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Abstract
In the current era of information overload, efficient methods for information retrieval are
crucial. This thesis summarises methods for obtaining vector representations for text and
audio, also known as semantic vectors. We took a deeper look at joint-representation
models such as SpeechT5 and SeamlessM4T, which transform these various forms of input
into one shared vector space. Based on these models, we built a system which allows us
to search in data regardless of the modality. In order to evaluate the proposed solution on
semantic search tasks, apart from standard keyword spotting tasks, we labelled a dataset
to capture similar semantic meanings of the keywords or phrases. Finally, we conducted
several experiments, where we explored the possibilities of the models used by limiting the
context seen during finetuning or involving text-to-speech (TTS) systems to improve overall
performance.

Abstrakt
V současné době přetížené informacemi jsou efektivní metody vyhledávání informací velice
žádané. Tato práce shrnuje metody pro získávání vektorových reprezentací pro text a zvuk,
známé také jako sémantické vektory. Podívali jsme se hlouběji na multimodální mode-
ly, jako jsou SpeechT5 a SeamlessM4T, které transformují tyto typy vstupu do jednoho
sdíleného vektorového prostoru. Na základě těchto modelů jsme vybudovali systém, který
nám umožňuje vyhledávat v datech bez ohledu na modalitu. Abychom mohli vyhodnotit
navrhované řešení, kromě standardního rozpoznávání klíčových slov, také pro úlohy sé-
mantického vyhledávání, manuálně jsme označili datovou sadu pro zachycení podobných
sémantických významů klíčových slov nebo frází. Nakonec jsme provedli několik experi-
mentů, kde jsme prozkoumali možnosti modelů omezením pozorovaného kontextu během
dotrénovaní neuronové sítě nebo zapojením systémů převodu textu na řeč (TTS) ke zlepšení
celkového výkonu.

Keywords
shared embedding space, semantic vectors, audio embeddings, word vectors, transformers,
SSL models, Joint-representation models, multimodal models, keyword spotting, semantic
search, information retrieval

Klíčová slova
sdílený vektorový prostor, sémantické vektory, vektorová reprezentace audia, slovní vek-
tory, transformery, SSL modely, multimodální modely, detekce klíčových slov, sémantické
prohledávání, vytěžování informací

Reference
BOBOŠ, Dominik. Search in speech recordings based
on semantic vectors. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Ing. Petr Schwarz, Ph.D.



Rozšířený abstrakt
V súčasnej dobe preťaženej informáciami a obrovským tokom dát je nevyhnutné zamerať

sa len na tie skutočne relevantné informácie. Nájdenie tých správnych údajov vyžaduje
rýchle a spoľahlivé systémy na prehľadávanie v obrovskom objeme dát. Takéto vyhľadávacie
mechanizmy sú kľúčové pre mnohé profesie, ako sú orgány činné v trestnom konaní, tajné
služby, investigatívni novinári či bežné profesie pracujúce s informáciami.

V priebehu rokov sa preto vyvinuli techniky ako vzhľadávanie kľúčových v audiu (KWS)
či prepis reči do textu (STT). V KWS systémoch môžeme kľúčové slovo zadať buď zvukovou
nahrávkou – Query-by-Example (QbE) alebo pokročilé systémy KWS podporujú aj textové
vstupy – Query-by-text. STT nám umožňuje po prepise používať rovnaké techniky ako v
prípade textu, ale STT vytvára významné množstvo chýb. Avšak tieto techniky nijako
nezachytávajú aj kontext a význam jednotlivých slov či viet.

Cieľom tejto práce bolo riešiť všetky vyššie uvedené problémy do jedného spoločného
systému. Preto bolo nevyhnutné získať takú reprezentáciu textu a reči, ktorá odráža aj
kontext – takzvané sémantické vektory. V práci boli zhrnuté jednotlivé prístupy získanie
vektorovej reprezentácie pre text a audio. Hlavne boli opisané modely využívajúce archi-
tektúru “transformers”, pre text to boli hlavne BERT a LaBSE a pre audio Wav2vec2
a HuBERT. Keďže chceme vytvoriť unifikovaný systém, preskúmali sme aj multimodálne
modely spoločnej vektorovej reprezentácie a to modely SpeechT5 a SeamlessM4T.

Tie nám umožnili nezávisle od typu vstupu používať zvukové alebo textové dáta. V tejto
práci sa posudzovala preveditelnosť a použiteľnosť takéhoto prístupu a ich pripravenosť
nahradiť aktuálne používané systémy.

S týmito multimodálnymi modelmi sme navrhli vyhľadávací algoritmus, kde sme sa
snažili využiť potenciál predtrénovaných modelov SpeechT5. Skúmalo sa, ktoré nastavenie
funguje najlepšie a to bolo postavné ako základný systém pre ďalší vývoj. V procese vývoja
sme objavili viaceré nastavenia, ktoré ovplyvňovali kvalitu výsledkov, ako napríklad správne
narovnanie prehľadávacieho okna pri porovnávaní naskrz modalít.

Taktiež sme vykonali niekoľko experimentov na zlepšenie základného systému. To za-
hŕňalo dotrénovanie modelu SpeechT5, pri ktorom sme sa sústredili na obmedzenie vidi-
teľného kontextu a analyzovali sme jeho vplyv na presnosť. Experimentovali sme s novou,
robustnejšou architektúrou modelov pre spoločnú reprezentáciu – SeamlessM4T, a pokúsili
sme sa prispôsobiť vlastnosti daného modelu na vytvorený vyhľadávací algoritmus. Nakoniec
sme zvýšili presnosť navrhovaného systému využitím mechanizmu hlasovej syntézy – text-
to-speech (TTS), ktorý sa zaintegroval ako metóda na predspracovanie textového vstupu.
Tento prístup sa javil ako ten s najvyšou presnosťou a stabilitou

Aby sme mohli vyhodnotiť presnosť systémov pre úlohy sémantického vyhľadávania,
manuálne sme vyznačili pomocou synonymického slovníka sémanticky podobné slová pre
úlohu sémantického vyhľadávania kľúčových slov. A taktiež sme okrem toho označili aj
významovo blízke vety pre úlohu vyhľadávania sémantických fráz. Systémy boli vyhod-
notené aj na úlohu klasického vyhľadávania kľučových slov a najlepšie KWS systémy boli
porovnané aj s komerčným riešením spoločnosti Phonexia.

Získané výsledky ukazujú veľký potenciál tohto nového prístupu pre vyhľadávanie v
reči a texte. Avšak pre komerčné nasadenie je potrebný ďalší vývoj. Nasledujúci vývoj
primárne zahŕňa zlepšenie presnosti, zníženie miery chýb pre falošné označenia a hlavne
zvýšenie rýchlosti extrakcie vektorovej reprezentácie, a aj rýchlosť samotného vyhľadáva-
cieho procesu.
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Chapter 1

Introduction

In the current era of information overload, it is essential to deal only with the relevant
information. Finding the right pieces of data requires fast and reliable information retrieval
systems. Such search mechanisms are crucial for many professions, namely law-enforcement
agencies, secret services, journalists, and common professions that work with information.

The simplest system is to search for keywords within text documents. This may be
sufficient for many use cases, however, it also carries many drawbacks. The query needs
to match the case exactly, slight changes in spelling or different word forms will ruin the
quality of the approach.

In addition, information flows through more sources than just in text form. The most
natural way for human communication is speech. Processing speech signals or audio, in
general, brings even more challenges. In speech, not even exact matching is reliably working.

Therefore, techniques like Keyword Spotting (KWS) or transcribing Speech-To-Text
(STT) have evolved over the years. KWS works similarly to search in text. We enter the
keyword either by audio – Query-by-Example (QbE) or advanced KWS systems support
text queries – Query-by-text. STT allows us to use the same techniques after transcription
as in the form of text, but STT creates a significant number of errors and is not accessible
for low-resource languages.

Additionally, it is often desirable to capture synonyms, other word forms, and similar
contexts. We either do not remember the exact keyword or want to catch semantically close
terms.

This thesis aims to address all of the issues above into one solution. Thus, it is necessary
to obtain a representation of text and speech that reflects the context. The goal of this
work is to apply current semantic vector representation approaches to text and speech and
try to search within these vectors. For the most efficient use, these modalities should be
interconnected, and thus we will examine joint-representation models. This allows us to
use audio or text queries interchangeably. This thesis objective is to evaluate the feasibility
and usability of this approach and determine whether it can replace the currently deployed
systems.

The thesis is organised as follows. In Chapter 2 and 3, we will provide an overview of
techniques to obtain text and audio vector representations. In Chapter 4, we will examine
architectures of joint-representation models. In Chapter 5, we will describe the datasets
we are using in development and Chapter 6, we present evaluation metrics. Chapter 7
presents the proposed search algorithm and the initial system. Finally, Chapter 8 describes
experiments and the results with the joint-representation models.
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Chapter 2

Vector representation for text

To process a large amount of text from the real world in the world of binary digits, it
is required to properly encode or convert the desired input. To search exact phrases –
keywords, the plain text form is sufficient. However, even for simpler tasks some level
of fuzziness is welcomed and expected. Thence the main objective is to evaluate various
properties of each word to understand the context and therefore bring more satisfactory
search results.

2.1 Text representation evolution
The earliest language representations tried to evaluate various properties of each word
manually. One of the approaches was Semantic Differential [34] which evaluates properties
for words such as opposites (sweet-bitter, warm-cold, etc.) or other properties and fills this
data into a vector. The main drawback of the Semantic Differential is that it captures only
predefined attributes and in addition, it requires a manual annotation which is subjective,
exhaustive and expensive. The more naive approach was One-hot encoding, which takes
the idea of a vector of vocabulary size and sets “1” for the position of the word otherwise
“0” is set.

This idea is extended to documents, bringing us to another approach to text represen-
tation called Bag of Words (BoW). BoW represents a document as a collection of words. It
takes a vocabulary-sized vector, where a “1” is added to the corresponding index each time
a word is present in a sentence, and “0” is placed elsewhere [19]. The difference between
One-hot encoding and BoW is that One-hot encoding provides binary vectors indicating the
presence or absence of words, and BoW provides counts of word occurrences in a sentence.

A more sophisticated approach is term frequency-inverse document frequency (TF-IDF),
which stems from BoW and takes into account the frequency of each word in the document
and the frequency of the word in the entire corpus of documents. TF-IDF 𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) of
term 𝑡, of document 𝑑 is given by the following formula:

tf-idf(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑)× 𝑖𝑑𝑓(𝑡,𝐷) . (2.1)

Term frequency 𝑡𝑓(𝑡, 𝑑) of term 𝑡 in document 𝑑 is given by:

tf(𝑡, 𝑑) =
𝑓𝑡,𝑑∑︀

𝑡′∈𝑑 𝑓𝑡′,𝑑
, (2.2)
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where 𝑓𝑡,𝑑 is the number of times that term 𝑡 occurs in document 𝑑, Σ𝑡′∈𝑑𝑓𝑡′,𝑑 represents the
total count of terms in document 𝑑. Inverse document frequency (IDF) 𝑖𝑑𝑓(𝑡,𝐷) of term 𝑡,
where 𝐷 represents all documents is a measure of the amount of information conveyed by
a word which is given by the following equation:

idf(𝑡,𝐷) = log
𝑁

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}|
, (2.3)

where 𝑁 is the number of all documents in the corpus and |{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| represents
the number of documents in the corpus containing term 𝑡. TF tells how important the
term is in the document and IDF shows how unique the term is in general – frequent terms
are usually less important. These methods have been widely used in Natural Language
Processing (NLP) for tasks such as text classification, information retrieval or a weighting
factor [40].

2.2 Unsupervised techniques for word embeddings
However, the methods described in section 2.1 have limitations: i) lack of capturing the
meaning of words or the relationships between them, and ii) high-memory demands. As
the words in the mentioned methods are represented as a vector of vocabulary size v, all
words are represented by matrix M of size v × v. Therefore it is unsuitable for large
dictionaries as M is very sparse.

