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ABSTRACT 
The presented thesis deals with real-time digital filtering of fMRI neurofeedback data. 
It analyzes currently used solution at CEITEC MU chiefly in respect to finding ways to 
shorten the delay at the beginning of each neurofeedback block which is introduced by 
digital filtering. Current solution uses extended Kalman filter mainly for its real-time 
and smoothing properties. Analysis of 150 individual neurofeedback blocks yielded true 
learning period of Kalman filter which has been found to be significantly shorter than is 
set in the current solution. Different options to further reduce the transient period have 
been explored and short moving average filter has been chosen as an optimal trade-off 
between transient period, filter delay and its smoothing properties. 

KEYWORDS 
Functional MRI neurofeedback, extended Kalman filter, real-time digital filtering, moving 
average filter 

ABSTRAKT 
Tato práce se zabývá digitálním filtrováním dat získaných z fMRI neurofeedbacku v 
reálném čase. Práce analyzuje dosavadní řešení používané v CEITEC MU, se zaměřením 
na zkrácení prodlení na začátku každého neurofeedback bloku, které je způsobeno 
digitálním filtrováním. Dosavadní řešení používá, hlavně pro jeho online a vyhlazovací 
vlastnosti, nelineární Kalmánův filtr. Analýzou 150 průběhu fMRI neurofeedback sezení 
byla zjištěna dolní hranice, kterou nelineární Kalmánův filtr potřebuje k naučení. Počet 
potřebných vzorků je významně menši než je nastaveno v dosavadním řešení. Další 
možnosti zkrácení prodlení byly prozkoumány a klouzavý průměrovací filtr byl vybrán 
jako optimální kompromis mezi dobou prodlení, zpoždění filtru a jeho vyhlazovacími 
vlastnostmi. 
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průměrovací filtr 
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Introduction 
The human brain is the center of the nervous system. As such it is responsible for 
many voluntary and involuntary actions as well as higher order brain functions that 
are largely unique to humans. [1] 

Functional magnetic resonance imaging (fMRI) uses localized changes in blood flow 
to non-invasively analyze the functioning of the human brain. Recent advancements 
in the functional magnetic resonance imaging technology and data processing has 
enabled observations of these changes in real-time. [1] 

Neurofeedback is a process which indicates to the participant current information 
about the functioning of his brain. This information is obtained through sensors or 
devices. Recently, there has been a growing interest in research using real-time fMRI 
neurofeedback and its possible therapeutic properties. A growing body of evidence 
suggests it is possible to train individuals to upregulate or downregulate certain brain 
areas. Implications of these claims are projected in the following studies. Two such 
studies implicated amygdala dysregulation as the cause of mood disorders e.g. major 
depressive disorder [2], [3]. Results suggest that real-time fMRI neurofeedback may 
be an effective way to treat these disorders. Yet another study suggests neurofeedback 
may not only be used in correcting abnormally functioning brain areas but can also 
improve brain efficiency above standard levels. [4] 

As the possibility of applying rtfMRI for neurofeedback has only recently started 
to be properly explored, there is a lack of consensus among the scientific community 
about the most effective ways to process the rtfMRI data. The focus of this thesis is 
real-time data filtering and improvement of delay introduced by transient learning 
period of a currently used solution at the Multimodal and Functional Imaging 
Laboratory (MAFIL) which is part of Central European Institute of Technology 
project (CEITEC) located at Masaryk University. 
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1 Functional MRI 
Functional magnetic resonance (fMRI) as its name implies is based on M R I . But 
unlike MRI , which can show us detailed structural images of our bodies, fMRI can 
show us images of metabolic activity happening inside these structures such as 
short-term physiological changes which correlate with neuronal activity. This allows 
the study of workings of the human brain. Studies utilizing fMRI aim to localize, 
find out which or determine the degree to which certain areas in the brain are active 
while performing a certain task. Though only one of the methods used in the field 
of non-invasive functional neuroimaging, fMRI has quickly become a gold standard 
soon after its conception in the early 1990s. [5] [6] 

1.1 Working principle 

Functional MRI obtains information about neuronal activity through indirect means, 
specifically by detecting changes associated with blood flow. Different techniques are 
utilized to obtain functional images of the brain such as blood oxygen level dependent 
(BOLD) contrast, arterial spin labeling or perfusion MRI. As the rest of this thesis is 
concerned with the processing of images obtained through B O L D contrast and since 
it is also the most widespread fMRI technique, it will be explained more in-depth. [5] 

B O L D imaging as its name suggests depends on the level of oxygen in the blood. 
While in transport oxygen molecules are bound to hemoglobin which acts as a carrier. 
When bound the resulting compound is called oxyhemoglobin. Hemoglobin without 
bound oxygen is called deoxyhemoglobin. Oxyhemoglobin and deoxyhemoglobin have 
different magnetic properties and so behave differently when exposed to an external 
magnetic field. Oxyhemoglobin has all of its electrons paired and thus has zero 
magnetic moment. It is weakly diamagnetic with slight repulsion force from magnetic 
fields. On the other hand, fully deoxygenated hemoglobin is paramagnetic because 
it has four unpaired electrons and thus a significant magnetic moment [5]. In the 
study conducted by Pauling and Coryell in 1936, it was discovered that the magnetic 
susceptibility of deoxygenated blood is about 20% greater than of oxygenated blood. 
In other words, deoxyhemoglobin acts as an endogenous paramagnetic contrast 
agent. [5] 
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Sensory, motor and cognitive processes 

Integration and signaling in ensembles of 
neurons 

ATP consumption by neurons and 
astrocytes 

Increased blood flow 

Displacement of deoxy hemoglobin and 
influx of oxyhemoglobin 

Increase in local MR signal 
(BOLD contrast} 

Fig. 1.1: Indirect relationship between B O L D signal and information processing in 
cognitive, motor and sensory processes. Adapted from [5]. 

