

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Diploma Thesis

Cognitive RPA: an open source solution for user support

Alket Shabani

© 2020 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
MSc. Alket Shabani

Systems Engineering and InformaƟcs
InformaƟcs

Thesis Ɵtle

CogniƟve RPA: an open source soluƟon for user support

ObjecƟves of thesis
The main objecƟve of the thesis is to implement a cogniƟve RPA soluƟon for user support in mulƟple
informaƟon systems in an organizaƟon.

The parƟal goals of the thesis are such as following:
- to provide a current overview of state of the art of RPA cogniƟve compuƟng and to idenƟfy main issues
with RPA implementaƟons in user support processes;
- to design an opƟmal open source soŌware soluƟon for user support in mulƟple systems in an
organizaƟon;
- to evaluate the proposed soluƟon and make recommendaƟons.

Methodology

The methodology of this work is based on reviewing current literature on cogniƟve compuƟng and RPA.
AŌer that, an open source soŌware will be selected according to the given criteria. In the pracƟcal part we
will try to design and implement full automaƟon of the user support process based on cogniƟve compuƟng
and an RPA bot by using the combinaƟon of selected soŌware. By synthesising and contrasƟng findings
in the literature review and pracƟcal part, final recommendaƟons will be made and conclusion will be
formulated.

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

The proposed extent of the thesis
60 – 80 pages

Keywords
RPA, CogniƟve AutomaƟon, CogniƟve CompuƟng, Open Source, user support, chat bot.

Recommended informaƟon sources
AGUIRRE, SanƟago; RODRIGUEZ, Alejandro. AutomaƟon of business process using roboƟc process

automaƟon (rpa): A case study. In: Workshop on Engineering ApplicaƟons . Springer, Cham, 2017.
pp. 65-71.

BONACCORSI, Andrea; ROSSI, CrisƟna. Why open source soŌware can succeed. Research policy, 2003,
32.7: 1243-1258.

KELLY III, John E.; HAMM, Steve. Smart machines: IBM’s Watson and the era of cogniƟve compuƟng.
Columbia University Press, 2013.

LACITY, Mary C.; WILLCOCKS, Leslie P. A new approach to automaƟng services. MIT Sloan Management
Review, 2017.

LERNER, Josh; TIROLE, Jean. The open source movement: Key research quesƟons. European economic
review, 2001, 45.4-6: 819-826.

MADAKAM, Somayya; HOLMUKHE, Rajesh M.; JAISWAL, Durgesh Kumar. The Future Digital Work Force:
RoboƟc Process AutomaƟon (RPA). JISTEM-Journal of InformaƟon Systems and Technology
Management, 2019, 16.

POOSAPATI, Vijaya Ramaraju; KATNENI, Vedavathi; MANDA, Vijaya Killu. CogniƟve AutomaƟon in
Industry–Design Principles and Case Study. InternaƟonal Journal of Applied Engineering Research,
2018, 13.20: 14827-14831.

STALLMAN, Richard. Viewpoint Why open source misses the point of free soŌware. CommunicaƟons of
the ACM, 2009, 52.6: 31-33.

WILLCOCKS, Leslie P.; LACITY, Mary; CRAIG, Andrew. The IT funcƟon and roboƟc process automaƟon.
2015.

Expected date of thesis defence
2019/20 SS – FEM

The Diploma Thesis Supervisor
Ing. Miloš Ulman, Ph.D.

Supervising department
Department of InformaƟon Technologies

Electronic approval: 26. 8. 2019

Ing. Jiří Vaněk, Ph.D.
Head of department

Electronic approval: 14. 10. 2019

Ing. MarƟn Pelikán, Ph.D.
Dean

Prague on 05. 04. 2020

Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol

Declaration

I declare that I have worked on my diploma thesis titled "Cognitive RPA: an open

source solution for user support" by myself and I have used only the sources mentioned at

the end of the thesis. As the author of the diploma thesis, I declare that the thesis does not

break copyrights of any their person.

In Prague on 05/04/2020 ___________________________

Acknowledgement

I would like to thank Ing. Milos Ulman, Ph.D. and my family for the support

throughout this project.

Cognitive RPA: an open source solution for user support

 5

Abstract

In today’s technological world every day, new technologies emerge. Robotic process

automation is one of the technologies that empowers companies in automating their

processes. On the other hand, is up to the organizations to find which processes are best to

automate. What empowers RPA even more is the cooperation with Artificial Intelligence in

creating cognitive applications. This makes RPA more flexible and more extensible.

The aim of this thesis is to combine the power of these two technologies in providing an end

to end automation. The best part is that we are trying to build this based on Open Source

tools. A lot of research will be needed to find the tools available and to integrate two of them

in automating a user support process.

This study aims to provide an insight of the tools available from open source community and

their capabilities. What is more, the implementation can be extended in other fields or more

processes.

Keywords: Open source software, robotic process automation, cognitive computing,

cognitive automation, TagUI, Rasa NLU, natural language understanding

 6

Table of content

1 Introduction .. 9

2 Objectives and Methodology .. 10

2.1 Objectives ... 10

2.2 Methodology ... 10

3 Literature Review ... 11

3.1 Open Source .. 11

3.1.1 History of Open Source .. 11

3.1.2 Reliability .. 12

3.1.3 Scalability .. 13

3.1.4 Security .. 13

3.1.5 Total cost of ownership .. 14

3.1.6 Community .. 14

3.2 Open source RPA tools ... 14

3.2.1 Robot Framework .. 14

3.2.2 Roro ... 15

3.2.3 Open RPA .. 15

3.2.4 Automagica .. 15

3.2.5 TagUI... 16

3.2.6 Taskt .. 16

3.3 Robotic Process Automation ... 17

3.3.1 Benefits of RPA ... 17

3.3.2 Common issues with RPA .. 18

3.4 Cognitive Computing .. 19

3.4.1 Applications of cognitive computing .. 20

3.5 Intelligent Automation .. 21

3.6 NLU .. 22

3.6.1 NLU terminologies in chatbots ... 22

3.6.2 NLU evaluation .. 23

3.6.3 Rasa ... 24

3.6.3.1 Architecture .. 24

3.6.3.2 Actions ... 25

3.6.3.3 Natural language understanding .. 25

3.6.3.4 Policies ... 25

3.6.3.5 Training data ... 25

 7

3.6.3.6 Pipelines ... 25

3.7 Current state of RPA in user support systems .. 26

4 Practical Part .. 28

4.1 Designing an open source solution of cognitive automation 28

4.2 Comparison of tools .. 28

4.2.1 Technologies that are used to create the tools ... 28

4.2.2 Programming languages supported ... 29

4.2.3 Platforms supported ... 29

4.2.4 Available features .. 30

4.2.5 Learning curve ... 30

4.2.6 Documentation ... 30

4.2.7 GitHub users and contributors .. 31

4.2.8 Open and closed issues ... 31

4.3 Implementation ... 32

4.3.1 Preparing the experimental environment .. 33

4.3.2 NLU ... 35

4.3.3 RPA ... 43

4.4 Benchmarking ... 48

4.4.1 NLU model .. 48

4.4.2 Core model .. 51

5 Results and Discussion .. 54

5.1 SWOT Analysis .. 54

5.2 Comparison to other tools.. 56

6 Conclusion ... 57

7 Bibliography.. 58

8 Appendix ... 61

List of pictures

Figure 1: Rasa conversation management .. 24
Figure 2: Architecture overview of proposed solution .. 32
Figure 3: Sequential Diagram .. 36
Figure 4: rasa-nlu-trainer ... 37
Figure 5: Sap GUI use case.. 44
Figure 6: Sap GUI ... 44
Figure 7: Outlook use case .. 45
Figure 8: Histogram... 49

 8

Figure 9: Confusion Matrix NLU Model ... 50
Figure 10: Failed Stories.. 52
Figure 11: Confusion Matrix Core Model .. 52

List of tables

Table 1: Confusion Matrix... 23
Table 2: Open vs Closed issues.. 31
Table 3: Domain.yml ... 40

List of abbreviations

 RPA – Robotic Process Automation

 AI – Artificial Intelligence

 ERP – Enterprise Resource Planning

 CRM – Customer Relationship Management

 FOSS – Free and Open Source Software

 GNU – GNU’s Not Unix

 NLU – Natural Language Understanding

 NLP – Natural Language Processing

 ITIC – Information Technology Intelligence Consulting

 OS – Operating System

 9

1 Introduction

Repetitive business tasks like copying, pasting, merging and moving are part of most of

companies’ employees especially those who work with ERP, CRM and Excel.

Some of these tasks are highly structured and manual so they could be handled by a robot

and the worker would have valuable time to take on some more valuable tasks. Automating

these processes is what RPA does best.

Working with structured data is a process that RPA companies seem to have improved more

and more the recent years. Recent case studies have been carried to show the benefits of

RPA in different business processes and there are also a number of actors who carried these

studies that have some tips on what processes are best to automate.

On the other hand, nowadays, RPA has a new partner AI (Artificial Intelligence) to form

cognitive automation. This “partnership” AI+RPA is still in its early days, but companies

seem to put more and more focus on this direction.

What is to be mentioned is that RPA is not based on classic idea of robots which are hardware

devices that are programmed to do specific tasks. RPA is based solely on software

applications which are programmed to do work which previously was done by people.

 10

2 Objectives and Methodology

2.1 Objectives

This thesis aims to firstly give an overview of how Robotic Process Automation and

cognitive computing can work together. Many software companies are working in this

direction and we will provide some case studies where these solutions have been applied.

This not only works as a general idea of how RPA has been merged with cognitive

computing but also as a learning path for other companies trying to figure out which

processes to automate.

Based on this a high-level architecture of how these two components are linked together will

be provided.

In the technology world, RPA is one of the most hyped words in 2019 and so is cognitive

computing but we want to give some basic information regarding the two, so the readers can

be more familiarized and to better understand the specific technologies.

Most of the companies providing RPA solutions or RPA together with cognitive computing

to form intelligent automation have their released software proprietary so our goal is to do

thorough research and to find some open source alternatives. The open source alternatives

should be on both RPA and cognitive automation. Also, the research that we will make will

be necessary for our final objective in this thesis which is to create an open source solution

of intelligent automation.

Our last but not least objective will be to evaluate an automated process comprised mostly

of open source software which includes RPA and cognitive computing. Also, we will make

recommendations based on our practical part.

2.2 Methodology

The first section of this thesis will be literature review where we define some key concepts

like RPA, open source and cognitive computing.

There will be a comparison of tools that we can use in our thesis and finally we will explain

why we chose the tool that will be used for the practical part.

Through literature review we want to let the reader know what we will do in this thesis and

explain the basic concepts that will be further used in this work.

After we are familiar with the concepts there will be some introduction to our core

technologies that will be used in the practical part. Before we discuss about the practical part

some key tips of dos and don’ts will be provided. Also, a general architectural overview of

how we think that RPA and cognitive services can be used will be further explained in our

work.

The final part of this thesis will be the practical part which is web scraping of images from

a website with RPA tool and then using cognitive computing to find which of these images

are those of human.

 11

3 Literature Review

The literature review section will cover the necessary information that will help in practical

part. The foundation of open source software will be covered, starting with a general

information about this initiative and then covering areas such as why choose open source

and comparison of open source tools with commercial ones. Furthermore, an introduction to

RPA and intelligent automation will be covered, including open source RPA tools. The

impact of robotic process automation in area of user support will be covered in the literature

review and will help us understand the need or not for RPA in user support systems.

3.1 Open Source

Open source has attracted a substantial attention in the recent years [4]. Whether open source

is indeed ‘faster, cheaper, better’ is still an object of controversy, but there is little doubt that

open source projects have been tremendously successful in recent years.[4]. But what is open

source software? Roughly, being open source requires that the source code, and not only the

object code (the sequence of 1's and 0's that computers actually use), be made available to

everyone, and that the modifications made by its users also be turned back to the community.

The details vary with the license adopted for the program. Some of the key criteria included

in the Open Source Definition are (a) the royalty free redistribution of the program, (b) the

release of the source code, and (c) the requirement that all modifications be distributed under

the same terms as the license of the original software [1].

What open source includes and what is the most important among its features is free software

and by free software we do not mean pricing but like, “free speech,” not “free beer” [2].

3.1.1 History of Open Source

Open source dates back to the year 1970 when Richard M. Stallman created some code for

the printer in order not to get stuck. When MIT was equipped with a new printer the source

code was not available for change, so this shook Stallman and his culture as a hacker (back

in the days it had positive meaning). During this year’s selling licenses was the main profit

the companies had, and Stallman came up with the idea of creating a new operating system

which would not deprive users from freedom of how the OS worked and the users could

change it based on their preferences. This marked the start of open software movement.

The open software movement started with what was then called by Stallman GNU

(pronounced “guh-NEW” in this case) and this was his operating system.

Based on Stallman definition the open source software should have these four freedoms:

 The user has the freedom and the rights to run the program for any specific

purpose

 The user can change the source code of the software application in the way that

he finds suitable

 Also, the user has the right to redistribute copies for free

 The user has the right to redistribute modified copies of the software so the

community can benefit from the changes

 12

The problem that was encountered by Stallman was linked with the release of the software.

He could not just release the software because someone could patent it on his name. And the

other problem was that he did not want to close the code so the whole purpose of open source

software and user reviews would be lost.

These two issues that Stallman faced led to another breakthrough for the open source

software and this was GNU General Public License which was released in 1989 and

encapsulated the concept of copyleft. Copyleft means you can use the software as you wish,

you can also distribute and modify it but if you modify this should be shared with the

community so everyone can benefit.

The birth of Linux marked another significant moment in open source history. Until the 90's

the missing part from the open source operating system was the kernel and in 1991 Linus

Torvalds released the Linux kernel version 0.02. Torvalds was already integrating some of

GNU components into its kernel and Stallman says that Linux should be called GNU-Linux.

What Torvalds wanted to emphasize about Linux is that its power lies in the community and

the code itself.

There are several arguments on why a company, or an individual should choose to use FOSS

(free and open source software). We will try to list several features that we consider to be

useful whether to choose or not an open source software.

3.1.2 Reliability

The first feature that we will list is reliability (ISO 25010: Degree to which a system,

product or component performs specified functions under specified conditions for a

specified period of time.) as it is one of the core qualities that not just a software but

everything should have. according to a Fuzz study in a paper called "Fuzz Revised"

characteristic as crashing and freeze-ups of software were tested and it turned out that FOSS

applications are more reliable [3].

It is also interesting to compare results of testing the commercial systems to the results from

testing “freeware” GNU and Linux. The seven commercial systems in the 1995 study have

an average failure rate of 23%, while Linux has a failure rate of 9% and the GNU utilities

have a failure rate of only 6%.

Also if we refer to most recent figures as described in the annually ITIC report the most

reliable enterprise server OS: IBM Power Systems, Lenovo System x and ThinkSystem,

and Huawei KunLun servers running Linux and open source distributions each delivered

the least amount of unplanned downtime associated with system or OS technical problems,

less than 12 minutes per server/per annum [4]. Taking into consideration these figures we

can see an ongoing domination and consistency of the open source software.