To address the issue ii) to decrease the dimensions of matrix M, respectively dimen-
sions of a vector v, researchers involve tokenisation by Byte-pair encoding on word pieces.
To solve problem i), they proposed semantic vectors, which represent words as vectors in
a high-dimensional space, where the distance between vectors reflects the semantic similar-
ity between words. One such model is Word2vec introduced by Tomáš Mikolov [29].

2.2.1 Word2vec

Word2vec is a neural network-based technique for generating word embeddings, which are
vector representations of words in a high-dimensional space. Word2vec is trained on a large
corpus of text data and learns to predict the context of a word based on its surrounding
words. The resulting word embeddings can be used for various natural language processing
tasks such as text classification, sentiment analysis, and machine translation [30]. The
model proved to solve analogies by using vector arithmetic on the word embeddings. For
example, to find the missing word in the analogy “Man is to king as woman is to ?”,
the vector difference can be computed between “man” and “king”, add it to the vector of
“woman”, and find the closest word vector to the result. This would return “queen” as the
answer. Mikolov introduced two methods for training Word2vec: i) Continuous Bag of
Words (CBOW) model and ii) The Skip-gram model [29].

i) CBOW is based on the idea that the meaning of a word can be inferred from the words
that surround it in a sentence. CBOW uses a neural network to learn word embeddings by
predicting a target word given its context words. For example, given the sentence “He is
a great jazz musician.”, CBOW would try to predict the word 𝑤𝑡 = “great” based on the
words 𝑤{𝑡−𝑛, 𝑡−1, 𝑡+1, 𝑡+𝑛} = {“is”, “a”, “jazz”, “musician”} for a window size 𝑤𝑠 = 2×𝑛 =
4. Thus probability 𝑝 (𝑤𝑡 | 𝑤𝑡−𝑛, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+𝑛) should be for 𝑤𝑡 = “great” higher than
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for 𝑤𝑡 = “glasses”. The objective function 𝐽𝜃 of all terms 𝑇 with a window size 2 × 𝑛 is
given by the following equation [30]:

𝐽𝜃 =
1

𝑇

𝑇∑︁
𝑡=1

log 𝑝 (𝑤𝑡 | 𝑤𝑡−𝑛, . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . , 𝑤𝑡+𝑛) , (2.4)

where 𝑤𝑡 is the word to predict and 𝑤⟨𝑡−𝑛,𝑡+𝑛⟩ are words at the input representing the
context of the word 𝑤𝑡.

During the training of the neural network, the objective function of CBOW is to max-
imise average log probability from equation 2.4.

ii) The Skip-gram model predicts the context words given a target word. Thus it is the
opposite of the CBOW. For the given sentence “He is a great jazz musician.”, for the word
𝑤𝑡 = 𝑔𝑟𝑒𝑎𝑡 Skip-gram predicts the surrounding words. For a window size of 𝑤𝑠 = 2×𝑛 = 4
it should predict words 𝑤{𝑡−𝑛,𝑡−1,𝑡+1,𝑡+𝑛} = {“is”, “a”, “jazz”, “musician”}. The objective
function 𝐾𝜃 of all terms 𝑇 with a window size 2×𝑛 is given by the following equation [30]:

𝐾𝜃 =
1

𝑇

𝑇∑︁
𝑡=1

∑︁
−𝑛≤𝑗≤𝑛, ̸=0

log 𝑝 (𝑤𝑡+𝑗 | 𝑤𝑡) , (2.5)

where 𝑤𝑡 is the input word and 𝑤𝑡+𝑗 are words to predict in the context of the word 𝑤𝑡.
A simple neural network without a non-linear hidden layer is used for both models.

The projection layer, which has a log-linear classifier, is shared for all words. Therefore, all
words are projected to the same position by averaging their vectors [29]. The architecture
of the models is shown in Figure 2.1.

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

INPUT          PROJECTION         OUTPUT

w(t)

INPUT        PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

CBOW Skip-gram

Figure 2.1: Word2vec – CBOW and Skip-Gram architectures. Taken from [29]
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2.2.2 GloVe

Another unsupervised learning algorithm for the representation of words as vectors is from
Stanford University by J.Pennington – Global Vectors for Word Representation (GloVe) [36].
GloVe aims to solve drawbacks in methods like Latent Semantic Analysis (LSA) [11] or
Skip-Gram Word2vec. GloVe improves LSA’s performance on the analogy task and unlike
Word2vec, GloVe makes full use of the corpus statistics.

GloVe does not rely on local context windows. It is trained on aggregated global word-
word co-occurrence statistics from a corpus, and the resulting representations showcase
interesting linear substructures of the word vector space. The main intuition behind the
model is that ratios of word-word co-occurrence probabilities have the potential for encoding
some form of meaning. Let X be the matrix of word-word co-occurrence counts, where
elements X𝑖𝑗 hold the number of times word 𝑗 appears in the context of word 𝑖. Also, let
𝑋𝑖 =

∑︀
𝑘 𝑋𝑖𝑘 be the total number of words that appear in the context of word 𝑖. Then,

𝑃𝑖𝑗 = 𝑃 (𝑗 | 𝑖) = 𝑋𝑖𝑗/𝑋𝑖 is the probability of word 𝑗 appearing in the context of word 𝑖. The
model’s objective is to minimise the squared errors of the logarithms of the probabilities,
using a bilinear function to estimate them. The objective function of GloVe is defined as
follows:

𝐽 =
𝑉∑︁

𝑖,𝑗=1

𝑓(𝑃𝑖𝑗)(w
T
i w̃j + bi + b̃j − log𝑃𝑖𝑗)

2 , (2.6)

where wi and w̃j are the word vectors for the 𝑖-th and 𝑗-th words, bi and b̃j are their
respective biases, 𝑃𝑖𝑗 is the probability of word 𝑗 appearing in the context of word 𝑖, and
𝑓(𝑥) is a weighting function that assigns less weight to the more frequent word pairs.
Pennington claims that GloVe outperforms CBOW and Skip-gram Word2vec on the word
analogy task, as can be seen in Figure 2.2. The model is scalable and achieved state-of-the-
art performance on word analogy, word similarity, and named entity recognition tasks [36].
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Figure 2.2: Comparison of the accuracy between Word2vec [30] and GloVe [36] on the word
analogy task as a function of training time, which is determined by the number of iterations
for GloVe and by the number of negative samples for (a) CBOW and (b) Skip-gram. (300-
dimensional vectors were trained on the 6B token corpus – Wikipedia 2014 + Gigaword
5) [36].
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2.3 Language representation models
Language representation models aim to capture the meaning of natural language in a way
that can be used for various downstream tasks, such as sentiment analysis, machine trans-
lation, and question-answering. These models learn to represent words and sentences as
vectors in a high-dimensional space – semantic vectors, where similar words and sentences
are close together and the opposite ones are far apart [43]. One of the most important
types of language representation models is the Transformers [44], which is based on atten-
tion mechanisms.

With the rise of Transformers, many derivatives of the architecture evolved. One of
them is Bidirectional Encoder Representations from Transformers (BERT) introduced by
Google in 2018 [24], which happened to be a baseline for further models [43].

2.3.1 BERT

BERT is a multi-layer bidirectional Transformer encoder for language representation and
many NLP tasks. It is pretrained on the BookCorpus and English Wikipedia. BERT shows
the importance of bidirectional pretraining as opposed to a unidirectional approach like
in [37] and presents unsupervised pretraining by using two tasks: ii) Masked LM and ii)
Next Sentence Prediction (NSP) [24].

i) Masked LM is based on masking tokens at the input. To train a deep bi-directional
representation model BERT authors masked 15% of all tokens from the corpus.

Out of these masked 15% of the input sequences, 80% has a randomly chosen 𝑛-th token
of the sequence, which is masked using [MASK] token. For example, from the sentence
“[CLS] I have a new computer [SEP]” a randomly chosen 5-th token will be masked –
“[CLS] I have a new [MASK] [SEP]”, where [CLS] is a special token added in front of every
input example and [SEP] is a special separator token. Afterwards, the masked token is
predicted.

Next 10% of the masked input sequences has the 𝑛-th token replaced by a random
word – “[CLS] I have a new water [SEP]”.

The rest 10% of the times, the chosen token remains unchanged. Which should put
bias to the representation model to prefer the actual observed word. The purpose of this
method is that the Transformer encoder cannot predict which tokens it will need to generate
or which ones have been randomly substituted by other words. Therefore, it has to maintain
a contextual representation of every input token based on its distribution [24].

ii) Next Sentence Prediction (NSP) Language modelling is typically a word-level
representation, but it does not explicitly model the semantic relation between two sentences.
However, this relation is crucial for many NLP tasks, such as question answering or natural
language inference, that require reasoning and inference skills.

To learn relations between sentences BERT is pretrained for a binarised NSP task.
First, sentence pairs A and B for training are chosen, where A is the currently processed
sequence. 50% of the times B is the actual next sentence from the corpus and is labelled
with flag IsNext. The other 50% times sentence B is not the next sentence but a randomly
chosen sequence from the corpus and it is labelled as NotNext. Authors claim that NSP
is very beneficial to question answering, and after proper finetuning, for natural language
inference too [24].
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Figure 2.3: BERT pretraining architecture (finetuning architecture is analogical). BERT
takes sentence pairs with masked tokens as input. C is the vector of tokens representing
the prediction of the next sentence for binarized NSP. Adapted from [24].

The architecture of BERT pretraining is shown in Figure 2.3. The self-attention mecha-
nism in the Transformer makes BERT versatile enough to handle many downstream tasks,
which simplifies the finetuning process. For each task, it is enough to change input pair
sentences A and B to the desired input. a model of such quality is necessary for proper word
representation to get semantic vectors.

2.3.2 LaBSE

Unfortunately, BERT is not suitable as a cross-lingual model, as it is trained on English
corpora only. The multilingual model version of BERT – mBERT is pretrained from mono-
lingual corpora in 104 languages. However, mBERT is not equally effective for all lan-
guages [38] – Language-agnostic BERT Sentence Embedding (LaBSE) [16] comes in place
to solve this language inequality.

LaBSE is a multilingual BERT model designed to generate language-agnostic sentence
embeddings for 109 languages. The pretraining process of LaBSE combines masked lan-
guage modelling (MLM) with translation language modelling (TLM). MLM works the same
way as in the BERT model – MLM is explained in detail in subsection 2.3.1.

TLM is an extension of MLM, where instead of BERT’s pairs of word streams, TLM
uses pairs of parallel sentences in two different languages – lang 1, lang 2 [10]. An additional
difference is that it masks words in both the source and target sentences in a complementary
manner. For example, let lang 1 to be English and lang 2 to be German. Source sentence
in English is “He is very tired and exhausted.” and the corresponding target sentence
in German “Er ist sehr müde und erschöpft.”. The source and target sentences can be
masked the following way – “He is [MASK] tired and [MASK].” and “Er [MASK] sehr [MASK]
und erschöpft.”. Thus, to predict a masked word in lang 1, the model can either attend
to surrounding words of lang 1 or take the word from lang 2. This should align the
representation of both languages. The position is reset each time to the beginning to help
the alignment process [10].
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LaBSE adapts dual-encoder architecture by M.Guo [18] as it is an effective approach
for cross-lingual training. The dual-encoder architecture encodes two sequences 𝑥 and 𝑦 in
parallel with separate encoders. Then, the embedding space similarity 𝜑(𝑥, 𝑦) is given by
a dot-product of the encoded input to vectors u,v: 𝜑(𝑥, 𝑦) = u𝑇 · v [18], the architecture
is shown in Figure 2.5.

For LaBSE the source and target sentences are encoded separately. The sentence cross-
lingual embeddings are trained with in-batch negative sampling1 for a translation ranking
task [16]. To set a more distinctive and compact boundary between the target translation
and nearby non-translations LaBSE is using Additive Margin Softmax. It introduces a large
margin, 𝑚, around positive pairs in the scoring function – it applies as follows: [48]:

𝜑′ (𝑥𝑖, 𝑦𝑗) =

{︃
𝜑 (𝑥𝑖, 𝑦𝑗)−𝑚 if 𝑖 = 𝑗

𝜑 (𝑥𝑖, 𝑦𝑗) if 𝑖 ̸= 𝑗
(2.7)

The visualisation of what Additive Margin Softmax does to an original embedding space is
depicted in Figure 2.4.

