
Bakalářská práce

Automatic infotainment testing

Studijní program: B0714A270001 Mechatronika
Autor práce: Michal Sojka
Vedoucí práce: Ing. Ekaterina Nyrobtseva

Ústav mechatroniky a technické informatiky

Liberec 2024

Zadání bakalářské práce

Automatic infotainment testing

Jméno a příjmení: Michal Sojka
Osobní číslo: M21000054
Studijní program: B0714A270001 Mechatronika
Zadávající katedra: Ústav mechatroniky a technické informatiky
Akademický rok: 2023/2024

Zásady pro vypracování:

1. Familiarize yourself with the options for testing display units, especially in terms of
communication interfaces and used protocols.

2. Get acquainted with the possibilities of creating automated tests.
3. Create an automated test and implement a tool for evaluating test results.
4. Describe the workflow for implementing fixes.

Rozsah grafických prací: dle potreby dokumentace
Rozsah pracovní zprávy: 30 až 40 stran
Forma zpracování práce: tištěná/elektronická
Jazyk práce: angličtina

Seznam odborné literatury:

[1] DOLEŽAL, Jan. Agilní přístupy vývoje produktu a řízení projektu: komplexně, prakticky a dle
světové praxe. Praha: Grada, 2022. ISBN 978-80-271-3705-3.

[2] BUREŠ, Miroslav; RENDA, Miroslav; DOLEŽEL, Michal; SVOBODA, Peter; GRÖSSL, Zdeněk et
al. Efektivní testování softwaru: klíčové otázky pro efektivitu testovacího procesu.
Profes!onal. Praha: Grada, 2016. ISBN 978-80-247-5594-6.

Vedoucí práce: Ing. Ekaterina Nyrobtseva
Ústav mechatroniky a technické informatiky

Datum zadání práce: 12. října 2023
Předpokládaný termín odevzdání: 14. května 2024

prof. Ing. Zdeněk Plíva, Ph.D.
děkan

L.S.
doc. Ing. Josef Černohorský, Ph.D.

garant studijního programu

V Liberci dne 12. října 2023

Prohlášení

Prohlašuji, že svou bakalářskou práci jsem vypracoval samostat-
ně jako původní dílo s použitím uvedené literatury a na základě
konzultací s vedoucím mé bakalářské práce a konzultantem.

Jsem si vědom toho, že na mou bakalářskou práci se plně vzta-
huje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 –
školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do
mých autorských práv užitím mé bakalářské práce pro vnitřní po-
třebu Technické univerzity v Liberci.

Užiji-li bakalářskou práci nebo poskytnu-li licenci k jejímu využití,
jsem si vědom povinnosti informovat o této skutečnosti Technic-
kou univerzitu v Liberci; v tomto případě má Technická univerzita
v Liberci právo ode mne požadovat úhradu nákladů, které vyna-
ložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce
vložený do IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má bakalářská práce bude zveřejněna Tech-
nickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998
Sb., o vysokých školách a o změně a doplnění dalších zákonů (zá-
kon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách
mohou vyplývat z porušení tohoto prohlášení.

30. dubna 2024 Michal Sojka

Automatické testování infotainmentu

Abstrakt
Tato bakalářská práce se zaměřuje na automatizované testování
infotainment systémů ve vozidlech. Práce poskytuje teoretický
popis základů automatizovaného testování. Základ tvoří architek-
tura vozu, sběrnice CAN a skriptovacího jazyka Tcl. Seznámení s
procesem vývoje grafického uživatelského rozhraní je doplněno mo-
tivací ke zlepšení těchto procesů. Na základě této motivace práce
popisuje principy automatizovaného testování a jeho začlenění do
procesu vývoje grafického rozhraní. Zahrnuje dokumentaci testo-
vacího stavu (Test Bench) včetně hardwarových a softwarových
komponent. Je použit jazyk Tcl k vytváření testovacích funkcí a
scénářů (TestCases) k identifikaci chyb. Dále práce popisuje celý
proces testování a uvádí jeho výsledky.

Klíčová slova: Tcl, CAN, Testování, Infotainment, GUI, Autom-
atizace, HMI, CANoe

5

Automatic Infotainment Testing

Abstract
This bachelor’s thesis focuses on the automated testing of in-vehicle
infotainment systems. The thesis provides a theoretical description
of the basis for automated testing. The basis consists of the vehicle
architecture, the CAN bus and the Tcl scripting language. Famil-
iarity with the GUI development process is accompanied by a mo-
tivation to improve these processes. Based on this motivation, the
bachelor thesis describes the principles of automated testing and its
integration into the graphical interface development process. The
work includes documentation of the test bench (test rack), includ-
ing hardware and software components. The Tcl language is used
to create test functions and scenarios (TestCases) for identifying
bugs in a graphical interface. The thesis describes the entire test-
ing process and reports the results.

Keywords: Tcl, CAN, Testing, Infotainment, GUI, Automation,
HMI, CANoe

6

Acknowledgements
I would like to express my deepest gratitude to my supervisor, Ing.
Ekaterina Nyrobtseva, for her exceptional guidance throughout the
development of this thesis. Her meticulous review process and in-
sightful feedback have significantly improved the clarity and quality
of this work. I am particularly grateful for her perseverance in re-
fining the thesis and her assistance in correcting my grammatical
oversights.
I would also like to express my sincere thanks to Digiteq Automotive
for providing the necessary environment to carry out this project,
and to the members of the DTF-T Front-End Testing department
for their invaluable support and willingness to share their expertise
during my research.
Special thanks go to Ing. Tomas Zimmerhakl for his close coop-
eration and for providing essential information that contributed
greatly to this thesis.

7

Contents

List of abbreviations . 12

1 Introduction 18
1.1 Project Background . 19
1.2 Motivation . 19
1.3 Bachelor Thesis Goals . 20

2 Technical Background 22
2.1 Electronic Control Units in Automotive Systems 22

2.1.1 The Necessity of ECU Testing in Modern Vehicles 22
2.2 Overview of In-Vehicle Infotainment Systems 23
2.3 Evolution of In-Vehicle Infotainment Testing 25
2.4 Testing Methods . 26

2.4.1 Manual Testing . 26
2.4.2 Automated Testing . 27
2.4.3 Regression and Performance Testing Methods for In-Vehicle

Infotainment Systems . 28
2.5 Role of Automated Testing in Software Development 29
2.6 Functional Safety in In-Vehicle Infotainment Systems: A Focus on

ISO 26262 . 30

3 Integration of Automated Testing 32
3.1 GUI Development Process in In-Vehicle Infotainment Systems 32
3.2 Life Cycle of the Screen . 33
3.3 Motivation for Improving GUI Development Processes 37
3.4 Benefits of Integrating Automated Testing in GUI Development . . . 38

4 Foundations of Automotive Testing 40
4.1 Introduction to CAN Bus . 41

4.1.1 CAN Bus Architecture . 41
4.1.2 CAN Bus Protocols . 44

8

4.2 Basics of CAN Bus in Automotive Testing 48
4.2.1 Comprehensive Testing Methods for CAN Bus Systems 49
4.2.2 Integration of On-Board Diagnostics in CAN Bus Systems . . 50
4.2.3 Types of CAN Buses in Vehicles 50

4.3 Introduction to Tcl Programming . 51
4.3.1 Overview of Tcl Language . 51
4.3.2 Advantages of Using Tcl for Infotainment System Testing . . . 53
4.3.3 Programming in Tcl . 54

5 Test Bench 55
5.1 Overview of the Test Bench . 56
5.2 Hardware Components . 57

5.2.1 Windows PC . 57
5.2.2 Grabber . 58
5.2.3 CAN Case . 59
5.2.4 Manson Power Supply with Remote Control 59
5.2.5 12V Power Supply . 60
5.2.6 PCAN-PCI Express . 60
5.2.7 LED Bar Signalisation . 60
5.2.8 Two Phones (One Android and One with iOS) 61
5.2.9 Front Panel with All CAN Buses 61
5.2.10 Quido by Papouch . 62
5.2.11 UPS . 63
5.2.12 Vehicle Units . 64

5.3 Software Components . 65
5.3.1 CANoe . 65
5.3.2 Grimr . 66
5.3.3 TestAut2 . 66
5.3.4 Git Extensions . 66

5.4 System Architecture of Test Bench 67

6 Implementation 69
6.1 Understanding Code Structure . 69

6.1.1 Implementation Strategy . 72
6.2 Test Environment Setup . 73
6.3 Writing and Preparation of Test Scenarios 75

6.3.1 Test Scenario Structure . 75
6.4 Setting Up the Screen . 77

9

6.4.1 Click Functions . 78
6.4.2 Checkbox Controls . 79
6.4.3 Dropdown Controls . 80
6.4.4 Slider Controls . 81

6.5 Screen Capture . 82
6.5.1 Screen Splitting . 83
6.5.2 Capturing Modes . 85
6.5.3 Understanding the ’endCondition’ Parameter 86

6.6 Comparison of New Images with Reference and Detection of Differences 87
6.6.1 Case Study: Detecting and Analyzing Interface Discrepancies

in HMI Updates . 89
6.6.2 Case Study: Identifying and Resolving Interface Bugs in HMI

Updates . 91
6.7 Final Report on Automated Infotainment System Testing 93

7 Results and Analysis 96
7.1 Test Automation Results . 96
7.2 Limitations . 97
7.3 Test Automation Cost . 98

7.3.1 Exclusions in Cost Estimation 99
7.3.2 List of Components and Their Costs 99

8 Future Directions 100
8.1 Transition to Android-Based Infotainment Systems 100
8.2 Future Research and Development 100
8.3 Speculative Outlook . 101

9 Conclusion 102

References 104

A Appendices 109
A.1 Tcl Syntax . 109

A.1.1 Loops in Tcl . 117
A.1.2 Mastering Functions in Tcl using ’proc’ 123
A.1.3 Harnessing the Power of Dictionaries for Efficient Data Man-

agement in Tcl . 124
A.1.4 Using Namespaces in Tcl for Modular Programming 126
A.1.5 Leveraging Lists in Tcl . 128

10

A.1.6 Arrays . 128
A.2 ImageMagick: A Powerful Tool for Image Processing in Automated

Testing . 129

B Appendices 131
B.1 Attached Files . 131

11

List of abbreviations

ABT Anzeigebedienteil
AR Augmented Reality
ASIL Automotive Safety Integrity Levels
CAN Controller Area Network
CRC Cyclic Redundancy Check
ECU Electronic Control Unit
GUI Graphical User Interface
HMI Human Machine Interface
ID Identifier
IoT Internet of Things
IVI In-Vehicle Infotainment
MEB Modularer Elektrifizierungsbaukasten
MGB Modular FrameGrabber
OBD On-Board Diagnostics
Tcl Tool Command Language
TCs Test Cases
UI User Interface
V2X Vehicle-to-Everything
VW Volkswagen

12

List of Figures

2.1 An example of Škoda Infotainment tested with automated methods . 24

3.1 Life cycle of a GUI screen in infotainment system development 36
3.2 Flowcharts showing the different screen life cycle processes of manual

and automated testing in the GUI development 38

4.1 CAN bus twisted pair cable . 42
4.2 Signal levels in a CAN Bus . 43
4.3 CAN bus termination resistors . 43
4.4 The figure shows the structure of a CAN 2.0A (Standard Format)

message frame, detailing the fields involved in data transmission . . . 45
4.5 The figure shows the structure of a CAN 2.0B (Extended Format)

message frame, detailing the fields involved in data transmission . . . 46

5.1 Test bench for automated testing . 55
5.2 High-performance Windows PC . 57
5.3 Modular FrameGrabber (MGB) . 58
5.4 Vector CAN Case . 59
5.5 Power supply of Manson company . 59
5.6 12V power supply . 60
5.7 Example of the front panel implemented in a test bench 61
5.8 Front panel connection design . 62
5.9 Quido ETH 2/16: 2 inputs, 16 outputs and thermometer 63
5.10 Uninterruptible power supply (UPS) 63
5.11 Škoda Enyaq infotainment unit . 64
5.12 Škoda Enyaq 13” ABT . 64
5.13 Škoda Enyaq Gateway unit . 65
5.14 Diagram of the power source of the test bench components 67
5.15 Hardware connection schematic . 68
5.16 Software connection diagram . 68

13

6.1 The code hierarchy within the HMI library 69
6.2 Example of code hierarchy for F327 project (Enyaq) 71
6.3 Interface of TestAut2 . 73
6.4 Illustration of the ’OFF’ and ’ON’ status of checkboxes 79
6.5 Displaying the transition states of checkboxes for system preferences . 79
6.6 View of the dropdown control in the Enyaq infotainment system . . . 80
6.7 Expanded view of the Speed Alert settings dropdown 80
6.8 Audio settings slider controls . 81
6.9 Infotainment display segmentation 84
6.10 Focused testing of the driving data homescreen tile 84
6.11 Exact match verification: Green indicates identical screens 87
6.12 Minor discrepancy detected: Yellow for under 1% pixel difference . . 87
6.13 Significant variation: Red for over 1% pixel difference 88
6.14 Manual review required: Blue when reference is missing 88
6.15 Error indication: Highlighted when a test issue occurs 88
6.16 Reference image . 90
6.17 Image of new HMI update . 90
6.18 Differential image . 90
6.19 Reference image . 91
6.20 Image of new HMI update . 91
6.21 Differential image . 92
6.22 An example of the numerical result of one of the tests 93
6.23 Sample part of the final report . 95

14

List of Tables

6.1 TestCase parameters description . 75
6.2 Overview of capturing modes . 85

A.1 Overview of fundamental operations in Tcl 113
A.2 Summary of Tcl ’dict’ command options 126

15

Listings

6.1 Testing the GUI of the headlight controls on the IVI’s touchscreen . . 76
6.2 Implementation example for endCondition 86
A.1 Comments example . 109
A.2 Command example . 109
A.3 Command to print ”Hello Tcl World” in Tcl 110
A.4 Variable substitution . 110
A.5 Example of command substitution 110
A.6 Example of removing variable . 111
A.7 Example of expr command in Tcl . 111
A.8 Implementing basic arithmetic operations 112
A.9 Simulating volume adjustment based on vehicle speed 112
A.10 Implementing conditional logic . 113
A.11 Example of using bitwise operators 115
A.12 Example of implementing relational operations 116
A.13 Template of a Tcl ’for’ loop . 117
A.14 Example of ’for’ loop in Tcl . 117
A.15 Template of a Tcl ’foreach’ loop . 118
A.16 Example of ’foreach’ loop in Tcl . 119
A.17 Output of ’foreach’ example . 119
A.18 Template of a Tcl ’while’ loop . 119
A.19 Programming your way to graduation: A Bachelor’s thesis progress

simulator in Tcl . 120
A.20 Template of a Tcl ’switch’ command[42] 121
A.21 Practical example of a Tcl ’switch’ command 122
A.22 Template of a Tcl ’proc’ command 123
A.23 Template of calling procedures . 123
A.24 Example of a simple procedure . 123
A.25 Example of a simple procedure with ’return’ command 124
A.26 Example of creating a dictionary . 124

16

A.27 Example to access a value in a dictionaryl 124
A.28 Example of ’dict set’ and ’dict unset’ commands 125
A.29 Example of ’dict for’ command . 125
A.30 Example of creating a namespace in Tcl 127
A.31 Example of importing a namespace 127
A.32 Examples of creating a list . 128
A.33 Example of accessing element in list 128
A.34 Example of lappend and linsert commands 128
A.35 Initializing test outcomes in an associative array 129
A.36 Example of accessing array elements 129

17

1 Introduction

It took humanity almost 200,000 years to invent the wheel. Six thousand years
later, humankind tainted the Earth’s surface with first cars and 83 years after that;
humankind reached the Moon’s surface. Today, technology is advancing at an in-
credible pace, affecting every industry, including the automotive. In the context
of increasing competition and ever-changing consumer preferences, the automotive
industry has begun to look for innovative ways to attract and retain the attention of
its customers. One of the key elements that has become an integral part of modern
vehicles is the infotainment.

Modern in-vehicle systems not only give vehicles a luxurious look but also pro-
vide an interactive experience that meets the needs and expectations of drivers and
passengers. This segment of the car is changing the way people experience their
journeys. Today, in-vehicle infotainment is more than just a radio that plays ra-
dio tunes. It provides the user with the complete experience of information and
entertainment. From intuitive touchscreens and voice control to connectivity with
smart devices. It gives the driver greater awareness of the car’s behaviour, allowing
them to control a range of systems including handling, comfort systems such as air
conditioning and entertainment systems such as listening to music or podcasts[31].

Infotainment is becoming an increasingly complex and sophisticated part of the
car. As a result, there is an increasing need to ensure the reliability and functionality
of these systems. Individual systems are tested for functionality. But an essential
part of this is transferring this information to the car’s display, the direct interface
between the user and the infotainment system. This graphical display requires
proper testing. This process is known as Human Machine Interface (HMI) testing.
Failure to display the correct information could prevent one of the systems from
working properly or make it impossible to set up. It can also affect the overall
driving experience.

IoT connectivity is also becoming increasingly common in the automotive sec-
tor. Modern in-vehicle infotainment systems connect with all the smart automotive
technologies like Advanced Driver-Assistance Systems, V2X connectivity solutions,

18

telematics devices, smartphones, sensors, etc., and integrate them to provide a great
driving experience. This integration leads to more screens showing on the car’s dis-
play, subsequently increasing the demand to test. Today’s cars can display up to
1,000 of these unique screens[31].

1.1 Project Background
Building on the theoretical foundations set out in the introduction, this section looks
at the specific environment in which the research and development for this thesis
unfolded - Digiteq Automotive.

Digiteq automotive is dedicated to developing automotive innovations such as
autonomous driving, connectivity, electromobility, and digitalisation. The company
was founded in 2001 and has become a strategic partner to members of the Volk-
swagen (VW) Group.

In response to the increasing demands on software and electronic systems in
automobiles, Digiteq Automotive focuses on testing methodologies. It combines
modern approaches with proven testing methods to ensure efficiency, sustainability
and maximum value for their customers. Testing services include component testing,
integration testing and full vehicle testing using virtual reality, virtualisation and
simulation[9].

The automotive industry is undergoing a period of transformation driven by
rapid technological advances. In-vehicle infotainment (IVI) systems are becoming
more sophisticated and complex, and the process of testing these systems is be-
coming more demanding. However, the customers demand for the quality and test
agility to remain the same, and traditional test methodologies cannot keep pace
with the complexity of today’s IVI systems.

Therefore, test methodologies must evolve to maintain their quality and financial
viability. An automated testing system would reduce the need for human resources
and lead times, while improving quality, efficiency and performance[28, 1].

1.2 Motivation
Part of the development of the infotainment’s graphical user interface (GUI) is
testing. This has mainly been done manually, with the tester going through the
screens in several rounds and visually checking them. However, as mentioned above,
IVI systems are advancing in complexity and in the richness of their content. As
a result, the testing process is becoming more tedios and more expensive. This is

19

reflected in the final price of the car. The aforementioned system dynamics also
increase the chances of human error and the tester missing some bugs. The manual
testing process and its limitations are described in subsection 2.4.1.

This is why most companies today are trying to introduce an element of automa-
tion into their processes. A machine can easily perform less demanding or repetitive
tasks. When automation is well integrated, processes can be streamlined, and large
numbers of screens can be tested on a regular basis in shorter periods compared
to manual testing. Last but not least, automated testing is generally cheaper than
manual testing, making it also financially beneficial for companies[19].

1.3 Bachelor Thesis Goals
The overarching goal of this Bachelor’s thesis is to harness analytical skills for de-
veloping an array of test functions and scenarios. These will establish a foundation
for future progress in the field of automated testing of IVI systems. The core objec-
tive of these tests is to meticulously uncover and catalog bugs in the infotainment
GUI. Beyond mere detection, this work aims to outline the workflows for rectifying
identified issues, thereby enhancing system reliability.

In parallel, the thesis aspires to inject innovative ideas and systematic optimi-
sations into the testing process. These improvements are envisioned to streamline
procedures, bolster test efficiency, and yield cost-effective strategies in automated
testing.

Specific Goals

1. Theoretical Framework
Provide a theoretical description of key components, including vehicle
architecture, Controller Area Network (CAN) bus and Tcl scripting language,
to provide a basis for automated testing.

2. Integration into GUI Development
Gain an understanding of the GUI development process and identify issues
and opportunities for improvement.

3. Test Bench Documentation
Create documentation of the test bench, including hardware and software
components, to enable a full understanding of the test environment.

20

4. Results Reporting
Describe detailed reporting of automated testing results, including identifica-
tion and classification of errors, to ensure transparency and accountability.

Subgoals

1. Efficiency and Cost-effectiveness
The aim is to evaluate the efficiency and cost-effectiveness of automated test-
ing compared to manual testing, and to highlight the potential benefits to
organisations in terms of time, accuracy and overall financial savings.

21

2 Technical Background

A detailed examination of automated testing for IVI systems reveals a dynamic
interplay of disciplines. The precision of software engineering, the analytical rigor of
system analysis, and the creative insights of user experience design all contribute to
developing technologies that enhance the functional aspects of infotainment systems
and their interaction with users. The convergence of knowledge and technique is
crucial for advancing the capabilities of these systems, with the goal of achieving
optimal performance and reliability in the rapidly evolving automotive industry.

2.1 Electronic Control Units in Automotive Systems
An Electronic Control Unit (ECU) is a critical component in modern vehicles,
acting as the brain behind their many automated features and systems. An ECU
is essentially a microcontroller-based device embedded in the vehicle’s electronics
that manages and controls a wide range of vehicle functions. These include engine
management, transmission operation, airbag deployment and much more. As
automotive technology has advanced, the complexity and number of ECUs in
a vehicle has increased significantly, reflecting the greater integration of digital
control technologies into automotive design[47].