It is reasonable to ask why a globally scattered group of programmers, with no formal testing

support or software engineering standards can produce code that is more reliable (at least,

by our measure) than commercially produced code. Even if you consider only the utilities

ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf

 13

that were available from GNU or Linux, the failure rates for these two systems are better

than the other systems.

What is more 80% of top 10 most reliable hosting providers ran open source software in

their systems. This is pointed out in a survey made by Netcraft [5]which found out that out

of 10 hosting providers 4 used Linux 4 used FreeBSD and only 2 proprietary software like

Microsoft Windows.

3.1.3 Scalability

After reliability what we think that is necessary to take into consideration when a software

is chosen is to know how it can scale with your infrastructure and your business needs. There

rare data gathered from Forbes [6]about the top 500 computers in the world and if they are

running on open source software or proprietary one. The results are that 391 of them are

running on Linux 189 on Unix and 2 on FreeBSD. This gives an insight that FOSS can run

either on normal hardware but also drive the supercomputers of the world.

What most of companies and people can do is to start small by using FOSS and then scale

as per their needs.

3.1.4 Security

Security is the third feature that will be covered, and needless to say it is one of the most

important ones. In today world where the information and data are so important, we cannot

leave without mentioning the security of FOSS and how open source software compares to

proprietary one. This part is difficult to measure in a quantitative way, but we will do our

best to give some arguments.

We believe open source software is a necessary requirement to build systems that are more

secure.... opening the source of existing systems will at first increase their exposure...

However, this exposure (and the associated risk of using the system) can now be determined

publicly. With closed source systems the perceived exposure may appear to be low, while

the actual exposure... may be much higher. Moreover, because the source is open... the period

of increased exposure is short. In the long run, openness of the source will increase its

security... [and] it allows users to make a more informed choice about the security of a

system....” [7]

In the following sections will be quantitative studies that back the idea that FOSS offers

better security at least at some areas:

[8]In this paper it is pointed out that OSS and proprietary software did not differ in security.

And thus, we can say that the security of open source is not a myth. What is interesting to

point out is that the OSS vulnerabilities in terms of severity tended to be less severe.

"When we determine the medians of medians of open source software and closed source

software and also the corresponding medians of the proportions of highly severe

vulnerabilities (30.28% and 45.95%, respectively), the first impression is that open source

software is more secure in terms of the severity level. However, applying statistical analysis

(Mann-Whitney U-test) on the medians, no statistically significant differences can be found:

the two-tailed test provides a high number for p (p=0.11). Applying the same test to the

 14

proportion figures, the test, again, does not indicate that the samples are significantly

different at the 0.05 level (p=0.06)" [8].

3.1.5 Total cost of ownership

We think that when it comes to choosing a product especially a software product total cost

of ownership is an important criterion. It is important because it doesn’t matter if you start

free with a software what is important is the cost in the long run.

There are a number of factors to be considered when calculating TCO and all these factors

should be identified and in the end a cost calculation is necessary. Some "hidden" costs

should be taken into account such as technical support, upgrade costs, end user costs and

more. [3] Identifies the TCO factors that according to them are necessary to evaluate with

FOSS and proprietary software: hardware costs, direct costs of software, indirect costs,

staffing costs, support and downtime.

Sometimes it can be misleading when talking about TCO and proprietary software as the

end user does not own the software rather than he has the right to use it based on a "lease".

3.1.6 Community

One of the things that people who create open source software pay attention to is having a

user base and not for the purpose of proving that the things that you have done are good and

useful but most of them are hackers as well and so they can become co-developers. Since

the source code is available most of them will try it and probably will find some bugs in your

code or give you valuable feedback on how some things could have been done better.

3.2 Open source RPA tools

In this section we will focus on the tools that are available under open source licenses. We

will go through the details of some of the tools and finally one of the tools will be used for

the practical purposes of this thesis.

The truth is that there are no too much open source RPA tools and this is mainly because

robotic process automation is not consolidated properly in the market. RPA is still a growing

industry with its benefits and drawbacks at the same time which are to be resolved in the

future.

3.2.1 Robot Framework

The first tool that we will go through is Robot Framework which is an open source tool

licensed under the Apache license 2.0. Robot framework is an RPA tool which is extensible

giving it the possibility to be integrated with a whole number of other tools. Moreover, it is

also used for acceptance testing and acceptance test driven development (ATDD) so the user

base is not just strict to RPA usage.

Robot framework first was developed by Nokia Networks to be then sponsored by Robot

Framework Foundation. The foundation which is a non-profit organization has its main goal

 15

to provide the growth of Robot Framework and it is backed up by a number of companies

that have the same scope.

What robot framework offers as stated before is its extensibility and the community can use

either Python programming language or Java. The Robot Framework community develops

and maintains a number of libraries that provide functionality such as optical image

recognition, HTTP APIs, iOS and Android application support, database access, and remote

execution. The list of libraries can be found on the GitHub page or their own website.

Another key advantage of Robot Framework is that it is operating system and application

independent. In this way you are not bound to specific OS for running the tool.

3.2.2 Roro

Another open source tool that is free to use for RPA purposes is called RORO [9]. It is

created by Arvie Delegado in collaboration with two other contributors. The main idea was

from Arvie and the two other contributors joined to add some extra functionalities like add-

in for Fody (another open source project) and the compiler in .NET, since Roro is made to

run only on Windows operating system.

3.2.3 Open RPA

Another tool [10] included in our list is country of origin of which is Denmark. It is not

difficult to tell that open RPA is open source. The code is publicly available in GitHub under

the profile open-rpa/openrpa/. Open RPA is available on windows machines and automates

a number of tasks. As with other RPA tools OpenRPA offers the possibility to record the

user interactions with windows application and then can be replicated. OpenRPA has an UI

that the users can use in order to program their robot. There are predefined building blocks

that can be used to create certain tasks. Below we will introduce some of the tasks that

OpenRPA offers to its users.

As we mentioned before one of the tasks that most RPA tools offer is to record the steps that

users do in their desktop. OpenRPA adds the step to the tool which will show the steps one

by one related to the designers matched.

What are more basic activities such as working with workbooks, downloading and uploading

files, working with images using open source image processing libraries such as OpenCV.

Since OpenRPA is open source as the other tools in this section addition of extra code or

combine it with other tools to extend the possibilities of the tool.

3.2.4 Automagica

Automagica [11] is the next tool in our open source RPA list. It claims to be not only robotic

process automation but smart RPA, meaning that Automagica has prebuilt cognitive

abilities.

The activities that Automagica support are numerous. We will go through a list of them to

show the capabilities of the tool.

 16

It comes without saying that the tool supports desktop automation by interacting with

applications on users’ desktop. Also, possibility to automate business applications such as

SAP, Oracle, Salesforce is included. Business applications are the ones that take much of

manual work in numerous companies so Automagica solves that issue pretty well. Web

automation is part of what the tool offers to its community including tasks such as web

scraping and website management without any user interaction. OCR or optical character

recognition makes for the smart part in their claim. Also, computer vision is used in order to

be able to process images on the screen and to offer the best user experience.

Moreover, what makes Automagica special is the support for Citrix automation because

Citrix runs as a separate desktop service in the user’s computer and adds and extra layer of

abstraction to the automation process.

In order to support the claims of Automagica we need also to verify the parts comprising

this tool. In this way the users can get also an overview of the range of offerings that

3.2.5 TagUI

TagUI [12] is another open source tool that offers RPA capabilities. At first TagUI was

developed by Ken Soh then it was backed by AI Singapore. AI Singapore is a government

funded initiative that is focused on building local artificial intelligence capabilities.

What TagUI offers is automating cognitive actions that users do in their desktops or web

browsers. This is done by integrating a number of tools which as well are open source. The

tools that TagUI integrates are:

 SikuliX - Raimund Hocke from Germany [13]

 CasperJS - Nicolas Perriault from France

 PhantomJS - Ariya Hidayat from Indonesia [14]

 SlimerJS - Laurent Jouanneau from France [15]

Another feature that TagUI offers to its users/customers is the possibility to write “code” in

natural like language, meaning that there is no programming required. It offers JavaScript as

well for advanced users and extended code creation. As far as language-like syntax is

concerned support is available for 20 languages.

As with other RPA tools in this section TagUI offers the feature of cross OS, meaning that

the tools can be use in Windows, MacOS and Linux. For the data science users TagUI brings

Python and R integration.

3.2.6 Taskt

Formerly known as sharpRPA, Taskt [16] is the last tool in our list of RPA tools from the

open source community. It is based on .NET framework, so it means it is not a cross platform

tool, but it works only in Windows OS which supports .NET framework. Browser and

desktop automation are the main things that Taskt does well.

http://sikulix.com/
https://github.com/casperjs/casperjs
http://phantomjs.org/
https://slimerjs.org/

 17

3.3 Robotic Process Automation

When people hear about robots immediately comes in mind the physical robot doing some

tasks, but in the case of RPA there is just a software robot. When it comes to business

processes with RPA we mean configuring and programming the software ‘robot’ to perform

some task that previously was carried out by people [17].

Another definition by [18] is “RPA is an umbrella term for tools that operate on the user

interface of other computer systems in the way a human would do.”

What RPA tends to automate are tasks that people do on a daily basis which are highly

structured, time consuming and include manual tasks like copy pasting, moving data from

one platform to another. [18]

When it comes to the IT side the RPA bot is equal to one software license when it comes to

vendors that sell their software. The RPA bots have the ability to communicate and interact

with third party software in our IT systems via front-end in contrary with traditional software

that tend to communicate in the backend. This makes it possible to integrate RPA with almost

every other software that can be used by a human being [19].

There are also some other features that distinguish RPA from traditional software like

business management processes. These features include:

 The way that RPA accesses the third-party platforms on their application layer [20]

 Most software vendors of RPA tend to make the tools that they create easy to use

and no programming skills are required as most of them are with building blocks

As we stated above and in different papers has been studied that not everything can be

automated not just with RPA but also with other tools. Below there is a picture showing how

RPA stands in the market and what is a general idea of what can be a potential task that can

be automated.

As in every other field what drives innovation is business and, in our case, what makes

business processes easier is RPA. The problem with some companies that try to implement

automation into their processes, is that they fail to follow some critical guidelines. The

primary focus of automation should not be reducing cost but customer satisfaction as that is

every business ultimate goal [21]

3.3.1 Benefits of RPA

Software robotics as we stated in the previous paragraph has come to change the way

repeating business tasks are done and enabling people to do more cognitive tasks.

In this section we will focus on certain areas that RPA claims to improve in current business

processes. We will focus on some case studies to see how companies have implemented

RPA and what they got in return in terms of different indicators.

There is different way we can look into the benefits of RPA. We can look into the benefits

of the business and by this we mean the ROI or return of investment. This is one of the key

promises of the RPA and RPA implementations in general. Usually the companies take back

their investment in one year or in one year and a half. It is often mentioned that companies

should focus on the long-term gains from RPA and not just on the short term. Looking in the

 18

long term makes also the RPA implementation more useful for the processes that are

automated.

Another key point regarding the return of investment is that companies should not focus only

in in this component, but we will talk into details about what companies should avoid in the

next paragraph “Common issues with RPA”. [22]

Except for the return of investment what businesses are interested is cutting costs. In

different companies’ robotic process automation has made it possible to have more than 10%

of cost reduction also depending on the process that is automated. [23]

In terms of time factor businesses have seen a decrease in processing time and a large

possibility in scaling up and down according to the workload. This is quite the advantage for

the business as they can change the “robots” number based on the workload that is available.

In O2 company which embraced RPA they saw an improvement of processes time from days

to minutes or hours. [24].

In terms of IT department RPA provides easiness in implementation as it does not require

for the current IT processes or systems to change. RPA can work on top of those processes

and it does not require any API or backend integration. Even though IT teams need to be

convinced before implementing some tool into their environment the case studies have

shown that in the end IT teams have embraced robotic process automation. There are certain

suggestions if the robotics should be part of other systems of IT departments or in separate

environments, but this is out of the scope of this section and this thesis.

What is more robotic process automation requiring little or no time compared to ERP

implementations. Usually the setting up of the environment takes several weeks compared

to years that an ERP system could take to be implemented [19]

Another key point that is worth discussing is the relation between robotic process automation

and outsourcing of repetitive tasks to low cost labour countries. In the case of Opus Capita

[19] the company saw it more fruitful to have an inhouse RPA solution rather than delegate

the work to other countries. In this way the company has the full control over its processes

and the clients are more satisfied in this way.

One of the key concerns regarding the RPA implementations is that the workers will be fired

if the company takes on robotic automation of some tasks that used to be done by employees.

But this is not the case as with the robotic automation people that used to do this task can

oversee the robots work. Also, the employees can focus on more cognitive tasks rather than

do manual processes as they used to [19]. So far there is no indication of job losses in the

companies that implemented robotic process automation. The fear still remains from the

employees’ point of view as they think that their jobs are at risk, but with RPA in house the

employees can be more valuable to the company than they used to be by just doing manual

work.

3.3.2 Common issues with RPA

The first to keep in mind when thinking of using RPA in your infrastructure is to evaluate if

the task is repetitive or not and if it requires cognitive capabilities from third parties.

 19

If the task is not highly repetitive and it requires extra cognitive abilities from your

employees such as critical thinking than this is not the type of task you should consider

automating.

Another necessary thing to consider is that you should be able to write down every step of

the process and define all the possible outcomes. In this way you are sure that the process is

clearly defined, and you can automate all of it or certain parts of it which are repetitive. [19]

What is more to consider, is, if a company is willing and prepared to replace workers with

"robots".

According to [22] one of the common issues with RPA implementations is that teams that

create the PoC1 are ready to go in production. The problem is that the implementation must

be scalable and resilient.

Also, in [22] is stated that the companies fail to think about the processes after they have

been automated. This step requires a thinking from the implementation side on how the bots

will go live, who will be in charge of the robot workforce and who will run it.

3.4 Cognitive Computing

Cognition is defined as “The mental action or process of acquiring knowledge and

understanding thought, experience, and senses.” [25].

The advancement of artificial intelligence is giving a lot of advantage to different fields of

technology and companies can now build human like machines, which think and act like

humans would do [25].

As we said a cognitive system is a system that can perform some functions that a person

would normally do such as learning, planning, deciding and making decisions. Nowadays

cognitive systems are equipped with abilities like pattern recognition, NLP (natural language

processing), learning and other functions which normally in the past were performed by

humans [26].

The main advantage of artificial intelligence is that it can work with unstructured data, which

is what a human would do. A cognitive system should be capable to work with large amount

of data coming from multiple sources and generate some meaning out of this.

Big companies like Google, IBM, Amazon, Facebook and others are among the ones that

provide cognitive computing services.

As we said previously a cognitive system should work with unstructured data as a human

would do, and for this a cognitive system should communicate with various sources to get

the data. Natural language processing and text to speech conversion are widely used in such

systems. In order to have a reliable cognitive system we should take into consideration the

level of confidence of our system. Improving the confidence level of one’s system is also a

trivial and important task.

Cognitive computing has the ability to learn making these systems different from traditional

ones. These new systems can learn and adapt and what is more important they can evolve

over time which allows them to act independently.

