
 



 



 



 



 



ABSTRACT 
This thesis explores the application of deep neural networks to improve the evaluation of 

metallographic cross-sections in materials produced through powder bed fusion. It focuses 

on two advanced image processing techniques: semantic segmentation and image super-

resolution. A U-Net architecture was used for semantic segmentation to classify defects such 

as lack of fusion porosity and gas porosity. Additionally, an SRGAN (Super-Resolution 

Generative Adversarial Network) model was utilized to upscale image resolution, potentially 

enhancing segmentation accuracy. The research assesses whether a model trained on 

AlSi10Mg can generalize to Cu99 and Ti6Al4V and evaluates the influence of super-

resolution on segmentation performance. Results showed that while the segmentation model 

performed well on AlSi10Mg, generalization to other materials required more diverse 

training data. Due to computational limitations, the combined effect of super-resolution and 

segmentation remains inconclusive, suggesting further research with enhanced 

computational resources. 

KEYWORDS 
deep neural networks, semantic segmentation, super-resolution, metallographic cross-

sections, powder bed fusion, additive manufacturing, U-net, SRGAN, image processing, 

machine learning 

ABSTRAKT 
Táto diplomová práca skúma aplikáciu hlbokých neurónových sietí pre vylepšenie 

hodnotenia metalografických výbrusov pre materiály vyrobené pomocou aditívnej výroby. 

Zameriava sa na dve pokročilé techniky spracovania obrazu: sémantickú segmentáciu 

a super-rozlíšenie obrazu. Na sémantickú segmentáciu bola použitá architektúra U-Net pre 

klasifikáciu defektov, ako sú dva typy pórov. Okrem toho bol použitý model SRGAN 

(Super-Resolution Generative Adversarial Network) pre zvýšenie rozlíšenia obrazu, čo 

potenciálne zlepšuje presnosť segmentácie. Výskum hodnotí, či model trénovaný na 

AlSi10Mg môže dostatočne dobre vyhodnocovať materiály Cu99 a Ti6Al4V. Zároveň 

hodnotí vplyv super-rozlíšenia na výkonnosť segmentácie. Výsledky ukázali, že zatiaľ čo 

model segmentácie dosahoval dobré výsledky na AlSi10Mg, generalizácia na iné materiály 

vyžaduje diverzifikovanejšie tréningové dáta. V dôsledku výpočtových obmedzení zostáva 

kombinovaný efekt super-rozlíšenia a segmentácie nejednoznačný, čo naznačuje potrebu 

ďalšieho výskumu s výkonnejšími výpočtovými zdrojmi. 

KĽÚČOVÉ SLOVÁ 
hlboké neurónové siete, sémantická segmentácia, super-rozlíšenie, metalografické výbrusy, 

aditívna výroba, U-net, SRGAN, spracovanie obrazu, strojové učenie 
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1 INTRODUCTION 

Computer vision is a topic that studies how to obtain visual information of world around us 

to help computers understand it better. With rise of deep learning, since 2012, these methods 

based on neural networks managed to significantly improve the state-of-art in object 

detection, object recognition and segmentation that can nowadays outperform human experts 

in their fields [1]. 

For evaluation and optimization of process parameters in metal additive manufacturing, 

different parameters are used. These are nowadays still obtained from metallographic cross-

sections by simple image processing methods like threshold-based segmentation or edge-

based segmentation. These methods are often sensitive to noise, imperfections, or more 

complicated textures of cross-sections. 

Applications in metallography of metal additive manufacturing leads to the application of 

neural networks and deep learning, for the goal of improving materials and process 

parameters [2]. 

First, I need to point out that there are three major approaches to deep learning. 

▪ Deep supervised learning - This method works with data labelled by humans. That 

means that we ‘teach the model’ iteratively by providing input and wanted output, so 

it can than predict outcome of out-of-sample data by itself. Generally, this approach 

is simpler and more transparent in terms of coding and understanding its behavior.  

▪ Deep unsupervised learning - This technique can be used to make model learn by 

itself. That means that models can automatically find connections between input and 

output data.  

▪ Deep semi-supervised learning - This approach is both mentioned techniques 

together. At the beginning the model is trained on labelled data and then it can learn 

by itself from out-of-sample data. For example, the most popular application of this 

method is text document classifier [3]. 

Semantic segmentation is used for pixel level image classification. Output of semantic 

segmentation neural network is classification map with information about which pixel 

belongs to which instance [4]. Luengo et. al. has recently tested deep learning approaches of 

supervised, unsupervised, and semi-supervised learning for this approach of semantic 

segmentation of metallographic images and shown, that deep supervised learning 

outperforms unsupervised and semi-supervised techniques [2]. That is the reason why I am 

focusing only on supervised learning methods in this thesis. 
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Image super-resolution is a deep learning-based method for upscaling image resolution to 

enhance image quality and details. Super-resolution has shown great success in the past years 

and this technique is suitable for use in metallographic analysis with the goal of extracting 

more details from image samples, by taking images with lower resolution. Generally, the 

main aim of image super-resolution is to enhance image resolution and image quality to 

human visual system. That’s why there are many studies centered around this purpose. 

However, previous studies have shown that this approach can be helpful for many different 

computer vision tasks. Especially GAN (Generative Adversarial Network) based super-

resolution techniques are aiming to recover sharp edges of image instances. That is the 

reason why I am going to focus on GAN based, supervised super-resolution techniques in 

this thesis [5]. 

The goal of this thesis is to use deep learning based neural network algorithms for evaluation 

of metallographic cross sections. This approach should bring more information from the 

image of cross-sections and provide better understanding of what is happening inside of 

material during 3D printing with powder bed fusion process. 
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2 STATE OF THE ART 

2.1 Systematic review methods 

The aim of this review was to provide the most reliable and the most suitable publications 

for further development of diploma theses. Review should bring new knowledge about 

applications of Super-resolution and Semantic Segmentation in the field of metallographic 

image processing and evaluation. For this purpose, I have used principles of preferred 

reporting items for systematic reviews and Meta-Analyses (PRISMA). The step-by-step 

process of this approach is shown in PRISMA diagram (Fig. 2-1). 

 

Fig. 2-1 PRISMA diagram. 



 

17 

I have created research questions (Q) shown in Tab. 2-1 to guide the review process. Q1 was 

created to find most recent articles about research in metallography of additive 

manufacturing to find out if anyone recently used deep learning or any kind of more 

sophisticated method to evaluate additive manufactured materials. Q2 discusses recent 

applications of deep learning with Semantic Segmentation and Super-Resolution in 

metallography. Q3 surveys whole area of neural networks for Semantic Segmentation. 

Similarly, Q4 discusses the area of image Super-Resolution. 

Tab. 2-1 Research questions for systematic review. 

Id Issue 

Q1 
What methods are used for evaluating metallographic cross sections made by additive 
manufacturing? 

Q2 
Are there any applications of Semantic Segmentation or Super-Resolution in 
metallography? 

Q3 What types of neural network architectures are used for Semantic Segmentation? 

Q4 What types of neural network architectures are used for image Super Resolution? 

 

After I created research questions, keywords were generated to each question for database 

searching. Then I defined the search string to each research question using basic Boolean 

operators, keywords, and their synonyms. As a searching database, Web of Science was 

chosen and I have focused on review articles, journal articles and conference proceedings. 

The idea was to find many results with smaller search string and then iteratively improve 

and trim results to smaller numbers by adding more keywords and Boolean operators. Final 

research strings with their number of results are shown in Tab. 2-2. 

Tab. 2-2 Search strings for systematic review. 

Id Issue Results 

Q1 
("metal printing" OR "metal additive manufacturing" OR "metal 3D printing") AND 
("evaluation" OR "analysis") AND ("metallurgy" OR "metallography") 

16 

Q2 
("metallography" OR "metallurgy") AND ("neural networks" OR "deep learning" OR 
"machine learning") AND applications AND ("picture" OR "image" OR 
"photography") 

18 

Q3 
("neural networks" OR "deep learning" OR "machine learning") AND ("semantic 
segmentation" OR "instance segmentation") AND "network* architecture*" AND 
pixel 

63 

Q4 
("neural networks" OR "deep learning" OR "machine learning") AND "single image* 
super-resolution" AND "network* architecture*" 

41 

 



 

18 

After I have identified records to all research questions, they were screened by reading their 

titles and abstracts. I have mainly focused on finding results that are relevant in finding 

answers to research questions and I have selected 18 articles. 

Then I proceeded to full-text articles. At first, I provided bibliometric information about each 

paper, to have some first idea about authors and journals before I started reading articles. I 

have provided impact factor and quartile of journal, where the article was published same as 

number of citations of article. These bibliometric data is shown in Tab. 2-3. Overall, after 

reading full-text articles, 15 publications were selected for this systematic review. 
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Tab. 2-3 Selected publications sorted by number of citations. 

Publication Type  IF Quart. Year Cit. 