Here is where the strong external magnetic field comes into play. Significant 
paramagnetic properties of deoxygenated hemoglobin introduce local magnetic field 
distortions affecting the homogeneity of the field and so changing the relaxation time 
of nearby hydrogen nuclei. M R signal intensity is reduced. The opposite is also true 
if deoxyhemoglobin is replaced by oxyhemoglobin, for example by increased blood 
flow, the local M R signal increases. [7] 

1.2 The hemodynamic response 

The response of the vascular system to stimuli is known as a hemodynamic response. 
The hemodynamic response is triggered by information processing which requires 
activation of ensembles of neurons increasing their metabolic requirements. Neurons 
respond to an increase in demand by using more adenosine triphosphate, A T P for 
short. The energy in the form of A T P is used for example in the creation and 
propagation of action potentials, the process of releasing neurotransmitters, their 
reception and uptake back into neurons or glial cells. Since the supplies of A T P in 
the brain are rather limited more A T P needs to be constantly generated from glucose 
by aerobic or anaerobic glycolysis. Aerobic glycolysis is by far the more efficient one 
and requires oxygen as well as glucose to be present.[5] 

Both nutrients need to be continuously supplied through the vascular system. In 
case of increased demand for nutrients activated neurons release vasoactive substances 
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that cause dilation of nearby blood vessels. The increase in diameter reduces vessels 
resistance to flow. Nevertheless, these are fairly local changes and other steps are 
necessary to control cerebral blood flow. Higher-resistance arterioles located upstream 
need to be signaled as well. So there is a need for coordination between local blood 
flow control mechanisms and upstream control mechanisms. As a result of this blood 
flow to the activated area is increased, this constitutes the hemodynamic response. [5] 

Average whisker-evoked cortical hemodynamics 
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Fig. 1.2: Changes in concentrations of oxyhemoglobin and deoxyhemoglobin after a 
single brief stimuli commencing at t = 0 and ending at t = 2.[8] 

It is important to note a few limitations arising from the indirect relationship 
between B O L D signal and neuronal activity. Through experiments, it was observed 
that a hemodynamic response also occurs up to a few millimeters from the neural 
activity and the subsequent epicenter of the hemodynamic response. To reword 
the finding the hemodynamic response occurs over a larger area than that in which 
increased neural activity was really located. This highlights two important limitations 
of fMRI. The measured signal will copy the architecture of the vascular system. So 
activation of certain areas can be caused by venous drainage, then local activation. 
Second, the smallest diameter of a unit able to individually regulate blood flow 
is in the order of mm thus the resolution of fMRI is ultimately limited by the 
aforementioned architecture. [5] 
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1.3 Characteristics of BOLD signal 

Increase in activity causes an increase in the local concentration of deoxyhemoglobin 
and as such reduction in fMRI signal should be observed. Nevertheless, in other 
experiments conducted by Ogawa and colleagues (1990), it was observed that the 
fMRI signal actually increases with neuronal activation. In the figure 1.3 a change 
in B O L D signal following a single brief stimulus can be observed. 

0 6 IB 15 20 25 

t T i m e ( sec ) 

stimulus 

Fig. 1.3: Hemodynamic response function to a single brief stimuli. [9] 

The initial dip may not be observed in all measurements and is more frequently 
observed in high fields (e.g., > 4 T) scanners. The mechanism of origin is still an 
object of discussion. One of two most influential hypothesis advocated by Menon and 
colleagues states that the cause is the local increase in deoxyhemoglobin following 
neuronal activation. [10] [11] 

Next, the signal increases above baseline levels generally in 2 - 5 s and peaks in 
5-15 s after the onset of the stimulus. The vascular system is signaled and there is an 
increase in the flow of oxygenated blood to the area. The inflow of oxyhemoglobin is 
greater than the extraction and accumulated deoxyhemoglobin gets washed away 
at an increased rate. Both of these mechanisms cause an increase in the ratio of 
oxyhemoglobin to deoxyhemoglobin. [5] 
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Finally, the signal decreases even slightly under baseline levels. As with the initial 
dip, the underlying mechanism is still disputed but the most predominant one being 
delayed vascular compliance. First decrease in diameters of venular, then arterioral 
and later capillary. In other words, cerebral blood flow decreases more rapidly than 
blood volume causing a greater increase in the amount of oxyhemoglobin than during 
baseline levels. So the M R signal is also below baseline levels. [12] 

1.4 Temporal and spatial properties 

Spatial resolution is determined by the voxel size and is closely related to the 
experiment needs. "A typical voxel size in human fMRI is 3 x 3 x 3 mm 3 , which 
spans multiple cortical columns and usually covers the entire cortical thickness with 
its associated vasculature. "[13] Studies that aim to explore the entire brain might 
use voxels as big as 4 - 5 mm 3 . On the other hand studies concerning themselves 
only with a certain part of the brain can collect signal only from that part and gain 
higher resolution by using voxels 1 mm 3 in size. [5] 

The signal measured depends upon the change in the entire voxel thus if smaller 
voxels e.g., two times smaller are used the signal will also be two times smaller. If 
conditions are perfect, the perceived change in B O L D signal following a stimulus is 
only about 2-3%. Halving the signal means a considerable increase in SNR. [5] 

Another complication arising from using smaller voxel sizes is the increase in 
acquisition time. If voxels half as large are used, acquisition times can double or 
even quadruple depending on a scanner and pulse sequence used. [5] 

Temporal resolution is determined by the time to obtain one image of the desired 
region, also known as repetition time (TR). Depending upon the experiment needs 
the T R may range from 0.5 to 4 s. As was observed by Kannurpatti and colleagues 
the expected frequency range for the B O L D signal is approximately 0.01-0.125Hz. [14] 
So the phenomena in question last about 10 seconds and more thus there is not much 
gain in shortening T R even more. The gain of information about a signal quickly 
falls off at T R shorter than 0.5 - I s . Therefore longer TRs are generally used and 
the rest of the signal may be interpolated without significant loss of information. 
Shorter TRs also require smaller flip angles to be used thus reducing M R signal and 
may reduce the spatial resolution. Since a scanner can only obtain a set amount of 
slices for a set amount of time, halving the T R time may mean half the amount of 
slices per given time. [5] 
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2 Post-hoc analysis of fMRI data 
Offline analysis, otherwise known as post-hoc analysis, serves to analyze already 
collected data. As such, it is time-insensitive and complicated algorithms can be run 
to ensure the best quality of the results. Post-hoc analysis can be split into data 
preprocessing and statistical analysis. 