PoC – Proof of concept is a demonstration, the purpose of which is to verify that certain concepts or theories

have the potential for real-world application.

 20

What is to be cleared is that cognitive computing should not be thought as being artificial

intelligence, as cognitive computing is the umbrella that has the specific technologies used

by AI. On the other hand, artificial intelligence puts into practice by the use of machines,

cognitive computing capabilities.

3.4.1 Applications of cognitive computing

In the next section we will go into depth of how cognitive computing is linked to RPA and

how it empowers the future of robotic process automation, but in this section, we will give

an overview of other applications of cognitive computing.

The earliest cognitive systems started as systems for tutoring as described in “Cognitive

Tutors” 1995. These models were primarily used to help students solve problems in

different areas of studies such as geometry and algebra. [27]

Problem solving systems are another area that cognitive computing found its use by solving

geometry questions for SAT tests in the US. The system is capable of understanding text and

diagrams. The system is called GEOS and it scored 49% on the test. [28]

Healthcare is the area of life that has a lot of data that need to be processed and sometimes

systems can process and work with this data in better speed than a human would do. IBM

has created a version of its cognitive system Watson for healthcare and it is called Watson

Health. This product is used for diabetes diagnoses and new treatments. The way it will try

to achieve new breakthroughs in diabetes is by feeding the system with 125 million data

from different patients.

Another hospital the Massachusetts General is planning in using graphical processing units

such as Nvidia in order to detect anomalies in CT scans. To achieve this up to 10 billions of

actual images will be used to train the cognitive computing system and will help doctors in

better identifying diseases such as cancer from the early stages.

IBM with Watson is trying to enter the financial industry. Nevertheless, there are critics

regarding how Watson or tools like Watson perform when their cognitive abilities are put to

the test. According to an ex IBM engineer `IBM Watson has great AI...It’s like having great

shoes but not knowing how to walk — they have to figure out how to use it` [29].

Systems like Watson health and Watson financial services are backed with some of the best

AI capabilities in the market, but they fail to perform in certain cases. [30]

One issue with both systems is the large amount of data required by subject matter experts

in order to have the correct results. If the domain that these systems work on is complex than

the greater is the level of training needed and greater is the risk of having incorrect results.

As was noted above the more difficult the domain the harder is for cognitive tools to perform,

but this should not have been the case for Watson health. Nevertheless, experts argue the

success of Watson in this field as in the year 2018 IBM fired up to 300 people from three

companies that they had acquired and had brought IBM a substantial amount of data to train

Watson.

 21

Another important thing to point out is that these integrations require a lot of consulting work

in order to achieve the desired curated data which the late has led some companies from

stepping from IBM.

According to [31] one client suspended its project with IBM after having spent an amount

of approximately $60 million.

The last note serves as a reminder to companies that in order to build such integrations, not

only with IBM, but with other third parties as well, a lot of thought must be given. [30]

Taking into consideration the above arguments it is necessary to point out that as with other

systems, implementing AI is not the solution to every problem. A lot of prework needs to be

done in order to evaluate the compatibility of AI systems with underlying infrastructure and

business needs. There are cases where the companies have stopped the projects after they

spent money and time, just to find out that the solution is not viable.

3.5 Intelligent Automation

Since artificial intelligence is the buzzword of the moment, we can see its applications in

almost every field of technology and life. RPA vendors are trying to add cognitive

capabilities to their existing robotic process automation solutions to create intelligent

automation. In this section we will see some areas that intelligent automation is applied. [32]

According to IBM “The biggest payoff occurs when robotic process automation (RPA) and

artificial intelligence (AI), or cognitive computing—two complementary forms of

automation—are integrated to drive cognitive automation.”

The banking sector offers a lot of processes that companies can standardize through RPA

but are the complex ones that need the help of cognitive solutions like cases where there

need to be made a decision. The banking sector strives to achieve user satisfaction, increased

security and fast service.

Some other fields that cognitive automation could come in handy could include financial

advice, claim and complaint handling or customer service.

In general theory combining RPA and cognitive abilities is not a difficult concept to think

about, it is necessary that digital service levels and requirements are met. Also, there are

some other problems regarding the implementations which we will mention some of them

here and companies or individuals that want to automate can take into account.

We will try to define some related terms to intelligent automation which will guide us

through the practical part of this thesis. For the terms we will cite IEEE Guide for Terms

and Concepts in Intelligent Process Automation. [33]

Robotic Process Automation (RPA)- A preconfigured software instance that uses business

rules and predefined activity choreography to complete the autonomous execution of a

combination of processes, activities, transactions, and tasks in one or more unrelated

software systems to deliver a result or service with human exception management.

 22

Cognitive Automation (CA)- The identification, assessment, and application of available

machine learning algorithms for the purpose of leveraging domain knowledge and reasoning

to further automate the machine learning already present in a manner that may be thought of

as cognitive. With cognitive automation, the system performs corrective actions driven by

knowledge of the underlying analytics tool itself, iterates its own automation approaches and

algorithms for more expansive or more thorough analysis, and is thereby able to fulfil its

purpose.

Intelligent Process Automation (IPA)- A preconfigured software instance that com-bines

business rules, experience-based context determination logic, and decision criteria to initiate

and execute multiple interrelated human and automated processes in a dynamic context. The

goal is to complete the execution of a combination of processes, activities, and tasks in one

or more unrelated software systems that deliver a result or service with minimal or no human

intervention.

Another key point to note is that for us to have a cognitive implementation there should be

some properties such as:

1. The sources of data should be various and should be of structured or unstructured

data

2. There should be an interaction with the user through one of cognitive computing

fields such as NLP and generate results based on these interactions

3.6 NLU

“In simple terms NLU is a subset of a bigger picture of NLP, just like machine learning,

deep learning, NLP, and data mining are a subset of a bigger picture of Artificial

Intelligence(AI), which is an umbrella term for any computer program that does something

smart” [34]

“A good rule of thumb is to use the term NLU to express a machine’s ability to understand

the natural language in a form provided by humans” [34]

3.6.1 NLU terminologies in chatbots

In this section some information about the terminologies used in chatbots will be explained.

This will make easier the transition to the practical part where Rasa NLU will be used to

create the chatbot.

The first term that we will come across is intent. When a user interacts with a chatbot there

will be a request by the side of the user which should be understood by the chatbot, this is

intent. Explaining intent with an example would look like this:

1. User: I want to order food
2. Chatbot: the intent is food or order_food.

Another term which comes together with intent is entity. In the above example that we used

to explain the intent it was clear that the intent is ordering food, while food on its own is an

entity for the chatbot. This entity can be of anything such as flight, movie tickets or anything

that a user can ask for.

 23

The last term is utterance. Utterance is the different ways a user can express the question or

the intent. This is one of the hardest problems in chatbots as users can use synonyms for

words and the chatbot should come up with the same intent. [34]

3.6.2 NLU evaluation

The following terminology will serve as the foundation of the benchmarking of our NLU

and core models of the tool that will be chosen for the conversation management.

The important task in machine learning is that the data are transformed to the models

properly and the model is representing the system with an accuracy that can be accepted.

 Confusion Matrix

Model validation techniques are various but one of the most used and reliable is the one

called N-fold cross-validation technique. “This technique divides the dataset into N

number of parts, and each of them consists of an equal number of samples from the

original dataset. For each part, training is performed with (N-1) number of parts and the

test is done with that part.” [35]

The output of this technique is what is called a confusion matrix which is a summarization

of a classifier with respect to some testing data [36]. The confusion matrix will be

represented in:

Table 1: Confusion Matrix

 Assigned class

 Positive Negative

Positive TP FN

Negative FP TN

From Table 1 the output will contain results that are:

 True negatives (TN) which are the negative examples that are correctly classified by

a classification model. [36]

 True positives (TP) are the positive examples that are correctly classified by a

classification model. [36]

 False positive (FP) is an example of a negative class that has been incorrectly

classified as positive [36]

 False negative (FN) is an example of positive class that has been incorrectly

classified as negative. [36]

The above data can be used to have a number of classification performance indicators:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑁
 𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

A
ct

u
a
l

cl
a

ss

 24

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

Another metric used for the evaluation of prediction system is the F-measure.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ (𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

3.6.3 Rasa

Rasa is a tool that is comprised out of two python libraries called Rasa NLU and Rasa Core

which are used to create conversational software. Both libraries are open source and free to

use by anyone. [37]

As far as the architecture of Rasa is concerned the approach followed by the creators is to

make the tool modular. Making it modular gives Rasa users the ability to integrate easily

with other tools rather than Rasa. One common example would be to use Rasa core for

dialogue management and use another NLU tool for the language part and not using Rasa

NLU. [37]

3.6.3.1 Architecture

Figure 1: Rasa conversation management

The workflow in Figure 1 represents how Rasa manages the conversation. The message that

comes in from the user is interpreted by the NLU part, which in our case is Rasa NLU. In

this step the NLU component will try to extract the intent of the user, what the entities are

and any other structured content.

The tracker is the component that maintains the state of the conversation. There is one tracker

object responsible for every conversation session. The trackers duty is to store slots and all

the steps that led to that state.

In the next step the policy receives the current state of the tracker and based on that the policy

is responsible for choosing the next action to be taken. This action as well is logged by the

tracker.

 25

The user receives some output from Rasa. The action predicted by Rasa could also be a listen

action, which excepts some user input.

3.6.3.2 Actions

Rasa approaches the problem of dialogue management in the form of classification problem.

Rasa core is the part of the tool which manages the dialogue and in the case of actions from

a list of predefined actions the next action is predicted to be sent to the user. When an action

is executed it is passed to the tracker which in turn keeps the state of the conversation.

3.6.3.3 Natural language understanding

This part is managed by the component called Rasa NLU. It is a combination of machine

learning and natural language libraries that are served through an API. The data used for the

training can be provided by the so-called pipelines which offer pretrained data sets. One of

the recommended pipelines is spacy_sklearn. How spacy sklearn works is by pretrained word

vectors. The information regarding how pipelines work in Rasa will be explained in detail

in the section 3.6.3.6.

3.6.3.4 Policies

What a policy does is to select the next action to be passed to the tracker. A policy is

instantiated along with a featurizer2, which creates a vector representation of the current

dialogue state given to the tracker. On the other hand, the core module of Rasa uses

markdown format to specify dialogue training or as we mentioned the stories.

3.6.3.5 Training data

Both modules of Rasa work with human-readable training data. The NLU module requires

a list of utterances annotated with intents and entities. This data can be feed to the system

either in markdown or json format.

3.6.3.6 Pipelines

“In Rasa NLU, incoming messages are processed by a sequence of components. These

components are executed one after another in a so-called processing pipeline. There are

components for entity extraction, for intent classification, response selection, pre-

processing, and others. “ [38]

The three most important part of a Rasa pipeline are [38]:

1. Tokenization

2. Featurization

3. Entity Recognition / Intent Classification / Response Selectors

2In machine learning and pattern recognition, a feature is an individual measurable property or

characteristic of a phenomenon being observed

 26

Tokenization makes possible to split the text into tokens. If the text that the user is working

with is not whitespace separated or the users’ needs to separate the intent into labels this can

be done with Rasa. Moreover, there are languages which are not separated by whitespace

and this must be taken into consideration as well.

Regarding featurization Rasa divides it in two categories: sparse and dense. Sparse return

feature vectors with missing values such as zero which would consume a lot of memory, so

in Rasa these are stored as sparse ones. Sparse features store only the values that are only

non-zero and where their position in the vector is. This gives the ability to train larges

datasets and reduce the memory consumption. In this thesis in the practical part will be

selected one featurizer and the reasons will be explained, as Rasa provides a number of

featurizers for its users. [38]

The role of the intent classifier is to assign one of the intents defined in the domain file to

the users incoming message, while entity recognition does the job of extracting entities from

the received messages. [38]

3.7 Current state of RPA in user support systems

In this thesis our selected area of automation is user support system which is part of back

office operations. According to Investopedia “The back office is the portion of a company

made up of administration and support personnel who are not client-facing “. The idea is to

automate a process through NLU and RPA. Firstly, it is necessary to highlight what the

current trend of RPA is in this area and what is the need of organizations for automation.

In the year 2010 Telefonica O2 thought of transforming its office operations by outsourcing

it. Even with the added workforce the cost went up and there were still place for

improvement in the processes. The company at that point thought of adding RPA automation

to their suite of applications. At first, they just started with 2 processes and just a proof of

concept in order to verify the RPA success. After that Telefonica O2 continued to add more

services to being automated by RPA and also advised their outsourcing company to do the

same. [24]

Based on another study done by Capgemini `` Process candidates for RPA can be found in

all back office areas ``. What is more important is that when the study was done the

companies part of the survey were expressing that in the next 3-5 years, they would be using

RPA in a scale of 81% out of 100% of the participating companies.

Based on a research [39] there are several processes in Human Resources that can be

automated with RPA. Task such as candidate status notification, interview scheduling and

more. Even though HR is not a back office operation tasks that are mentioned above are.

This are manual tasks that require a human to accomplish. Using RPA in such tasks can free

people on doing interviews and scheduling their time much better than waste it with tasks

that can be automated.

Based on a Gartner report made in 2019 [40] in the next two years there will be an increase

of importance for bots. This is backed by 68% of the service leaders. Living in a time where

customer support and satisfaction is really crucial RPA can be a game changer.

Implementing RPA in user support gives the company a coverage of 24/7 without break.

Also, a minimization of human errors and increased customer satisfaction. [41]

 27

According to a research made by AIMultiple, [42] which is a company focused mainly in

Artificial intelligence, there are numerous back office and user support processes that are

automated. In their research they list the companies that were part of their survey and the

processes that these companies have automated using RPA.

A food and beverage company has used a commercial product called Automation Anywhere

to automate their help desk processes.

Part of the list are more companies that have automated other back office processes by using

RPA.

 28

4 Practical Part

RPA has taken a boost the recent years but so has the open source community and the usage

of open source software [10]. Taking into consideration this two facts we will try to provide

a solution with two components: RPA and NLU.

We are also interested in finding out if user support systems are compatible for RPA

automation and what is the current trend in this field as well.

As mentioned earlier a software solution will be provided to tackle a process and automate

it. In order to achieve this a set of tools need to be compared and after the results we will

build the automation.

Based on our solution and the current state of not open source solutions we will conclude if

using open source in this field is optimal and can achieve the desired business value.

The following three sections will include all the findings and results on the topics stated

above.

4.1 Designing an open source solution of cognitive automation

The idea of cognitive automation in user support comprises of two critical parts. The

cognitive part and RPA part. For both of these parts there will be needed two different tools

that will communicate together to deliver the desired result. In literature review are described

all available open source tools that offer the capabilities of RPA. In this section we will

compare these tools based on certain criteria. After the comparison one of the tools that

matches our requirements the best will be selected, and the RPA part will be implemented.

4.2 Comparison of tools

As noted above it is necessary for the purpose of this thesis that comparison takes place

between the various open source tools that were described in literature review. Since we are

talking about open source tools and the code is free to use by anyone being that a person or

company, we will use GitHub as our main of reference to benchmark our tools.

Based on the criteria described below the tool for the practical part will be selected.