Photo-realistic single image super-resolution using a generative 
adversarial network [6] 

Conf.   2017 3146 

ESRGAN: Enhanced super-resolution generative adversarial 
networks [7] 

Conf.   2019 252 

Review of deep learning: concepts, CNN architectures, challenges, 
applications, future directions [3] 

Review 
article 

11.1 Q1 2021 115 

High throughput quantitative metallography for complex 
microstructures using deep learning: A case study in ultrahigh 
carbon steel [8] 

Journal 
article 

4.1 Q2 2019 66 

Metallurgy, mechanistic models and machine learning in metal 
printing [9] 

Review 
article 

66.3 Q1 2021 61 

A Metallographic Review of 3D Printing/Additive Manufacturing of 
Metal and Alloy Products and Components [10] 

Review 
article 

1.3 Q2 2018 50 

Deep Learning for Semantic Segmentation of Defects in Advanced 
STEM Images of Steels [11] 

Journal 
article 

4.4 Q1 2019 38 

Resolution enhancement in scanning electron microscopy using 
deep learning [12] 

Journal 
article 

4.4 Q1 2019 35 

A review of deep learning methods for semantic segmentation of 
remote sensing imagery [4] 

Review 
article 

7 Q1 2021 34 

Deep Learning-Based Weld Contour and Defect Detection from 
Micrographs of Laser Beam Welded Semi-Finished Products [13] 

Journal 
article 

2.7 Q2 2022 7 

A generic high-throughput microstructure classification and 
quantification method for regular SEM images of complex steel 
microstructures combining EBSD labeling and deep learning [14] 

Journal 
article 

8.1 Q1 2021 5 

Real-world single image super-resolution: A brief review [5] 
Review 
article 

13 Q1 2022 3 

A deep learning method for extensible microstructural quantification 
of DP steel enhanced by physical metallurgy-guided data 
augmentation [15] 

Journal 
article 

4.3 Q1 2021 0 

A tutorial on the segmentation of metallographic images: 
Taxonomy, new MetalDAM dataset, deep learning-based ensemble 
model, experimental analysis and challenges [2]  

Journal 
article 

13 Q1 2022 0 

Super-resolution reconstruction, recognition, and evaluation of 
laser confocal images of hyperaccumulator Solanum nigrum 
endocytosis vesicles based on deep learning: Comparative study 
of SRGAN and SRResNet [16] 

Journal 
article 

5,6 Q1 2023 0 
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2.2 Critical systematic review 

2.2.1 Metallography and machine learning in additive manufacturing 

Murr L reviewed recent progress in metallography of additive manufactured materials [10]. 

DebRoy T et. al. recently pointed out that machine learning has been already widely used in 

additive manufacturing for different tasks by the goal of improving process parameters, 

tailoring microstructures and properties or defect reduction [9]. 

2.2.2 Semantic segmentation in metallography 

In past years there have been some applications of deep convolutional neural network 

architectures for Semantic Segmentation in metallography that I need to point out here.  

DeCost et. al. applied PixelNet [17] segmentation architecture, aiming to teach this model 

to find phases of ultrahigh carbon steel. This architecture can learn representation of each 

pixel of image fast, so it is suitable for smaller datasets. At the same time, they were 

experimenting with popular U-Net [18] architecture but they found out that it slightly 

underperformed PixelNet architecture. They were comparing two kinds of training loss 

functions. Standard cross-entropy loss and focal loss, which is designed for unbalanced 

datasets [8]. 

For training they used 24 manually annotated grayscale micrographs from their own open-

sourced UHCS (Ultra High Carbon Steel) dataset [19]. For image labelling they used 

Medical Imaging Interaction Toolkit (MITK) [20] which is open-source image and voxel 

mesh annotating tool, mainly developed for medical use. Micrographs had 645x484 pixels 

and we can see their examples on Fig. 2-2. To extend the size of the dataset, they used 

common data augmentation techniques. They used random rotation in range [0, 2π), vertical 

and horizontal flip, scaling in range [1,2], and a ±5% random intensity shift [8]. 

 

Fig. 2-2 Examples of UHCS dataset (a-d) micrographs, (e-h) labeled data [8]. 
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They classified 4 different instances of ultrahigh carbon steel (matrix, network, spheroidite, 

widmanstatten). To evaluate performance, they used pixel accuracy (PA) region intersection 

over union (IoU), precision and recall. Overall, they managed to obtain an average PA of 

91,1% with their best approach with cross-entropy loss function [8]. 

Roberts G et. al. wasn’t using already created architecture. They created own model called 

DefectSegNet for Semantic Segmentation of three common metallographic defects in 

structural alloys: dislocation lines, voids, and precipitates. DefectSegNet draws inspiration 

from the well-known U-Net architecture. It incorporates skip connections both within and 

across blocks, which is the main difference from the traditional U-Net architecture. This 

modification has been found advantageous for their specific use case. [11]. 

To generate data for further training they used diffraction contrast imaging with scanning 

transmission electron microscope, and they used 250 000× magnification and 2048×2048 

pixels image size. They manually labelled 2 micrographs of this size. On Fig. 2-3 is shown 

how they augmented dataset by splitting each of two micrographs to 3 training subsets (each 

1024×1024 pixels), one development (validation) set and one test set (each 1024×512 

pixels). Then they rotated each image of training subsets by 0.5π, π and 1.5π and finally 

flipped every rotated image horizontally. In total they generated 48 of 1024×1024 labelled 

images in training subset [11]. 

 

Fig. 2-3 Indication of (a) division and (b) augmentation of a pre-processed images [11]. 

They have used PA, precision, recall and IoU as evaluation metrices. They have managed to 

obtain over-all average of 94,6% PA and 61,79 IoU [11]. 

Shen C et. al. used mentioned U-Net [18] model, due to its great performance on small 

datasets, to find correlation between regular scanning electron microscope image and image 

of same frame taken by electron backscattered diffraction (EBSD), which is method of 

providing information about crystal orientation, structure, strain, or phase of structural 

materials [14]. 
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Available input images came from two engineering steels. Dual-phase steel (austenite and 

martensite) and quenching and partitioning steel (ferrite, martensite and retained austenite. 

From these two steels they created two datasets. In the first dual-phase steel dataset, they 

created 248 images of 128×128 pixels. For quenching and partitioning steel dataset, they 

created 726 images of 128×128 pixels. Examples of images from dataset are shown on Fig. 

2-4. For these two datasets they used similar augmentation method as have been mentioned 

(flipping and random cropping) and they increased amount of data in datasets to 1914 dual-

phase (DP) steel paired pictures and 6048 quenching and partitioning (Q&P) steel paired 

pictures [14]. 

 

Fig. 2-4 (a) dual-phase steel, (b) electron backscattered diffraction image of dual-phase steel, (c) quenching 

and partitioning steel, (d) electron backscattered diffraction image of quenching and partitioning 

steel [14]. 

For evaluation, they used PA and IoU, achieving averages of 85.4% and 75.5%, respectively. 

Same authors with same research group Shen C et. al. in their second work were using same 

U-Net [18] architecture to quantify grain size and fractions of martensite and ferrite in dual-

phase steels. 

They used field emission scanning electron microscopy with 1000× magnification to obtain 

micrographs. This time they focused on dual-phase steel with martensite and ferrite. In the 

dataset they had 100 subimages in total for model training subset and 40 subimages for 

testing subset, and all of them had 128×128 pixels. As before, they used similar dataset 

augmentation methods (random rotation, transformation, brightness adjustment). In total, 

they generated 2000 subimages for the training subset. Examples are shown on Fig. 2-5 [15]. 
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Fig. 2-5 a) Blend of SEM image and segmentation results, b) segmentation results, c) ground truth [15] 

They have obtained an average of 93,1% PA and 88,2% IoU [15]. 

Luengo J et. al. recently published paper in which they tested different approaches and 

architectures. They were aiming to test different models of semantic segmentation for 

finding phases, precipitates, and defects of steel. They even tested unsupervised and semi-

supervised deep learning methods, but the best performance had supervised learning. 

Unsupervised and semi-supervised learning approaches were not able to perform well, and 

they were not able to learn feature representations by themselves. They used nine different 

architectures for supervised deep learning: DeepLabv3, DeepLabv3+, FPN, Linknet, PAN, 

PSPNet, Unet, Unet++, PixelNet. 

They used two different datasets to compare results. They used earlier mentioned UHCS 

[19] dataset and their own MetalDAM dataset, which was obtained with scanning electron 

microscope with 1280×895 and 1024×703 image resolution. These micrographs of steel 

have been generated from additive manufactured steel samples. They used data 

augmentation (vertical flip, horizontal flip, vertical and horizontal flip) for extending dataset 

size. Example of MetalDAM dataset is shown on Fig. 2-6 [2]. 

  

a) 

b) 

c) 
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Fig. 2-6 Example of MetalDAM dataset. Left: original image. Right: labeled ground truth image [2]. 