2.1 Preprocessing of fMRI data 

Raw fMRI data needs to be further processed after image reconstruction and before 
they can be statistically analyzed. This step is known as preprocessing. One of the 
main reasons for preprocessing is low SNR, the B O L D effect changes the acquired 
signal by only about 2-3%. Another reason is that during the acquisition of fMRI data 
subjects can move slightly, heartbeat and respiration cause physiological oscillations, 
inhomogeneities in magnetic field cause distortions and there may be a difference in 
time acquisition of individual slices. These variabilities can be so severe they can 
entirely obscure the useful signal. Preprocessing methods focus on improving SNR, 
realigning, trying to minimize the impact of acquisition techniques and last but not 
least on mapping acquired images to standardized space. [5] [15] 

2.1.1 Slice-timing correction 

Spatial gradients in fMRI scanners limit the excitation pulse to a single slice (and 
a single voxel). Most pulse sequences first collect all the odd slices and only then 
collects all the even slices. This is known as interleaved slice acquisition and is 
frequently implemented to minimize the influence of excitation pulses upon adjacent 
slices. For example, with T R of 3 s and 12 slices per imaging area, slice 2 would 
be acquired about 1.5 s later. This would lead to big timing differences between 
slides and it would impact statistical analysis which uses relationships between 
experimental hypotheses and measured data like G L M . Temporal interpolation is 
often used to correct for the slice-timing differences. Nearby time points are used to 
estimate the value of a voxel at a time that was not originally measured. [5] 

2.1.2 Realignment 

During statistical analysis, it is assumed that single voxel represents an unchanging 
part of the brain. Some sessions can last for 1-2 hours and subjects, even though 
instructed not to, may get uncomfortable and change their position slightly. Even 
if the subject did not move consciously, heartbeat and respiration can cause small 
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periodical changes in position as well. In the process of realignment, only unimodal 
images are realigned, such as functional images to other functional images or structural 
to other structural images. [5] 

For the correction of motion rigid body transformations with 6 parameters. Three 
parameters for translation in x, y, z axes and the resting three parameters for rotation 
around x, y, z axes. Sometimes called Euclidian transformations because they preserve 
the Euclidian distance between points. So it is assumed that the two images to be 
realigned can be superimposed on top of one another. Three-dimensional translation 
and three-dimensional rotation yield a total of 6 parameters to be calculated. [5] 

A n important step in the computation is the way we determine the amount of 
dissimilarity or similarity when images are realigned. This similarity measure is 
called the cost function. In simplest cases, it is the absolute difference of intensities 
or squared difference of intensities also called the quadratic cost function. In the 
process of realignment, the goal is to find rigid body transformation with the smallest 
value of the cost function. [5] 

2.1.3 Coregistration 

This step is often used to align or map two images obtained through different 
modalities, such as structural images to functional images. Because T R is generally 
set low images obtained through fMRI are usually blurry and have low spatial 
resolution making the identification of anatomical structures difficult. It is therefore 
advantageous to first obtain T1 weighted structural images and then in preprocessing 
coregister them to functional images. [16] 

The rigid body transformation may be used again with an appropriate cost 
function. Because images obtained from different modalities can have different 
intensity dependencies dynamic a cost function called mutual information may be 
used. Mutual information cost function minimizes mutual entropy and expresses 
the degree of uncertainty with to which we can predict changes in the first image if 
changes in the second image are known. Yet another reason for coregistration is a 
geometrical distortion of images. Different pulse sequences may introduce stretching 
along with some or all axes. Here, it is necessary to use affine transformations and 
add three more parameters reflecting the amount of scaling along x, y and z axes. [16] 

2.1.4 Normalization 

So far intra-subject images were realigned and coregistered. Most studies, however, 
need to analyze data from different subjects. The human brain is remarkably 
anatomically variable. Subjects brain in a single study can differ in size by 30%. 
Brains can also differ in shape, some may be longer and thinner while others are 

16 



shorter. This inter-subject variation makes it difficult to compare data acquired 
from different individuals. By normalization, images are mapped to a standardized 
space most frequently to M N I space. The brain template of M N I was created by 
using a large amount of M R I scans and was defined by the Montreal Neurological 
Institute. [5] 

Normalization is a special form of coregistration. It uses affine transformations 
to stretch, squeeze and warp each brain to match the M N I template as best as it 
can. Therefore it is non-Euclidian transform since it does not preserve the Euclidean 
distance between two points. [5] 

2.1.5 Spatial smoothing 

Spatial smoothing employs spatial filters to remove noise. The most common filter 
is a 3D Gaussian spatial filter. Which convolutes images with 3D Gaussian kernel 
which acts as a low-pass filter. The resulting image becomes more blurry but the 
signal-to-noise ratio (SNR) grows larger. Ultimately higher SNR means less false 
positives, which improves the accuracy of the analysis. [5] 

2.1.6 Temporal filtering 

Finally, data may be converted by Fourier transform to the frequency domain and 
filters can extract most relevant data or suppress undesirable bandwidths. One 
such filter suppresses breathing artifacts. Respirometers may determine breathing 
frequency and design either a low pass or band-stop filters. [5] 

Prerequisites for temporal filtering are that the T R must be such so that there 
would be no aliasing of the desired frequencies and experiment design needs to 
be taken into consideration. Particularly the speed of stimuli presentation. Fast 
event-related experiments may present stimuli every few seconds thus blending in 
with respiration. If Normal respiration rate is around 0.25 Hz so sampling rate of 
less than 0.5 Hz or T R smaller than 2 s would have to be used. [5] 

2.1.7 Outlier removal 

Non-linear artifacts are characterized by heavy-tail distributions (distributions do 
not exponentially decay to zero). They tend to express themselves as abrupt 
intense changes in signal intensity, known as spikes or outliers. Causes of non-linear 
artifacts are usually inhomogeneities in the magnetic field, respiration, movement, 
and heartbeat artifacts. [17] 

A simple approach for outliers removal would be to specify a certain threshold to 
define outliers. E.g. FSL, a library of analysis tools for fMRI, uses the 75th percentile 
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+ 1.5 times the interquartile range as a threshold [18]. Another fMRI analyzing tool 
uses 4 to 8 standard deviation threshold for the construction of an outlier map[19]. 

