
FAKULTA MECHATRONIKY,
INFORMATIKY A MEZIOBOROVÝCH
S T U D I Í TUL

Bakalářská práce

Automatic infotainment testing

Studijní program: B0714A270001 Mechatronika
Autor práce: Michal Sojka
Vedoucí práce: Ing. Ekaterina Nyrobtseva

Ústav mechatroniky a technické informatiky

Liberec 2024

FAKULTA MECHATRONIKY,
INFORMATIKY A MEZIOBOROVÝCH
S T U D I Í TUL

Zadání bakalářské práce

Automatic infotainment testing

Jméno a příjmení: Michal Sojka
Osobní číslo: M21000054
Studijní program: B0714A270001 Mechatronika
Zadávající katedra: Ústav mechatroniky a technické informatiky
Akademický rok: 2023/2024

Zásady pro vypracování:

1. Familiarize yourself with the options for testing display units, especial ly in terms of
communicat ion interfaces and used protocols.

2. Get acquainted with the possibil it ies of creating automated tests.
3. Create an automated test and implement a tool for evaluating test results.
4. Describe the workflow for implementing f ixes.

Rozsah grafických prací:
Rozsah pracovní zprávy:
Forma zpracování práce:
Jazyk práce:

dle potreby dokumentace
30 až 40 stran
tištěná/elektronická
angličtina

Seznam odborné literatury:

[1] DOLEŽAL, Jan . Agilní prístupy vývoje produktu a řízení projektu: komplexně, prakticky a dle
světové praxe. Praha: Grada, 2022. ISBN 978-80-271-3705-3 .

[2] BUREŠ, Miroslav; RENDA, Miroslav; DOLEŽEL, Michal ; SVOBODA, Peter; GRÓSSL, Zdeněk et
al. Efektivní testování softwaru: klíčové otázky pro efektivitu testovacího procesu.
Profesionál. Praha: Grada, 2016. ISBN 978 -80 -247 -5594 -6 .

Vedoucí práce: Ing. Ekaterina Nyrobtseva
Ústav mechatroniky a technické informatiky

Datum zadání práce: 12. října 2023
Předpokládaný termín odevzdání: 14. května 2024

L.S.
prof. Ing. Zdeněk Plíva, Ph.D. doc. Ing. Josef Černohorský, Ph.D.

děkan garan t s tud i jn ího p rog ramu

V L ibe rc i d n e 12. října 2 0 2 3

Prohlášení

Prohlašuji, že svou bakalářskou práci jsem vypracoval samostat­
ně jako původní dílo s použitím uvedené literatury a na základě
konzultací s vedoucím mé bakalářské práce a konzultantem.

Jsem si vědom toho, že na mou bakalářskou práci se plně vz ta­
huje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 -
školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do
mých autorských práv užitím mé bakalářské práce pro vnitřní po­
třebu Technické univerzity v Liberci.

Užiji-li bakalářskou práci nebo poskytnu-li l icenci k jejímu využití,
jsem si vědom povinnosti informovat o této skutečnosti Technic­
kou univerzitu v Liberci; v tomto případě má Technická univerzita
v Liberci právo ode mne požadovat úhradu nákladů, které vyna­
ložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce
vložený do IS/STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má bakalářská práce bude zveřejněna Tech­
nickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998
Sb., o vysokých školách a o změně a doplnění dalších zákonů (zá­
kon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách
mohou vyplývat z porušení tohoto prohlášení.

30. dubna 2024 Michal Sojka

Automatické testování infotainmentu

Abstrakt

Tato baka lá ř ská práce se zaměřuje na au tomat izované tes tování

infotainment sys témů ve vozidlech. P ráce poskytuje teoret ický

popis zák ladů au tomat izovaného testování . Základ tvoř í architek­

tura vozu, sběrnice C A N a skriptovacího jazyka Tel. Seznámení s

procesem vývoje grafického uživatelského rozhran í je doplněno mo­

tivací ke zlepšení těch to procesů. N a základě t é to motivace práce

popisuje principy au tomat izovaného tes tování a jeho začlenění do

procesu vývoje grafického rozhraní . Zahrnuje dokumentaci testo­

vacího stavu (Test Bench) včetně hardwarových a softwarových

komponent. Je použi t jazyk Tel k vytvářen í testovacích funkcí a

scénářů (TestCases) k identifikaci chyb. Dále práce popisuje celý

proces tes tování a uvádí jeho výsledky.

Klíčová slova: Tel, C A N , Testování, Infotainment, G U I , Autom­

atizace, H M I , C A N o e

5

Automatic Infotainment Testing

Abstract

This bachelor's thesis focuses on the automated testing of in-vehicle

infotainment systems. The thesis provides a theoretical description

of the basis for automated testing. The basis consists of the vehicle

architecture, the C A N bus and the Tel scripting language. Famil­

iarity wi th the G U I development process is accompanied by a mo­

tivation to improve these processes. Based on this motivation, the

bachelor thesis describes the principles of automated testing and its

integration into the graphical interface development process. The

work includes documentation of the test bench (test rack), includ­

ing hardware and software components. The Tel language is used

to create test functions and scenarios (TestCases) for identifying

bugs in a graphical interface. The thesis describes the entire test­

ing process and reports the results.

Keywords: Tel, C A N , Testing, Infotainment, G U I , Automation,

H M I , C A N o e

6

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Ing.

Ekaterina Nyrobtseva, for her exceptional guidance throughout the

development of this thesis. Her meticulous review process and in­

sightful feedback have significantly improved the clarity and quality

of this work. I am particularly grateful for her perseverance in re­

fining the thesis and her assistance in correcting my grammatical

oversights.

I would also like to express my sincere thanks to Digiteq Automotive

for providing the necessary environment to carry out this project,

and to the members of the D T F - T Front-End Testing department

for their invaluable support and willingness to share their expertise

during my research.

Special thanks go to Ing. Tomas Zimmerhakl for his close coop­

eration and for providing essential information that contributed

greatly to this thesis.

7

Contents

List of abbreviations 12

1 Introduction 18

1.1 Project Background 19

1.2 Motivat ion 19

1.3 Bachelor Thesis Goals 20

2 Technical Background 22

2.1 Electronic Control Units in Automotive Systems 22

2.1.1 The Necessity of E C U Testing in Modern Vehicles 22

2.2 Overview of In-Vehicle Infotainment Systems 23

2.3 Evolut ion of In-Vehicle Infotainment Testing 25

2.4 Testing Methods 26

2.4.1 Manual Testing 26

2.4.2 Automated Testing 27

2.4.3 Regression and Performance Testing Methods for In-Vehicle

Infotainment Systems 28

2.5 Role of Automated Testing in Software Development 29

2.6 Functional Safety in In-Vehicle Infotainment Systems: A Focus on

ISO 26262 30

3 Integration of Automated Testing 32

3.1 G U I Development Process in In-Vehicle Infotainment Systems 32

3.2 Life Cycle of the Screen 33

3.3 Motivat ion for Improving G U I Development Processes 37

3.4 Benefits of Integrating Automated Testing in G U I Development . . . 38

4 Foundations of Automotive Testing 40

4.1 Introduction to C A N Bus 41

4.1.1 C A N Bus Architecture 41

4.1.2 C A N Bus Protocols 44

8

4.2 Basics of C A N Bus in Automotive Testing 48

4.2.1 Comprehensive Testing Methods for C A N Bus Systems 49

4.2.2 Integration of On-Board Diagnostics in C A N Bus Systems . . 50

4.2.3 Types of C A N Buses in Vehicles 50

4.3 Introduction to Tel Programming 51

4.3.1 Overview of Tel Language 51

4.3.2 Advantages of Using Tel for Infotainment System Testing . . . 53

4.3.3 Programming in Tel 54

5 Test Bench 55

5.1 Overview of the Test Bench 56

5.2 Hardware Components 57

5.2.1 Windows P C 57

5.2.2 Grabber 58

5.2.3 C A N Case 59

5.2.4 Manson Power Supply wi th Remote Control 59

5.2.5 12V Power Supply 60

5.2.6 P C A N - P C I Express 60

5.2.7 L E D Bar Signalisation 60

5.2.8 Two Phones (One Android and One wi th iOS) 61

5.2.9 Front Panel wi th A l l C A N Buses 61

5.2.10 Quido by Papouch 62

5.2.11 U P S 63

5.2.12 Vehicle Units 64

5.3 Software Components 65

5.3.1 C A N o e 65

5.3.2 Gr imr 66

5.3.3 TestAut2 66

5.3.4 Gi t Extensions 66

5.4 System Architecture of Test Bench 67

6 Implementation 69

6.1 Understanding Code Structure 69

6.1.1 Implementation Strategy 72

6.2 Test Environment Setup 73

6.3 Wri t ing and Preparation of Test Scenarios 75

6.3.1 Test Scenario Structure 75

6.4 Setting U p the Screen 77

9

6.4.1 Cl ick Functions 78

6.4.2 Checkbox Controls 79

6.4.3 Dropdown Controls 80

6.4.4 Slider Controls 81

6.5 Screen Capture 82

6.5.1 Screen Split t ing 83

6.5.2 Capturing Modes 85

6.5.3 Understanding the 'endCondition' Parameter 86

6.6 Comparison of New Images wi th Reference and Detection of Differences 87

6.6.1 Case Study: Detecting and Analyz ing Interface Discrepancies

in H M I Updates 89

6.6.2 Case Study: Identifying and Resolving Interface Bugs in H M I

Updates 91

6.7 F ina l Report on Automated Infotainment System Testing 93

7 Results and Analysis 96

7.1 Test Automation Results 96

7.2 Limitat ions 97

7.3 Test Automat ion Cost 98

7.3.1 Exclusions in Cost Est imation 99

7.3.2 List of Components and Their Costs 99

8 Future Directions 100

8.1 Transition to Android-Based Infotainment Systems 100

8.2 Future Research and Development 100

8.3 Speculative Outlook 101

9 Conclusion 102

References 104

A Appendices 109

A . l Tel Syntax 109

A . 1.1 Loops in Tel 117

A . 1.2 Mastering Functions in Tel using 'proc' 123

A . 1.3 Harnessing the Power of Dictionaries for Efficient Data M a n ­

agement in Tel 124

A.1.4 Using Namespaces in Tel for Modular Programming 126

A . 1.5 Leveraging Lists in Tel 128

10

A . 1.6 Arrays 128
A . 2 ImageMagick: A Powerful Tool for Image Processing in Automated

Testing 129

B Appendices 131

B . l Attached Files 131

11

List of abbreviations

A B T Anzeigebedienteil

A R Augmented Reality

A S I L Automotive Safety Integrity Levels

C A N Controller Area Network

C R C Cycl ic Redundancy Check

E C U Electronic Control Uni t

G U I Graphical User Interface

H M I Human Machine Interface

ID Identifier

IoT Internet of Things

IVI In-Vehicle Infotainment

M E B Modularer Elektrifizierungsbaukasten

M G B Modular FrameGrabber

O B D On-Board Diagnostics

Tel Tool Command Language

T C s Test Cases

UI User Interface

V 2 X Vehicle-to-Everything

V W Volkswagen

List of Figures

2.1 A n example of Škoda Infotainment tested wi th automated methods . 24

3.1 Life cycle of a G U I screen in infotainment system development 36

3.2 Flowcharts showing the different screen life cycle processes of manual

and automated testing in the G U I development 38

4.1 C A N bus twisted pair cable 42

4.2 Signal levels in a C A N Bus 43

4.3 C A N bus termination resistors 43

4.4 The figure shows the structure of a C A N 2.OA (Standard Format)

message frame, detailing the fields involved in data transmission . . . 45

4.5 The figure shows the structure of a C A N 2.OB (Extended Format)

message frame, detailing the fields involved in data transmission . . . 46

5.1 Test bench for automated testing 55

5.2 High-performance Windows P C 57

5.3 Modular FrameGrabber (M G B) 58

5.4 Vector C A N Case 59

5.5 Power supply of Manson company 59

5.6 12V power supply 60

5.7 Example of the front panel implemented in a test bench 61

5.8 Front panel connection design 62

5.9 Quido E T H 2/16: 2 inputs, 16 outputs and thermometer 63

5.10 Uninterruptible power supply (UPS) 63

5.11 Skoda Enyaq infotainment unit 64

5.12 Škoda Enyaq 13" A B T 64

5.13 Škoda Enyaq Gateway unit 65

5.14 Diagram of the power source of the test bench components 67

5.15 Hardware connection schematic 68

5.16 Software connection diagram 68

13

6.1 The code hierarchy within the H M I library 69

6.2 Example of code hierarchy for F327 project (Enyaq) 71

6.3 Interface of TestAut2 73

6.4 Illustration of the ' O F F ' and ' O N ' status of checkboxes 79

6.5 Displaying the transition states of checkboxes for system preferences . 79

6.6 View of the dropdown control in the Enyaq infotainment system . . . 80

6.7 Expanded view of the Speed Alert settings dropdown 80

6.8 Audio settings slider controls 81

6.9 Infotainment display segmentation 84

6.10 Focused testing of the driving data homescreen tile 84

6.11 Exact match verification: Green indicates identical screens 87

6.12 Minor discrepancy detected: Yellow for under 1% pixel difference . . 87

6.13 Significant variation: Red for over 1% pixel difference 88

6.14 Manual review required: Blue when reference is missing 88

6.15 Error indication: Highlighted when a test issue occurs 88

6.16 Reference image 90

6.17 Image of new H M I update 90

6.18 Differential image 90

6.19 Reference image 91

6.20 Image of new H M I update 91

6.21 Differential image 92

6.22 A n example of the numerical result of one of the tests 93

6.23 Sample part of the final report 95

14

List of Tables

6.1 TestCase parameters description 75

6.2 Overview of capturing modes 85

A . l Overview of fundamental operations in Tel 113

A.2 Summary of Tel ' d i e t ' command options 126

15

Listings

6.1 Testing the G U I of the headlight controls on the IVI 's touchscreen . . 76

6.2 Implementation example for endCondition 86

A . l Comments example 109

A.2 Command example 109

A . 3 Command to print "Hello Tel Wor ld" in Tel 110

A.4 Variable substitution 110

A.5 Example of command substitution 110

A.6 Example of removing variable I l l

A . 7 Example of expr command in Tel I l l

A.8 Implementing basic arithmetic operations 112

A . 9 Simulating volume adjustment based on vehicle speed 112

A . 10 Implementing conditional logic 113

A . 11 Example of using bitwise operators 115

A . 12 Example of implementing relational operations 116

A . 13 Template of a Tel 'for' loop 117

A . 14 Example of 'for' loop in Tel 117

A . 15 Template of a Tel 'foreach' loop 118

A . 16 Example of 'foreach' loop in Tel 119

A . 17 Output of 'foreach' example 119

A . 18 Template of a Tel 'while' loop 119

A . 19 Programming your way to graduation: A Bachelor's thesis progress

simulator in Tel 120

A.20 Template of a Tel 'switch' command[42] 121

A.21 Practical example of a Tel 'switch' command 122

A.22 Template of a Tel 'proc' command 123

A.23 Template of calling procedures 123

A.24 Example of a simple procedure 123

A.25 Example of a simple procedure with 'return' command 124

A.26 Example of creating a dictionary 124

16

A.27 Example to access a value in a dictionaryl 124

A.28 Example of 'diet set' and 'diet unset' commands 125

A.29 Example of 'diet for' command 125

A.30 Example of creating a namespace in Tel 127

A.31 Example of importing a namespace 127

A.32 Examples of creating a list 128

A.33 Example of accessing element in list 128

A.34 Example of lappend and linsert commands 128

A.35 Initializing test outcomes in an associative array 129

A.36 Example of accessing array elements 129

17

1 Introduction

It took humanity almost 200,000 years to invent the wheel. Six thousand years

later, humankind tainted the Earth's surface wi th first cars and 83 years after that;

humankind reached the Moon's surface. Today, technology is advancing at an in­

credible pace, affecting every industry, including the automotive. In the context

of increasing competition and ever-changing consumer preferences, the automotive

industry has begun to look for innovative ways to attract and retain the attention of

its customers. One of the key elements that has become an integral part of modern

vehicles is the infotainment.

Modern in-vehicle systems not only give vehicles a luxurious look but also pro­

vide an interactive experience that meets the needs and expectations of drivers and

passengers. This segment of the car is changing the way people experience their

journeys. Today, in-vehicle infotainment is more than just a radio that plays ra­

dio tunes. It provides the user wi th the complete experience of information and

entertainment. From intuitive touchscreens and voice control to connectivity with

smart devices. It gives the driver greater awareness of the car's behaviour, allowing

them to control a range of systems including handling, comfort systems such as air

conditioning and entertainment systems such as listening to music or podcasts[31].

Infotainment is becoming an increasingly complex and sophisticated part of the

car. A s a result, there is an increasing need to ensure the reliability and functionality

of these systems. Individual systems are tested for functionality. But an essential

part of this is transferring this information to the car's display, the direct interface

between the user and the infotainment system. This graphical display requires

proper testing. This process is known as Human Machine Interface (HMI) testing.

Failure to display the correct information could prevent one of the systems from

working properly or make it impossible to set up. It can also affect the overall

driving experience.

IoT connectivity is also becoming increasingly common in the automotive sec­

tor. Modern in-vehicle infotainment systems connect wi th all the smart automotive

technologies like Advanced Driver-Assistance Systems, V 2 X connectivity solutions,

18

telematics devices, smartphones, sensors, etc., and integrate them to provide a great

driving experience. This integration leads to more screens showing on the car's dis­

play, subsequently increasing the demand to test. Today's cars can display up to

1.000 of these unique screens[31].

1.1 Project Background

Building on the theoretical foundations set out in the introduction, this section looks

at the specific environment in which the research and development for this thesis

unfolded - Digiteq Automotive.

Digiteq automotive is dedicated to developing automotive innovations such as

autonomous driving, connectivity, electromobility, and digitalisation. The company

was founded in 2001 and has become a strategic partner to members of the Volk­

swagen (V W) Group.

In response to the increasing demands on software and electronic systems in

automobiles, Digiteq Automotive focuses on testing methodologies. It combines

modern approaches wi th proven testing methods to ensure efficiency, sustainability

and maximum value for their customers. Testing services include component testing,

integration testing and full vehicle testing using vir tual reality, virtualisation and

simulation [9].

The automotive industry is undergoing a period of transformation driven by

rapid technological advances. In-vehicle infotainment (IVI) systems are becoming

more sophisticated and complex, and the process of testing these systems is be­

coming more demanding. However, the customers demand for the quality and test

agility to remain the same, and traditional test methodologies cannot keep pace

wi th the complexity of today's IVI systems.

Therefore, test methodologies must evolve to maintain their quality and financial

viability. A n automated testing system would reduce the need for human resources

and lead times, while improving quality, efficiency and performance[28, 1].

1.2 Motivation

Part of the development of the infotainment's graphical user interface (GUI) is

testing. This has mainly been done manually, wi th the tester going through the

screens in several rounds and visually checking them. However, as mentioned above,

IVI systems are advancing in complexity and in the richness of their content. As

a result, the testing process is becoming more tedios and more expensive. This is

19

reflected in the final price of the car. The aforementioned system dynamics also

increase the chances of human error and the tester missing some bugs. The manual

testing process and its limitations are described in subsection 2.4.1.

This is why most companies today are trying to introduce an element of automa­

tion into their processes. A machine can easily perform less demanding or repetitive

tasks. When automation is well integrated, processes can be streamlined, and large

numbers of screens can be tested on a regular basis in shorter periods compared

to manual testing. Last but not least, automated testing is generally cheaper than

manual testing, making it also financially beneficial for companies [19].

1.3 Bachelor Thesis Goals

The overarching goal of this Bachelor's thesis is to harness analytical skills for de­

veloping an array of test functions and scenarios. These wi l l establish a foundation

for future progress in the field of automated testing of IVI systems. The core objec­

tive of these tests is to meticulously uncover and catalog bugs in the infotainment

G U I . Beyond mere detection, this work aims to outline the workflows for rectifying

identified issues, thereby enhancing system reliability.

In parallel, the thesis aspires to inject innovative ideas and systematic optimi­

sations into the testing process. These improvements are envisioned to streamline

procedures, bolster test efficiency, and yield cost-effective strategies in automated

testing.

Specific Goals

1. Theoretical Framework

Provide a theoretical description of key components, including vehicle

architecture, Controller Area Network (C A N) bus and Tel scripting language,

to provide a basis for automated testing.

2. Integration into G U I Development

Gain an understanding of the G U I development process and identify issues

and opportunities for improvement.

3. Test Bench Documentation

Create documentation of the test bench, including hardware and software

components, to enable a full understanding of the test environment.

20

4. Results Reporting

Describe detailed reporting of automated testing results, including identifica­

tion and classification of errors, to ensure transparency and accountability.

Subgoals

1. Efficiency and Cost-effectiveness

The aim is to evaluate the efficiency and cost-effectiveness of automated test­

ing compared to manual testing, and to highlight the potential benefits to

organisations in terms of time, accuracy and overall financial savings.

21

2 Technical Background

A detailed examination of automated testing for IVI systems reveals a dynamic

interplay of disciplines. The precision of software engineering, the analytical rigor of

system analysis, and the creative insights of user experience design all contribute to

developing technologies that enhance the functional aspects of infotainment systems

and their interaction with users. The convergence of knowledge and technique is

crucial for advancing the capabilities of these systems, with the goal of achieving

optimal performance and reliability in the rapidly evolving automotive industry.

2.1 Electronic Control Units in Automotive Systems

A n Electronic Control Uni t (E C U) is a critical component in modern vehicles,

acting as the brain behind their many automated features and systems. A n E C U

is essentially a microcontroller-based device embedded in the vehicle's electronics

that manages and controls a wide range of vehicle functions. These include engine

management, transmission operation, airbag deployment and much more. As

automotive technology has advanced, the complexity and number of E C U s in

a vehicle has increased significantly, reflecting the greater integration of digital

control technologies into automotive design[47].