They have concluded that U-net and U-net++ performed the best on tested datasets and they 

achieved average of 91,15% PA and 73,12% IoU with U-net++ architecture [2]. 

Nowroth C et. al., used deep learning semantic segmentation architecture DeepLabv3+ and 

software MATLAB for segmentation of microscopic images of laser beam welding seams 

for quantitative evaluation of welded contact. They have tested different model training 

parameters like type of optimization algorithm, amount of data used for training and image 

resolution [13]. 

They used optical microscopy to create their own large resolution micrographs for training. 

For labeling of 5 investigated classes, they used a tool Image Labeler which is a built-in tool 

in software MATLAB. After the training, they randomly split dataset into training, 

validation, and test set. Example of image pair is shown on the Fig. 2-7 [13]. 
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Fig. 2-7 Original image, labeled image and class differentiation [13]. 

They used only IoU for performance evaluation and they achieved average of 76,88% [13]. 

Performance evaluation of segmentation architectures  

Evaluation of trained network is done on validating subset during the training of the network, 

and on the end, final model in evaluated on the test subset. First, segmentation map is created 

with trained network, and then it is compared with manually labelled ground truth image. 

For performance evaluation in Semantic Segmentation there are two main evaluation 

metrices commonly used. Generally, the higher value of chosen metric is, the network 

performs better.  

▪ Pixel accuracy (PA): overall ratio of correctly predicted pixels. 

 
𝑃𝐴 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

▪ Region Intersection over Union (IoU): Fraction of pixels that are correctly 

predicted to the union of pixels that are positive predications and belong to the target 

class. It punishes both overevaluation and undervaluation. For better understanding 

of IoU see Fig. 2-8. 

 
𝐼𝑜𝑈 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(2) 
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Fig. 2-8 Region Intersection over Union 

These metrices are calculated for each segmented class separately and then, overall metric 

is calculated as average of them. To simplify evaluation, mistake matrix is used, and her 

values are shown in Tab. 2-4. 

Tab. 2-4 Values of mistake matrix. 

Type Meaning 

TP - True positive Number of correctly predicted pixels of segmented instance. 

TN - True negative Number of correctly predicted pixels of background. 

FP - False positive Number of incorrectly predicted pixels of segmented instance. 

FN - False negative Number of incorrectly predicted pixels of background. 

Summarization of all semantic segmentation applications and their performances is shown 

in Tab. 2-5.   
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Tab. 2-5 Summarization of semantic segmentation applications and their performance. 

Publication Architecture Dataset PA [%] IoU [%] 

Shen C et. al. [14] U-Net 
DP 90.1 ± 5.8 83.2 ±9.3 

(Q&P) 85.4 ± 5.1 75.5 ± 6.5 

De Cost et. al. [4] 

Pixelnet -  
focal loss 

UHCS 

- 62.6 ± 2.5 

Pixelnet -  
crossentropy 
loss 

- 75.4 ± 3.7 

Roberts G et. al. [11] DefectSegNet Custom 96.61 ± 1.13 61.79 ± 2.13 

Shen C et. al. [15] U-Net  93.1 ± 3.1 88.2 ± 3.2 

Nowroth C et. al. [13] DeepLabv3+ Custom  76,88 

Luengo J et. al. [2] 

DeepLabv3 
UHCS 87.76 62.15 

MetalDAM 81.03 56.69 

DeepLabv3+ 
UHCS 90.18 69.69 

MetalDAM 84.86 61.38 

FPN 
UHCS 89.44 68.00 

MetalDAM 85.29 61.24 

Linknet 
UHCS 88.7 67.75 

MetalDAM 84.69 55.36 

PAN 
UHCS 88.4 64.68 

MetalDAM 84.44 58.24 

PSPNet 
UHCS 88.2 63.33 

MetalDAM 79.09 53.44 

Unet 
UHCS 91.15 72.45 

MetalDAM 86.33 59.95 

Unet++ 
UHCS 91.15 73.12 

MetalDAM 87.04 61.49 

Pixelnet 
UHCS 90.77 70.79 

MetalDAM 84.07 51.41 
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2.2.3 Single image super-resolution 

Super-resolution is used for many different tasks, but not often in microscopy and 

metallography yet. That’s why I have reviewed few other papers that are focusing on 

development of GAN (Generative Adversarial Network) based and supervised approaches 

of image super-resolution [21]. 

Super-resolution architectures 

Ledig C et. al created resolution enhancing architecture called SRGAN (Super-Resolution 

Generative Adversarial Network). Architecture was built from two different neural networks 

called: Generator and Discriminator. These two networks have been trained simultaneously 

against each other. Within training, they were comparing 3 different loss functions: MSE 

(mean square error), VGG22 and VGG54 loss [6]. 

They performed training on ImageNet dataset which contains 350 000 high resolution (HR) 

images. For validation of network performance, they used four different benchmark datasets 

already created for the purpose of development and researching image super-resolution 

architectures. They used Set5, Set14 and BSD100 dataset. All experiments were performed 

with 4× scale factor between low and high-resolution images. For evaluation, they used 

common image comparison metrices PSNR (peak signal-to-noise ratio) and SSIM (structure 

similarity index) which will be further explained in next section. Examples of results of the 

work are shown on Fig. 2-9. They managed to get 30,64 dB of PSNR and 0,8701 of SSIM 

with their best performing approach [6]. 

 

Fig. 2-9 Left to right, Bicubic Interpolation deep residual network, deep residual generative adversarial 

network, original high-resolution image. Corresponding PSNR and SSIM in brackets (4x upscaling) 

[6]. 

Wang X et. al. followed up on previous work and created architecture called ESRGAN 

(Enhanced Super-Resolution Generative Adversarial Network). They made modifications to 

this previous network by removing batch normalization layers and adding some other layers 

to the network [7]. 



 

29 

They trained network on DIv2K, Flickr2K and Outdoor Scene Training datasets used for 

development models for image super-resolution. For evaluation of network performance, 

they used Set5, Set14, BSD100, Urban100 and PIRM datasets. For evaluation they used only 

PSNR. Example of results and comparison of their work with other state-of-the art methods 

is shown on Fig. 2-10. They were able to get highest PSNR from 20dB to 30dB depending 

on the images in dataset [7]. 

 

Fig. 2-10 Results of ESRGAN compared with different methods [7]. 

De Haan et. al. applied GAN based image super-resolution network with the aim of 

enhancing images made by scanning electron microscopy. They created their own 

architecture built from generator and discriminator [12]. 

They used scanning electron microscopy to create high resolution images. They used the 2× 

scale factor between low and high-resolution images. Training image pairs were created by 

taking high resolution images and then by lowering magnification of microscope and 

capturing low resolution (LR) image with same field of view example of result of their work 

is shown on Fig. 2-11 [12]. 



 

30 

 

Fig. 2-11 Examples of up-scaled hydrogel. From left, input low resolution image, output of neural network, 

original high-resolution image [12].  

Li et. al. used two types of image resolution enhancing architectures (SRGAN and 

SRResNet) to enhance images of biological cells. The images were obtained by laser 

confocal microscopy. These super-resolution techniques enhanced the boundaries of the 

image instances. They also clarify that they managed to enhance the mean fluorescence 

intensity which brought more embedded information in laser confocal images. Authors also 

clarify that with this method, high resolution SEM (scanning electron microscope) images 

can be taken faster with reduction both electron charging and damage to the samples [16]. 

They used 8294 images from confocal laser scanning microscopy. The dataset was split to a 

training set and test set in ratio 100/45. Result of their work is shown on Fig. 2-12. They 

have achieved 37.47 dB of PSNR and 0.94 of SSIM with SRGAN model [16]. 
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Fig. 2-12 (A) Original image (1024x1024 pixels) and local magnification (102x102 pixels), (B) SRGAN image 

(4096x4096 pixels) and local magnification (410x410 pixels), SRResNet image (4096x4096 pixels) 

and local magnification (410x410 pixels) [16]. 

Performance evaluation 

For performance evaluation of image restoration, image super-resolution and in general for 

comparison of two images, there have been developed many different metrices: MOS PSNR, 

SSIM, IFC, LPIPS, NIQE, PIQE and NRQM [22]. In screened publications, PSNR, SSIM 

and MOS are mainly used. 