4.2.1 Technologies that are used to create the tools

a. Robot framework – is mainly based in the libraries that are around the tool. The

creators divide the libraries in three categories: standard, external and other libraries.

Most of the libraries are browser driven such as selenium, http requests library and

much more. Anyone interested in using the tool can refer to the documentation and

get the full overview of the libraries that are used.

b. Roro – the creator of roro has based it on C# which makes it Windows OS compatible

only.

c. Automagica – the tool is built by a concentration of open source Python libraries.

The information regarding these libraries is not shared. To discover those libraries,

 29

it is necessary going through the python code of Automagica. The goal of the tool is

to create wrappers around other tools.

d. TagUI – is made by a compound of other open source technologies such as SikuliX

which is used for desktop automation powered by another open source tool which is

OpenCV. Other tools include PhantomJs which provides scriptable headless browser

and Slimmerjs which is used for browser automation.

e. Taskt – there is little information on the technologies that Taskt uses but is written in

.NET framework

f. OpenRPA – The information regarding the technologies used are missing, but it is

mainly built to support Microsoft Workflow Foundation.

4.2.2 Programming languages supported

Having an overview of the extensibility of the tool gives the users and companies a clear

image of the capabilities of the tool and what is more allows the end users to know if what

they currently know will suit with the new tool.

a. Robot framework is written in python and can be extended by using libraries in other

languages such as Java.

b. Roro – since is open source anyone can add feature to the tool, but at the moment

there is no documentation as what the extensibility of the tool is.

c. Automagica – is written in python and as with the other tools can be extended by

using other libraries from external sources

d. TagUI – is written in python but offer large extensibility and also is possible to

include Python and R for machine learning

e. Taskt – the creators of the tools are really open on the features that someone thinks

they are missing so it is possible to require a feature addition or use the code in your

own responsibility

f. OpenRPA – offers no information regarding the extensibility. It is built in C# as it

runs on Windows OS only.

4.2.3 Platforms supported

Platforms supported gives information where the tool can be used. The more operating

systems supported the better is for the users of the tool. Being platform dependent adds extra

costs to the final bill of the company of users.

a. Robot framework is cross platform which means it can be used in any operating

system

b. Roro – is only available in Windows operating system

c. Automagica – is officially supported for Windows 10 operating system, but can be

installed by using python packages

d. TagUI is cross platform which as we noted before means that it works on any

operating system

e. Taskt – is only supported in windows 10 machines and .NET framework 4.6

f. OpenRPA – the only platform supported is Windows operating system because as

we mentioned it uses Microsoft Workflow Foundation.

 30

4.2.4 Available features

a. Robot framework in terms of RPA is mainly focused on application testing but can

be connected to any other tools that the user needs to fulfil the automation.

b. Roro – the tool at the moment supports OCR which stands for optical character

recognition as part of its cognitive features

c. Automagica – provides a range of features such as web scraping in chrome browser,

excel automation by reading and writing data, PowerPoint presentations and lastly

using OCR to navigate by images

d. TagUI – the tool offers the possibility to automate chrome in visible and invisible

mode. Visual automation of websites and desktop. There is also a chrome extension

that offers extra features to the users that would like to make Chrome automation.

e. Taskt – includes features such as image recognition, OCR and custom code

execution.

f. OpenRPA – provides to its users’ visual automation for desktop applications. Also,

browser automation as well. OCR is part of the suite of features as well.

4.2.5 Learning curve

What is meant by learning curve is how hard new users will find working with one of the

below tools and if there is documentation in place to help them overcome certain difficulties.

This is really important measure when we talk about open source software as there is no

proper support compared to commercial offerings.

a. Robot framework - In order to use the tool no programming is needed, so the test

cases can be written in plain human language. This makes the learning curve not so

steep for new users.

b. Roro - The learning curve is not so steep as the tool does not offer too many features

and support for too many platforms as well.

c. Automagica – the documentation is detailed and users can refer to it in order to

achieve their RPA automation. Having documentation in place makes it easy to get

familiar with the tool

d. TagUI – offers the possibility to write your “code” in twenty plus human languages

and JavaScript

e. Taskt – there is documentation regarding the possible commands, so the users have

where to find how to achieve a specific action. In general, is fairly easy to do a simple

automation

f. OpenRPA – getting familiar with OpenRPA seems to be easy as with the other tools.

There is no need for programming and the documentation in place makes it easier for

new users. The tool is using workflow method of creating the automations rather than

scripting

4.2.6 Documentation

In the section above we mentioned the learning curve needed in order to use these tools and

we mentioned that documentation is necessary in order to have a smoother learning curve.

In this section it will be mentioned if the tools have documentation in place and if it is

comprehensive.

 31

a. Robot framework - There is documentation available which is hosted in the tools

website as well as in GitHub. Also, there are examples which the users can refer too.

b. Roro – lacks in the part of documentation as there is no documentation except for

one example which is not very useful

c. Automagica – the documentation is available and can provide users with what the

tool is capable

d. TagUI – there is documentation available in github and also there is a forum

explaining different use cases for the tool

e. Taskt - The documentation includes a list of commands that can be used in order to

automate different tasks

f. OpenRPA – the tool has its wiki pages where the users can learn to do basic tasks.

The creators and community have also a Slack channel that anyone can join.

4.2.7 GitHub users and contributors

Having an idea of how big the community behind the tool is gives some insight of the scale

that the tool has. Furthermore, new features will be available quickly if the contributors are

more in number than a few people. Apart from the Github users and community we will try

to find additional information if the tool is backed up by some organization which will

impact in a direct manner the speed that the tool is developing. The number of forks gives

an overview of how many people have taken the source code to use it for their special needs.

a. Robot framework – has 99 contributors 1.3 k forks. The project has 86 releases

b. Roro – has only 1 contributor which explains also the results above such as missing

documentation. The project has zero releases

c. Automagica – has 6 contributors 232 forks

d. TagUI – has 10 contributors apart from AI Singapore that supports it. Has 286 forks

and there are 18 releases of the tool

e. Taskt – has 6 contributors 89 forks. The project has 44 releases.

f. OpenRPA – has 4 contributors and the project has been forked 71 times. Number of

releases is 142.

4.2.8 Open and closed issues

This “metric” gives us the ability to see how active the community behind the tool is. By

having too many open issues means also that the tool is buggy and there is no workaround

now for the specific case.

Table 2: Open vs Closed issues

Tool Name Open Issues Closed Issues

Robot Framework 108 3024

Roro 0 0

Automagica 18 52

Taskt 4 122

TagUI 3 625

OpenRPA 2 35

 32

Based on the Table 2 above the conclusion that we get is that TagUI seems to have the most

active community. The number of open issues compared to the closed ones is quite low. On

the other hand, Roro is not widely used as a tool as there are no issues at all.

4.3 Implementation

Figure 2: Architecture overview of proposed solution

In Figure 2 is displayed an architecture overview of our proposed solution. This architecture

will lay the foundation for the following sections and the selection of tools.

In the previous section several criteria were used to compare the open source software that

are available to create robotic process automation. Based on the above criteria the tool that

is going to be used for the implementation part is TagUI.

TagUI was chosen as the tool for the RPA part because the user does not need to have any

previous coding experience. Furthermore, it is available in more than 20 languages which

makes it possible for anyone even if you do not speak English.

The documentation is in place in order to find answers to the questions or regarding different

commands. The number of issues closed in GitHub compared to those that are open is really

slow which means the community behind it is really passionate and proving what open

source software really means.

For our purposes we need to use the feature of image recognition which is provided by

SikuliX integration that TagUI provides out of the box. We will not provide details about

SikuliX or how image recognition works as it is out of the scope of this thesis.

Furthermore, apart from the RPA part there will be an integration with NLU tool called Rasa

NLU. TagUI is really useful for this integration as it includes a python package called tagui.

 33

Another independent contribution from the community and based on TagUI is called rpa

and is available in Python pip package manager.

The details listed above provide clear reasons why TagUI was selected as the tool of choice

for building the RPA.

The process that we will select to implement our cognitive automation is comprised of two

parts. The first part is the user part where the chatbot will understand the intent of the user

and the second part is the RPA part that will accomplish what the user asked. As mentioned

before the process that will be automated is part of user support systems and specifically

password change in an ERP system such as SAP GUI.

The scenario is that the user has forgotten the password to login to the system and for this

reason will use the chatbot. On the other hand, after the chatbot has understood what the user

wants it will trigger the RPA to actually change the password in the system for the specific

user. After the user’s password is changed the user should receive an email that the password

was changed.

For the communication with the user the tool called Rasa NLU will be used. Rasa as

mentioned in the literature review has the capability to understand user intent and for the

RPA part after the results that we got from tools comparison TagUI will be used.

In the following two sections the part of NLU and RPA will be explained in detail and all

the necessary configurations to make the project work.

4.3.1 Preparing the experimental environment

Creating the environment for the experiment is important so that we can reach to conclusions

and make final recommendations.

For the purposes of this thesis a Windows 10 machine will be used. The main reason for

selecting a Windows OS is that SAP GUI, a client to connect to SAP server, is much easier

installed. The version of the client that will be used in our thesis is 7.3.1 but there are newer

versions as well. If the user owns a newer version of SAP GUI then the images used by

TagUI should be of that system.

The two other components needed for the experiment are TagUI and RASA NLU. Since

both of the tools have python pip packages (Python Package Index https://pypi.org/) we will

use pip to install.

Also in order to keep our operating system clean and in case that something goes wrong

during the setup Python virtual environments (Virtualenv

https://virtualenv.pypa.io/en/latest/) will be used. This gives the flexibility of having

multiple environments that do not conflict with each other or different Python versions that

the users could have in their machine.

The first step is to confirm that python version in your machine is greater that 2.7.0. In order

to achieve this write in you Windows PowerShell (https://docs.microsoft.com/en-

us/powershell/):

1. python --version

In this thesis the output of the above command is:

https://docs.microsoft.com/en-us/powershell/
https://docs.microsoft.com/en-us/powershell/

 34

1. PS C:\Users\Diploma> python --version
2. Python 3.6.7

After the python version is verified two packages need to be installed python pip and

virtualenv which will be installed by the pip package. In order to install pip the following

procedure will be used:

First pip should be downloaded and then python will be used to install the file that was

downloaded:

1. python get-pip.py

Next it is necessary to have the latest pip installed so:

1. pip --version

At the time of this thesis pip latest version is: pip 20.0.2. If pip is not the latest version than

upgrading it is quite is by running:

1. python -m pip install --upgrade pip

The below command confirms that the pip version installed in Windows is the latest:

1. PS C:\Users\Diploma> pip --version
2. pip 20.0.2 from \\path\\ (python 3.6)

The next step after pip package is installed would be to use it in order to install python

virtualenv. Use the following command to install virtualenv in your machine:

1. pip install virtualenv

At this step it would be possible to create the virtual environment where TagUI and Rasa

NLU will be installed.

To create a virtual environment in python, go to your desired directory in command line, and

run:

1. virtualenv name_of_your_venv

a new directory called name_of_your_venv will be created. In order to use the virtual

environment, you should activate the environment. What we mean by activation is going

into the script directory in your virtualenv and running activate, or by putting the path of

activate file in your shell.

1. PS C:\Users\Diploma\Desktop\virtualenv_diploma> .\env\Scripts\activate
2. (env) PS C:\Users\Diploma\Desktop\virtualenv_diploma>

(env) In your case would be name_of_your_venv

The above output indicates that you are inside the python virtual environment and any

change will be only visible inside that environment.

https://bootstrap.pypa.io/get-pip.py

 35

After the python packages installation is completed successfully, we should continue with

the installation of the two main tools needed for this experimental part.

As it was mentioned previously for the installation of TagUI will be used the pip package

provided by the community. The package can be found under the name RPA in pip

repository.

To install TagUI pip package as it is with other packages one command is necessary:

1. pip install rpa

Please keep in mind that the installation of the tools should be done while inside the virtual

environment created in the previous step.

In order to verify that TagUI is installed successfully we will create a short script for testing.

In the directory that you are, or in a directory of your choice create a file called test.py.

In the contents of this file there should be the following script:

1. import rpa as r
2.
3. r.init()
4. r.url('https://www.google.com')
5. wait 2 sec
6. r.close()

The above script should open Chrome browser and type in the URL field
https://www.google.com.

The first time that the automation runs TagUI is setup. This includes creating the

environment with all the necessary tools for OCR, Visual and web automation. The package

size is 200 Mb. After the package is downloaded the automation should be completed.

The final step in creating the experimental environment would be the installation of

RasaNLU. Installing Rasa is quite straightforward, and it requires only one command:

1. pip install rasa

Checking if rasa was installed and what version:

1. (env) PS C:\Users\Diploma\Desktop\virtualenv_diploma> rasa --version
2. Rasa 1.8.0
3. (env) PS C:\Users\Diploma\Desktop\virtualenv_diploma>

The finalization of this step means that our testing environment is ready. In the next sections

will be explained in detail how each tool is configured to achieve the desired result.

4.3.2 NLU

Rasa NLU is an open source tool used for intent classification, response retrieval and entity

extraction in chatbots. [43]

https://www.google.com/

 36

In order for the chatbot to communicate with the user it is necessary to have a domain where

the chatbot works. Moreover, the chatbot must understand the responses of the user meaning

that the chatbot should be trained.

In this thesis it will not be used a pipeline because as described now the users can select their

components for their config.yml.

Throughout the time Rasa has removed the predefined templates such as

supervised_embeddigns. The reasoning behind is that the user can now select all the

components that fit their needs such as featurizer and tokenizer.

In order to have a full working chatbot a data file which will be used for training should be

provided to Rasa NLU. Also, stories should be created in order for the chatbot to

communicate with the users.

The domain file, training data and stories used to power the chatbot will be included in the

appendix section of the thesis.

Apart from training the chatbot to communicate with the user for the purpose of this project

it is needed that the chatbot takes some action. That action is triggering the RPA part of the

project.

Figure 3: Sequential Diagram

As it is shown in Figure 3 the chatbot will extract the username, email and system name

from the user (ask for details). These three details are really important as the RPA needs to

know the username that the password is lost the email address of the recipient after the

password change has happened and lastly what the system name is. Being an ERP user means

that the user works in more than one system, so it is necessary for the RPA part to know in

which system to login and change the password.

After the extraction is complete the chatbot should trigger the RPA bot to proceed with the

automation. The information extracted above should be passed to the RPA bot from the

chatbot. In order to achieve this a python custom action will be created in Rasa NLU.

 37

In the beginning of this section the foundations of what the NLU part will do was outlined.

Below will be explained the steps to create and train your chatbot for your domain. This

thesis use case domain is the change of password in an ERP system.

The first step would be to create a new Rasa project which will include all the necessary files

to continue with the project. To initiate a new project the user needs to be inside the virtual

environment as explained in section 4.3.1.

1. rasa init --no-prompt

this command will create a new Rasa project for you. In case you do not want to create an

environment as we did, you could use Rasa online environments.

The following files will be created.