2.1.1 The Necessity of ECU Testing in Modern Vehicles

Testing E C U s is paramount for several reasons:

• Functionality Assurance: Ensuring that each E C U performs its designated

functions correctly, thereby guaranteeing the vehicle operates as intended.

• Safety Verification: Vehicles rely heavily on E C U s for the management of

critical safety systems. Testing ensures these units operate reliably under all

conditions, protecting passengers from system failures.

22

• Compliance and Standards: Automotive manufacturers must adhere to

stringent regulatory standards, which include rigorous testing of E C U s to meet

safety, emissions, and operational guidelines.

• Reliability and Durability: E C U s control systems essential for the long-

term performance and durability of the vehicle. Testing helps identify poten­

t ial failures that could degrade the vehicle's functionality over time.

• Software Integration: W i t h the increasing role of software in automotive

systems, E C U s must be tested to ensure new software updates integrate seam­

lessly without disrupting existing functionalities.

As vehicles become more integrated with electronic systems, the role of E C U s

becomes increasingly important. One of the most important E C U s in modern

vehicles is the infotainment unit. This system enhances the driving experience

by integrating entertainment, information delivery and user interface technolo­

gies into a single system. Testing the infotainment E C U is critical not only for

functionality and user experience, but also for its interactions with other vehicle sys­

tems to ensure that it operates seamlessly within the broader automotive ecosystem.

Given their centrality to both driver engagement and vehicle functionality, in­

fotainment units present a unique mix of challenges and opportunities for automo­

tive technology developers. The following sections delve into the specific aspects of

in-vehicle infotainment systems, exploring their development, integration and the

specialised testing methodologies developed to ensure these systems meet both user

expectations and stringent automotive standards.

2.2 Overview of In-Vehicle Infotainment Systems

Automotive infotainment systems have evolved from simple radios to sophisticated

multimedia centres, transforming vehicles into interactive environments. Infotain­

ment, a portmanteau of 'information' and 'entertainment', refers to the vehicle sys­

tem that provides essential driving information and guidance. The I V I system is

an integrated system that supports automobile navigation, connection wi th digital

multimedia broadcasting, instrument panel, radio, multimedia, various sensors, and

external devices [6].

23

IVI systems have changed the way we perceive the road and driving. Travelling

is no longer just about getting from A to B . B y using and interacting with these

systems, the car crew can also make time on the road more enjoyable. A s illustrated

in Figure 2.1, modern infotainment systems integrate a variety of functionalities,

seamlessly combining entertainment and information delivery to enhance the driver's

experience.

One of the most important elements of IVI is the user interface (UI), which should

be clear and intuitive for the crew. The U I of an IVI system is the medium through

which drivers and passengers interact with the myriad of features on offer. In the

past, there were physical knobs and buttons in the car. Today, these are increasingly

being replaced by sophisticated touch screens and voice recognition systems.

As technology advances, I V I systems are no longer an isolated unit but are inte­

grated to communicate wi th external networks and technologies. These new trends

include augmented reality (AR) displays, Art i f ic ia l Intelligence-based personalisa­

tion or integration with smart home devices [33].

Figure 2.1: A n example of Skoda Infotainment tested wi th automated methods[34]

Despite these advances, IVI systems encounter significant challenges. They face

issues related to user distraction, cyber security and the rapid pace of technology

obsolescence. Most I V I units are delivered from the factory, and correct operation

must be ensured throughout the life of the vehicle, which is a very difficult challenge.

24

Third-party applications must be run in an environment that does not interfere with

the vehicle and compromise passenger safety. These and many other obstacles then

present challenges that developers and designers must look at and consider during

development [22].

2.3 Evolution of In-Vehicle Infotainment Testing

Initially, IVI systems were relatively simple, comprising basic audio and radio func­

tionalities. Testing these systems primarily involved manual methods where testers

would interact wi th the infotainment system and manually check each function. This

manual testing process included checking user interfaces, audio outputs, radio func­

tionality and basic connectivity features. Testers had to physically manipulate the

systems' controls, such as buttons and knobs, to ensure that each function worked

as intended. Whi le straightforward, this approach was time-consuming and prone

to human error, especially as systems became more complex with the integration of

features such as navigation and Bluetooth connectivity.

W i t h the advent of advanced technologies, IVI systems began to incorporate

sophisticated features such as touchscreen interfaces, voice recognition and integra­

tion with smartphones and other devices. The complexity of testing increased sig­

nificantly as these systems now required validation of complex software algorithms,

user interface responsiveness and seamless connectivity wi th external devices[32].

To address these challenges, the industry has begun to move towards automated

testing methodologies. Automated testing involves the use of software tools and

scripts to perform tests on the infotainment system without the need for constant

human intervention. For example, a common automated test might involve a script

that simulates user input on a touchscreen interface to test its responsiveness and

accuracy. Other automated tests could include voice command recognition, Blue­

tooth connectivity checks and performance assessments under various simulated

conditions[46, 48].

25

2.4 Testing Methods

In the field of IVI system development, testing methods play a pivotal role in en­

suring the functionality, reliability, and user experience of these intricate systems.

This section outlines the various approaches employed to meticulously evaluate each

aspect of infotainment systems, encompassing both manual and automated testing

strategies. B y examining these methodologies, we gain a comprehensive understand­

ing of how each testing type contributes to the final product's efficacy and safety.

2.4.1 Manual Testing

Manual testing is a traditional approach where testers interact directly wi th the

infotainment system and perform tests manually. This method often requires a

tester to interact wi th the system gular user would, checking for usability,

functionality and any anomalies.

K e y Aspects of Manual Testing:

1. User Experience Evaluation

Testers assess the system's interface for user-friendliness, responsiveness, and

intuitiveness.

2. Physical Interaction

Testers engage wi th physical components like buttons, touchscreens, and knobs

to ensure their proper function.

3. Observation-Based

This method relies heavily on the tester's attention to detail and ability to

notice issues.

Limitations:

• Time-consuming Review: The process can be lengthy and laborious, re­

quiring a significant investment of human resources.

• Vulnerability to H u m a n Error: Al though skilled, testers are susceptible to

the vagaries of human nature, including oversights, particularly when personal

concerns interfere with professional focus.

• Inconsistency in Repetition: Humans, unlike machines, may struggle to

maintain consistent performance across repetitive tasks or extensive test suites,

wi th fatigue and loss of concentration affecting the consistency of results.

26

2.4.2 Automated Testing

Automated testing uses software tools and scripts to perform tests on the info­

tainment system without constant human intervention. It is particularly useful

for repetitive tasks, regression testing and scenarios that are difficult to simulate

manually.

K e y Aspects of Automated Testing:

1. Scripted Scenarios

Testing is performed using pre-defined scripts that simulate user input and

system interactions.

2. Regression Testing

Automated testing handles regression testing efficiently, ensuring that new

changes do not break existing functionality.

3. Performance Testing

Can simulate demanding conditions to test system performance and stability

under load.

4. Consistency

Provides consistent test execution, eliminating human error.

The benefits:

• Efficiency and Speed: Automated testing is more efficient and faster than

manual testing, allowing for rapid validations.

• Continuous Operation: Can run continuously and handle large volumes of

tests without the need for constant human oversight.

• Suitability for Complexity: Ideal for complex systems that have extensive

testing requirements due to their intricate functionalities.

Challenges:

• Initial Setup and Development: The ini t ial setup and script development

can be time-consuming, requiring careful planning and resource allocation.

• Ongoing Maintenance: Requires consistent maintenance to keep scripts up

to date wi th system changes, ensuring reliability.

27

• Limitations in Experience Capture: M a y not adequately capture user

experience or the visual aspects of the interface, potentially missing subtle yet

crit ical user interactions.

Figure 3.2 provides a comparative overview of manual versus automated testing

processes, highlighting the efficiency gains achieved through automation.

2.4.3 Regression and Performance Testing Methods for In-
Vehicle Infotainment Systems

When testing IVI systems, it is important to use a variety of test methods to ensure

that the system meets the high standards expected by the automotive industry.

In automotive infotainment, various testing methodologies are employed, including

unit testing, integration testing, and system testing. These techniques complement

our focus on regression and performance testing, ensuring a comprehensive evalua­

tion of system robustness and functionality.

Regression Testing

Regression testing is a software testing method that verifies the correct func­

tioning of previously developed and tested software after it has been modified or

interfaced wi th other software. In the context of IVI systems, regression testing is

crucial whenever updates are made to the system's software, including the imple­

mentation of new features, bug fixes, or performance improvements. The primary

goal of regression testing is to identify any unintended side effects caused by the

latest code changes and to ensure that the new software version does not regress in

terms of functionality and stability.

1. Purpose

The purpose of this task is to verify that updates or changes have not neg­

atively impacted existing functionalities. This task applies to any software

update or change.

2. Methodology

The methodology typically involves rerunning a set of predefined tests on the

updated software to compare the results wi th previous test runs. Automated

testing tools are often used to facilitate this process, given the repetitive nature

of the tests.

28

3. Application

After software updates, patches, or enhancements are applied, system stability

and functionality are validated.

Performance Testing

Performance testing evaluates the speed, responsiveness, and stability of a system

under a particular workload. It is critical for IVI systems where users expect a

seamless and responsive interface for navigation, entertainment, and communication

features. Performance testing helps identify bottlenecks and areas for optimisation

to ensure the system meets the performance standards required for a smooth user

experience.

1. Purpose

To assess the system's responsiveness, stability, and scalability, ensuring it can

handle the expected load wi th acceptable performance levels.

2. Methodology

Includes simulation of various scenarios that an infotainment system may en­

counter during its lifetime, such as system operation in extreme weather condi­

tions, increased workload due to complex operations, frequent device reboots,

or high user activity. System performance is then evaluated, including load

time, processing speed, and memory usage.

3. Application

Essential during the development phase to benchmark the system's perfor­

mance and after any significant updates to ensure the new features do not

degrade the system's overall performance.

2.5 Role of Automated Testing in Software

Development

Automated testing improves the process of ensuring software quality by moving be­

yond traditional, manual testing approaches. It provides a systematic, repeatable,

and scalable solution to meet the rigorous demands of modern software develop­

ment. Through the use of specialised software tools, automated testing enables the

execution of a series of tests on the software application to assess its functionality,

performance, and compliance wi th specified requirements. Unlike manual testing,

which relies on human effort to perform tests, automated testing uses scripts and

tools to perform these tests efficiently and consistently over multiple iterations.

29

A key benefit of automated testing is its ability to be reused. Once a TestCase

(TC) has been developed, it can be executed repeatedly over time, providing consis­

tent results. This reusability not only saves significant time and resources but also

ensures a higher level of test accuracy throughout the software life cycle.

The role of automated testing is essential in the development of IVI systems.

It serves as a cornerstone for improving software quality, accelerating development

schedules, and effectively managing the inherent complexity of the system. A u ­

tomated testing enables developers to consistently achieve and maintain a supe­

rior standard of reliability and performance. This is critical to meeting the ever-

increasing expectations of consumers in the automotive industry, where the sophis­

tication and integration of infotainment systems are constantly evolving.

2.6 Functional Safety in In-Vehicle Infotainment

Systems: A Focus on ISO 26262

Functional safety is a crucial aspect of automotive development. It ensures that

electronic and electrical systems, including IVI systems, operate safely even in

the event of system failures. ISO 26262, t i t led 'Road vehicles - Functional

safety', is an international standard for ensuring the functional safety of electrical

and electronic systems in production automobiles. This section examines the signif­

icance of ISO 26262 in relation to IVI systems, wi th a focus on its requirements,

implementations, and impact on safety protocols[30].

ISO 26262 Overview

ISO 26262 provides a framework for ensuring system safety throughout the life

cycle of automotive development, from design to decommissioning. It addresses

possible hazards caused by malfunctioning electronic systems and prescribes

requirements for safety management, development, production, operation, service,

and decommissioning [3 7].

Applicability to In-Vehicle Infotainment Systems

ISO 26262 primarily focuses on critical automotive systems such as steering

and braking. However, it also applies to infotainment systems due to their indirect

impact on vehicle safety. The standard examines how unexpected behaviors in an

infotainment system might distract the driver or malfunction in ways that could

lead to safety risks[30].

30

Safety Integrity Levels

ISO 26262 defines several Automotive Safety Integrity Levels (ASILs) , which are

used to classify the necessary safety measures required to handle potential risks. The

levels range from A S I L A (lowest) to A S I L D (highest), depending on the severity,

exposure, and controllability of the hazard. However, quality management practices

are essential to ensure that the system is reliable, user-friendly, and does not distract

the driver or interfere with the operation of safety-critical systems.

Consider an infotainment system in an autonomous vehicle. This system,

primarily used for navigation, entertainment, and vehicle settings, might be

classified as Q M (or level A) because its failure is unlikely to result in a direct

safety hazard. However, quality management practices are essential to ensure that

the system is reliable, user-friendly, and does not distract the driver or interfere

wi th the operation of safety-critical systems[30].

Implementing ISO 26262

Implementation of ISO 26262 in infotainment systems involves:

• Hazard analysis and risk assessment to identify potential safety issues.

• Development of safety requirements to mitigate identified risks.

• Integration of safety mechanisms during the hardware and software design

phases to ensure robust error handling and fault tolerance.

• Continuous validation and verification processes to confirm safety standards

are met throughout the development cycle.

31

3 Integration of Automated Testing

The integration of automated testing into the I V I system development process rep­

resents a significant improvement in the pursuit of quality, reliability and efficiency.

This chapter explores the key role of automated testing, with a particular focus on

the screen life cycle and workflow within the G U I development process.

3.1 GUI Development Process in In-Vehicle

Infotainment Systems

A specialised external entity wi thin the V W Group developed the core software that

powers the infotainment units. This entity is responsible for delivering updates and

new versions of the software, commonly referred to as the "model", to all members of

the V W Group at pre-determined intervals. Subsidiaries, such as Skoda Auto , take

this basic software and customise it to reflect their unique brand identity and user

experience expectations through a process known as "skinning". This customisation

is critical to differentiating each brand within the V W Group and is meticulously

carried out by Digiteq Automotive for Skoda Auto .

Skinners focus on the aesthetic and interactive aspects of the infotainment sys­

tem's G U I . Their expertise lies in strategically placing interface elements such as

icons, text, buttons, checkboxes and sliders to ensure an intuitive and responsive

user experience. Unlike developers, who may focus on the underlying functionality

of the system, skinners prioritise how these elements look and feel to the user, en­

suring that every interaction is fluid and seamless. The culmination of their efforts

results in a distinctive "skin" for the infotainment system, representing the visual

and interactive blueprint of the model[21].

32

3.2 Life Cycle of the Screen

This section introduces the concept of the G U I screen life cycle in the context of

IVI systems. It emphasizes the critical phases that each screen undergoes from

conception to completion. The life cycle is integral to ensuring that each graphical

interface meets the rigorous usability and aesthetic standards required in today's

automotive industry.

Overview

• The life cycle begins wi th the Initial Concept where the screen is conceptual­

ized and basic functionality is outlined.

• Following this, the screen enters various Development and Testing Phases,

which include skinning, iterative reviews, and multiple testing rounds to refine

functionality and aesthetics.

• The final phases involve Validat ion and Deployment, where the screen is rigor­

ously tested in real-world scenarios and prepared for integration into the final

product.

This overview sets the stage for a detailed exploration of each stage in the text

below, where we wi l l visually map these processes using Figure 3.1 to provide a

clearer understanding of the intricate processes involved.

Graphical Visualization of Screen Life Cycle in G U I Development

When developing graphical user interfaces for IVI systems, the screen life cycle

is a critical process that ensures each screen is designed, tested and refined to meet

stringent quality standards. This life cycle can be complex, involving several stages

from init ial concept to final testing. Figure 3.1 illustrates these stages in flowchart.

Let us examine each stage to understand its role in the G U I development process.

New State

The life cycle of a screen begins in the "new" state, where the init ial setup is

created. This stage is crucial in laying the groundwork for what wi l l become a fully

functional G U I element. A t this point, the screen contains only placeholders with

no functional elements.

33

Open State

After completing the basic setup, the screen transitions to the "open" state

and is assigned to a skinner, as previously mentioned. Skinners are specialists

who are known for their expertise in the aesthetic aspects of the G U I . They focus

on customizing the screen by rigorously applying predefined design guidelines

to enhance functionality and visual appeal. This includes integrating elements

such as icons, buttons, and other interactive components that are essential for a

user-friendly interface.

Waiting States

During the skinning process, the screen may enter various waiting states if ad­

ditional customisation or resources are required:

• Waiting for Model: The screen is waiting for further model refinement.

• Waiting for Resources: Addi t ional resources, such as high-resolution im­

ages or custom icons, are required.

• Waiting for Supplier: External suppliers may need to provide components

or information.

These wait states highlight potential bottlenecks in the development process

where delays may occur.

Skinning State

After receiving the necessary inputs, the screen returns to the skinning phase.

This iterative approach allows for continuous refinement and ensures that every

element on the screen is perfectly integrated and aligned wi th the overall design

objectives.

Ready for Testing

Once the skinning is complete, the screen enters the "ready for testing" phase.

The screen is rigorously tested for functionality, usability and consistency with

other G U I components. A n y issues identified at this stage are critical as they can

have a significant impact on the user experience.

34

Reopened

If errors are found, the screen status is changed to "reopened" and sent back

for further adjustments. This stage is crucial for quality control, ensuring that no

faulty screens make it into the final product.

Tested

Screens that pass ini t ial tests are labelled as "tested" and progress to a second

testing phase with updated software and H M I versions. Retesting frequently takes

place in a real car prototype to verify their functionality in real-world conditions.

This ensures that GUIs remain reliable following system updates.

Test Completed

Successfully tested screens are marked as "test completed", indicating that they

are ready to be included in the final version of the infotainment system. This

label signifies that the screen has met all required specifications and is expected to

perform reliably in the field.

Cancelled

Occasionally, a screen may be cancelled due to various reasons such as changing

project scopes or technical infeasibility. This status ensures resources are efficiently

allocated by discontinuing work on elements that no longer meet the project's needs.

35

This figure depicts the sequential stages each G U I screen undergoes from con­

ception to completion, highlighting key processes such as skinning, testing, and final

approval.

NEW

READY FOR TESTING

T E S T C O M P L E T E

WAITING FOR MODEL

WAITING FOR

R E S O U R C E S

WAITING FOR

SUPPLIER

Figure 3.1: Life cycle of a G U I screen in infotainment system development

Understanding and managing the screen life cycle is crucial for developing effec­

tive and reliable IVI systems. Each stage of the process serves a specific purpose

and contributes to the overall quality of the final product. This ensures that the

system not only looks good but also functions seamlessly, enhancing the in-vehicle

experience for users.

36

3.3 Motivation for Improving GUI Development

Processes

The workflow for developing and validating G U I components is generally robust,

taking each screen from inception to a fully tested state. However, this process

faces its greatest challenges not during the init ial development or testing phases

but afterwards. Once a screen has completed its testing cycle, it transitions to a

"test complete" status, at which point skinners and testers typically complete their

work on that particular component. However, the evolution of the G U I does not

stop there; it requires ongoing updates to the software and H M I to meet evolving

requirements and incorporate new features.

The process becomes particularly complex when updates are introduced by an

external entity wi thin a larger automotive group, such as the V W Group, which

includes a variety of brands wi th their own specific requirements, such as Skoda

Auto , Seat, Volkswagen and others. Whi le these updates are intended to improve

the system, they can inadvertently introduce discrepancies or bugs into screens that

have previously been verified and marked as complete. Such issues can manifest

themselves following updates to the H M I or software, potentially altering screen

elements in unintended ways. Whether it is a noticeable discrepancy, such as missing

text or icons, or more subtle issues, such as slight misalignments or shifts in graphical

elements, detecting these issues post-update is a significant challenge.

Due to the complexity of the G U I and the numerous screens, each wi th its unique

settings and configurations, it is impractical and time-consuming to manually retest

each screen for potential issues after every update. This highlights the need for

refining G U I development and testing methodologies.

The progress of software and H M I requires a more agile and responsive approach

to G U I testing and development. It highlights the need for an integrated testing

framework that can dynamically adapt to software updates, ensuring that previ­

ously completed screens remain error-free despite changes elsewhere in the system.

The motivation for improving G U I development processes arises from the need to

streamline update and testing cycles, reduce manual testing efforts, and enhance

the overall quality and reliability of the G U I in infotainment systems[21].

37

3.4 Benefits of Integrating Automated Testing in

GUI Development

The integration of automated testing into the G U I development process represents

a significant change in the way infotainment systems are tested, optimised, and

maintained. Unlike traditional manual testing methods, which typically involve a

l imited number of test rounds and sporadic user testing sessions, automated testing

provides a consistent, systematic approach to identifying and resolving issues. This

section explores the profound benefits of adopting automated testing in G U I devel­

opment, highlighting the frequency of testing screens once a week as opposed to the

two rounds of manual testing and occasional user testing iterations.

Flowchart of Manuat Testing

1st Round ofTesting

2nd Round of Testing

READY FOR TESTING

Flowchart of Automated Testing

Mew HMI version

Automated test

READY FOR TESTING
TESTED

TEST COMPLETE

TEST COMPLETE

Figure 3.2: Flowcharts showing the different screen life cycle processes of manual
and automated testing in the G U I development

Benefits of Automated Testing in Comparison with Manual One

In the dynamic field of I V I systems, automated testing is a method that stands

out due to its ability to streamline development and ensure high-quality outputs.

This method not only accelerates the testing process but also enhances the focus

on innovation and user experience, aligning perfectly wi th the industry's goals for

rapid development and robust software performance.

38

• Consistent Quality Assurance: Automated testing performs evaluations

of G U I screens weekly, ensuring that any changes or updates are regularly

scrutinised. This consistency leads to the early detection of bugs and issues

that might otherwise go unnoticed unti l later stages of development or worse,

after deployment.