Original
Embedding Space

Additive Margin Softmax
Embedding Space

Margin

Figure 2.4: A comparison of embedding spaces with and without additive margin softmax.
The shapes correspond to sentences and the same shapes are translations in various lan-
guages. Taken from [48].

LaBSE shows great performance on large-scale bilingual-text retrieval, and downstream
classification tasks and it boosts translation ranking performance [16]. It shows it makes
sentence embedding space of good quality which allows to use the semantic vectors in a truly
language-agnostic way. The LaBSE architecture is shown in Figure 2.5.

1The objective function is to maximise the similarity between the source sentence and the corresponding
true translation and minimise it with other incorrect translations.
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Figure 2.5: (a) a dual-encoder architecture consists of two groups of hidden layers. One
group encodes the source sentence 𝑥 into a vector, and the other encodes the target sentence
𝑦. The score 𝜑(𝑥, 𝑦) is the dot product of these encoded vectors. Taken from [18]. (b)
LaBSE architecture – a dual encoder model with BERT initialisation. Taken from [16].
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Chapter 3

Vector representation for audio

Vector representation for audio respectively speech is a more challenging task than for text.
Speech signals are more diverse than text. For example, the word “sunset” has only one
written form, but it is pronounced differently each time due to varying speed, speaker,
volume, tone, or environmental noise.

For a long time, the standard approach for speech processing was to extract some
features from audio signals and then process them accordingly to the specific task, such
as speech recognition, speaker identification, or speech synthesis. Some of the common
features that were used are [1]:

1. Discrete cosine transform (DCT) – It is a mathematical operation that converts a sig-
nal into a sum of cosine functions with different frequencies and amplitudes [49].

2. Fast Fourier transform (FFT) – FFT is an efficient algorithm for computing the
discrete Fourier transform (DFT), which decomposes a signal into a sum of complex
exponential functions with different frequencies and amplitudes, thus it converts the
signal from the time domain to the frequency domain.

3. Mel-frequency cepstral coefficients (MFCC) – They are based on the human perception
of sound and capture the signal’s spectral envelope.

4. Linear predictive coding (LPC) – It models the vocal tract as a linear filter and
estimates its coefficients from the signal.

5. Linear predictive cepstral coefficients (LPCC) – LPCC are derived from the LPC
coefficients by applying a discrete cosine transform (DCT).

To obtain better quality features or embeddings than the ones based purely on acoustics,
these features could be used as input for clustering. GMM-HMM models or neural nets
generate different types of features [1]. Clustering is a technique for grouping similar data
points based on some distance or similarity measure. GMM-HMM models are a combination
of Gaussian mixture models (GMM) and hidden Markov models (HMM) that are used to
model some statistical distribution and temporal dynamics of speech signals. Neural-net
training is a process of learning some parameters of a neural network. The neural net is
a computational model that consists of multiple layers of interconnected units that can
perform complex nonlinear transformations of the input. Features or embeddings are some
encoded representations of the input data that are extracted or learned by these techniques.
These methods can capture the relevant information for the given task [1]. The evolution
of signal processing for the past decades is depicted in Figure 3.1.
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Figure 3.1: Evolution of speech recognition techniques. Adapted from [49].

Lately, research is moving towards using raw audio to learn distinct features directly
from waveform [49]. Researchers tried to bring Mikolov’s idea of Word2vec [29] to audio
– Yu-An’s Audio Word2Vec [6] or Ashwin’s Sound-Word2Vec [46]. They proved that the
concept used in the text has potential for speech as well. Sound-Word2Vec works decently
with onomatopoeia and Audio Word2Vec shows potential for keyword spotting (KWS) task.
However, both of these papers struggle with polysemous words. This idea was taken and
reinvented further with Word2Vec [42]. The research in unsupervised speech representation
has made a huge leap forward in recent years. Architectures like Wav2vec2 [4], HuBERT [21]
or WavLM [5] brought improvement for automatic speech recognition (ASR) systems.

3.1 Keyword spotting
Keyword Spotting (KWS), also referred to as Spoken Term Detection (STD) is a task with
the primary objective of detecting predefined keywords or phrases within continuous speech.
Two main approaches can be defined for KWS: i) Query-by-Text (QbT) and ii) Query-
by-Example (QbE).

Query-by-text KWS is an approach when the query is given in the textual form. For
QbT KWS, it is assumed that the target language is well-documented, with a lot of resources
such as transcribed data, phoneme sets, and pronunciation dictionaries to train a phoneme
recogniser. Text queries have to be automatically transcribed into strings of phonemes or
other sub-word units. The units can then be converted to the signal form. The differences
between the textual representation of queries and the actual spoken form of the search data
make the QbT KWS application difficult for low-resource languages [15].

Query-by-example, as opposed to QbT KWS, uses the actual speech signal as a query.
QbE KWS systems search for a spoken query within a set of recordings with speech, deliv-
ering a list of detections with their scores and timestamps. Therefore, QbE KWS is suitable
even for low-resource languages [15].

The following approaches are common in QbE KWS systems:
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Dynamic Time Warping (DTW) Dynamic time warping (DTW) is an algorithm used
to find the shortest distance and compare two time series data when the time indices are
not synchronised [31].

Statistical modelling (HMM/GMM) It is a simplified model of ASR systems where
we use only two models – one for the keyword, and one for the background model.

By using Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) tech-
niques the keyword model is trained on features of the keyword, and the background model
is trained on features from all terms in the training dataset [15].

When matching the utterances, respectively features of the input, their likelihood ratios
are estimated by both the keyword model and the background model, which yield the scores
for the sequence and help us to choose the hypothesis with the higher probability and make
the decision [45].

Statistical modelling (HMM/NN) This concept uses Neural Networks (NN) instead
of GMM for estimating the likelihood of the samples in GMM states. Thus, instead of
fitting GMM by the Expectation–Maximization algorithm, NNs are trained to learn the
distribution [45]. NNs help to capture complex patterns and relationships within the data
better than GMMs.

Seq2Seq approach With better and more accessible hardware, Seq2Seq approaches have
also been explored for the KWS task. One of the approaches is to train the Seq2Seq model
to output a special token whenever it encounters the keyword in the input speech. During
inference, the presence of this special token in the output sequence indicates that the
keyword was spotted in the input [26].

3.2 Wav2vec
Wav2vec presented by Meta in 2019 [42] is a model for unsupervised pretraining for improve-
ment of supervised speech recognition. Wav2vec is a type of Convolutional Neural Network
(CNN) that processes raw audio waveforms as input and produces a general representation
which can then serve as an input for a speech recognition system.

It is based on predicting future samples from a given context in the input waveform.
But first the input samples x𝑖 of the raw audio 𝒳 are encoded to a feature representation
𝑓 : 𝒳 ↦→ 𝒴. 𝒴 is a CNN encoder which encodes 30𝑚𝑠 of 16 𝑘𝐻𝑧 with a 10𝑚𝑠 stride.

Then context network is applied: 𝑔 : 𝒴 ↦→ 𝒵 which takes gradually 𝑛 samples from 𝒴:
(y𝑖, . . . ,y𝑖−𝑛) as a history and creates one tensor z𝑗 = 𝑔(y𝑖, . . . ,y𝑖−𝑛), 𝑧𝑗 ∈ 𝒵.

The modelling of the data distribution is more accurate by using the encoded input 𝒳
to 𝒵, since doing it straight from the signal is more challenging [42].

The model is trained by minimising contrastive loss objective function. Let 𝑘 be the
count of samples to predict the encoded sequence 𝒴. Then the goal is to correctly iden-
tify a sample y𝑖+𝑘 from the future while uniformly choosing “distractor” samples ỹ from
distribution 𝑝𝑛 from audio sequence. Where 𝑝𝑛(y) =

1
𝑇 and 𝑇 is the sequence length. For

prediction steps of 𝐾 compute loss ℒ as follows:

ℒ =

𝐾∑︁
𝑘=1

(︃
−

𝑇−𝑘∑︁
𝑖=1

(︂
log 𝜎

(︁
y⊤
𝑖+𝑘ℎ𝑘 (z𝑖)

)︁
+ 𝜆

ỹ∼𝑝𝑛
E
𝐸

[︁
log 𝜎

(︁
−ỹ⊤ℎ𝑘 (z𝑖)

)︁]︁)︂)︃
, (3.1)
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where 𝜎(. . . ) is sigmoid and 𝜎
(︀
y⊤
𝑖+𝑘ℎ𝑘 (z𝑖)

)︀
is the probability of the true prediction of sample

y𝑖+𝑘, ℎ𝑘 is step-specific affine transformation, 𝜆 is set to the count of ỹ. Wav2vec’s ability
to carry context in the obtained representation shows great potential for unsupervised
boosting of speech-to-text systems [42].

3.3 Wav2vec2
Ideas from Wav2vec proved to be efficient in boosting Word Error Rate (WER) of speech-
to-text systems. Wav2vec2 [4] extend the proposed solution with updated architecture with
the use of Transformers.

Wav2vec2 still relies on the dual model architecture – (i) CNN encoder and (ii)
contextualized representation.

CNN Encoder is based on several blocks of temporal convolution with a normalisation
layer with Gaussian Error Linear Unit (GELU)1 activation function. Again, the raw audio
is first encoded 𝑓 : 𝒳 ↦→ 𝒴. Then 𝒴 is discretised with quantisation module 𝑞 : 𝒴 ↦→ 𝒬 to
a finite set of speech representations by using product quantisation2, with given 𝐺 codebook
groups and 𝑉 entries. The feature encoder output y ∈ 𝒴 is mapped to logits and the
probabilities l ∈ R𝐺×𝑉 for 𝑣 ∈ 𝑉 entry of codebook 𝑔 ∈ 𝐺. is chosen for each entry Encoder
output 𝒴 is also the input for the Transformer to create contextualised representations
𝑔 : 𝒴 ↦→ 𝒵.

The pretraining of the model is inspired by the MLM in BERT explained in 2.3.1, where
a certain proportion of time steps are masked from encoder output 𝒴. The masked feature
vectors are replaced with one shared trained feature vector. Inputs 𝒬 of quantised 𝒴 are
not masked. The final model is then finetuned on the labelled data. The objective function
of Wav2vec2 is sum of Contrastive Loss and Diversity Loss: ℒ = ℒ𝑐 + 𝛼ℒ𝑑, where 𝛼 is
a tunable hyperparameter [4].

Contrastive Loss ℒ𝑐 is computed similarly as explained for Wav2vec in section 3.2.
The goal is to distinguish the correct quantised latent audio representation q𝑡 ∈ 𝒬 at
masked time 𝑡 of 𝑁 + 1 of quantised candidates q̃ ∈ 𝒬𝑡, q𝑡 ∈ 𝒬𝑡 from a set of distractors
𝜅 for each masked time step, |𝜅| = 𝑁 :

ℒ𝑐 = − log
exp (sim (z𝑡,q𝑡) /𝜅)∑︀

q̃∼𝒬𝑡
exp (sim (z𝑡, q̃) /𝜅)

, (3.2)

where z𝑡 is the output of the contextual network 𝒵 at the centred time step over the masked
time step 𝑡 and 𝑠𝑖𝑚 is cosine similarity sim(u,v) = u𝑇 · v / (‖u‖‖v‖). Distractors 𝜅 are
uniformly sampled from the same utterance but from other masked time steps.

Diversity Loss ℒ𝑑 increases the use of the quantised codebook representations. The
purpose is to prompt the model to use all entries in the codebook equally often. To ensure
that each of the 𝐺 codebooks has an equal usage of the 𝑉 entries, ℒ𝑑 maximises the entropy
𝐻 of the Gumbel-Softmax distribution3 for each codebook 𝑝𝑔 in a batch of utterances. ℒ𝑑

is obtained as shown in equation 3.3 [4].
1Gaussian Error Linear Unit (GELU) is an activation function 𝑥Φ(𝑥), where Φ(𝑥) is the standard Gaus-

sian cumulative distribution function. Consequently, the GELU can be thought of as a smoother ReLU [20].
2Product quantisation is a method for approximate nearest neighbour search that reduces the memory us-

age and the computational cost of comparing high-dimensional vectors. It works by decomposing the vector
space into a Cartesian product of low-dimensional subspaces and quantising each subspace separately [23].