2.1.1 The Necessity of ECU Testing in Modern Vehicles
Testing ECUs is paramount for several reasons:

• Functionality Assurance: Ensuring that each ECU performs its designated
functions correctly, thereby guaranteeing the vehicle operates as intended.

• Safety Verification: Vehicles rely heavily on ECUs for the management of
critical safety systems. Testing ensures these units operate reliably under all
conditions, protecting passengers from system failures.

22

• Compliance and Standards: Automotive manufacturers must adhere to
stringent regulatory standards, which include rigorous testing of ECUs to meet
safety, emissions, and operational guidelines.

• Reliability and Durability: ECUs control systems essential for the long-
term performance and durability of the vehicle. Testing helps identify poten-
tial failures that could degrade the vehicle’s functionality over time.

• Software Integration: With the increasing role of software in automotive
systems, ECUs must be tested to ensure new software updates integrate seam-
lessly without disrupting existing functionalities.

As vehicles become more integrated with electronic systems, the role of ECUs
becomes increasingly important. One of the most important ECUs in modern
vehicles is the infotainment unit. This system enhances the driving experience
by integrating entertainment, information delivery and user interface technolo-
gies into a single system. Testing the infotainment ECU is critical not only for
functionality and user experience, but also for its interactions with other vehicle sys-
tems to ensure that it operates seamlessly within the broader automotive ecosystem.

Given their centrality to both driver engagement and vehicle functionality, in-
fotainment units present a unique mix of challenges and opportunities for automo-
tive technology developers. The following sections delve into the specific aspects of
in-vehicle infotainment systems, exploring their development, integration and the
specialised testing methodologies developed to ensure these systems meet both user
expectations and stringent automotive standards.

2.2 Overview of In-Vehicle Infotainment Systems
Automotive infotainment systems have evolved from simple radios to sophisticated
multimedia centres, transforming vehicles into interactive environments. Infotain-
ment, a portmanteau of ’information’ and ’entertainment’, refers to the vehicle sys-
tem that provides essential driving information and guidance. The IVI system is
an integrated system that supports automobile navigation, connection with digital
multimedia broadcasting, instrument panel, radio, multimedia, various sensors, and
external devices[6].

23

IVI systems have changed the way we perceive the road and driving. Travelling
is no longer just about getting from A to B. By using and interacting with these
systems, the car crew can also make time on the road more enjoyable. As illustrated
in Figure 2.1, modern infotainment systems integrate a variety of functionalities,
seamlessly combining entertainment and information delivery to enhance the driver’s
experience.

One of the most important elements of IVI is the user interface (UI), which should
be clear and intuitive for the crew. The UI of an IVI system is the medium through
which drivers and passengers interact with the myriad of features on offer. In the
past, there were physical knobs and buttons in the car. Today, these are increasingly
being replaced by sophisticated touch screens and voice recognition systems.

As technology advances, IVI systems are no longer an isolated unit but are inte-
grated to communicate with external networks and technologies. These new trends
include augmented reality (AR) displays, Artificial Intelligence-based personalisa-
tion or integration with smart home devices[33].

Figure 2.1: An example of Škoda Infotainment tested with automated methods[34]

Despite these advances, IVI systems encounter significant challenges. They face
issues related to user distraction, cyber security and the rapid pace of technology
obsolescence. Most IVI units are delivered from the factory, and correct operation
must be ensured throughout the life of the vehicle, which is a very difficult challenge.

24

Third-party applications must be run in an environment that does not interfere with
the vehicle and compromise passenger safety. These and many other obstacles then
present challenges that developers and designers must look at and consider during
development[22].

2.3 Evolution of In-Vehicle Infotainment Testing
Initially, IVI systems were relatively simple, comprising basic audio and radio func-
tionalities. Testing these systems primarily involved manual methods where testers
would interact with the infotainment system and manually check each function. This
manual testing process included checking user interfaces, audio outputs, radio func-
tionality and basic connectivity features. Testers had to physically manipulate the
systems’ controls, such as buttons and knobs, to ensure that each function worked
as intended. While straightforward, this approach was time-consuming and prone
to human error, especially as systems became more complex with the integration of
features such as navigation and Bluetooth connectivity.

With the advent of advanced technologies, IVI systems began to incorporate
sophisticated features such as touchscreen interfaces, voice recognition and integra-
tion with smartphones and other devices. The complexity of testing increased sig-
nificantly as these systems now required validation of complex software algorithms,
user interface responsiveness and seamless connectivity with external devices[32].

To address these challenges, the industry has begun to move towards automated
testing methodologies. Automated testing involves the use of software tools and
scripts to perform tests on the infotainment system without the need for constant
human intervention. For example, a common automated test might involve a script
that simulates user input on a touchscreen interface to test its responsiveness and
accuracy. Other automated tests could include voice command recognition, Blue-
tooth connectivity checks and performance assessments under various simulated
conditions[46, 48].

25

2.4 Testing Methods
In the field of IVI system development, testing methods play a pivotal role in en-
suring the functionality, reliability, and user experience of these intricate systems.
This section outlines the various approaches employed to meticulously evaluate each
aspect of infotainment systems, encompassing both manual and automated testing
strategies. By examining these methodologies, we gain a comprehensive understand-
ing of how each testing type contributes to the final product’s efficacy and safety.

2.4.1 Manual Testing
Manual testing is a traditional approach where testers interact directly with the
infotainment system and perform tests manually. This method often requires a
tester to interact with the system as a regular user would, checking for usability,
functionality and any anomalies.

Key Aspects of Manual Testing:

1. User Experience Evaluation
Testers assess the system’s interface for user-friendliness, responsiveness, and
intuitiveness.

2. Physical Interaction
Testers engage with physical components like buttons, touchscreens, and knobs
to ensure their proper function.

3. Observation-Based
This method relies heavily on the tester’s attention to detail and ability to
notice issues.

Limitations:

• Time-consuming Review: The process can be lengthy and laborious, re-
quiring a significant investment of human resources.

• Vulnerability to Human Error: Although skilled, testers are susceptible to
the vagaries of human nature, including oversights, particularly when personal
concerns interfere with professional focus.

• Inconsistency in Repetition: Humans, unlike machines, may struggle to
maintain consistent performance across repetitive tasks or extensive test suites,
with fatigue and loss of concentration affecting the consistency of results.

26

2.4.2 Automated Testing
Automated testing uses software tools and scripts to perform tests on the info-
tainment system without constant human intervention. It is particularly useful
for repetitive tasks, regression testing and scenarios that are difficult to simulate
manually.

Key Aspects of Automated Testing:

1. Scripted Scenarios
Testing is performed using pre-defined scripts that simulate user input and
system interactions.

2. Regression Testing
Automated testing handles regression testing efficiently, ensuring that new
changes do not break existing functionality.

3. Performance Testing
Can simulate demanding conditions to test system performance and stability
under load.

4. Consistency
Provides consistent test execution, eliminating human error.

The benefits:

• Efficiency and Speed: Automated testing is more efficient and faster than
manual testing, allowing for rapid validations.

• Continuous Operation: Can run continuously and handle large volumes of
tests without the need for constant human oversight.

• Suitability for Complexity: Ideal for complex systems that have extensive
testing requirements due to their intricate functionalities.

Challenges:

• Initial Setup and Development: The initial setup and script development
can be time-consuming, requiring careful planning and resource allocation.

• Ongoing Maintenance: Requires consistent maintenance to keep scripts up
to date with system changes, ensuring reliability.

27

• Limitations in Experience Capture: May not adequately capture user
experience or the visual aspects of the interface, potentially missing subtle yet
critical user interactions.

Figure 3.2 provides a comparative overview of manual versus automated testing
processes, highlighting the efficiency gains achieved through automation.

2.4.3 Regression and Performance Testing Methods for In-
Vehicle Infotainment Systems

When testing IVI systems, it is important to use a variety of test methods to ensure
that the system meets the high standards expected by the automotive industry.
In automotive infotainment, various testing methodologies are employed, including
unit testing, integration testing, and system testing. These techniques complement
our focus on regression and performance testing, ensuring a comprehensive evalua-
tion of system robustness and functionality.

Regression Testing
Regression testing is a software testing method that verifies the correct func-

tioning of previously developed and tested software after it has been modified or
interfaced with other software. In the context of IVI systems, regression testing is
crucial whenever updates are made to the system’s software, including the imple-
mentation of new features, bug fixes, or performance improvements. The primary
goal of regression testing is to identify any unintended side effects caused by the
latest code changes and to ensure that the new software version does not regress in
terms of functionality and stability.

1. Purpose
The purpose of this task is to verify that updates or changes have not neg-
atively impacted existing functionalities. This task applies to any software
update or change.

2. Methodology
The methodology typically involves rerunning a set of predefined tests on the
updated software to compare the results with previous test runs. Automated
testing tools are often used to facilitate this process, given the repetitive nature
of the tests.

28

3. Application
After software updates, patches, or enhancements are applied, system stability
and functionality are validated.

Performance Testing
Performance testing evaluates the speed, responsiveness, and stability of a system

under a particular workload. It is critical for IVI systems where users expect a
seamless and responsive interface for navigation, entertainment, and communication
features. Performance testing helps identify bottlenecks and areas for optimisation
to ensure the system meets the performance standards required for a smooth user
experience.

1. Purpose
To assess the system’s responsiveness, stability, and scalability, ensuring it can
handle the expected load with acceptable performance levels.

2. Methodology
Includes simulation of various scenarios that an infotainment system may en-
counter during its lifetime, such as system operation in extreme weather condi-
tions, increased workload due to complex operations, frequent device reboots,
or high user activity. System performance is then evaluated, including load
time, processing speed, and memory usage.

3. Application
Essential during the development phase to benchmark the system’s perfor-
mance and after any significant updates to ensure the new features do not
degrade the system’s overall performance.

2.5 Role of Automated Testing in Software
Development

Automated testing improves the process of ensuring software quality by moving be-
yond traditional, manual testing approaches. It provides a systematic, repeatable,
and scalable solution to meet the rigorous demands of modern software develop-
ment. Through the use of specialised software tools, automated testing enables the
execution of a series of tests on the software application to assess its functionality,
performance, and compliance with specified requirements. Unlike manual testing,
which relies on human effort to perform tests, automated testing uses scripts and
tools to perform these tests efficiently and consistently over multiple iterations.

29

A key benefit of automated testing is its ability to be reused. Once a TestCase
(TC) has been developed, it can be executed repeatedly over time, providing consis-
tent results. This reusability not only saves significant time and resources but also
ensures a higher level of test accuracy throughout the software life cycle.

The role of automated testing is essential in the development of IVI systems.
It serves as a cornerstone for improving software quality, accelerating development
schedules, and effectively managing the inherent complexity of the system. Au-
tomated testing enables developers to consistently achieve and maintain a supe-
rior standard of reliability and performance. This is critical to meeting the ever-
increasing expectations of consumers in the automotive industry, where the sophis-
tication and integration of infotainment systems are constantly evolving.

2.6 Functional Safety in In-Vehicle Infotainment
Systems: A Focus on ISO 26262

Functional safety is a crucial aspect of automotive development. It ensures that
electronic and electrical systems, including IVI systems, operate safely even in
the event of system failures. ISO 26262, titled ’Road vehicles - Functional
safety’, is an international standard for ensuring the functional safety of electrical
and electronic systems in production automobiles. This section examines the signif-
icance of ISO 26262 in relation to IVI systems, with a focus on its requirements,
implementations, and impact on safety protocols[30].

ISO 26262 Overview
ISO 26262 provides a framework for ensuring system safety throughout the life

cycle of automotive development, from design to decommissioning. It addresses
possible hazards caused by malfunctioning electronic systems and prescribes
requirements for safety management, development, production, operation, service,
and decommissioning[37].

Applicability to In-Vehicle Infotainment Systems
ISO 26262 primarily focuses on critical automotive systems such as steering

and braking. However, it also applies to infotainment systems due to their indirect
impact on vehicle safety. The standard examines how unexpected behaviors in an
infotainment system might distract the driver or malfunction in ways that could
lead to safety risks[30].

30

Safety Integrity Levels
ISO 26262 defines several Automotive Safety Integrity Levels (ASILs), which are

used to classify the necessary safety measures required to handle potential risks. The
levels range from ASIL A (lowest) to ASIL D (highest), depending on the severity,
exposure, and controllability of the hazard. However, quality management practices
are essential to ensure that the system is reliable, user-friendly, and does not distract
the driver or interfere with the operation of safety-critical systems.

Consider an infotainment system in an autonomous vehicle. This system,
primarily used for navigation, entertainment, and vehicle settings, might be
classified as QM (or level A) because its failure is unlikely to result in a direct
safety hazard. However, quality management practices are essential to ensure that
the system is reliable, user-friendly, and does not distract the driver or interfere
with the operation of safety-critical systems[30].

Implementing ISO 26262
Implementation of ISO 26262 in infotainment systems involves:

• Hazard analysis and risk assessment to identify potential safety issues.

• Development of safety requirements to mitigate identified risks.

• Integration of safety mechanisms during the hardware and software design
phases to ensure robust error handling and fault tolerance.

• Continuous validation and verification processes to confirm safety standards
are met throughout the development cycle.

31

3 Integration of Automated Testing

The integration of automated testing into the IVI system development process rep-
resents a significant improvement in the pursuit of quality, reliability and efficiency.
This chapter explores the key role of automated testing, with a particular focus on
the screen life cycle and workflow within the GUI development process.

3.1 GUI Development Process in In-Vehicle
Infotainment Systems

A specialised external entity within the VW Group developed the core software that
powers the infotainment units. This entity is responsible for delivering updates and
new versions of the software, commonly referred to as the ”model”, to all members of
the VW Group at pre-determined intervals. Subsidiaries, such as Škoda Auto, take
this basic software and customise it to reflect their unique brand identity and user
experience expectations through a process known as ”skinning”. This customisation
is critical to differentiating each brand within the VW Group and is meticulously
carried out by Digiteq Automotive for Škoda Auto.

Skinners focus on the aesthetic and interactive aspects of the infotainment sys-
tem’s GUI. Their expertise lies in strategically placing interface elements such as
icons, text, buttons, checkboxes and sliders to ensure an intuitive and responsive
user experience. Unlike developers, who may focus on the underlying functionality
of the system, skinners prioritise how these elements look and feel to the user, en-
suring that every interaction is fluid and seamless. The culmination of their efforts
results in a distinctive ”skin” for the infotainment system, representing the visual
and interactive blueprint of the model[21].

32

3.2 Life Cycle of the Screen
This section introduces the concept of the GUI screen life cycle in the context of
IVI systems. It emphasizes the critical phases that each screen undergoes from
conception to completion. The life cycle is integral to ensuring that each graphical
interface meets the rigorous usability and aesthetic standards required in today’s
automotive industry.

Overview

• The life cycle begins with the Initial Concept where the screen is conceptual-
ized and basic functionality is outlined.

• Following this, the screen enters various Development and Testing Phases,
which include skinning, iterative reviews, and multiple testing rounds to refine
functionality and aesthetics.

• The final phases involve Validation and Deployment, where the screen is rigor-
ously tested in real-world scenarios and prepared for integration into the final
product.

This overview sets the stage for a detailed exploration of each stage in the text
below, where we will visually map these processes using Figure 3.1 to provide a
clearer understanding of the intricate processes involved.

Graphical Visualization of Screen Life Cycle in GUI Development
When developing graphical user interfaces for IVI systems, the screen life cycle

is a critical process that ensures each screen is designed, tested and refined to meet
stringent quality standards. This life cycle can be complex, involving several stages
from initial concept to final testing. Figure 3.1 illustrates these stages in flowchart.
Let us examine each stage to understand its role in the GUI development process.

New State
The life cycle of a screen begins in the ”new” state, where the initial setup is

created. This stage is crucial in laying the groundwork for what will become a fully
functional GUI element. At this point, the screen contains only placeholders with
no functional elements.

33

Open State
After completing the basic setup, the screen transitions to the ”open” state

and is assigned to a skinner, as previously mentioned. Skinners are specialists
who are known for their expertise in the aesthetic aspects of the GUI. They focus
on customizing the screen by rigorously applying predefined design guidelines
to enhance functionality and visual appeal. This includes integrating elements
such as icons, buttons, and other interactive components that are essential for a
user-friendly interface.

Waiting States
During the skinning process, the screen may enter various waiting states if ad-

ditional customisation or resources are required:

• Waiting for Model: The screen is waiting for further model refinement.

• Waiting for Resources: Additional resources, such as high-resolution im-
ages or custom icons, are required.

• Waiting for Supplier: External suppliers may need to provide components
or information.

These wait states highlight potential bottlenecks in the development process
where delays may occur.

Skinning State
After receiving the necessary inputs, the screen returns to the skinning phase.

This iterative approach allows for continuous refinement and ensures that every
element on the screen is perfectly integrated and aligned with the overall design
objectives.

Ready for Testing
Once the skinning is complete, the screen enters the ”ready for testing” phase.

The screen is rigorously tested for functionality, usability and consistency with
other GUI components. Any issues identified at this stage are critical as they can
have a significant impact on the user experience.

34

Reopened
If errors are found, the screen status is changed to ”reopened” and sent back

for further adjustments. This stage is crucial for quality control, ensuring that no
faulty screens make it into the final product.

Tested
Screens that pass initial tests are labelled as ”tested” and progress to a second

testing phase with updated software and HMI versions. Retesting frequently takes
place in a real car prototype to verify their functionality in real-world conditions.
This ensures that GUIs remain reliable following system updates.

Test Completed
Successfully tested screens are marked as ”test completed”, indicating that they

are ready to be included in the final version of the infotainment system. This
label signifies that the screen has met all required specifications and is expected to
perform reliably in the field.

Cancelled
Occasionally, a screen may be cancelled due to various reasons such as changing

project scopes or technical infeasibility. This status ensures resources are efficiently
allocated by discontinuing work on elements that no longer meet the project’s needs.

35

This figure depicts the sequential stages each GUI screen undergoes from con-
ception to completion, highlighting key processes such as skinning, testing, and final
approval.

Figure 3.1: Life cycle of a GUI screen in infotainment system development

Understanding and managing the screen life cycle is crucial for developing effec-
tive and reliable IVI systems. Each stage of the process serves a specific purpose
and contributes to the overall quality of the final product. This ensures that the
system not only looks good but also functions seamlessly, enhancing the in-vehicle
experience for users.

36

3.3 Motivation for Improving GUI Development
Processes

The workflow for developing and validating GUI components is generally robust,
taking each screen from inception to a fully tested state. However, this process
faces its greatest challenges not during the initial development or testing phases
but afterwards. Once a screen has completed its testing cycle, it transitions to a
”test complete” status, at which point skinners and testers typically complete their
work on that particular component. However, the evolution of the GUI does not
stop there; it requires ongoing updates to the software and HMI to meet evolving
requirements and incorporate new features.

The process becomes particularly complex when updates are introduced by an
external entity within a larger automotive group, such as the VW Group, which
includes a variety of brands with their own specific requirements, such as Škoda
Auto, Seat, Volkswagen and others. While these updates are intended to improve
the system, they can inadvertently introduce discrepancies or bugs into screens that
have previously been verified and marked as complete. Such issues can manifest
themselves following updates to the HMI or software, potentially altering screen
elements in unintended ways. Whether it is a noticeable discrepancy, such as missing
text or icons, or more subtle issues, such as slight misalignments or shifts in graphical
elements, detecting these issues post-update is a significant challenge.

Due to the complexity of the GUI and the numerous screens, each with its unique
settings and configurations, it is impractical and time-consuming to manually retest
each screen for potential issues after every update. This highlights the need for
refining GUI development and testing methodologies.

The progress of software and HMI requires a more agile and responsive approach
to GUI testing and development. It highlights the need for an integrated testing
framework that can dynamically adapt to software updates, ensuring that previ-
ously completed screens remain error-free despite changes elsewhere in the system.
The motivation for improving GUI development processes arises from the need to
streamline update and testing cycles, reduce manual testing efforts, and enhance
the overall quality and reliability of the GUI in infotainment systems[21].

37

3.4 Benefits of Integrating Automated Testing in
GUI Development

The integration of automated testing into the GUI development process represents
a significant change in the way infotainment systems are tested, optimised, and
maintained. Unlike traditional manual testing methods, which typically involve a
limited number of test rounds and sporadic user testing sessions, automated testing
provides a consistent, systematic approach to identifying and resolving issues. This
section explores the profound benefits of adopting automated testing in GUI devel-
opment, highlighting the frequency of testing screens once a week as opposed to the
two rounds of manual testing and occasional user testing iterations.

Figure 3.2: Flowcharts showing the different screen life cycle processes of manual
and automated testing in the GUI development

Benefits of Automated Testing in Comparison with Manual One
In the dynamic field of IVI systems, automated testing is a method that stands

out due to its ability to streamline development and ensure high-quality outputs.
This method not only accelerates the testing process but also enhances the focus
on innovation and user experience, aligning perfectly with the industry’s goals for
rapid development and robust software performance.

38

• Consistent Quality Assurance: Automated testing performs evaluations
of GUI screens weekly, ensuring that any changes or updates are regularly
scrutinised. This consistency leads to the early detection of bugs and issues
that might otherwise go unnoticed until later stages of development or worse,
after deployment.

• Efficiency and Time Savings: Manual testing is time-consuming and
labour-intensive, often requiring significant human resources to conduct two
rounds of testing in addition to user testing phases. Automated testing signif-
icantly reduces the manpower and time required, by performing assessments
weekly, freeing up resources for other critical development tasks.

• Comprehensive Coverage: Automated testing can test every screen and
interaction within the GUI every week, providing a level of coverage that is
virtually impossible to achieve with manual testing. This thoroughness ensures
that even the smallest inconsistencies or errors are identified and fixed.