• Efficiency and Time Savings: Manual testing is time-consuming and

labour-intensive, often requiring significant human resources to conduct two

rounds of testing in addition to user testing phases. Automated testing signif­

icantly reduces the manpower and time required, by performing assessments

weekly, freeing up resources for other critical development tasks.

• Comprehensive Coverage: Automated testing can test every screen and

interaction within the G U I every week, providing a level of coverage that is

vir tually impossible to achieve wi th manual testing. This thoroughness ensures

that even the smallest inconsistencies or errors are identified and fixed.

• Objective Results: Automated testing is not subject to human error or

bias, providing objective, consistent results week after week. This objectivity

is essential for maintaining high standards of quality and functionality in G U I

development.

39

4 Foundations of Automotive Testing

Developing and testing IVI systems requires the use of appropriate tools and

protocols to ensure product reliability and functionality. This chapter examines two

essential components of automotive testing: the C A N bus and the Tel programming

language.

The Role of C A N Bus

Infotainment testing requires the use of the C A N bus to simulate real-world

scenarios where multiple vehicle subsystems communicate simultaneously. The

C A N bus is used to simulate various C A N messages that are vi ta l for operational

tests, such as displaying infotainment content or managing vehicle states. For

example, the signal "Klemme 15" is critical for indicating the ignition status of the

vehicle. If the Klemme states (for example, Klemme 15 or Klemme 30) indicate

that the engine is off, some infotainment screens may not be visible or operational.

This can affect the user experience and functionality tests. To stay ahead of the

curve and gain a deeper understanding, it is beneficial to refer to section 4.1 Intro­

duction to C A N Bus, which covers the foundational aspects of C A N bus technology.

The Importance of Tel Programming

We use Tel as our primary scripting language for creating TestCases and func­

tions within our testing framework, alongside the C A N bus. Tel was chosen for its

simplicity and effectiveness in handling string-based operations and automated task

execution, which are essential in test scenario creation. We use Tel to create auto­

mated tests that evaluate all aspects of the infotainment system's UI and backend.

This ensures that all components work seamlessly together.

40

4.1 Introduction to CAN Bus

C A N bus is a robust vehicle bus standard designed to facilitate communication

between various vehicle systems without the need for a central computer. This rev­

olutionary technology, developed by Bosch in the 1980s, has become a fundamental

component of modern automotive design, enabling various electronic control units

(ECUs) wi thin a vehicle to communicate efficiently. Unlike traditional wiring sys­

tems, the C A N bus allows the reduction of complex wiring harnesses, resulting in

improved vehicle reliability, easier repair processes, and enhanced functionality.

The introduction of the C A N bus was primarily driven by the need for a more

efficient and reliable way to distribute control functions and diagnostic information

between vehicle systems. A s vehicles became more complex, incorporating more elec­

tronic features such as advanced engine controls, IVI systems, and various sensors,

the limitations of conventional point-to-point wiring became apparent. The C A N

bus emerged as a solution to these challenges, not only reducing the complexity and

cost of wiring but also facilitating real-time data exchange between ECUs[35].

4.1.1 CAN Bus Architecture

This section explains the detailed architecture of the C A N bus system. It describes

the essential components and configurations that enable robust communication

capabilities within automotive networks.

Physical Layer

The physical layer of the C A N bus system is critical in defining the electrical

characteristics and physical connections that enable reliable data transmission over

the network. The specifications of this layer ensure that the C A N bus can oper­

ate effectively in the demanding conditions common to automotive and industrial

environments [4].

41

Transmission M e d i u m

The choice of transmission medium is vi ta l for the performance of the C A N Bus

system. Generally, a twisted pair cable is used for its ability to reduce electromag­

netic interference, which is a common issue in electrically noisy environments found

primarily in vehicles and industrial machinery. The twisted pair design helps in can­

celing out noise that might be induced onto the wires, ensuring that the integrity of

the transmitted signals is maintained [4].

Signal Levels

The C A N bus uses differential signalling with two wires, C A N high and C A N

low, to transmit information. This method is particularly effective in automotive

environments where electrical noise and interference are prevalent. Differential sig­

nalling allows the C A N bus to achieve a high level of noise immunity by cancelling

out electrical noise common to both wires. A s a result, the integrity of the signal is

maintained even in the harsh electrical environment found in vehicles.

The relationship between the C A N high and C A N low lines is quantified by the

differential voltage (Vdiff), defined by Equation 4.1:

This formula is of paramount importance, as it determines the logical state

transmitted across the network. A higher differential voltage (approximately 2 volts)

indicates a dominant state (logical '0'), which is a critical state for asserting control

in the network. Conversely, a lower or negligible differential voltage (close to 0 volts)

corresponds to a recessive state (logical '1'), which signifies that no node is actively

trying to dominate the bus.

The voltage differential approach reduces the risk of signal level misinterpretation

by receiving nodes, ensuring accurate and robust data transmission. Additionally,

this method helps to decrease electromagnetic emissions from the cable, contributing

to the overall electromagnetic compatibility of the system.

The C A N bus is widely adopted in automotive and industrial networks due to

its robustness to external interference and its ability to maintain signal integrity

CAN Low

Figure 4.1: C A N bus twisted pair cable[13]

Vdiff — VcANH ~ VcANL

42

•

Recessive Dominant j Recessive
Time, t

Logic H Logic L Logic H

Figure 4.2: Signal levels in a C A N Bus[15]

under challenging conditions. The design considerations for signal levels, as shown

in the equation and figure, highlight the sophisticated engineering behind the

C A N protocol that enables reliable communication in environments subjected to

significant electrical noise[4, 5].

Connectors and Termination Resistors

The connectors used in the C A N Bus system are standardized to ensure com­

patibili ty and reliability across different devices and manufacturers. It is essential

to use high-quality and robust connectors to maintain secure physical connections,

which are critical for the uninterrupted operation of the network.

Figure 4.3: C A N bus termination resistors[10]

Termination resistors play a crucial role in the physical layer by preventing signal

reflections at the ends of the transmission medium. A 120-ohm resistor is usually

connected at each end of the C A N network to match the characteristic impedance

of the twisted pair cable. This ensures that signals do not reflect along the cable,

which could cause interference and degrade communication quality[4].

43

Physical Layer Standards

The ISO 11898 standard, which governs the C A N Bus, specifies two different

physical layer options: high-speed C A N (ISO 11898-2) and low-speed, fault-tolerant

C A N (ISO 11898-3). The high-speed variant is designed for systems where rapid

data transmission is essential, supporting speeds up to 1 Mbps. In contrast, the

low-speed, fault-tolerant version is optimized for applications where communication

integrity and fault tolerance are prioritized over transmission speed[4].

Importance of the Physical Layer

The design and implementation of the physical layer are foundational to the over­

all performance and reliability of the C A N Bus system. B y specifying the electrical

and physical parameters for data transmission, this layer ensures that the network

can operate effectively under various conditions, providing a reliable communication

backbone for complex electronic systems [4].

4.1.2 CAN Bus Protocols

This section explores the details of C A N message frames, including their structure,

types, and the difference between Standard C A N and Extended C A N frames.

The Structure of a C A N Message

A C A N message frame can be divided into several fields, each of which serves

a specific purpose in the data communication process. The C A N frame structure

comprises several fields: the Start of Frame, the ID Field, the Remote Transmission

Request Fie ld , the Control Fie ld , the Data Field, the C R C field, the Acknowledge

field and the E n d of Frame. The Arbi t ra t ion Fie ld , which includes the identifier and

R T R , is crucial for determining the priority of messages on the bus.

• S O F : The Start of Frame is a "dominant 0" to tell the other nodes that a

C A N node intends to talk

• ID: The ID is the frame identifier - lower values have higher priority

• R T R : The Remote Transmission Request indicates whether a node sends data

or requests dedicated data from another node

• Control: The Control contains the Identifier Extension B i t which is a "dom­

inant 0" for 11-bit. It also contains the 4 bit Data Length Code that specifies

the length of the data bytes to be transmitted (0 to 8 bytes)

44

• Data: The Data contains the data bytes aka payload, which includes C A N

signals that can be extracted and decoded for information

• C R C : The Cyclic Redundancy Check is used to ensure data integrity

• A C K : The A C K slot indicates if the node has acknowledged and received the

data correctly

. E O F : The E O F marks the end of the C A N frame[13, 5]

Standard C A N vs. Extended C A N

The C A N protocol, central to automotive and industrial communications,

operates under two different specifications: Standard C A N (2.OA) and Extended

C A N (2.OB). These specifications differ primarily in the length of their identifiers,

which has a direct impact on message prioritisation and network capacity.

Standard C A N uses an 11-bit identifier, providing up to 2,048 different

message IDs. This version is widely used in applications where network complexity

is moderate and the number of devices is relatively small [5].

M e s s a g e F r a i n r —

B1M!
[dit

A i l j l t i H t k m

Fie ld

Contra]

Fie ld

DntH
1 L.-hl A t k F . O F I M

BlIS

l d k

B1M!
[dit

11 bit
[(it-iiriflci-

D] (D i m
0 - 5 Bytti

IS BITS

Figure 4.4: The figure shows the structure of a C A N 2.OA (Standard Format) mes­
sage frame, detailing the fields involved in data transmission[20]

45

Extended C A N extends the identifier to 29 bits, significantly increasing the

address space to over 537 mil l ion possible message IDs. This extension is designed

for more complex systems with a higher number of nodes, ensuring that each

message can be uniquely identified and prioritised appropriately. Despite the larger

identifier size, Extended C A N maintains compatibility wi th Standard C A N through

careful design, allowing both message types to coexist on the same network[5].

]< l l , .4 rliit ration Fiflfl

Message Frame—
Dntn

Control Field j F j e l (l
CRC ACK EOF

—

INT
Bus
Idle]< l l ,

11 b i t
Id-FELlifltT

IS bit
Identifier

Ditn
0 - 8 Zytti 15 Bin

J L t 1 ^ J i 1
SOF SRR|

IDE r l
I I I Delimiter it t Delimiter

Slot

Figure 4.5: The figure shows the structure of a C A N 2.OB (Extended Format)
message frame, detailing the fields involved in data transmission[

C A N Identifier and Arbitrat ion Process

The C A N uses a unique method of message prioritisation and collision resolution

through its identifier and arbitration process. This system is fundamental to C A N ' s

efficiency and reliability, particularly in environments where timely data delivery is

crucial, such as automotive and industrial applications[4].

• C A N Identifier (ID): Each message transmitted over a C A N network is

assigned a unique identifier. This identifier is crucial for identifying the mes­

sage's content and determining its priority on the bus. The identifier is a

standard 11 bits long. The lower the numerical value of the ID, the higher the

priority of the message.

• Priority-Based Messaging: The prioritization mechanism in C A N net­

works is based on the binary value of the message ID. Messages with lower

ID values are given higher priority and are therefore transmitted first. This

system ensures that critical messages, such as those related to vehicle safety

systems, are given precedence over less urgent communications.

• Arbitrat ion Process: The arbitration process is a non-destructive method

used by C A N to manage message collisions. When multiple devices begin

transmitting messages simultaneously, the message wi th the lower ID value,

46

and therefore higher priority, is granted bus access while the others cease trans­

mission. This process ensures that data is transmitted without any corruption

or loss.

• Role of Recessive and Dominant States: In C A N communication, the

dominant state (logical 0) always overwrites the recessive state (logical 1).

This physical layer property is pivotal during arbitration, as it allows nodes

to passively withdraw when a higher priority message is detected without

affecting the ongoing transmission.

• Collision Resolution: The arbitration mechanism efficiently resolves colli­

sions without the need for retransmission mechanisms typical in other net­

working protocols. This significantly reduces latency and ensures real-time

communication, which is crit ical in control and monitoring applications[5, 13].

Enhancing C A N Protocol Reliability with Cyclic Redundancy Check

The Cycl ic Redundancy Check (C R C) is an essential feature of the C A N

protocol and serves as a powerful tool for detecting errors in transmitted messages.

W i t h i n a C A N frame, the C R C field follows the data field and consists of a

predetermined number of bits that are used to calculate a checksum of the frame

contents before transmission. This checksum is recalculated by the receiver to

verify the integrity of the received message. If the calculated C R C matches the

received C R C , the message is considered error-free; otherwise, it indicates that the

message was corrupted during transmission [5].

Data Transmission and Reception

In a C A N network, each node is capable of reading any message sent by any

other node. The key to this capability lies in the C A N bus architecture, which is

based on a broadcast communication mechanism. Here's how it works:

1. Message Broadcasting: When a node sends a message, it transmits it to

all nodes on the network at the same time. This is done using a differential

signaling method over the two-wire bus, which improves signal reliability even

in noisy environments.

2. Message Detection and Filtering: Each node on the network has filters

that analyze incoming messages to determine their relevance. The filters use

the message identifier, which indicates its priority and type.

47

3. Receiving Messages: When a message is received, it is accepted and pro­

cessed only if its identifier matches the criteria set by the node's filters. This

ensures that only relevant messages are processed, optimizing network effi­

ciency and reducing processing overhead.

4. Error Handling: The C A N protocol has error detection and handling mech­

anisms. If a node detects an error in a message, it flags the error to all other

nodes. The erroneous message is then discarded, and it may be retransmitted

depending on the system configuration to ensure system reliability[5].

For further information on detecting and managing errors in the C A N bus

network, please see the subsequent section on 'Error Signalling' below, which

elaborates on the mechanisms and protocols involved in maintaining data integrity

across the network.

Error Signalling

Error signalling in the C A N protocol is a sophisticated mechanism designed to en­

sure the integrity and reliability of data communications across the network. W i t h i n

the C A N framework, any participating node can detect errors and immediately sig­

nal them to all other nodes on the network. This is achieved by the transmission of

an Error Frame, which consists of two different fields: the Error Flag and the Error

Delimiter.

The Error F lag is a sequence of six consecutive dominant or recessive bits, de­

pending on the type of error detected, which interrupts the normal flow of data on

the bus and alerts all nodes to the presence of an error. Following the Error Flag,

the Error Delimiter, consisting of eight recessive bits, marks the end of the Error

Frame and the resumption of normal bus activity. When an error is detected, nodes

wi l l automatically attempt to retransmit the erroneous message, ensuring that no

critical information is lost [5].

4.2 Basics of CAN Bus in Automotive Testing

The C A N bus is indispensable in the field of automotive testing, playing a crucial

role in the diagnosis, evaluation and validation of electronic systems in vehicles. Its

robustness and communication efficiency enable a wide range of test applications

critical to ensuring vehicle reliability and performance.

48

4.2.1 Comprehensive Testing Methods for CAN Bus Systems

In order to guarantee the resilience and dependability of C A N bus systems in

automotive applications, a series of comprehensive testing methods are employed.

These methods, which encompass diagnostic testing, performance analysis, and

regression testing, are fundamental for assessing system integrity, performance, and

compatibility wi th new updates. Each plays a crucial role in identifying potential

issues and optimising system operations to meet the rigorous automotive standards.

Diagnostic Testing

The ability of the C A N bus to provide access to real-time data from E C U s simplifies

diagnostic testing. Testers leverage this capability to execute diagnostic commands

directly to E C U s , retrieving fault codes and monitoring the operational status

of various subsystems. This real-time data acquisition allows for the immediate

identification and analysis of simulated faults or conditions, facilitating rapid

troubleshooting and rectification processes [25].

Performance Analysis

The analysis of C A N traffic provides valuable insights into the performance and

interaction of E C U s across different vehicle systems. Testers can observe how

messages exchanged between E C U s affect the behavior and efficiency of vehicle op­

erations under various conditions, such as acceleration, braking, and environmental

changes. This analysis identifies bottlenecks and inefficiencies in data transmission,

as well as potential areas for optimization in software algorithms and system

integration. The aim is to improve overall vehicle performance by ensuring that

systems such as adaptive cruise control or lane departure warning work together

seamlessly [2 5].

Regression Testing

As vehicle software continues to evolve for improved functionality and safety, re­

gression testing becomes essential. B y monitoring C A N communications, testers can

ensure that updates or newly introduced E C U s integrate seamlessly wi th existing

systems without causing regression or compatibility issues. This rigorous validation

process is critical to maintaining the integrity of the vehicle's electronic systems,

ensuring that updates enhance functionality without compromising the vehicle's es­

tablished operating standards[25].

49

4.2.2 Integration of On-Board Diagnostics in CAN Bus Systems

On-Board Diagnostics (O B D) provides a standardised method for vehicle systems

to conduct self-diagnostics and report issues. O B D ' s functionality has expanded be­

yond its ini t ial purpose of monitoring vehicle emissions, now offering comprehensive

diagnostic capabilities that support maintenance and troubleshooting.

The introduction of O B D - I I in the mid-1990s was a significant advancement as it

standardised all vehicles sold in the United States. This standardsation enables di­

agnostic tools to interface wi th any vehicle, regardless of the manufacturer, through

a universal data link connector. The integration of O B D systems wi th the C A N

bus allows for real-time monitoring and diagnostics of various vehicle subsystems,

enhancing the efficiency and accuracy of identifying malfunctions.

When the O B D system detects a fault, it logs a D T C and may activate the

"Check Engine" light to alert the driver to potential issues. These D T C s can be

accessed through O B D - I I scanners, providing technicians wi th specific insights into

the vehicle's operational status[23].

In addition to diagnostics,OBD systems play a vi ta l role in communicating with

and controlling vehicle units. The O B D interface allows for flashing of the units,

effectively updating or modifying their software. This functionality is crucial as

it enables on-demand changes to vehicle configurations. Flexibi l i ty is crucial for

testing infotainment screens under different configurations, including the activation

of features such as lane assist or adaptive cruise control.

4.2.3 Types of CAN Buses in Vehicles

In the field of automotive design, the Controller Area Network (C A N) bus repre­

sents a fundamental component for inter-device communication within the vehicle.

Various types of C A N buses have been developed to cater to specific functionali­

ties, wi th the objective of enhancing vehicle performance, safety, and entertainment

features. The major types of C A N buses typically include:

• Powertrain C A N (Antrieb C A N) : This bus handles critical functions re­

lated to engine management, transmission control, and other powertrain com­

ponents. Its high-speed operation (up to 1 Mbps) ensures rapid response times

necessary for these vi tal systems.

• Vehicle Speed C A N (Fahrwerk C A N) : Specifically focused on vehicle

dynamics, this bus manages systems such as braking, steering, and suspension.

50

It is crucial for safety and stability control technologies that require real-time

execution.

• Comfort C A N : This type manages systems not critical to the vehicle's im­

mediate operational safety or performance, such as air conditioning, seat ad­

justment, and lighting. Typical ly running up to 125 kbps.

• Infotainment C A N : Dedicated to the I V I systems, this bus connects com­

ponents that provide entertainment and information services, such as audio

and video playback, navigation systems, and connectivity modules. It ensures

that data flow for entertainment systems does not interfere wi th the critical

control buses.

The C A N buses converge at a central unit, designated as the Gateway. This

configuration permits the efficient management of data and a reduction in the net­

work load, as each bus handles only the relevant subsystems. B y dividing the buses,

manufacturers can isolate systems in order to prevent failures in one network from

affecting others. This enhances vehicle safety and performance. Furthermore, this

separation allows for simpler troubleshooting and maintenance, as issues can be lo­

calized to specific areas of the vehicle's network, thereby facilitating diagnostics[49].

A n illustrative example of types of C A N buses can be found in subsection 5.2.9.

4.3 Introduction to Tel Programming

As we begin to explore automated testing for IVI systems, it is important to have the

necessary tools and knowledge. Tool command language (T C L) is a programming

language that stands out for its simplicity, flexibility, and suitability for scripting

automated tests. This chapter, "Introduction to Tel Programming," is dedicated

to explaining the basics of Tel, starting with an overview of the language. This

section explores the origins, core principles, and unique features of Tel that make it

an invaluable asset in automated testing. The a im is to bui ld a strong foundation

for subsequent sections, which delve deeper into Tel programming syntax, data

structures, and practical applications.

4.3.1 Overview of Tel Language

Tel, also known as Tool command language, is a dynamic scripting language

that is highly valued for its simplicity, extensibility, and wide applicability across

various domains. Its design concept emphasises ease of use and straightforward

51

syntax, making it an accessible tool for both novice programmers and seasoned

professionals. This overview explores the key attributes, design principles, and

versatility of Tel that make it an essential tool in software development and

testing [7].

Origins and Evolution

Tel was developed in the late 1980s by John Ousterhout as an embeddable com­

mand language for applications. Its ut i l i ty quickly expanded to encompass script

automation, rapid prototyping, and even full-scale application development, thanks

to its companion graphical toolkit, T k . Over the years, Tel has evolved to include

advanced features such as network support, enhanced performance mechanisms,

and tools for interfacing wi th various programming languages and environments[7].

Philosophy and Design Goals

Tcl's design is based on the principle that code should be easy to write, adapt

and maintain. It achieves this through:

• Simplicity: Tcl 's syntax is intentionally minimalist, avoiding the complexities

that are often present in other scripting languages.

• Flexibility: Tel scripts can run on multiple platforms without modification,

demonstrating true write-once, run-anywhere capabilities.

• Extensibility: The language may be expanded wi th extra commands and

libraries that are customized to meet specific project requirements or domains.

K e y Features

• Dynamic Typing: Variables in Tel are not bound to any specific data type,

which enhances the language's flexibility and simplifies script development.

• Command-Based Structure: Tel considers nearly all operations as com­

mands, including assigning variables and calling procedures, contributing to

its consistent syntax.

• Powerful String Processing: Due to its string-centric design, Tel provides

a wide range of tools for string manipulation, making it highly proficient in

handling text-heavy tasks.

• Comprehensive Standard Library: Tcl 's standard library is extensive,

enabling a wide range of scripting activities.