3Gumbel-Softmax is a continuous distribution that can approximate categorical samples, and whose
parameter gradients can be easily computed [22]

15



ℒ𝑑 =
1

𝐺𝑉

𝐺∑︁
𝑔=1

−𝐻 (𝑝𝑔) =
1

𝐺𝑉

𝐺∑︁
𝑔=1

𝑉∑︁
𝑣=1

𝑝𝑔,𝑣 log 𝑝𝑔,𝑣 (3.3)

The Wav2vec2 architecture is shown in Figure 3.2.
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Figure 3.2: Wav2vec2 framework illustration. Wav2vec2 is designed to learn contextualised
speech representations and a set of discretised speech units together. Taken from [4].

3.4 HuBERT
Hidden-Unit BERT (HuBERT) [21] is another self-supervised approach for learning speech
representation. HuBERT is a BERT-based approach which generates noisy labels (pseudo
targets) from an offline clustering for pretraining – it is based on masking continuous speech
features to predict cluster assignments. The main idea behind the proposed architecture is
that it emphasises the importance of consistency of the targets in addition to the correctness
of the targets. This focus helps HuBERT model the sequential structure of the input.

HuBERT follows a similar architecture as Wav2vec as it uses CNN encoder followed
by BERT encoder. However, the pretraining process differs. HuBERT does not use any
quantisation module to the output of the CNN encoder. HuBERT instead creates pseudo
targets – hidden units, by a clustering process from a raw audio.

Hidden units are frame-level targets obtained from the waveform. Let X be the input
raw audio with speech of 𝑆 frames, [x1, . . . ,x𝑆 ] = X. Let 𝑌 be MFCCs features extracted
from frames of 𝑋. Then the pseudo targets are estimated as ℎ(Y) = [𝑧1, . . . , 𝑧𝑇 ], where
ℎ(Y) is a clustering algorithm, for instance k-means and 𝑧𝑖 ∈ {1, . . . , 𝐶} are class categorical
variable of 𝐶 classes.

The next step follows the original BERT by using the MLM objective for training.
Around 50% of transformer encoder input features from CNN encoder are masked, where
𝑝% of the time steps are selected randomly as start indices and spans of 𝑙 steps are masked.
Instead of contrastive and diversity loss as Wav2vec, HuBERT uses cross-entropy loss over
masked ℒ𝑚 and unmasked ℒ𝑢 time steps. ℒ𝑚 is defined as:
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ℒ𝑚 =
∑︁
𝑡∈𝑀

log 𝑝𝑓

(︁
𝑧𝑡 | 𝑊̃ , 𝑡

)︁
, (3.4)

where 𝑀 is the set of masked time steps, 𝑊̃ is the edited sequence of length 𝑇 , where
𝑤𝑡 , 𝑡 ∈ 𝑀 is replaced with a mask embedding 𝑤̃. a distribution over the targets at each
time step is defined as 𝑝𝑓 (z𝑡|𝑊̃ , 𝑡). ℒ𝑢 is obtained accordingly, but we sum over time steps
which are unmasked. Then, the final loss is obtained as:

ℒ = 𝛼ℒ𝑚 + (1− 𝛼)ℒ𝑢 , (3.5)

where 𝛼 is a tunable parameter from 0 to 1. HuBERT authors claim 𝛼 = 1 forces the model
to learn the acoustic representation of unmasked segments and also the speech data’s long-
term temporal structure. In addition, this setup brings better quality to the targets from
clusters [21].

HuBERT proposed an idea for improving the quality of cluster targets by using vari-
ous clustering methods – e.g. creating k-means models ensemble. Let 𝑍(𝑘) be the target
sequences generated by the 𝑘-th clustering model. Then loss ℒ𝑚 can be written as:

ℒ𝑚 =
∑︁
𝑡∈𝑀

∑︁
𝑘

log 𝑝
(𝑘)
𝑓

(︁
𝑧
(𝑘)
𝑡 | 𝑊̃ , 𝑡

)︁
. (3.6)

ℒ𝑢 is obtained accordingly by taking unmasked time steps.
HuBERT iteratively refines cluster assignments. a new generation of clusters can be

obtained by training a discrete latent model on the learned representations. Then the
learning process continues with the newly found units.

Encoder proceeds to parametrise the distribution 𝑝
(𝑘)
𝑓 (𝑐|𝑊̃ , 𝑡) by:

𝑝
(𝑘)
𝑓 (𝑐 | 𝑊̃ , 𝑡) =

exp
(︀
sim

(︀
𝐴(𝑘)𝑜𝑡, 𝑒𝑐

)︀
/𝜏
)︀∑︀𝐶

𝑐′=1 exp
(︀
sim

(︀
𝐴(𝑘)𝑜𝑡, 𝑒𝑐′

)︀
/𝜏
)︀ , (3.7)

where 𝐴 is the projection matrix, 𝑒𝑐 is the embedding of class 𝑐, 𝑠𝑖𝑚 is the cosine similarity
between two vectors, and 𝜏 scales the logit. When cluster ensembles are used, one projection
matrix 𝐴(𝑘) is applied for each clustering model 𝑘. The architecture is depicted in in
Figure 3.3

HuBERT shows better performance for finetuning ASR systems than Wav2vec. In
addition, audio-to-vector representations generated by HuBERT are robust enough even
for other downstream tasks, e.g. generative tasks [21].
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Figure 3.3: HuBERT model illustration. HuBERT is designed to predict hidden cluster
assignments of the masked frames, generated by k-means clustering. Taken and vectorised
from [21].

18



Chapter 4

Joint-representation models

Self-supervised learning has the same general idea for different modalities, but the specific
algorithms and objectives vary a lot as they are designed for a given modality. Joint-
representation models create such semantic subspace, that is shared for all the modalities.
This is done to capture the relationships and interactions between these different types of
input. This thesis focuses on models that use both speech and text modalities to create
a joint representation. Several architectures relevant to this thesis are for example SpeechT5
model developed by Ao J., Wang R. [2], Data2vec by Baevski A. which is also using images
as additional modality [3] or SeamlessM4T by Meta [9].

4.1 SpeechT5
SpeechT5 is a multimodal speech/text encoder-decoder model. SpeechT5 evolved over ideas
from text and speech state-of-the-art like BERT [24], Wav2vec [4] or HuBERT [21]. How-
ever, the main idea stems from the Text-To-Text Transfer Transformer (T5) method [39].
SpeechT5 aims to range of text/speech downstream tasks than just ASR, but also speech
translation, speech identification, text-to-speech, voice conversion, and speech enhance-
ment [2].

The goal of SpeechT5 is to use an encoder-decoder framework for every spoken language
processing task, whether it involves speech or text as input or output. Then the same
pretrained model can be applied with bimodal data to different tasks.

To achieve this, the input for downstream tasks needs to be in the same vector space.
This text and speech mapping into shared quantisation space is accomplished by pre-
processing by several pre-nets according to the modality. To learn better cross-modal fea-
tures the quantised latent representations are randomly mixed together with the contextual
states. Then it is connected to the encoder-decoder backbone which ensures sequence-to-
sequence conversion and then post-nets are applied accordingly to the required modality [2].

4.1.1 SpeechT5 encoder

For this thesis, the crucial part is the encoder and the multimodal mapping into joint vector
space. The architecture of the SpeechT5 encoder is built by the i) speech pre-net, ii) text
pre-net – producing discrete tokens which are shared for the iii) quantiser – capturing
the modality-invariant information. The architecture is depicted in Figure 4.1.
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Figure 4.1: SpeechT5 multimodal encoder architecture. Vectorised from [2].

i) Speech pre-net The component has Wav2Vec2 [4] convolutional feature extractor as
pre-net (explained in section 3.3). Let’s assume data points X𝑠𝑝 of dataset 𝒟. The raw
recordings of X𝑠𝑝 are downsampled by Wav2vec2 to produce sequence encoded of speech
utterances H = (h1, . . . ,h𝑁 ). The Speech pretraining utilises unlabelled data from 𝒟 to
learn general speech representations with self-supervised techniques. Training is based on
HuBERT [21] (explained in section 3.4), where acoustic hidden units provide the frame-
level targets Z = (z1, . . . , z𝑁 ). Let Ĥ be the masked pre-net output H, where 8% of
time-steps are selected randomly as start indices and span mask approaches of size 10
timesteps are applied. From the masked input Ĥ, HuBERT based encoder produces hidden
representations U = (u1, . . . ,u𝑁 ). Over the masked timesteps in Ĥ the cross-entropy loss
ℒ𝑐𝑒 is calculated as follows:

ℒ𝑐𝑒 =
∑︁
𝑛∈ℳ

log 𝑝
(︁
z𝑛 | Ĥ, 𝑛

)︁
, (4.1)

where ℳ is the set of the masked timesteps from Ĥ and zn, zn ∈ Z is the frame-level target
at the corresponding timestep 𝑛 [2].

The final loss for the whole speech part module can be computed as follows:

ℒ𝑠𝑝 = ℒ𝑐𝑒 + ℒ1 + ℒ𝑏𝑐𝑒 , (4.2)

where ℒ1 is the 𝐿1 distance between the original data X𝑠𝑝 and the reconstruction of the
original data which were obtained by using the randomly masked input. ℒ𝑏𝑐𝑒 is binary
cross-entropy loss for the stop token.

ii) Text pre-net SpeechT5 uses shared embeddings for both text-encoder pre-net and
text-decoder pre/post-nets. The pre-net converts a token index into an embedding vec-
tor, while the post-net turns the hidden state into a probability distribution of tokens,
normalised by the softmax function.

Similar to the speech nets training, text pretraining also employs unlabelled data X𝑡𝑥𝑡

of dataset 𝒟. The training is accomplished by reconstructing the output of the model
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Y = (y1, . . . ,y𝑁 ) to the original X𝑡𝑥𝑡 data with the use of the corrupted data X̂𝑡𝑥𝑡. The
corrupted data X̂𝑡𝑥𝑡 is produced by using the text spans masking approaches presented in
BART [27], where 30% of text spans are randomly chosen to mask of various length from
a Poisson distribution of 𝜆 = 3.5. Every span is then substituted with a single masked
token. The objective function is maximum likelihood estimation ℒ𝑚𝑙𝑒 computed as follows:

ℒ𝑚𝑙𝑒 =

𝑁∑︁
𝑛=1

log 𝑝
(︁
y𝑛 | y<𝑛, X̂𝑡𝑥𝑡

)︁
, (4.3)

where y<𝑛 is the text seen before the y𝑛 [2].

iii) Joint vector space mapping Approaches described in i) and ii) are limited to
either speech or text data to model acoustic or linguistic information separately.

To establish a cross-modality mapping between speech and text a cross-modal vector
quantisation approach is proposed to create a shared representation that captures modality-
invariant information. SpeechT5 authors used a shared codebook to create quantised em-
beddings for alignment as shown in Figure 4.1. Let u𝑖 be the continuous representations
of speech and text obtained from i) and ii) modules. The quantiser converts u𝑖 into
discrete representations c𝑖 by using a fixes-size codebook C𝐾 , where 𝐾 is the number of
learnable embeddings. Therefore, c𝑖 is obtained by using the nearest neighbour search via
the Euclidean 𝐿2 distance between the u𝑖 and the embedding of each latent code c𝑗 ∈ C𝐾

calculated as
c𝑖 = min

𝑗∈[𝐾]
‖u𝑖 − c𝑗‖ .

Afterwards, 10% of the contextual representations are replaced with quantised latent repre-
sentations at corresponding time steps and the cross-attention is computed on the combined
representations. This process explicitly directs the quantiser to extract cross-modal infor-
mation [2].