After outliers have been identified data containing them can be either rejected or 
replaced with new values. Rejecting them in fMRI could cause abrupt changes in 
the feedback signal. The better option would be to replace them to e.g. fit a smooth 
curve. 

After preprocessing, data can finally be analyzed. Statistical analysis methods are 
used to asses whether the differences between data sets are significant enough or are 
a mere result of random variables. One of the most widely used methods is a general 
linear model, or G L M for short. 

2.2.1 T-statistics 

The simplest approach is to subtract the mean of the signal acquired in resting 
periods from the mean of the signal acquired in times of neuronal activity. This 
approach sets high requirements on SNR and is most noise sensitive. T-statistics go 
beyond this simple approach by also taking the amount of variability in data into 
consideration. The results of the t-statistics measure if the difference between two 
data sets is statistically significant. [15] 

2.2.2 General linear model 

G L M entails a generalized multiple linear regression analysis. It assumes the data is 
composed of a linear combination of model factors and uncorrelated noise, or error 
term. G L M aims to find parameters (3 for design matrix G, such that they best 
explain data Y and thus minimize the residual term e [5]. The equation may be 
expressed as: 

2.2 Statistical analysis 

Y = ß * G + e 
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estimate! 

fMRI sigral design matrix residuals 
= data = model = error 

Fig. 2.1: General linear model for a single voxel.[20] 

The equation is graphically represented in figure 2.1. In equation 2.1 the term Y 
represents a 2D data matrix that represents data from fMRI. Each voxel occupies one 
column and rows represent points in time. Matrix G, or design matrix... Vector (3, or 
the parameter matrix sets how much each regressor contributes to each voxel. The 
last term is the residual or error term. Its dimensions are identical to a data matrix 
Y thus each entry represents the addition of error to one voxel at a certain time 
point. The contribution of error term decreases if the matrix-vector multiplication 
(3*G explains data matrix Y well.[20] 

As can be seen in figure 2.2 addition of information about experimental design to 
a design matrix should minimize the residual term e.[20] 
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d e s i g n m a t r i x 

Fig. 2.2: Improvement of prediction with addition of information about 
experimental design. Adapted from [20]. 

If the residual term remains considerable the hypothesis of an experiment may be 
wrong. Significance tests are used to measure whether the model significantly well 
describes the variance in a time course of a voxel or in other words measures how 
well the model fits the data. Example of significance tests are t-statistics, F-statistics, 
z-statistics. 
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3 Real-time fMRI neurofeedback 
Neurofeedback is a real-time process in which information about an individual's 
brain activity is communicated back to the individual. Therefore creating a feedback 
loop that allows for increased self-awareness and self-regulation. Neurofeedback 
training aims to volitionally up-regulate or down-regulate brain activity and has 
been successfully applied to treat conditions such as A D H D . [21] 

Real-time fMRI (rtfMRI) allows for analysis within a single repetition time. The 
schematic representation of rtfMRI neurofeedback may be seen in figure 3.1 below. 
Compared to other modalities such as E E G neurofeedback, which offers superb 
temporal resolution but poor spatial resolution, fMRI offers better spatial resolution 
at the cost of decreased temporal resolution. Another difference is the inherent 
feedback delay of fMRI which in some cases could make the neurofeedback training 
hard or impossible. That is also why the subject is usually informed about the delay, 
which is dependent upon image acquisition time, processing time and the inherent 
B O L D response, which takes about 6 seconds to peak. [22] 

Fig. 3.1: Flow diagram of rtfMRI neurofeedback 
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Data acquired by MRI are converted to DICOM format before being sent further. 
D I C O M is the international standard for transmitting and storing medical imaging 
data. [23] The D I C O M data are received and then user defined preprocessing and 
analysis ensues. The feedback loop closes when the results are communicated to 
the subject through neurofeedback software. Neurofeedback software may display 
to the subject information about the task at hand, about the levels of local neuron 
activation at sites of interest and also receive information from the subject. The [21] 
Degree of cerebral activation at ROIs is usually communicated visually. The form 
varies from emoticons to fluctuating level of a thermometer or a simple graph. 

3.1 Current neurofeedback solution 

Over the last decade interest in rtfMRI neurofeedback has grown. There still 
exists little consensus among experts about the quality of different signal processing 
strategies. Nevertheless, the pressure on the quality of signal processing strategies 
might be even higher as the big part of the processing needs to happen in real-time. 
Neurofeedback also puts certain demands on the preprocessing part. "Particularly, 
artifacts and sudden signal changes need to be considered since they may lead to 
learning of nuisance signals."[17] 

A diagram showing data processing steps for fMRI neurofeedback currently 
implemented at CF M A F I L CEITEC can be seen in the figure above. Each step will 
now be briefly described. 

First, a structural image of the whole brain is acquired. This serves not only 
as an anatomic template to which all functional images are aligned to but also for 
localizing ROIs. ROIs are usually defined as a binary mask in M N I space. The 
structural image is normalized to MNI space which yields a transformation matrix. 
Masks can then be transformed by the inverse transform matrix to the space of the 
individual. Next, the first functional image can be co-registered to the structural 
scan. 

In neurofeedback studies, shorter TRs are used so the possible slice-timing errors 
decrease in magnitude as well. That is why many neurofeedback studies omit 
slice-timing corrections with negligible consequences. 

Next steps are performed in real-time while the next functional image is being 
acquired. Following functional scans do not need to be co-registered to the structural 
scan but instead, they can be realigned to the first functional image. Realignment 
is generally faster as two images from the same modality are aligned compared to 
co-registration where two images obtained through different modalities are aligned. 

