisture Damage

NFIQ's score
w

N

IDE! []

Damageno damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.34: Graph of Oravec’s NFIQ score in pressure and moisture damage (normal).

74

VeriFinger's NFIQ Score in Pressure and Moisture Damage

NFIQ's score
w

N

D E I

Damageno damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.35: Graph of VeriFinger’s NFIQ score in pressure and moisture damage (normal).

VeriFinger’s quality score (as can be seen in Figure 5.36) shows very similar median scores for
each damage. The lowest are pm3 (low to high to low) and pm6 (slowly high to low). What is worth
noting is the big gap in the minimal value of pm/ (extreme) and another interesting fact is that pm5
(recurrent normal to low) has a better quality than no damage.

VeriFinger's Quality Score in Pressure and Moisture Damage

100 - v v - v - - -

95 - - - + £ o == £
90
85
80

75

70 ® {] {]

65 { (]

Quality score

60

55

50 e
45

40

Damage no damage pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.36: Graph of VeriFinger'’s quality score in pressure and moisture damage (normal).

In Figure 5.37 there are three damages that have a very similar median score. It is pm/ (extreme)
that has the lowest minimal value along with pm3 (low to high to low) and pm0 (all low). In the bigger
picture, it is rather difficult to define the best damage for this category. The most was probably shown
by pml followed by pm3. Pm2 (high to normal), which was dominant in narrow images, was not so
successful in the normal width category. All damages have lower score than the no damage image.

75

VeriFinger's Comparison Score in Pressure and Moisture Damage
2250

2000
1750

1500

ty score
=
N
(O]
o

1000

Qual

750
500
250

0
Damagenodanmge pmO pml pm2 pm3 pm4 pm5 pm6

Figure 5.37: Graph of VeriFinger’s comparison score in pressure and moisture damage (normal).

5.54.2 Distortion and Damaged Sensor Damage Evaluation

Subchapter 5.4.3 has information and images for the damaged sensor and Subchapter 5.4.4 holds the
same information about the distortion. As usual, Oravec’s quality score in Figure 5.38 follows to start
the evaluation.

Total dominance over this metric is shown by disO (extreme). What is unexpected and different
is that there is a clear distinction between dmgO (long) and dmg (short). The better one being the dmg0,
as dmgl is exhibiting values very close to the no damage.

There were not a lot of interesting results in the NFIQ (Figure 5.39). It can be safely assumed
that the median of all normal width images will be in the first class of the metric. DisO (extreme) is only
damage which achieved different (better) results.

Also, in VeriFinger’s quality score (in Figure 5.40) disO (extreme) has a median value much
lower than other damages. What is interesting is that dmg0 (long) has a higher median score than no
damage (but lower minimal value). Dmg0O and dmgl (short) essentially have the exact opposite
evaluation than in the first metric.

Finally, there is VeriFinger’s comparison score (Figure 5.41) where damages are sorted from the
best in the left side (and no damage is an exception). DisO (extreme) is located where extreme damages
in the narrow images had been before. Dmg0 (long) and dmg1 (short) are very close together. In general,
once again dis0 is clearly the best damage of them all. Looking at the damaged sensor category the
dmg0 was getting a slightly better score all along, so that should be the better damage. With some small
exceptions, all damages have a lower quality score than the reference (no damage).

76

Oravec's Quality Score in Distortion and Damaged Sensor
100

95
90
85
80
75

70

Quality score

65
60
55
50
45

40

Damage M° damage disO disl dis2 dmg0 dmgl

Figure 5.38: Graph of Oravec’s quality score in distortion and damaged sensor (normal).

NFIQ's Score in Distortion and Damaged Sensor

NFIQ's score

| I 1 []

Damage M° damage disO disl dis2 dmg0 dmgl

Figure 5.39: Graph of NFIQ's score in distortion and damaged sensor (normal).

77

100

95

90

85

80

75

70

Quality score

65

60

55

50

45

40

Damage

VeriFinger's Quality Score in Distortion and Damaged Sensor

w w w w w w
(]
°
(]
()
{
()
no damage dis0 disl dis2 dmg0 dmgl

Figure 5.40: Graph of VeriFinger’s quality score in distortion and damaged sensor (normal).

2250

2000

1750

1500

ity score
=
N
ul
o

1000

Qual

750
500
250

0
Damage

VeriFinger's Comparison Score in Distortion and Damaged Sensor

®
®
(]
[)
no damage dis0 disl dis2 dmg0 dmgl

Figure 5.41: Graph of VeriFinger’s comparison score in distortion and damaged sensor (normal).

78

5.54.3 Narrow Damage Evaluation

Because of the high number of damages in this category, there will be two graphs for each quality
measurement. Both will be discussed at once. Example images and more information about narrow
basic damages can be found in Subchapter 5.4.2.

This metric (in the Figure 5.42 and Figure 5.43) exhibits identical scores for each damage with
two exceptions. That is narr4 (side zigzags) and narr2 (cutdown). The first of them is better than every
other damage and the second has a slightly better score than the no damage — which is bad.

NFIQ quality scores (in Figure 5.44 and Figure 5.45) show identical values for everything. Thus
contributing no useful information at all for the damage evaluation.

Median values of the next metric are shown in Figure 5.46 and Figure 5.47. They are also looking
very similar to each other. Narr4 (side zigzags) is essentially the only one better than the no damage.
Then there are narr3 (one side) and narr5 (tip bottom jumpy) — which are worse than the no damage.
Finally, there are several other damages which are basically at the same level as the reference.