The final pretraining loss ℒ𝑓𝑖𝑛 with unlabeled data of both speech and text is represented
as follows:

ℒ𝑓𝑖𝑛 = ℒ(𝑠𝑝𝑒𝑒𝑐ℎ)
𝑠𝑝 + ℒ(𝑡𝑒𝑥𝑡)

𝑚𝑙𝑒 + 𝛾ℒ𝑑 , (4.4)

where 𝛾 = 0.1 is set for pretraining. ℒ𝑑 is the diversity loss obtained by maximising the
entropy of the averaged Softmax distribution computed as follows:

ℒ𝑑 =
1

𝐾

𝐾∑︁
𝑘=1

𝑝𝑘 log 𝑝𝑘

where 𝑝𝑘 represents the average probability of selecting the 𝑘-th code from the codebook.
It is computed as follows:

𝑝𝑘 =
1

𝑁

𝑁∑︁
𝑛=1

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑛𝑘),

where 𝑁 is the number of data points in the batch and 𝑥𝑛𝑘 is the output for the 𝑛-th data
point and the 𝑘-th code.
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4.2 SeamlessM4T
SeamlessM4T (Seamless Massively Multilingual & Multimodal Machine Translation) is
a multimodal multilingual model developed by Meta in 2023 [9]. SeamlessM4T provides
speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-
text translation, and automatic speech recognition. It supports up to 100 languages.

4.2.1 SeamlessM4T encoder

For training, one million hours of open speech audio data were utilised to learn self-
supervised speech representations using w2v-BERT 2.01. a multimodal corpus of automat-
ically aligned speech translations was created – SeamlessAlign2. Then the human-labelled
data were filtered and merged with the pseudo-labelled data in a total of 406,000 hours.

SeamlessM4T utilises shared multilingual and multimodal embeddings space named
SONAR (Sentence-level multimOdal and laNguage-Agnostic Representations) proposed
by Duquenne et al. 2023 [13]. SONAR presents different methods for encoding text and
speech. The architecture is shown in Figure 4.2.

a . LMSE

LMT+b . LAE/DAE

Multilingual Init. with
NLLB 1B

Text decoder decoder

LMSE

SONAR sentence embedding SONAR sentence embedding

Init. with
Init. with Multilingual NLLB 1B
W2v-bert 2.0 Speech encoders Text encoder encoder

Speech input Text input

Figure 4.2: SeamlessM4T encoder architecture for shared embedding space of both text and
speech – SONAR [9]. It is trained with a combination of machine translation loss, mean
square error loss and auto-encoder loss as denoted in equation 4.5. Taken and vectorised
from [13].

Text modality Data preparation for text follows NLLB dataset3 and utilises the topline
NLLB 1B model for initialisation.

In text encoding, an encoder-decoder approach is utilised to learn sentence embeddings
with a translation objective, computed thanks to the additional decoder. This approach
differs from the sequence-to-sequence model in the bottleneck layer and the pooling function

1W2v-BERT 2.0 is based on w2v-BERT [7] which combines contrastive learning of Wav2vec and masked
prediction learning of BERT. W2v-BERT 2.0 enhances the original w2v-BERT by additional codebooks into
both of its learning objectives.

2SeamlessAlign is the large open dataset for multimodal translation – totalling 470,000 hours. The
dataset has automatically created alignments for speech and text multilingual data [9]. It is developed by
Meta with a freely available reconstructible recipe at https://tinyurl.com/27p6vphp .

3NLLB (No Language Left Behind) dataset for machine language translation with more than 200 lan-
guages and it also includes low-resource languages [32]. Accessible at https://tinyurl.com/25byfb5o .
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which computes a fixed-size sentence representation between the encoder and the decoder
by pooling the token-level outputs of the encoder. Rather than performing cross-attention
over a variable-length sequence of encoder outputs, the decoder focuses on this single vector
during each step of decoding. The translation objective decoder employs a finetuning
method called random interpolation decoding. It is based on an encoder-decoder model
with a bottleneck representation. In this approach, the encoder weights are frozen, and
only the decoder weights are finetuned for a specific task: given a bilingual text pair x, y,
both x and y are encoded using the frozen encoder. Then, a new embedding z is generated
as a random interpolation of the embeddings of x and y, and the model is trained to decode
this interpolated embedding z back into y. This method effectively blends translation with
auto-encoding4.

Audio modality Data preparation for audio gathers publicly available repositories of
crawled web data first. Pre-processing involves resampling of crawled data to 16KHz.
Afterwards, the non-speech data with the Audio Event Detection (AED) model were filtered
out. Recordings were also split into smaller chunks mapped closely to contain a pseudo
sentence, similar to sentences in text corpora. The length of each segment corresponds to
that of a typical sentence. This automatic sentence-segmentation algorithm is proposed in
Duquenne’s work [12].

Multilingual sentence representations for speech are trained with a teacher-student
method. The teacher model is an encoder for multi-lingual sentence embeddings trained on
text which converts embeddings into new trained text sentence embedding space.

The student is using a speech encoder with w2v-BERT 2.0, optimised for 143 languages,
which encodes audio and the output is transformed into fixed-size representations by using
Attention-pooling. It is trained to minimise the Mean Squared Error (MSE) loss between
the transcription sentence embeddings and the speech sentence embeddings. Thanks to
MSE loss the SONAR text encoder could be used on input for speech. Data used for
training were also manually transcribed datasets for ASR, with collected at least 100 hours
per language. Languages of the same linguistic family were grouped and the groups were
trained together in one speech encoder. As the Sonar embedding space comes with a text
decoder, the speech encoder is evaluated by the individual speech encoders on a speech-to-
text-translation task.

The SONAR training combines the translation loss ℒ𝑀𝑇 , the auxiliary MSE loss ℒ𝑀𝑆𝐸

and the denoising auto-encoding loss ℒ𝐴𝐸/𝐷𝐴𝐸 , to create the SONAR embedding space. It
is computed as:

ℒ = ℒMT + 𝛼 · ℒMSE + 𝛽 · ℒAE/DAE , (4.5)

where 𝛼 is set to 0.1 and 𝛽 to 0.01. The whole SeamlessM4T architecture with embedded
SONAR encoder is shown in Figure 4.3.

4Auto-encoder is an approach used to learn efficient representation of unlabelled data. An auto-encoder
learns two functions: an encoding function that transforms the input data, and a decoding function that
reconstructs the input data from the encoded representation. Auto-encoders have the advantage of encour-
aging the encoding of fine-grained details of the input. However, this objective alone is unlikely to learn the
proper semantic representation of sentences. It is simpler to learn than a translation objective [9].
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Figure 4.3: SeamlessM4T training with SONAR encoder to train for speech-to-text-
translation and speech-to-speech-translation pairs. Taken from [9].
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Chapter 5

Datasets

This chapter will describe the datasets required for the evaluation of the proposed methods.
Since the thesis is in the text and speech domain, naturally datasets for automatic speech
recognition were chosen. One of the most used datasets in the evaluation of ASR systems
is LibriSpeech [35]. However, the dataset that more reliably simulates the real use case of
semantic search is the Fisher dataset.

5.1 LibriSpeech
The LibriSpeech corpus is derived from audiobooks that are part of the LibriVox1 project,
and contains 1000 hours of speech sampled at 16 kHz. LibriSpeech is freely available2

under CC BY 4.0 license. The dataset contains in total 1000 hours of speech sampled at
16 kHz. The data are only in English. The dataset is equally balanced among genders and
has uniform per-speaker durations. The recordings are short ≈ 30 seconds long utterances.
The split of LibriSpeech to subsets is presented in Table 5.1. For this thesis, subsets
train-clean-360 and dev-clean are chosen. Most of the experiments were processed
with Librispeech’s dev-clean subset for its size and flexibility and train-clean-360 served
mainly during data preparation for finetuning.

Subset Hours Minutes per
speaker

Speakers
(female)

Speakers
(male)

Speakers
(total)

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33
train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 5.1: Subsets of LibriSpeech dataset [35].

Librispeech is delivered with metadata about the speakers like name, sex, total spoken
speech length, and each is given a specific ID. The given transcripts are raw. They are
given per file without any timestamps. Also, no additional tags like [laugh], [sigh] and

1https://librivox.org/ – LibriVox is a global community of volunteers who record audiobooks from public
domain texts and make them available for free on the internet.

2https://www.openslr.org/12 – LibriSpeech ASR corpus with all available subsets for download.
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similar tags are used – which is natural given how the data was obtained. Given that the
thesis aims to evaluate innovative methods for a keyword spotting system and to search
for semantically similar expressions, the raw transcripts are not sufficient. It is required to
have at least timestamps per word. Therefore forced alignment techniques are applied to
the Librispeech dataset as explained in section 5.3.

5.2 Fisher
Fisher English Training Speech dataset was developed by the Linguistic Data Consortium
(LDC)3. The Fisher dataset closely resembles real telephone conversations, making it suit-
able for testing and building a working system. It comes in two parts and contains 1, 960
hours of English conversational telephone speech (CTS), in a total number of 11, 699 record-
ings. The gender distribution for the entire collection of participants makes in total of 6,813
females and 5,104 males.

The Fisher telephone conversation collection was created to build robust automatic
speech recognition (ASR) systems. Fisher data creators asked a large number of participants
to make up to 10-minute calls with varied topics.

Fisher is distributed with additional information regarding the speakers involved and
the types of telephones used. It is provided with detailed precise transcriptions including
tags for emotions, sighs, etc. The audio files are presented in NIST SPHERE format and
contain two-channel mu-law data sampled at 8000Hz [8].

Fisher subset As the Fisher dataset contains too many recordings, a subset was cre-
ated for efficiency in development and evaluation. This subset consists of 60 recordings of
telephone conversations, 10.12 hours in total. The 60 recordings were chosen accordingly:

• 30 recordings are from the Fisher part 1 and the other 30 from Fisher part 2

• The 30 recordings within the part of the dataset consisted of 10 recordings from purely
male calls, 10 from purely female calls, and the remaining 10 mixed.

• The recordings were chosen uniformly.

Fisher metadata comes with aligned phrases to audio, however, it uses a different format
than STM and it does not provide alignments per word. Therefore the same technique as
for Librispeech – forced alignment is applied as explained in the following section 5.3.

Additional changes to the transcripts were applied according to the used model, as each
tokeniser expects different input tokens. This mainly consists of deleting tags in transcripts
about non-verbal communication, some diacritics, or transcribing numbers into text form.
However, models utilised throughout the thesis required generally specific modifications
namely:

• Upsampling – all of the models used require 16 kHz recordings thence all data needs
to be upsampled from 8 kHz to 16 kHz

• Channels – When processing audio, models require mono channel audio on input.
Since Fisher data are telephone conversations, they are stereo tracks having separate

3Fisher dataset is available under LDC subscription: https://catalog.ldc.upenn.edu/LDC2004S13
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channels for caller and receiver. Two solutions are performed: i) splitting stereo
channels into two mono channels A-left channel and B-right channel and ii) merg-
ing two stereo tracks into one mono channel track. The first approach doubles the
recordings of the dataset, while the second method affects the original audio because
of the merge.

• Audio format – NIST .sph (SPHERE) format is not a widely used audio format,
therefore all of the audios are converted to a more typical format for easier pro-
cessing – FLAC4.

5.3 Forced Alignment
For such scenarios when we have audio and the corresponding transcript, a method known
as forced alignment is utilised for creating timestamps of the corresponding text within
the audio. Forced alignment could be done with several techniques like Dynamic Time
Warping (DTW) [31], Hidden Markov Model (HMM) [45] or Deep Neural Networks (DNN),
Recurrent Neural Net (RNN) used for example in the Kaldi toolkit5. However, the technique
used for forced alignment is based on Wav2Vec2 from section 3.3. The method is based on
CTC-segmentation [25]. The CTC segmentation process involves three main steps:

1. Forward propagation: Probabilities for each character at every time step are obtained
from Wav2vec2 output. These probabilities are mapped to a trellis diagram.

2. Backtracking: Starting with the time step that has the highest probability for the
last character, backtracking identifies the most likely sequence of characters across all
time steps.

3. Confidence score: This method produces a probability for each aligned character or
word, allowing for the derivation of a confidence score for each utterance. This score
helps in identifying and filtering out utterances that are likely misaligned.