1. __init__.py an empty file that helps python find your actions
2. actions.py code for your custom actions
3. config.yml ‘*’ configuration of your NLU and Core models
4. credentials.yml details for connecting to other services
5. data/nlu.md ‘*’ your NLU training data
6. data/stories.md ‘*’ your stories
7. domain.yml ‘*’ your assistant’s domain
8. endpoints.yml details for connecting to channels like fb messenger
9. models/<timestamp>.tar.gz your initial model

As it was mentioned previously it is important that our bot understands what the user’s

requests are. In order to achieve that a dataset must be created, and the bot must be trained

with this dataset.

In this thesis we will use rasa-nlu-trainer that is an online tool to create your data in json

format. In the moment of writing this thesis the Rasa creators are suggesting using Rasa X

for editing your training data. Using Rasa X would be a future step for this thesis, but at the

moment this thesis was started rasa-nlu-trainer(Figure 4) was the suggested tool.

Figure 4: rasa-nlu-trainer

From Figure 4 we can see that admin is the entity and the intent is inform. This information

will be used by the bot to understand when the user will be chatting.

1. {
2. "rasa_nlu_data": {
3. "common_examples": [
4. {
5. "text": "hey",
6. "intent": "greet",
7. "entities": []
8. },
9. {
10. "text": "hello",

 38

11. "intent": "greet",
12. "entities": []
13. },
14. {
15. "text": "hi",
16. "intent": "greet",
17. "entities": []
18. },
19. {
20. "text": "i want to change the password for the login",
21. "intent": "password",
22. "entities": []
23. },
24. {
25. "text": "login forget",
26. "intent": "password",
27. "entities": []
28. },
29. {
30. "text": "my login alket",
31. "intent": "inform",
32. "entities": [
33. {
34. "start": 9,
35. "end": 14,
36. "value": "alket",
37. "entity": "username"
38. }
39.]
40. },
41. {
42. "text": "my email address is alketcami@gmail.com",
43. "intent": "inform",
44. "entities": [
45. {
46. "start": 20,
47. "end": 39,
48. "value": "alketcami@gmail.com",
49. "entity": "email"
50. }
51.]
52. }
53.]
54. }
55. }

Above is an extract from the data that will be used in our use case. The complete data used

for training the bot will be added to the Appendix for the user’s reference. The data format

used in this case is json.

The next step after the training data are created is to set up the configuration file which in

turn will decide which NLU and core components the model will use. The file that needs to

be setup is called config.yml. There are two section to be configured, the NLU and core

section. For the NLU section a pipeline should be selected to train our data. Since our domain

is specific and we will use our own training data the pipeline to be used will be the

supervised_embeddings pipeline which is deprecated at the Rasa version that it is being used

in this thesis. Nevertheless, the components of a pipeline can now be defined separately in

the config file and our approach will be explained in this section. In section 3.6.3.6 we

explained what a pipeline is and how Rasa makes use of them. Depending on the use case

 39

there are other pipelines to be used. Below will be the config.yaml that will be used in this

use case.

1. # Configuration for Rasa NLU.
2. # https://rasa.com/docs/rasa/nlu/components/
3. language: en
4. pipeline:
5. - name: WhitespaceTokenizer
6. - name: RegexFeaturizer
7. - name: LexicalSyntacticFeaturizer
8. - name: CountVectorsFeaturizer
9. - name: CountVectorsFeaturizer
10. analyzer: "char_wb"
11. min_ngram: 1
12. max_ngram: 4
13. - name: DIETClassifier
14. epochs: 100
15. - name: EntitySynonymMapper
16. - name: ResponseSelector
17. epochs: 100
18.
19. # Configuration for Rasa Core.
20. # https://rasa.com/docs/rasa/core/policies/
21. policies:
22. - name: MemoizationPolicy
23. - name: TEDPolicy
24. max_history: 5
25. epochs: 100
26. - name: MappingPolicy

As explained at the beginning of this section Rasa has deprecated the pipeline templates, so

all components of a pipeline can be changed in the new version. The components above can

be found as part of a default pipeline or can be changed to fit the needs of the users based on

their domain and their language.

Apart from user requirements there are also other prerequisites that prevent the usage of

some components. This would be tensorflow_text which is used by several tokenizers. This

component is not available for Windows OS machines, just for Linux ones. This is a

problem that we encountered with the implementation and in that case other components

will be used. We suppose that this will not pose a threat to our implementation as our domain

is specific and the training data will be enough.

Since our data and words will be separated by whitespace, then the selected tokenizer fits

our needs. In the case that the language is not white space tokenized there are other

tokenizers which can be found on the official documentation of Rasa or other sources. As it

is visible from the config.yml code above our selected tokenizer is WhitespaceTokenizer.

After the steps to prepare the data to train the bot are completed what is important is to have

a conversation, and in order to achieve this, stories need to be generated. Stories are the bot’s

response to the captured intents and entities. This part the part that is being managed by Rasa

core module.

 40

The next step in creating the Rasa bot is to prepare the domain. As stated earlier the domain

is where the bot will operate which in our case is the password change.

In the domain file should be clear what the bot will expect meaning intents, what actions it

should predict and respond with actions.

In the domain file there should be listed three parts as shown in (Table 3):

Table 3: Domain.yml

intents things you expect users to say

actions things your assistant can do and say

templates template strings for the things your assistant can say

1. slots:
2. username:
3. type: text
4. email:
5. type: text
6. system:
7. type: text
8.
9. intents:
10. - greet
11. - goodbye
12. - affirm
13. - deny
14. - mood_great
15. - mood_unhappy
16. - inform
17. - password
18. - system_name
19. - email
20. entities:
21. - username
22. - email
23. - system
24.
25. actions:
26. - utter_greet
27. - utter_did_that_help
28. - utter_happy
29. - utter_goodbye
30. - utter_password
31. - action_confirm
32. - action_tagui
33. - utter_repeat
34. - write_username
35. - utter_system_name
36. - utter_email
37. - utter_confirm
38.
39. responses:
40. utter_greet:
41. - text: "Hey! How can i help you?"
42.
43.
44. utter_did_that_help:
45. - text: "Did that help you?"
46.
47. utter_happy:

 41

48. - text: "Great carry on!"
49.
50. utter_goodbye:
51. - text: "Bye"
52.
53. utter_password:
54. - text: "I see you want to change the password. Can you provide me with your us

ername?"
55.
56. utter_email:
57. - text: "Can you provide your email address?"
58.
59. utter_repeat:
60. - text: "Can you repeat?"
61.
62. utter_system_name:
63. - text: "Thanks.Can you provide the name of the system please?"
64.
65. utter_confirm:
66. - text: "Is the information correct?"

The domain file used in our case is the listed above. From the domain file we can distinguish

that the desired intents are inform, password, system_name and email. There are also other

intents that will be part of the conversation as well, but the prior ones are the ones that our

automation is interested in.

Finally, all the parts have been set up. The last step is to train our two models with the data

that we have provided in the different files that were configured above. The commands used

to train Rasa are three:

1. rasa train – both models (NLU and core)

2. rasa train nlu - for the NLU part

3. rasa train core - for the core part.

The newly trained model will be stored under the models/ directory in the Rasa project that

was created. The usage of the models/ directory is that when newly made changes will be

trained Rasa will train only the differences not the whole model from the beginning.

1. class Action_confirm(Action):
2. def name(self):
3. return "action_confirm"
4.
5.
6. def run(self, dispatcher, tracker, domain):
7. username = tracker.get_slot('username')
8. email = tracker.get_slot('email')
9. system = tracker.get_slot('system')
10. response = """ we will reset the password for username {}, to the system

{} and send an email to {}""".format(username,system, email)
11. dispatcher.utter_message(response)

 42

 Interacting with the chatbot

For the purposes of our implementation the tool created will not be as fancy as a production

ready. In this case it will be used the terminal to communicate with the chatbot. Further

integrations need to be done in order to have Rasa as part of a website or to be linked to other

tools such as: Slack, Microsoft teams etc.

In order to chat with Rasa a command needs to be run in the directory that you created your

project, as it is important that Rasa reads you trained model and other configuration files.

Moreover, since we are running custom actions it is important that Rasa server should be

running at the same time in the background. To configure Rasa server, it is necessary to edit

the endpoints.yml and if your actions are running locally as in our case than the file should

look like this:

1. action_endpoint:
2. url: "http://localhost:5055/webhook"

These lines need to be commented out in order for Rasa to run custom python actions. This

configuration creates a webhoom locally in the specified URL. This url can be modified as

per your needs.

In order to run the action server the below command can be used:

1. > rasa run actions

After the command is run this is what will be logged in the terminal:

1. 020-03-

25 19:20:42.498016: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore a
bove cudart dlerror if you do not have a GPU set up on your machine.

2. 2020-03-
25 19:20:45 INFO rasa_sdk.endpoint - Starting action endpoint server...

3. 2020-03-
25 19:20:45 INFO rasa_sdk.executor - Registered function for 'action_confirm
'.

4. 2020-03-
25 19:20:45 INFO rasa_sdk.executor - Registered function for 'action_tagui'.

5. Exception occurred while handling uri: 'http://localhost:5055/webhook'

The output ensures that the action server is running and we can proceed with chatting with

Rasa.

To start the chatbot the command used in the terminal would be:

1. rasa shell

which will initiate the chatbot and we can communicate with it. Below the communication

that will take place between a user and the chatbot will be visualized.

1. Bot loaded. Type a message and press enter (use '/stop' to exit):
2. Your input -> hello
3. Hey! How can i help you?

 43

4. Your input -> i want to change my pasword
5. I see you want to change the password. Can you provide me with your username?
6. Your input -> alket
7. Thanks.Can you provide the name of the system please?
8. Your input -> NPL
9. Can you provide your email address?
10. Your input -> alketshabani@outlook.com
11. we will reset the password for username alket, to the system NLP and send an ema

il to alketshabani@outlook.com. Can you confirm?
12. Your input -> yes
13. Bye

As can be seen from the above output in terminal the chatbot understood all our provided

information, and afer the user confirmed the validity of the information the bot is configured

to triger the RPA part as it was mentioned earlier.

What is interesting to be noted is that in the first line it was written pasword intentionally

and the bot was able to pick up what the user intended. The reason for this is that usually

typos will be part of a conversation.

4.3.3 RPA

It is necessary that before the implementation of the RPA is completed the process should

be broken down in all the steps necessary. Breaking down the process is really crucial

because as it is mentioned in the literature review having a process that could be automated

end to end is very important.

There are two applications that TagUI will interact with: SAP Gui and Microsoft outlook.

The first one is the tool that the user works and has lost access to and the mail application

will be used to notify the user that his request was completed.

In the following two use cases the steps that TagUI will replicate are shown. As mentioned

in literature review breaking down the process is critical for the success of RPA automation.

Another thing to point out is that the process is manual or not and if it requires human

interaction along the way.

 44

Figure 5: Sap GUI use case

Based on the above use case diagram we can tell that the process that we have selected fulfils

the criteria to be automated.

Our process is related to SAP GUI (Figure 6)lost access, but in user support systems there

are a number of systems that the users might lose access to. Our implementation is covering

just a small fraction of what is possible through RPA. The only thing to keep in mind is that

every process should be well thought end to end in order to have a successful implementation

of RPA.

Figure 6: Sap GUI

The same rules apply also to Outlook application automation through TagUI. The below use

case Figure 7 is breaking down the processing of sending the email to the user after the

automation is finished. From the diagram it is visible that every interaction with the

application is defined properly.

 45

Figure 7: Outlook use case

After the steps for the automation are clear they should be followed by creating the code and

using TagUI for the RPA part. In both cases we will use visual automation within TagUI.

TagUI leverages SikuliX integration that is based on OpenCV and has the ability to detect

GUI components. This is done by image recognition capabilities built into SikuliX. In order

for us to acheive the automation we need to guide the tool through the components that we

need to use.

Every component that will be clicked should be captured in the form of image and then will

be supplied to TagUI through the file path. After this step if we run the automation TagUI

should be capable of finding the elements in the screen.

It was previously mentioned that to create the automation no programming is needed and

commands in TagUI are similar to click image.PNG, where image.PNG is the image that

we captured and want to be clicked by TagUI. The other commands are similar to the one

described above.

1. #Automation done for sap and outlook together
2.
3. class Action_tagui(Action):
4. def name(self):
5. return "action_tagui"
6.
7. def run(self, dispatcher, tracker, domain):
8. username = tracker.get_slot('username')
9. email = tracker.get_slot('email')
10. system = tracker.get_slot('system_name')
11.
12. #initiate visual automation

 46

13. r.init(visual_automation = True, chrome_browser = False)
14. #show desktop
15. r.rclick ('start.PNG')
16. r.click ('showDesktop.PNG')
17. #open SAP GUI
18. r.dclick ('sap-icon.PNG')
19. r.wait(5)
20. # variable from RASA
21. r.type ('system_field.PNG', system)
22. r.keyboard('[enter]')
23. r.wait(5)
24. #login into the system - static values
25. r.type ('user.png', 'SAP*[tab]')
26. r.keyboard('[shift]a')
27. r.keyboard('ppl1ance[enter]')
28. #enter the transaction
29. r.click ('transaction.PNG')
30. r.wait (1)
31. r.keyboard('suo1[enter]')
32. r.wait(2)
33. #Rasa username variable
34. r.type('user-field.PNG', username)
35. r.click('change-user.PNG')
36. r.wait(3)
37. r.click('logon-data')
38. #new password
39. r.type('new-password.PNG', 'Password001!')
40. #repeat Password
41. r.type('repeatPassword.PNG', 'Password001!')
42. # put automation for save button, in our case we do not save
43. # as we do a lot of tests and everytime it is necessary to reset the password
44.
45. r.wait (2)
46. # Logoff from the system
47. r.click('system.PNG')
48. r.click('close.PNG')
49. r.click('yesLOGOFF.PNG')
50. r.click('close2.PNG')
51. # Automate Outlook Application
52. #open the Application
53. r.dclick('outlook.PNG')
54. r.wait(6)
55. #new mail
56. r.click ('newMail.PNG')
57. r.wait(2)
58. #send mail to variable mail from RASA
59. r.type('mailTo.PNG', email)
60. r.type('mailSubject.PNG', 'Password Reset[tab]')
61. r.keyboard('Hello[enter]' 'Your new password is: P@ssword[enter]''Best Re

gards[enter]''Your Bot')
62. r.click ('sendMail.PNG')
63. #click minimize.PNG
64. r.wait(7)
65. #close outlook
66. r.click ('outlookClose.PNG')
67. r.close()

The script above is the script that is triggered by the NLU action from Rasa. In the code there

are two sections. The first section automates SAP GUI and the second one automates

Outlook (line 51). The code from line 51 is in correlation with the use case diagram that was

presented in Figure 7.

 47

After the script is started by the chatbot is TagUI which should run and do the automation in

the backend. Below will be presented an output from the Outlook automation part and how

TagUI handles the steps of the script.

1. [tagui] START - listening for inputs
2.
3. [tagui] INPUT - [1] present C:/Users/Diploma/Desktop/virtualenv_diploma/outlook.