▪ PSNR (peak signal-to-noise ratio): This metric evaluates the pixel level intensity 

between original high-resolution image and generated high-resolution image. It is 

defined in decibels (dB) and higher value indicates less distortion and better quality 

of generated image. PSNR between reference image of ground truth 𝑓 and test image 

𝑔 both of size 𝑊𝑥𝐻 pixels is then calculated as [23]: 

 
𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10𝑙𝑜𝑔10(

2552

𝑀𝑆𝐸(𝑓, 𝑔)
) 

(3) 

where MSE is: 

 

𝑀𝑆𝐸(𝑓, 𝑔) =
1

𝑊𝐻
∑∑(𝑓𝑖𝑗 − 𝑔𝑖𝑗)

2

𝑁

𝑗=1

𝑀

𝑖=1

 

(4) 
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▪ SSIM (structure similarity index): This metric does not evaluate pixel level but 

considers whole image region. It evaluates generated high-resolution image with 

original image in terms of structure, brightness, and contrast. It produces scores in 

range [–1, 1], where 1 represents a perfectly similar image. SSIM is defined as [23]: 

 𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔) (5) 

where: 

 

{
 
 

 
 𝑙(𝑓, 𝑔) =

2𝜇𝑓𝜇𝑔+𝐶1

𝜇𝑓
2+𝜇𝑔

2+𝐶1

𝑐(𝑓, 𝑔) =
2𝜎𝑓𝜎𝑔+𝐶2

𝜎𝑓
2+𝜎𝑔

2+𝐶2

𝑠(𝑓, 𝑔) =
𝜎𝑓𝑔+𝐶3

𝜎𝑓𝜎𝑔+𝐶3

 

 

(6) 

The first term in equation (5) is the luminance comparison function, which measures 

the closeness of the mean luminance of two images, denoted as 𝜇𝑓 and 𝜇𝑔. The 

second term compares the contrast of two images where contrast is measured with 

standard deviation 𝜎𝑓 and 𝜎𝑔. The third term is structure comparison function which 

measures correlation between two images. Constants 𝐶1, 𝐶2 and 𝐶3 are positive 

numbers used to avoid division by zero [23]. 

 

▪ MOS: This metric is created as a score by observation of professionals in related 

fields who observe the pictures with their eyes. They give a score in range [1,5] where 

larger the number is, the better the quality of the image is [21]. 

 Tab. 2-6 shows performance metrices of mentioned publications. 

Tab. 2-6 Summarization of image super-resolution applications and their performance. 

Publication Model Dataset PSNR [dB] SSIM MOS 

Ledig C et. al [6] SRGAN 

Set5 29.4 0.8472 3.58 

Set14 26.02 0.7397 3.72 

BSD100 25.16 0.6688 3.56 

Wang X et. al. [7] ESRGAN 
Set14 26.4   

BSD100 27.69   

Li et. al. [16] 
SRGAN 

Custom 
37.47 0.94 3.89 

SRResNet 39.3 0.97 3.62 
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2.3 Review of selected neural network architectures 

2.3.1 U-net for Semantic Segmentation 

U-net architecture 

Ronneberger et. al. first presented U-net architecture for segmentation of biological images. 

They managed to develop a network which can learn from only a small number of images. 

They used strong augmentation of initial small dataset and managed to outperform other 

segmentation architectures. Architecture is shown on Fig. 2-13 [18].  

U-net architecture consists of two main parts. Contraction path (encoder) which captures 

context of features on image and expansion path (decoder) which enables localization of 

features. The encoder part consists of typical convolutional layers each followed by reflected 

linear unit (ReLu) and max pooling operation. Each down-sampling step, the number of 

feature channels is doubled. In the decoder side of U-net, each step consists of up-sampling 

of features followed by convolution so called up-convolution, which reduces the number of 

feature channels by half. Each step of the decoder is connected to the encoder using a 

cropped feature map from the encoder. On the final output layer, convolution is used to map 

each feature to desired number of segmented classes [18]. 

 

Fig. 2-13 The U-net architecture, features blue boxes that represent multi-channel feature maps. The number 

of channels is noted above each box, and the x-y dimensions are displayed at the lower left corner. 

White boxes indicate copied feature maps, and arrows show the different operations [18].  
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Training loss functions 

As researchers pointed out in section 2.2.2, it is important to try different loss functions 

during the training. Also, Jadon S recently reviewed loss functions for semantic 

segmentation tasks. Loss functions in general provide a measure of how well the model's 

predictions match the expected outputs, guiding the training process through optimization. I 

have chosen two widely used loss functions for training of segmentation architectures also 

mentioned in 2.2.2. I have chosen categorical cross entropy loss function and categorical 

focal loss function [24]. 

▪ Categorical cross entropy loss function: It aims to minimize the difference between 

the predicted probability and the actual label for each pixel across all classes. It is 

ideal for tasks where each pixel belongs to one of several classes, and the classes are 

mutually exclusive. 

▪ Categorical focal loss function: It focuses more on hard-to-classify pixels (where 

the model is unsure) and less on easy cases where the model is already performing 

well. It is useful in scenarios where there is a significant class imbalance, such as in 

medical imaging or metallographic imaging [25]. 

2.3.2 SRGAN for image Super-Resolution 

From section 2.2.3 we have chosen SRGAN architecture for experimenting in this thesis. 

This architecture is based on GAN networks which consist of generator network and 

discriminator network. These two networks are trained together during the training process. 

The generator network is trying to generate new images from input low resolution image, 

and discriminator then tried to recognize if the generated image is real or fake. This means 

that generator is trying to learn how to fool discriminator and discriminator is trying to learn 

how to recognize if the generated image is real or fake. This approach is shown on 

schematics on Fig. 2-14. After every training iteration, trainable parameters of networks 

(weights and biases) are updated. After training, only generator network is used for high 

resolution image generation [21]. 
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Fig. 2-14 Schematics of training process of GAN based image super-resolution neural networks. 

Structure of SRGAN architecture proposed by Ledig et. al is shown on Fig. 2-15. 

 

Fig. 2-15 Generator and Discriminator Network of SRGAN with corresponding kernel size (k), number of 

feature maps(n) and stride (s) indicated for each convolutional layer [6]. 
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2.4 Systematic review summarization and knowledge gap 

In this section, we will focus on addressing the research questions posed in Section 2.1. 

Q1 - What methods are used for evaluating metallographic cross sections made 

by additive manufacturing? 

As has been said, Murr L reviewed recent progress in metallography of additive 

manufactured parts. It follows from methods of referring articles that no one used methods 

based on neural networks for evaluating additively manufactured material for porosity types 

[10]. 

At the same time, DebRoy T et. al. pointed out, that machine learning and neural networks 

generally could be used at all steps of metal printing, not only for evaluating cross-sections. 

It has strong potential as a tool to predict microstructures, properties, and defects during 3D 

printing process [9]. 

Q2 - Are there any applications of Semantic Segmentation or Super-Resolution in 

metallography? 

Recently, there have been a lot of different applications for Semantic Segmentation and 

image Super-Resolution with deep learning in different industries. Researchers have 

developed different models that are suitable for various tasks and for diverse amounts of 

training data. 

It was found out that there are some applications of neural networks in metallography, not 

only in image processing of metallographic cross sections, but for example to 

computationally design materials that meet target property requirements. To evaluate cross-

sections, researchers were trying to use multiple classification methods. Semantic 

Segmentation is suitable for pixel level accuracy, and it has been used in many approaches 

to evaluate metallographic cross-sections, even for materials made by additive 

manufacturing. 

All publications that presented Semantic Segmentation for categorizing structures of steels 

testified, that if they used the right architecture with right loss function, then training process 

required only small experimental dataset. 

In the domain of image Super-Resolution of metallographic images, there are no publications 

of applications in additive manufacturing yet. Two publications were found which discuss 

application of Super-Resolution in electron microscopy and confocal laser scanning 

microscopy. De Haan et. al. pointed out, that image Super-Resolution is a powerful and 

practical tool to computationally improve resolution of microscopic images [12]. 
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Generally, for image processing tasks, researchers claim that methods based on neural 

networks are smarter and more flexible than traditional image processing methods, but at the 

same time, they demand large computing power. 

Q3 - What types of neural network architectures are used for image Semantic 

Segmentation? 

As it has been said, there are three main approaches to deep learning in semantic 

segmentation: deep supervised learning, deep unsupervised learning, and deep semi 

supervised learning. We mainly aimed for publications that were focused on semantic 

segmentation with supervised learning in metallography. As it has been shown in Tab. 2-5, 

researchers have tested different architectures with multiple loss functions to this task. 

Luengo J et. al. recently tested and compared different architectures on two datasets. They 

pointed out that Unet++ and Unet architectures achieved the best results in both UHCS and 

MetalDAM dataset, so they stated, that these models are robust and effective in 

metallographic domain. At the same time, it is important to train networks with different loss 

functions to test which works the best way on trained dataset. 

Q4 - What types of neural network architectures are used for image Super-

Resolution? 

In past years, image super-resolution has been used in many different applications. It has 

been used mainly to enhance video resolution and general single image resolution. There are 

many different approaches to this task [5]. Researchers have shown that GAN based 

networks perform best for recovering edges of instances. This is a strong property of GAN 

based Super-Resolution architectures, that is why we focused on reviewing recently 

developed architectures. 

2.5 Interpretation of critical review results for this thesis 

From critical review we can see that usage of neural networks for evaluation of microscopic 

images has a strong potential. In evaluation of cross sections in 3D printed material domain, 

there has not been many applications and experiments performed yet. 