• Objective Results: Automated testing is not subject to human error or
bias, providing objective, consistent results week after week. This objectivity
is essential for maintaining high standards of quality and functionality in GUI
development.

39

4 Foundations of Automotive Testing

Developing and testing IVI systems requires the use of appropriate tools and
protocols to ensure product reliability and functionality. This chapter examines two
essential components of automotive testing: the CAN bus and the Tcl programming
language.

The Role of CAN Bus
Infotainment testing requires the use of the CAN bus to simulate real-world

scenarios where multiple vehicle subsystems communicate simultaneously. The
CAN bus is used to simulate various CAN messages that are vital for operational
tests, such as displaying infotainment content or managing vehicle states. For
example, the signal ”Klemme 15” is critical for indicating the ignition status of the
vehicle. If the Klemme states (for example, Klemme 15 or Klemme 30) indicate
that the engine is off, some infotainment screens may not be visible or operational.
This can affect the user experience and functionality tests. To stay ahead of the
curve and gain a deeper understanding, it is beneficial to refer to section 4.1 Intro-
duction to CAN Bus, which covers the foundational aspects of CAN bus technology.

The Importance of Tcl Programming
We use Tcl as our primary scripting language for creating TestCases and func-

tions within our testing framework, alongside the CAN bus. Tcl was chosen for its
simplicity and effectiveness in handling string-based operations and automated task
execution, which are essential in test scenario creation. We use Tcl to create auto-
mated tests that evaluate all aspects of the infotainment system’s UI and backend.
This ensures that all components work seamlessly together.

40

4.1 Introduction to CAN Bus
CAN bus is a robust vehicle bus standard designed to facilitate communication
between various vehicle systems without the need for a central computer. This rev-
olutionary technology, developed by Bosch in the 1980s, has become a fundamental
component of modern automotive design, enabling various electronic control units
(ECUs) within a vehicle to communicate efficiently. Unlike traditional wiring sys-
tems, the CAN bus allows the reduction of complex wiring harnesses, resulting in
improved vehicle reliability, easier repair processes, and enhanced functionality.

The introduction of the CAN bus was primarily driven by the need for a more
efficient and reliable way to distribute control functions and diagnostic information
between vehicle systems. As vehicles became more complex, incorporating more elec-
tronic features such as advanced engine controls, IVI systems, and various sensors,
the limitations of conventional point-to-point wiring became apparent. The CAN
bus emerged as a solution to these challenges, not only reducing the complexity and
cost of wiring but also facilitating real-time data exchange between ECUs[35].

4.1.1 CAN Bus Architecture
This section explains the detailed architecture of the CAN bus system. It describes
the essential components and configurations that enable robust communication
capabilities within automotive networks.

Physical Layer
The physical layer of the CAN bus system is critical in defining the electrical

characteristics and physical connections that enable reliable data transmission over
the network. The specifications of this layer ensure that the CAN bus can oper-
ate effectively in the demanding conditions common to automotive and industrial
environments[4].

41

Transmission Medium
The choice of transmission medium is vital for the performance of the CAN Bus

system. Generally, a twisted pair cable is used for its ability to reduce electromag-
netic interference, which is a common issue in electrically noisy environments found
primarily in vehicles and industrial machinery. The twisted pair design helps in can-
celing out noise that might be induced onto the wires, ensuring that the integrity of
the transmitted signals is maintained[4].

Figure 4.1: CAN bus twisted pair cable[13]

Signal Levels
The CAN bus uses differential signalling with two wires, CAN high and CAN

low, to transmit information. This method is particularly effective in automotive
environments where electrical noise and interference are prevalent. Differential sig-
nalling allows the CAN bus to achieve a high level of noise immunity by cancelling
out electrical noise common to both wires. As a result, the integrity of the signal is
maintained even in the harsh electrical environment found in vehicles.

The relationship between the CAN high and CAN low lines is quantified by the
differential voltage (Vdiff), defined by Equation 4.1:

Vdiff = VCANH
− VCANL

(4.1)

This formula is of paramount importance, as it determines the logical state
transmitted across the network. A higher differential voltage (approximately 2 volts)
indicates a dominant state (logical ’0’), which is a critical state for asserting control
in the network. Conversely, a lower or negligible differential voltage (close to 0 volts)
corresponds to a recessive state (logical ’1’), which signifies that no node is actively
trying to dominate the bus.

The voltage differential approach reduces the risk of signal level misinterpretation
by receiving nodes, ensuring accurate and robust data transmission. Additionally,
this method helps to decrease electromagnetic emissions from the cable, contributing
to the overall electromagnetic compatibility of the system.

The CAN bus is widely adopted in automotive and industrial networks due to
its robustness to external interference and its ability to maintain signal integrity

42

Figure 4.2: Signal levels in a CAN Bus[15]

under challenging conditions. The design considerations for signal levels, as shown
in the equation and figure, highlight the sophisticated engineering behind the
CAN protocol that enables reliable communication in environments subjected to
significant electrical noise[4, 5].

Connectors and Termination Resistors
The connectors used in the CAN Bus system are standardized to ensure com-

patibility and reliability across different devices and manufacturers. It is essential
to use high-quality and robust connectors to maintain secure physical connections,
which are critical for the uninterrupted operation of the network.

Figure 4.3: CAN bus termination resistors[10]

Termination resistors play a crucial role in the physical layer by preventing signal
reflections at the ends of the transmission medium. A 120-ohm resistor is usually
connected at each end of the CAN network to match the characteristic impedance
of the twisted pair cable. This ensures that signals do not reflect along the cable,
which could cause interference and degrade communication quality[4].

43

Physical Layer Standards
The ISO 11898 standard, which governs the CAN Bus, specifies two different

physical layer options: high-speed CAN (ISO 11898-2) and low-speed, fault-tolerant
CAN (ISO 11898-3). The high-speed variant is designed for systems where rapid
data transmission is essential, supporting speeds up to 1 Mbps. In contrast, the
low-speed, fault-tolerant version is optimized for applications where communication
integrity and fault tolerance are prioritized over transmission speed[4].

Importance of the Physical Layer
The design and implementation of the physical layer are foundational to the over-

all performance and reliability of the CAN Bus system. By specifying the electrical
and physical parameters for data transmission, this layer ensures that the network
can operate effectively under various conditions, providing a reliable communication
backbone for complex electronic systems[4].

4.1.2 CAN Bus Protocols
This section explores the details of CAN message frames, including their structure,
types, and the difference between Standard CAN and Extended CAN frames.

The Structure of a CAN Message
A CAN message frame can be divided into several fields, each of which serves

a specific purpose in the data communication process. The CAN frame structure
comprises several fields: the Start of Frame, the ID Field, the Remote Transmission
Request Field, the Control Field, the Data Field, the CRC field, the Acknowledge
field and the End of Frame. The Arbitration Field, which includes the identifier and
RTR, is crucial for determining the priority of messages on the bus.

• SOF: The Start of Frame is a ”dominant 0” to tell the other nodes that a
CAN node intends to talk

• ID: The ID is the frame identifier - lower values have higher priority

• RTR: The Remote Transmission Request indicates whether a node sends data
or requests dedicated data from another node

• Control: The Control contains the Identifier Extension Bit which is a ”dom-
inant 0” for 11-bit. It also contains the 4 bit Data Length Code that specifies
the length of the data bytes to be transmitted (0 to 8 bytes)

44

• Data: The Data contains the data bytes aka payload, which includes CAN
signals that can be extracted and decoded for information

• CRC: The Cyclic Redundancy Check is used to ensure data integrity

• ACK: The ACK slot indicates if the node has acknowledged and received the
data correctly

• EOF: The EOF marks the end of the CAN frame[13, 5]

Standard CAN vs. Extended CAN
The CAN protocol, central to automotive and industrial communications,

operates under two different specifications: Standard CAN (2.0A) and Extended
CAN (2.0B). These specifications differ primarily in the length of their identifiers,
which has a direct impact on message prioritisation and network capacity.

Standard CAN uses an 11-bit identifier, providing up to 2,048 different
message IDs. This version is widely used in applications where network complexity
is moderate and the number of devices is relatively small[5].

Figure 4.4: The figure shows the structure of a CAN 2.0A (Standard Format) mes-
sage frame, detailing the fields involved in data transmission[20]

45

Extended CAN extends the identifier to 29 bits, significantly increasing the
address space to over 537 million possible message IDs. This extension is designed
for more complex systems with a higher number of nodes, ensuring that each
message can be uniquely identified and prioritised appropriately. Despite the larger
identifier size, Extended CAN maintains compatibility with Standard CAN through
careful design, allowing both message types to coexist on the same network[5].

Figure 4.5: The figure shows the structure of a CAN 2.0B (Extended Format)
message frame, detailing the fields involved in data transmission[20]

CAN Identifier and Arbitration Process
The CAN uses a unique method of message prioritisation and collision resolution

through its identifier and arbitration process. This system is fundamental to CAN’s
efficiency and reliability, particularly in environments where timely data delivery is
crucial, such as automotive and industrial applications[4].

• CAN Identifier (ID): Each message transmitted over a CAN network is
assigned a unique identifier. This identifier is crucial for identifying the mes-
sage’s content and determining its priority on the bus. The identifier is a
standard 11 bits long. The lower the numerical value of the ID, the higher the
priority of the message.

• Priority-Based Messaging: The prioritization mechanism in CAN net-
works is based on the binary value of the message ID. Messages with lower
ID values are given higher priority and are therefore transmitted first. This
system ensures that critical messages, such as those related to vehicle safety
systems, are given precedence over less urgent communications.

• Arbitration Process: The arbitration process is a non-destructive method
used by CAN to manage message collisions. When multiple devices begin
transmitting messages simultaneously, the message with the lower ID value,

46

and therefore higher priority, is granted bus access while the others cease trans-
mission. This process ensures that data is transmitted without any corruption
or loss.

• Role of Recessive and Dominant States: In CAN communication, the
dominant state (logical 0) always overwrites the recessive state (logical 1).
This physical layer property is pivotal during arbitration, as it allows nodes
to passively withdraw when a higher priority message is detected without
affecting the ongoing transmission.

• Collision Resolution: The arbitration mechanism efficiently resolves colli-
sions without the need for retransmission mechanisms typical in other net-
working protocols. This significantly reduces latency and ensures real-time
communication, which is critical in control and monitoring applications[5, 13].

Enhancing CAN Protocol Reliability with Cyclic Redundancy Check
The Cyclic Redundancy Check (CRC) is an essential feature of the CAN

protocol and serves as a powerful tool for detecting errors in transmitted messages.
Within a CAN frame, the CRC field follows the data field and consists of a
predetermined number of bits that are used to calculate a checksum of the frame
contents before transmission. This checksum is recalculated by the receiver to
verify the integrity of the received message. If the calculated CRC matches the
received CRC, the message is considered error-free; otherwise, it indicates that the
message was corrupted during transmission[5].

Data Transmission and Reception
In a CAN network, each node is capable of reading any message sent by any

other node. The key to this capability lies in the CAN bus architecture, which is
based on a broadcast communication mechanism. Here’s how it works:

1. Message Broadcasting: When a node sends a message, it transmits it to
all nodes on the network at the same time. This is done using a differential
signaling method over the two-wire bus, which improves signal reliability even
in noisy environments.

2. Message Detection and Filtering: Each node on the network has filters
that analyze incoming messages to determine their relevance. The filters use
the message identifier, which indicates its priority and type.

47

3. Receiving Messages: When a message is received, it is accepted and pro-
cessed only if its identifier matches the criteria set by the node’s filters. This
ensures that only relevant messages are processed, optimizing network effi-
ciency and reducing processing overhead.

4. Error Handling: The CAN protocol has error detection and handling mech-
anisms. If a node detects an error in a message, it flags the error to all other
nodes. The erroneous message is then discarded, and it may be retransmitted
depending on the system configuration to ensure system reliability[5].

For further information on detecting and managing errors in the CAN bus
network, please see the subsequent section on ’Error Signalling’ below, which
elaborates on the mechanisms and protocols involved in maintaining data integrity
across the network.

Error Signalling
Error signalling in the CAN protocol is a sophisticated mechanism designed to en-

sure the integrity and reliability of data communications across the network. Within
the CAN framework, any participating node can detect errors and immediately sig-
nal them to all other nodes on the network. This is achieved by the transmission of
an Error Frame, which consists of two different fields: the Error Flag and the Error
Delimiter.

The Error Flag is a sequence of six consecutive dominant or recessive bits, de-
pending on the type of error detected, which interrupts the normal flow of data on
the bus and alerts all nodes to the presence of an error. Following the Error Flag,
the Error Delimiter, consisting of eight recessive bits, marks the end of the Error
Frame and the resumption of normal bus activity. When an error is detected, nodes
will automatically attempt to retransmit the erroneous message, ensuring that no
critical information is lost[5].

4.2 Basics of CAN Bus in Automotive Testing
The CAN bus is indispensable in the field of automotive testing, playing a crucial
role in the diagnosis, evaluation and validation of electronic systems in vehicles. Its
robustness and communication efficiency enable a wide range of test applications
critical to ensuring vehicle reliability and performance.

48

4.2.1 Comprehensive Testing Methods for CAN Bus Systems
In order to guarantee the resilience and dependability of CAN bus systems in
automotive applications, a series of comprehensive testing methods are employed.
These methods, which encompass diagnostic testing, performance analysis, and
regression testing, are fundamental for assessing system integrity, performance, and
compatibility with new updates. Each plays a crucial role in identifying potential
issues and optimising system operations to meet the rigorous automotive standards.

Diagnostic Testing
The ability of the CAN bus to provide access to real-time data from ECUs simplifies
diagnostic testing. Testers leverage this capability to execute diagnostic commands
directly to ECUs, retrieving fault codes and monitoring the operational status
of various subsystems. This real-time data acquisition allows for the immediate
identification and analysis of simulated faults or conditions, facilitating rapid
troubleshooting and rectification processes[25].

Performance Analysis
The analysis of CAN traffic provides valuable insights into the performance and
interaction of ECUs across different vehicle systems. Testers can observe how
messages exchanged between ECUs affect the behavior and efficiency of vehicle op-
erations under various conditions, such as acceleration, braking, and environmental
changes. This analysis identifies bottlenecks and inefficiencies in data transmission,
as well as potential areas for optimization in software algorithms and system
integration. The aim is to improve overall vehicle performance by ensuring that
systems such as adaptive cruise control or lane departure warning work together
seamlessly[25].

Regression Testing
As vehicle software continues to evolve for improved functionality and safety, re-
gression testing becomes essential. By monitoring CAN communications, testers can
ensure that updates or newly introduced ECUs integrate seamlessly with existing
systems without causing regression or compatibility issues. This rigorous validation
process is critical to maintaining the integrity of the vehicle’s electronic systems,
ensuring that updates enhance functionality without compromising the vehicle’s es-
tablished operating standards[25].

49

4.2.2 Integration of On-Board Diagnostics in CAN Bus Systems
On-Board Diagnostics (OBD) provides a standardised method for vehicle systems
to conduct self-diagnostics and report issues. OBD’s functionality has expanded be-
yond its initial purpose of monitoring vehicle emissions, now offering comprehensive
diagnostic capabilities that support maintenance and troubleshooting.

The introduction of OBD-II in the mid-1990s was a significant advancement as it
standardised all vehicles sold in the United States. This standardsation enables di-
agnostic tools to interface with any vehicle, regardless of the manufacturer, through
a universal data link connector. The integration of OBD systems with the CAN
bus allows for real-time monitoring and diagnostics of various vehicle subsystems,
enhancing the efficiency and accuracy of identifying malfunctions.

When the OBD system detects a fault, it logs a DTC and may activate the
”Check Engine” light to alert the driver to potential issues. These DTCs can be
accessed through OBD-II scanners, providing technicians with specific insights into
the vehicle’s operational status[23].

In addition to diagnostics,OBD systems play a vital role in communicating with
and controlling vehicle units. The OBD interface allows for flashing of the units,
effectively updating or modifying their software. This functionality is crucial as
it enables on-demand changes to vehicle configurations. Flexibility is crucial for
testing infotainment screens under different configurations, including the activation
of features such as lane assist or adaptive cruise control.

4.2.3 Types of CAN Buses in Vehicles
In the field of automotive design, the Controller Area Network (CAN) bus repre-
sents a fundamental component for inter-device communication within the vehicle.
Various types of CAN buses have been developed to cater to specific functionali-
ties, with the objective of enhancing vehicle performance, safety, and entertainment
features. The major types of CAN buses typically include:

• Powertrain CAN (Antrieb CAN): This bus handles critical functions re-
lated to engine management, transmission control, and other powertrain com-
ponents. Its high-speed operation (up to 1 Mbps) ensures rapid response times
necessary for these vital systems.

• Vehicle Speed CAN (Fahrwerk CAN): Specifically focused on vehicle
dynamics, this bus manages systems such as braking, steering, and suspension.

50

It is crucial for safety and stability control technologies that require real-time
execution.

• Comfort CAN: This type manages systems not critical to the vehicle’s im-
mediate operational safety or performance, such as air conditioning, seat ad-
justment, and lighting. Typically running up to 125 kbps.

• Infotainment CAN: Dedicated to the IVI systems, this bus connects com-
ponents that provide entertainment and information services, such as audio
and video playback, navigation systems, and connectivity modules. It ensures
that data flow for entertainment systems does not interfere with the critical
control buses.

The CAN buses converge at a central unit, designated as the Gateway. This
configuration permits the efficient management of data and a reduction in the net-
work load, as each bus handles only the relevant subsystems. By dividing the buses,
manufacturers can isolate systems in order to prevent failures in one network from
affecting others. This enhances vehicle safety and performance. Furthermore, this
separation allows for simpler troubleshooting and maintenance, as issues can be lo-
calized to specific areas of the vehicle’s network, thereby facilitating diagnostics[49].
An illustrative example of types of CAN buses can be found in subsection 5.2.9.

4.3 Introduction to Tcl Programming
As we begin to explore automated testing for IVI systems, it is important to have the
necessary tools and knowledge. Tool command language (TCL) is a programming
language that stands out for its simplicity, flexibility, and suitability for scripting
automated tests. This chapter, ”Introduction to Tcl Programming,” is dedicated
to explaining the basics of Tcl, starting with an overview of the language. This
section explores the origins, core principles, and unique features of Tcl that make it
an invaluable asset in automated testing. The aim is to build a strong foundation
for subsequent sections, which delve deeper into Tcl programming syntax, data
structures, and practical applications.

4.3.1 Overview of Tcl Language
Tcl, also known as Tool command language, is a dynamic scripting language
that is highly valued for its simplicity, extensibility, and wide applicability across
various domains. Its design concept emphasises ease of use and straightforward

51

syntax, making it an accessible tool for both novice programmers and seasoned
professionals. This overview explores the key attributes, design principles, and
versatility of Tcl that make it an essential tool in software development and
testing[7].

Origins and Evolution
Tcl was developed in the late 1980s by John Ousterhout as an embeddable com-

mand language for applications. Its utility quickly expanded to encompass script
automation, rapid prototyping, and even full-scale application development, thanks
to its companion graphical toolkit, Tk. Over the years, Tcl has evolved to include
advanced features such as network support, enhanced performance mechanisms,
and tools for interfacing with various programming languages and environments[7].

Philosophy and Design Goals
Tcl’s design is based on the principle that code should be easy to write, adapt

and maintain. It achieves this through:

• Simplicity: Tcl’s syntax is intentionally minimalist, avoiding the complexities
that are often present in other scripting languages.

• Flexibility: Tcl scripts can run on multiple platforms without modification,
demonstrating true write-once, run-anywhere capabilities.

• Extensibility: The language may be expanded with extra commands and
libraries that are customized to meet specific project requirements or domains.

Key Features

• Dynamic Typing: Variables in Tcl are not bound to any specific data type,
which enhances the language’s flexibility and simplifies script development.

• Command-Based Structure: Tcl considers nearly all operations as com-
mands, including assigning variables and calling procedures, contributing to
its consistent syntax.

• Powerful String Processing: Due to its string-centric design, Tcl provides
a wide range of tools for string manipulation, making it highly proficient in
handling text-heavy tasks.

• Comprehensive Standard Library: Tcl’s standard library is extensive,
enabling a wide range of scripting activities.

52

The Tcl/Tk Combination
Tk is the standard GUI toolkit for Tcl, enabling developers to design and imple-

ment graphical user interfaces with minimal effort. The combination of Tcl and Tk
enables the development of user-friendly interfaces for test scripts. However, this is
beyond the scope of this paper.

4.3.2 Advantages of Using Tcl for Infotainment System Testing
Tcl is particularly advantageous for scripting automated tests of automotive infotain-
ment systems due to its flexibility, ease of use, and robust integration capabilities.
The following paragraphs will outline the key benefits Tcl brings to infotainment
testing.

1. Ease of Scripting Interactive Tests: Tcl’s straightforward syntax and dy-
namic nature render it an optimal choice for scripting complex interactive tests
that are essential for infotainment systems. These systems, which feature mul-
timedia playback, navigation, and connectivity functions, benefit from Tcl’s
capacity to rapidly script and modify tests for these interactive features.

2. Integration with Infotainment Testing Tools: Tcl is designed to integrate
seamlessly with tools such as CANoe, which is widely used for simulation and
testing in automotive infotainment development. This integration allows for
direct control and testing of infotainment protocols and hardware interfaces
through Tcl scripts, enhancing the thoroughness and efficiency of tests.

3. Rapid Development and Iteration: The capacity to rapidly develop and
modify test cases is of paramount importance in the context of the rapid
evolution of infotainment technology. Tcl’s interpretative execution enables
the implementation of changes without the need for lengthy recompilations,
thus facilitating the acceleration of iteration and adaptation to new testing
scenarios as infotainment systems evolve.