Since Wav2Vec2 improves ASR tasks it is also performing sufficiently for forced align-
ment. The used format for forced aligned transcriptions is‘ in STM format. The STM
format contains columns with base filename, channel, speaker ID, the start of the segment
in seconds and end segment timestamp in seconds, the full path of the input audio and
finally the keyword – the transcript within the segment. An example of an STM file on the
LibriSpeech dev-clean subset is as follows:

1272-128104-0002 A 128104 0.60 0.70 </dev-clean/audio/1272-128104-0002.flac> HE
1272-128104-0002 A 128104 0.76 1.00 </dev-clean/audio/1272-128104-0002.flac> TELLS
1272-128104-0002 A 128104 1.12 1.22 </dev-clean/audio/1272-128104-0002.flac> US
1272-128104-0002 A 128104 1.40 1.58 </dev-clean/audio/1272-128104-0002.flac> THAT
1272-128104-0002 A 128104 1.72 1.80 </dev-clean/audio/1272-128104-0002.flac> AT
1272-128104-0002 A 128104 1.84 2.02 </dev-clean/audio/1272-128104-0002.flac> THIS
1272-128104-0002 A 128104 2.14 2.56 </dev-clean/audio/1272-128104-0002.flac> FESTIVE
1272-128104-0002 A 128104 2.62 3.08 </dev-clean/audio/1272-128104-0002.flac> SEASON
1272-128104-0002 A 128104 3.14 3.22 </dev-clean/audio/1272-128104-0002.flac> OF
1272-128104-0002 A 128104 3.26 3.36 </dev-clean/audio/1272-128104-0002.flac> THE
1272-128104-0002 A 128104 3.40 3.66 </dev-clean/audio/1272-128104-0002.flac> YEAR

4FLAC – Free Lossless Audio Codec, is an audio coding format for lossless compression developed by
the non-profit organisation – Xiph.Org Foundation.

5Kaldi Speech Recognition Toolkit: https://kaldi-asr.org/
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Additional metadata with timestamps per word is necessary to properly evaluate the
KWS performance.
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Chapter 6

Evaluation

This chapter presents evaluation metrics and an approach for measuring the quality of
the developed systems. This part is crucial for comparing the performance of the novel
approaches to the legacy technologies, for example, keyword spotting (KWS) also known
as spoken term detection.

In the sections Keyword spotting evaluation 6.1 and Semantic search evaluation 6.2, we
present the tasks used for evaluation. There are 4 tasks in total:

1. Exact KWS: This task is the standard keyword spotting task. It searches for entered
input queries literally.

2. Fuzzy KWS: This task extends the Exact KWS task by allowing some Levenshtein
distance between the matching strings.

3. KWS+ synonyms: The task involves thesaurus which extends Exact KWS by in-
cluding all grammar forms of the keywords and their synonyms.

4. Semantic phrases search: The task objective is to match semantically similar
phrases.

Tasks 1, 2 and 3 share the same list of input queries for evaluation. The list includes
queries as follows:

start
meeting
suspect
place
activity
smoking
drug

However, the evaluation sets are changed which are expanded according to the task. Task 4
uses both input query phrases and the evaluation set independently.

The ground truths for tasks 1 and 2 can be estimated automatically, while tasks 3 and 4
require manual intervention.

29



6.1 Keyword spotting evaluation
Evaluating the KWS task is more straightforward compared to the semantic search task.
The objectivity stems as it searches for specific keywords or phrases, eliminating any am-
biguity. This makes it easy to distinguish between correct and incorrect results.

Since KWS is not a novel technology, it can be compared to existing systems. The
chosen system for comparisons is the 6th generation Keyword Spotting by the Phonexia
company1.

Ground truths TP, TN, FP and FN are calculated using the inference outputs of the
models for the given queries and using the STM file, which provides per-word alignments
to audio. To evaluate KWS tasks 1 and 2, two strategies were implemented for estimating
the correct search results for the given shared list of input queries list.

The first is the strict one (referred to as Exact KWS), to address task 1. The ground
truth search results are the literal exact matches of the query within the given STM file.
This approach reflects standard KWS.

The second is more benevolent (referred to as Fuzzy KWS), to address task 2. The
ground truth search results are obtained by comparing the query to the keywords within
the STM file with the fuzzy string matching2. This method allows for a slightly broader
variability. For instance, for the search query “start”, cases like “starts”, “started”, or
“starting” will be accepted. However, cases like “smart”, and “tarts” will also be matched.

The output produced from the proposed systems is scored for consecutive time frames.
The size of the time frame varies depending on the query size, the model used, and mod-
ifications to the search algorithm. Therefore, in order to accept results where a correctly
found case does not align exactly with the ground truth time segment, a relaxed collar is
used. This approach is illustrated in Figure 6.1.

6.1.1 Evaluation metrics

One of the commonly used evaluation metrics is standard Equal Error Rate (EER) [15]
and measures like precision and recall. Commonly used for comparing the quality of the
proposed systems are Detection Error Trade-off (DET) curves, together with Receiver
Operating Characteristic (ROC) curves.

EER Equal error rate represents the percentage for the given threshold 𝜃𝐸𝐸𝑅 where the
number of false negatives – (FN)3 are equal to the same amount of false positives (FP)4.
The lower the equal error rate value is, the higher the accuracy of the system [15].

While Equal Error Rate (EER) is a commonly used metric in general, it may not be ideal
for Keyword Spotting (KWS) due to varying recording lengths. This is because the number
of false acceptances is proportional to the length. Therefore, the length normalisation is
required. However, in our specific case, the datasets used have similar lengths, which should

1The Phonexia Keyword Spotting system can utilise both query-by-example and text-based queries.
More details at https://tinyurl.com/23g64hdd

2Fuzzy string matching is a method of approximate string matching by using Levenshtein distance [50].
3False negative is also known as missed detection, underestimation or false rejection. It is the error of

the incorrectly rejected sample.
4False positive is also known as false alarm, overestimation or false acceptance – the error of incorrectly

accepted samples.

30

https://partner.phonexia.com/kb/sp/speech-platform/spe/technologies-available-spe/kws-key-word-spotting/


KEYWORD 1 KEYWORD 2 KEYWORD 3TARGET 
KEYWORD

STM
FILE

RESULTS  SEARCH RESULT
WINDOW

d) START END

KEYWORD 1 KEYWORD 2 KEYWORD 3TARGET 
KEYWORD

STM
FILE

RESULTS  SEARCH RESULT
WINDOW

c) START END

KEYWORD 1 KEYWORD 2 KEYWORD 3TARGET 
KEYWORD

STM
FILE

RESULTS  SEARCH RESULT
WINDOW

b) START END

KEYWORD 1 KEYWORD 2 KEYWORD 3TARGET 
KEYWORD

 SEARCH RESULT
WINDOW

STM
FILE

RESULTS

a) START END

KEYWORD 1 KEYWORD 2 KEYWORD 3TARGET 
KEYWORD

START END

STM
FILE

RESULTS  SEARCH RESULT
WINDOW

e)

Figure 6.1: The Figure presents the relaxed collar. The Figure shows scenarios when the
automatic evaluation accepts the search result as correct results – scenarios a), b), c), d).
The scenario when the result is not accepted is depicted in e). Thanks to the proposed
relaxed collar, it is enough to interfere anyhow with the target keyword to accept the result.

not lead to an imbalance. Particularly, we are comparing the created systems to each other
relatively. Therefore, it is important to follow the relative improvement of EER.

As the EER is a pooled metric, just one global threshold 𝜃𝐸𝐸𝑅 is applied for all queries.
The metric is defined as:

EER =

∑︀
𝑄∈Δ𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)−𝑁𝑇𝑃 (𝑄, 𝜃𝐸𝐸𝑅)∑︀

𝑄∈Δ𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)
, (6.1)

where 𝑄 is the query, ∆ is the set of all queries and 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is the number of the target
search results. The following conditions have to be satisfied:∑︁

𝑄∈Δ
𝑁𝑡𝑎𝑟𝑔𝑒𝑡(𝑄)−𝑁𝑇𝑃 (𝑄, 𝜃𝐸𝐸𝑅) =

∑︁
𝑄∈Δ

𝑁𝐹𝑃 (𝑄, 𝜃𝐸𝐸𝑅) , (6.2)
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where 𝑁𝑇𝑃 is the number of true positives (TP)5 and 𝑁𝐹𝑃 is the number of false posi-
tives [15].

EER can also be interpreted as the point at which the False Acceptance Rate (FAR)
curve and False Rejection Rate (FRR) curve intersect. FAR and FRR are computed as
follows:

FAR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

FRR =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
,

(6.3)

where 𝑇𝑁 is the count of true negatives.

Precision and recall The Phonexia’s KWS system is also evaluated with precision and
recall. Precision explains what is the proportion of those identified truly correctly (𝑇𝑃 )
to positive identifications (𝑇𝑃 + 𝐹𝑃 ). Recall shows the proportion of the cases identified
correctly (𝑇𝑃 ) to the positive cases (𝑇𝑃 + 𝐹𝑁). Precision and recall are calculated as
follows:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

(6.4)

Precision and recall are computed at a specific operation point. The setting depends on the
actual use case and the cost of the FP error, respectively the cost of the FN error. In the
context of KWS, higher precision is more beneficial when the cost of the FP is high – the
better the precision, the fewer irrelevant search results occur - less false alarms. The higher
recall is more suitable when the FN cost is high, which means that the higher the recall,
the fewer relevant search results are missed. Phonexia KWS system is calibrated towards
the higher recall, as the cost of the miss is high in the domain.

DET The Detection Error Trade-off (DET) is a widely used method to display the per-
formance of systems across different operational points. It plots the FN probability (𝑃𝐹𝑁 )
and FP probability (𝑃𝐹𝑃 ) on its axes, providing insights into both types of errors. Optimal
system performance is indicated by a DET curve that approaches the lower left corner [28].

For a given threshold 𝜃 DET is defined as a dependency of FN probability 𝑝𝐹𝑁 (𝜃) and FP
probability 𝑝𝐹𝑃 (𝜃). DET curve does not give a single value but provides a comprehensive
graph depicting the system’s performance across various operating points [15].

ROC A receiver operating characteristic (ROC) curve is similar to DET curves. However,
the ROC curve represents the plot of the TP probability (𝑃𝑇𝑃 ) against the FP probability
(𝑃𝐹𝑃 ) at various operating points.

Optimal system performance is depicted by the ROC curve approaching the top left
corner. The Area Under the ROC Curve (ROC AUC), which ranges from 0 to 1 and is
a real number, quantifies the system’s performance. Therefore, the ideal cut-off value is the

5True positive is also known as hit or true acceptance – a correctly found sample.
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one that achieves the highest true positive rate (to 100 %) [14] and the lowest false positive
rate (to 0 %).

MinDCF Minimum Detection Cost Function (MinDCF) depicts the operation point
where the cost of the error is minimal. MinDCF shows additional information to other
metrics as it involves the imbalances of the number of target samples and non-target sam-
ples [33]. It is defined as a weighted sum of the FN probabilities 𝛼(𝜃) and FP 𝛽(𝜃) at
a given threshold 𝜃:

𝐷𝐶𝐹 (𝜃) = 𝐶𝐹𝑁 × 𝛼(𝜃)× 𝑃𝑡𝑎𝑟 + 𝐶𝐹𝑁 × 𝛽(𝜃)× 𝑃𝑛𝑜𝑛𝑡𝑎𝑟 . (6.5)

The parameters 𝐶𝐹𝑁 and 𝐶𝐹𝑁 are the relative costs of detection errors, and the parameter
𝑃𝑡𝑎𝑟 is the a-priori probability of the target and 𝑃𝑛𝑜𝑛𝑡𝑎𝑟 = 1 − 𝑃𝑡𝑎𝑟 [47]. It is usual to
indicate 𝑀𝑖𝑛𝐷𝐶𝐹 on DET curves to show the MinDCF operation point.

6.2 Semantic search evaluation
The KWS evaluation approach measures only a fraction of the capabilities of the proposed
system. Unfortunately, the evaluation for semantically similar matches is not as straight-
forward as for the KWS evaluation. The capabilities are captured by tasks 3 and 4 –
“KWS+ synonyms” and “Semantic phrases search” tasks.