In the comparison score (Figure 5.48 and Figure 5.49) there are all damages below the reference
no damage. Significantly better are only the narr4 (side zigzags) and narr5 (tip bottom jumpy). The
best damage in this category is without a doubt the narr4. But it is very sad that a lot of damages were
declared as the same quality as no damage. With these results it can be excepted that the narr4 will
later be a part of extreme damage combinations, but it would be more like voluntary damage.

Oravec's Quality Score in Narrow Damage Part 1
100

95
90
85
80
75

70

Quality score

65
60
55
50
45

40

Damage no damage narrO narrl narr2 narr3 narrd narr5

Figure 5.42: Graph of Oravec’s quality score in narrow damage — part 1 (normal).

79

Oravec's Quality Score in Narrow Damage Part 2
100

95
90
85
80
75

70

Quality score

65
60
55
50
45

40

Damage no damage narré narr7 narr8 narr9 narrl0

Figure 5.43: Graph of Oravec’s quality score in narrow damage — part 2 (normal).

NFIQ's Score in Narrow Damage Part 1

NFIQ's score

R G G 5 G S (R S G G

Damage no damage narrO narrl narr2 narr3 narrd narr5

Figure 5.44: Graph of NFIQ'’s quality score in narrow damage — part 1 (normal).

80

NFIQ's Score in Narrow Damage Part 2

NFIQ's score

I S 5 S S S G

Damage no damage narré narr7 narr8 narr9 narrl0

Figure 5.45: Graph of NFIQ's quality score in narrow damage — part 2 (normal).

VeriFinger's Quality Score in Narrow Damage Part 1

100 w A 4 w w w w A 4

95 - - - - == ==
90
85
80

75

70

Quality score

65 { ®]
60
55
50
45

40
Damage "° damage narr0 narrl narr2 narr3 narr4 narrs

Figure 5.46: Graph of VeriFinger’s quality score in narrow damage — part 1 (normal).

81

VeriFinger's Quality Score in Narrow Damage Part 2

100 w A 4 w A 4 v v

95 - = - = - =
90
85
80

75

70 ®

Quality score

65 ® ® ®)
60
55
50
45

40

Damage no damage narré narr7 narr8 narr9 narrl0

Figure 5.47: Graph of VeriFinger’s quality score in narrow damage — part 2 (normal).

VeriFinger's Comparison Score in Narrow Damage Part 1
2250

2000
1750
1500

1250

ty score

1000

Qual

750
500
250

0

Damage no damage narrO narrl narr2 narr3 narr4 narr5

Figure 5.48: Graph of VeriFinger’s comparison score in narrow damage — part 1 (normal).

82

2250

2000

1750

1500

ity score

Qual

1250

1000

750

500

250

0

VeriFinger's Comparison Score in Narrow Damage Part 2

Damage no damage narré narr7 narr8 narr9 narrl0

5.54.4

Figure 5.49: Graph of VeriFinger’s comparison score in narrow damage — part 2 (normal).

Extreme Damages

The same information applies from the Subchapter 5.5.3.4. Once again 172,800 images were generated,

with 1,152 different impressions on one image. The seven best combinations based on the frequency

and order in the lists were used. The lists were obtained by individual metrics sorted by median and

minimal (or maximal in NFIQ) values. Without any further delays, these are the seven damages that

were chosen for normal width images:

Pm2 dis0 narr4d dmgl: This damage is composed of high to normal pressure, extreme
distortion, side zigzag narrowing, and short sensor damage and can be seen in Figure 5.50b.

Pm2 dis0 narr4: This damage is composed of high to normal pressure, extreme distortion, and
side zigzags narrowing and can be seen in Figure 5.50c.

Pm2 dis0 narrd dmg0: This damage is composed of high to normal pressure, extreme
distortion, side zigzags narrowing, and long sensor damage and can be seen in Figure 5.50d.

Pm3 dis0 narrd dmgl: This damage is composed of low to high to low pressure, extreme
distortion, side zigzags narrowing, and short sensor damage and can be seen in Figure 5.50e.

Pm1 dis0 narr4 dmg1: This damage is composed of extreme pressure, extreme distortion, side
zigzags narrowing, and short sensor damage and can be seen in Figure 5.50f.

Pm2 dis0 narr0 dmgl: This damage is composed of high to normal pressure, extreme
distortion, all sideways sharp narrowing, and short sensor damage and can be seen in
Figure 5.50g.

83

e Pm2 dis0 narr5 dmgl: This damage is composed of high to normal pressure, extreme
distortion, tip bottom jumpy narrowing, and short sensor damage and can be seen in

Figure 5.50h.
a) b) c) d)
no damage pm2 disO narr4 dmgl pm?2 disO narr4 pm2 disO narr4 dmg0
Z —

pm?3 disO narr4 dmg1 pml disO narrd dmgl pm?2 disO narrO dmg1 pm?2 disO narr5 dmgl
~ ~

\
\

Figure 5.50: Examples of extreme damages in normal width images.

All damages are in the Oravec metric (Figure 5.51) quite below the no damage values. In the
minimal values, the “pm2 disO narr4 dmg1” is the lowest; however, what really stands out is the median
value of “pm2 disO narr4 dmg0”, which is quite low in comparison with the others.

Almost all of these combinations were able to get their median value one class higher than the
no damage in NFIQ metric (Figure 5.52). The only exceptions are “pm3 disO narr4 dmgl” and “pml
disO narr4 dmgl”. Excellent damage from the previous metric “pm?2 disO narr4 dmg0” is the only one
whose maximal value is not the worst fifth class.

In Figure 5.53, results from VeriFinger’s quality can be seen. First damage “pm?2 disO narr4
dmgl” stands out in all values. Close to its minimal and median results is the “pm3 disO narr4 dmgli”,
and the similar median value has “pml! disO narrd dmgl”.

84

Oravec's Quality Score in Extreme Damages
100

95
90
8<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>