52

The T c l / T k Combination

T k is the standard G U I toolkit for Tel, enabling developers to design and imple­

ment graphical user interfaces wi th minimal effort. The combination of Tel and T k

enables the development of user-friendly interfaces for test scripts. However, this is

beyond the scope of this paper.

4.3.2 Advantages of Using Tel for Infotainment System Testing

Tel is particularly advantageous for scripting automated tests of automotive infotain­

ment systems due to its flexibility, ease of use, and robust integration capabilities.

The following paragraphs wi l l outline the key benefits Tel brings to infotainment

testing.

1. Ease of Scripting Interactive Tests: Tcl 's straightforward syntax and dy­

namic nature render it an optimal choice for scripting complex interactive tests

that are essential for infotainment systems. These systems, which feature mul­

timedia playback, navigation, and connectivity functions, benefit from Tcl's

capacity to rapidly script and modify tests for these interactive features.

2. Integration with Infotainment Testing Tools: Tel is designed to integrate

seamlessly wi th tools such as C A N o e , which is widely used for simulation and

testing in automotive infotainment development. This integration allows for

direct control and testing of infotainment protocols and hardware interfaces

through Tel scripts, enhancing the thoroughness and efficiency of tests.

3. Rapid Development and Iteration: The capacity to rapidly develop and

modify test cases is of paramount importance in the context of the rapid

evolution of infotainment technology. Tcl 's interpretative execution enables

the implementation of changes without the need for lengthy recompilations,

thus facilitating the acceleration of iteration and adaptation to new testing

scenarios as infotainment systems evolve.

4. Cross-Platform Functionality: The cross-platform nature of Tel ensures

that testing scripts can be developed and executed across various development

environments without modification, thus facilitating the development of robust

and reliable software. This is particularly advantageous in the context of

infotainment systems, where software may be developed in disparate operating

system environments.

The aforementioned advantages render Tel a preferred scripting language for au­

tomating the testing of infotainment systems in vehicles. This ensures that these

53

complex systems are thoroughly tested for functionality, reliability, and user expe­

rience.

4.3.3 Programming in Tel

As mentioned above, Tel offers a versatile scripting platform for automotive testing,

particularly beneficial in the realm of infotainment systems. The simplicity and

comprehensive functionality of Tel enable testers to create flexible and dynamic

test scripts in a time-efficient manner. For those engaged in automotive testing,

Tel offers an accessible yet potent toolset that is well-suited to the complexities of

modern infotainment systems.

For further detailed information on Tel programming constructs such as syn­

tax, loops, functions, dictionaries, namespaces, lists, and arrays, please refer to the

section A . l . The appendices provide comprehensive guidance and illustrative exam­

ples that demonstrate the effective utilisation of these Tel features in the context of

automotive infotainment testing. The objective of these resources is to assist both

novice and experienced programmers in fully utilising the potential of Tel in their

testing frameworks.

54

5 Fest Bench

This chapter is devoted to the intricacies of the test bench, a key component of au­

tomotive testing, and provides a comprehensive overview of the equipment, methods

and environments used to test IVI systems.

The test bench is at the heart of automotive testing, serving as a melting pot

where hardware and software components are meticulously evaluated under simu­

lated real-world conditions. This chapter is divided into four distinct sections, each

dedicated to unveiling a facet of the test bench, painting a holistic picture of its

importance, functionality and impact on the development of IVI systems.

Figure 5.1: Test bench for automated testing

55

5.1 Overview of the Test Bench

The test bench is the backbone of today's approach to validating and ensuring the

optimal performance of IVI systems. Its creation and meticulous design is based on

the need to bridge the gap between theoretical development and real-world appli­

cation. This section aims to explain the overarching framework, the functionalities

and the essential role of the test bench in the life cycle of IVI systems.

The test bench is a combination of advanced hardware and software components

designed to simulate a comprehensive automotive environment. The simulation

is a rigorous testing ground that subjects the infotainment systems to a range of

scenarios, from the mundane to the extreme. It is not a mere facsimile of real-world

conditions. The test bench is designed to replicate the complexities of automotive

operation, including variations in environmental conditions, user interactions, and

vehicle dynamics. It provides a reliable environment for testing.

The test bench concept is both iterative and comprehensive, ensuring that every

component of the infotainment system is scrutinised under a wide range of condi­

tions. This process employs a dual approach, uti l izing both manual oversight and

automated testing protocols. The automated aspect is particularly noteworthy, uti­

lizing scripts and scenarios designed to mimic a wide range of user interactions and

system responses. This automation is crucial not only for its efficiency but also

for its ability to consistently replicate test conditions, ensuring the reliability of the

testing outcomes.

Furthermore, the test bench is important in enabling the creation of scalable

and adaptable testing scenarios. This flexibility is crucial due to the rapid evolution

of infotainment technologies and their expanding functionalities. The test bench,

therefore, is not static but evolves in concert wi th the systems it tests, incorporating

new testing methodologies, hardware upgrades, and software updates to address and

anticipate the needs of emerging technologies.

56

5.2 Hardware Components

The test bench is a crucial element in the ecosystem of IVI testing. It is supported

by a diverse array of hardware components, each playing a specific role in creating

a comprehensive environment for testing infotainment units under conditions that

closely simulate real-world use. This section explores the hardware components

that make up the test bench, highlighting their functionalities and integration into

the testing process. For a visual representation of the interconnections between

these components, please refer to Figure 5.15. Additionally, Figure 5.14 illustrates

the configuration of power supply connections, crucial for understanding the energy

distribution within the test bench.

5.2.1 Windows PC

The Windows P C acts as the central control unit of the test Bench, orchestrating

the execution of test scenarios, data collection, and analysis. It hosts the software

tools and scripts necessary for automated testing, serving as the interface through

which testers can interact with the test bench.

Figure 5.2: High-performance Windows PC[17]

The Windows P C , that is chosen for the test bench, is typically a high-

performance computer with a multi-core processor and ample R A M to handle the

demanding computational tasks associated wi th automated testing. The choice of

a multi-core processor is dictated by the need to run multiple software tools and

scripts simultaneously without performance degradation. Similarly, sufficient mem­

ory ensures smooth operation when processing large data sets, running complex

simulations or managing multiple applications.

57

The operating system of choice is a version of Windows known for its stability,

security and broad support for automotive test software and hardware interfaces.

This ensures compatibility wi th a wide range of tools and facilitates easy integration

wi th other test bench components such as the grabber and C A N case.

The primary function of the Windows P C within the test bench is to act as a

command centre from which tests are initiated, monitored and analysed. It hosts

the test automation software responsible for init iating test sequences, simulating

user input and collecting responses from the infotainment system.

Moreover, the Windows P C often includes tools for remote access and control,

allowing test engineers to monitor and adjust test processes remotely. This

capability is particularly valuable in extended test scenarios or when the test bench

is used across different projects or locations.

Digiteq Automotive's Modular FrameGrabber (M G B) is the European automotive

industry's in-car video stream capture device. The M G B specialises in capturing

video streams directly from the video interface of infotainment central units and

transferring them via T C P stream over Gigabit Ethernet for analysis. It supports

multiple video formats, including H.264 and Mot ion J P E G , and can capture screen-

shots in P N G format. It also allows targeted streaming through the Area of Interest

feature, which increases frame rates and reduces baud rates for specific video seg­

ments.

5.2.2 Grabber

Figure 5.3: Modular FrameGrabber (M G B) [29]

58

5.2.3 CAN Case

The C A N Case by Vector is essential for automotive testing, especially when used

in conjunction wi th software such as C A N o e . It excels at simulating C A N messages,

which is essential for testing the communication and functionality of IVI systems

and other networked components within a vehicle. The ability to simulate C A N

messages allows developers and testers to meticulously evaluate system response

under different scenarios, ensuring robustness and reliability before deployment.

Figure 5.4: Vector C A N Case[14]

5.2.4 Manson Power Supply with Remote Control

The Manson remote power supply is essential for testing, supplying power to vehicle

units and allowing them to be remotely restarted. This feature is critical in providing

the benefit of remote unit management. It also connects to a Windows P C via U S B ,

allowing software-based automation and control of the power supply's behaviour,

improving test efficiency and realism.

-\Q\Q
A

Figure 5.5: Power supply of Manson company[11]

59

5.2.5 12V Power Supply

The 12V Power Supply is a component of the test bench. Its purpose is to power

devices such as the Grabber, Quido, or L E D Bar signalization. Unlike remote-

controlled power supply units, this 12V power source provides a steady and reliable

supply of electricity to support the operation of these critical testing components.

This ensures they function optimally throughout the testing process. Its role is

crucial in maintaining the continuity and efficiency of the testing environment by

providing a stable power foundation for the various devices that are integral to

automotive testing.

The P C A N - P C I Express is an interface card that enables a connection between

P C I Express slots in computers and C A N networks. This hardware is crucial for

automotive testing and development, as it allows direct access and communication

wi th C A N systems within a vehicle from a desktop or workstation. It is especially

beneficial in settings that require reliable data exchange and network diagnostics,

guaranteeing smooth integration and communication wi th the vehicle's C A N

network for diagnostic, programming, and testing purposes.

5.2.7 LED Bar Signalisation

The test bench setup includes the L E D Bar Signalisation, which uses a simple yet

effective L E D strip connected through four wires: Ground, R e d (R) , Green(G),

and B lue (B) . The system employs relays for the Red, Green, and Blue cables,

Figure 5.6: 12V power supply[44]

5.2.6 PCAN-PCI Express

60

allowing for dynamic color alterations. The apparatus primarily uses a binary color

signaling system. Green indicates that the test bench is available for use, signaling

availability to those unfamiliar with testing routines. In contrast, red alerts indicate

that the test bench is currently in use, and others should avoid interacting wi th the

system during testing processes.

5.2.8 Two Phones (One Android and One with iOS)

Integrating an Andro id and an iOS smartphone into the test bench significantly

enhances the testing capabilities for IVI systems. This setup is essential for

evaluating different phone functions, including compatibility and functionality

wi th SmartLink features such as Andro id Auto and Apple CarPlay. B y using

features from the two main mobile operating systems, testers can ensure that the

infotainment system offers a smooth and user-friendly experience for connecting

and entertaining wi th a wide range of devices.

5.2.9 Front Panel with All CAN Buses

Our test bench features a fully modular front panel design, distinguished by its use

of standardised D-Sub connectors. This modular approach contrasts sharply with

typical in-car systems that require direct unit connections, offering greater flexibility

for our testing setup.

Figure 5.7: Example of the front panel implemented in a test bench

61

The front panel acts as the central hub for all vehicle unit connections, ac­

commodating various C A N buses like Comfort, Infotainment, and Fahrwerk. For

detailed descriptions of the specific functionalities and components associated with

these C A N buses, see the subsection 4.2.3. This configuration facilitates seamless

plug-and-play connectivity, allowing for comprehensive testing of multiple systems

either concurrently or individually. K e y advantages of the test bench are:

• Ease of Rebuilding: The modular nature of the front panel facilitates the

reconfiguration of the test bench for new projects or different vehicles, thereby

ensuring its long-term uti l i ty and adaptability.

• Simplified Troubleshooting: Centralized connections enhance accessibility,

easing maintenance and troubleshooting efforts.

• Scalability: Easi ly accommodates additional modules, facilitating updates

wi th minimal adjustments.

• Reliability: Standardized connectors minimize wiring errors and reduce hard­

ware risks, enhancing overall test accuracy.

Figure 5.8: Front panel connection design

In summary, the front panel represents a significant enhancement to our test­

ing procedures, streamlining the setup processes and enabling efficient and flexible

testing across a range of vehicle systems.

5.2.10 Quido by Papouch

Papouch's Quido, while not exclusively designed for automotive applications, has

been effectively adapted for use in automotive test environments within our test

bench configuration. A s a versatile relay board, Quido allows precise control of the

power supply to various vehicle units such as the Gateway and B C M . This control

is critical as it allows power to be selectively switched off or on as required during

test sequences.

62

In addition to managing the power supplies, Quido also facilitates the control

of L E D signalling, which is used to indicate the status of the test bench visually.

Its functionality also extends to enabling remote restart of units such as the info­

tainment system, improving test efficiency by reducing the need for direct manual

intervention. Quido is also used to manage the ventilation system within the test

bay, ensuring that equipment is maintained at optimum operating temperatures.

• M a > > * « > ' — — — — — — — — ^

1

1 I I

Figure 5.9: Quido E T H 2/16: 2 inputs, 16 outputs and thermometer[24]

5.2.11 UPS

The Uninterruptible Power Supply is a crucial element of the test bench, providing

backup power during short-term outages. It guarantees that the entire test bench,

including vi ta l testing processes and equipment, remains operational for 6-9 minutes

without external power. This capability is essential for maintaining testing conti­

nuity and safeguarding against data loss or equipment malfunction due to sudden

power interruptions.

Figure 5.10: Uninterruptible power supply (UPS) [36]

63

5.2.12 Vehicle Units

Infotainment Unit

The Infotainment Uni t is the central hub of the in-vehicle digital experience,

combining entertainment and information for both the driver and passengers. It is

a multifaceted system that includes navigation, media playback, and connectivity

features such as smartphone integration and internet access. This unit not only

enhances the driving experience through multimedia and navigation, but also plays

a crucial role in vehicle safety and diagnostics by displaying vi ta l information and

alerts. The integration and testing of the system within the vehicle ecosystem are

crucial for ensuring functionality, user interface usability, and overall customer sat­

isfaction.

Figure 5.11: Skoda Enyaq infotainment unit[3]

Infotainment Display (A B T)

The A B T (Anzeigebedienteil), which stands for Display Control Uni t , is a central

component of the vehicle's infotainment system. It enables users to interact with

various infotainment features through touch, providing control over navigation, me­

dia, connectivity, and more. This touch interface improves the user experience by

providing an intuitive way to access the infotainment systems' extensive function­

alities.

r
9 1

< 1 5 : » « © l }J u

ä n

i : .
Mann* Efiprtl_nlf

ighl ng

« § 4»
wirl= -stationary lound

fett - 21.5* - f t < j3 *=* : : : 21.5" ^

Figure 5.12: Skoda Enyaq 13" ABT[2]

64

Gateway Unit

The Gateway unit in a vehicle serves as a crucial network hub, enabling commu­

nication and data exchange between different E C U s across various vehicular subsys­

tems. It guarantees the smooth operation of the vehicle's complex networks, such

as C A N , L I N , and others. The Gateway unit is a crucial component in modern au­

tomotive architecture as it manages the flow of information, ensuring the vehicle's

overall performance, safety systems, and infotainment functionality. Its importance

cannot be overstated.

Figure 5.13: Skoda Enyaq Gateway unit[12]

5.3 Software Components

The section on Software Components discusses the tools and technologies necessary

for automated testing of IVI systems. These components are crucial for testing

methodologies that guarantee the functionality, reliability, and performance of

infotainment systems.

5.3.1 CANoe

The C A N o e software is crucial for simulating other units in automotive testing

environments. Testers can use C A N o e to ensure that all potential screens and

functionalities are accessible, avoiding the scenario where certain features might

be unavailable or missing on the screen due to the absence of real E C U s . This

simulation capability is crucial for comprehensive testing and verification of IVI

systems and their interactions wi thin the networked automotive ecosystem.

65

5.3.2 Grimr

Grimr, created by Digiteq Automotive, is a sophisticated tool that translates data

captured by the Grabber into visual content on a P C . This feature greatly assists

in the detailed evaluation of infotainment systems, enabling testers to interact

remotely as if they were physically present. Gr imr has proven to be a valuable

asset in the testing process over the years, enhancing the depth and scope of testing

methodologies.

5.3.3 TestAut2

TestAut2, also developed by Digiteq Automotive, is the main software suite used to

manage the test process within vehicle infotainment systems. This tool is tailored to

the specific internal needs of Digiteq Automotive. Unlike generic testing solutions,

TestAut2 allows users to initiate testing in selected contexts or projects, providing

a tailored approach to meet specific testing requirements.

One of the outstanding features of TestAut2 is its ability to compile and present

comprehensive test results. This functionality is critical for evaluating the reliability

of the system under test and is essential for detailed documentation and evaluation

processes.

For more information on how TestAut2 is integrated and used in the test setup,

see section 6.2

5.3.4 Git Extensions

As a distributed version control system, Gi t allows multiple developers to work on

the same project without interfering wi th each other's work. Gi t Extensions builds

on this capability by providing an easy-to-use interface that makes it easier for team

members to share changes, track project history and collaborate efficiently

Backing up code is critical in software development to prevent data loss due

to unforeseen circumstances. Gi t Extensions makes this easier by automating the

backup process. Every commit serves as a backup point, allowing developers to

revert to previous versions if necessary.

Conflicts are inevitable in collaborative development environments, especially

when multiple developers are making changes to the same code base. Gi t Extensions

provide powerful conflict resolution tools, making it easier to identify and resolve

conflicts.

66

5.4 System Architecture of Test Bench

The diagram below illustrates the power connection scheme for a test bench setup

used in the testing of IVI systems. The configuration shows a 220V power source

connected to an U P S , which stabilises the power and provides backup in case of

outages. Two distinct power supply units are illustrated: a 12V power supply that

energises the Grabber and Quido, and a 14V power supply with remote control

that supplies the infotainment display, Gateway Uni t , and Infotainment Uni t . This

configuration ensures that all components receive a stable and controlled power

supply, which is essential for the reliable operation of the test bench.

L A N S w i t c h C A N C a s e

Figure 5.14: Diagram of the power source of the test bench components

The second diagram below illustrates the hardware connection schematic, which

depicts the configuration of a test bench. It provides a detailed overview of the

interconnection between the various hardware components.

The thi rd and final diagram illustrates the workflow of a software testing setup,

demonstrating the interaction between Tel scripts, C A N o e simulation, and the

infotainment unit. A Grabber device captures the display, with Gr imr software

analysing the output, all under the coordination of the TestAut2 system.

67

Figure 5.15: Hardware connection schematic

CANoe

^ Image c o n t e n t - - I m a g e d a t a -

C A N m e s s a g e s -

- >
I n f o t a i n m e n t U n i t

S c r e e n c a p t u r e

Figure 5.16: Software connection diagram

6 Implementation

This chapter is devoted to the practical implementation of automated testing frame­

works for I V I systems, wi th a particular focus on the Skoda Enyaq, which is based

on the Volkswagen Group's M E B (Modularen Elektrifizierungsbaukasten) platform

and is designed exclusively for electric vehicles.

Due to confidentiality agreements, we wi l l be focusing our detailed exploration on

the already released and serially produced version of the Enyaq, which is associated

wi th the project I C A S 3 , known internally as the F327. The latest iteration of

this platform, known as I C A S 3 G P , is stil l under development and is covered by a

non-disclosure agreement, so we wi l l not be discussing it in this thesis.

This chapter aims to provide a comprehensive overview of the older generation

M E B platform through practical examples and methodological insights into the

automated test processes used in these systems.

6.1 Understanding Code Structure

To develop and maintain a scalable and efficient automated testing framework for

IVI systems, a well-organized code hierarchy is necessary. The H M I library serves

as the foundation of our testing scripts, incorporating a graded hierarchy of loss of

functionality tailored to accommodate the diversity inherent in infotainment sys­

tems across different projects and platforms. This hierarchy ensures that code is

modularized and reusable, enabling streamlined updates and customizations across

various infotainment system versions.

The code hierarchy within the H M I library is structured into four primary

subdivisions, each representing a layer of specificity in the functionality of the info­

tainment systems.

COMMON SPECIFIC • SKIN STYLE — • PLATFORM — * ABT > SKIN
} t J ^ .

Figure 6.1: The code hierarchy within the H M I library

69

Common Functions (C O M M O N _ F U N C . t c l)

A t the top of the hierarchy, common functions are universally applicable across

all infotainment systems, regardless of the model or configuration. These functions

leverage the standardization wi thin hardware components and communication pro­

tocols to provide foundational capabilities. Examples of such functions include:

• proc SendCanMsg {msg {msgDelay 20}}: Utilizes the standardized C A N

protocol to send messages, reflecting the protocol's universal applicability

across automotive systems.

• proc SetColorLEDBar {color}: A function to change the color of the L E D

bar, exploiting the uniform hardware connection of L E D strips across a l l test

benches.

Skin Style Functions

In project F327, the Skin Style layer was not included in the infotainment sys­

tem's architecture, as it was specifically utilised for Enyaq models on the M E B

platform during that period. This layer was designed to meet unique design require­

ments that were not applicable to the F327 project.

It is important to note the recent shift in the V W Group's strategy towards

standardising infotainment systems. In the present era, a unified infotainment

platform, including the Skin Style layer, is being implemented across various

vehicle platforms with the objective of streamlining the user experience and

system maintenance. This represents a significant departure from the past

practices observed during the F327 project, where a unified approach was

not necessary. This historical insight helps contextualise the project's decisions

within the broader technological advancements in automotive infotainment systems.

Platform Functions

This layer focuses on the chassis platforms and tailors functions to the techni­

cal and architectural diversity of different vehicle platforms. It acknowledges that

variations in hardware and system architecture across platforms can affect how in­

fotainment functions are executed and tested.

70

A B T (Display Size)

This layer is centered around the physical sizes of the display units within the

vehicles. Functions here are designed wi th awareness of how display dimensions

can influence user interface elements, such as the extent and manner of scrolling

actions required to navigate the system.

Skin (Regional or Functional Variations)

The lowest level of the hierarchy deals wi th regional variations, such as left-hand

drive (L H D) versus right-hand drive (R H D) , or specific functional adaptations, such

as language-specific skins. To illustrate, the A R A B skin caters to Arabic-speaking

users by adjusting the user interface to accommodate right-to-left reading, thereby

ensuring usability and intuitive navigation. These adaptations enhance both the

comfort and safety of users by aligning the system's functionality wi th local driving

styles and linguistic norms. A n example of a skin-specific function is:

• proc ScrollUpOnePage{{ctx 'DEF'}}: This function depends on the A B T

size and skin configuration, accounting for the pixel dimensions of a page and

the positioning of scroll bars relative to the vehicle's drive orientation.