4. Cross-Platform Functionality: The cross-platform nature of Tcl ensures
that testing scripts can be developed and executed across various development
environments without modification, thus facilitating the development of robust
and reliable software. This is particularly advantageous in the context of
infotainment systems, where software may be developed in disparate operating
system environments.

The aforementioned advantages render Tcl a preferred scripting language for au-
tomating the testing of infotainment systems in vehicles. This ensures that these

53

complex systems are thoroughly tested for functionality, reliability, and user expe-
rience.

4.3.3 Programming in Tcl
As mentioned above, Tcl offers a versatile scripting platform for automotive testing,
particularly beneficial in the realm of infotainment systems. The simplicity and
comprehensive functionality of Tcl enable testers to create flexible and dynamic
test scripts in a time-efficient manner. For those engaged in automotive testing,
Tcl offers an accessible yet potent toolset that is well-suited to the complexities of
modern infotainment systems.

For further detailed information on Tcl programming constructs such as syn-
tax, loops, functions, dictionaries, namespaces, lists, and arrays, please refer to the
section A.1. The appendices provide comprehensive guidance and illustrative exam-
ples that demonstrate the effective utilisation of these Tcl features in the context of
automotive infotainment testing. The objective of these resources is to assist both
novice and experienced programmers in fully utilising the potential of Tcl in their
testing frameworks.

54

5 Test Bench

This chapter is devoted to the intricacies of the test bench, a key component of au-
tomotive testing, and provides a comprehensive overview of the equipment, methods
and environments used to test IVI systems.

The test bench is at the heart of automotive testing, serving as a melting pot
where hardware and software components are meticulously evaluated under simu-
lated real-world conditions. This chapter is divided into four distinct sections, each
dedicated to unveiling a facet of the test bench, painting a holistic picture of its
importance, functionality and impact on the development of IVI systems.

Figure 5.1: Test bench for automated testing

55

5.1 Overview of the Test Bench
The test bench is the backbone of today’s approach to validating and ensuring the
optimal performance of IVI systems. Its creation and meticulous design is based on
the need to bridge the gap between theoretical development and real-world appli-
cation. This section aims to explain the overarching framework, the functionalities
and the essential role of the test bench in the life cycle of IVI systems.

The test bench is a combination of advanced hardware and software components
designed to simulate a comprehensive automotive environment. The simulation
is a rigorous testing ground that subjects the infotainment systems to a range of
scenarios, from the mundane to the extreme. It is not a mere facsimile of real-world
conditions. The test bench is designed to replicate the complexities of automotive
operation, including variations in environmental conditions, user interactions, and
vehicle dynamics. It provides a reliable environment for testing.

The test bench concept is both iterative and comprehensive, ensuring that every
component of the infotainment system is scrutinised under a wide range of condi-
tions. This process employs a dual approach, utilizing both manual oversight and
automated testing protocols. The automated aspect is particularly noteworthy, uti-
lizing scripts and scenarios designed to mimic a wide range of user interactions and
system responses. This automation is crucial not only for its efficiency but also
for its ability to consistently replicate test conditions, ensuring the reliability of the
testing outcomes.

Furthermore, the test bench is important in enabling the creation of scalable
and adaptable testing scenarios. This flexibility is crucial due to the rapid evolution
of infotainment technologies and their expanding functionalities. The test bench,
therefore, is not static but evolves in concert with the systems it tests, incorporating
new testing methodologies, hardware upgrades, and software updates to address and
anticipate the needs of emerging technologies.

56

5.2 Hardware Components
The test bench is a crucial element in the ecosystem of IVI testing. It is supported
by a diverse array of hardware components, each playing a specific role in creating
a comprehensive environment for testing infotainment units under conditions that
closely simulate real-world use. This section explores the hardware components
that make up the test bench, highlighting their functionalities and integration into
the testing process. For a visual representation of the interconnections between
these components, please refer to Figure 5.15. Additionally, Figure 5.14 illustrates
the configuration of power supply connections, crucial for understanding the energy
distribution within the test bench.

5.2.1 Windows PC
The Windows PC acts as the central control unit of the test Bench, orchestrating
the execution of test scenarios, data collection, and analysis. It hosts the software
tools and scripts necessary for automated testing, serving as the interface through
which testers can interact with the test bench.

Figure 5.2: High-performance Windows PC[17]

The Windows PC, that is chosen for the test bench, is typically a high-
performance computer with a multi-core processor and ample RAM to handle the
demanding computational tasks associated with automated testing. The choice of
a multi-core processor is dictated by the need to run multiple software tools and
scripts simultaneously without performance degradation. Similarly, sufficient mem-
ory ensures smooth operation when processing large data sets, running complex
simulations or managing multiple applications.

57

The operating system of choice is a version of Windows known for its stability,
security and broad support for automotive test software and hardware interfaces.
This ensures compatibility with a wide range of tools and facilitates easy integration
with other test bench components such as the grabber and CAN case.

The primary function of the Windows PC within the test bench is to act as a
command centre from which tests are initiated, monitored and analysed. It hosts
the test automation software responsible for initiating test sequences, simulating
user input and collecting responses from the infotainment system.

Moreover, the Windows PC often includes tools for remote access and control,
allowing test engineers to monitor and adjust test processes remotely. This
capability is particularly valuable in extended test scenarios or when the test bench
is used across different projects or locations.

5.2.2 Grabber
Digiteq Automotive’s Modular FrameGrabber (MGB) is the European automotive
industry’s in-car video stream capture device. The MGB specialises in capturing
video streams directly from the video interface of infotainment central units and
transferring them via TCP stream over Gigabit Ethernet for analysis. It supports
multiple video formats, including H.264 and Motion JPEG, and can capture screen-
shots in PNG format. It also allows targeted streaming through the Area of Interest
feature, which increases frame rates and reduces baud rates for specific video seg-
ments.

Figure 5.3: Modular FrameGrabber (MGB)[29]

58

5.2.3 CAN Case
The CAN Case by Vector is essential for automotive testing, especially when used
in conjunction with software such as CANoe. It excels at simulating CAN messages,
which is essential for testing the communication and functionality of IVI systems
and other networked components within a vehicle. The ability to simulate CAN
messages allows developers and testers to meticulously evaluate system response
under different scenarios, ensuring robustness and reliability before deployment.

Figure 5.4: Vector CAN Case[14]

5.2.4 Manson Power Supply with Remote Control
The Manson remote power supply is essential for testing, supplying power to vehicle
units and allowing them to be remotely restarted. This feature is critical in providing
the benefit of remote unit management. It also connects to a Windows PC via USB,
allowing software-based automation and control of the power supply’s behaviour,
improving test efficiency and realism.

Figure 5.5: Power supply of Manson company[11]

59

5.2.5 12V Power Supply
The 12V Power Supply is a component of the test bench. Its purpose is to power
devices such as the Grabber, Quido, or LED Bar signalization. Unlike remote-
controlled power supply units, this 12V power source provides a steady and reliable
supply of electricity to support the operation of these critical testing components.
This ensures they function optimally throughout the testing process. Its role is
crucial in maintaining the continuity and efficiency of the testing environment by
providing a stable power foundation for the various devices that are integral to
automotive testing.

Figure 5.6: 12V power supply[44]

5.2.6 PCAN-PCI Express
The PCAN-PCI Express is an interface card that enables a connection between
PCI Express slots in computers and CAN networks. This hardware is crucial for
automotive testing and development, as it allows direct access and communication
with CAN systems within a vehicle from a desktop or workstation. It is especially
beneficial in settings that require reliable data exchange and network diagnostics,
guaranteeing smooth integration and communication with the vehicle’s CAN
network for diagnostic, programming, and testing purposes.

5.2.7 LED Bar Signalisation
The test bench setup includes the LED Bar Signalisation, which uses a simple yet
effective LED strip connected through four wires: Ground, Red(R), Green(G),
and Blue(B). The system employs relays for the Red, Green, and Blue cables,

60

allowing for dynamic color alterations. The apparatus primarily uses a binary color
signaling system. Green indicates that the test bench is available for use, signaling
availability to those unfamiliar with testing routines. In contrast, red alerts indicate
that the test bench is currently in use, and others should avoid interacting with the
system during testing processes.

5.2.8 Two Phones (One Android and One with iOS)
Integrating an Android and an iOS smartphone into the test bench significantly
enhances the testing capabilities for IVI systems. This setup is essential for
evaluating different phone functions, including compatibility and functionality
with SmartLink features such as Android Auto and Apple CarPlay. By using
features from the two main mobile operating systems, testers can ensure that the
infotainment system offers a smooth and user-friendly experience for connecting
and entertaining with a wide range of devices.

5.2.9 Front Panel with All CAN Buses
Our test bench features a fully modular front panel design, distinguished by its use
of standardised D-Sub connectors. This modular approach contrasts sharply with
typical in-car systems that require direct unit connections, offering greater flexibility
for our testing setup.

Figure 5.7: Example of the front panel implemented in a test bench

61

The front panel acts as the central hub for all vehicle unit connections, ac-
commodating various CAN buses like Comfort, Infotainment, and Fahrwerk. For
detailed descriptions of the specific functionalities and components associated with
these CAN buses, see the subsection 4.2.3. This configuration facilitates seamless
plug-and-play connectivity, allowing for comprehensive testing of multiple systems
either concurrently or individually. Key advantages of the test bench are:

• Ease of Rebuilding: The modular nature of the front panel facilitates the
reconfiguration of the test bench for new projects or different vehicles, thereby
ensuring its long-term utility and adaptability.

• Simplified Troubleshooting: Centralized connections enhance accessibility,
easing maintenance and troubleshooting efforts.

• Scalability: Easily accommodates additional modules, facilitating updates
with minimal adjustments.

• Reliability: Standardized connectors minimize wiring errors and reduce hard-
ware risks, enhancing overall test accuracy.

Figure 5.8: Front panel connection design

In summary, the front panel represents a significant enhancement to our test-
ing procedures, streamlining the setup processes and enabling efficient and flexible
testing across a range of vehicle systems.

5.2.10 Quido by Papouch
Papouch’s Quido, while not exclusively designed for automotive applications, has
been effectively adapted for use in automotive test environments within our test
bench configuration. As a versatile relay board, Quido allows precise control of the
power supply to various vehicle units such as the Gateway and BCM. This control
is critical as it allows power to be selectively switched off or on as required during
test sequences.

62

In addition to managing the power supplies, Quido also facilitates the control
of LED signalling, which is used to indicate the status of the test bench visually.
Its functionality also extends to enabling remote restart of units such as the info-
tainment system, improving test efficiency by reducing the need for direct manual
intervention. Quido is also used to manage the ventilation system within the test
bay, ensuring that equipment is maintained at optimum operating temperatures.

Figure 5.9: Quido ETH 2/16: 2 inputs, 16 outputs and thermometer[24]

5.2.11 UPS
The Uninterruptible Power Supply is a crucial element of the test bench, providing
backup power during short-term outages. It guarantees that the entire test bench,
including vital testing processes and equipment, remains operational for 6-9 minutes
without external power. This capability is essential for maintaining testing conti-
nuity and safeguarding against data loss or equipment malfunction due to sudden
power interruptions.

Figure 5.10: Uninterruptible power supply (UPS)[36]

63

5.2.12 Vehicle Units
Infotainment Unit
The Infotainment Unit is the central hub of the in-vehicle digital experience,

combining entertainment and information for both the driver and passengers. It is
a multifaceted system that includes navigation, media playback, and connectivity
features such as smartphone integration and internet access. This unit not only
enhances the driving experience through multimedia and navigation, but also plays
a crucial role in vehicle safety and diagnostics by displaying vital information and
alerts. The integration and testing of the system within the vehicle ecosystem are
crucial for ensuring functionality, user interface usability, and overall customer sat-
isfaction.

Figure 5.11: Škoda Enyaq infotainment unit[3]

Infotainment Display (ABT)
The ABT (Anzeigebedienteil), which stands for Display Control Unit, is a central

component of the vehicle’s infotainment system. It enables users to interact with
various infotainment features through touch, providing control over navigation, me-
dia, connectivity, and more. This touch interface improves the user experience by
providing an intuitive way to access the infotainment systems’ extensive function-
alities.

Figure 5.12: Škoda Enyaq 13” ABT[2]

64

Gateway Unit
The Gateway unit in a vehicle serves as a crucial network hub, enabling commu-

nication and data exchange between different ECUs across various vehicular subsys-
tems. It guarantees the smooth operation of the vehicle’s complex networks, such
as CAN, LIN, and others. The Gateway unit is a crucial component in modern au-
tomotive architecture as it manages the flow of information, ensuring the vehicle’s
overall performance, safety systems, and infotainment functionality. Its importance
cannot be overstated.

Figure 5.13: Škoda Enyaq Gateway unit[12]

5.3 Software Components
The section on Software Components discusses the tools and technologies necessary
for automated testing of IVI systems. These components are crucial for testing
methodologies that guarantee the functionality, reliability, and performance of
infotainment systems.

5.3.1 CANoe
The CANoe software is crucial for simulating other units in automotive testing
environments. Testers can use CANoe to ensure that all potential screens and
functionalities are accessible, avoiding the scenario where certain features might
be unavailable or missing on the screen due to the absence of real ECUs. This
simulation capability is crucial for comprehensive testing and verification of IVI
systems and their interactions within the networked automotive ecosystem.

65

5.3.2 Grimr
Grimr, created by Digiteq Automotive, is a sophisticated tool that translates data
captured by the Grabber into visual content on a PC. This feature greatly assists
in the detailed evaluation of infotainment systems, enabling testers to interact
remotely as if they were physically present. Grimr has proven to be a valuable
asset in the testing process over the years, enhancing the depth and scope of testing
methodologies.

5.3.3 TestAut2
TestAut2, also developed by Digiteq Automotive, is the main software suite used to
manage the test process within vehicle infotainment systems. This tool is tailored to
the specific internal needs of Digiteq Automotive. Unlike generic testing solutions,
TestAut2 allows users to initiate testing in selected contexts or projects, providing
a tailored approach to meet specific testing requirements.

One of the outstanding features of TestAut2 is its ability to compile and present
comprehensive test results. This functionality is critical for evaluating the reliability
of the system under test and is essential for detailed documentation and evaluation
processes.

For more information on how TestAut2 is integrated and used in the test setup,
see section 6.2

5.3.4 Git Extensions
As a distributed version control system, Git allows multiple developers to work on
the same project without interfering with each other’s work. Git Extensions builds
on this capability by providing an easy-to-use interface that makes it easier for team
members to share changes, track project history and collaborate efficiently.

Backing up code is critical in software development to prevent data loss due
to unforeseen circumstances. Git Extensions makes this easier by automating the
backup process. Every commit serves as a backup point, allowing developers to
revert to previous versions if necessary.

Conflicts are inevitable in collaborative development environments, especially
when multiple developers are making changes to the same code base. Git Extensions
provide powerful conflict resolution tools, making it easier to identify and resolve
conflicts.

66

5.4 System Architecture of Test Bench
The diagram below illustrates the power connection scheme for a test bench setup
used in the testing of IVI systems. The configuration shows a 220V power source
connected to an UPS, which stabilises the power and provides backup in case of
outages. Two distinct power supply units are illustrated: a 12V power supply that
energises the Grabber and Quido, and a 14V power supply with remote control
that supplies the infotainment display, Gateway Unit, and Infotainment Unit. This
configuration ensures that all components receive a stable and controlled power
supply, which is essential for the reliable operation of the test bench.

Figure 5.14: Diagram of the power source of the test bench components

The second diagram below illustrates the hardware connection schematic, which
depicts the configuration of a test bench. It provides a detailed overview of the
interconnection between the various hardware components.

The third and final diagram illustrates the workflow of a software testing setup,
demonstrating the interaction between Tcl scripts, CANoe simulation, and the
infotainment unit. A Grabber device captures the display, with Grimr software
analysing the output, all under the coordination of the TestAut2 system.

67

Figure 5.15: Hardware connection schematic

Figure 5.16: Software connection diagram

68

6 Implementation

This chapter is devoted to the practical implementation of automated testing frame-
works for IVI systems, with a particular focus on the Škoda Enyaq, which is based
on the Volkswagen Group’s MEB (Modularen Elektrifizierungsbaukasten) platform
and is designed exclusively for electric vehicles.

Due to confidentiality agreements, we will be focusing our detailed exploration on
the already released and serially produced version of the Enyaq, which is associated
with the project ICAS3, known internally as the F327. The latest iteration of
this platform, known as ICAS3GP, is still under development and is covered by a
non-disclosure agreement, so we will not be discussing it in this thesis.

This chapter aims to provide a comprehensive overview of the older generation
MEB platform through practical examples and methodological insights into the
automated test processes used in these systems.

6.1 Understanding Code Structure
To develop and maintain a scalable and efficient automated testing framework for
IVI systems, a well-organized code hierarchy is necessary. The HMI library serves
as the foundation of our testing scripts, incorporating a graded hierarchy of loss of
functionality tailored to accommodate the diversity inherent in infotainment sys-
tems across different projects and platforms. This hierarchy ensures that code is
modularized and reusable, enabling streamlined updates and customizations across
various infotainment system versions.

The code hierarchy within the HMI library is structured into four primary
subdivisions, each representing a layer of specificity in the functionality of the info-
tainment systems.

Figure 6.1: The code hierarchy within the HMI library

69

Common Functions (COMMON_FUNC.tcl)
At the top of the hierarchy, common functions are universally applicable across

all infotainment systems, regardless of the model or configuration. These functions
leverage the standardization within hardware components and communication pro-
tocols to provide foundational capabilities. Examples of such functions include:

• proc SendCanMsg {msg {msgDelay 20}}: Utilizes the standardized CAN
protocol to send messages, reflecting the protocol’s universal applicability
across automotive systems.

• proc SetColorLEDBar {color}: A function to change the color of the LED
bar, exploiting the uniform hardware connection of LED strips across all test
benches.

Skin Style Functions
In project F327, the Skin Style layer was not included in the infotainment sys-

tem’s architecture, as it was specifically utilised for Enyaq models on the MEB
platform during that period. This layer was designed to meet unique design require-
ments that were not applicable to the F327 project.

It is important to note the recent shift in the VW Group’s strategy towards
standardising infotainment systems. In the present era, a unified infotainment
platform, including the Skin Style layer, is being implemented across various
vehicle platforms with the objective of streamlining the user experience and
system maintenance. This represents a significant departure from the past
practices observed during the F327 project, where a unified approach was
not necessary. This historical insight helps contextualise the project’s decisions
within the broader technological advancements in automotive infotainment systems.

Platform Functions
This layer focuses on the chassis platforms and tailors functions to the techni-

cal and architectural diversity of different vehicle platforms. It acknowledges that
variations in hardware and system architecture across platforms can affect how in-
fotainment functions are executed and tested.

70

ABT (Display Size)
This layer is centered around the physical sizes of the display units within the

vehicles. Functions here are designed with awareness of how display dimensions
can influence user interface elements, such as the extent and manner of scrolling
actions required to navigate the system.

Skin (Regional or Functional Variations)
The lowest level of the hierarchy deals with regional variations, such as left-hand

drive (LHD) versus right-hand drive (RHD), or specific functional adaptations, such
as language-specific skins. To illustrate, the ARAB skin caters to Arabic-speaking
users by adjusting the user interface to accommodate right-to-left reading, thereby
ensuring usability and intuitive navigation. These adaptations enhance both the
comfort and safety of users by aligning the system’s functionality with local driving
styles and linguistic norms. An example of a skin-specific function is:

• proc ScrollUpOnePage{{ctx 'DEF'}}: This function depends on the ABT
size and skin configuration, accounting for the pixel dimensions of a page and
the positioning of scroll bars relative to the vehicle’s drive orientation.

Figure 6.2: Example of code hierarchy for F327 project (Enyaq)

71

6.1.1 Implementation Strategy
The use of hierarchical organization enables a layered approach to the development
and maintenance of test scripts. This is achieved by segmenting functions according
to their applicability and specificity, allowing for:

• Maximize Code Reusability: Using common functions provides a shared
toolkit that can be leveraged across all testing scenarios, minimising the need
for duplication.

• Enhance Maintainability: Updates to universal features or protocols can
be implemented in the common functions layer, automatically propagating
across all tests.

• Streamline Customization: The subdivision-specific layers allow for tar-
geted customization of test scripts, accommodating the unique aspects of dif-
ferent infotainment systems with minimal impact on the overall codebase.

• Improve Test Precision: By taking into account the specificities at each
level of the hierarchy, test scripts can more accurately reflect the real-world
operation and user interaction scenarios of each infotainment system version.

The hierarchical grading system in the HMI library demonstrates a strategic
approach to managing the complexity and diversity of automated testing for IVI
systems. This structured framework enhances the adaptability, efficiency, and ac-
curacy of the testing process, enabling it to keep pace with the rapid evolution and
diversification of infotainment technologies in the automotive industry.

72

6.2 Test Environment Setup
The establishment of a comprehensive test environment is of paramount importance
for the validation of IVI systems. The TestAut2 software provides a robust platform
for this purpose, enabling testers to select specific projects and types of tests to run.

Figure 6.3: Interface of TestAut2

Selecting the Project
The process commences with the selection of an appropriate project from a drop-

down menu located in the top left corner of the interface. This drop-down menu
contains all available projects, thereby ensuring that testers can readily identify and
select the project most pertinent to their testing objectives.

73

Preparing the Infotainment System
Before running tests, it is essential to ensure that the infotainment system is

prepared in the correct state. This involves a series of initialization functions,
such as sourcing the latest function versions, setting the appropriate voltage, and
defining platform variables contingent on the selected project. This step is crucial
as it lays the groundwork for reliable and consistent test results.