For example, let us assume the following keyword “start”. Semantically similar words
to “start” could be keywords like “beginning”, “kickoff”, “opening”, “initiate” or “launch”.
To get this similar meaning it is sufficient to look up the thesaurus.

However, things become more ambiguous for phrases where looking up synonyms may
not be sufficient. For example, consider the following phrases: “I had an exam at the
university” and “I took a test at the faculty”. Are these phrases semantically close enough
to be considered valid search results? Or consider another example: “I had an exam at the
university”, “They had written a test at the elementary school”, and “The teacher corrected
the tests at the high school.” Are these examples close enough to be accepted? These are
the questions that are crucial for creating a functional system. The main problem is that it
is difficult to objectively evaluate the correct answers. While some users may consider the
second example as a close result, some may not even accept the first example.

To solve this ambiguity evaluation sets with manually labelled ground truths for the
predefined list of queries are created. The first evaluation set is based solely on keywords
with synonyms from the thesaurus. The second evaluation set consists of manually labelled
phrases which are considered to be semantically close enough to the predefined query phrase.

With these evaluation sets, the results are then measured analogously to the standard
KWS tasks (1 and 2). In addition, the same relaxed collar as presented in Figure 6.1 is
used.

6.2.1 Evaluation set with synonym keywords

This manual ground truth aims to increase the relevance of the objective evaluation for the
semantic search tasks. The ground truth for this evaluation set is labelled within Librispeech
dev-clean subset. The created set evaluates the KWS+ synonyms task.

Initially, we took the shared input queries list, with keywords as follows: “start”, “meet-
ing”, “suspect”, “place”, “activity”, “smoking”, “drug”. Then, thanks to the created STM
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file as proposed in section 5.3, we can choose the segments with the chosen keywords in-
cluding all of the grammatical forms of the keyword. Afterwards, for each keyword, we find
synonyms, by using the English Thesaurus by Cambridge University6, and search for all
grammatical forms in STM file segments.

For example, the keyword “smoking” is found only once in the Librispeech dev-clean
subset. However, synonyms like “burning” appears 6 times, “blazing” and “fiery” 2 times,
“kindled” and “glowing” once.

Therefore, we expect that the false acceptance errors detected in standard KWS evalua-
tion with high match scores should belong to semantically similar terms, such as synonyms.

6.2.2 Evaluation set with semantically similar phrases

Analogous to keywords, an evaluation set with ground truths with semantically similar
phrases is proposed. This evaluation set is used to measure task 4 – Semantic phrases
search.

Initially, we selected three sentences from the Librispeech dev subset as predefined input
query phrases: i) “It was the worst Sunday”, ii) “The wind was so strong”, iii) “I had
much pleasure in reading”. These sentences were chosen for their general meaning, which
they express: i) unpleasant experience, ii) weather related, outdoor conditions, iii) joy
from something. Then these sentences are also the ground truth target phrases which need
to be found.

Next, semantically similar phrases to the predefined input queries were chosen. Unfor-
tunately, selecting the phrases within the STM file of Librispeech cannot be accomplished
using a thesaurus directly. While dictionaries may provide synonyms, the Librispeech sub-
set is sufficiently small to allow for matching similar sentences with only one or two-word
changes. While dictionaries may provide synonyms, simply replacing words with their syn-
onyms is not enough to find similar sentences within a text. In the end, the decision needs
to be performed subjectively by a human.

For the target phrase “The wind was so strong” examples of the chosen semantically
similar sentences include the following: “It’s surely a terrible storm”, “Outside the wind
rattled the tiles of the roof”, “All night it had been blowing and raining”. The chosen
sentences for “It was the worst Sunday” involve: “It was a horrible journey”, “The accident
in question occurred upon the Sunday.”, “He fell off dead”. And the chosen ground truth
segments for “I had much pleasure in reading”: “I had the pleasure of meeting him in
society”, “Get in its favorite newspapers”, “She enjoyed every hour of life”.

6Cambridge Thesaurus published by Cambridge University Press https://tinyurl.com/y9c4yly4
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Chapter 7

Baselines

In this chapter, we describe proposed approaches and tools for a baseline system for keyword
search using semantic vectors.

7.1 Used tools
This thesis utilised standard Python machine learning frameworks including PyTorch, Scipy,
ScikitLearn, Numpy, and Hugging Face. Data loading and processing were done by libraries
such as Pandas, Librosa, and Rapidfuzz.

The computational work was conducted on a variety of hardware like Phonexia’s Sun
Grid Engine (SGE) clusters, a personal laptop and High-Performance Computing (HPC)
systems, including LUMI and IT4I Karolina.

7.2 Proposed Search Algorithm
The proposed search algorithm consists of several steps: pre-processing of the input data,
specifying the list of queries, and the search itself. The proposed workflow is presented in
Figure 7.1.

The proposed search algorithm is explained in the following steps:

1. Pre-processing of the input dataset. This involves embedding extraction, model-
specific data cleaning and normalisation.
The data pre-processing includes audio resampling or cleaning of the input text by
removing incompatible characters or splitting the audio/text into smaller chunks if it
exceeds the maximum model context.
The embedding extraction process is preceded by modality-specific actions. For text
it is an input tokenisation, for audio it is a feature extraction. Afterwards, the embed-
dings are extracted by the model’s encoder. Then the embeddings are saved together
with the metadata, like the source path and the extracted segment timestamps.

2. Processing input queries. Queries can be entered either via text or via audio sample.
Then each query is processed according to the modality the same way as in step 1..
Thus, for each query, an embedding is obtained by the same model as for input data.

3. Pre-search processing. Each query can have a different length, it is therefore nor-
malised by the Frobenius norm [17] or by 2-norm if the embedding is just one vector.

35



Frobenius norm is given by:

‖𝐴‖𝐹 =

⎡⎣∑︁
𝑖,𝑗

𝑎 𝑏𝑠 (𝑎𝑖,𝑗)
2

⎤⎦1/2

. (7.1)

Then pooling is applied to the normalised vector sequence. The used pooling strategy
is described in paragraph 7.3.

4. Search – vector comparison. First, a search window is set to the original size of
the currently processed query. Then each embedding from the input dataset is com-
pared using this sliding search to the query. The search window is sliding within
the embedding with a certain hop. The embedding slice under the search window is
pre-processed the same way as in the step 3.
Vectors are compared either by cosine similarity – CS or by Euclidean distance1 – ED.
Thence, for each step of the sliding search window across the embeddings a similarity
score (CD) or distance (ED) is obtained. Finally, slices of the embeddings where the
scores are above (CS) or below (ED) a certain threshold are identified as the final
search results. This step is performed for every input query.
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Figure 7.1: Workflow of the proposed search algorithm.

The proposed solution shows the search results with the following output format:
["<"|">"]"THRESH":<FLOAT> ["COS"|"EUC"] (<INT>, <INT>) <FLOAT>":" <STRING>

Individual parts of the output are explained as follows:

• Threshold. It utilises the following format: [“<”|“>”]“THRESH”:<FLOAT>, where
<FLOAT> represents any valid float number. The inequality symbols indicate whether
the search results are above or below the threshold.

• Used method for vector comparison. “COS” represents the cosine similarity. “EUC”
represents Euclidean distance.

• Position of the match (optional) – interval of the query found in the given data.

• Obtained score. The computed score for the given query.

• Text with the highlighted matched parts.

The examples of the output are shown in the following sections or in Appendix A.
1Also known as 𝐿2 distance.
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7.3 LaBSE baseline
This baseline is not multimodal as LaBSE works only with text input as explained in
section 2.3.2. Nevertheless, LaBSE is a decent option for setting a baseline for the given
task at least in the text domain. LaBSE gives decent results for multilingual tasks which
is useful for text search as well. The model is trained to understand relations between
sentences.

For this baseline, a pretrained model of LaBSE2 is utilised. The search algorithm from
section 7.2 was used as follows:

Sliding window step The sliding window step is set to 1 – as the used LaBSE model can
provide embeddings tokenised per word. Therefore, it compares the query consecutively
to the embeddings word by word. This property solves issues such as wrong comparison
alignment. This way we omit meaningless comparisons. Those would occur if LaBSE
produces embeddings per-character3.

Processing of queries LaBSE adds start and end tokens for each sequence, which are
then projected to the extracted embeddings as well. Therefore, these start and end tokens
are cut from the extracted query off before comparison. Otherwise, this would cause the
query to be more likely found at the beginning or the end of the compared sequences. The
probability of being found in the middle of the sequences would be decreased.

The search window size The search window is given by the query size: |𝑤𝑖𝑛| = |𝑞𝑢𝑒𝑟𝑦|.
However, for a one-word query, it would mean |𝑤𝑖𝑛| = |𝑞𝑢𝑒𝑟𝑦| = 1 which will lead to word
comparisons only. Therefore, to see a wider context, the window is enlarged by the following
equation: |𝑤𝑖𝑛| = |𝑞𝑢𝑒𝑟𝑦|+⌊𝛼×|𝑞𝑢𝑒𝑟𝑦|+1/2⌋, where 𝛼 = 1/2. The different search results
for enlarged window size and without enlargement are shown in Figure 7.2. The results
indicate significant a difference for Euclidean distance, whereas the difference for Cosine
similarity is marginal. Since the results obtained by Euclidean distance show unstable
behaviour, the Cosine similarity is used in the follow-up experiments.

Pooling strategies We compare two sequences of embeddings and we need to eventually
compare two fixed-size vectors. This is even more important when we are changing the
scope of the sliding window. Here, we have varying sizes of the embedding blocks for both
the query and the input data. For pooling, some standard approaches like mean and max
were utilised. Additionally, the attention pooling mechanism was used in the same way as
proposed in Paragraph 7.4.1.

Example output from the search algorithm for the query “start” is presented in Fig-
ure 7.2. Some more detailed results for a longer query phrase are shown in Appendix A.1.

DET curves comparing the performance of the 3 search tasks are shown in Figure 7.3.
The Exact KWS is the task with the evaluation set where only the literal query found
is accepted, KWS+SYN is the task which extends the Exact KWS evaluation set by using
synonyms of the query and all corresponding grammatical forms, and SEM PHR is the task

2LaBSE pretrained model by Google: https://tinyurl.com/249fle9x .
3For example, comparison of the query “Hello” to phrase “Welcome here!”, with 𝑠𝑡𝑒𝑝 = 1 will consecu-

tively move window of 𝑠𝑖𝑧𝑒 = 5 like the following: [Welco], [elcom], [lcome] and so on.
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to match semantically close phrases where the evaluation set has manually selected phrases
to match the target query phrase. The results show worse performance for Exact KWS and
KWS+SYN tasks. After investigation, one of the reasons for the higher EER is an off-by-one
alignment error, when sometimes the correct word is aligned to the ground truth word
before the target one.

MinDCF eval metric is configured differently for each of the evaluation sets as the
target prior probability differs for each approach (𝑝𝑒𝑥𝑎𝑐𝑡𝑡𝑎𝑟 ≈ 0.0001, 𝑝𝑠𝑒𝑚𝐾𝑊𝑆

𝑡𝑎𝑟 ≈ 0.0005).
However, all share a higher cost for false rejection error of 10. Thus, MinDCF tolerates
false acceptance errors more.