LHD

SPECIFIC SKIN D
ICAS3
(MEB) 13 , r RHD

ARAB

Figure 6.2: Example of code hierarchy for F327 project (Enyaq)

71

6.1.1 Implementation Strategy

The use of hierarchical organization enables a layered approach to the development

and maintenance of test scripts. This is achieved by segmenting functions according

to their applicability and specificity, allowing for:

• Maximize Code Reusability: Using common functions provides a shared

toolkit that can be leveraged across all testing scenarios, minimising the need

for duplication.

• Enhance Maintainability: Updates to universal features or protocols can

be implemented in the common functions layer, automatically propagating

across all tests.

• Streamline Customization: The subdivision-specific layers allow for tar­

geted customization of test scripts, accommodating the unique aspects of dif­

ferent infotainment systems wi th minimal impact on the overall codebase.

• Improve Test Precision: B y taking into account the specificities at each

level of the hierarchy, test scripts can more accurately reflect the real-world

operation and user interaction scenarios of each infotainment system version.

The hierarchical grading system in the H M I library demonstrates a strategic

approach to managing the complexity and diversity of automated testing for IVI

systems. This structured framework enhances the adaptability, efficiency, and ac­

curacy of the testing process, enabling it to keep pace wi th the rapid evolution and

diversification of infotainment technologies in the automotive industry.

72

6.2 Test Environment Setup

The establishment of a comprehensive test environment is of paramount importance

for the validation of IVI systems. The TestAut2 software provides a robust platform

for this purpose, enabling testers to select specific projects and types of tests to run.

« » T e s t A u t 2.105

File Edit Languages Configuration Manual Control Run Windows Results generater Help

B A S E U N E _ S K _ O I l 3 1 G P _ E U _ R H D _ r j I T HMI FULL

/ Preparation o f radio V H M I M t äs

Preparation & J* X Seneric test £ * ^

r HMI FULL
=arkheater test ä + J-

f HMI DEVELOPMENT X SkinO test ä

HHI Imt a + > V SkjnOetrak test s + ^

Simple test J J + > X Ambiancetight test £

StlDWOff E + > V A p p C o m e c t t e s t • + >

H M I _ O L " : : X Car test H +

V Etraktest S

=AS test I i + f-

V Climate test m + >
Connectivity test <

X H o m e s a e e n test ^

Messages test ffi + ^*

X M ü t i n e d i a test IG + >

X Nävi test a + }•

•J =tione test S + >

Help test I i + f-

•/ Sound test I i * >

X Setup test S + >•
Wizard test • + A

=ress test g + / •
•/ ^honeConnecbonManager Lo

X Speech K

=PA lö + > -

SldnDparlanfl s j + }-

X =opUp In + >

HMI_OUT V S-

All o f tests finished, but 14 not p a s s e d '

HML_OUT - OK - Good values

Popup - OK - Bad values

SkinQparking - OK - G o o d values

F P A - O K - Good values

Speech - OK • Bad values

PhoneConnectionManager - OK - Good values

Press test - OK - G o o d values

wizard test - OK - Bad values

5etuD test - OK - Bad values

S K O D A

17:52:39

Estimated total time: 00:00:00

Max, total time: 00:00:00

Total time: 2Z: 10:35

Test time: - : - : -

QLDÖ1D
Open result J

Load sequences o f tests

Save sequences o f tests

Expand all

Collapse all

Hide console window

Clear log

Figure 6.3: Interface of TestAut2

Selecting the Project

The process commences with the selection of an appropriate project from a drop­

down menu located in the top left corner of the interface. This drop-down menu

contains all available projects, thereby ensuring that testers can readily identify and

select the project most pertinent to their testing objectives.

73

Preparing the Infotainment System

Before running tests, it is essential to ensure that the infotainment system is

prepared in the correct state. This involves a series of initialization functions,

such as sourcing the latest function versions, setting the appropriate voltage, and

defining platform variables contingent on the selected project. This step is crucial

as it lays the groundwork for reliable and consistent test results.

Choosing Test Contexts

The left panel of the TestAut software presents a series of pre-defined sets of

tests, categorised into two primary folders: HMI_FULL and HMI_DEVELOPMENT.
The HMI_FULL folder encompasses all context areas, wi th TestCases grouped

according to the infotainment area they assess. For instance, parking-related screens

are grouped under a specific context, as are the vehicle appearance screens (referred

to as skinO). This organisation facilitates the generation of clear reports and the

streamlining of the setup of separate testing environments.

The HMI_DEVELOPMENT folder contains the "Simple test" section, which enables

the validation of TestCases during the development phase. This acts as a sandbox

for testers, allowing them to ensure that everything functions correctly before

proceeding to full-scale testing. The "Showoff" subfolder provides a suite of

TestCases tailored for demonstrating the infotainment system's capabilities, which

is particularly useful for presentations to stakeholders, such as management.

Timing and Execution

The TestAut interface is characterised by a timer that displays both the current

time and the accumulated test time. This feature is of particular benefit to testers,

as it allows them to manage their testing schedules and provides an estimate of the

duration taken to run a particular set of tests.

74

6.3 Writing and Preparation of Test Scenarios

The quality of IVI depends heavily on thorough testing procedures. To ensure this,

meticulously crafted test scenarios that are robust, repeatable, and reflective of the

myriad of real-world situations that drivers and passengers encounter are paramount.

6.3.1 Test Scenario Structure

In the domain of automated testing for IVI systems, structuring test scenarios

involves defining the parameters within a Test Case. The template structure of a

T C serves as the blueprint, guiding the testing of specific functionalities wi thin the

IVI .

Defining a TestCase

A TestCase is a fundamental unit in test automation that encapsulates the

conditions under which a test is conducted and the expected result. In the context

of I V I systems, the TestCase template comprises several key parameters:

Table 6.1: TestCase parameters description

Parameter Description
context The context to which the tested screen belongs and wi l l be executed

A screen snippet that is conceptually relevant to the T C
mode The mode in which we want to record the screen (e.g. classic, scroll)
screenName The identifier of the screen to be tested, as it is named in the model
refversion The reference version of the screen
endCondition The end condition for which the screenshot is to be taken

• path: Denotes the sequence of steps necessary to navigate to the target screen

within the infotainment system.

• prepare: Encompasses actions required to bring the system into the desired

state before capturing the screen.

• cleanUp: Outlines the steps to revert the system back to a baseline state,

ensuring consistency for subsequent TestCases.

75

To begin the execution process, navigate to the relevant screen (screenName)

using the specified path. Once on the correct screen, initiate the prepare phase to

configure the necessary settings or inputs. After the test execution, the cleanUp

phase ensures that the system is restored to a default state for consistent appearance

and behavior for future TestCases.

Example of a TestCase

This TestCase is designed to assess the functionality of the headlight controls

via the infotainment system's graphical user interface. It ensures that users can

effectively operate the headlights using the touchscreen controls provided by the

infotainment system.

V e r i f y t h a t the GUI of h e a d l i g h t c o n t r o l s are f u n c t i o n a l w i t h i n the
i n f o t a i n m e n t system

d i e t set views CARSETUP_HD_LIGHT_OFF context " c a r "
d i e t set views CARSETUP_HD_LIGHT_OFF area "SCREEN_INSIDE"
d i e t set views CARSETUP_HD_LIGHT_OFF mode " s c r o l l "
d i e t set views CARSETUP_HD_LIGHT_OFF screenName "CARSETUP_HD_LIGHT"
d i e t set views CARSETUP_HD_LIGHT_OFF r e f V e r s i o n "H42.100.0"
d i e t set views CARSETUP_HD_LIGHT_OFF path {

{CANOE::RunCANoeMacro " L i g h t E x t e r i o r O n " >
{HMI::EnterStageArea "CAR"}
{HMI::EnterTab 1}
{HMI::TextClick "R0W_0" " E x t e r i o r " 28 80}
{HMI::SwipeSeekText "SCREEN_INSIDE" " H e a d l i g h t s " 28 "RIGHT"}
{HMI::TextClick "SCREEN_INSIDE" " H e a d l i g h t s " 28}

}

d i e t set views CARSETUP_HD_LIGHT_OFF prepare {
{ H M I : : C h e c k B o x S e t S c r o l l A l l "OFF"}

}

d i e t set views CARSETUP_HD_LIGHT_OFF cleanUp {
{CANOE::RunCANoeMacro " L i g h t E x t e r i o r O f f " }

}

List ing 6.1: Testing the G U I of the headlight controls on the IVI 's touchscreen

76

6.4 Setting Up the Screen

The stage of 'Setting U p the Screen' represents a pivotal step in the test execution

phase for IVI systems. It involves navigating through the interface of the Skoda

Enyaq, and configuring various elements, including dropdowns, sliders, and check­

boxes, to their required states for testing. This section wi l l elucidate the structured

approach to accessing and preparing the screen within the infotainment system, as

per the TestCase requirements set out in the subsection 6.3.1.

Accessing the Screen

In order to access the screen, or "path" in a TestCase, a sequence of function

calls must be executed. These direct the system from the home screen to the

target screen. Each function must be meticulously designed to interact wi th the

infotainment system's interface. This is to ensure that the test can navigate

through the menus and options without human intervention.

Preparing the Screen

Once the desired screen has been accessed, the next step is to bring it into the

requested state, which is termed "prepare". For instance, if a dropdown menu needs

to be set to its first or last item, a function wi l l execute this specific command.

Similarly, sliders are adjusted to their values, and checkboxes are toggled on or

off, depending on the test scenario. The preparation of the screen ensures that the

init ial conditions of the test are met prior to the commencement of the actual testing.

The detailed steps for each action, including the underlying Tel scripting for

"path", "prepare" and "cleanUp" sequences, wi l l be illustrated wi th examples. The

functions that select items based on index position wi l l be discussed in relation to

dropdowns. Functions that set values using absolute positions wi l l be the focus of

the discussion in relation to sliders. The toggle functions wi l l be discussed in relation

to checkboxes, ensuring that they reflect the expected states.

Images of the Skoda Enyaq's infotainment system, which illustrate elements such

as dropdown menus, sliders, and checkboxes, wi l l be provided to supplement the ex­

planations, thus facilitating a visual understanding of the configurations. Correctly

setting up the screen is a prerequisite that can have a significant impact on the out­

come of subsequent tests. Therefore, it is essential to pay close attention to detail

and to have a comprehensive understanding of the capabilities of the H M I library

when setting up the screen effectively.

77

6.4.1 Click Functions

The ability to click is a fundamental aspect of G U I testing in automated infotain­

ment systems. It enables testers to simulate user interactions with the touchscreen

interface. This section provides an overview of various click functions and discusses

their implementations and usage in the context of sending C A N messages to

replicate touch inputs.

Basic Click Function: Cl ickAt

The 'ClickAt' function represents the fundamental method employed to simulate

pressing actions at specific coordinates on the infotainment display. It operates

by generating two C A N messages: one for the "Press" action and another for the

"Release" action. The process involves a straightforward mathematical conversion

where x and y coordinates are translated into C A N messages directly associated

wi th the touch points on the screen.

Although 'ClickAt' provides the fundamental functionality for a click operation,

it is not the most robust method for interacting with G U I elements. This is because

it requires exact coordinates as inputs and does not account for dynamic content or

changes in element positions.

Advanced Click Functions: TextClick and ImgClick

To enhance the reliability of click operations, functions such as 'TextClick' and

'ImgClick' are employed. These functions improve upon 'ClickAt' by incorporating

a search mechanism to automatically locate the elements on the screen.

• TextClick: This function searches for a text element on the screen. Once

found, it retrieves the coordinates of this text and calls 'ClickAt' to perform

the click action at the appropriate location.

• ImgClick: Similar to 'TextClick', but it searches for an image element. After

locating the image, it uses its coordinates to simulate a click.

These functions are particularly useful in scenarios where the positions of

elements might change or when exact coordinates are not known beforehand.

In order to test elements on scrollable screens, it is necessary to utilise the

'TextClicklnList' and 'ImgClicklnList' functions, which have been designed to

handle dynamic content that may not be visible in the ini t ial viewport.

78

6.4.2 Checkbox Controls

Checkbox controls represent an essential component of IVI system interfaces, en­

abling users to toggle settings on or off wi th a simple touch interaction. In the

context of automated G U I testing, it is imperative to test the functionality and

state accuracy of Checkbox controls. This section wi l l discuss the functions of

'CheckBoxSetAll' and 'CheckBoxSetScrollAll' and their role in automating the

testing process.

Checkbox controls provide a visual and interactive method for users to make

binary choices in the infotainment system. The Checkbox typically displays two

distinct visual states:

• O F F State: Usually represented by an empty box or an icon wi th a contrast­

ing background indicating that a particular feature or setting is disabled.

• O N State: Indicated by a filled-in box or highlighted icon, signaling that the

feature or setting is active.

ifZ)

Figure 6.4: Illustration of the ' O F F ' and ' O N ' status of checkboxes

The transition from the O F F to the O N state i

visual cue, such as a checkmark or a colour chang

feedback to confirm the action.

(or vice versa) is accompanied by a

;e, and, in some cases, an auditory

Infotainment sys tem touchscreen tone

Tone for o ther but tons C 3 >

Figure 6.5: Displaying the transition states of checkboxes for system preferences

The implementation of these functions involves the identification of checkbox

controls within the G U I through visual representation and the determination of

their current state. In the event that a checkbox is in the O F F state and the

target state is O N , the function initiates a click event at the checkbox's coordinates,

79

effectively toggling it to the O N state. Conversely, the reverse is done for the setting

of checkboxes to O F F .

6.4.3 Dropdown Controls

Dropdown controls offer a user-friendly interface for selecting from a list of options.

These controls are crucial for settings that offer multiple selections, where the user

must pick one. This element typically displays a default selection and, when inter­

acted with, presents a list of options for the user to choose from. The user's choice

can trigger various behaviours in the system, from changing settings to commanding

actions.

Figure 6.6: View of the dropdown control in the Enyaq infotainment system

Automated testing of dropdown items requires functions that can navigate and

interact wi th the dropdown list. This includes selecting specific items, whether it's

the first, last or any other item in the list. The 'DropDownSet', 'DropDownSetAll'
and 'DropDownSetScrollAll' functions facilitate this process.

The DropDownSet functions typically work by first triggering the dropdown to

expand and display its options. They then identify the desired choice, either by

index or text, and simulate a click event to make the selection.

Figure 6.7: Expanded view of the Speed Aler t settings dropdown

80

6.4.4 Slider Controls

Slider controls represent a versatile class of user interface elements that permit users

to adjust values within a predefined range. They are frequently employed in IVI

systems for the purpose of modifying settings such as volume adjustment or setting

alert thresholds. Sliders can be oriented horizontally or vertically and are typically

employed to represent a value. They provide a rapid and intuitive method for users

to input values, rendering them a user-friendly option for adjusting settings such as

sound volume or system preferences.

In the context of automated testing, the functionality of a slider is tested by

identifying its ends and calculating its range. This process typically involves the

following steps:

1. Detection: The test script searches for the ''minus'' and ''plus' symbols that

denote the ends of the slider. These symbols represent the minimum and

maximum values, respectively.

2. Calculation: Once detected, the script calculates the length of the slider

track between the ''minus'' and 'plus' symbols.

3. Position Setting: Subsequently, the script calculates the coordinates for the

minimum, midpoint, and maximum positions on the slider track.

4. Interaction: Finally, the script simulates click events at the calculated coor­

dinates to set the slider to minimum, midpoint, and maximum values.

- .- +
Infotain. syst. vol. lowering when parking 3

' +

Goodbye tone 20

. +

Figure 6.8: Audio settings slider controls

81

It is important to note that in automated testing scripts, sliders are often set

to only their minimum, midpoint, or maximum values due to the complexity in­

volved in setting arbitrary values. This approach provides a reasonable assurance

of functionality across the slider's range.

6.5 Screen Capture

Once the screen has been configured in accordance wi th the requisite specifications,

the subsequent crucial stage in the assessment of the new H M I version is the screen

capture process. This entails the precise imaging of the display in order to analyse

the layout and functionality under a range of conditions. Screen capture is not

merely a recording of the content displayed on the screen; it is also about capturing

the interface in a manner that reflects how end-users wi l l interact wi th the system.

This section wi l l examine the various techniques and tools employed for screen

capture. The process of screen splitting wi l l be discussed, which allows the user to

isolate and capture specific areas of interest on the screen. This is particularly useful

for focusing on elements that require detailed evaluation or are critical to the user

experience.

Additionally, the different modes in which screens can be captured wi l l be

explored. These modes are designed to accommodate various scenarios, such as

scrolling, which is necessary when the content extends beyond the visible screen

area. They also allow for the capture of screens during different states, such as

loading sequences or when dropdown menus are active. It is, therefore, essential to

understand these modes in order to ensure that all dynamic and static elements of

the H M I are accurately documented.

82

6.5.1 Screen Splitting

Screen splitting is a strategy employed in automated testing that focuses on

the examination of specific areas within an infotainment display. This targeted

approach enables testers to concentrate on discrete components of the interface,

streamlining the setup process and reducing complexity. It eliminates the need to

account for visual settings beyond the area of interest, enhancing testing efficiency.

K e y Areas:

• DISPLAY: Represents the entire screen.

• SCREEN_INSIDE: Refers to the central section of the display where main in­

teractions occur.

• MAINBAR: The bottom bar area, often containing navigation or system controls.

• TABBAR: The section dedicated to tab navigation, crucial for functionality but

isolated for focused testing.

• SCREEN_LIST: A modified SCREEN_INSIDE where the TABBAR is absent, thus

the central screen is wider.

• P o p U p Areas: Targeted regions intended for popup dialog testing.

• Homescreen Tiles: Specific tiles on the homescreen can be isolated to test

individual features or alerts.

The utilisation of screen splitting enables testers to automate the capture

and analysis of designated regions, such as the TABBAR, without the distraction

of surrounding elements. This approach is particularly beneficial for regression

testing, where changes in one area should not affect the overall interface.

The Figure 6.9 exemplifies the MAINBAR (red), TABBAR (green), and

SCREEN_INSIDE (orange) areas in the context of a 'Vehicle status' screen. The

MAINBAR spans horizontally at the bottom, the TABBAR is situated above it, and the

SCREEN_INSIDE covers the central display section showcasing the vehicle's illustra­

tion and status information.

83

Figure 6.9: Infotainment display segmentation

The Figure 6.10 illustrates the concept of capturing only a single homescreen tile,

highlighted in green, concerning 'Dr iv ing data'. It demonstrates how, in a report,

only this specific part of the screen would be reported, focusing solely on the content

within the green frame. This would be used for testing elements such as efficiency,

speed, or mileage data, without regard to adjacent

— 20.0° £ I * ® 13:39 P S\ $ — 20.0°
- , n i r

Figure 6.10: Focused testing of the driving data homescreen tile

The two images serve as visual aids in understanding how screen splitting can

be used to enhance the efficiency and accuracy of automated testing for IVI sys­

tems. The focused highlighted to denote the regions of interest during

the automated testing process, thereby providing clarity and precision in the testing

results.

84

6.5.2 Capturing Modes

Automated testing of infotainment systems employs a variety of capturing modes

wi th the objective of enhancing the efficiency and thoroughness of the validation

process. These modes are designed to enable testers to effectively record the state

of the infotainment system under a range of conditions. B y utilising these specific

capturing modes, testers can focus on particular elements within the system's inter­

face, ensure consistency in repeated tests, and trigger certain conditions that might

not be easily observable during manual testing.

To facilitate comprehension and utilisation of these capturing modes, a compre­

hensive table is provided below. The table outlines each mode, describes its primary

function, and notes any specific conditions or parameters that are relevant to the

mode. This organised representation allows testers to quickly reference and select

the most appropriate capturing mode for their current testing requirements, thus

facilitating a streamlined and targeted testing process.

Table 6.2: Overview of capturing modes

Mode Description
Classic Captures a single image, cropping based on 'area'.
Classic+Drop Captures as classic, including all expanded dropdowns.
Scroll Captures the entire scrollable list, wi th a maximum of

25 images.
Scroll+Drop Like scroll, but includes expanded dropdowns.
SideScroll Captures while horizontally scrolling, with various 'end-

Condit ion ' options, up to 25 images.
TabBar Captures all tab bar positions.
TabBarPress Captures al l tab bar positions in a pressed state.
ScrollPress Captures scrollable screens with touches on each line.
ClassicPress Captures screen wi th elements in pressed state as spec­

ified by 'endCondition'.
PopUp Like classic, retains the popup after "path" execution

wi th direct popup name.
PopUpPress Like classicPress, but maintains the popup post "path"

execution.

85

6.5.3 Understanding the 'endCondition' Parameter

The 'endCondition' parameter plays a pivotal role in the process of automated

screen capturing, functioning as a dynamic criterion that determines when a screen

should be captured. It is the defining condition that guides the automated system

in determining the precise moment to take a snapshot of the infotainment screen

during testing.

1. Cursor: This condition is used when screens have a bl inking cursor. Mul t ip le

snapshots are taken during the test, and the one wi th the active (visible)

cursor is saved.

2. Loading: Applicable to screens wi th a rotating "loading" indicator. The con­

dition involves capturing several images, comparing the quantity of identically

colored (green) pixels, and saving the one with the highest count (indicating

the largest segment of the loading icon).

3. Animation: Used for screens with changing animations. The capture process

involves taking several images during the animation sequence and comparing

each with a reference image to determine the optimal snapshot to save. This

ensures that the captured screen reflects the expected state of the animation

at a specific point in time.

4. Numerical Value (e.g., 5): Useful for 'scroll ' and 'sidescroll' modes, it

signifies the capture of a specified number of screens.