Choosing Test Contexts
The left panel of the TestAut software presents a series of pre-defined sets of

tests, categorised into two primary folders: HMI_FULL and HMI_DEVELOPMENT.
The HMI_FULL folder encompasses all context areas, with TestCases grouped

according to the infotainment area they assess. For instance, parking-related screens
are grouped under a specific context, as are the vehicle appearance screens (referred
to as skin0). This organisation facilitates the generation of clear reports and the
streamlining of the setup of separate testing environments.

The HMI_DEVELOPMENT folder contains the ”Simple test” section, which enables
the validation of TestCases during the development phase. This acts as a sandbox
for testers, allowing them to ensure that everything functions correctly before
proceeding to full-scale testing. The ”Showoff” subfolder provides a suite of
TestCases tailored for demonstrating the infotainment system’s capabilities, which
is particularly useful for presentations to stakeholders, such as management.

Timing and Execution
The TestAut interface is characterised by a timer that displays both the current

time and the accumulated test time. This feature is of particular benefit to testers,
as it allows them to manage their testing schedules and provides an estimate of the
duration taken to run a particular set of tests.

74

6.3 Writing and Preparation of Test Scenarios
The quality of IVI depends heavily on thorough testing procedures. To ensure this,
meticulously crafted test scenarios that are robust, repeatable, and reflective of the
myriad of real-world situations that drivers and passengers encounter are paramount.

6.3.1 Test Scenario Structure
In the domain of automated testing for IVI systems, structuring test scenarios
involves defining the parameters within a TestCase. The template structure of a
TC serves as the blueprint, guiding the testing of specific functionalities within the
IVI.

Defining a TestCase
A TestCase is a fundamental unit in test automation that encapsulates the

conditions under which a test is conducted and the expected result. In the context
of IVI systems, the TestCase template comprises several key parameters:

Table 6.1: TestCase parameters description

Parameter Description
context The context to which the tested screen belongs and will be executed
area A screen snippet that is conceptually relevant to the TC
mode The mode in which we want to record the screen (e.g. classic, scroll)
screenName The identifier of the screen to be tested, as it is named in the model
refVersion The reference version of the screen
endCondition The end condition for which the screenshot is to be taken

• path: Denotes the sequence of steps necessary to navigate to the target screen
within the infotainment system.

• prepare: Encompasses actions required to bring the system into the desired
state before capturing the screen.

• cleanUp: Outlines the steps to revert the system back to a baseline state,
ensuring consistency for subsequent TestCases.

75

To begin the execution process, navigate to the relevant screen (screenName)
using the specified path. Once on the correct screen, initiate the prepare phase to
configure the necessary settings or inputs. After the test execution, the cleanUp
phase ensures that the system is restored to a default state for consistent appearance
and behavior for future TestCases.

Example of a TestCase
This TestCase is designed to assess the functionality of the headlight controls

via the infotainment system’s graphical user interface. It ensures that users can
effectively operate the headlights using the touchscreen controls provided by the
infotainment system.

1 # Verify that the GUI of headlight controls are functional within the
infotainment system

2 dict set views CARSETUP_HD_LIGHT_OFF context "car"
3 dict set views CARSETUP_HD_LIGHT_OFF area "SCREEN_INSIDE"
4 dict set views CARSETUP_HD_LIGHT_OFF mode "scroll"
5 dict set views CARSETUP_HD_LIGHT_OFF screenName "CARSETUP_HD_LIGHT"
6 dict set views CARSETUP_HD_LIGHT_OFF refVersion "H42.100.0"
7 dict set views CARSETUP_HD_LIGHT_OFF path {
8 {CANOE::RunCANoeMacro "LightExteriorOn"}
9 {HMI::EnterStageArea "CAR"}

10 {HMI::EnterTab 1}
11 {HMI::TextClick "ROW_0" "Exterior" 28 80}
12 {HMI::SwipeSeekText "SCREEN_INSIDE" "Headlights" 28 "RIGHT"}
13 {HMI::TextClick "SCREEN_INSIDE" "Headlights" 28}
14 }
15 dict set views CARSETUP_HD_LIGHT_OFF prepare {
16 {HMI::CheckBoxSetScrollAll "OFF"}
17 }
18 dict set views CARSETUP_HD_LIGHT_OFF cleanUp {
19 {CANOE::RunCANoeMacro "LightExteriorOff"}
20 }

Listing 6.1: Testing the GUI of the headlight controls on the IVI’s touchscreen

76

6.4 Setting Up the Screen
The stage of ’Setting Up the Screen’ represents a pivotal step in the test execution
phase for IVI systems. It involves navigating through the interface of the Škoda
Enyaq, and configuring various elements, including dropdowns, sliders, and check-
boxes, to their required states for testing. This section will elucidate the structured
approach to accessing and preparing the screen within the infotainment system, as
per the TestCase requirements set out in the subsection 6.3.1.

Accessing the Screen
In order to access the screen, or ”path” in a TestCase, a sequence of function

calls must be executed. These direct the system from the home screen to the
target screen. Each function must be meticulously designed to interact with the
infotainment system’s interface. This is to ensure that the test can navigate
through the menus and options without human intervention.

Preparing the Screen
Once the desired screen has been accessed, the next step is to bring it into the

requested state, which is termed ”prepare”. For instance, if a dropdown menu needs
to be set to its first or last item, a function will execute this specific command.
Similarly, sliders are adjusted to their values, and checkboxes are toggled on or
off, depending on the test scenario. The preparation of the screen ensures that the
initial conditions of the test are met prior to the commencement of the actual testing.

The detailed steps for each action, including the underlying Tcl scripting for
”path”, ”prepare” and ”cleanUp” sequences, will be illustrated with examples. The
functions that select items based on index position will be discussed in relation to
dropdowns. Functions that set values using absolute positions will be the focus of
the discussion in relation to sliders. The toggle functions will be discussed in relation
to checkboxes, ensuring that they reflect the expected states.

Images of the Škoda Enyaq’s infotainment system, which illustrate elements such
as dropdown menus, sliders, and checkboxes, will be provided to supplement the ex-
planations, thus facilitating a visual understanding of the configurations. Correctly
setting up the screen is a prerequisite that can have a significant impact on the out-
come of subsequent tests. Therefore, it is essential to pay close attention to detail
and to have a comprehensive understanding of the capabilities of the HMI library
when setting up the screen effectively.

77

6.4.1 Click Functions
The ability to click is a fundamental aspect of GUI testing in automated infotain-
ment systems. It enables testers to simulate user interactions with the touchscreen
interface. This section provides an overview of various click functions and discusses
their implementations and usage in the context of sending CAN messages to
replicate touch inputs.

Basic Click Function: ClickAt
The ’ClickAt’ function represents the fundamental method employed to simulate

pressing actions at specific coordinates on the infotainment display. It operates
by generating two CAN messages: one for the ”Press” action and another for the
”Release” action. The process involves a straightforward mathematical conversion
where x and y coordinates are translated into CAN messages directly associated
with the touch points on the screen.

Although ’ClickAt’ provides the fundamental functionality for a click operation,
it is not the most robust method for interacting with GUI elements. This is because
it requires exact coordinates as inputs and does not account for dynamic content or
changes in element positions.

Advanced Click Functions: TextClick and ImgClick
To enhance the reliability of click operations, functions such as ’TextClick’ and

’ImgClick’ are employed. These functions improve upon ’ClickAt’ by incorporating
a search mechanism to automatically locate the elements on the screen.

• TextClick: This function searches for a text element on the screen. Once
found, it retrieves the coordinates of this text and calls ’ClickAt’ to perform
the click action at the appropriate location.

• ImgClick: Similar to ’TextClick’, but it searches for an image element. After
locating the image, it uses its coordinates to simulate a click.

These functions are particularly useful in scenarios where the positions of
elements might change or when exact coordinates are not known beforehand.
In order to test elements on scrollable screens, it is necessary to utilise the
’TextClickInList’ and ’ImgClickInList’ functions, which have been designed to
handle dynamic content that may not be visible in the initial viewport.

78

6.4.2 Checkbox Controls
Checkbox controls represent an essential component of IVI system interfaces, en-
abling users to toggle settings on or off with a simple touch interaction. In the
context of automated GUI testing, it is imperative to test the functionality and
state accuracy of Checkbox controls. This section will discuss the functions of
’CheckBoxSetAll’ and ’CheckBoxSetScrollAll’ and their role in automating the
testing process.

Checkbox controls provide a visual and interactive method for users to make
binary choices in the infotainment system. The Checkbox typically displays two
distinct visual states:

• OFF State: Usually represented by an empty box or an icon with a contrast-
ing background indicating that a particular feature or setting is disabled.

• ON State: Indicated by a filled-in box or highlighted icon, signaling that the
feature or setting is active.

Figure 6.4: Illustration of the ’OFF’ and ’ON’ status of checkboxes

The transition from the OFF to the ON state (or vice versa) is accompanied by a
visual cue, such as a checkmark or a colour change, and, in some cases, an auditory
feedback to confirm the action.

Figure 6.5: Displaying the transition states of checkboxes for system preferences

The implementation of these functions involves the identification of checkbox
controls within the GUI through visual representation and the determination of
their current state. In the event that a checkbox is in the OFF state and the
target state is ON, the function initiates a click event at the checkbox’s coordinates,

79

effectively toggling it to the ON state. Conversely, the reverse is done for the setting
of checkboxes to OFF.

6.4.3 Dropdown Controls
Dropdown controls offer a user-friendly interface for selecting from a list of options.
These controls are crucial for settings that offer multiple selections, where the user
must pick one. This element typically displays a default selection and, when inter-
acted with, presents a list of options for the user to choose from. The user’s choice
can trigger various behaviours in the system, from changing settings to commanding
actions.

Figure 6.6: View of the dropdown control in the Enyaq infotainment system

Automated testing of dropdown items requires functions that can navigate and
interact with the dropdown list. This includes selecting specific items, whether it’s
the first, last or any other item in the list. The ’DropDownSet’, ’DropDownSetAll’
and ’DropDownSetScrollAll’ functions facilitate this process.

The DropDownSet functions typically work by first triggering the dropdown to
expand and display its options. They then identify the desired choice, either by
index or text, and simulate a click event to make the selection.

Figure 6.7: Expanded view of the Speed Alert settings dropdown

80

6.4.4 Slider Controls
Slider controls represent a versatile class of user interface elements that permit users
to adjust values within a predefined range. They are frequently employed in IVI
systems for the purpose of modifying settings such as volume adjustment or setting
alert thresholds. Sliders can be oriented horizontally or vertically and are typically
employed to represent a value. They provide a rapid and intuitive method for users
to input values, rendering them a user-friendly option for adjusting settings such as
sound volume or system preferences.

In the context of automated testing, the functionality of a slider is tested by
identifying its ends and calculating its range. This process typically involves the
following steps:

1. Detection: The test script searches for the ’minus’ and ’plus’ symbols that
denote the ends of the slider. These symbols represent the minimum and
maximum values, respectively.

2. Calculation: Once detected, the script calculates the length of the slider
track between the ’minus’ and ’plus’ symbols.

3. Position Setting: Subsequently, the script calculates the coordinates for the
minimum, midpoint, and maximum positions on the slider track.

4. Interaction: Finally, the script simulates click events at the calculated coor-
dinates to set the slider to minimum, midpoint, and maximum values.

Figure 6.8: Audio settings slider controls

81

It is important to note that in automated testing scripts, sliders are often set
to only their minimum, midpoint, or maximum values due to the complexity in-
volved in setting arbitrary values. This approach provides a reasonable assurance
of functionality across the slider’s range.

6.5 Screen Capture
Once the screen has been configured in accordance with the requisite specifications,
the subsequent crucial stage in the assessment of the new HMI version is the screen
capture process. This entails the precise imaging of the display in order to analyse
the layout and functionality under a range of conditions. Screen capture is not
merely a recording of the content displayed on the screen; it is also about capturing
the interface in a manner that reflects how end-users will interact with the system.

This section will examine the various techniques and tools employed for screen
capture. The process of screen splitting will be discussed, which allows the user to
isolate and capture specific areas of interest on the screen. This is particularly useful
for focusing on elements that require detailed evaluation or are critical to the user
experience.

Additionally, the different modes in which screens can be captured will be
explored. These modes are designed to accommodate various scenarios, such as
scrolling, which is necessary when the content extends beyond the visible screen
area. They also allow for the capture of screens during different states, such as
loading sequences or when dropdown menus are active. It is, therefore, essential to
understand these modes in order to ensure that all dynamic and static elements of
the HMI are accurately documented.

82

6.5.1 Screen Splitting
Screen splitting is a strategy employed in automated testing that focuses on
the examination of specific areas within an infotainment display. This targeted
approach enables testers to concentrate on discrete components of the interface,
streamlining the setup process and reducing complexity. It eliminates the need to
account for visual settings beyond the area of interest, enhancing testing efficiency.

Key Areas:

• DISPLAY: Represents the entire screen.

• SCREEN_INSIDE: Refers to the central section of the display where main in-
teractions occur.

• MAINBAR: The bottom bar area, often containing navigation or system controls.

• TABBAR: The section dedicated to tab navigation, crucial for functionality but
isolated for focused testing.

• SCREEN_LIST: A modified SCREEN_INSIDE where the TABBAR is absent, thus
the central screen is wider.

• PopUp Areas: Targeted regions intended for popup dialog testing.

• Homescreen Tiles: Specific tiles on the homescreen can be isolated to test
individual features or alerts.

The utilisation of screen splitting enables testers to automate the capture
and analysis of designated regions, such as the TABBAR, without the distraction
of surrounding elements. This approach is particularly beneficial for regression
testing, where changes in one area should not affect the overall interface.

The Figure 6.9 exemplifies the MAINBAR (red), TABBAR (green), and
SCREEN_INSIDE (orange) areas in the context of a ’Vehicle status’ screen. The
MAINBAR spans horizontally at the bottom, the TABBAR is situated above it, and the
SCREEN_INSIDE covers the central display section showcasing the vehicle’s illustra-
tion and status information.

83

Figure 6.9: Infotainment display segmentation

The Figure 6.10 illustrates the concept of capturing only a single homescreen tile,
highlighted in green, concerning ’Driving data’. It demonstrates how, in a report,
only this specific part of the screen would be reported, focusing solely on the content
within the green frame. This would be used for testing elements such as efficiency,
speed, or mileage data, without regard to adjacent areas.

Figure 6.10: Focused testing of the driving data homescreen tile

The two images serve as visual aids in understanding how screen splitting can
be used to enhance the efficiency and accuracy of automated testing for IVI sys-
tems. The focused areas are highlighted to denote the regions of interest during
the automated testing process, thereby providing clarity and precision in the testing
results.

84

6.5.2 Capturing Modes
Automated testing of infotainment systems employs a variety of capturing modes
with the objective of enhancing the efficiency and thoroughness of the validation
process. These modes are designed to enable testers to effectively record the state
of the infotainment system under a range of conditions. By utilising these specific
capturing modes, testers can focus on particular elements within the system’s inter-
face, ensure consistency in repeated tests, and trigger certain conditions that might
not be easily observable during manual testing.

To facilitate comprehension and utilisation of these capturing modes, a compre-
hensive table is provided below. The table outlines each mode, describes its primary
function, and notes any specific conditions or parameters that are relevant to the
mode. This organised representation allows testers to quickly reference and select
the most appropriate capturing mode for their current testing requirements, thus
facilitating a streamlined and targeted testing process.

Table 6.2: Overview of capturing modes

Mode Description
Classic Captures a single image, cropping based on ’area’.
Classic+Drop Captures as classic, including all expanded dropdowns.
Scroll Captures the entire scrollable list, with a maximum of

25 images.
Scroll+Drop Like scroll, but includes expanded dropdowns.
SideScroll Captures while horizontally scrolling, with various ’end-

Condition’ options, up to 25 images.
TabBar Captures all tab bar positions.
TabBarPress Captures all tab bar positions in a pressed state.
ScrollPress Captures scrollable screens with touches on each line.
ClassicPress Captures screen with elements in pressed state as spec-

ified by ’endCondition’.
PopUp Like classic, retains the popup after ”path” execution

with direct popup name.
PopUpPress Like classicPress, but maintains the popup post ”path”

execution.

85

6.5.3 Understanding the ’endCondition’ Parameter
The ’endCondition’ parameter plays a pivotal role in the process of automated
screen capturing, functioning as a dynamic criterion that determines when a screen
should be captured. It is the defining condition that guides the automated system
in determining the precise moment to take a snapshot of the infotainment screen
during testing.

1. Cursor: This condition is used when screens have a blinking cursor. Multiple
snapshots are taken during the test, and the one with the active (visible)
cursor is saved.

2. Loading: Applicable to screens with a rotating ”loading” indicator. The con-
dition involves capturing several images, comparing the quantity of identically
colored (green) pixels, and saving the one with the highest count (indicating
the largest segment of the loading icon).

3. Animation: Used for screens with changing animations. The capture process
involves taking several images during the animation sequence and comparing
each with a reference image to determine the optimal snapshot to save. This
ensures that the captured screen reflects the expected state of the animation
at a specific point in time.

4. Numerical Value (e.g., 5): Useful for ’scroll’ and ’sidescroll’ modes, it
signifies the capture of a specified number of screens.

5. String: When ’endCondition’ is a string, the capture continues until a spe-
cific text is found on the screen.

1 dict set views SYSTEM_UPDATES endCondition {"loading"}

Listing 6.2: Implementation example for endCondition

The ’endCondition’ parameter plays a pivotal role in the fine-tuning of the
automated testing process, enabling the precise capture of interactive elements and
dynamic content within infotainment systems.

86

6.6 Comparison of New Images with Reference and
Detection of Differences

This section outlines an automated comparative analysis framework that leverages
image recognition to validate HMI graphics against predefined standards. The cor-
nerstone of this framework is the establishment of a reference image, which serves
as the benchmark for graphical fidelity. This image is thoroughly vetted by testers
and confirmed to align with graphical specifications. The reference image encap-
sulates the desired appearance of the HMI, including iconography, text placement,
and colour schemes.

The system automatically compares the reference image with newly captured
screens from the latest HMI or software versions on a weekly basis. Employing
ImageMagick software, the comparison is executed, scanning for deviations pixel by
pixel. This rigorous check ensures any alterations, whether intentional or inadver-
tent, are identified and assessed. For an in-depth discussion on the functionalities
and applications of ImageMagick in automated testing, see section A.2.

The output of this comparison is a color-coded report reflecting the degree of
similarity between the tested image and the reference:

• Green: Denotes an exact match, signifying no discernible difference from the
reference image.

Figure 6.11: Exact match verification: Green indicates identical screens

• Yellow: Represents a minor discrepancy with less than 1% pixel difference
detected.

Figure 6.12: Minor discrepancy detected: Yellow for under 1% pixel difference

87

• Red: Signals a significant difference exceeding 1% pixel variation.

Figure 6.13: Significant variation: Red for over 1% pixel difference

• Blue: Indicates the absence of a reference image, prompting a manual check
to establish a new standard if the screen meets quality criteria.

Figure 6.14: Manual review required: Blue when reference is missing

In addition to the aforementioned primary indicators, the framework also identi-
fies error states, which may arise from syntax errors in the TestCases or unexpected
test duration, leading to an automatic termination. These error states are high-
lighted distinctly to alert testers to anomalies that could affect the testing process.

Figure 6.15: Error indication: Highlighted when a test issue occurs

The implementation of this image comparison framework enables a systematic
and efficient approach to HMI graphic verification. It reduces the potential for
human error, standardises quality control, and ensures consistency across software
updates. By facilitating the quick identification of discrepancies and errors, it sup-
ports developers in maintaining the high standards expected in modern IVI systems.

88

6.6.1 Case Study: Detecting and Analyzing Interface Discrep-
ancies in HMI Updates

In the ongoing evolution of IVI systems, each software update may result in
intended enhancements as well as unintended discrepancies. The following case
study illustrates the process of identifying and evaluating changes within the GUI
to distinguish deliberate modifications from potential bugs.

Reference Image Analysis
The reference image serves as a standard for graphical accuracy in the HMI

interface. In this case, the reference image is that of a phone dial screen within
the infotainment system. It features a clear and user-friendly layout with essential
functions like number input and quick access to emergency and voicemail services.

Analysis of Recent HMI Update
In the revised version of the HMI, the new image displays a modification to the

voicemail label, which now reads as ”Voicemail” in place of the original ”Mailbox”
text. This change, while seemingly minor, represents a graphic update that must
be verified to ensure it aligns with the intended design revisions. The rest of the
dial interface remains unchanged, maintaining the integrity of the design and user
interaction experience.

Differential Analysis
The differential image highlights the specific area of change between the reference

and the new image. Utilizing red to indicate discrepancies, the altered ”Voicemail”
label is distinctly marked, contrasting against the unaltered elements which blend
seamlessly with the reference background.

89

Figure 6.16: Reference image

Figure 6.17: Image of new HMI update

Figure 6.18: Differential image

Upon the detection of a variation, the subsequent crucial stage is verification.
This process entails consulting the change logs, design documents or communicating
with the design and development teams to ascertain whether the modification was
intentional. Only through this thorough examination can a change be validated or
flagged for correction.

90

6.6.2 Case Study: Identifying and Resolving Interface Bugs in
HMI Updates

The current case study examines the detection of a significant interface bug, which
deviates from the established HMI design guidelines and functional expectations.

Reference Image Analysis
The standard interface layout for radio settings is presented in the reference

image. It comprises a well-structured arrangement of clearly defined options, each
accompanied by a standardised checkbox. This design consistency is of critical
importance for both aesthetic appeal and user interaction.