After realignment individual's ROIs masks are multiplied with functional images 
extracting only the signal from these areas. The resulting spatial signal is averaged 
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Fig. 3.2: Data processing for fMRI neurofeedback. Blocks with gray background are 
done before the neurofeedback part commences. Blocks with blue background are 

done in real-time. 

and a single metric of activity from ROI is obtained. 
As the data can be noisy and contain artifacts use of temporal filtering can 

improve the overall SNR. The nonlinear quadratic estimation algorithm is also known 
as extended Kalman filtering steps in to fill this role. Kalman filter uses a series of 
measurements that contain inaccuracies and statistical noise to produce an estimate 
that is more accurate, than those based on signal measurements alone. As it is also 
a prediction algorithm it is ideal to use in real-time applications where other filter 
types could introduce greater signal delay. More about Kalman filter may be found 
in chapter 5. 
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Fig. 3.3: Unfiltered signal and signal after Kalman filtering. Note the difference in 
amplitude. 

The output from Kalman filter may be offset by a constant or by a linear 
trend further into the session. A trend is a systematic decrease or increase in the 
independent variable. It is characterized by its slow drift like properties. In fMRI 
low-frequency drifts of 0 - 0.015 Hz has been frequently observed. The likely cause of 
origin is scanner instabilities[24]. Drifts may seriously influence results of statistical 
analyses other analyses may also be adversely affected e.g event-related averaging. 
Also by removing the systematic low-frequency trends from data, it is easier to focus 
on the fluctuations in the data which actually carry useful information. Therefore 
any linear trends are removed after Kalman filtering. 

Signals from target ROIs are then scaled by their respective averages and sub­
tracted from control ROI signal. Control ROI is a region which should not react 
to the stimulus being presented to the subject and should remain relatively stable 
throughout the experiment. Also if the subject moves or if there is measured activity 
which concerns both the control region and target region the effect of this activity 
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can be mitigated as it is clear it is not relevant feedback signal. 
Last, estimated activity is communicated to the individual usually as either visual 

or sound cue. 

In the chart 3.4 a typical neurofeedback session in progress can be seen. Grey chart 
areas signalize that the patient is currently being stimulated. These are intertwined 
with short periods of rest. A typical session consists of 4-5 neurofeedback blocks 
each lasting about 8-10 minutes. It can be seen that the first 35 samples of the block, 
or 35-70 seconds when the usual T R of 1 - 2 seconds is chosen, the output is zero. 
And it is done so that the extended Kalman filter would have enough time to learn 
the signal and would output correct values. As the subject can undergo about 3-5 of 
these blocks in one session depending on T R it amounts roughly to 1.5 - 6 additional 
minutes spent in M R . During long sessions subjects can become tired and or start 
moving slightly, not to mention financial costs. The aim of this thesis is to reduce 
the amount of idle time before every block. 
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4 Filtering of temporal data 
Filters have a wide variety of uses. Most commonly they are used to either increase 
or decrease amplitude at certain frequencies. There are two major types of digital 
filters. Finite impulse response filters (FIR) and infinite impulse response filters 
(IIR). According to the frequency, they will leave unattenuated, they can be further 
sub-divided into low-pass, high-pass, and band-pass filters. 

4.1 Finite impulse response filters 

FIR internal structure can be seen in figure 4.1. As its name implies when it's applied 
on an impulse function its output will settle on zero in finite time. [25] 

x[n] 

Feed-tbnvard structure 

- - I 

' - 1 

j j o > — * Q 

Fig. 4.1: Inner workings of FIR digital filter. [26] 

As may be seen in F IR flow graph above, filters output is composed of up to 
x(N-M) previous inputs. Every input is multiplied by a constant b and then summed 
up with the rest. As the output is produced only from previous inputs, it takes M + 
1 zero input samples before the filter's output is zero. [25] 
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A major advantage of FIR niters is that they may provide a linear phase response. 
Since phase is a linear function of frequency then delay is same across the frequency 
spectrum. Filters with non-linear phase cause phase distortions. To design a linear 
phase FIR filter, b coefficients must be symmetrical in the time domain. [25] 

As there is no internal feedback loop, a bounded input will always produce a 
bounded output. That is why FIR filters are inherently stable and there is no need 
to check their stability. [25] 

On the other hand, F IR filters need to be of a higher order than IIR filters to 
achieve comparable frequency response. The order of a filter is determined by the 
number of delay lines. Higher order filters are more computationally expensive. [26] 

4.1.1 Moving average filter 

Moving average filter is a simple low-pass FIR filter. It takes L input points computes 
their average and outputs that as a result. It is a commonly used filtering method for 
data with a noisy high-frequency component. If the length of the filter is increased 
the output gets progressively smoother. The equation for a simple moving average 
filter where x denotes input can be seen below. 

IIR, as its name suggest, is a filter which output never becomes exactly zero when 
an impulse function is presented to the input. [25] 

J oo 

y[n\ = t J2xin - k\ k=0 

4.2 Infinite impulse response filters 
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Fig. 4.2: Inner workings of IIR digital filter. [26] 

As can be seen in figure 4.2, IIR shares a feed-forward structure part with FIR. 
The second part constitutes a feedback loop. Current output depends not only on 
current and past inputs but also on past outputs. [25] 

As there is a feedback loop, past numeric errors may be remembered by the filter 
and propagate to the next cycle. FIR filters, on the other hand, do not remember 
previous outputs and its past numeric errors do not propagate further. In IIR filters 
bounded inputs may produce unbounded outputs if not designed properly. Therefore 
IIR filters should be tested for stability. [25] 

IIR filters have non-linear phase responses and cause phase distortions. Each 
frequency component experiences different phase delay. [25] 

On the other hand, IIR filters achieve desired filter characteristics with lower order 
than their finite counterparts. They are less computationally heavy and introduce 
less average signal delay. [25] 
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4.3 Kaiman Filter 

Linear Kalman filter is an adaptive recursive estimation algorithm. It takes multiple 
measurements to "learn" the characteristics of the signal and is then able to provide 
an estimate of the output of the system to a certain input that tends to be more 
accurate than a single measurement of that same output. That is achieved by joining 
probability distributions of the measurement and the output estimate. The equations 
necessary for the implementation of the Kalman filter may be divided into two 
phases: the prediction phase and update phase. The Prediction phase which tries 
to predict the state of a system at a current time point, produced from previous 
time step estimates. Update phase takes the current measurement of a system into 
consideration and combines them with results from the prediction phase. Equations 
for both phases may be seen below. Variables with a hat over them indicate the 
variable is an estimate. [17], [27] 