5. String: When 'endCondition' is a string, the capture continues unti l a spe­

cific text is found on the screen.

i d i e t set views SYSTEM_UPDATES e n d C o n d i t i o n {"loading"}

List ing 6.2: Implementation example for endCondition

The 'endCondition' parameter plays a pivotal role in the fine-tuning of the

automated testing process, enabling the precise capture of interactive elements and

dynamic content within infotainment systems.

86

6.6 Comparison of New Images with Reference and

Detection of Differences

This section outlines an automated comparative analysis framework that leverages

image recognition to validate H M I graphics against predefined standards. The cor­

nerstone of this framework is the establishment of a reference image, which serves

as the benchmark for graphical fidelity. This image is thoroughly vetted by testers

and confirmed to align wi th graphical specifications. The reference image encap­

sulates the desired appearance of the H M I , including iconography, text placement,

and colour schemes.

The system automatically compares the reference image wi th newly captured

screens from the latest H M I or software versions on a weekly basis. Employing

ImageMagick software, the comparison is executed, scanning for deviations pixel by

pixel. This rigorous check ensures any alterations, whether intentional or inadver­

tent, are identified and assessed. For an in-depth discussion on the functionalities

and applications of ImageMagick in automated testing, see section A . 2 .

The output of this comparison is a color-coded report reflecting the degree of

similarity between the tested image and the reference:

• Green: Denotes an exact match, signifying no discernible difference from the

reference image.

Figure 6.11: Exact match verification: Green indicates identical screens

• Yellow: Represents a minor discrepancy wi th less than 1% pixel difference

detected.

m <• * ® @ ®

not*:
PARKING VIEW 4' \TS SLIDERS MAX

Figure 6.12: Minor discrepancy detected: Yellow for under 1% pixel difference

87

• Red: Signals a significant difference exceeding 1% pixel variation.

EZ

Figure 6.13: Significant variation: Red for over 1% pixel difference

• Blue: Indicates the absence of a reference image, prompting a manual check

to establish a new standard if the screen meets quality criteria.

T m e : — — - View name [TIRA; HEW£mage-H55.64.2

21:1656

FAS_\TEU ;_FAT I GUEA5 S IST_ ON

CAE__FA3_2_HOME

H:5 NO DATA NO DATA

FAS_\TE\V_FATIGUEASSIST_OH rz i n
H:5 NO DATA NO DATA

Figure 6.14: Manual review required: Blue when reference is missing

In addition to the aforementioned primary indicators, the framework also identi­

fies error states, which may arise from syntax errors in the TestCases or unexpected

test duration, leading to an automatic termination. These error states are high­

lighted distinctly to alert testers to anomalies that could affect the testing process.

• — •

Figure 6.15: Error indication: Highlighted when a test issue occurs

The implementation of this image comparison framework enables a systematic

and efficient approach to H M I graphic verification. It reduces the potential for

human error, standardises quality control, and ensures consistency across software

updates. B y facilitating the quick identification of discrepancies and errors, it sup­

ports developers in maintaining the high standards expected in modern IVI systems.

88

6.6.1 Case Study: Detecting and Analyzing Interface Discrep­
ancies in HMI Updates

In the ongoing evolution of IVI systems, each software update may result in

intended enhancements as well as unintended discrepancies. The following case

study illustrates the process of identifying and evaluating changes within the G U I

to distinguish deliberate modifications from potential bugs.

Reference Image Analysis

The reference image serves as a standard for graphical accuracy in the H M I

interface. In this case, the reference image is that of a phone dial screen within

the infotainment system. It features a clear and user-friendly layout with essential

functions like number input and quick access to emergency and voicemail services.

Analysis of Recent H M I Update

In the revised version of the H M I , the new image displays a modification to the

voicemail label, which now reads as "Voicemail" in place of the original "Mai lbox"

text. This change, while seemingly minor, represents a graphic update that must

be verified to ensure it aligns wi th the intended design revisions. The rest of the

dial interface remains unchanged, maintaining the integrity of the design and user

interaction experience.

Differential Analysis

The differential image highlights the specific area of change between the reference

and the new image. Ut i l iz ing red to indicate discrepancies, the altered "Voicemail"

label is distinctly marked, contrasting against the unaltered elements which blend

seamlessly wi th the reference background.

89

Enter number

'—1 ' Z 3
Q - O A B C • EF

4 5 6
GHI JKL MNO

7 8 9
PQRS T U V W X Y Z

* 0 #
+

m> Galaxy A21s •

s ^ Emergency call

Q-D Mailbox

Figure 6.16: Reference image

Figure 6.18: Differential image

Upon the detection of a variation, the subsequent crucial stage is verification.

This process entails consulting the change logs, design documents or communicating

wi th the design and development teams to ascertain whether the modification was

intentional. Only through this thorough examination can a change be validated or

flagged for correction.

90

6.6.2 Case Study: Identifying and Resolving Interface Bugs in
HMI Updates

The current case study examines the detection of a significant interface bug, which

deviates from the established H M I design guidelines and functional expectations.

Reference Image Analysis

The standard interface layout for radio settings is presented in the reference

image. It comprises a well-structured arrangement of clearly defined options, each

accompanied by a standardised checkbox. This design consistency is of critical

importance for both aesthetic appeal and user interaction.

) Radio settings

Automatically select station logo C3>

Station logo region Czech Republic •

Switch to a similar station if reception is poor

Hybrid Radio

Activate streaming and load station logos C3>

Figure 6.19: Reference image

Analysis of Recent H M I Update

Upon examination of the latest iteration of the H M I , an anomalous row is im­

mediately apparent. This comprises an additional setting wi th an unconventional

checkbox, devoid of any corresponding title. This irregularity deviates from the es­

tablished design language of the interface, suggesting the possibility of an oversight

or bug rather than an intended update.

) Radio settings

Automatically select station logo C3>

Station logo region Czech Republic •

5witch to a similar station if reception is poor

Hybrid Radio

Figure 6.20: Image of new H M I update

91

Differential Analysis

The differential image is stark, with the unlabelled row and non-standard check­

box viv id ly contrasted against the standard backdrop. This visual cue is crucial

for developers and testers alike, as it draws attention to specific areas requiring

immediate remediation.

Radio settings

Automatically select station logo C3>

Station logo region Czech Republic •

Switch to a similar station if reception is poor

Hybrid Radio

Figure 6.21: Differential image

Upon identifying this deviation as a bug, the subsequent step is to document

and report it to the skinning team. B y providing a detailed report, it is possible to

implement targeted corrections, ensuring that the interface adheres to the project's

standards and maintains the continuity of the user experience.

This case study serves as an example of proactive bug detection and resolution

in the ongoing refinement of IVI systems. This case study illustrates the necessity

for a meticulous approach to interface verification post-updates, assuring that any

anomalies are swiftly identified and resolved.

92

6.7 Final Report on Automated Infotainment

System Testing

The final report represents the culmination of an automated testing session for

an infotainment system. It is a comprehensive and visually organised document

that articulates the status and graphical representation of the system's interface.

This final report is not merely a collection of data; it is a synthesised presentation

of results, offering clear insights into the aesthetics of the infotainment system's

G U I . The report typically commences with a graphical summary, which provides an

overview of the test outcomes in a concise manner. A s illustrated in the provided

images, this encompasses a count of various test result categories, including:

• Number of TestCases (TCs)

• Total screens captured

• Summary of tests passed, failed, or wi th errors

Test results count

Sums of elements in report

NO DATA U S
PASSED
M I D D L E J S ' O K 41

F A I L E D 44

o
M I D D L E N O K - F A I L E D 35
TOTAL S C E E E N S H O T S

T E S T C A S E S A C T I V E S39
T E S T C A S E S A L L E67

JIRA A C T I V E 444
J I R A A L L 455

Figure 6.22: A n example of the numerical result of one of the tests report

This graphical representation enables stakeholders to rapidly assess the efficacy

of the testing process and identify areas in need of attention. It constitutes a funda­

mental component of the report, frequently presented in H T M L format to integrate

detailed data wi th user-friendly visuals.

93

A significant aspect of the final report is the collection of new images captured

during testing, including those that demonstrate discrepancies from the anticipated

outcomes. These images are frequently resized to align with the report's format,

thereby providing clear evidence of the system's current state in comparison to the

baseline or reference images.

Comprehensive logs are also part of the final report, capturing the session's

intricate details:

• ConsoleLog.txt: A log file from the Tel console, which records the commands

and outputs during the test execution.

• Log.html: A log from TestAut2, the automated testing tool, providing an

H T M L formatted view of the testing process.

• Test.xml: A settings file for TestAut2 that details the configuration and pa­

rameters used in the testing session.

Moreover, the report includes an archive of every screen from previous reports

(versions H M I) , stored externally. This historical archive is indispensable for com­

parative analysis, allowing testers to observe changes over time and assess the

progress or regression of the system's graphical interface.

94

Figure 6.23: Sample part of the final report

95

7 Results and Analysis

Automated testing is a crucial aspect of ensuring the reliability and quality of IVI

systems, such as the one found in the Skoda Enyaq, which represents one of the

most comprehensive systems offered by the manufacturer. This chapter examines

the capabilities of automated testing, the current scope of the test bench in use, and

the outcomes of these testing sessions.

7.1 Test Automation Results

The current test bench provides extensive testing, often exceeding 1000 screenshots

that capture a broad range of scenarios within the infotainment system. These

screenshots verify the visual and interactive aspects of the system's G U I , ensuring

that all visual elements are rendered correctly and that interactions lead to the

expected outcomes.

The number of unique screens and test cases depends heavily on the specific

project at hand. In the case of the Enyaq infotainment system, the scale is signifi­

cantly larger due to the system's complexity and breadth of features.

Over the lifetime of the Enyaq project, this methodical approach to testing

has led to the discovery of hundreds of bugs. Each bug identified is a step

towards refining the user experience, contributing to a more stable, functional, and

user-friendly infotainment system.

In conclusion, the automated testing of the Enyaq infotainment system is a

comprehensive undertaking. B y encompassing a comprehensive array of screens and

test cases, it ensures that the system meets the high standards expected of a leading

automotive brand such as Skoda. The automation process not only expedites the

detection of bugs but also supports the development team in delivering a robust and

reliable product for the end-users.

96

7.2 Limitations

Automated testing, while transformative in its scope and capabilities, is not without

its limitations. Despite advanced technology and methodologies, certain aspects of

IVI systems remain beyond the reach of full automation. This section explores the

limitations of automated testing, the challenges of achieving full test coverage, and

the that require further refinement.

Incomplete Test Coverage

One of the main limitations of automated testing is the inability to test

al l screens automatically. For example, critical functions that rely on online

connectivity or real-time data often escape comprehensive automated testing due to

the absence of certain devices or live data streams. In particular, screens associated

wi th online services remain untested because they require connectivity to external

networks that the test bed may not be equipped to simulate.

Testing Voice Assistants

The interactive nature of voice-activated features presents another significant

hurdle. Automated test systems cannot physically reproduce spoken commands,

which is essential for validating voice assistant functionality. The lack of this

capability leaves a gap in system verification, especially as voice commands become

an increasingly common form of user interaction in modern vehicles.

C A N o e Simulation Challenges

The limited availability of real vehicle units on the test bench necessitates

the use of simulators such as C A N o e to mimic the remaining systems. However,

achieving harmony between the real and simulated units is a complex task.

Synchronising C A N o e simulations wi th physical components to achieve seamless,

representative testing is often challenging and can affect the reliability of test results.

Test Duration and Optimization

Another critical issue is the length of the testing process, wi th test runs of up to

16 hours. Such long test times indicate an urgent need for optimisation. Efficiency

improvements are needed not only to reduce test time, but also to minimise resource

utilisation and reduce the potential for errors that can result from prolonged test

cycles.

97

Lack of Automated Flashing via A P I

The lack of automated flashing of units v ia an A P I also limits test flexibility.

Currently, units are pre-coded wi th as many features as possible to maximise screen

availability. However, this approach does not address the need to dynamically

update or flash units to test different software versions or configurations, leaving

some screens inaccessible for testing.

Capturing Complex Animations

Lastly, the automated testing system's capacity to capture screens wi th complex

animations is not foolproof. Whi le the "animation" endCond i t i on enhances the

ability to record screens during animated sequences, capturing the nuances of

intricate animations remains a challenge. Ensuring that the captured screen

matches the reference precisely, particularly wi th sophisticated animations, is an

where automated testing can falter.

In summary, while automated testing has made significant progress in advancing

the validation of IVI systems, it has yet to overcome certain inherent limitations.

Overcoming these challenges wi l l require continued development of the test infras­

tructure, incorporation of more sophisticated simulation techniques, refinement of

test optimisation processes, and improved integration of real and simulated com­

ponents. A s the complexity of IVI systems increases, so must the ingenuity and

capability of automated test methodologies.

7.3 Test Automation Cost

The implementation of automated test methods in IVI systems requires a significant

up-front investment. When assessing the financial requirements for the deployment

of these systems in 2024, it is important to note that these costs are estimates based

on current market conditions and are subject to change.

The main costs of setting up an automated test environment are the purchase of

specialised hardware components and software licences. The estimated total invest­

ment required to set this up is approximately €26,000. This estimate is based on

market analysis and includes the essential components listed for a fully functional

test environment.

A significant portion of this budget is allocated to the C A N o e software licence,

which represents almost half of the total cost.

98

7.3.1 Exclusions in Cost Estimation

This financial estimation exclusively accounts for the tangible assets required for the

automated testing setup. It is important to highlight that al l vehicle units utilised

during the testing phases are provided by Skoda Auto at no cost. These development

units, while challenging to quantify in price, represent a significant value addition

and reduce the overall financial burden of the testing process.

It should be noted that the ini t ial cost estimate does not include operational costs

such as salaries for employees, as well as electricity and other utilities necessary for

system operations.

7.3.2 List of Components and Their Costs

To provide further clarity on the financial aspects of setting up an automated testing

system, a list of key items and their approximate prices is provided below.

• C A N o e License and C A N Case: €12,000 - A comprehensive tool for E C U

testing and network simulation.

• Test Racks and Fixtures: €3,000 - Custom-designed fixtures and racks for

mounting and interfacing wi th infotainment units.

• High-Performance P C s : €2,000 - Computers equipped wi th advanced spec­

ifications to handle the software and testing data.

• Networking Equipment: €1,500 - Includes routers, cables, and interfaces

for establishing a robust testing network.

Whi le the ini t ial outlay for automated test infrastructure may appear consid­

erable, the potential for significant improvements in test efficiency, accuracy and

consistency justifies the investment.

99

8 Future Directions

As the automotive industry continues to evolve, the technologies embedded within

vehicles, particularly IVI systems, are becoming increasingly sophisticated. This

chapter examines potential future directions for automated testing in this domain,

taking into account current trends in technology development across various auto­

motive manufacturers.

8.1 Transition to Android-Based Infotainment

Systems

One of the most prominent trends in the automotive industry is the adoption of

Android-based interfaces for IVI systems. Companies such as A u d i , a member of the

Volkswagen Group, have already initiated the integration of infotainment systems

based on Andro id applications. This transition towards Andro id provides a more

flexible platform for app development and integration, potentially offering a more

enriching user experience through customisable interfaces and a broader range of

applications.

Given the close relationship and technology sharing within the Volkswagen

Group, it is reasonable to anticipate that Skoda Auto may also adopt Android-

based infotainment systems in the future. Typically, the technology seen in A u d i

vehicles trickles down to Skoda models within a span of three to five years. This

would suggest a probable shift in Škoda 's approach to infotainment solutions in the

near to mid-term future.

8.2 Future Research and Development

The introduction of Andro id interfaces requires a significant change in the approach

to automated testing. Currently, testing focuses primarily on hardware reliability

and the integration of native software within the infotainment units. However, with

100

Andro id at the heart of these systems, automated testing would need to evolve to

validate Andro id applications specifically designed for use in vehicles.

To accommodate these changes, research and development efforts in the field of

automated testing wi l l need to focus on creating more dynamic and flexible testing

frameworks. These frameworks should not only support existing protocols but also

adapt to the ever-changing software landscape introduced by Andro id and other

mobile platforms.

8.3 Speculative Outlook

The specific technological trajectory of Skoda Auto is a complex matter to pre­

dict. However, observing trends in sister companies like A u d i , which has integrated

Android-based systems into its infotainment offerings, suggests a potential direction

for Skoda. Whi le it seems plausible that Skoda might adopt similar technologies in

the coming years, this remains an educated guess rather than a certainty.

The dynamic nature of the automotive industry, wi th its continuous innovations

and changing market forces, means that any predictions must be viewed as tentative.

This highlights the need for automated testing frameworks to remain flexible and

capable of adapting to new technologies as they emerge.

101

9 Conclusion

This thesis is centred around the implementation of automated testing for IVI sys­

tems. W i t h the increasing complexity and functionalities of modern automotive

software, automated testing offers a scalable solution for ensuring system reliability

and user satisfaction.

A fundamental aspect of implementing automated testing is the understand­

ing of the technical foundations, including the C A N protocol and the Tel script

language. These technologies are of paramount importance for the creation and

management of tests, due to their inherent robustness and flexibility in handling

device communication and script automation.

The workflow of automated testing significantly enhances the efficiency of the

testing process. B y automating repetitive tasks and facilitating regression tests, the

process allows for continuous improvements and faster development cycles, ensuring

that each version of the software meets high-quality standards before deployment.

A n in-depth exploration of the hardware and software components used in the

testing environment is documented in the thesis. Detailed connection diagrams

provide a clear visualisation of how these components interact, offering insights into

the complexities of the testing setup.

Furthermore, the thesis introduces a comprehensive library of H M I functions.

This library contains hundreds of functions that are essential for testing various as­

pects of the infotainment system. Only a selection of these functions is documented

within the thesis, reflecting a selection of the most crit ical features necessary for

comprehensive testing.

A specific case study on the Skoda Enyaq is included to demonstrate the appli­

cation of these methodologies in a real-world context. The appendix of the thesis

contains all the test cases developed for this project, providing a practical perspec­

tive on how automated testing is applied to specific vehicle models.

102

The results of these tests are compiled into detailed reports, complete with visu­

alisations that highlight the performance and outcomes of the testing process. These

reports serve as a crucial tool for developers to identify and address potential issues

swiftly.

Despite the advancements, the thesis does not shy away from discussing the l im­

itations encountered. Issues such as scalability across different hardware configura­

tions and occasional inconsistencies in test outcomes are highlighted, underscoring

for future improvement.

Currently, Digiteq Automotive is utilising these automated testing methodologies

to evaluate the successors of Skoda Octavia, Superb, Kodiaq , and Enyaq. This

practical application across five test benches illustrates the industry's confidence in

automated testing as a crit ical component of automotive software development.

103

References

[1] A L D A L L A L , Jehad. Automat ion of object-oriented framework application

testing. In: 2009, pp. 425-434. ISBN 978-1-4244-3885-3. Available from DOI:

10.1109/IEEEGCC.2009.5734312.

[2] A U T O , Skoda. Nový virtuální kokpit, 13" displej [online]. Skoda Auto , 2021

[visited on 2024-05-05]. Available from: ht tps : / /cdn.skoda-s toryboard.com/

2 0 2 1 / 0 3 / 7 2 _ E N Y A Q _ i V _ D P L - 1 9 2 0 x l 2 8 1 . j p g .

[3] B I L L I G E R , Carparts. SKODA NÄVI DAB MULTIMEDIA MIB3 INFO­

TAINMENT NAVIGATION 5E3035816-B [online]. Carparts Billiger, [n.d.]

[visited on 2024-05-05]. Available from: https://www.carparts-billiger.de/155-

Niara_thickbox/skoda-na v i - dab-multimedia- mib3-infotainment-navigation-

5e3035816-b2x.webp.

[4] B O L A N D , Hannah M . et al. A n Overview of C A N - B U S Development, Ut i l iza­

tion, and Future Potential in Serial Network Messaging for Off-Road Mobile

Equipment. In: A H M A D , Fiaz and S U L T A N , Muhammad (eds.). Technol­

ogy in Agriculture. Rijeka: IntechOpen, 2021, chap. 25. Available from DOI:

10.5772/intechopen.98444.

[5] B O S C H , Robert. Can specification, version 2.0. Bosch, 1991.

[6] C H O I , Dong-Kyu et al. In-Vehicle Infotainment Management System in

Internet-of-Things Networks. In: 2019 International Conference on Informa­

tion Networking (ICOIN). 2019, pp. 88-92. Available from DOI: 10 .1109/

ICOIN.2019.8718192.

[7] C O N T R I B U T O R S , Wikipedia . Tel [online]. 2023. [visited on 2024-05-05].

Available from: ht tps : / /en .wikipedia .org/wiki /Tcl .

[8] diet manual page - tcl.tk [h t t p s : / / w w w . t c l . t k / m a n / t c l / T c l C m d / d i c t . h t m] .

[N.d.]. [Accessed 26-03-2024].

[9] Digiteq automotive [online]. 2023. [visited on 2023-11-21]. Available from:

https://www.digiteqautomotive.com/en.

104

https://cdn.skoda-storyboard.com/
https://www.carparts-billiger.de/155-
https://en.wikipedia.org/wiki/Tcl
http://www.tcl.tk/man/tcl/TclCmd/dict.htm
https://www.digiteqautomotive.com/en

E L E C T R I C , Bueno. Can termination resistors-vital part [online]. 2022.

[visited on 2024-05-05]. Available from: https : / / www . buenoptic . net /

encyclopedia/item/544-can-termination- resistors- vital-part. html.

E L E S H O P . E U . Manson HCS-3602-USB power supply [online]. 2024. [visited

on 2024-05-05]. Available from: ht tps : / /e leshop.eu/manson-hcs-3602-usb-

power-supply.html.

E U R O T E I L . ICAS1 GW [online]. 2024. [visited on 2024-05-05]. Available

from: https://www.jllautoparts.com/product/lea-937-012-n.