Figure 6.19: Reference image

Analysis of Recent HMI Update
Upon examination of the latest iteration of the HMI, an anomalous row is im-

mediately apparent. This comprises an additional setting with an unconventional
checkbox, devoid of any corresponding title. This irregularity deviates from the es-
tablished design language of the interface, suggesting the possibility of an oversight
or bug rather than an intended update.

Figure 6.20: Image of new HMI update

91

Differential Analysis
The differential image is stark, with the unlabelled row and non-standard check-

box vividly contrasted against the standard backdrop. This visual cue is crucial
for developers and testers alike, as it draws attention to specific areas requiring
immediate remediation.

Figure 6.21: Differential image

Upon identifying this deviation as a bug, the subsequent step is to document
and report it to the skinning team. By providing a detailed report, it is possible to
implement targeted corrections, ensuring that the interface adheres to the project’s
standards and maintains the continuity of the user experience.

This case study serves as an example of proactive bug detection and resolution
in the ongoing refinement of IVI systems. This case study illustrates the necessity
for a meticulous approach to interface verification post-updates, assuring that any
anomalies are swiftly identified and resolved.

92

6.7 Final Report on Automated Infotainment
System Testing

The final report represents the culmination of an automated testing session for
an infotainment system. It is a comprehensive and visually organised document
that articulates the status and graphical representation of the system’s interface.
This final report is not merely a collection of data; it is a synthesised presentation
of results, offering clear insights into the aesthetics of the infotainment system’s
GUI. The report typically commences with a graphical summary, which provides an
overview of the test outcomes in a concise manner. As illustrated in the provided
images, this encompasses a count of various test result categories, including:

• Number of TestCases (TCs)

• Total screens captured

• Summary of tests passed, failed, or with errors

Figure 6.22: An example of the numerical result of one of the tests report

This graphical representation enables stakeholders to rapidly assess the efficacy
of the testing process and identify areas in need of attention. It constitutes a funda-
mental component of the report, frequently presented in HTML format to integrate
detailed data with user-friendly visuals.

93

A significant aspect of the final report is the collection of new images captured
during testing, including those that demonstrate discrepancies from the anticipated
outcomes. These images are frequently resized to align with the report’s format,
thereby providing clear evidence of the system’s current state in comparison to the
baseline or reference images.

Comprehensive logs are also part of the final report, capturing the session’s
intricate details:

• ConsoleLog.txt: A log file from the Tcl console, which records the commands
and outputs during the test execution.

• Log.html: A log from TestAut2, the automated testing tool, providing an
HTML formatted view of the testing process.

• Test.xml: A settings file for TestAut2 that details the configuration and pa-
rameters used in the testing session.

Moreover, the report includes an archive of every screen from previous reports
(versions HMI), stored externally. This historical archive is indispensable for com-
parative analysis, allowing testers to observe changes over time and assess the
progress or regression of the system’s graphical interface.

94

Figure 6.23: Sample part of the final report

95

7 Results and Analysis

Automated testing is a crucial aspect of ensuring the reliability and quality of IVI
systems, such as the one found in the Škoda Enyaq, which represents one of the
most comprehensive systems offered by the manufacturer. This chapter examines
the capabilities of automated testing, the current scope of the test bench in use, and
the outcomes of these testing sessions.

7.1 Test Automation Results
The current test bench provides extensive testing, often exceeding 1000 screenshots
that capture a broad range of scenarios within the infotainment system. These
screenshots verify the visual and interactive aspects of the system’s GUI, ensuring
that all visual elements are rendered correctly and that interactions lead to the
expected outcomes.

The number of unique screens and test cases depends heavily on the specific
project at hand. In the case of the Enyaq infotainment system, the scale is signifi-
cantly larger due to the system’s complexity and breadth of features.

Over the lifetime of the Enyaq project, this methodical approach to testing
has led to the discovery of hundreds of bugs. Each bug identified is a step
towards refining the user experience, contributing to a more stable, functional, and
user-friendly infotainment system.

In conclusion, the automated testing of the Enyaq infotainment system is a
comprehensive undertaking. By encompassing a comprehensive array of screens and
test cases, it ensures that the system meets the high standards expected of a leading
automotive brand such as Škoda. The automation process not only expedites the
detection of bugs but also supports the development team in delivering a robust and
reliable product for the end-users.

96

7.2 Limitations
Automated testing, while transformative in its scope and capabilities, is not without
its limitations. Despite advanced technology and methodologies, certain aspects of
IVI systems remain beyond the reach of full automation. This section explores the
limitations of automated testing, the challenges of achieving full test coverage, and
the areas that require further refinement.

Incomplete Test Coverage
One of the main limitations of automated testing is the inability to test

all screens automatically. For example, critical functions that rely on online
connectivity or real-time data often escape comprehensive automated testing due to
the absence of certain devices or live data streams. In particular, screens associated
with online services remain untested because they require connectivity to external
networks that the test bed may not be equipped to simulate.

Testing Voice Assistants
The interactive nature of voice-activated features presents another significant

hurdle. Automated test systems cannot physically reproduce spoken commands,
which is essential for validating voice assistant functionality. The lack of this
capability leaves a gap in system verification, especially as voice commands become
an increasingly common form of user interaction in modern vehicles.

CANoe Simulation Challenges
The limited availability of real vehicle units on the test bench necessitates

the use of simulators such as CANoe to mimic the remaining systems. However,
achieving harmony between the real and simulated units is a complex task.
Synchronising CANoe simulations with physical components to achieve seamless,
representative testing is often challenging and can affect the reliability of test results.

Test Duration and Optimization
Another critical issue is the length of the testing process, with test runs of up to

16 hours. Such long test times indicate an urgent need for optimisation. Efficiency
improvements are needed not only to reduce test time, but also to minimise resource
utilisation and reduce the potential for errors that can result from prolonged test
cycles.

97

Lack of Automated Flashing via API
The lack of automated flashing of units via an API also limits test flexibility.

Currently, units are pre-coded with as many features as possible to maximise screen
availability. However, this approach does not address the need to dynamically
update or flash units to test different software versions or configurations, leaving
some screens inaccessible for testing.

Capturing Complex Animations
Lastly, the automated testing system’s capacity to capture screens with complex

animations is not foolproof. While the ”animation” endCondition enhances the
ability to record screens during animated sequences, capturing the nuances of
intricate animations remains a challenge. Ensuring that the captured screen
matches the reference precisely, particularly with sophisticated animations, is an
area where automated testing can falter.

In summary, while automated testing has made significant progress in advancing
the validation of IVI systems, it has yet to overcome certain inherent limitations.
Overcoming these challenges will require continued development of the test infras-
tructure, incorporation of more sophisticated simulation techniques, refinement of
test optimisation processes, and improved integration of real and simulated com-
ponents. As the complexity of IVI systems increases, so must the ingenuity and
capability of automated test methodologies.

7.3 Test Automation Cost
The implementation of automated test methods in IVI systems requires a significant
up-front investment. When assessing the financial requirements for the deployment
of these systems in 2024, it is important to note that these costs are estimates based
on current market conditions and are subject to change.

The main costs of setting up an automated test environment are the purchase of
specialised hardware components and software licences. The estimated total invest-
ment required to set this up is approximately €26,000. This estimate is based on
market analysis and includes the essential components listed for a fully functional
test environment.

A significant portion of this budget is allocated to the CANoe software licence,
which represents almost half of the total cost.

98

7.3.1 Exclusions in Cost Estimation
This financial estimation exclusively accounts for the tangible assets required for the
automated testing setup. It is important to highlight that all vehicle units utilised
during the testing phases are provided by Škoda Auto at no cost. These development
units, while challenging to quantify in price, represent a significant value addition
and reduce the overall financial burden of the testing process.

It should be noted that the initial cost estimate does not include operational costs
such as salaries for employees, as well as electricity and other utilities necessary for
system operations.

7.3.2 List of Components and Their Costs
To provide further clarity on the financial aspects of setting up an automated testing
system, a list of key items and their approximate prices is provided below.

• CANoe License and CAN Case: €12,000 - A comprehensive tool for ECU
testing and network simulation.

• Test Racks and Fixtures: €3,000 - Custom-designed fixtures and racks for
mounting and interfacing with infotainment units.

• High-Performance PCs: €2,000 - Computers equipped with advanced spec-
ifications to handle the software and testing data.

• Networking Equipment: €1,500 - Includes routers, cables, and interfaces
for establishing a robust testing network.

While the initial outlay for automated test infrastructure may appear consid-
erable, the potential for significant improvements in test efficiency, accuracy and
consistency justifies the investment.

99

8 Future Directions

As the automotive industry continues to evolve, the technologies embedded within
vehicles, particularly IVI systems, are becoming increasingly sophisticated. This
chapter examines potential future directions for automated testing in this domain,
taking into account current trends in technology development across various auto-
motive manufacturers.

8.1 Transition to Android-Based Infotainment
Systems

One of the most prominent trends in the automotive industry is the adoption of
Android-based interfaces for IVI systems. Companies such as Audi, a member of the
Volkswagen Group, have already initiated the integration of infotainment systems
based on Android applications. This transition towards Android provides a more
flexible platform for app development and integration, potentially offering a more
enriching user experience through customisable interfaces and a broader range of
applications.

Given the close relationship and technology sharing within the Volkswagen
Group, it is reasonable to anticipate that Škoda Auto may also adopt Android-
based infotainment systems in the future. Typically, the technology seen in Audi
vehicles trickles down to Škoda models within a span of three to five years. This
would suggest a probable shift in Škoda’s approach to infotainment solutions in the
near to mid-term future.

8.2 Future Research and Development
The introduction of Android interfaces requires a significant change in the approach
to automated testing. Currently, testing focuses primarily on hardware reliability
and the integration of native software within the infotainment units. However, with

100

Android at the heart of these systems, automated testing would need to evolve to
validate Android applications specifically designed for use in vehicles.

To accommodate these changes, research and development efforts in the field of
automated testing will need to focus on creating more dynamic and flexible testing
frameworks. These frameworks should not only support existing protocols but also
adapt to the ever-changing software landscape introduced by Android and other
mobile platforms.

8.3 Speculative Outlook

The specific technological trajectory of Škoda Auto is a complex matter to pre-
dict. However, observing trends in sister companies like Audi, which has integrated
Android-based systems into its infotainment offerings, suggests a potential direction
for Škoda. While it seems plausible that Škoda might adopt similar technologies in
the coming years, this remains an educated guess rather than a certainty.

The dynamic nature of the automotive industry, with its continuous innovations
and changing market forces, means that any predictions must be viewed as tentative.
This highlights the need for automated testing frameworks to remain flexible and
capable of adapting to new technologies as they emerge.

101

9 Conclusion

This thesis is centred around the implementation of automated testing for IVI sys-
tems. With the increasing complexity and functionalities of modern automotive
software, automated testing offers a scalable solution for ensuring system reliability
and user satisfaction.

A fundamental aspect of implementing automated testing is the understand-
ing of the technical foundations, including the CAN protocol and the Tcl script
language. These technologies are of paramount importance for the creation and
management of tests, due to their inherent robustness and flexibility in handling
device communication and script automation.

The workflow of automated testing significantly enhances the efficiency of the
testing process. By automating repetitive tasks and facilitating regression tests, the
process allows for continuous improvements and faster development cycles, ensuring
that each version of the software meets high-quality standards before deployment.

An in-depth exploration of the hardware and software components used in the
testing environment is documented in the thesis. Detailed connection diagrams
provide a clear visualisation of how these components interact, offering insights into
the complexities of the testing setup.

Furthermore, the thesis introduces a comprehensive library of HMI functions.
This library contains hundreds of functions that are essential for testing various as-
pects of the infotainment system. Only a selection of these functions is documented
within the thesis, reflecting a selection of the most critical features necessary for
comprehensive testing.

A specific case study on the Škoda Enyaq is included to demonstrate the appli-
cation of these methodologies in a real-world context. The appendix of the thesis
contains all the test cases developed for this project, providing a practical perspec-
tive on how automated testing is applied to specific vehicle models.

102

The results of these tests are compiled into detailed reports, complete with visu-
alisations that highlight the performance and outcomes of the testing process. These
reports serve as a crucial tool for developers to identify and address potential issues
swiftly.

Despite the advancements, the thesis does not shy away from discussing the lim-
itations encountered. Issues such as scalability across different hardware configura-
tions and occasional inconsistencies in test outcomes are highlighted, underscoring
areas for future improvement.

Currently, Digiteq Automotive is utilising these automated testing methodologies
to evaluate the successors of Škoda Octavia, Superb, Kodiaq, and Enyaq. This
practical application across five test benches illustrates the industry’s confidence in
automated testing as a critical component of automotive software development.

103

References

[1] AL DALLAL, Jehad. Automation of object-oriented framework application
testing. In: 2009, pp. 425–434. isbn 978-1-4244-3885-3. Available from doi:
10.1109/IEEEGCC.2009.5734312.

[2] AUTO, Skoda. Nový virtuální kokpit, 13” displej [online]. Skoda Auto, 2021
[visited on 2024-05-05]. Available from: https://cdn.skoda-storyboard.com/
2021/03/72_ENYAQ_iV_DPL-1920x1281.jpg.

[3] BILLIGER, Carparts. SKODA NAVI DAB MULTIMEDIA MIB3 INFO-
TAINMENT NAVIGATION 5E3035816-B [online]. Carparts Billiger, [n.d.]
[visited on 2024-05-05]. Available from: https://www.carparts-billiger.de/155-
Niara_thickbox/skoda-navi-dab-multimedia-mib3-infotainment-navigation-
5e3035816-b2x.webp.

[4] BOLAND, Hannah M. et al. An Overview of CAN-BUS Development, Utiliza-
tion, and Future Potential in Serial Network Messaging for Off-Road Mobile
Equipment. In: AHMAD, Fiaz and SULTAN, Muhammad (eds.). Technol-
ogy in Agriculture. Rijeka: IntechOpen, 2021, chap. 25. Available from doi:
10.5772/intechopen.98444.

[5] BOSCH, Robert. Can specification, version 2.0. Bosch, 1991.

[6] CHOI, Dong-Kyu et al. In-Vehicle Infotainment Management System in
Internet-of-Things Networks. In: 2019 International Conference on Informa-
tion Networking (ICOIN). 2019, pp. 88–92. Available from doi: 10 . 1109 /
ICOIN.2019.8718192.

[7] CONTRIBUTORS, Wikipedia. Tcl [online]. 2023. [visited on 2024-05-05].
Available from: https://en.wikipedia.org/wiki/Tcl.

[8] dict manual page - tcl.tk [https://www.tcl.tk/man/tcl/TclCmd/dict.htm].
[N.d.]. [Accessed 26-03-2024].

[9] Digiteq automotive [online]. 2023. [visited on 2023-11-21]. Available from:
https://www.digiteqautomotive.com/en.

104

https://doi.org/10.1109/IEEEGCC.2009.5734312
https://cdn.skoda-storyboard.com/2021/03/72_ENYAQ_iV_DPL-1920x1281.jpg
https://cdn.skoda-storyboard.com/2021/03/72_ENYAQ_iV_DPL-1920x1281.jpg
https://www.carparts-billiger.de/155-Niara_thickbox/skoda-navi-dab-multimedia-mib3-infotainment-navigation-5e3035816-b2x.webp
https://www.carparts-billiger.de/155-Niara_thickbox/skoda-navi-dab-multimedia-mib3-infotainment-navigation-5e3035816-b2x.webp
https://www.carparts-billiger.de/155-Niara_thickbox/skoda-navi-dab-multimedia-mib3-infotainment-navigation-5e3035816-b2x.webp
https://doi.org/10.5772/intechopen.98444
https://doi.org/10.1109/ICOIN.2019.8718192
https://doi.org/10.1109/ICOIN.2019.8718192
https://en.wikipedia.org/wiki/Tcl
https://www.tcl.tk/man/tcl/TclCmd/dict.htm
https://www.digiteqautomotive.com/en

[10] ELECTRIC, Bueno. Can termination resistors-vital part [online]. 2022.
[visited on 2024-05-05]. Available from: https : / / www . buenoptic . net /
encyclopedia/item/544-can-termination-resistors-vital-part.html.

[11] ELESHOP.EU. Manson HCS-3602-USB power supply [online]. 2024. [visited
on 2024-05-05]. Available from: https://eleshop.eu/manson-hcs-3602-usb-
power-supply.html.

[12] EUROTEIL. ICAS1 GW [online]. 2024. [visited on 2024-05-05]. Available
from: https://www.jllautoparts.com/product/1ea-937-012-n.

[13] FALCH, Martin. Can bus explained - a simple intro [2023] [online]. 2021.
[visited on 2024-05-05]. Available from: https : / / www . csselectronics . com /
pages/can-bus-simple-intro-tutorial.

[14] GMBH, Vector Informatik. VN1600 [online]. Vector Informatik GmbH, 2010
[visited on 2024-05-05]. Available from: https : / / cdn . vector . com / cms /
content/products/VN16xx/graphics/VN1630log_Liegend_Unten_web_
3200x2000px.jpg.

[15] GRIFFITH, John. What do can bus signals look like? [online]. 2023. [visited
on 2024-05-05]. Available from: https://www.ti.com/document-viewer/lit/
html/SSZTCN3.

[16] HOGSTROM, Christopher and Christopher HOGSTROM. TCL Loops -
Gritty engineer [online]. 2019. [visited on 2024-05-05]. Available from: https:
//grittyengineer.com/tcl-loops/.

[17] HP. HP Z1 G9 Tower Workstation [online]. [N.d.]. [visited on 2024-05-05].
Available from: https://www.hp.com/gb- en/shop/Html/Merch/Images/
c08195534_1750x1285.jpg.

[18] IMAGEMAGICK. Image Magick [online]. 2024. [visited on 2024-05-05]. Avail-
able from: https://imagemagick.org/.

[19] KAN, Hongxing et al. A method of minimum reusability estimation for au-
tomated software testing. Journal of Shanghai Jiaotong University (Science).
2013, vol. 18, pp. 360–365. Available from doi: 10.1007/S12204-013-1406-1.

[20] KARAMBUNAI, Kota. Controller Area Network (CAN) basic and techni-
cal overview [online]. 2015. [visited on 2024-05-05]. Available from: http://
kotakarambunai.blogspot.com/2015/11/controller-area-network-can-basic-
and.html.

[21] KUBÁT, Jan. Automatické testování infotainment jednotek. 2020. MA thesis.
ČVUT.

105

https://www.buenoptic.net/encyclopedia/item/544-can-termination-resistors-vital-part.html
https://www.buenoptic.net/encyclopedia/item/544-can-termination-resistors-vital-part.html
https://eleshop.eu/manson-hcs-3602-usb-power-supply.html
https://eleshop.eu/manson-hcs-3602-usb-power-supply.html
https://www.jllautoparts.com/product/1ea-937-012-n
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://cdn.vector.com/cms/content/products/VN16xx/graphics/VN1630log_Liegend_Unten_web_3200x2000px.jpg
https://cdn.vector.com/cms/content/products/VN16xx/graphics/VN1630log_Liegend_Unten_web_3200x2000px.jpg
https://cdn.vector.com/cms/content/products/VN16xx/graphics/VN1630log_Liegend_Unten_web_3200x2000px.jpg
https://www.ti.com/document-viewer/lit/html/SSZTCN3
https://www.ti.com/document-viewer/lit/html/SSZTCN3
https://grittyengineer.com/tcl-loops/
https://grittyengineer.com/tcl-loops/
https://www.hp.com/gb-en/shop/Html/Merch/Images/c08195534_1750x1285.jpg
https://www.hp.com/gb-en/shop/Html/Merch/Images/c08195534_1750x1285.jpg
https://imagemagick.org/
https://doi.org/10.1007/S12204-013-1406-1
http://kotakarambunai.blogspot.com/2015/11/controller-area-network-can-basic-and.html
http://kotakarambunai.blogspot.com/2015/11/controller-area-network-can-basic-and.html
http://kotakarambunai.blogspot.com/2015/11/controller-area-network-can-basic-and.html

[22] MACARIO, Gianpaolo, Marco TORCHIANO, and Massimo VIOLANTE. An
in-vehicle infotainment software architecture based on google android. In:
2009 IEEE International Symposium on Industrial Embedded Systems. 2009,
pp. 257–260. Available from doi: 10.1109/SIES.2009.5196223.

[23] OSBORNE, Ben. What does OBD stand for? [online]. 2023. [visited on 2024-
05-05]. Available from: https://www.noregon.com/what-is-obd/.

[24] PAPOUCH. Quido ETH 2/16: 2 vstupy, 16 výstupů a teploměr [online]. Pa-
pouch, 2024 [visited on 2024-05-05]. Available from: https://papouch.com/
quido-eth-2-16-2-vstupy-16-vystupu-a-teplomer-p4642/?vid=1785.

[25] PFEIFFER, Olaf, Andrew AYRE, and Christian KEYDEL. Embedded net-
working with can and Canopen. First. Copperhill Technologies Corporation,
2008.

[26] POINT, Tutorials. TCL - bitwise operators [online]. [N.d.]. [visited on 2024-
05-05]. Available from: https://www.tutorialspoint.com/tcl-tk/tcl_bitwise_
operators.htm.

[27] POINT, Tutorials. TCL - relational operators [online]. [N.d.]. [visited on
2024-05-05]. Available from: https ://www.tutorialspoint .com/tcl - tk/tcl_
relational_operators.htm.

[28] RAFI, Dudekula et al. Benefits and limitations of automated software testing:
Systematic literature review and practitioner survey. In: 2012, pp. 1–42. isbn
978-1-4673-1821-1. Available from doi: 10.1109/IWAST.2012.6228988.