PNG
4. [tagui] ACTION - present C:/Users/Diploma/Desktop/virtualenv_diploma/outlook.PNG

5. [tagui] OUTPUT - [1] SUCCESS
6.
7. [tagui] INPUT - [2] dclick C:/Users/Diploma/Desktop/virtualenv_diploma/outlook.P

NG
8. [tagui] ACTION - dclick C:/Users/Diploma/Desktop/virtualenv_diploma/outlook.PNG
9. [log] DOUBLE CLICK on L[189,275]@S(0) (1111 msec)
10. [tagui] OUTPUT - [2] SUCCESS
11.
12. [tagui] INPUT - [3] present C:/Users/Diploma/Desktop/virtualenv_diploma/newMail.

PNG
13. [tagui] ACTION - present C:/Users/Diploma/Desktop/virtualenv_diploma/newMail.PNG

14. [tagui] OUTPUT - [3] SUCCESS
15.
16. [tagui] INPUT - [4] click C:/Users/Diploma/Desktop/virtualenv_diploma/newMail.PN

G
17. [tagui] ACTION - click C:/Users/Diploma/Desktop/virtualenv_diploma/newMail.PNG
18. [log] CLICK on L[224,212]@S(0) (604 msec)
19. [tagui] OUTPUT - [4] SUCCESS

The above script is an extract of the first steps running through TagUI. As it can be seen

from the output TagUI tries to find the elements identified in the screen through images

and than through our commands will perform those actions in the image section.

Moreover it can be seen that if a step failed or not and the time it takes for a step to be

completed.

We provided an output of TagUI running rather than images of the automation as it would

not be visible from the images how the automation is running.

When the automation will finish either with success or error in the directory where all your

TagUI content is located will be generated a file called:

name_of_your_script.log

1. [RPA][0] - listening for inputs
2. [RPA][1] - exist_result = exist('outlook.PNG').toString()
3. [RPA][1] - listening for inputs
4. [RPA][2] - dump exist_result to rpa_python.txt
5. [RPA][2] - listening for inputs
6. [RPA][3] - dclick outlook.PNG

The content of the log file will store all the steps and the commands that were run during

the automation and where the automation might have failed if that is the case.

 48

In the case of troubleshooting your automation from TagUI perspective a feature called

live mode comes really handy. In live mode is possible to run commands one by one and

see how TagUI is performing and where it is failing.

4.4 Benchmarking

The aim of this section is to test how our NLU model behaves with the training data and the

selected components. In order to achieve this, we will use some proprietary commands that

Rasa provides through their tool. Moreover, other benchmarking made on different datasets

will be used in order to see how Rasa performs compared to other tools in the market.

Through the evaluation process of Rasa, a lot can be achieved such as comparing the

pipelines [44]. We will mainly focus on intent classification and response selection. In our

working Rasa directory, there will be created a new folder that will contain the results of the

evaluation.

The command that will be used to get Rasa model evaluation is:

1. rasa test

4.4.1 NLU model

In this section the natural language understanding model will be tested in order to verify its

performance. There will be two subsections of interest the intent classification and

response selection.

What is important to note is that the method of testing is by splitting our data and creating

a subset of the data in our json file. To achieve this please run: [45]

1. rasa data split nlu

the above command will create a folder with test data that is used to test our model.

To test the NLU model the following command will be used: [45]

1. rasa test nlu -u train_test_split/test_data.md --model models/nlu-20200401-

145833.tar.gz

 Intent classification

Running the above command will generate a report that contains a confusion matrix and

confidence histogram for our model.

The report contains precision of the model, recall and f1 measure for each intent and entity.

The confusion matrix will give us an overview which intents are confused for others and an

error file in json format will be generated that will contain the incorrectly predicted samples.

 49

Running the above command created a terminal output and results that we mentioned

previously.

For our model no file called errors.json was generated which means that there are no

samples incorrectly predicted.

In Figure 8 it is shown the histogram that was generated in the results folder. This histogram

as it is indicated on the top of the picture shows the confidence distribution of the intent

prediction. It is clear that there were no misses in our predictions and the confidence is above

95%.

Figure 8: Histogram

Moreover, the above histogram is represented also in json format with all the predicted

intents. This is represented in the json below:

1. {
2. "password": {
3. "precision": 1.0,
4. "recall": 1.0,
5. "f1-score": 1.0,
6. "support": 6,
7. "confused_with": {}
8. },
9. "system_name": {
10. "precision": 1.0,
11. "recall": 1.0,
12. "f1-score": 1.0,
13. "support": 5,
14. "confused_with": {}
15. },
16. "goodbye": {
17. "precision": 1.0,
18. "recall": 1.0,
19. "f1-score": 1.0,
20. "support": 5,

 50

21. "confused_with": {}
22. },
23. "greet": {
24. "precision": 1.0,
25. "recall": 1.0,
26. "f1-score": 1.0,
27. "support": 5,

The above json is also used in order to create the confusion matrix that is in Figure 9. The

output shown above is not complete and the rest will be available for cross checking in the

Apendix section.

Figure 9: Confusion Matrix NLU Model

 51

 Response Selection

Another output of the evaluation proces is the response selection. This can also be

generated in json format by appending the flag –report to the evaluation command run in

the previous step.

As it was visible from the json in the previous step the output includes a number of

indicators:

1. F1 score – which in our evaluation is 1 for all of the intents

2. Precision – which is 1 in our evaluation

3. Recall – having the value of 1 in our evaluation

Apart from the three indicators above there is also calculated the weighted average of the

model evaluated as can be seen from the json below.

1. "accuracy": 1.0,
2. "macro avg": {
3. "precision": 1.0,
4. "recall": 1.0,
5. "f1-score": 1.0,
6. "support": 91
7. },
8. "weighted avg": {
9. "precision": 1.0,
10. "recall": 1.0,
11. "f1-score": 1.0,
12. "support": 91
13. }
14. }

4.4.2 Core model

The second part of benchmarking will include the evaluation of our core model which is

responsible for the dialogue management as it is previously mentioned.

The procedure followed is the same but in this case it is important to select our core model

to evaluate. This can be done by running the following command:

1. rasa test core --stories test_stories.md --out results

the above command will create a file called failed stories. This will count if a story failed if

at least one of the actions was predicted incorrectly.

The output received in our case for the failed_stories file is shown in Figure 10. From the

file it is clear that all of our stories were able to pass successfully meaning that all our

actions can be predicted.

 52

Figure 10: Failed Stories

Apart from the failed stories, as in the previous step with NLU in the core model there is

also a confusion matrix generated.

The output of terminal creates which is displayed in Figure 11.

Figure 11: Confusion Matrix Core Model

 53

From the confusion matrix Figure 11 we can come to conclusions about our core model.

The important values would be:

Precision of 1 meaning that there are no false negatives, recall of value 1 means that there

are no false positives leading to having a F1 score of 1.

As it was explained from the literature review the f1 score gives the accuracy of our

testing. In our case we could say that the testing is good as the result for the f1 score is 1.

 54

5 Results and Discussion

In practical part we were able to demonstrate the implementation that includes the

cooperation of two tools, one for conversation management and the other for automation.

Through the experiments that were made is was possible to prove that the two tools could

be merged and achieve the end result.

Our domain was user support and specifically password change of a system such as SAP

GUI, so this narrows down the domain that the NLU tool was operating and this can justify

the results in the benchmarking part. What is useful from this implementation is that the

NLU part can be extended to include a lot of other processes inside the same domain.

It can be noted that the combination of RPA and NLU is possible and what is more this

combination can be achieved using Open Source software. The benefit from this

combination can be really handy to a lot of companies who want to increase customer

satisfaction and the speed of their processes.

Throughout literature review was stressed out that in order to achieve good results with RPA

the process needs to be clearly defined. In practical part the process that we selected was

broken down in small pieces and every step was clear. This gives the ability to define the

RPA steps efficiently and the RPA will not fail. Nevertheless, RPA is part of other systems

and automates other systems and everything needs to be taken into account in order to

achieve the end result.

As mentioned, the provided solution is a proof of concept to prove that the integration of

open source tools only can achieve the end result. The product that came out of this thesis

has the necessity to be developed some more, in terms of user interface, not as functionality.

5.1 SWOT Analysis

This section will be dedicated towards the pros and cons of the tool and the implementation.

This will be detailed through a SWOT analysis, which will look into the implementation in

four different areas. The areas of the analysis are:

 Strength

 Weaknesses

 Opportunities

 Threats

The following areas with bullet points are presented in the chart below. All the bullet points

for every section will be explained in order to give the broader audience what the author

means with each one of them.

 55

 Strengths

What we see as a strength for the implementation is that it can be extended with other

domains, or with other tasks inside the same domain. Both of the tools are able to work

together in different automations including browser and other UI tools not dependent on the

operating system.

The other strength that we take pride on is the Open Source foundation of the tools. This

gives the ability to cut down costs and be backed by a community passionate on what they

are doing. This also leads to the next strength which is extension with other tools or libraries

that may be custom made or open source as well.

We mentioned before that the tools are platform independent a feature which is useful

especially since nowadays companies are not strictly linked to one platform or Operating

System.

 Opportunities

What we see as an opportunity is being part of the open source community. Helping in the

community helps also the users of the tool as in this way the tools improve, and possible

bugs are fixed. Moreover, the contribution apart from the improvement of the tools will help

the emerging fields of RPA and AI which are much bigger than TagUI and Rasa.

SAP as a company has a new version of SAP GUI, not only for desktop but also a browser

based one. In order to automate the desktop version no change needs to be done in terms of

the scripts just the images need to be updated as the SikuliX tool will not be able to recognize

the fields.

Extending the implementation to SAP Fiori which is browser based could leverage also the

potential that TagUI has to automate web-based applications. TagUI is really powerful tool

STRENGTHS

•Extensible

•Open Source

•Platform
Independent

•Ability to extend
with custom tools

WEAKNESSES

• Tensorflow_text
available only
on Linux

• Not a single
tool

OPPORTUNITIES

•Become part of
open source
community

•Contribute to RPA
and AI
•Extend to Sap Fiori

THREATS

•Performance
under heavy load

•Performance in
large domain

 56

also in the domain of web automations. This implementation would also overcome the

limitation of tensorflow_text not being available for Windows OS.

 Weaknesses

It was mentioned previously that the tools are cross platform and it is true. Nevertheless,

there are underlying components which are not compatible with every operating system.

Such component is tensorflow_text which is not available in windows operating system. This

can be a bottleneck in case that your domain is large and you want to use other pipelines

which are based on TensorFlow. This would pose a threat on TagUI Windows based

automations.

Another weakness of the implementation is that it is based on two different tools. It would

be better if the whole implementation was a single tool.

 Threats

What is not tested as part of this thesis is how the tools perform under heavy load, and how

this will be overcome in real production environments. For Rasa there are deployments based

on distributed systems which might not work as well for TagUI or at least not for every case.

When in production multiple users might contact the chatbot and the RPA will have to be

ready to process all the requests.

We stated earlier that the domain where Rasa works can be extended not to include just

password change, but also other automations included in user support systems. This poses a

threat on the dataset and the performance of the NLU part. A lot of preparatory work needs

to be done in order to achieve successful implementations and an increased user satisfaction.

5.2 Comparison to other tools

In literature review was pointed out the importance of AI and the speed this sector is growing

the recent years along with RPA. There are e number of articles describing the usage of

conversational RPA or RPA + AI in user support systems. As of the moment that this

diploma is being written there is no production ready tool that offers the same experience. It

is certain that there are companies that leverage the power of open source community and

have built their in-house automations based on TagUI or Rasa for the NLU part.

Throughout this thesis the author had the chance to speak to the founder of TagUI, and one

of the main contributors to the community of TagUI. The information that he provided was

that are companies which use Rasa and TagUI in their daily operations, but still these

companies are not sharing the automations they have made with the general public. It could

be possible that in the near future their product will be generally available but at the moment

it is not.

As a result, comparison with other tools that offer a full suite combination is nearly

impossible. The author does not take into consideration premium tools that are available

when is referring to other cognitive RPA tools as there is a number of tools that nowadays

offer cognitive RPA as part of their features.

 57

6 Conclusion

Throughout the previous five sections starting with literature review and going on with

practical part we tried to prove and demonstrate if open source software provides the tools

to integrate RPA with AI and build conversational RPA. Out of two tools, Rasa and TagUI,

it was managed to create a full working pipeline for user support systems to automate

password change in systems such as SAP GUI.

The performance of the tools was very good and the community behind really helpful. The

author had the chance to communicate with some of the creators and regarding questions the

community was really helpful and fast.

After months of work with both tools a final PoC was created. What is to be taken into

consideration is the SWOT analysis in section 5.1.

Furthermore, user support systems provide a suitable ecosystem for RPA automation, as long

as the processes are simple and detailed in every step so there are no failures in design.

The process that was automated in this work was simple and straightforward, but there is

space for extensibility in both domains RPA and NLU.

Even though, modifications in the code of the tools were not made we hope that this is

extended by bigger companies or other contributors to make both tools in a single

application.

 58

7 Bibliography

[1] LERNER, Josh a Jean. TIROLE. The open source movement: Key research

questions. European economic review,. European Economic Review. Elsevier, 2001, ,

819-826.

[2] STALLMAN, Richard. Viewpoint Why open source misses the point of free software.

Communications of the ACM, . 2009.

[3] WHEELER, David. Why Open Source Software. 2015. [Online]

https://dwheeler.com/oss_fs_why.html

[4] ITIC. ITIC 2019 Global Server Hardware, Server OS Reliability Report. 2019.

[5] Web Server Survey. Netcraft. 2020. [Online]

https://news.netcraft.com/archives/category/web-server-survey

[6] FORBES. Linux Rules Supercomputers. Forbes. 2005. [Online]

https://www.forbes.com/2005/03/15/cz_dl_0315linux.html#5f8879bd65fe

[7] JAAP-HENK HOEPMAN, Bart. Increased security through open source.

Communications of the ACM. ACM New York, NY, USA, 2007, 50(1), 79--83.

[8] SCHRYEN, Guido. Is open source security a myth. 2011.

[9] DELGADO, Arvie. Roro - Free RPA Software. 2018. [Online]

https://www.roroscript.com/

[10] OpenExpoEurope. 2018. [Online] https://openexpoeurope.com/the-future-of-the-

open-source-survey-the-new-stack-the-linux-foundation-and-the-todo-group/

[11] Open Source Smart RPA . Automagica. b.r. [Online] https://automagica.com/

[12] TagUI. 2018. [Online] https://www.aisingapore.org/resources/tagui/

[13] HOCKE, Raimund. SikuliX. 2017. [Online] http://sikulix.com/

[14] PhantomJS - Scriptable Headless Browser . PhantomJS. 2018. [Online]

https://phantomjs.org/

[15] JOUANNEAU, Laurent. SlimerJS. 2018. [Online] https://slimerjs.org/

[16] BAYLDON, Jason. TaskT. 2018. [Online] http://www.taskt.net/

[17] WILLCOCKS, Leslie, Mary LACITY a Andrew. CRAIG. The IT function and

robotic process automation. 2015.

[18] VAN DER AALST, Wil, Martin BICHLER a Armin. HEINZL. Robotic process

automation. . 2018.

[19] ASATIANI, Aleksandre a Esko. PENTTINEN. Turning robotic process automation

into commercial success–Case OpusCapita. Journal of Information Technology

Teaching Cases,. Journal of Information Technology Teaching Cases . 2016, , 67–74.