Such a use case of evaluation of cross sections to obtain porosity levels and types of 

porosities, nobody studied before. Usage of neural networks in evaluation process could 

bring more information from the material and further enhance process parameters of 3D 

printing. 
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In the domain of image segmentation, applications in microscopic imaging have already 

been studied before. I must point out that researchers have shown that every use case needs 

its own training and optimization process of neural network model. To this thesis, I also need 

to train the model by myself and find optimal training parameters for it. From many available 

neural network architectures, I have chosen U-net for simplicity and because there is 

evidence that this model performs well on metallographic images [2, 14, 15].  

About image Super-Resolution, I must point out that it is a really new approach in domain 

of microscopic images. It has not been much studied in combination with segmentation 

techniques. There is strong potential in research in this field due to the achievement of 

subpixel accuracy with further image processing. Thus, for the purpose of my thesis, I have 

focused on usage of SRGAN architecture, and explored capabilities of this model in the field 

of metallography [16]. 
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3 PROBLEM ANALYSIS AND GOALS OF THESIS 

3.1 Problem definition 

For evaluation and optimization of process parameters during research and development of 

new metallic materials made by powder bed fusion different parameters are used (laser 

power, scanning speed, scanning strategy etc.). These are nowadays still estimated from 

megalographic cross sections. There is one single parameter “porosity” evaluated from cross 

sections and simple image processing methods like threshold-based segmentation is used for 

this evaluation. Threshold-based segmentation is often sensitive to noise, imperfections, or 

more complicated textures of cross-sections. This can lead to inaccurate results of 

segmentation. On Fig. 3-1, the most typical imperfections which are often problem during 

segmentation can be seen. On the example there is dried cleaning medium (ethanol or 

isopropyl alcohol) which can dry around larger pores during cleaning of specimens, 

entrapped powder inside of pores which is not holding with base material, or light of 

microscope illumination which reflects from inside of pores. All these imperfections bring 

inaccuracy to the results of segmentation. 

 

Fig. 3-1 Example of imperfections which can occur during image segmentation. 

There are two main types of defects which can occur inside of material. 

• Lack of fusion porosity (LoF) – This type of porosity occurs inside of material due 

to the combination of low laser power and fast scanning speed. Structures of badly 

fused material or even non fused powder can be seen on metallographic cross section. 

Dried ethanol Reflecting light Entrapped powder 

Correctly manually 

segmented image 

Threshold-based 

segmentation 

Original image 



 

40 

• Gas porosity (Gas) – This type of defect similarly occurs in material, but the reason 

is combination of high laser power and slow scanning speed. Gas porosity has a 

spherical shape. Gas porosity can also occur due to humidity evaporation during 

printing process. 

Parameter “porosity” does not distinguish between those types of defects so this parameter 

could be often insufficient during evaluation. There would be suitable to develop a method 

which would be able to automatically distinguish between those types of defects to get more 

precise results and to deeper understand what is happening inside of the material. 

Simultaneously, there exists potential in employing an image upscaling neural network 

algorithm to artificially upscale and enhance the edges and structures of features under study 

in images. This process would provide additional data for segmentation. The idea is that an 

increase in data should bring more robust and accurate segmentation results. 

3.2 Goals of thesis 

The main goal of the thesis is to use advanced image processing methods based on deep 

neural networks (image semantic segmentation and super-resolution) for the processing and 

analysis of microscopic images of metallographic cross-sections of materials made by 

powder bed fusion. 

The specific objectives are: 

▪ Selection of suitable "off-the-shelf", ready-made neural network architectures for 

super-resolution and semantic segmentation tasks. 

▪ Creation of a custom dataset which includes metallographic images of three 3D 

printed materials (AlSi10Mg, CU99, and Ti6Al4V) with manually labelled defects, 

suitable for training super-resolution and semantic segmentation neural networks. 

▪ Development of custom training loop for training of chosen neural network models 

and fine-tuning of training parameters with the goal of achieving the best-performing 

neural network models for specific image super-resolution and semantic 

segmentation task on created dataset. 

▪ Determination of whether there is a positive influence on the results of semantic 

segmentation by enhancing its input image with a super-resolution neural network. 

▪ Investigation of whether a semantic segmentation network trained exclusively on a 

single material (AlSi10Mg) can still perform robust image segmentation of required 

defects on images of different materials (CU99 and Ti6Al4V) that it has not 

previously encountered. 
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▪ Implementation of the most effective approach in custom solutions for defect 

analysis of cross-sections in powder bed fusion research of new materials, to speed 

up defect analysis and categorize defects of metallographic cross-sections. 

3.3 Research questions 

▪ Question 1.: What will happen if we train segmentation network on AlSi10Mg and 

let it perform image segmentation on different material? 

▪ Question 2.: What will happen with results of image segmentation if we enhance its 

input image with image up-scaling algorithm? 

3.4 Hypothesis 

Hypothesis 1.: If image segmentation neural network model will be trained only on material 

AlSi10Mg, it will still be able to perform accurate segmentation of defects on material Cu99 

and Ti6Al4V because of defects shape is simar cross all material types. 

Hypothesis 2.: If an image up-scaling algorithm based on GAN is used before image 

segmentation of metallographic cross sections, then the results of measured performance 

metrices will have higher value than the results of stand-alone segmentation. This hypothesis 

has been obtained due to the latest research in usage of image super-resolution in 

combination with segmentation tasks by Frizza et. al. [26]. 
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4 MATERIAL AND METHODS 

4.1 Methodology 

The first step was to create images of given metallographic cross sections for each material 

(AlSi10Mg, Cu99 and Ti6Al4V). Next step was to manually label defects (lack of fusion 

porosity, gas porosity and base material) on images and create image pairs (original image 

and its labels) which were used for image segmentation model training. For image up-scaling 

model only original images without labels were used. After dataset preparation, neural 

network architectures were trained. On Fig. 4-1 and Fig. 4-2, there is shown methodology of 

this work. 

To answer the first question, segmentation model was trained only on images of AlSi10Mg. 

Then the model was tested on images of Cu99 and Ti6Al4V. 

To answer the second question, upscaling-model and segmentation model were trained on 

images of AlSi10Mg. Then upscaling model and segmentation model were serially 

connected and compared with standalone segmentation model. 

The best performing approach was then implemented in custom software solution. 

 

Fig. 4-1 Methodology question 1 
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Fig. 4-2 Methodology question 2 

4.2 Instrumental equipment 

4.2.1 Microscope Keyence VHX-6000 

Digital Microscope Keyence VHX-6000 is equipped with lens Z250R [27] (Fig. 4-3). This 

lens is able of 250x–2500x magnification. For this work and dataset production, 

magnification of 1000x was used. This magnification was selected due to limited microscope 

setup conditions, so the microscope images were not blurred and features on the image were 

still recognizable due to outside physical factors (vibrations of the table during imaging). 

Images of metallographic cross-sections were created by stitching function, so multiple 

pictures were stitched together. Final exported images had size of 9332 x 9317 pixels, and 

they were exported in lossless .tiff format. 
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Fig. 4-3 Digital microscope Keyence VHX-6000[27]. 

4.2.2 Computer setup 

In Tab. 4-1 there is PC hardware setup which was used during software development, dataset 

labelling and neural networks training. 

Tab. 4-1 PC setup 

Parameter Value 

Processor 13th Gen Intel(R) Core (TM) i5-13600KF (20CPUs) 3.5GHz 

Graphics processing unit NVIDIA GeForce RTX 3060 Ti (8 GB memory) 

Operational memory 64GB 

Graphics processing unit (GPU) NVIDIA GeForce RTX 3060 Ti with 8GB of memory is 

the most crucial component for neural network training, and it has computing power of 8,6 

according to computing capability rating by Nvidia [28]. 
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4.3 Dataset 

4.3.1 Initial image preprocessing. 

Custom datasets consist of cross-sections of AlSi10Mg, Cu99 and Ti6Al4V made by powder 

bed fusion. There were 6 images created for each material with mentioned microscope with 

1000x magnification. Each image displayed different process parameters which were used 

during 3D printing to have variety of defect types shown on the images. Examples of 

microscope output images are shown on Fig. 4-4. Each image was then converted from 3 

channel RGB (red, green, blue) to only single black and white channel (gray scale) and 

divided into smaller images with size of 4616 x 4608 pixels for further dataset labeling. 

 

Fig. 4-4 Example of microscope output images (9332 x 9317 pixels) 

4.3.2 Dataset for U-net training  

For training of semantic segmentation model U-net, only images of AlSi10Mg were used. I 

have picked 14 images of AlSi10Mg from dataset (each 4616 x 4608 pixels), each 

representing different defect shapes and process parameters for diversity. Each smaller 

image was then manually annotated on pixel level with MITK [20] which is tool able of 

semiautomatic image labelling and uses various classic image processing algorithms to 

speed up labelling process. Region growing algorithm with combination of threshold-based 

segmentation method was used during annotation of defects. Three labels were created: lack 

of fusion porosity, gas porosity and base material. Examples of image labelled pairs are 

shown on Fig. 4-5. 