[29] S.R.O, Digiteq automotive. Modular FrameGrabber (MGB) [online]. Digiteq
automotive s.r.o, 2024 [visited on 2024-05-05]. Available from: https://www.
digiteqautomotive . com / sites / default / files / 2020 - 08 / _DSC1645 _ jpg _
2500px_0-min.jpg.

[30] SALEM, Patrick. Understanding ASIL Decomposition for Functional Safety
in Automotive Applications [online]. 2024. [visited on 2024-04-15]. Available
from: https://www.linkedin.com/pulse/understanding-asil-decomposition-
functional-safety-automotive-salem-bbcwc/.

[31] SAXENA, ANSHUL. Everything You Need to Know About In-Vehicle Info-
tainment Systems [online]. 2023. [visited on 2023-11-14]. Available from: https:
//www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-
infotainment-system/.

106

https://doi.org/10.1109/SIES.2009.5196223
https://www.noregon.com/what-is-obd/
https://papouch.com/quido-eth-2-16-2-vstupy-16-vystupu-a-teplomer-p4642/?vid=1785
https://papouch.com/quido-eth-2-16-2-vstupy-16-vystupu-a-teplomer-p4642/?vid=1785
https://www.tutorialspoint.com/tcl-tk/tcl_bitwise_operators.htm
https://www.tutorialspoint.com/tcl-tk/tcl_bitwise_operators.htm
https://www.tutorialspoint.com/tcl-tk/tcl_relational_operators.htm
https://www.tutorialspoint.com/tcl-tk/tcl_relational_operators.htm
https://doi.org/10.1109/IWAST.2012.6228988
https://www.digiteqautomotive.com/sites/default/files/2020-08/_DSC1645_jpg_2500px_0-min.jpg
https://www.digiteqautomotive.com/sites/default/files/2020-08/_DSC1645_jpg_2500px_0-min.jpg
https://www.digiteqautomotive.com/sites/default/files/2020-08/_DSC1645_jpg_2500px_0-min.jpg
https://www.linkedin.com/pulse/understanding-asil-decomposition-functional-safety-automotive-salem-bbcwc/
https://www.linkedin.com/pulse/understanding-asil-decomposition-functional-safety-automotive-salem-bbcwc/
https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/
https://www.einfochips.com/blog/everything-you-need-to-know-about-in-vehicle-infotainment-system/

[32] SHENK, Geoffrey. Automotive Infotainment System Testing Automation [on-
line]. Functionize Inc., 2018 [visited on 2024-05-05]. Available from: https :
//www.functionize.com/blog/testing-automation-for-infotainment-systems.

[33] SHIN, Yeonghun et al. Digital Forensic Case Studies for In-Vehicle Info-
tainment Systems Using Android Auto and Apple CarPlay. Sensors (Basel,
Switzerland). 2022, vol. 22. Available from doi: 10.3390/s22197196.

[34] ŠKODA presents new Digital Assistant: “Okay, Laura!” [online]. 2023. [visited
on 2023-12-06]. Available from: https://www.skoda-storyboard.com/en/press-
releases/skoda-presents-new-digital-assistant-okay-laura/.

[35] SMITH, Grant Maloy. What is Can bus (controller area network) [online].
2024. [visited on 2024-05-05]. Available from: https://dewesoft .com/blog/
what-is-can-bus.

[36] STOCKINTHECHANNEL. APC SMC1000IC uninterruptible power sup-
ply [online]. 2023. [visited on 2024-05-05]. Available from: https : / / www .
stockinthechannel.co.uk/Product/APC-SMC1000IC-uninterruptible-power-
supply-UPS-Line-Interactive-1000-VA-600-W-8-AC-outlet-s-/42348216.

[37] SYNOPSYS, Inc. What is ASIL? [online]. 2024. [visited on 2024-04-15]. Avail-
able from: https://www.synopsys.com/automotive/what-is-asil.html.

[38] Tcl - Arrays [https://www.tutorialspoint.com/tcl-tk/tcl_arrays.htm]. [N.d.].
[Accessed 31-03-2024].

[39] Tcl - Lists [https://www.tutorialspoint.com/tcl- tk/tcl_lists.htm]. [N.d.].
[Accessed 31-03-2024].

[40] Tcl - Namespaces [https://www.tutorialspoint.com/tcl-tk/tcl_namespaces.
htm]. [N.d.]. [Accessed 31-03-2024].

[41] Tcl - Procedures [online]. [N.d.]. [visited on 2024-05-05]. Available from: https:
//www.tutorialspoint.com/tcl-tk/tcl_procedures.htm.

[42] Tcl Built-In Commands [online]. [N.d.]. [visited on 2024-05-05]. Available from:
https://wiki.tcl-lang.org/page/switch.

[43] TEAM, Tcl Core. Welcome to the TCLER’s wiki! [online]. 2018. [visited on
2024-05-05]. Available from: https://wiki.tcl-lang.org/.

[44] TME.EU. WDR series 12 V power supply [online]. 2024. [visited on 2024-05-
05]. Available from: https://www.tme.eu/en/news/library-articles/page/
52591/din-rail-mounted-power-supply-modules-from-mean-well/.

107

https://www.functionize.com/blog/testing-automation-for-infotainment-systems
https://www.functionize.com/blog/testing-automation-for-infotainment-systems
https://doi.org/10.3390/s22197196
https://www.skoda-storyboard.com/en/press-releases/skoda-presents-new-digital-assistant-okay-laura/
https://www.skoda-storyboard.com/en/press-releases/skoda-presents-new-digital-assistant-okay-laura/
https://dewesoft.com/blog/what-is-can-bus
https://dewesoft.com/blog/what-is-can-bus
https://www.stockinthechannel.co.uk/Product/APC-SMC1000IC-uninterruptible-power-supply-UPS-Line-Interactive-1000-VA-600-W-8-AC-outlet-s-/42348216
https://www.stockinthechannel.co.uk/Product/APC-SMC1000IC-uninterruptible-power-supply-UPS-Line-Interactive-1000-VA-600-W-8-AC-outlet-s-/42348216
https://www.stockinthechannel.co.uk/Product/APC-SMC1000IC-uninterruptible-power-supply-UPS-Line-Interactive-1000-VA-600-W-8-AC-outlet-s-/42348216
https://www.synopsys.com/automotive/what-is-asil.html
https://www.tutorialspoint.com/tcl-tk/tcl_arrays.htm
https://www.tutorialspoint.com/tcl-tk/tcl_lists.htm
https://www.tutorialspoint.com/tcl-tk/tcl_namespaces.htm
https://www.tutorialspoint.com/tcl-tk/tcl_namespaces.htm
https://www.tutorialspoint.com/tcl-tk/tcl_procedures.htm
https://www.tutorialspoint.com/tcl-tk/tcl_procedures.htm
https://wiki.tcl-lang.org/page/switch
https://wiki.tcl-lang.org/
https://www.tme.eu/en/news/library-articles/page/52591/din-rail-mounted-power-supply-modules-from-mean-well/
https://www.tme.eu/en/news/library-articles/page/52591/din-rail-mounted-power-supply-modules-from-mean-well/

[45] TUTORIALSPOINT. TCL - logical operators [online]. [N.d.]. [visited on 2024-
05-05]. Available from: https://www.tutorialspoint.com/tcl-tk/tcl_logical_
operators.htm.

[46] VAIBHAV. Automotive Infotainment Testing Best Practices | IVI System —
embitel.com [https://www.embitel.com/blog/embedded-blog/infotainment-
testing- success-mantras- that-your-automotive-development- team-should-
ace/]. 2019. [Accessed 15-01-2024].

[47] WIKIPEDIA. Electronic Control Unit — Wikipedia, The Free Encyclopedia
[http://cs.wikipedia.org/w/index.php?title=Electronic%20Control%20Unit&
oldid=23626234]. 2024. [Online; accessed 25-April-2024].

[48] YIN, Ning. Automated Testing for Automotive Infotainment Systems. 2018.
MA thesis. Chalmers University of Technology and University of Gothenburg.

[49] ZAMAN, Najamuz. Automotive Electronics Design Fundamentals. Springer,
2015.

108

https://www.tutorialspoint.com/tcl-tk/tcl_logical_operators.htm
https://www.tutorialspoint.com/tcl-tk/tcl_logical_operators.htm
https://www.embitel.com/blog/embedded-blog/infotainment-testing-success-mantras-that-your-automotive-development-team-should-ace/
https://www.embitel.com/blog/embedded-blog/infotainment-testing-success-mantras-that-your-automotive-development-team-should-ace/
https://www.embitel.com/blog/embedded-blog/infotainment-testing-success-mantras-that-your-automotive-development-team-should-ace/
http://cs.wikipedia.org/w/index.php?title=Electronic%20Control%20Unit&oldid=23626234
http://cs.wikipedia.org/w/index.php?title=Electronic%20Control%20Unit&oldid=23626234

A Appendices

A.1 Tcl Syntax
The syntax of Tcl is designed to be simple and expressive, enabling rapid script
development and execution. This section explores the essential elements of Tcl
syntax, including its command structure, variable usage, control flow constructs,
and procedures, providing a solid foundation for effective scripting.

Comments
In Tcl, comments are utilised to include explanatory remarks in the code, en-

hancing its readability and maintainability. Single-line comments begin with the #
symbol and continue until the end of the line. They can be placed on their own line
or at the end of a line of code[43].

When adding a comment after a command on the same line, it is essential to
separate the command and the comment with a semicolon (;) followed by the #
symbol. This ensures that the Tcl interpreter correctly interprets the comment.
Here is an example of how to use single-line comments:

1 # This is a standalone comment
2 set speed 100 ;# This comment follows a command

Listing A.1: Comments example

Command Structure
At the heart of Tcl is its minimalist yet powerful command syntax. Each com-

mand is a concise line of instructions, beginning with a command name and followed
by its associated arguments. These arguments are separated by spaces and can be
as few as none or as many as the task requires. A command ends with a new line
or a semicolon, whichever suits the programmer’s flow.

By way of illustration, the anatomy of a standard Tcl command is shown below:
1 commandName argument1 argument2 ... argumentN

Listing A.2: Command example

109

This simplicity ensures that commands are both readable and easy to write. For
example, a code to print ”Hello Tcl World” is as simple as:

1 puts "Hello Tcl World"

Listing A.3: Command to print ”Hello Tcl World” in Tcl

It also uses the dollar sign ($) to denote variables. When a command is exe-
cuted, variable names prefixed with $ are replaced with their corresponding values
before the command is executed. This substitution mechanism is an integral part
of dynamic command generation and execution[43].

1 #Example 1
2 set brand "Škoda"
3 puts "Vehicle Brand: $brand"
4 # Output: Vehicle Brand: Škoda
5

6 #Example 2
7 set speed 60
8 puts "Current Speed: $speed kmph"
9 # Output: Current Speed: 60 kmph

Listing A.4: Variable substitution

Tcl’s command substitution feature allows for dynamic computation and inter-
action within scripts, making it a crucial tool for complex operations. By enclosing
commands within square brackets ([]), Tcl first evaluates the enclosed command
and then substitutes its result into the outer command. This mechanism is espe-
cially useful in scenarios that require data manipulation based on the outcome of
embedded commands[43].

1 set radius 4
2 set area [expr 3.14 * $radius * $radius]
3 puts "Area of the circle: $area"

Listing A.5: Example of command substitution

In the provided example, the ’expr’ command calculates the area of a circle
using the radius stored in the ’radius’ variable. The result is assigned to the ’area’
variable, which is then printed to the standard output using the ’puts’ command
within square brackets. This fragment illustrates how command substitution can
facilitate the execution of calculations or operations that depend on the results of
other commands, seamlessly integrating them into the flow of the script.

The unset command is used to delete variables, removing them from the script’s
environment. When a variable is unset, it no longer exists in the namespace, and

110

attempting to access it afterward will result in an error unless it is redefined. This
command is particularly useful for freeing up memory or ensuring that outdated or
unnecessary data does not linger in the script, potentially causing incorrect behavior
or conflicts[43].

1 unset radius

Listing A.6: Example of removing variable

Mathematical Operations
Although Tcl is primarily known for its string manipulation capabilities, it also

provides support for mathematical operations. This makes it a versatile tool for
applications requiring numerical computations, ranging from simple arithmetic to
complex mathematical expressions. The language’s ability to handle both string
and numerical data types makes it a valuable asset for developers.

In Tcl, mathematical operations are carried out using the expr command. This
command evaluates an expression and returns its value. The basic syntax is:

1 set result [expr {operation}]

Listing A.7: Example of expr command in Tcl

where operation can be any arithmetic calculation, such as addition (+), subtrac-
tion (-), multiplication (*), division (/), and more complex mathematical functions.
Tcl supports a wide range of mathematical functions, including trigonometric, log-
arithmic, and exponential functions[43].

111

1 # Assume a and b are predefined variables with some values
2 set a 10
3 set b 5
4

5 set addition [expr {$a + $b}]
6 puts "Addition: $addition" ;# Result: 15
7

8 set subtraction [expr {$a - $b}]
9 puts "Subtraction: $subtraction" ;# Result: 5

10

11 set multiplication [expr {$a * $b}]
12 puts "Multiplication: $multiplication" ;# Result: 50
13

14 set division [expr {$a / $b}]
15 puts "Division: $division" ;# Result: 2
16

17 set modulus [expr {$a % $b}]
18 puts "Modulus: $modulus" ;# Result: 0

Listing A.8: Implementing basic arithmetic operations

To illustrate the use of mathematical operations in Tcl in the context of auto-
mated testing in automotive, consider a scenario where we need to test the volume
control functionality of an infotainment system. The system adjusts the volume
based on the speed of the vehicle, increasing the volume as the speed increases. We
can simulate this behaviour and calculate the expected volume level at different
speeds.

1 # Calculate volume level based on speed
2 set baseVolume 20 ;# Base volume level at 0 km/h
3 set speed 80 ;# Current speed in km/h
4 set volumeAdjustmentFactor 0.1 ;# Increase per km/h
5 set expectedVolume [expr {$baseVolume + ($speed *

$volumeAdjustmentFactor)}]
6 puts "Expected volume at $speed km/h: $expectedVolume"

Listing A.9: Simulating volume adjustment based on vehicle speed

112

Table A.1: Overview of fundamental operations in Tcl

Function Syntax Description
Addition + Adds two numbers
Subtraction - Subtracts the second number from the first
Multiplication * Multiplies two numbers
Division / Divides the first number by the second
Modulus % Returns the remainder of division
Increment ++ Increases a variable’s value by 1
Decrement -- Decreases a variable’s value by 1

Logical Operations
Logical operations are crucial in programming languages as they allow for

decision-making based on specific conditions. In Tcl, logical operations are pri-
marily used in conditional statements and loops to control the flow of execution
Tcl supports the fundamental logical operators found in many programming lan-
guages: && (logical AND), || (logical OR), and ! (logical NOT). These operators
are utilised to combine or invert boolean expressions that evaluate to either true or
false[45].

• The logical AND operator (&&) returns true only if both operands are true.

• The logical OR operator (||) returns true if at least one of the operands is
true.

• The logical NOT operator (!) inverts the truth value of its operand.

Logical operators in Tcl are used within expressions, typically inside if state-
ments, while loops, or for loops. Here’s the basic syntax:

1 if {$condition1 && $condition2} {
2 ;# Code to execute if both condition1 and condition2 are true
3 }
4

5 if {$condition1 || $condition2} {
6 ;# Code to execute if either condition1 or condition2 is true
7 }
8

9 if {!$condition} {
10 ;# Code to execute if condition is not true
11 }

Listing A.10: Implementing conditional logic

113

Bitwise Operations
Bitwise operations are crucial for low-level programming tasks, such as manipu-

lating data at the binary level. In Tcl, bitwise operations enable the manipulation
of bits within integer values, allowing for efficient data processing and control.

Tcl supports several bitwise operators for performing operations on integer
operands at the bit level. These operators include:

• Bitwise AND (&): Performs a logical AND operation on each pair of bits in
two integers.

• Bitwise OR (|): Performs a logical OR operation on each pair of bits in two
integers.

• Bitwise XOR (^): Performs a logical XOR (exclusive OR) operation on each
pair of bits in two integers.

• Bitwise NOT (∼): Performs a logical NOT operation, inverting each bit in an
integer.

• Left Shift (<<): Shifts the bits of an integer to the left by a specified number
of positions.

• Right Shift (>>): Shifts the bits of an integer to the right by a specified number
of positions[26].

114

Bitwise operators are used within the expr command in Tcl. Here’s how you can
use these operators:

1 set a 12 ;# Binary: 1100
2 set b 5 ;# Binary: 0101
3

4 # Bitwise AND
5 set andResult [expr {$a & $b}] ;# Result is 4 (0100)
6

7 # Bitwise OR
8 set orResult [expr {$a | $b}] ;# Result is 13 (1101)
9

10 # Bitwise XOR
11 set xorResult [expr {$a ^ $b}] ;# Result is 9 (1001)
12

13 # Bitwise NOT
14 set notResult [expr {~$a}] ;# Result depends on the system's word

size
15

16 # Left Shift
17 set leftShift [expr {$a << 2}] ;# Result is 48 (110000)
18

19 # Right Shift
20 set rightShift [expr {$a >> 2}] ;# Result is 3 (0011)

Listing A.11: Example of using bitwise operators

Relational Operations
Relational operations in Tcl are utilised to compare values, which is fundamen-

tal in control flow structures such as if-conditions and loops. This section covers
relational operators and their usage in Tcl scripts.

Tcl provides standard relational operators to compare numerical values and
strings:

• Equal (==): Returns true if two operands are equal.

• Not Equal (!=): Returns true if two operands are not equal.

• Greater Than (>): Returns true if the left operand is greater than the right
operand.

• Less Than (<): Returns true if the left operand is less than the right operand.

• Greater Than or Equal To (>=): Returns true if the left operand is greater
than or equal to the right operand.

115

• Less Than or Equal To (<=): Returns true if the left operand is less than or
equal to the right operand[27].

Relational operations are commonly used in conditional statements to make
decisions:

1 set speed 60
2

3 if {$speed > 55} {
4 puts "Exceeding speed limit!"
5 }
6

7 set temperature 35
8

9 if {$temperature >= 30} {
10 puts "High temperature warning!"
11 }

Listing A.12: Example of implementing relational operations

The Tcl programming language features a straightforward syntax that empha-
sises ease of use and flexibility. In Tcl, each command is comprised of a command
name followed by arguments separated by whitespace. The language supports
various types of data without the need for specific declarations, making it highly
adaptable for different scripting scenarios.

Key aspects of Tcl syntax include:

• Command Structure: Commands are the fundamental building blocks in
Tcl, where a typical command can include the command name and various
arguments. The end of a command is denoted by a newline or a semicolon.

• Variable and Command Substitution: Tcl allows for dynamic content
within scripts through variable and command substitution. Variables are pre-
fixed with $ to denote substitution, while square brackets [] are used to execute
commands within commands.

For those seeking a more detailed understanding of Tcl’s syntactic elements and
a more comprehensive examination of its application, further coverage can be found
in Appendix A.1 of this document. This appendix not only provides a more in-
depth analysis of the nuances of Tcl syntax but also offers extensive discussions and
examples of Tcl’s mathematical, logical, bitwise, and relational operations. These
sections offer insights into how Tcl manages complex scripting tasks effectively.

116

A.1.1 Loops in Tcl
Tcl loop constructs, including ’for’, ’foreach’ and ’while’, are crucial for automat-
ing testing in IVI systems. These loops enable the repeated execution of a code
block, which is essential for executing complex functions.

’For’ Loop
The ’for’ loop in Tcl is similar to its counterpart in C and other programming

languages. It is typically used to iterate over a sequence of numbers, making it
suitable for scenarios where the exact number of iterations is known in advance. This
could be particularly useful for testing a sequence of input values for an infotainment
system function.

1 for {initialization} {condition} {iteration} {
2 # Code block to be executed
3 }

Listing A.13: Template of a Tcl ’for’ loop

• initialisation: This step is executed before the loop starts. It is commonly
used to initialize a counter variable, but it can also include any Tcl command.

• condition: Before each iteration of the loop, this expression is evaluated. If it
is true (non-zero), the loop continues. If it is false (zero), the loop terminates.

• iteration: At the end of each loop iteration, this step is executed. It is
typically used to increment or decrement a counter variable, but it can execute
any Tcl command.

For example, to print numbers from 1 to 10 in Tcl using a ’for’ loop, you can
write:

1 for {set i 1} {$i <= 10} {incr i} {
2 puts $i
3 }

Listing A.14: Example of ’for’ loop in Tcl

This loop initializes a variable ’i’ to 1, continues to execute as long as ’i’ is less
than or equal to 10, and increments ’i’ by 1 in each iteration. Inside the loop, the
’puts’ command prints the current value of ’i’ to the standard output.

117

’Foreach’ Loop
The ’foreach’ loop in Tcl is a powerful construct designed for iterating over lists

and arrays, making it an essential tool for scenarios requiring sequential processing
of elements. Unlike the for loop, which is generally used for executing a block of
code a specific number of times based on a counter, the ’foreach’ loop simplifies
the iteration over items in a collection without manual index management. This
feature can greatly improve the readability and efficiency of code, particularly when
working with data collections.

The basic syntax of the ’foreach’ loop in Tcl is as follows:
1 foreach varName list {
2 ;# Code block to execute for each element in the list
3 }

Listing A.15: Template of a Tcl ’foreach’ loop

• varName: A variable that is set to each element of the list in turn.

• list: A list of elements that will be iterated over.

The Tcl ’foreach’ loop is known for its clarity, convenience, and flexibility, mak-
ing it the preferred choice for iterating over collections of data. One of its primary
advantages is the enhanced clarity it brings to the code. By explicitly indicating
that the operation involves processing each item in a list or array, it makes the devel-
oper’s intention clear, improving code readability. Clarity is particularly important
in complex scripts where understanding the flow of data is crucial.