Prediction phase: 

x f c | f c _i = Fk * x f c _ i | f c _ i + Bk*uk (4.2) 

Where xk\k-i is the "new" a priori estimate. Fk is the state-transition model. 
xk-i\k-i is the previous estimate as calculated in the previous step by equation 4.5. 
Bk is the control matrix applied to control vector uk. Control vector may contain 
information about actions taken by the system in the previous step. Such as if 
autonomous car decided it was going to fast in the previous step and started to 
break. The equation could be reformulated like this, the new a priory estimate is 
obtained from the previous estimate combined with known prediction model plus 
the influence of external variables. [27] 

P f c | f c _i = Fk * P f c _ i | f c _ i * F f c

T + Qk (4.3) 

Where Pk\k-i is a state covariance matrix (uncertainty in the xk\k_i estimated 
state). Pfc_i|fc_i is the covariance matrix of the previous estimate xk\k-i- Qk is the 
process noise covariance matrix (uncertainty from the environment, not modeled by 
theoretical equations represented by Fk). In other words, the uncertainty of the new 
a priory estimate equals the previous uncertainty estimate plus uncertainty from the 
environment. [28] 

Update phase: 

K h = ^ l ^ 1 * H * u A) 
P f c | f c_! *Hk

r*Hk + Rk

 1 ' ; 

Where Kk is the Kalman gain matrix. Hk is the observation model, mapping true 
state space into observed space - sensors might have different scale and units than 
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the state space used in the rest of the calculation. Finally, Rk is the measurement 
covariance matrix (uncertainty measure of the measurement).[28] 

%k\k = %k\k-i + KkiVk ~ Hk * x f c | f c_i) (4.5) 

Where yk is the measurement matrix - measurements obtained currently from 
the sensors. 

Pk\k = Pk\k-i - Kk*Hk* Pk\k-i (4.6) 

In the update phase measurements from the sensors, yk are combined with 
calculated estimates that are based on previous knowledge about the system. Kalman 
gain modifies equation 4.5 such that if the predicted estimates have much less 
uncertainty than the uncertainty of sensor measurements than the Kalman gain will 
be close to zero so the new estimate will come mostly from the predicted estimates 
and vice versa. [29] 

At the beginning of the algorithm, the posterior estimate comes from sensor 
measurements. As Kalman filter learns the estimates get progressively more accurate, 
and the filter relies less on sensor measurements. The learning period is therefore 
needed and in each neurofeedback session first, few fMRI measurements are used 
to learn the filter. The results at this stage are basically unfiltered and are unfit 
for neurofeedback. The number of neurofeedback sessions conducted in one sitting 
varies but it is not unusual to have 4 and more sessions. This is not time efficient 
not only it is more financially costly, but it also increases the time the individual 
cannot move and so his discomfort. This may lead to more motion artifacts. [27] 

Linear Kalman filter was extended to remove outliers. Such modification breaks 
the law of linearity and nonlinear Kalman filter is also known as extended Kalman 
filter. This was done by setting a threshold for the amount of change that may occur 
between the two following Kalman steps. The threshold was calculated as 0.9 times 
the standard deviation of the signal to date. When the spike is detected previous 
output is held as well as previous covariance matrices. More about the mathematical 
implementation of this filter may be found in [17]. 

As with any spike detection algorithm either a threshold value needs to be set 
beforehand or is calculated from the data set. A n issue arises if the spike detection 
needs to happen online, there is a low sampling rate and reliable results need to be 
obtained as soon as possible. 
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4.4 Adaptive filters 

Adaptive filters change filter coefficients to better adapt to the characteristics of a 
changing signal. Coefficients are adapted by an optimization algorithm which usually 
includes minimization of an error criterion. [25] 

Desired Signal 

InputSignal 
Ml I t H Adaptive FIH or IIR Digital Filter 

Output Signal 
m M SUM 

Adaptrig Algorithm 

Error Signal 

Fig. 4.3: Block diagram of a generic adaptive filter.[29] 

As may be seen in figure 4.3, FIR and IIR filters and many others may be modified 
to be implemented inside an adaptive filter. Adapting algorithms use error criterions 
such as least means square or root means square. Desired signals are compared to 
the output signal and their difference is fed to an adapting algorithm. Desired signals 
in the scope of fMRI are usually the hemodynamic function. The adaptive filter then 
tries to extract data with a similar structure as HRF.[25][30] 
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5 Proposed approach for online data filter­
ing 

Inherent fMRI N F B delay can make neurofeedback training hard or impossible. 
It is therefore important not to introduce further delay by introducing filters not 
suitable for real-time applications. Filtering is necessary since the signal contains 
high-frequency noise and spikes if both have sufficient amplitude they are mistaken 
by the subject as useful N F B signal. This can lead to learning of nuisance signals 
and or can cause confusion. Filtering is made more difficult because the sampling 
rate is quite low (TR = 1 - 2 seconds) while at the same time it would be optimal to 
have an accurate output as soon as possible. 

Current data filtering solution utilizes an extended Kalman filter (EKF) , which 
was chosen as a compromise between its smoothing properties and its extremely 
low lag, which is why it is used mainly in real-time applications. Nevertheless, the 
Kalman filter takes a certain time at the beginning of each neurofeedback block to 
"learn" the characteristics of the signal. Learning length is set to 35 samples which 
can translate to a transient period lasting 35 - 70 seconds each neurofeedback block 
depending on the repetition time. Sessions most often consist of 3-5 neurofeedback 
blocks thus the learning period significantly lengthens neurofeedback sessions. 