[20] WILLCOCKS, Leslie a Mary. LACITY. Service automation robots and the future of

work. SB Publishing. 2016.

[21] LACITY, Mary. A new approach to automating services. MIT Sloan Management

Review. Massachusetts Institute of Technology, 2017.

[22] LAMBERTON, Chris, Damiano BRIGO a Dave HOY. Impact of Robotics, RPA and

AI on the insurance industry: challenges and opportunities. November 29, 2017.

[23] LESLIE WILLCOCKS, Andrew. Robotic Process Automation at Xchanging. 2015.

 59

[24] WILLCOCKS, Leslie, Mary LACITY a Andrew. CRAIG. Robotic Process

Automation at Telefónica O2. 2015.

[25] POOSAPATI, Vijaya, Vedavathi KATNENI a Vijaya MANDA. Cognitive

Automation in Industry–Design Principles and Case Study. International Journal of

Applied Engineering Research, . 2018.

[26] NOOR, Ahmed. Potential of cognitive computing and cognitive systems. Open

Engineering,. 2015.

[27] KOEDINGER, Kenneth. Cognitive Tutors: Technology Bringing Learning Science to

the Classroom. 2006.

[28] GUDIVADA, Venkat. Cognitive Computing: Concepts, Architectures, Systems, and

Applications. Handbook of Statistics. Elsevier, 2016, 35.

[29] STRICKLAND, Eliza. Layoffs at Watson Health reveal IBM’s problem with AI.

IEEE Spectrum, 2018.

[30] BUTLER, Tom a Leona O’BRIEN. Artificial Intelligence for Regulatory

Compliance: Are We There Yet?. Journal of Financial Compliance, 2019, (31), 44-

59.

[31] JAMES KISNER, CFA,David. Creating Shareholder Value with AI? Not so

Elementary, My Dear Watson. Psyccritiques. Jefferies Franchise Note, 2018.

[32] DILEK YıLMAZ BÖREKçI, Özlen. A Conceptual Study on RPAs as of Intelligent

Automation. International Conference on Intelligent and Fuzzy Systems. 2019.

[33] ENRÍQUEZ JG, Jiménez-Ramírez. Robotic Process Automation: A Scientific and

Industrial Systematic Mapping Study. IEEE Access. 2020.

[34] RAJ, Sumit. Building Chatbots with Python : Using Natural Language Processing

and Machine Learning Date. Apress L. P, 2018.

[35] CATAL, Cagatay. Performance evaluation metrics for software fault prediction

studies. Acta Polytechnica Hungarica. 2012, 9(4), 193--206.

[36] SAMMUT, Claude. Encyclopedia of machine learning and data mining. Springer

Publishing Company, Incorporated, 2017.

[37] TOM BOCKLISCH, Joey. Rasa: Open Source Language Understanding

andDialogue Management. Cornell University, 2017.

[38] RASA. Components. Rasa. 2020. [Online] https://rasa.com/docs/rasa/nlu/choosing-a-

pipeline

[39] SATHIYASEELAN BALASUNDARAM, Sirish. A structured approach to

implementing Robotic Process Automation in HR. 2008.

[40] GARTNER. Gartner. 2019. [Online]

https://www.gartner.com/smarterwithgartner/bots-gain-importance-in-gartner-

service-technologies-bullseye/

[41] KUNGWANI, Swati. InformationAge. 2019. [Online] https://www.information-

age.com/rpa-customer-service-123479794/

[42] AIMULTIPLE. Blog.aimultiple.com. AIMultiple. 2020. [Online]

https://blog.aimultiple.com/rpa-case-studies/

[43] TECHNOLOGIES, Rasa. RasaNLU. RASA. 2020. [Online]

https://rasa.com/docs/rasa/nlu/about/

 60

[44] TECHNOLOGIES, Rasa. Evaluating Models. Rasa. 2020.

[Online]https://rasa.com/docs/rasa/user-guide/evaluating-models/#evaluating-an-nlu-

model

[45] RASA. Testing Your Assistant. Rasa . 2020.[Online] https://rasa.com/docs/rasa/user-

guide/testing-your-assistant/#evaluating-an-nlu-model

 61

8 Appendix

 Rasa NLU Training Data

1. {
2. "rasa_nlu_data": {
3. "common_examples": [
4. {
5. "text": "hey",
6. "intent": "greet",
7. "entities": []
8. },
9. {
10. "text": "howdy",
11. "intent": "greet",
12. "entities": []
13. },
14. {
15. "text": "hey there",
16. "intent": "greet",
17. "entities": []
18. },
19. {
20. "text": "hello",
21. "intent": "greet",
22. "entities": []
23. },
24. {
25. "text": "hi",
26. "intent": "greet",
27. "entities": []
28. },
29. {
30. "text": "i want to change the password for the login",
31. "intent": "password",
32. "entities": []
33. },
34. {
35. "text": "login forget",
36. "intent": "password",
37. "entities": []
38. },
39. {
40. "text": "yes",
41. "intent": "affirm",
42. "entities": []
43. },
44. {
45. "text": "yep",
46. "intent": "affirm",
47. "entities": []
48. },
49. {
50. "text": "yeah",
51. "intent": "affirm",
52. "entities": []
53. },
54. {
55. "text": "password forgotten",
56. "intent": "password",
57. "entities": []

 62

58. },
59. {
60. "text": "bye",
61. "intent": "goodbye",
62. "entities": []
63. },
64. {
65. "text": "goodbye",
66. "intent": "goodbye",
67. "entities": []
68. },
69. {
70. "text": "good bye",
71. "intent": "goodbye",
72. "entities": []
73. },
74. {
75. "text": "stop",
76. "intent": "goodbye",
77. "entities": []
78. },
79. {
80. "text": "end",
81. "intent": "goodbye",
82. "entities": []
83. },
84. {
85. "text": "cannot remember my password",
86. "intent": "password",
87. "entities": []
88. },
89. {
90. "text": "indeed",
91. "intent": "affirm",
92. "entities": []
93. },
94. {
95. "text": "that's right",
96. "intent": "affirm",
97. "entities": []
98. },
99. {
100. "text": "ok",
101. "intent": "affirm",
102. "entities": []
103. },
104. {
105. "text": "great",
106. "intent": "affirm",
107. "entities": []
108. },
109. {
110. "text": "my username is jake",
111. "intent": "inform",
112. "entities": [
113. {
114. "start": 15,
115. "end": 21,
116. "value": "jake",
117. "entity": "username"
118. }
119.]
120. },

 63

121. {
122. "text": "my login alket",
123. "intent": "inform",
124. "entities": [
125. {
126. "start": 9,
127. "end": 14,
128. "value": "alket",
129. "entity": "username"
130. }
131.]
132. },
133. {
134. "text": "my username is admin",
135. "intent": "inform",
136. "entities": [
137. {
138. "start": 15,
139. "end": 20,
140. "value": "admin",
141. "entity": "username"
142. }
143.]
144. },
145. {
146. "text": "michael",
147. "intent": "inform",
148. "entities": [
149. {
150. "start": 0,
151. "end": 7,
152. "value": "michael",
153. "entity": "username"
154. }
155.]
156. },
157. {
158. "text": "lucy is my username",
159. "intent": "inform",
160. "entities": [
161. {
162. "start": 0,
163. "end": 4,
164. "value": "lucy",
165. "entity": "username"
166. }
167.]
168. },
169. {
170. "text": "i need to change my login",
171. "intent": "password",
172. "entities": []
173. },
174. {
175. "text": "i forgot my login details",
176. "intent": "password",
177. "entities": []
178. },
179. {
180. "text": "my username is john",
181. "intent": "inform",
182. "entities": [
183. {

 64

184. "start": 15,
185. "end": 19,
186. "value": "john",
187. "entity": "username"
188. }
189.]
190. },
191. {
192. "text": "braian",
193. "intent": "inform",
194. "entities": [
195. {
196. "start": 0,
197. "end": 6,
198. "value": "braian",
199. "entity": "username"
200. }
201.]
202. },
203. {
204. "text": "marco",
205. "intent": "inform",
206. "entities": [
207. {
208. "start": 0,
209. "end": 5,
210. "value": "marco",
211. "entity": "username"
212. }
213.]
214. },
215. {
216. "text": "jan",
217. "intent": "inform",
218. "entities": [
219. {
220. "start": 0,
221. "end": 3,
222. "value": "jan",
223. "entity": "username"
224. }
225.]
226. },
227. {
228. "text": "jack is my username",
229. "intent": "inform",
230. "entities": [
231. {
232. "start": 0,
233. "end": 4,
234. "value": "jack",
235. "entity": "username"
236. }
237.]
238. },
239. {
240. "text": "admin",
241. "intent": "inform",
242. "entities": [
243. {
244. "start": 0,
245. "end": 5,
246. "value": "admin",

 65

247. "entity": "username"
248. }
249.]
250. },
251. {
252. "text": "admin is username",
253. "intent": "inform",
254. "entities": [
255. {
256. "start": 0,
257. "end": 5,
258. "value": "admin",
259. "entity": "username"
260. }
261.]
262. },
263. {
264. "text": "username admin",
265. "intent": "inform",
266. "entities": [
267. {
268. "start": 9,
269. "end": 14,
270. "value": "admin",
271. "entity": "username"
272. }
273.]
274. },
275. {
276. "text": "alket",
277. "intent": "inform",
278. "entities": [
279. {
280. "start": 0,
281. "end": 5,
282. "value": "alket",
283. "entity": "username"
284. }
285.]
286. },
287. {
288. "text": "marco is my username",
289. "intent": "inform",
290. "entities": [
291. {
292. "start": 0,
293. "end": 5,
294. "value": "marco",
295. "entity": "username"
296. }
297.]
298. },
299. {
300. "text": "antonio is my username",
301. "intent": "inform",
302. "entities": [
303. {
304. "start": 0,
305. "end": 7,
306. "value": "antonio",
307. "entity": "username"
308. }
309.]

 66

310. },
311. {
312. "text": "andrea is my username",
313. "intent": "inform",
314. "entities": [
315. {
316. "start": 0,
317. "end": 6,
318. "value": "andrea",
319. "entity": "username"
320. }
321.]
322. },
323. {
324. "text": "my username is donald_duck",
325. "intent": "inform",
326. "entities": [
327. {
328. "start": 15,
329. "end": 26,
330. "value": "donald_duck",
331. "entity": "username"
332. }
333.]
334. },
335. {
336. "text": "kejdi is my username",
337. "intent": "inform",
338. "entities": [
339. {
340. "start": 0,
341. "end": 5,
342. "value": "kejdi",
343. "entity": "username"
344. }
345.]
346. },
347. {
348. "text": "milos",
349. "intent": "inform",
350. "entities": [
351. {
352. "start": 0,
353. "end": 5,
354. "value": "milos",
355. "entity": "username"
356. }
357.]
358. },
359. {
360. "text": "my username is developer",
361. "intent": "inform",
362. "entities": [
363. {
364. "start": 15,
365. "end": 24,
366. "value": "developer",
367. "entity": "username"
368. }
369.]
370. },
371. {
372. "text": "my username is mirko",

 67

373. "intent": "inform",
374. "entities": [
375. {
376. "start": 15,
377. "end": 20,
378. "value": "mirko",
379. "entity": "username"
380. }
381.]
382. },
383. {
384. "text": "username is developer1",
385. "intent": "inform",
386. "entities": [
387. {
388. "start": 12,
389. "end": 22,
390. "value": "developer1",
391. "entity": "username"
392. }
393.]
394. },
395. {
396. "text": "john",
397. "intent": "inform",
398. "entities": [
399. {
400. "start": 0,
401. "end": 4,
402. "value": "john",
403. "entity": "username"
404. }
405.]
406. },
407. {
408. "text": "Gavin",
409. "intent": "inform",
410. "entities": [
411. {
412. "start": 0,
413. "end": 5,
414. "value": "Gavin",
415. "entity": "username"
416. }
417.]
418. },
419. {
420. "text": "Francis",
421. "intent": "inform",
422. "entities": [
423. {
424. "start": 0,
425. "end": 7,
426. "value": "Francis",
427. "entity": "username"
428. }
429.]
430. },
431. {
432. "text": "Igor",
433. "intent": "inform",
434. "entities": [
435. {

 68

436. "start": 0,
437. "end": 4,
438. "value": "Igor",
439. "entity": "username"
440. }
441.]
442. },
443. {
444. "text": "Peter",
445. "intent": "inform",
446. "entities": [
447. {
448. "start": 0,
449. "end": 5,
450. "value": "Peter",
451. "entity": "username"
452. }
453.]
454. },
455. {
456. "text": "Chaney",
457. "intent": "inform",
458. "entities": [
459. {
460. "start": 0,
461. "end": 6,
462. "value": "Chaney",
463. "entity": "username"
464. }
465.]
466. },
467. {
468. "text": "Anthony",
469. "intent": "inform",
470. "entities": [
471. {
472. "start": 0,
473. "end": 7,
474. "value": "Anthony",
475. "entity": "username"
476. }
477.]
478. },
479. {
480. "text": "Malik",
481. "intent": "inform",
482. "entities": [
483. {
484. "start": 0,
485. "end": 5,
486. "value": "Malik",
487. "entity": "username"
488. }
489.]
490. },
491. {
492. "text": "Leonard",
493. "intent": "inform",
494. "entities": [
495. {
496. "start": 0,
497. "end": 7,
498. "value": "Leonard",

 69

499. "entity": "username"
500. }
501.]
502. },
503. {
504. "text": "Gil",
505. "intent": "inform",
506. "entities": [
507. {
508. "start": 0,
509. "end": 3,
510. "value": "Gil",
511. "entity": "username"
512. }
513.]
514. },
515. {
516. "text": "William",
517. "intent": "inform",
518. "entities": [
519. {
520. "start": 0,
521. "end": 7,
522. "value": "William",
523. "entity": "username"
524. }
525.]
526. },
527. {
528. "text": "Dorian",
529. "intent": "inform",
530. "entities": [
531. {
532. "start": 0,
533. "end": 6,
534. "value": "Dorian",
535. "entity": "username"
536. }
537.]
538. },
539. {
540. "text": "Sybill",
541. "intent": "inform",
542. "entities": [
543. {
544. "start": 0,
545. "end": 6,
546. "value": "Sybill",
547. "entity": "username"
548. }
549.]
550. },
551. {
552. "text": "Tana",
553. "intent": "inform",
554. "entities": [
555. {
556. "start": 0,
557. "end": 4,
558. "value": "Tana",
559. "entity": "username"
560. }
561.]