Additionally, the convenience offered by the ’foreach’ loop cannot be over-
stated. It eliminates the cumbersome need for manual index management, which is
prone to errors. This feature ensures that each element in the collection is processed
without the need for explicit tracking of indices, thereby simplifying the coding
process.

Flexibility is another significant benefit of the ’foreach’ loop. Tcl is proficient
in managing not only basic lists but also associative arrays, referred to as dictionar-
ies. This feature enables the iteration over key-value pairs in dictionaries, making
complex data manipulation tasks effortless. Furthermore, Tcl’s ’foreach’ loop can
simultaneously iterate over multiple lists, which is ideal for parallel processing of
related datasets[16].

118

1 set carModels {"Audi A4" "BMW 3 Series" "Mercedes C-Class"}
2 set infotainmentVersions {"MMI 10.1" "iDrive 7.0" "MBUX 2020"}
3 foreach carModel $carModels infotainmentVersion $infotainmentVersions {
4 puts "$carModel is equipped with infotainment system version:

$infotainmentVersion"
5 }

Listing A.16: Example of ’foreach’ loop in Tcl

The output of the previous code will be displayed as follows:
1 Audi A4 is equipped with infotainment system version: MMI 10.1
2 BMW 3 Series is equipped with infotainment system version: iDrive 7.0
3 Mercedes C-Class is equipped with infotainment system version: MBUX

2020

Listing A.17: Output of ’foreach’ example

’While’ Loop
The ’while’ loop is a crucial control structure in Tcl that enables the execution

of a block of code repeatedly as long as a specified condition remains true. This
type of loop is particularly useful for situations where the number of iterations is
not known before the loop starts. It is ideal for tasks such as reading data until an
end-of-file marker is reached or for polling a device status until a certain state is
detected.

The basic syntax of the while loop in Tcl is as follows:
1 while {condition} {
2 ;# Code block to be executed as long as condition is true
3 }

Listing A.18: Template of a Tcl ’while’ loop

• condition: An expression that is evaluated before each iteration of the loop.
If the condition evaluates to true (non-zero), the loop continues with another
iteration. If the condition evaluates to false (zero), the loop terminates, and
execution continues with the next statement following the loop[16].

In the following excerpt, we explore the use of a ’while’ loop, a fundamental con-
trol structure in the Tcl programming language, through a whimsical yet instructive
example that humorously mirrors the iterative process of writing a thesis itself.

119

1 # Initialize the thesis progress
2 set thesisProgress 0
3 set totalRequiredPages 80
4

5 # Loop until the thesis is complete
6 while {$thesisProgress < $totalRequiredPages} {
7 ;# Print a message about the current state
8 puts "You've completed $thesisProgress pages of your Bachelor

thesis. Keep going!"
9

10 ;# Add some humour with coffee breaks
11 if {$thesisProgress % 10 == 0} {
12 puts "Time for a coffee break! You've earned it!"
13 }
14

15 ;# Add a funny message for the halfway point
16 if {$thesisProgress == $totalRequiredPages / 2} {
17 puts "Halfway there! Imagine the graduation scarf drapping over

your shoulders."
18 }
19

20 ;# Sleep for a second to simulate work being done
21 after 1000
22

23 ;# Increment the thesis progress
24 incr thesisProgress
25 }
26

27 # Print a message once the thesis is complete
28 puts "Congratulations! Your Bachelor thesis is finally complete. Time

to celebrate!"

Listing A.19: Programming your way to graduation: A Bachelor’s thesis progress
simulator in Tcl

This Tcl code represents a light-hearted simulation of writing a bachelor’s thesis,
tracking progress in increments towards an 80-page goal. As pages are ’completed’,
encouraging messages encourage the user to keep going, interspersed with cues for
coffee breaks after every tenth page and a special note at the halfway point. At the
end, a congratulatory message marks the completion of the simulated dissertation
journey.

120

The ’while’ loop’s versatility makes it suitable for a wide range of applications
in Tcl scripting, including:

• Data Processing: Iterating over a data stream or a file line by line until no
more data is available.

• Timing Loops: Implementing delays or waiting for a specific condition to be
met, useful in polling operations or timeouts.

• Interactive Prompts: Repeatedly asking for user input until a valid response
is provided or the user chooses to exit.

When using ’while’ loops, it’s important to ensure that the loop condition will
eventually become false; otherwise the loop could become an infinite loop, causing
the script to hang or consume excessive resources. Careful management of the
condition and loop variables is essential to avoid such problems[16].

Understanding the ’switch’ Command in Tcl
The ’switch’ command in Tcl provides a powerful mechanism for toggling pro-

gram control between a number of options based on the value of an expression.
It is similar to the switch statement found in many other programming languages,
but comes with features that are uniquely tailored to the dynamic nature of Tcl.
This control structure improves the readability and efficiency of code that requires
conditional execution of multiple branches[42].

The basic syntax of the ’switch’ command can be expressed as follows:
1 switch options? string pattern body ... ?default body?

Listing A.20: Template of a Tcl ’switch’ command[42]

• string: The string against which patterns are matched.

• pattern: The pattern to match against the string. Patterns can be literals,
glob-style patterns, or regular expressions, depending on the options used.

• body: The script to execute when a match is found.

The Tcl ’switch’ command is a versatile conditional control structure that en-
ables the execution of different code blocks based on the match between a value
and a set of patterns. Unlike the simpler if-elseif-else construct, ’switch’ can sig-
nificantly simplify code, especially when dealing with complex conditional logic. It

121

stands out for its ability to handle not only exact matches but also more complex
pattern matching scenarios.

The ’switch’ command enables three main modes of pattern matching, making
it useful for various use cases:

• Exact Matching: By default, the ’switch’ function performs exact matching
by comparing the given string against a series of patterns to find an exact
match. This mode is straightforward and covers many basic use cases.

• Glob-Style Matching: When the ’-glob’ option is activated, patterns can
include glob-style wildcards (such as * and ?). This mode is especially useful
for matching strings against patterns that follow a predictable format but may
contain variable parts.

• Regular Expression Matching: The ’-regexp’ option allows for the inter-
pretation of patterns as regular expressions, providing the greatest flexibility
and power for matching complex string patterns. This mode is particularly
useful for scenarios that require advanced pattern-matching capabilities[42].

1 set filename "archive.zip"
2

3 switch -glob $filename {
4 *.txt {
5 puts "Processing a text file."
6 }
7 *.jpg|*.png {
8 puts "Processing an image file."
9 }

10 *.zip {
11 puts "Processing a compressed file."
12 }
13 default {
14 puts "Unsupported file type."
15 }
16 }

Listing A.21: Practical example of a Tcl ’switch’ command

In this example, the -glob option allows the use of wildcard patterns to match file
extensions, providing a concise method to route processing logic based on the file
type.

122

A.1.2 Mastering Functions in Tcl using ’proc’
Functions, which are referred to as procedures in Tcl, are essential building blocks
that enable the encapsulation and reuse of code within scripts and applications.
Procedures in Tcl are defined using the ’proc’ command and allow for the creation
of complex, modular, and maintainable codebases. This subsection explores the
creation, usage, and advanced features of procedures in Tcl, providing programmers
with the knowledge to utilize their full potential.

A procedure is defined using the ’proc’ command, followed by the procedure
name, a list of parameters, and the procedure body. The syntax is as follows:

1 proc procedureName {parameterList} {
2 # Procedure body
3 }

Listing A.22: Template of a Tcl ’proc’ command

• procedureName: The name of the procedure.

• parameterList: A list of parameters the procedure accepts, enclosed in
braces {}.

• Procedure body: The Tcl code to execute when the procedure is called[41].

Parameters can be defined to accept default values, making them optional during
calls. This is achieved by specifying the parameter name followed by the default
value in the parameter list.

To call a procedure, simply use its name followed by any required arguments:
1 procedureName arg1 arg2

Listing A.23: Template of calling procedures

Arguments are passed to the procedure in the order they are listed in the parameter
list[41].

Example: A Simple Procedure
Consider a procedure that greets a user:

1 proc greet {name} {
2 puts "Hello, $name!"
3 }
4

5 greet "Ekaterina"

Listing A.24: Example of a simple procedure

123

This greeting procedure takes a single parameter, ’name’, and uses it within a ’puts’
command to print a greeting. When calling the ’greet’ function with the argument
’Ekaterina’, it will print ”Hello, Ekaterina!”

Working with Return Values
Procedures in Tcl return the result of the last command executed in their body

by default. To return a specific value, use the ’return’ command[41]:
1 proc sum {a b} {
2 return [expr {$a + $b}]
3 }
4

5 set result [sum 3 12]
6 puts $result ;# Outputs: 15

Listing A.25: Example of a simple procedure with ’return’ command

A.1.3 Harnessing the Power of Dictionaries for Efficient Data
Management in Tcl

In Tcl, dictionaries are one of the powerful data structures designed to store and
manage collections of elements in key-value pairs. This structure is particularly
useful for organising related data, making it easily accessible by reference to a
unique key.

Basics of Dictionaries
A dictionary in Tcl is an unordered collection of key-value pairs, where each key

is unique. Dictionaries are ideal for storing associative arrays, where each key maps
to a value. They are created using the ’dict create’ command, followed by key and
value pairs. Here’s a simple example[8]:

1 set myDict [dict create key1 "value1" key2 "value2"]

Listing A.26: Example of creating a dictionary

To access a value in a dictionary, the ’dict get’ command is used, specifying the
dictionary and the key:

1 puts [dict get $myDict key1] ;# Outputs: value1

Listing A.27: Example to access a value in a dictionaryl

124

Modifying Dictionaries
Tcl offers several commands for modifying dictionaries, including ’dict set’ for

adding or updating key-value pairs and ’dict unset’ for removing them. Modifying a
dictionary does not change the original; instead, it returns a new modified version[8].

1 # Adding/updating a key-value pair
2 set myDict [dict set myDict key3 "value3"]
3

4 # Removing a key-value pair
5 set myDict [dict unset myDict key1]

Listing A.28: Example of ’dict set’ and ’dict unset’ commands

Iterating Over Dictionaries
To iterate over a dictionary, the ’dict for’ command is used. It allows you to

loop through each key-value pair, performing operations as needed.
1 dict for {key value} $myDict {
2 puts "Key: $key, Value: $value"
3 }

Listing A.29: Example of ’dict for’ command

Advanced Features

• Nested Dictionaries: Tcl supports nesting dictionaries within dictionaries,
enabling the representation of complex data structures.

• Dictionary Keys: While typically strings, dictionary keys can be any value,
offering flexibility in how data is structured.

• Efficiency: Dictionaries are implemented efficiently, providing fast access to
data, which is crucial for performance-sensitive applications.

The table below summarises the various ’dict’ command options available in
Tcl, along with a brief description for each. This table provides a concise overview
of the functionality that the ’dict’ command offers for manipulating dictionaries in
Tcl.

125

Table A.2: Summary of Tcl ’dict’ command options[8]

Command Option Description
dict create Creates a new dictionary with optional key-value pairs.
dict get Retrieves the value for a given key from the dictionary.
dict set Sets the value for a given key, creating the key if necessary.
dict unset Removes a key (and its value) from the dictionary.
dict update Temporarily updates keys with variables for a script block.
dict append Appends string values to the value of a key.
dict lappend Appends list elements to a list in the dictionary.
dict replace Replaces or adds key-value pairs in the dictionary.
dict remove Removes one or more keys and their values from the dictio-

nary.
dict merge Merges two or more dictionaries, with later keys overriding.
dict incr Increments the value of a key by a given amount.
dict with Updates the dictionary with variables scoped within a script.
dict for Iterates over the dictionary, assigning keys and values to vari-

ables in a loop.
dict keys Returns a list of all keys in the dictionary.
dict values Returns a list of all values in the dictionary.
dict size Returns the number of key-value pairs in the dictionary.
dict exists Checks if a key exists in the dictionary.
dict info Returns a human-readable string with information about the

internal representation of the dictionary.
dict map Transforms the dictionary according to the script, returning

a new dictionary.
dict filter Filters the dictionary based on keys, values, or script criteria,

returning a new dictionary.

A.1.4 Using Namespaces in Tcl for Modular Programming
In Tcl, ’namespaces’ are a fundamental concept used to encapsulate and organise
code into distinct modules or packages. They act as containers for grouping related
commands, variables, and other ’namespaces’, thus avoiding name collisions and
improving code reusability and maintainability. By using ’namespaces’, developers
can create modular applications where components can be developed, tested and
deployed independently[40].

126

Creating a ’namespace’ in Tcl is straightforward and can be achieved using the
’namespace’ command. Here’s a simple example:

1 namespace eval MyNamespace {
2 # Define variables and procedures within the namespace
3 variable myVar "Hello, Namespace"
4 proc myProc {} {
5 return "This is a procedure in MyNamespace"
6 }
7 }

Listing A.30: Example of creating a namespace in Tcl

In this example, the namespace ’MyNamespace’ contains a variable called
’myVar’ and a procedure called ’myProc’. To access these elements from outside
the namespace, you must use their fully qualified names, which include the
namespace name followed by two colons (::) and the element name. For instance,
’MyNamespace::myVar’.

Importing Namespaces
As software systems grow in complexity, modularisation becomes increasingly

important. Modularisation not only helps organise code but also enables code reuse
across different modules or projects. However, accessing commands or variables
defined in other ’namespaces’ can be cumbersome, as it requires prefixing the full
’namespace’ path to each call. Tcl’s importing mechanism simplifies this access,
making code more readable and maintainable.

Tcl offers the ’namespace import’ command, which allows importing com-
mands from one namespace to the current or another specified namespace. This
enables invoking commands without the need to prefix them with the namespace
path[40].

1 # Assume 'myUtilities ' namespace defines a procedure '
performCalculation '

2 namespace import myUtilities::performCalculation
3

4 # Now 'performCalculation ' can be directly called
5 performCalculation args

Listing A.31: Example of importing a namespace

127

A.1.5 Leveraging Lists in Tcl
Lists are a frequently used data structure in Tcl, providing a simple and powerful
way to store and manipulate ordered collections of items. The syntax is straightfor-
ward, and the built-in commands for list manipulation are extensive, making them
an essential tool in Tcl programming.

Lists can be created in Tcl either by directly specifying the elements within
braces or by using the ’list’ command. This flexibility allows for easy list construc-
tion and modification[39].

1 # Creating a list with braces
2 set myTestCases {TestCase1 TestCase2 TestCase3}
3

4 # Creating a list with the list command
5 set myParameters [list Parameter1 Parameter2 Parameter3]

Listing A.32: Examples of creating a list

Tcl provides the ’lindex’ command to access elements at specific indices in a
list. Tcl lists are zero-indexed, making the first element accessible at index 0.

1 # Accessing the first testcase
2 set firstTestCase [lindex $myTestCases 0]

Listing A.33: Example of accessing element in list

Tcl provides a comprehensive range of commands for managing lists, such as
linsert, lreplace, lappend, and lremove, catering to various needs for dynamic
list management[39].

1 # Appending a new TestCase
2 lappend myTestCases TestCase4
3

4 # Inserting a new parameter at the beginning
5 set myParameters [linsert $myParameters 0 NewParameter1]

Listing A.34: Example of lappend and linsert commands

A.1.6 Arrays
Tcl ’arrays’, also known as associative arrays, allow for the association of keys with
values, providing a more convenient way to access data using meaningful identifiers
instead of numeric indices. This feature is particularly useful in automated testing
scenarios, where parameters and results can be directly linked to specific TestCases
or configurations.

128

The creation and modification of arrays in Tcl are straightforward. Using the
’set’ command with the array name and key, one can easily assign values to specific
keys within an array[38].

1 # Assigning a value to a key in an array
2 set testResults("TestCase1") "Pass"
3 set testResults("TestCase2") "Fail"

Listing A.35: Initializing test outcomes in an associative array

To obtain a value from an array, you need to specify the array name and key.
The ’array get’ command can be used to retrieve all key-value pairs, which makes
it easy to iterate over the contents of an array[38].

1 # Retrieving a value using its key
2 set result1 $testResults("TestCase1")
3

4 # Getting all key-value pairs from an array
5 array get testResults

Listing A.36: Example of accessing array elements

A.2 ImageMagick: A Powerful Tool for Image
Processing in Automated Testing

ImageMagick is a versatile, open-source software suite that is widely recognised for
its ability to create, edit, compose, or convert bitmap images. It supports over 200
image formats, including popular ones such as JPEG, PNG, TIFF, and GIF, making
it an indispensable tool in software testing where image manipulation and analysis
are crucial[18].

Functionality and Features
ImageMagick offers a broad range of functionalities that are particularly useful

in automated testing of IVI systems:

• Conversion and Transformation: ImageMagick can convert images be-
tween formats, resize, rotate, apply various effects, and adjust image colours,
which is essential for preparing test artefacts and simulating different screen
scenarios.

• Image Comparison: One of its most powerful features is the ability to
compare images. This is invaluable in regression testing, where verifying the
consistency of UI elements after updates or changes is necessary. ImageMagick

129

can highlight differences between images down to the pixel level, providing a
visual aid to identify unexpected changes.

• Text and Graphics Handling: It can annotate images with text or overlay
graphics. This is particularly useful for adding labels or instructions directly
onto test images or for visualising test results[18].

Application in Automated Testing
In the context of automated testing for infotainment systems, ImageMagick is

used to automate several crucial tasks:

1. Automated Screenshots Verification: ImageMagick can automatically
process screenshots taken during tests to verify the correctness of the graphical
user interface against a baseline. This process is vital for ensuring that all
visual elements are displayed correctly across different system versions or after
software updates.

2. Batch Processing: The tool can handle batch processing of images, which
enables the testing framework to process large numbers of screenshots in an
automated and efficient manner. This capability significantly reduces manual
effort and speeds up the testing cycle.

Benefits in Infotainment Testing
Utilizing ImageMagick in infotainment system testing brings several benefits:

• Enhanced Accuracy: Automated image comparison helps in detecting UI
discrepancies that might be overlooked during manual testing.

• Efficiency: Automates repetitive tasks such as image conversions and adjust-
ments, allowing testers to focus on more complex test scenarios.

• Scalability: Supports handling large datasets of images, which is typical in
extensive testing phases of infotainment systems where numerous screen states
need to be validated.

130

B Appendices

B.1 Attached Files
readme.txt Description of attached files
Enyaq_Report Directory with sample report
TCs_ICAS3_SK_MEB13_EU_LHD Directory with TestCases
source
|_ Bachelor Thesis Sojka.zip Zip file of LATEX project
|_ Bachelor_Thesis_Sojka.tex Text of the work in LATEX format

131

	List of abbreviations
	Introduction
	Project Background
	Motivation
	Bachelor Thesis Goals

	Technical Background
	Electronic Control Units in Automotive Systems
	The Necessity of ECU Testing in Modern Vehicles

	Overview of In-Vehicle Infotainment Systems
	Evolution of In-Vehicle Infotainment Testing
	Testing Methods
	Manual Testing
	Automated Testing
	Regression and Performance Testing Methods for In-Vehicle Infotainment Systems

	Role of Automated Testing in Software Development
	Functional Safety in In-Vehicle Infotainment Systems: A Focus on ISO 26262

	Integration of Automated Testing
	GUI Development Process in In-Vehicle Infotainment Systems
	Life Cycle of the Screen
	Motivation for Improving GUI Development Processes
	Benefits of Integrating Automated Testing in GUI Development

	Foundations of Automotive Testing
	Introduction to CAN Bus
	CAN Bus Architecture
	CAN Bus Protocols

	Basics of CAN Bus in Automotive Testing
	Comprehensive Testing Methods for CAN Bus Systems
	Integration of On-Board Diagnostics in CAN Bus Systems
	Types of CAN Buses in Vehicles

	Introduction to Tcl Programming
	Overview of Tcl Language
	Advantages of Using Tcl for Infotainment System Testing
	Programming in Tcl

	Test Bench
	Overview of the Test Bench
	Hardware Components
	Windows PC
	Grabber
	CAN Case
	Manson Power Supply with Remote Control
	12V Power Supply
	PCAN-PCI Express
	LED Bar Signalisation
	Two Phones (One Android and One with iOS)
	Front Panel with All CAN Buses
	Quido by Papouch
	UPS
	Vehicle Units

	Software Components
	CANoe
	Grimr
	TestAut2
	Git Extensions

	System Architecture of Test Bench

	Implementation
	Understanding Code Structure
	Implementation Strategy

	Test Environment Setup
	Writing and Preparation of Test Scenarios
	Test Scenario Structure

	Setting Up the Screen
	Click Functions
	Checkbox Controls
	Dropdown Controls
	Slider Controls

	Screen Capture
	Screen Splitting
	Capturing Modes
	Understanding the 'endCondition' Parameter

	Comparison of New Images with Reference and Detection of Differences
	Case Study: Detecting and Analyzing Interface Discrepancies in HMI Updates
	Case Study: Identifying and Resolving Interface Bugs in HMI Updates

	Final Report on Automated Infotainment System Testing

	Results and Analysis
	Test Automation Results
	Limitations
	Test Automation Cost
	Exclusions in Cost Estimation
	List of Components and Their Costs

	Future Directions
	Transition to Android-Based Infotainment Systems
	Future Research and Development
	Speculative Outlook

	Conclusion
	References
	Appendices
	Tcl Syntax
	Loops in Tcl
	Mastering Functions in Tcl using 'proc'
	Harnessing the Power of Dictionaries for Efficient Data Management in Tcl
	Using Namespaces in Tcl for Modular Programming
	Leveraging Lists in Tcl
	Arrays

	ImageMagick: A Powerful Tool for Image Processing in Automated Testing

	Appendices
	Attached Files