Data was acquired from the Multimodal and Functional Imaging Laboratory, 
M A F I L , of the Central European Institute of Technology (CEITEC). The data set 
comprises of 50 subjects all of which had 3 neurofeedback sessions. Relevant data 
had to be extracted and the whole data sets contain 150 individual neurofeedback 
blocks all of which had the same experimental design. Target ROI was amygdala, 
which is a usual object of study due to its role in emotional responses and mental 
states. A l l data had been linearly detrended and subsequently z-score standardized. 

5.1 Analysis of extended Kalman filter 

Functional M R I neurofeedback is basically a one sensor measurement. As was 
explained in section 4.3 Kalman filter is very good at combining multiple sensors 
measurements, where each has a given measurement uncertainty. In this particular 
case, only one sensor measurement is obtained and Kalman filter works on narrowing 
down the real underlying value. Even state transition model matrix is set to — 1 
and so is observation model matrix Hk = 1, therefore all the matrices in equations 
become one dimensional, scalars. The model can be expanded in case of signals 
from a various number of target ROIs that need to be merged, nevertheless in this 
application Kalman filter effectively acts a linear low-pass adaptive filter. 
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Since the covariance would have two identical variables (covariance with itself), 
simply variances can be computed. The update rate sets the cut-off frequency of 
low-pass Kalman filter and can be computed as 

A 
Rk 
Qk 

(5.1) 

As these variables directly impact Kalman gain, update rate sets a limit on how 
quickly can the state variables change. Low-pass filtering behavior can be seen in 
figure 5.2. 
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Fig. 5.1: Single-sided amplitude spectrum of a typical fMRI neurofeedack signal 
before and after Kalman filtering. 

Here, the necessity of a 35 sample learning period will be discussed. There are five 
inputs to the Kalman filter. Previous output, its uncertainty, current measurement, 
its uncertainty, uncertainty from the environment and threshold for spike detection 
algorithm. Only current measurement uncertainty, uncertainty from the environment 
and threshold values can be manipulated directly and all of these inputs have one 
thing in common, they all stem from standard deviation calculation. That is why to 
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test real-time Kalman properties there has been constructed an offline Kalman filter 
where the only difference is that it sees all data points and thus is able to calculate 
standard deviation more reliably. Both the extended version of Kalman and version 
without spike detection algorithm has been tested with their respective counterparts. 
Results can be seen in figure 5.2. 

Extended Kalman filler 

10 20 40 60 70 30 00 

Sample 

Fig. 5.2: Deviation of real-time Kalman filters compared to its offline counterparts. 

As was expected most deviation can be seen in the first few samples. The likely 
cause is that there are not enough samples to calculate the standard deviation (std) 
i.e., there are wide confidence intervals. Std estimates vary greatly until about the 10 
sample. This is the case for both variations of Kalman. After the first few samples 
Kalman filter continues to exponentially decade to zero. Nevertheless, E K F has ups 
and downs, where the downs come close to its de-extended version. This is likely 
because the deviation from spike detection is superimposed with the Kalman filter 
deviation. 

To make sure the behavior is consistent with respect to Kalman we certainly 
know is in its taught phase, unlearned Kalman filters were run in 200-500 sample 
range and compared with Kalmans that were running from the beginning. Same 
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exponential decay curves were observed and had also reached their plateau phases 
around sample 10. 

To quantify the absolute error of E K F , three intervals were chosen for which the 
average error was calculated. Average absolute errors were 

AAE10_35 = 0.0232 AAE35_60 = 0.0283 AAEm_85 = 0.0153 

Higher error in interval 35 - 60 is caused by an outlier near sample 45 and real 
value most probably lies somewhere between the first and third interval. The average 
absolute errors of all the intervals are relatively low with little change in absolute 
average errors between these intervals. Therefore E K F can be considered taught 
after the tenth sample. 

Further decrease in learning time would be possible if, for example, we have used 
a certain amount of data from previous sessions. However, this could adversely affect 
the solution's robustness. Using data from previous neurofeedback blocks of the 
same individual within one session would most likely not strongly affect solution 
robustness. First neurofeedback block still would have a learning period of at least 10 
samples while others would have less. This would be inefficient from the viewpoint of 
further offline analysis because of their time shift which would have to be accounted 
for or corrected somehow during that stage. 

E K F should still be ideally used and as there is no way of shortening its learning 
period without affecting its robustness, the next section is concerned with introducing 
a temporary filter. Which could filter signal before E K F learning period is over and 
then switch to E K F output. 

5.2 Temporary filter 

Further decrease in the amount of block delay is difficult since it is connected to 
lag and smoothing. When one is modified all others are affected as well. There 
is a well-known trade-off between the degree of smoothing and lag. The more we 
would like to smooth the signal the more lag is introduced. Offline applications can 
sometimes work around this issue e.g. symmetric FIR filters can be applied to signal 
twice in each direction to remove the lag. Nevertheless, this is not applicable to 
real-time solutions. And when we would decrease the block delay it would adversely 
affect smoothing. 

Adaptive algorithms or estimation algorithms (KF), all need a period of learning 
or adaptation. F IR or IIR filters of shorter length would be therefore more useful. 
IIR has a non-linear phase response and could introduce unwanted phase distortions, 
therefore, low-pass FIR filter would be a better option. 
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Fig. 5.3: Magnitude and phase response of length 3 moving average filter. 

A causal moving average filter is a low-pass filter used mainly for its smoothing 
properties. The optimal length of a window had been found to be 3, as a tradeoff 
between smoothing and lag. Frequency response and phase response of such a filter 
can be seen in graph 5.3. The attenuation at 0.1 Hz is around -1 dB which is within 
acceptable limits. 

5.3 Spike detection 

Spikes are an integral part of fMRI and their detection and removal is an important 
part of the overall SNR improvement process. Examples of spikes in the unfiltered 
signal may be seen in figure 5.4. 
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Fig. 5.4: Spike detection algorithm. Arrows indicate where spikes were detected and 
subsequently removed. 