AlSi10Mg Cu99 Ti6Al4V 
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Fig. 4-5 Examples of labelled image pairs of AlSi10Mg (4616 x 4608 pixels). 

On Tab. 4-2 there is ratio of each class annotated class in AlSi10Mg dataset. Dataset was 

imbalanced due to high number of pixels corresponding to base material. 

 Tab. 4-2 Class distribution through AlSi10Mg in dataset 

Class Ratio (%) 

Base material 92,56 

Lack of fusion porosity 4,26 

Gas porosity 3,18 

 

Dataset division 

To correctly calculate performance metrices of the trained U-net, I had to create separate 

subsets of images to train, validate and test the network on the data which the network never 

seen during the training. 

▪ Training set – Used to train the models and adjust the parameters of trained network. 

▪ Validation set – Used for checking model performance and calculation of 

performance metrices during the training. 

▪ Testing set – Used for final model performance evaluation. And on testing on 

materials which model had not seen before. 

Lack of fusion Gas porosity Base material 
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Then 11 images were taken from AlSi10Mg dataset and split to two subsets for training and 

validation in ratio 85/15. The remaining 3 images from dataset were picked for testing and I 

have ensured that these three images were of material process parameters which were not 

included in training and validation subset. For further performance testing and validation of 

hypothesis 1. on Cu99 and Ti6Al4V, I have similarly labeled 2 images (each 4616 x 4608 

pixels) for each material (Cu99 and Ti6Al4V). 

Dataset augmentation 

Before neural networks training, the training set for U-net was artificially augmented. This 

is commonly done during the training of neural networks to prevent overfitting and to scale 

the size of dataset. Overfitting means that the network could potentially learn too well on the 

training data and perform poorly on the validation and training data.  

I have augmented the dataset by commonly used augmentation techniques mentioned in 

2.2.2. I have used random rotation by 0.5π, π, 1.5π, random horizontal and vertical flip, 

random brightness shift in range ±10% and scaling in range [1, 1.5]. 

Before feeding the training data to the U-net training process, training images with their 

corresponding labels were downscaled by the factor of 4 because of graphics card low 

memory issues during the training. So for training and evaluation, downscaled images were 

used. Then I created a data augmentation generator module, which was then feeding the 

augmented data to the training process. This generator module took one image and its 

corresponding label, then randomly applied combination of mentioned augmentation 

techniques to the image pairs and cropped image on random location to corresponding U-

net input image size (𝐻x𝑊) which was further passed to the training process. With this 

augmentation data generator, I have ensured that during the training, every training epoch 

(training iteration) there will be slightly different images shown to the network. 

4.3.3 Dataset for SRGAN training  

For experiments with SRGAN image super resolution neural network, I have used only high-

resolution images of AlSi10Mg. Dataset for SRGAN training was randomly split in to two 

subsets similarly as with semantic segmentation training to train set and validation set in 

ratio 80/20. 

For dataset augmentation I have used random cropping, random rotation by 0.5π, π, 1.5π, 

random horizontal and vertical flip, random brightness shift in range ±10%. 
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4.4 Neural networks models 

For implementation of selected neural network models, python programing language was 

used with TensorFlow [29] platform, which is one of commonly used frameworks for 

implementation of neural networks and for work with matrix and tensor computation within 

GPU. All used libraries were installed to Anaconda environment for easier libraries version 

management [30]. This setup was running on the mentioned hardware with Linux Ubuntu 

operating system. 

4.4.1 Segmentation model U-Net 

U-Net architecture was picked from many suitable image segmentation architectures as it 

has been mentioned in section 2.5. For my use case it was modified to expect single channel 

gray scale image on its input and return three channel prediction maps for each segmented 

class (Lack of fusion porosity, Gas porosity, Base material). Also, I have been experimenting 

with the depth (number of trainable parameters) of the U-net. Since I was working with only 

single channel image, there were 3-times less input parameters for the network compared to 

RGB image, so each module of U-net did not have to have that many parameters. This was 

also done by other researcher’s mentioned in section 2.2.2. Depth of U-net was one of the 

variable experimental parameters which I represented in depth multiplication factor 𝛿. The 

structure of edited U-net used in this work is shown in Fig. 4-6. 

 

Fig. 4-6 U-net structure with custom input/output image size and custom depth multiplication factor 𝛿.  
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4.4.2 Image super-resolution model SRGAN 

As has been mentioned before, ready-made, off-shelf architecture SRGAN was used for 

experiments in this thesis. 

4.5 Performance evaluation 

4.5.1 Segmentation model evaluation 

For evaluation of semantic segmentation model during the training, PA and IoU metrices 

were used which were reviewed in section 2.2.2. During experiments, I focused on PA and 

IoU metrices. 

After fine tuning models and finding the best possible and suitable approach to segmentation, 

the model was also compared with threshold-based segmentation. For finding the threshold 

value, Otsu’s method was used [31]. 

4.5.2 Image super-resolution model evaluation 

I have evaluated the model during training with two of the mentioned performance metrices 

(2.2.3). PSNR and SSIM were used. As has been also shown from the systematic review, 

these two metrices are suitable for evaluation of two images to score structure similarities 

between two images. 

4.6 Implementation. 

The best performing model has been implemented in custom software solution. From 

classification maps which were output from segmentation, there have been computed 

percentual ratio of each type of defects compared to the base material. 
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5 RESULTS 

5.1 Semantic segmentation 

5.1.1 Selection of variable parameters for experiments 

After initial experimenting with U-net training I have realized that different setup of training 

process brings different PA and IoU values of resulting neural network. Because of this 

I have designed an experiment for finding the most suitable parameters for the given dataset 

and dataset augmentation setup. 

I have selected four variable parameters, which as observed in both my initial findings and 

reviewed papers, influence the resulting metrics of IoU and PA for neural network models 

on unseen data. I was experimenting with two types of loss functions (categorical cross 

entropy loss and categorical focal loss), two types of neural network input and output image 

patch sizes, depth of neural network model (number of trainable parameters) represented in 

depth multiplication factor 𝛿 and lastly, batch size (number of training examples processed 

in one forward and backwards pass through the network during the training process). 

Selected variable parameters and their values are shown in Tab. 5-1. 

Tab. 5-1 Selected variable parameters for experiments. 

Loss function 
Input/ output patch 
size (H x W) [pixels] 

Depth multiplication factor 𝜹 [-] 
Batch 
size [-] 

Cross entropy loss 512x512 2 (30 537 trainable parameters) 4 

Focal loss 1024x1024 4 (121 663 trainable parameters) 8 

  8 (485 691 trainable parameters) 16 

  16 (1 940 851 trainable parameters) 32 

 

5.1.2 Training experiments  

To train a U-net architecture, a custom iterative training experiment was developed. The 

training loop was designed to iterate through all variable parameters mentioned in Tab. 5-1 

and save the model for each parameter combination to the specified folder. The commonly 

used Adam optimizer [32] was used to optimize the network parameters. During the training 

process, the validation loss was plotted, and the model was saved each time the validation 

loss decreased. Only the models with the lowest loss were retained from the training process. 
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A test set of images was used to evaluate each trained model. A testing loop was developed, 

which iteratively loaded each saved model and assessed its performance. The performance 

metrics of IoU and PA were then written in a .json file for further evaluation. PA was 

calculated for each class, and the values of PA and mean values of IoU are presented on heat 

maps on Fig. 5-1 and Fig. 5-2. Experiments which exceeded the limit of GPU memory are 

marked as OOM (out of memory). 

 

Fig. 5-1 Mean IoU values of trained models from experiment. 
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From the first look on the results, it is observed that categorical cross entropy loss leads to 

higher values of PA and IoU cross all tested training parameters. That is why I have focused 

on models trained on categorical cross entropy loss for further evaluation. With increasing 

batch size in combination with model depth, the limit of GPU memory is exceeded leading 

to OOM errors. Also, it is clear from Fig. 5-2 that models have hard time to classify gas 

porosity class. 

On Fig. 5-3 there is Graph which shows relation of IoU to the model depth multiplication 

factor 𝛿 for different input/output image patch sizes. This was for all performed experiments. 

We can see that IoU metric is lower for higher input/output image patch size. The best IoU 

values are for model with model depth multiplication factor 𝛿 of 4 and input/output image 

size of 512x512 pixels. 

 

Fig. 5-3 Results of IoU for each model depth multiplication factor 𝛿. 

On Fig. 5-4 is graph which shows IoU for different model depth multiplication factor 𝛿. This 

is for categorical cross entropy loss function and input/output image size of 512x512 pixels. 

Models with the lowest complexity show decrease of performance with higher batch sizes. 