F A L C H , Mar t in . Can bus explained - a simple intro [2023] [online]. 2021.

[visited on 2024-05-05]. Available from: https: / / www. csselectronics. com /

pages/can-bus-simple-intro-tutorial.

G M B H , Vector Informatik. VN1600 [online]. Vector Informatik G m b H , 2010

[visited on 2024-05-05]. Available from: https : / / cdn . vector . com / cms /

content / products / V N 1 6 x x / g r a p h i c s / V N 1 6 3 0 1 o g _ L i e g e n d _ U n t e n _ w e b _

3200x2000px.jpg.

G R I F F I T H , John. What do can bus signals look like? [online]. 2023. [visited

on 2024-05-05]. Available from: h t t p s : / / w w w . t i . c o m / d o c u m e n t - v i e w e r / l i t /

h t m l / S S Z T C N 3 .

H O G S T R O M , Christopher and Christopher H O G S T R O M . TCL Loops -

Gritty engineer [online]. 2019. [visited on 2024-05-05]. Available from: https:

/ / grittyengineer. com /1 cl- loops / .

HP . HP Zl G9 Tower Workstation [online]. [N.d.]. [visited on 2024-05-05].

Available from: https: / / www. hp. com / g b - en / shop / H t m l / Merch / Images /

c08195534_1750xl285.jpg.

I M A G E M A G I C K . Image Magick [online]. 2024. [visited on 2024-05-05]. Avail­

able from: https:/ / imagemagick.org/.

K A N , Hongxing et al. A method of minimum reusability estimation for au­

tomated software testing. Journal of Shanghai Jiaotong University (Science).

2013, vol. 18, pp. 360-365. Available from D O l : 10.1007/S12204-013-1406-1.

K A R A M B U N A I , Ko ta . Controller Area Network (CAN) basic and techni­

cal overview [online]. 2015. [visited on 2024-05-05]. Available from: h t t p : / /

kotakarambunai. blogspot. com / 2015/11 / controller- area- network- can- basic-

and.html.

K U B Á T , Jan. Automatické testování infotainment jednotek. 2020. M A thesis.

Č V U T .

105

https://eleshop.eu/manson-hcs-3602-usb-
https://www.jllautoparts.com/product/lea-937-012-n
https://www.ti.com/document-viewer/lit/
https://imagemagick.org/

M A C A R I O , Gianpaolo, Marco T O R C H I A N O , and Massimo V I O L A N T E . A n

in-vehicle infotainment software architecture based on google android. In:

2009 IEEE International Symposium on Industrial Embedded Systems. 2009.

pp. 257-260. Available from D O l : 10.1109/SIES.2009.5196223.

O S B O R N E , Ben. What does OBD stand for? [online]. 2023. [visited on 2024-

05-05]. Available from: https:/ /www.noregon.com/what-is-obd/.

P A P O U C H . Quido ETH 2/16: 2 vstupy, 16 výstupů a teploměr [online]. Pa-

pouch, 2024 [visited on 2024-05-05]. Available from: h t tp s : / / papouch .com/

quido- eth- 2-16- 2-vs tupy-16-výs tupu- a- teploměr- p4642/ ?vid=1785.

P F E I F F E R , Olaf, Andrew A Y R E , and Christ ian K E Y D E L . Embedded net­

working with can and Canopen. First . Copperhil l Technologies Corporation,

2008.

P O I N T , Tutorials. TCL - bitwise operators [online]. [N.d.]. [visited on 2024-

05-05]. Available from: h t tps : / /www. tu tor ia l spo in t . com/ tc l - tk / tc l_b i twise_

operators.htm.

P O I N T , Tutorials. TCL - relational operators [online]. [N.d.]. [visited on

2024-05-05]. Available from: https: / / www. tutorialspoint. com / t c l - tk / tc l

relational operators.htm.

R A F I , Dudekula et al. Benefits and limitations of automated software testing:

Systematic literature review and practitioner survey. In: 2012, pp. 1-42. ISBN

978-1-4673-1821-1. Available from D O l : 10.1109/IWAST.2012.6228988.

S .R.O, Digiteq automotive. Modular FrameGrabber (MGB) [online]. Digiteq

automotive s.r.o, 2024 [visited on 2024-05-05]. Available from: h t tps : / /www.

digiteqautomotive . com / sites / default / files / 2020- 08 / DSC1645 _ j p g _

2500px _0-min. jpg.

S A L E M , Patrick. Understanding ASIL Decomposition for Functional Safety

in Automotive Applications [online]. 2024. [visited on 2024-04-15]. Available

from: https: / / w w w . l inkedin. com/pulse /understanding- asil- decomposition-

functional- safety- automotive- salem-bbcwc / .

S A X E N A , A N S H U L . Everything You Need to Know About In-Vehicle Info­

tainment Systems [online]. 2023. [visited on 2023-11-14]. Available from: https:

/ / www. einfochip s. com/b log / everything- you- need- to- know- about- in - vehicle-

infot ainment- system/.

106

https://www.noregon.com/what-is-obd/
https://papouch.com/
https://www.tutorialspoint.com/tcl-tk/tcl_bitwise_
https://www

S H E N K , Geoffrey. Automotive Infotainment System Testing Automation [on­

line]. Functionize Inc., 2018 [visited on 2024-05-05]. Available from: https:

//www.functionize.com/blog/testing-automation-for-infotainment-systems.

S H I N , Yeonghun et al. Digi ta l Forensic Case Studies for In-Vehicle Info­

tainment Systems Using Andro id Au to and Apple CarPlay. Sensors (Basel,

Switzerland). 2022, vol. 22. Available from D O l : 10.3390/s22197196.

SKODA presents new Digital Assistant: "Okay, Laura!" [online]. 2023. [visited

on 2023-12-06]. Available from: https://www.skoda-storyboard.com/en/press-

releases/skoda-presents-new-digital-assistant-okay-laura/.

S M I T H , Grant Maloy. What is Can bus (controller area network) [online].

2024. [visited on 2024-05-05]. Available from: h t t p s : / / deweso f t . com/b log /

what- is- can- bus.

S T O C K I N T H E C H A N N E L . APC SMC1000IC uninterruptible power sup­

ply [online]. 2023. [visited on 2024-05-05]. Available from: h t t p s : / / w w w .

stockinthechannel .co.uk/ Product / A P C - S M C 1000IC- uninterruptible- power-

supply-UPS-Line-Interactive-1000-VA-600-W-8-AC-outlet-s-/42348216.

S Y N O P S Y S , Inc. What is ASIL? [online]. 2024. [visited on 2024-04-15]. Avail­

able from: https://www.synopsys.com/automotive/what-is-asil .html.

Tel - Arrays [ht tps: / /www.tutorialspoint .com/tcl- tk/ tcl_arrays.htm]. [N.d.].

[Accessed 31-03-2024].

Tel - Lists [h t t p s : / /www. tu to r i a l spo in t . com/ t c l - t k / t c l_ l i s t s . h tm] . [N.d.].

[Accessed 31-03-2024].

Tel - Namespaces [ht tps: / /www.tutor ia lspoint .com/tcl- tk/ tc l_namespaces.

htm]. [N.d.]. [Accessed 31-03-2024].

Tel - Procedures [online]. [N.d.]. [visited on 2024-05-05]. Available from: https:

/ /www.tutorialspoint .com/tcl- tk/ tcl_procedures.htm.

Tel Built-in Commands [online]. [N.d.]. [visited on 2024-05-05]. Available from:

https:/ /wiki. tcl-lang.org/page/switch.

T E A M , Tel Core. Welcome to the TCLER's wiki! [online]. 2018. [visited on

2024-05-05]. Available from: ht tps: / /wiki . tc l- lang.org/ .

T M E . E U . WDR series 12 Vpower supply [online]. 2024. [visited on 2024-05-

05]. Available from: h t t p s : / / w w w . t m e . e u / e n / n e w s / l i b r a r y - a r t i c l e s / p a g e /

52591/din-rail-mounted-power-supply-modules-from-mean-well/.

107

http://www.functionize.com/blog/testing-automation-for-infotainment-systems
https://www.skoda-storyboard.com/en/press-
https://dewesoft.com/blog/
http://co.uk/
https://www.synopsys.com/automotive/what-is-asil.html
http://www.tutorialspoint.com/tcl-tk/tcl_arrays.htm
http://www.tutorialspoint.com/tcl-tk/tcl_lists.htm
http://www.tutorialspoint.com/tcl-tk/tcl_namespaces
http://www.tutorialspoint.com/tcl-tk/tcl_procedures.htm
https://wiki.tcl-lang.org/page/switch
https://wiki.tcl-lang.org/
https://www.tme.eu/en/news/library-articles/page/

T U T O R I A L S P O I N T . TCL - logical operators [online]. [N.d.]. [visited on 2024-

05-05]. Available from: h t tp s : / /www. tu to r i a l spo in t . com/ tc l - tk / t c l_ log ica l_

operators.htm.

V A I B H A V . Automotive Infotainment Testing Best Practices / IVI System -

embitel.com [ht tps: / /www.embitel .com/blog/embedded-blog/infotainment-

testing- success- mantras- that - your- automotive- development- team- should-

ace/]. 2019. [Accessed 15-01-2024].

W I K I P E D I A . Electronic Control Unit - - Wikipedia, The Free Encyclopedia

[http:/ /cs.wikipedia.org/w/index.php?ti t le=Electronic%20Control%20Unit&

oldid=23626234]. 2024. [Online; accessed 25-April-2024].

Y I N , Ning. Automated Testing for Automotive Infotainment Systems. 2018.

M A thesis. Chalmers University of Technology and University of Gothenburg.

Z A M A N , Najamuz. Automotive Electronics Design Fundamentals. Springer,

2015.

108

https://www.tutorialspoint.com/tcl-tk/tcl_logical_
http://embitel.com
https://www.embitel.com/blog/embedded-blog/infotainment-
http://cs.wikipedia.org/w/index.php?title=Electronic%20Control%20Unit&

A Appendices

A . l Tel Syntax

The syntax of Tel is designed to be simple and expressive, enabling rapid script

development and execution. This section explores the essential elements of Tel

syntax, including its command structure, variable usage, control flow constructs,

and procedures, providing a solid foundation for effective scripting.

Comments

In Tel, comments are utilised to include explanatory remarks in the code, en­

hancing its readability and maintainability. Single-line comments begin wi th the 9^

symbol and continue unti l the end of the line. They can be placed on their own line

or at the end of a line of code [43].

When adding a comment after a command on the same line, it is essential to

separate the command and the comment with a semicolon (;) followed by the 9^

symbol. This ensures that the Tel interpreter correctly interprets the comment.

Here is an example of how to use single-line comments:

1 # T h i s i s a standalone comment
2 set speed 100 ;# Th i s comment f o l l o w s a command

List ing A . l : Comments example

Command Structure

A t the heart of Tel is its minimalist yet powerful command syntax. Each com­

mand is a concise line of instructions, beginning wi th a command name and followed

by its associated arguments. These arguments are separated by spaces and can be

as few as none or as many as the task requires. A command ends wi th a new line

or a semicolon, whichever suits the programmer's flow.

B y way of illustration, the anatomy of a standard Tel command is shown below:

1 commandName argumentl argument2 ... argumentN

List ing A . 2 : Command example

109

This simplicity ensures that commands are both readable and easy to write. For

example, a code to print "Hello Tel World" is as simple as:

i puts " H e l l o T e l World"

List ing A . 3 : Command to print "Hello Tel Wor ld" in Tel

It also uses the dollar sign ($) to denote variables. When a command is exe­

cuted, variable names prefixed wi th $ are replaced with their corresponding values

before the command is executed. This substitution mechanism is an integral part

of dynamic command generation and execution[43].

1 #Example 1
2 set brand "Skoda"
s puts " V e h i c l e Brand: $brand"

4 # Output: V e h i c l e Brand: Skoda

ti #Example 2
7 set speed 60
s puts "Current Speed: $speed kmph"
9 # Output: Current Speed: 60 kmph

List ing A .4 : Variable substitution

Tcl's command substitution feature allows for dynamic computation and inter­

action within scripts, making it a crucial tool for complex operations. B y enclosing

commands within square brackets ([]), Tel first evaluates the enclosed command

and then substitutes its result into the outer command. This mechanism is espe­

cially useful in scenarios that require data manipulation based on the outcome of

embedded commands [43].

1 set r a d i u s 4
2 set area [expr 3.14 * $ r a d i u s * $ r a d i u s]
3 puts "Area of the c i r c l e : $area"

List ing A . 5 : Example of command substitution

In the provided example, the 'expr' command calculates the area of a circle

using the radius stored in the 'radius1 variable. The result is assigned to the 'area'

variable, which is then printed to the standard output using the 'puts' command

within square brackets. This fragment illustrates how command substitution can

facilitate the execution of calculations or operations that depend on the results of

other commands, seamlessly integrating them into the flow of the script.

The unset command is used to delete variables, removing them from the script's

environment. When a variable is unset, it no longer exists in the namespace, and

110

attempting to access it afterward wi l l result in an error unless it is redefined. This

command is particularly useful for freeing up memory or ensuring that outdated or

unnecessary data does not linger in the script, potentially causing incorrect behavior

or conflicts[43].

i unset r a d i u s

List ing A . 6 : Example of removing variable

Mathematical Operations

Although Tel is primarily known for its string manipulation capabilities, it also

provides support for mathematical operations. This makes it a versatile tool for

applications requiring numerical computations, ranging from simple arithmetic to

complex mathematical expressions. The language's ability to handle both string

and numerical data types makes it a valuable asset for developers.

In Tel, mathematical operations are carried out using the expr command. This

command evaluates an expression and returns its value. The basic syntax is:

i set r e s u l t [expr { o p e r a t i o n }]

List ing A . 7: Example of expr command in Tel

where operation can be any arithmetic calculation, such as addition (+), subtrac­

tion (-), multiplication (*), division (/) , and more complex mathematical functions.

Tel supports a wide range of mathematical functions, including trigonometric, log­

arithmic, and exponential functions [43].

I l l

Assume a and b are p r e d e f i n e d v a r i a b l e s with some values
set a 10
set b 5

set a d d i t i o n [expr {$a + $b}]
puts " A d d i t i o n : $ a d d i t i o n " ;# R e s u l t : 15

set s u b t r a c t i o n [expr {$a - $b}]
puts " S u b t r a c t i o n : $ s u b t r a c t i o n " ;# R e s u l t : 5

set m u l t i p l i c a t i o n [expr {$a * $b}]
puts " M u l t i p l i c a t i o n : $ m u l t i p l i c a t i o n " ;# R e s u l t : 50

set d i v i s i o n [expr {$a / $b}]
puts " D i v i s i o n : $ d i v i s i o n " ;# R e s u l t : 2

set modulus [expr {$a 7« $b}]
puts "Modulus: $modulus" ;# R e s u l t : 0

List ing A . 8 : Implementing basic arithmetic operations

To illustrate the use of mathematical operations in Tel in the context of auto­

mated testing in automotive, consider a scenario where we need to test the volume

control functionality of an infotainment system. The system adjusts the volume

based on the speed of the vehicle, increasing the volume as the speed increases. We

can simulate this behaviour and calculate the expected volume level at different

speeds.

C a l c u l a t e volume l e v e l based on speed
set baseVolume 20 ;# Base volume l e v e l at 0 km/h
set speed 80 ;# Current speed i n km/h
set volumeAdjustmentFactor 0.1 ;# Increase per km/h
set expectedVolume [expr {$baseVolume + ($speed *

$ volume Adjustment F a c t o r))•]
puts "Expected volume at $speed km/h: $expectedVolume"

List ing A .9 : Simulating volume adjustment based on vehicle speed

112

Table A . l : Overview of fundamental operations in Tel

Function Syntax Description
Addi t ion + Adds two numbers
Subtraction - Subtracts the second number from the first
Mult ipl icat ion * Multipl ies two numbers
Division / Divides the first number by the second
Modulus '/. Returns the remainder of division
Increment ++ Increases a variable's value by 1
Decrement — Decreases a variable's value by 1

Logical Operations

Logical operations are crucial in programming languages as they allow for

decision-making based on specific conditions. In Tel, logical operations are pri­

marily used in conditional statements and loops to control the flow of execution

Tel supports the fundamental logical operators found in many programming lan­

guages: (logical A N D) , | | (logical O R) , and ! (logical N O T) . These operators

are utilised to combine or invert boolean expressions that evaluate to either true or

false [45].

• The logical A N D operator (&&) returns true only if both operands are true.

• The logical O R operator (||) returns true if at least one of the operands is

true.

• The logical N O T operator (!) inverts the truth value of its operand.

Logical operators in Tel are used within expressions, typically inside if state­

ments, while loops, or for loops. Here's the basic syntax:

1 i f { S c o n d i t i o n l && $ c o n d i t i o n 2 } {
2 ;# Code t o e x e c u t e i f b o t h c o n d i t i o n l a n d c o n d i t i o n 2 a r e t r u e

:i >
4

5 i f { S c o n d i t i o n l I I $ c o n d i t i o n 2 } {
(i ;# Code t o e x e c u t e i f e i t h e r c o n d i t i o n l o r c o n d i t i o n 2 i s t r u e

7

8
>

9 i f { ! $ c o n d i t i o n } {

10 ;# Code t o e x e c u t e i f c o n d i t i o n i s n o t t r u e

11 >

List ing A . 10: Implementing conditional logic

113

Bitwise Operations

Bitwise operations are crucial for low-level programming tasks, such as manipu­

lating data at the binary level. In Tel, bitwise operations enable the manipulation

of bits wi thin integer values, allowing for efficient data processing and control.

Tel supports several bitwise operators for performing operations on integer

operands at the bit level. These operators include:

• Bitwise A N D (&): Performs a logical A N D operation on each pair of bits in

two integers.

• Bitwise O R (|): Performs a logical O R operation on each pair of bits in two

integers.

• Bitwise X O R (~): Performs a logical X O R (exclusive O R) operation on each

pair of bits in two integers.

• Bitwise N O T (~): Performs a logical N O T operation, inverting each bit in an

integer.

• Left Shift («) : Shifts the bits of an integer to the left by a specified number

of positions.

• Right Shift (>>): Shifts the bits of an integer to the right by a specified number

of positions [26].

114

Bitwise operators are used within the expr command in Tel. Here's how you can

use these operators:

set a 12 ;# B i n a r y : 1100
set b 5 ;# B i n a r y : 0101

B i t w i s e AND
set andResult [expr {$a & $b>] ;# Result i s 4 (0100)

B i t w i s e OR
set o r R e s u l t [expr {$a | $b>] ;# Result i s 13 (1101)

B i t w i s e XOR
set x o r R e s u l t [expr {$a ~ $b}] ;# Result i s 9 (1001)

B i t w i s e NOT
set n o t R e s u l t

s i z e
[expr {~$a }] ;# Result dep ends on the system's word

L e f t S h i f t
set l e f t S h i f t [expr {$a « 2}] ;# Result i s 48 (110000)

Right S h i f t
set r i g h t S h i f t [expr {$a » 2}] ;# Result i s 3 (0011)

List ing A . 11: Example of using bitwise operators

Relational Operations

Relational operations in Tel are utilised to compare values, which is fundamen­

tal in control flow structures such as if-conditions and loops. This section covers

relational operators and their usage in Tel scripts.

Tel provides standard relational operators to compare numerical values and

strings:

• Equal (==): Returns true if two operands are equal.

• Not Equal (!=): Returns true if two operands are not equal.

• Greater Than (>): Returns true if the left operand is greater than the right

operand.

• Less Than (<): Returns true if the left operand is less than the right operand.

• Greater Than or Equal To (>=): Returns true if the left operand is greater

than or equal to the right operand.

115

• Less Than or Equal To (<=): Returns true if the left operand is less than or

equal to the right operand[27].

Relational operations are commonly used in conditional statements to make

decisions:

i set speed 60

3 i f {$speed > 55} {
puts "Exceeding speed l i m i t ! "

5 }

7 set temperature 35

9 i f {$temperature >= 30} {
10 puts "High temperature warning!"
11 }

List ing A . 12: Example of implementing relational operations

The Tel programming language features a straightforward syntax that empha­

sises ease of use and flexibility. In Tel, each command is comprised of a command

name followed by arguments separated by whitespace. The language supports

various types of data without the need for specific declarations, making it highly

adaptable for different scripting scenarios.

K e y aspects of Tel syntax include:

• Command Structure: Commands are the fundamental building blocks in

Tel, where a typical command can include the command name and various

arguments. The end of a command is denoted by a newline or a semicolon.

• Variable and Command Substitution: Tel allows for dynamic content

wi thin scripts through variable and command substitution. Variables are pre­

fixed with $ to denote substitution, while square brackets [] are used to execute

commands within commands.

For those seeking a more detailed understanding of Tcl 's syntactic elements and

a more comprehensive examination of its application, further coverage can be found

in Appendix A . l of this document. This appendix not only provides a more in-

depth analysis of the nuances of Tel syntax but also offers extensive discussions and

examples of Tcl 's mathematical, logical, bitwise, and relational operations. These

sections offer insights into how Tel manages complex scripting tasks effectively.

116

A.1.1 Loops in Tel

Tel loop constructs, including 'for', 'foreach' and 'while', are crucial for automat­

ing testing in IVI systems. These loops enable the repeated execution of a code

block, which is essential for executing complex functions.

'For' Loop

The 'for' loop in Tel is similar to its counterpart in C and other programming

languages. It is typically used to iterate over a sequence of numbers, making it

suitable for scenarios where the exact number of iterations is known in advance. This

could be particularly useful for testing a sequence of input values for an infotainment

system function.

i f o r { i n i t i a l i z a t i o n } { c o n d i t i o n } { i t e r a t i o n } {
Code b l o c k to be executed

3 }

List ing A . 13: Template of a Tel 'for' loop

• initialisation: This step is executed before the loop starts. It is commonly

used to initialize a counter variable, but it can also include any Tel command.