The threshold for spike detection is set at 0.9 of standard deviation, calculated 
from the unfiltered signal. If the Kalman filter would be updated by a greater amount 
than that, a spike is detected and previous E K F output value is held. Spike length 
is set to one in both directions, thus spikes lasting longer than one sample will have 
only the first data point removed. Counters for positive and negative spike lengths 
are separate, so in case there are two subsequent spikes in a negative and positive 
direction both would be removed. Due to its low sampling frequency spikes, longer 
than one samples are not common. 
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6 Results 
The proposed solution utilizes two different filters, temporary M A filter, and E K F . 
Temporary M A filter can be switched to anywhere after E K F transient period is over 
and in the previous chapter had been found to be after sample 10. The outcome of 
the proposed approach may be seen in figure 6.1 

To ensure there is no significant difference when the switch happens Wilcoxon 
rank-sum test was used. A potential significant difference could potentially confuse 
the volunteer or it could lead him to learn nuisance signals. The output from both 
filters were taken at the switch point from the whole data set. Wilcoxon rank-sum 
test p-value for switch happening at sample 11 was 0.85 well above the significance 
level a of 0.05 required to reject the null hypothesis. 

MA delay 
* MA filter 

+ EKF 
Unfiltered 

Fig. 6.1: Outcome of the proposed approach for online data filtering 

The course of unfiltered and filtered signals may be seen in 6.2. Although not an 
ideal solution in terms of filter lag the output of moving average filter closely follows 
that of an extended Kalman filter. Probably the biggest differences are seen when a 
spike is detected and removed by E K F for example at sample 35. 
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The figure also nicely illustrates the real-time properties of both filters. Kalman 
reacts immediately to a trend reversal and usually peaks at the same time as the 
unfiltered signal, while the M A can sometimes be seen lagging behind. M A delay can 
be most easily seen during short spike values such as those around sample 16 and 31. 
The introduced lag is not large, maximum lag is one sample as can be expected from 
a length 3 FIR filter. 

2.5 r 

C 5 10 15 20 25 30 3z 40 45 50 

t[s] 

Fig. 6.2: Comparison of filtering properties of E K F and M A . 

Latly, the figure contains for comparison an ideal offline smoother. As on offline 
smoother low-pass FIR of length 30 was used. The signal has been has been filtered 
twice. Once in both directions to remove filter's group delay. As can be seen at 
sample 35, although not completely filtering out parts of high-frequency noise at 
times E K F actually follows the underlying trend better, on account of the spike 
removing algorithm. 

Greater lengths of subsequently allowed spikes were tested and the best results 
were obtained with maximum spike length of one. Which is consistent with the nature 
of spike-like artifacts and with low sampling frequencies used in fMRI neurofeedback 
studies. 
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Fig. 6.3: Amplitude spectrum of neurofeedback signal before and after E K and M A 
filtering. 

Comparison of both filters in the frequency domain can be seen in figure 6.3. M A 
filter seems to have a slow roll-off and low stopband attenuation. A rising arm of 
stopband attenuation ripple may be seen around 0.4 Hz. E K F also does not possess 
ideal low-pass filter properties. Amplitude attenuation leaves part of the spectrum 
not carrying useful information attenuated but not completely stopped. In contrast 
to the M A filter it also slightly attenuates lower frequencies, which is probably caused 
by the varying Kalman gain and so varying update steps. 
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7 Conclusion 
The thesis pursues two main goals, both of them are closely related to real-time 
filtering of fMRI neurofeedback data: to shorten the delay at the beginning of each 
neurofeedback block introduced by digital filters and to analyze necessary learning 
period of the currently used filter at C E I T E C M U , more specifically that of an 
extended Kalman filter. 

In the theoretical part, the reader is familiarized with the basic working principles 
behind fMRI. Underlying biological processes involved in the formation of a functional 
image are explained along with properties and limitations of fMRI. One of such 
important limitations is the inherent delay between actual neuronal activity and the 
detection of a B O L D signal which can take up to 6 seconds. Next, the post-hoc data 
preprocessing methods and statistical tests are described. Chapter 3 builds on top 
of previous chapters by introducing fMRI neurofeedback and real-time fMRI data 
processing pipeline while also introducing current solution utilized at C E I T E C M U . 
Real-time data processing is based on offline methods while introducing some new 
challenges and limitations. The next chapter briefly describes types, advantages, and 
limitations of various types of digital filters while also containing a more in-depth 
mathematical description of Kalman filters. 

The practical part starts by chapter 5. Issues implicit in real-time filtering in 
general and others limited to fMRI had been identified and described. Next, In-depth 
analysis of current solution had revealed that the number of samples needed for 
Kalman to learn the signal had been overestimated. Further shortening the learning 
period would be possible but detrimental to solution robustness. Adjustments to 
be made had been described and temporary filter which can further shorten the 
transient state had been outlined. As a temporary filter M A of short length had 
been proposed which switches to E K F when the output is reliable. Although not 
ideal in terms of filter delay, its smoothing properties were found to be adequate 
with relation to E K F . 

Lastly, the E K F filter and M A filter outputs have been compared. Wilcoxon rank 
sum statistical test was utilized to ensure volunteers will not see a dramatic change 
in values when filters are switched. The proposed solution saves about half a minute 
at the beginning of each neurofeedback block, about 1.5-3 minutes depending on 
the T R and number of N F B blocks in each session. This significantly reduces the 
time volunteers have to spend in claustrophobic space of M R scanner and reduces 
financial costs fMRI neurofeedback. These resources can be spend on prolonging 
the neurofeedback sessions or on further instructing the volunteer about the task at 
hand which could improve volunteer's learning curve. 

Further tests and possible improvements could be made by running whole fMRI 
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neurofeedback experiments with low order filters such as M A and statistically compar­
ing its neurofeedback effects compared to E K F . Results could indicate an underlying 
relationship between smoothing, filter delay, and volunteer's learning curves. 
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List of symbols, physical constants and abbre-

viations 
MRI Magnetic resonance imaging 
fMRI Functional magnetic resonance imaging 
B O L D Blood oxygenation level dependent 
SNR Signal-to-noise ratio 
FIR Finite impulse response 
IIR Infinite impulse response 
C E I T E C Central European Institute of Technology 
G M L General linear model 
rtfMRI Real-time functional magnetic resonance imagin; 
N F B Neurofeedback 
E K F Extended Kalman filter 
M A Moving average 
M U Masaryk University 
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