Models with higher complexity show increasing performance with higher batch sizes. Model 

with model depth multiplication factor 𝛿 of 16 shows only two data points because of OOM 

error during training. 
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Fig. 5-4 Relation of IoU to the batch size for each multiplication factor 𝛿. Performed for cross entropy loss 

and input image size of 512x512 pixels. 

Graph on Fig. 5-5 shows relation of PA to the model depth multiplication factor 𝛿 for cross 

entropy loss, input/output image size of 512x512 and batch size of 4. PA increases between 

value 2 to 4 but then starts to decrease when model starts to be more complex and has more 

trainable parameters. Values of PA for Gas pores have the lowest values, so model has hard 

time to classify this class. 
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Fig. 5-5 PA for each model depth multiplication factor 𝛿. Performed for cross entropy loss, input/output 

image size of 512x512 pixels and batch size of 4. 

Graph on Fig. 5-6 shows values of PA relation to the batch size for cross entropy loss 

function, input/output image size of 512x512 and model depth multiplication factor 𝛿 of 4. 

The value of PA on gas pores class has again much lower values than lack of fusion pores 

or base material with highest value in batch size value of 4. 
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Fig. 5-6 PA for each batch size. Performed with cross entropy loss, input/output image size of 512x512 

pixels and model depth multiplication factor 𝛿 of 4. 

5.1.3 The best model evaluation 

From all performed experiments I have picked model which was trained on categorical cross 

entropy loss function with model depth multiplication factor 𝛿 of 4, batch size of 4 and 

input/output image patch of 512x512 pixels. This model had one of the highest values of PA 

and IoU. It was picked also because it had reasonably low complexity due to low depth 

multiplication factor 𝛿 which correspond to 121 663 model parameters so it will not 

accommodate high amount of memory on the system during further implementation. Also 

input/output image size of 512x512 pixels is more suitable for further implementation 

because with this image size we can input to the network also images with lower sizes (the 

lowest size of 512x512 pixels). If we would like to segment images with higher sizes, we 

can simply crop the image to smaller 512x512 pixels sized patches. 

The duration of training of this model was 50 minutes. On Fig. 5-7 it is shown how loss 

curve has developed during the training process. Curve shows loss calculated on the same 

data which was model trained on (train loss) and on validation data (validation loss). The 

training was stopped when validation loss was at its lowest point. That is the reason why I 

have saved only model which was in 1312th iteration. Validation loss has higher values due 

to calculation on data that model has not seen before compared to train data. Similarly, train 

PA, validation PA and IoU have been calculated during development of the training process. 

These are shown on Fig. 5-8 and Fig. 5-9. 
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Fig. 5-7 Cross entropy train loss and validation loss development during training of picked U-net model. 

 

Fig. 5-8 Train PA and validation PA development during training of picked U-net model. 
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Fig. 5-9 IoU development during training of picked U-net model. 

Examples of segmentation maps which were created with this model on test set of images 

are shown on Fig. 5-10. On Fig. 5-10a) model did not correctly predicted part of lack of 

fusion porosity. On Fig. 5-10b) model correctly predicted gas porosity but on the edge of 

one pore, model predicts lack of fusion porosity. On original image there is dried cleaning 

medium on this place. On Fig. 5-10c) there is some kind of fiber sticking out of pore which 

model predicts as lack of fusion porosity. The model predicts small parts inside of lack of 

fusion porosity as gas porosity. 
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Fig. 5-10 AlSi10Mg, examples of predicted masks from test set, compared with original images and ground 

truth masks (each 512x512 pixels). 
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5.1.4 Testing on Cu99 and Ti6Al4V 

For testing on Cu99 and Ti6Al4V, the same model which was trained on AlSi10Mg was 

used. On Tab. 5-2 there are resulting performance metrices for this testing. We can see from 

the table that model has no problem with predicting base material class due to high 

percentage of PA. Fig. 5-11 and Fig. 5-12 shows examples of prediction maps from selected 

images for Cu99 and Ti6Al4V.  

For Cu99 on Fig. 5-11a) there are a lot of small lack of fusion strings which model is not 

able to recognize, also it wrongly predicts parts of lack of fusion pores, and it is replacing it 

with gas porosity class. On Fig. 5-11b) model also predicts parts of lack of fusion pores as 

gas porosity. 

For Ti6Al4V on Fig. 5-12a) model predicts most of the parts of lack of fusion porosity well. 

On Fig. 5-12b) model again has a problem with gas porosity class. 

Tab. 5-2 Performance metrices of model evaluated on Cu99 and Ti6Al4V 

Material PA (LoF) PA (Gas) PA (Base) IoU (Mean) 

Cu99 41,95% 97,85% 99,57% 51,27% 

Ti6Al4V 94,52% 52,83% 99,00% 73,24% 

 

Fig. 5-11 Cu99, examples of predicted masks, compared with original images and ground truth masks (each 

512x512 pixels). 
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Fig. 5-12 Ti6Al4V, examples of predicted masks, compared with original images and ground truth masks 

(each 512x512 pixels). 

5.1.5 Comparison with threshold based segmentation 

For comparison of trained model, threshold-based image segmentation was used which is 

classical method used for this purpose at this moment. For finding the threshold value, Otsu's 

method was used. For comparison, I have also computed PA of prediction maps which were 

edited so there are not three classes on the image but only two classes, same as within 

threshold-based segmentation. Resulting PA compared with labeled ground truth are shown 

in Tab. 5-3. From the table it is observable that if we compare threshold-based segmentation 

with the model predictions, the AlSi10Mg model predicts defects and base material better. 

Examples of images which were segmented with threshold-based segmentation compared 

with model predictions for AlSi10Mg are shown on Fig. 5-13, for Cu99 on Fig. 5-14 and for 

Ti6Al4V on Fig. 5-15. 
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Tab. 5-3 PA of threshold-based segmentation and model predictions for two classes. 

 Threshold Model prediction 

Material Defects Base material Defects Base material 

AlSi10Mg 93,67% 99,71% 94,24% 99,57% 

Cu99 70,36% 99,30% 57,28% 99,57% 

Ti6Al4V 95,51% 89,01% 96,38% 99,00% 

 

 

Fig. 5-13 AlSi10Mg, examples of predicted masks compared with original images and threshold-based 

segmentation (each 512x512 pixels). 
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Fig. 5-14 Cu99, examples of predicted masks compared with original images and threshold-based 

segmentation (each 512x512 pixels). 

 

 

Fig. 5-15 Ti6Al4V, examples of predicted masks compared with original images and threshold-based 

segmentation (each 512x512 pixels). 
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5.2 Image super-resolution 

Only initial experiments with image-super resolution neural network training were 

performed. On Fig. 5-16 and Fig. 5-17 there are graphs which show how performance 

metrics of SSIM and PSNR developed during the training process. These were calculated on 

validation data. Training was stopped after 1760 training iterations and it took 44 hours. At 

the end of training, the network was able to generate images which had 0,767 of SSIM and 

34,13 dB PSNR on validation data. 

 

Fig. 5-16 SSIM development during training of picked SRGAN model. 
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Fig. 5-17 PSNR development during training of picked SRGAN model. 

Examples of images which were generated with trained SRGAN compared with original 

high resolution and low-resolution images are shown on are shown on Fig. 5-18. The 

network was able to smooth the edges of pores and bring back the details of the image. 

 

Fig. 5-18 AlSi10Mg, example of generated image compared with original HR and LR image. 
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5.3 Implementation 

Best trained U-net model further explained in 5.1.3 was implemented in custom solution 

with simple graphical user interface (GUI). Executable files have been created and tested on 

Linux operating system. Implementation can also be executed as a script. Simple interface 

is shown on Fig. 5-19. User must choose input folder, which contain images with materials 

cross-sections with defects. Images must be in .tif format and created with 250x 

magnification lens with Keyence microscope mentioned in 4.2.1. After execution of script, 

percentual ratio of each defect and base material will be shown to the user on the interface 

and segmentation maps with corresponding original image patches will be saved in save 

folder directory (Fig. 5-20). 

If the user wants to execute implementation as a python script, required libraries which need 

to be installed are included in directory in enviroment.yml file. It is recommended to use 

Anaconda environment for installing required libraries straight from included environment 

file [30]. 

 

Fig. 5-19 Simple GUI for image processing implementation 
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Fig. 5-20 Example of percentual results on GUI. 
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6 DISCUSSION 

This work was focusing on categorizing the defects of metallographic cross sections to 

classes and finding and applying state of the art image processing methods for image 

evaluation, also by the goal of improving accuracy of the results of image segmentation. It 

has been found that these methods are really sophisticated and strongly rely on the quality 

of input training data, also on finding the best training setup parameters for the training 

process. 