 70

562. },
563. {
564. "text": "Kimberly",
565. "intent": "inform",
566. "entities": [
567. {
568. "start": 0,
569. "end": 8,
570. "value": "Kimberly",
571. "entity": "username"
572. }
573.]
574. },
575. {
576. "text": "Ava",
577. "intent": "inform",
578. "entities": [
579. {
580. "start": 0,
581. "end": 3,
582. "value": "Ava",
583. "entity": "username"
584. }
585.]
586. },
587. {
588. "text": "Jaquelyn",
589. "intent": "inform",
590. "entities": [
591. {
592. "start": 0,
593. "end": 8,
594. "value": "Jaquelyn",
595. "entity": "username"
596. }
597.]
598. },
599. {
600. "text": "Petra",
601. "intent": "inform",
602. "entities": [
603. {
604. "start": 0,
605. "end": 5,
606. "value": "Petra",
607. "entity": "username"
608. }
609.]
610. },
611. {
612. "text": "Lila",
613. "intent": "inform",
614. "entities": [
615. {
616. "start": 0,
617. "end": 4,
618. "value": "Lila",
619. "entity": "username"
620. }
621.]
622. },
623. {
624. "text": "Meghan",

 71

625. "intent": "inform",
626. "entities": [
627. {
628. "start": 0,
629. "end": 6,
630. "value": "Meghan",
631. "entity": "username"
632. }
633.]
634. },
635. {
636. "text": "Vera",
637. "intent": "inform",
638. "entities": [
639. {
640. "start": 0,
641. "end": 4,
642. "value": "Vera",
643. "entity": "username"
644. }
645.]
646. },
647. {
648. "text": "Emma",
649. "intent": "inform",
650. "entities": [
651. {
652. "start": 0,
653. "end": 4,
654. "value": "Emma",
655. "entity": "username"
656. }
657.]
658. },
659. {
660. "text": "Emi",
661. "intent": "inform",
662. "entities": [
663. {
664. "start": 0,
665. "end": 3,
666. "value": "Emi",
667. "entity": "username"
668. }
669.]
670. },
671. {
672. "text": "Emily",
673. "intent": "inform",
674. "entities": [
675. {
676. "start": 0,
677. "end": 5,
678. "value": "Emily",
679. "entity": "username"
680. }
681.]
682. },
683. {
684. "text": "Yen",
685. "intent": "inform",
686. "entities": [
687. {

 72

688. "start": 0,
689. "end": 3,
690. "value": "Yen",
691. "entity": "username"
692. }
693.]
694. },
695. {
696. "text": "Sonia",
697. "intent": "inform",
698. "entities": [
699. {
700. "start": 0,
701. "end": 5,
702. "value": "Sonia",
703. "entity": "username"
704. }
705.]
706. },
707. {
708. "text": "Kathleen",
709. "intent": "inform",
710. "entities": [
711. {
712. "start": 0,
713. "end": 8,
714. "value": "Kathleen",
715. "entity": "username"
716. }
717.]
718. },
719. {
720. "text": "Alea",
721. "intent": "inform",
722. "entities": [
723. {
724. "start": 0,
725. "end": 4,
726. "value": "Alea",
727. "entity": "username"
728. }
729.]
730. },
731. {
732. "text": "Olga",
733. "intent": "inform",
734. "entities": [
735. {
736. "start": 0,
737. "end": 4,
738. "value": "Olga",
739. "entity": "username"
740. }
741.]
742. },
743. {
744. "text": "Chanda",
745. "intent": "inform",
746. "entities": [
747. {
748. "start": 0,
749. "end": 6,
750. "value": "Chanda",

 73

751. "entity": "username"
752. }
753.]
754. },
755. {
756. "text": "my email address is alketcami@gmail.com",
757. "intent": "inform",
758. "entities": [
759. {
760. "start": 20,
761. "end": 39,
762. "value": "alketcami@gmail.com",
763. "entity": "email"
764. }
765.]
766. },
767. {
768. "text": "alketshabani@outlook.com",
769. "intent": "inform",
770. "entities": [
771. {
772. "start": 0,
773. "end": 24,
774. "value": "alketshabani@outlook.com",
775. "entity": "email"
776. }
777.]
778. },
779. {
780. "text": "fbozgo@smartworknet.eu",
781. "intent": "inform",
782. "entities": [
783. {
784. "start": 0,
785. "end": 22,
786. "value": "fbozgo@smartworknet.eu",
787. "entity": "email"
788. }
789.]
790. },
791. {
792. "text": "gjaupi@alteanet.it",
793. "intent": "inform",
794. "entities": [
795. {
796. "start": 0,
797. "end": 18,
798. "value": "gjaupi@alteanet.it",
799. "entity": "email"
800. }
801.]
802. },
803. {
804. "text": "shabalket@gmail.com",
805. "intent": "inform",
806. "entities": [
807. {
808. "start": 0,
809. "end": 19,
810. "value": "shabalket@gmail.com",
811. "entity": "email"
812. }
813.]

 74

814. },
815. {
816. "text": "kgolemi@alteanet.it",
817. "intent": "inform",
818. "entities": [
819. {
820. "start": 0,
821. "end": 19,
822. "value": "kgolemi@alteanet.it",
823. "entity": "email"
824. }
825.]
826. },
827. {
828. "text": "eangjeli@alteanet.it",
829. "intent": "inform",
830. "entities": [
831. {
832. "start": 0,
833. "end": 20,
834. "value": "eangjeli@alteanet.it",
835. "entity": "email"
836. }
837.]
838. },
839. {
840. "text": "grobo@smartworknet.eu",
841. "intent": "inform",
842. "entities": [
843. {
844. "start": 0,
845. "end": 21,
846. "value": "grobo@smartworknet.eu",
847. "entity": "email"
848. }
849.]
850. },
851. {
852. "text": "eangjeli@smartworknet.eu",
853. "intent": "inform",
854. "entities": [
855. {
856. "start": 0,
857. "end": 24,
858. "value": "eangjeli@smartworknet.eu",
859. "entity": "email"
860. }
861.]
862. },
863. {
864. "text": "akoci@smartworknet.eu",
865. "intent": "inform",
866. "entities": [
867. {
868. "start": 0,
869. "end": 21,
870. "value": "akoci@smartworknet.eu",
871. "entity": "email"
872. }
873.]
874. },
875. {
876. "text": "system is NPL",

 75

877. "intent": "system_name",
878. "entities": [
879. {
880. "start": 10,
881. "end": 13,
882. "value": "NLP",
883. "entity": "system"
884. }
885.]
886. },
887. {
888. "text": "OC2",
889. "intent": "system_name",
890. "entities": [
891. {
892. "start": 0,
893. "end": 3,
894. "value": "oc2",
895. "entity": "system"
896. }
897.]
898. },
899. {
900. "text": "OMD",
901. "intent": "system_name",
902. "entities": [
903. {
904. "start": 0,
905. "end": 3,
906. "value": "OMD",
907. "entity": "system"
908. }
909.]
910. },
911. {
912. "text": "OMT",
913. "intent": "system_name",
914. "entities": [
915. {
916. "start": 0,
917. "end": 3,
918. "value": "OMT",
919. "entity": "system"
920. }
921.]
922. },
923. {
924. "text": "OSP",
925. "intent": "system_name",
926. "entities": [
927. {
928. "start": 0,
929. "end": 3,
930. "value": "OSP",
931. "entity": "system"
932. }
933.]
934. }
935.]
936. }
937. }

 76

 Rasa NLU Stories

1. ## Generated Story -2631642282788300614
2. * greet
3. - utter_greet
4. * password
5. - utter_password
6. * inform{"username": "alket"}
7. - slot{"username": "alket"}
8. - utter_system_name
9. * system_name{"system": "mxd"}
10. - slot{"system": "mxd"}
11. - utter_email
12. * email{"email":"alket@outlook.com"}
13. - slot{"email":"alket@outlook.com"}
14. - action_confirm
15. * affirm
16. - utter_goodbye
17. - action_tagui
18. * goodbye
19.
20.
21. ## second story
22. * greet
23. - utter_greet
24. * password
25. - utter_password
26. * inform{"username": "john", "system":"NPL", "email": "johndoe@gmail.com"}
27. - slot{"username": "john"}
28. - slot{"system": "NPL"}
29. - slot{"email":"johndoe@gmail.com"}
30. - action_confirm
31. * affirm
32. - utter_goodbye
33. - action_tagui
34. * goodbye
35.
36.
37. ## third story
38. * greet
39. - utter_greet
40. * password
41. - utter_password
42. * inform{"username": "john", "system":"NPL"}
43. - slot{"username": "john"}
44. - slot{"system": "NPL"}
45. - utter_email
46. * email{"email": "johndoe@gmail.com"}
47. - slot{"email":"johndoe@gmail.com"}
48. - action_confirm
49. * affirm
50. - utter_goodbye
51. - action_tagui
52. * goodbye

 Rasa NLU Custom Actions

1. # This files contains your custom actions which can be used to run
2. # custom Python code.
3. #
4. # See this guide on how to implement these action:

 77

5. # https://rasa.com/docs/rasa/core/actions/#custom-actions/
6.
7.
8. # This is a simple example for a custom action which utters "Hello World!"
9.
10. # from typing import Any, Text, Dict, List
11. #
12. #import tagui
13. import rpa as r
14. from rasa_sdk import Action, Tracker
15. from rasa_sdk.executor import CollectingDispatcher
16. #
17. #
18. # class ActionHelloWorld(Action):
19. #
20. # def name(self) -> Text:
21. # return "action_hello_world"
22. #
23. # def run(self, dispatcher: CollectingDispatcher,
24. # tracker: Tracker,
25. # domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
26. #
27. # dispatcher.utter_message(text="Hello World!")
28. #
29. # return []
30.
31.
32. class Action_confirm(Action):
33. def name(self):
34. return "action_confirm"
35.
36.
37. def run(self, dispatcher, tracker, domain):
38. username = tracker.get_slot('username')
39. email = tracker.get_slot('email')
40. system = tracker.get_slot('system')
41. response = """ we will reset the password for username {}, to the system

{} and send an email to {}.Can you confirm?""".format(username,system, email)
42. dispatcher.utter_message(response)
43.
44.
45. #Automation done for sap and outlook together
46.
47. class Action_tagui(Action):
48. def name(self):
49. return "action_tagui"
50.
51. def run(self, dispatcher, tracker, domain):
52. username = tracker.get_slot('username')
53. email = tracker.get_slot('email')
54. system = tracker.get_slot('system')
55.
56. #initiate visual automation
57. r.init(visual_automation = True, chrome_browser = False)
58. #show desktop
59. r.rclick ('start.PNG')
60. r.click ('showDesktop.PNG')
61. #open SAP GUI
62. r.dclick ('sap-icon.PNG')
63. r.wait(5)
64. # variable from RASA
65. r.type ('system_field.PNG', system)
66. r.keyboard('[enter]')

 78

67. r.wait(5)
68. #login into the system - static values
69. r.type ('user.png', 'SAP*[tab]')
70. r.keyboard('[shift]a')
71. r.keyboard('ppl1ance[enter]')
72. #enter the transaction
73. r.click ('transaction.PNG')
74. r.wait (1)
75. r.keyboard('suo1[enter]')
76. r.wait(2)
77. #Rasa username variable
78. r.type('user-field.PNG', username)
79. r.click('change-user.PNG')
80. r.wait(3)
81. r.click('logon-data')
82. #new password
83. r.type('new-password.PNG', 'Password001!')
84. #repeat Password
85. r.type('repeatPassword.PNG', 'Password001!')
86. # put automation for save button, in our case we do not save
87. # as we do a lot of tests and everytime it is necessary to reset the password
88.
89. r.wait (2)
90. # Logoff from the system
91. r.click('system.PNG')
92. r.click('close.PNG')
93. r.click('yesLOGOFF.PNG')
94. r.click('close2.PNG')
95. # Automate Outlook Application
96. #open the Application
97. r.dclick('outlook.PNG')
98. r.wait(6)
99. #new mail
100. r.click ('newMail.PNG')
101. r.wait(2)
102. #send mail to variable mail from RASA
103. r.type('mailTo.PNG', email)
104. r.type('mailSubject.PNG', 'Password Reset[tab]')
105. r.keyboard('Hello[enter]' 'Your new password is: P@ssword[enter]''Best Re

gards[enter]''Your Bot')
106. r.click ('sendMail.PNG')
107. #click minimize.PNG
108. r.wait(7)
109. #close outlook
110. r.click ('outlookClose.PNG')
111. r.close()

 Response Selection and intent classification

1. {
2. "password": {
3. "precision": 1.0,
4. "recall": 1.0,
5. "f1-score": 1.0,
6. "support": 6,
7. "confused_with": {}
8. },
9. "system_name": {
10. "precision": 1.0,
11. "recall": 1.0,
12. "f1-score": 1.0,

 79

13. "support": 5,
14. "confused_with": {}
15. },
16. "goodbye": {
17. "precision": 1.0,
18. "recall": 1.0,
19. "f1-score": 1.0,
20. "support": 5,
21. "confused_with": {}
22. },
23. "greet": {
24. "precision": 1.0,
25. "recall": 1.0,
26. "f1-score": 1.0,
27. "support": 5,
28. "confused_with": {}
29. },
30. "affirm": {
31. "precision": 1.0,
32. "recall": 1.0,
33. "f1-score": 1.0,
34. "support": 7,
35. "confused_with": {}
36. },
37. "inform": {
38. "precision": 1.0,
39. "recall": 1.0,
40. "f1-score": 1.0,
41. "support": 63,
42. "confused_with": {}
43. },
44. "accuracy": 1.0,
45. "macro avg": {
46. "precision": 1.0,
47. "recall": 1.0,
48. "f1-score": 1.0,
49. "support": 91
50. },
51. "weighted avg": {
52. "precision": 1.0,
53. "recall": 1.0,
54. "f1-score": 1.0,
55. "support": 91
56. }
57. }

	1 Introduction
	2 Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3 Literature Review
	3.1 Open Source
	3.1.1 History of Open Source
	3.1.2 Reliability
	3.1.3 Scalability
	3.1.4 Security
	3.1.5 Total cost of ownership
	3.1.6 Community

	3.2 Open source RPA tools
	3.2.1 Robot Framework
	3.2.2 Roro
	3.2.3 Open RPA
	3.2.4 Automagica
	3.2.5 TagUI
	3.2.6 Taskt

	3.3 Robotic Process Automation
	3.3.1 Benefits of RPA
	3.3.2 Common issues with RPA

	3.4 Cognitive Computing
	3.4.1 Applications of cognitive computing

	3.5 Intelligent Automation
	3.6 NLU
	3.6.1 NLU terminologies in chatbots
	3.6.2 NLU evaluation
	3.6.3 Rasa
	3.6.3.1 Architecture
	3.6.3.2 Actions
	3.6.3.3 Natural language understanding
	3.6.3.4 Policies
	3.6.3.5 Training data
	3.6.3.6 Pipelines

	3.7 Current state of RPA in user support systems

	4 Practical Part
	4.1 Designing an open source solution of cognitive automation
	4.2 Comparison of tools
	4.2.1 Technologies that are used to create the tools
	4.2.2 Programming languages supported
	4.2.3 Platforms supported
	4.2.4 Available features
	4.2.5 Learning curve
	4.2.6 Documentation
	4.2.7 GitHub users and contributors
	4.2.8 Open and closed issues

	4.3 Implementation
	4.3.1 Preparing the experimental environment
	4.3.2 NLU
	4.3.3 RPA

	4.4 Benchmarking
	4.4.1 NLU model
	4.4.2 Core model

	5 Results and Discussion
	5.1 SWOT Analysis
	5.2 Comparison to other tools

	6 Conclusion
	7 Bibliography
	8 Appendix