• condition: Before each iteration of the loop, this expression is evaluated. If it

is true (non-zero), the loop continues. If it is false (zero), the loop terminates.

• iteration: A t the end of each loop iteration, this step is executed. It is

typically used to increment or decrement a counter variable, but it can execute

any Tel command.

For example, to print numbers from 1 to 10 in Tel using a 'for' loop, you can

write:

i f o r {set i 1} { $ i <= 10} { i n c r i } {
puts $ i

3 }

List ing A . 14: Example of 'for' loop in Tel

This loop initializes a variable 'i' to 1, continues to execute as long as 'i' is less

than or equal to 10, and increments 'i' by 1 in each iteration. Inside the loop, the

'puts' command prints the current value of 'i' to the standard output.

117

'Foreach' Loop

The 'foreach' loop in Tel is a powerful construct designed for iterating over lists

and arrays, making it an essential tool for scenarios requiring sequential processing

of elements. Unlike the for loop, which is generally used for executing a block of

code a specific number of times based on a counter, the 'foreach' loop simplifies

the iteration over items in a collection without manual index management. This

feature can greatly improve the readability and efficiency of code, particularly when

working wi th data collections.

The basic syntax of the 'foreach' loop in Tel is as follows:

i f o r e a c h varName l i s t {
;# Code b l o c k to execute f o r each element i n the l i s t

3 >

List ing A.15: Template of a Tel 'foreach' loop

• varName: A variable that is set to each element of the list in turn.

• list: A list of elements that wi l l be iterated over.

The Tel 'foreach' loop is known for its clarity, convenience, and flexibility, mak­

ing it the preferred choice for iterating over collections of data. One of its primary

advantages is the enhanced clarity it brings to the code. B y explicitly indicating

that the operation involves processing each item in a list or array, it makes the devel­

oper's intention clear, improving code readability. Clar i ty is particularly important

in complex scripts where understanding the flow of data is crucial.

Additionally, the convenience offered by the 'foreach' loop cannot be over­

stated. It eliminates the cumbersome need for manual index management, which is

prone to errors. This feature ensures that each element in the collection is processed

without the need for explicit tracking of indices, thereby simplifying the coding

process.

Flexibi l i ty is another significant benefit of the 'foreach' loop. Tel is proficient

in managing not only basic lists but also associative arrays, referred to as dictionar­

ies. This feature enables the iteration over key-value pairs in dictionaries, making

complex data manipulation tasks effortless. Furthermore, Tcl 's 'foreach' loop can

simultaneously iterate over multiple lists, which is ideal for parallel processing of

related datasets[16].

118

set carModels {"Audi A4" "BMW 3 S e r i e s " "Mercedes C-Class"}
set i n f o t a i n m e n t V e r s i o n s {"MMI 10.1" " i D r i v e 7.0" "MBUX 2020"}
f o r e a c h carModel $carModels i n f o t a i n m e n t V e r s i o n $ i n f o t a i n m e n t V e r s i o n s {

puts "$carModel i s equipped with i n f o t a i n m e n t system v e r s i o n :
$ i n f o t a i n m e n t V e r s i o n "

}

List ing A . 16: Example of 'foreach' loop in Tel

The output of the previous code wi l l be displayed as follows:

Audi A4 i s equipped with i n f o t a i n m e n t system v e r s i o n : MMI 10.1
BMW 3 S e r i e s i s equipped with i n f o t a i n m e n t system v e r s i o n : i D r i v e 7.0
Mercedes C-Class i s equipped with i n f o t a i n m e n t system v e r s i o n : MBUX

2020

List ing A . 17: Output of 'foreach' example

'While' Loop

The 'while' loop is a crucial control structure in Tel that enables the execution

of a block of code repeatedly as long as a specified condition remains true. This

type of loop is particularly useful for situations where the number of iterations is

not known before the loop starts. It is ideal for tasks such as reading data unti l an

end-of-file marker is reached or for polling a device status unti l a certain state is

detected.

The basic syntax of the while loop in Tel is as follows:

while { c o n d i t i o n } {
;# Code b l o c k to be executed as long as c o n d i t i o n i s t r u e

}

List ing A . 18: Template of a Tel 'while' loop

• condition: A n expression that is evaluated before each iteration of the loop.

If the condition evaluates to true (non-zero), the loop continues wi th another

iteration. If the condition evaluates to false (zero), the loop terminates, and

execution continues with the next statement following the loop [16].

In the following excerpt, we explore the use of a 'while' loop, a fundamental con­

trol structure in the Tel programming language, through a whimsical yet instructive

example that humorously mirrors the iterative process of writ ing a thesis itself.

119

I n i t i a l i z e the t h e s i s p r o g r e s s
set t h e s i s P r o g r e s s 0
set t o t a l R e q u i r e d P a g e s 80

Loop u n t i l the t h e s i s i s complete
while { $ t h e s i s P r o g r e s s < $ t o t a l R e q u i r e d P a g e s } {

;# P r i n t a message about the c u r r e n t s t a t e
puts "You've completed $ t h e s i s P r o g r e s s pages of your B a c h e l o r
t h e s i s . Keep going! "

;# Add some humour with c o f f e e breaks
i f { $ t h e s i s P r o g r e s s 7. 10 == 0} {

puts "Time f o r a c o f f e e break! You've earned i t ! "
}

;# Add a funny message f o r the halfway p o i n t
i f { $ t h e s i s P r o g r e s s == $ t o t a l R e q u i r e d P a g e s / 2} {

puts "Halfway t h e r e ! Imagine the g r a d u a t i o n s c a r f drapping over
your s h o u l d e r s . "
}

;# Sleep f o r a second to simulate work being done
a f t e r 1000

;# Increment the t h e s i s p r o g r e s s
i n c r t h e s i s P r o g r e s s

P r i n t a message once the t h e s i s i s complete
puts " C o n g r a t u l a t i o n s ! Your Bach e l o r t h e s i s i s f i n a l l y complete. Time

to c e l e b r a t e ! "

List ing A . 19: Programming your way to graduation: A Bachelor's thesis progress

simulator in Tel

This Tel code represents a light-hearted simulation of writ ing a bachelor's thesis,

tracking progress in increments towards an 80-page goal. A s pages are 'completed',

encouraging messages encourage the user to keep going, interspersed wi th cues for

coffee breaks after every tenth page and a special note at the halfway point. A t the

end, a congratulatory message marks the completion of the simulated dissertation

journey.

120

The 'while' loop's versatility makes it suitable for a wide range of applications

in Tel scripting, including:

• Data Processing: Iterating over a data stream or a file line by line unti l no

more data is available.

• T iming Loops: Implementing delays or waiting for a specific condition to be

met, useful in polling operations or timeouts.

• Interactive Prompts: Repeatedly asking for user input unti l a valid response

is provided or the user chooses to exit.

When using 'while' loops, it 's important to ensure that the loop condition wi l l

eventually become false; otherwise the loop could become an infinite loop, causing

the script to hang or consume excessive resources. Careful management of the

condition and loop variables is essential to avoid such problems[16].

Understanding the 'switch' Command in Tel

The 'switch' command in Tel provides a powerful mechanism for toggling pro­

gram control between a number of options based on the value of an expression.

It is similar to the switch statement found in many other programming languages,

but comes with features that are uniquely tailored to the dynamic nature of Tel.

This control structure improves the readability and efficiency of code that requires

conditional execution of multiple branches[42].

The basic syntax of the 'switch' command can be expressed as follows:

i switch o p t i o n s ? s t r i n g p a t t e r n body ... ? d e f a u l t body?

List ing A.20: Template of a Tel 'switch' command[42]

• string: The string against which patterns are matched.

• pattern: The pattern to match against the string. Patterns can be literals,

glob-style patterns, or regular expressions, depending on the options used.

• body: The script to execute when a match is found.

The Tel 'switch' command is a versatile conditional control structure that en­

ables the execution of different code blocks based on the match between a value

and a set of patterns. Unlike the simpler if-elseif-else construct, 'switch' can sig­

nificantly simplify code, especially when dealing wi th complex conditional logic. It

121

stands out for its ability to handle not only exact matches but also more complex

pattern matching scenarios.

The 'switch' command enables three main modes of pattern matching, making

it useful for various use cases:

• Exact Matching: B y default, the 'switch' function performs exact matching

by comparing the given string against a series of patterns to find an exact

match. This mode is straightforward and covers many basic use cases.

• Glob-Style Matching: When the '-glob' option is activated, patterns can

include glob-style wildcards (such as * and ?). This mode is especially useful

for matching strings against patterns that follow a predictable format but may

contain variable parts.

• Regular Expression Matching: The '-regexp' option allows for the inter­

pretation of patterns as regular expressions, providing the greatest flexibility

and power for matching complex string patterns. This mode is particularly

useful for scenarios that require advanced pattern-matching capabilities [42].

1 set f i l e n a m e " a r c h i v e . z i p "
2

3 switch -glob $filename {
4 * . t x t {
5 puts " P r o c e s s i n g a t e x t f i l e . "
(i }

7 * . jpg|*.png {
8 puts " P r o c e s s i n g an image f i l e . "
9 }

10 * . z i p {
11 puts " P r o c e s s i n g a compressed f i l e . "
12 }

13 d e f a u l t {
14 puts "Unsupported f i l e t y p e . "
15 }

16 >

List ing A.21 : Practical example of a Tel 'switch' command

In this example, the -glob option allows the use of wildcard patterns to match file

extensions, providing a concise method to route processing logic based on the file

type.

122

A.1.2 Mastering Functions in Tel using 'proc'

Functions, which are referred to as procedures in Tel, are essential building blocks

that enable the encapsulation and reuse of code within scripts and applications.

Procedures in Tel are defined using the 'proc' command and allow for the creation

of complex, modular, and maintainable codebases. This subsection explores the

creation, usage, and advanced features of procedures in Tel, providing programmers

wi th the knowledge to utilize their full potential.

A procedure is defined using the 'proc' command, followed by the procedure

name, a list of parameters, and the procedure body. The syntax is as follows:

i proc procedureName { p a r a m e t e r L i s t } {
Procedure body

3 >

List ing A.22: Template of a Tel 'proc' command

• procedureName: The name of the procedure.

• parameterList: A list of parameters the procedure accepts, enclosed in

braces { } .

• Procedure body: The Tel code to execute when the procedure is called[41].

Parameters can be defined to accept default values, making them optional during

calls. This is achieved by specifying the parameter name followed by the default

value in the parameter list.

To call a procedure, simply use its name followed by any required arguments:

i procedureName a r g l arg2

List ing A.23: Template of calling procedures

Arguments are passed to the procedure in the order they are listed in the parameter

list [41].

Example: A Simple Procedure

Consider a procedure that greets a user:

proc greet {name} {

puts " H e l l o , ! inline ! "
}

greet " E k a t e r i n a "

List ing A.24: Example of a simple procedure

123

This greeting procedure takes a single parameter, 'name', and uses it within a 'puts'

command to print a greeting. When calling the 'greet' function wi th the argument

'Ekaterina\ it wi l l print "Hello, Ekaterina!"

Working with Return Values

Procedures in Tel return the result of the last command executed in their body

by default. To return a specific value, use the 'return' command[41]:

i proc sum {a b} {
r e t u r n [expr {$a + $b}]

3 >

5 set r e s u l t [sum 3 12]
fi puts $ r e s u l t ;# Outputs: 15

List ing A.25: Example of a simple procedure with 'return' command

A.1.3 Harnessing the Power of Dictionaries for Efficient Data
Management in Tel

In Tel, dictionaries are one of the powerful data structures designed to store and

manage collections of elements in key-value pairs. This structure is particularly

useful for organising related data, making it easily accessible by reference to a

unique key.

Basics of Dictionaries

A dictionary in Tel is an unordered collection of key-value pairs, where each key

is unique. Dictionaries are ideal for storing associative arrays, where each key maps

to a value. They are created using the 'diet create' command, followed by key and

value pairs. Here's a simple example[8]:

i set myDict [d i e t c r e a t e k e y l " v a l u e l " key2 "value2"]

List ing A.26: Example of creating a dictionary

To value in a dictionary, the 'diet get' command is used, specifying the

dictionary and the key:

i puts [d i e t get $myDict k e y l] ;# Outputs: v a l u e l

List ing A.27: Example to value in a dictionaryl

124

Modifying Dictionaries

Tel offers several commands for modifying dictionaries, including 'diet set' for

adding or updating key-value pairs and 'diet unset' for removing them. Modifying a

dictionary does not change the original; instead, it returns a new modified version[8].

Adding/updating a key-value p a i r
set myDict [d i e t set myDict key3 "value3"]

Removing a key­ value p a i r
set myDict [d i e t unset myDict k e y l]

List ing A.28: Example of 'diet set' and 'diet unset' commands

Iterating Over Dictionaries

To iterate over a dictionary, the 'diet for' command is used. It allows you to

loop through each key-value pair, performing operations as needed.

d i e t f o r {key value} SmyDict {
puts "Key: $key, Value: l v a l u e "

>

List ing A.29: Example of 'diet for' command

Advanced Features

• Nested Dictionaries: Tel supports nesting dictionaries wi thin dictionaries,

enabling the representation of complex data structures.

• Dictionary Keys: Whi le typically strings, dictionary keys can be any value,

offering flexibility in how data is structured.

• Efficiency: Dictionaries are implemented efficiently, providing fast access to

data, which is crucial for performance-sensitive applications.

The table below summarises the various 'diet' command options available in

Tel, along with a brief description for each. This table provides a concise overview

of the functionality that the 'diet' command offers for manipulating dictionaries in

Tel.

125

Table A . 2 : Summary of Tel 'diet' command options[8]

Command Option Description
diet create Creates a new dictionary wi th optional key-value pairs.
diet get Retrieves the value for a given key from the dictionary.
diet set Sets the value for a given key, creating the key if necessary.
diet unset Removes a key (and its value) from the dictionary.
diet update Temporarily updates keys with variables for a script block.
diet append Appends string values to the value of a key.
diet lappend Appends list elements to a list in the dictionary.
diet replace Replaces or adds key-value pairs in the dictionary.
diet remove Removes one or more keys and their values from the dictio­

nary.
diet merge Merges two or more dictionaries, wi th later keys overriding.
diet incr Increments the value of a key by a given amount.
diet with Updates the dictionary wi th variables scoped within a script.
diet for Iterates over the dictionary, assigning keys and values to vari­

ables in a loop.
diet keys Returns a list of all keys in the dictionary.
diet values Returns a list of all values in the dictionary.
diet size Returns the number of key-value pairs in the dictionary.
diet exists Checks if a key exists in the dictionary.
diet info Returns a human-readable string with information about the

internal representation of the dictionary.
diet map Transforms the dictionary according to the script, returning

a new dictionary.
diet f i l t e r Filters the dictionary based on keys, values, or script criteria,

returning a new dictionary.

A.1.4 Using Namespaces in Tel for Modular Programming

In Tel, 'namespaces' are a fundamental concept used to encapsulate and organise

code into distinct modules or packages. They act as containers for grouping related

commands, variables, and other 'namespaces', thus avoiding name collisions and

improving code reusability and maintainability. B y using 'namespaces', developers

can create modular applications where components can be developed, tested and

deployed independently[40].

126

Creating a 'namespace' in Tel is straightforward and can be achieved using the

'namespace' command. Here's a simple example:

namespace e v a l MyNamespace {
Define v a r i a b l e s and procedures w i t h i n the namespace
v a r i a b l e myVar " H e l l o , Namespace"
proc myProc {} {

r e t u r n "This i s a procedure i n MyNamespace"
}

}

List ing A.30: Example of creating a namespace in Tel

In this example, the namespace 'MyNamespace' contains a variable called

'myVar' and a procedure called 'myProc'. To access these elements from outside

the namespace, you must use their fully qualified names, which include the

namespace name followed by two colons (::) and the element name. For instance,

'MyNamespace: :my Var'.

Importing Namespaces

As software systems grow in complexity, modularisation becomes increasingly

important. Modularisation not only helps organise code but also enables code reuse

across different modules or projects. However, accessing commands or variables

defined in other 'namespaces' can be cumbersome, as it requires prefixing the full

'namespace' path to each call. Tcl 's importing mechanism simplifies this access,

making code more readable and maintainable.

Tel offers the 'namespace import' command, which allows importing com­

mands from one namespace to the current or another specified namespace. This

enables invoking commands without the need to prefix them with the namespace

path [40].

Assume ' m y U t i l i t i e s ' namespace d e f i n e s a procedure 1

p e r f o r m C a l c u l a t i o n '
namespace import m y U t i l i t i e s : : p e r f o r m C a l c u l a t i o n

Now ' p e r f o r m C a l c u l a t i o n ' can be d i r e c t l y c a l l e d
p e r f o r m C a l c u l a t i o n args

List ing A.31 : Example of importing a namespace

127

A.1.5 Leveraging Lists in Tel

Lists are a frequently used data structure in Tel, providing a simple and powerful

way to store and manipulate ordered collections of items. The syntax is straightfor­

ward, and the buil t- in commands for list manipulation are extensive, making them

an essential tool in Tel programming.

Lists can be created in Tel either by directly specifying the elements within

braces or by using the 'list' command. This flexibility allows for easy list construc­

tion and modification[39].

C r e a t i n g a l i s t with braces
set myTestCases { T e s t C a s e l TestCase2 TestCase3}

C r e a t i n g a l i s t with the l i s t command
set myParameters [l i s t P a rameterl Parameter2 Parameter3]

List ing A.32: Examples of creating a list

Tel provides the 'lindex' command to access elements at specific indices in a

list. Tel lists are zero-indexed, making the first element accessible at index 0.

A c c e s s i n g the f i r s t t e s t c a s e
set f i r s t T e s t C a s e [l i n d e x $myTestCases 0]

List ing A.33: Example of accessing element in list

Tel provides a comprehensive range of commands for managing lists, such as

linsert, lreplace, lappend, and lremove, catering to various needs for dynamic

list management [39].

Appending a new TestCase
lappend myTestCases TestCase4

I n s e r t i n g a new parameter at the b e g i n n i n g
set myParameters [l i n s e r t $myParameters 0 NewParameter1]

List ing A.34: Example of lappend and linsert commands

A.1.6 Arrays

Tel 'arrays', also known as associative arrays, allow for the association of keys wi th

values, providing a more convenient way to access data using meaningful identifiers

instead of numeric indices. This feature is particularly useful in automated testing

scenarios, where parameters and results can be directly linked to specific TestCases

or configurations.

128

The creation and modification of arrays in Tel are straightforward. Using the

'set' command wi th the array name and key, one can easily assign values to specific

keys within an array [3 8].

A s s i g n i n g a value to a key i n an ar r a y
set t e s t R e s u l t s (" T e s t C a s e l ") "Pass"
set t e s t R e s u l t s (" T e s t C a s e 2 ") " F a i l "

List ing A.35: Initializing test outcomes in an associative array

To obtain a value from an array, you need to specify the array name and key.

The 'array get' command can be used to retrieve all key-value pairs, which makes

it easy to iterate over the contents of an array[38].

R e t r i e v i n g a value u s i n g i t s key
set r e s u l t l $ t e s t R e s u l t s (" T e s t C a s e 1 ")

G e t t i n g a l l key-value p a i r s from an ar r a y
a r r a y get t e s t R e s u l t s

List ing A.36: Example of accessing array elements

A.2 ImageMagick: A Powerful Tool for Image

Processing in Automated Testing

ImageMagick is a versatile, open-source software suite that is widely recognised for

its abili ty to create, edit, compose, or convert bitmap images. It supports over 200

image formats, including popular ones such as J P E G , P N G , T I F F , and G I F , making

it an indispensable tool in software testing where image manipulation and analysis

are crucial [18].

Functionality and Features

ImageMagick offers a broad range of functionalities that are particularly useful

in automated testing of IVI systems:

• Conversion and Transformation: ImageMagick can convert images be­

tween formats, resize, rotate, apply various effects, and adjust image colours,

which is essential for preparing test artefacts and simulating different screen

scenarios.

• Image Comparison: One of its most powerful features is the abili ty to

compare images. This is invaluable in regression testing, where verifying the

consistency of UI elements after updates or changes is necessary. ImageMagick

129

can highlight differences between images down to the pixel level, providing a

visual aid to identify unexpected changes.

• Text and Graphics Handling: It can annotate images wi th text or overlay

graphics. This is particularly useful for adding labels or instructions directly

onto test images or for visualising test results [18].

Application in Automated Testing

In the context of automated testing for infotainment systems, ImageMagick is

used to automate several crucial tasks:

1. Automated Screenshots Verification: ImageMagick can automatically

process screenshots taken during tests to verify the correctness of the graphical

user interface against a baseline. This process is vi ta l for ensuring that all

visual elements are displayed correctly across different system versions or after

software updates.

2. Batch Processing: The tool can handle batch processing of images, which

enables the testing framework to process large numbers of screenshots in an

automated and efficient manner. This capability significantly reduces manual

effort and speeds up the testing cycle.

Benefits in Infotainment Testing

Uti l iz ing ImageMagick in infotainment system testing brings several benefits:

• Enhanced Accuracy: Automated image comparison helps in detecting UI

discrepancies that might be overlooked during manual testing.

• Efficiency: Automates repetitive tasks such as image conversions and adjust­

ments, allowing testers to focus on more complex test scenarios.

• Scalability: Supports handling large datasets of images, which is typical in

extensive testing phases of infotainment systems where numerous screen states

need to be validated.

130

B Appendices

B.l Attached Files

readme.txt
Enyaq_Report
TCs_ICAS3_SK_MEB13_EU_LHD
source
|_ Bachelor Thesis Sojka.zip
|_ Bachelor_Thesis_Sojka.tex

D e s c r i p t i o n of attached f i l e s
D i r e c tory with sample report
Directory with TestCases

Zip f i l e of LATEX project
Text of the work i n LATEX format

131