6.1 Interpretation of results 

6.1.1 Dataset 

During data labeling process, it is important to have professionals in the field creating the 

labels because if there is some uncertainty during labeling process, this will be mirrored in 

neural-network performance, and it will only perform as good as operator which was 

creating dataset. I also think that labels in dataset that I have created for AlSi10Mg were not 

perfect because during labeling process, I was also sometimes unsure if corresponding defect 

correspond to lack of fusion porosity or gas porosity. 

This is also the reason why it might be beneficial to explore unsupervised learning methods 

for this task in the future, in which models can learn not only from labeled data but also 

during training by itself from unlabeled data. This was also stated by Luengo J et. al. [2]. 

6.1.2 Semantic segmentation 

From the experiments addressed in 5.1.2 it is clear that used computer setup is not powerful 

enough and I could not perform all experiments because of lack of memory in graphics card. 

At the same time, it is clear that model still can perform sufficiently well with smaller image 

sizes (𝐻x𝑊) so I was still able to create model with sufficient performance for single 

material type and relatively small dataset.  
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With the best model I have managed to get performance of IoU of 80,66% with per class 

accuracy of 90,8% for Lack of Fusion porosity, 79,7% for Gas porosity and 99,6% for base 

material. These values are comparable with state-of-the-art mentioned in 2.2.2 (Tab. 2-5). 

To further improve the model, it would be sufficient to create a more reliable dataset by 

experts in the field. I also think that if we would like to train the model on more complex 

dataset with all three materials, we would need to use deeper model with more trainable 

parameters to understand all three materials in one complex model. Also, it would be 

beneficial to further experiment with different loss functions. 

For my use case and model trained only on AlSi10Mg I have found that lower neural network 

input image sizes 𝐻x𝑊 had higher values of IoU metric for model with batch size of 4. I 

think that if I would like to use a higher image size of 1024x1024, a higher batch size would 

also need to be used during the training process but this needs to be performed on more 

powerful computing setup. 

6.1.3 Segmentation of unseen data 

It has been shown that the model trained on AlSi10Mg was not able to perform correct 

segmentation on Cu99 since the structures on these materials have different shapes. On 

Ti6Al4V, the model was able to perform accurate segmentation of Lack of Fusion porosity, 

because the shape of this defect is like the ones on AlSi10Mg. That is the reason why we 

can still use this model to predict on different material which the model was not trained on, 

but defect need to have similar shape. If there are some structures which do not look like the 

structures on AlSi10Mg, the model will perform poorly. At the same time, we can see that 

model predicts base material with PA of 99,57% for Cu99 and PA of 99,00% for Ti6Al4V 

(Tab. 5-2). That is because the structure of base material in gray scale looks the same cross 

all tested materials. Under this condition, we can use this model for detecting the percentual 

ratio of base material class. 

6.1.4 Comparison with threshold-based segmentation. 

From results on Tab. 5-3 it is observed that neural network model trained on AlSi10Mg can 

predict defects and base material comparable good as threshold base segmentation. Base 

material class was predicted with the same or with Ti6Al4V with even better accuracy than 

with threshold-based segmentation. This is because threshold-based segmentation identified 

a lot of parts of base material as defects even if it was base material as we can see on Fig. 

5-15b). It can be stated that segmentation results from proposed model are as good as 

threshold-based segmentation, with the additional advantage of categorizing the defects into 

classes. 
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6.1.5 Image super-resolution 

After initial experiments with image super resolution model SRGAN, performance of 0,767 

of SSIM and 34,13 dB PSNR was achieved. These values are similar as values mentioned in 

previous works mentioned in 2.2.3 (Tab. 2-6). 

After training of semantic segmentation model U-net, I have realized that my computer setup 

is not sufficient to process full sized images. That is the reason why I had to down scale 

images for training of semantic segmentation and I was not able to connect image super 

resolution model with semantic segmentation model. 

6.2 Hypothesis verification 

Hypothesis 1.: If image segmentation neural network model will be trained only on material 

AlSi10Mg, it will still be able to perform accurate segmentation of defects on material Cu99 

and Ti6Al4V because of defects shape is simar cross all material types. 

The results indicate that the proposed approach using a U-net neural network can achieve 

segmentation accuracy comparable to the previously used threshold-based segmentation 

method. However, a condition must be met: the shape of the defects must be the same as 

those that form on AlSi10Mg. Therefore, the hypothesis was rejected. To further study this, 

it would be necessary to train the network with higher amount of data with diverse spectrum 

of materials which would contain all the defect types. 

 

Hypothesis 2.: If an image up-scaling algorithm based on GAN is used before image 

segmentation of metallographic cross sections, then the results of measured performance 

metrices will have higher value than the results of stand-alone segmentation. 

Because of lack of computational power, I was not able to approve or disprove this 

hypothesis. With the usage of higher resolution, the defects on the image appear larger so 

also higher input/output image sizes are required for neural network in order to understand 

the context of the defects and its shapes. With this, the network becomes larger and 

accommodates a lot of memory, so it is not possible to be trained on regular computer setup. 

Thus, this hypothesis remains open and needs to be further studied. 
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7 CONCLUSION 

Method for semantic segmentation based on deep neural networks for categorizing the 

defects on the images of 3D printed metallographic cross-sections and deeper understanding 

of defects is proposed. The method uses U-net neural network architecture trained on custom 

dataset of singe material AlSi10Mg. This dataset is relatively small but was artificially 

augmented during the training process. 

With this method, the best obtained model had only 121 663 trainable parameters and 

achieved a performance of 80.66% IoU on test data that the model had not seen before, which 

is comparable to the state-of-the-art. With testing of this model on different material types 

(Cu99 and Ti6Al4V) model sometimes struggles with detection of required defect types due 

to defect shapes unsimilarities. Method is comparable with threshold-based segmentation 

with additional categorizing of defects to the classes. With threshold-based segmentation, it 

is crucial how well the specimens are prepared so there is not a lot of dark areas like with 

Ti6Al4V. The advantage of the proposed method is that it can be applied and still perform 

well on specimens which contain these dark areas, which with threshold-based segmentation 

would not be predicted correctly. Performed experiments with SRGAN generative neural 

network show potential in further generating accurate artificial data to enhance performance 

of image processing tasks. 

The limitation of training the neural-network models is still computing power. This training 

is possible to be done on standard hardware setup only to a limited extent. For further 

experimentation also with models with higher number of trainable parameters and higher 

amount of training data, it is suitable to use computationally oriented graphics cards setup 

with high memory and computational power. The limitation of the proposed model is that it 

performs well only on dataset which it was trained on (AlSi10Mg). 

To further enhance this method to be able to perform more robust and accurately, it is 

suitable to create dataset, which contains a broader spectrum of defects and materials. 

Additionally, the quality and noise of the labels are crucial for the performance of 

segmentation. Therefore, it is recommended that the dataset be created by professionals in 

the field. To improve the implementation and accuracy of resulting segmentation, it is also 

possible to combine multiple image post-processing techniques together with neural network 

model segmentation. Segmentation task could be further extended from 2D image data to 

3D voxel mesh segmentation for segmenting 3D defect shapes from computational 

tomography meshes or from point clouds scans. 

Further neural networks could be used in other metrology tasks in general for processing 2D 

or 3D data and finding relations between different variables or functions. In general, neural 

networks can be used for estimation and finding deep correlations between input and output 

data not only in the field of 3D printing and metallography. 
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9 LIST OF USED ABBREVIATIONS, SYMBOLS AND 
QUANTITIES 

9.1 List of abbreviations 

DP   Dual phase 

EBSD   Electron backscattered diffraction 

ESRGAN  Enhanced super-resolution generative adversarial network 

GAN    Generative adversarial network 

Gas   Gas porosity 

GPU   Graphics processing unit 

GUI   Graphical user interface 

HR   High resolution 

IoU   Region intersection over union 

LoF   Lack of fusion porosity 

LR   Low resolution 

MITK   Medical imaging interaction toolkit 

MSE   Mean square error 

OOM   Out of memory 

PA   Pixel accuracy 

PSNR   Peak signal-to-noise ratio 

PRISMA  Preferred reporting items for systematic reviews and meta-analyses 

Q&P   Quenching and partitioning 

ReLu   Reflected linear unit 

RGB   Red, green, blue 

SEM   Scanning electron microscope 

SSIM   Structure similarity index 
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SRGAN   Super-resolution generative adversarial network 

UHCS   Ultra high carbon steel 

2D   Two dimensional 

3D   Three dimensional 

9.2 List of symbols 

𝐶1, 𝐶2, 𝐶3  Positive constant 

𝑐   Contrast comparison function 

𝛿   Depth multiplication factor 

𝑓   Ground truth image 

𝑔   Test image 

𝑊   Width of image 

𝐻   Height of image 

𝑙   Luminance comparison function 

𝑠   Structure comparison function 

𝜎𝑓   Standard deviation of ground truth image 

𝜎𝑔   Standard deviation of test image 

𝜇𝑓   Mean luminance of ground truth image 

𝜇𝑔   Mean luminance of test image 
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