<THRESH:0.5 COS 0.58 : I THOUGHT THAT WAS THE [[WAY TO 

BEGIN]]

    7850-281318-0015.txt

<THRESH:0.5 COS 0.54 : INDEED IT IS NOT A NEST AT ALL 

ONLY [[THE BEGINNING]] OF ONE

    7850-281318-0001.txt

<THRESH:0.5 COS 0.52 : ANYTHING WAS GOOD ENOUGH SO LONG 

AS IT PAID SAY FIVE DOLLARS A WEEK [[TO BEGIN]] WITH

    2277-149874-0016.txt

<THRESH:0.5 COS 0.51 : WE HAD BETTER [[START]] THE DRIVE 

THIS MORNING

    6313-76958-0031.txt

<THRESH:0.5 COS 0.51 : IT SEEMED AS IF HIS FAMILY 

TROUBLES WERE [[JUST BEGINNING]] 

    2277-149897-0024.txt

<THRESH:0.5 COS 0.51 : WHEN ARE YOU GETTING RID OF THESE 

CATS I'M NOT FIXING [[TO START]] AN ANNEX TO KATE'S CAT 

HOME 

    1988-24833-0003.txt

>THRESH:0.9 EUC 0.87:  [[GEORGE]]

   3081-166546-0008.txt

>THRESH:0.9 EUC 0.88 :  [[YES]]

   3081-166546-0073.txt

>THRESH:0.9 EUC 0.88 : I THOUGHT THAT WAS THE WAY TO 

[[BEGIN]]

   7850-281318-0015.txt

>THRESH:0.9 EUC 0.88 : FESTIVE [[YES]]

   2428-83699-0001.txt

>THRESH:0.9 EUC 0.89 :  [[LECTURES]]

   251-136532-0022.txt

>THRESH:0.9 EUC  0.89 :  [[HONESTLY]]

   8297-275155-0021.txt

>THRESH:0.81 EUC 0.76 : I THOUGHT THAT WAS THE [[WAY TO 

BEGIN]]

   7850-281318-0015.txt

>THRESH:0.81 EUC 0.78 : INDEED IT IS NOT A NEST AT ALL 

ONLY [[THE BEGINNING]] OF ONE

   7850-281318-0001.txt

>THRESH:0.81 EUC  0.79 : WE HAD BETTER [[START]] THE 

DRIVE THIS MORNING

   6313-76958-0031.txt

>THRESH:0.81 EUC  0.80 : IT SEEMED AS IF HIS FAMILY 

TROUBLES WERE [[JUST BEGINNING]]

   2277-149897-0024.txt

>THRESH:0.81 EUC 0.80 : ANYTHING WAS GOOD ENOUGH SO LONG 

AS IT PAID SAY FIVE DOLLARS A WEEK [[TO BEGIN]] WITH

   2277-149874-0016.txt

>THRESH:0.81 EUC 0.80 :  [[TO MAKE]] HOT BUTTERED TOAST 

SEVENTEEN TWENTY SIX

   2078-142845-0029.txt

<THRESH:0.5 COS 0.60 : I THOUGHT THAT WAS THE WAY TO 

[[BEGIN]]

    7850-281318-0015.txt

<THRESH:0.5 COS 0.55 : INDEED IT IS NOT A NEST AT ALL 

ONLY THE [[BEGINNING]] OF ONE

    7850-281318-0001.txt

<THRESH:0.5 COS 0.55 : ANYTHING WAS GOOD ENOUGH SO LONG 

AS IT PAID SAY FIVE DOLLARS A WEEK TO [[BEGIN]] WITH

    2277-149874-0016.txt

<THRESH:0.5 COS 0.54 : WHEN ARE YOU GETTING RID OF THESE 

CATS I'M NOT FIXING TO [[START]] AN ANNEX TO KATE'S CAT 

HOME

    1988-24833-0003.txt

<THRESH:0.5 COS 0.54 : WE HAD BETTER [[START]] THE DRIVE 

THIS MORNING

    6313-76958-0031.txt

<THRESH:0.5 COS 0.53 :  [[GEORGE]]

    3081-166546-0008.txt

a)

Cosine similarity Euclidean distance

b)

Figure 7.2: Samples of the search results of the LaBSE model. The prompted query is
“start” and the used input text is the Librispeech dev subset. On the left side, the Cosine
similarity for vector comparison is used, and on the right side the Euclidean distance.
The search results in a) are obtained without extension of the search window and with
extension b).
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Figure 7.3: DET curve for three evaluation tasks. Exact KWS refers to the standard KWS
task accepting only the exact query, KWS+SYN task extends the Exact KWS task with the
query synonyms and all grammatical variations, and SEM PHR is the semantic phrases search
task with evaluation set of manually chosen sentences that are semantically similar to the
input query phrases. The evaluation sets are based on the Librispeech dev subset.

7.4 SpeechT5 baseline
The SpeechT5 model provides decent performance for the ASR, TTS and Speech-to-Speech
(S2S) tasks. The JSALT 2023 workshop4 at Le Mans Université showed that SpeechT5
is suitable also for intent classification task within research of Conversational models5.
SpeechT5 finetuned to the intent classification task on the Slurp dataset6 takes advantage
of SpeechT5’s text/audio multimodality support. The workshop’s results show potential in
the multimodal approach working with a shared vector space, where audio is used straight-
forward instead of an automatic transcription of speech to text mid step. This thesis builds
upon these discoveries and aims to bring multimodal benefits for search in speech recordings
regardless of the input. The initial overview of the quality of the shared vector space is
shown in Figure 7.4.

The workflow of SpeechT5 stays in line with the proposed search algorithm and matches
query embeddings to data as demonstrated in the LaBSE proof-of-concept. For the initial

4An intensive 6-week research workshop on speech and language engineering held in 2023 in Le Mans:
https://www.clsp.jhu.edu/2023-jelinek-summer-workshop/

5Automatic design of conversational models from observation of human-to-human conversation:
https://tinyurl.com/26ujuft7

6A Spoken Language Understanding Resource Package Creators (SLURP) – a challenging dataset in
English spanning 18 domains available at Zenodo: https://zenodo.org/records/4274930
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Figure 7.4: SpeechT5 shared vector space of six extracted embeddings reduced to the 3-
dimensional space by principal component analysis. The red points T2, T1 are text vectors
and the blue points A0, A1, A2, A3 are the audio vectors. Points A1,T1 and A2,T2 encodes
datetime information, while A0, A3 encodes completely unrelated utterance. From the plot,
it is visible that vectors encoding similar information are closer regardless of the modality.

SpeechT5 baseline, a pretrained base model developed by Microsoft is utilised7. Since the
other pretrained SpeechT5 models are available at Hugging Face8, the base model is mapped
to be compatible with the Hugging Face models. The SpeechT5 Hugging Face model was
trained with ASR and TTS as objective tasks and outperformed the base model. These
finetuned models perform better for the proposed search task as shown in the results.

7.4.1 Adaptation of the search algorithm

In this subsection, we will describe how the search using semantic vectors is utilised. Several
setups were adopted from the LaBSE baseline. However, the search algorithm needs several
adjustments due to the model complexity.

Approaches shared with LaBSE One of the shared approaches with LaBSE is omitting
the first and the last token from the query. As it still helps to prevent a potential bias to
prefer matching the beginnings and ends.

Extending the sliding search window size is adopted as well. However, SpeechT5 does
not provide embeddings per word/bigger chunks but per frame/character. This raises an
issue because the same phrase can be said faster or slower, that differs compared to searching
purely over text. Therefore, the coefficient 𝛼 = 1.0. The reason to use this coefficient 𝛼

7SpeechT5 pretrained models repository by Microsoft: https://github.com/microsoft/SpeechT5
8Hugging Face SpeechT5 models: https://tinyurl.com/2d5pwn8u
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value is to increase the chance of finding relevant results as Table 7.2 proves. To speed
up the processing, the hop (step) is changed to ℎ𝑜𝑝 = 2 for text and to ℎ𝑜𝑝 = 6 for
audio. Therefore, we are sliding the search window by 2 characters for text and by 96𝑚𝑠
(6× 16𝑚𝑠) for audio.

Cross modality alignments SpeechT5 does not produce fixed-length embedding se-
quences across modalities. The default SpeechT5 embedding extracted from audio uses the
default frame size 64𝑚𝑠 and 16𝑚𝑠 hop. For text, the size corresponds to the string length.

For example, an embedding for the word “start” (embedding size equals 5) is shorter
than an embedding for audio containing spoken “start” (empirically, size can vary in an
approximate interval between 25 and 45). Therefore, the search window should dynami-
cally adjust when matching across modalities – frame scaling. This dynamic adjustment is
accomplished by the properties saved in metadata during the extraction process. Therefore,
with each embedding matched against the query, we scale the search window size based on
the modality.

The scaler either widens or narrows the search window. From the obtained interval
above – the comparison between string length and its audio embedding length, the scaler
is set to 6. Therefore, when a text query is compared to an audio embedding, the search
window is multiplied by 6. Conversely, when an audio query is matched to a text embedding,
the search window frame is divided by 6. Otherwise, the window size remains unchanged.

It is important to note that generally, a wider search window yields more vague results,
while a narrower window downgrades the semantic search capabilities, closer to the KWS
task.

Pooling strategies An important part of the SpeechT5 baseline investigates the pooling
strategies. As for LaBSE, the experiments started with standard mean and max pooling
techniques. However, an additional technique was explored known as the Self Attention
Pooling (SAP). SAP was implemented as proposed in Safari’s Interspeech 2020 article [41].
SAP allows the model to focus on different parts of the input sequence while producing an
output sequence, providing a kind of alignment between the input and the output. SAP is
a method that uses self-attention mechanisms to aggregate dependencies between the input
and the output sequence. This alignment between the input and output is particularly
helpful for down-sampling pooling strategies.

SAP shows a better performance on the text embeddings than audio embeddings. Ta-
ble 7.1 presents the performance of different pooling methods. Thus, for the proposed
search algorithm, SAP is applied to text embeddings, and standard mean pooling is used
for audio embeddings. The tests of pooling strategies are performed per modality. Audio
queries are searched in audio embeddings and text queries are searched in text embeddings
only.

Results The SpeechT5 baseline evaluation consists of measuring several search algorithm
setups and testing the pretrained base model and finetuned Hugging Face models. The mea-
surements were performed on the datasets derived from Librispeech dev on both text and
audio. The systems were tested on tasks for Exact KWS, Fuzzy KWS9, keyword synonym
search (referred to as KWS+ synonyms), and the Semantic phrases search (in tables ab-
breviated to Sem phrases search) task.

9Fuzzy KWS extends exact KWS task by allowing some Levenshtein distance between strings
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The same input queries for the KWS+ synonyms task were also used for Exact KWS
and Fuzzy KWS tasks so it is objectively comparable. All of the input queries were entered
using both text and audio. The audio queries were newly recorded using the laptop’s
microphone and Audacity10. The Cosine similarity is chosen as the vector comparison
technique as Euclidean distance provides unstable results as can be seen in the example
results from the LaBSE baseline.

The results in Table 7.1 and Table 7.2, and DET curves in Figure 7.5 and 7.6 show
potentials of this solution. The best overall accuracy is obtained by the Hugging Face
model with 𝑐𝑜𝑙𝑙𝑎𝑟 = 2.0. However, this collar setting makes the search window very wide
as it is 3 times as large as the input query. The example outputs in the Appendix A.2, are
subjectively considered to be general and semantically distant. Thus, the collar setting is
chosen to 𝑐𝑜𝑙𝑙𝑎𝑟 = 1.0 as it is the best compromise between measured values and subjective
evaluation.

Pooling
Exact KWS

(text only)
↓EER

Fuzzy KWS
(text only)

↓EER

Exact KWS
(audio only)

↓EER

Fuzzy KWS
(audio only)

↓EER
HF max 29.74 % 19.80 % 29.54 % 29.99 %
HF mean 0.21 % 13.54 % 13.47 % 13.70 %
HF attention 0.14 % 13.31 % 13.57 % 13.83 %

Table 7.1: Evaluation of different pooling strategies performed with the Hugging Face
SpeechT5 model. Evaluated on Librispeech dev subset, for each modality separately. The
figures show that the SAP technique performs better on text than on audio recordings.
Though, the differences are minimal and they perform quite similarly.

Eval set Exact KWS Fuzzy KWS KWS+ synonyms Sem phrases search
Collar ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF
Base 0.5 18.67 % 0.26 19.19 % 0.11 17.48 % 0.14 14.03 % 0.06
Base 1.0 17.63 % 0.27 18.09 % 0.11 16.58 % 0.15 14.16 % 0.07
Base 1.5 16.90 % 0.29 17.31 % 0.12 16.01 % 0.15 14.24 % 0.08
Base 2.0 16.59 % 0.30 16.82 % 0.13 15.44 % 0.16 14.65 % 0.09
HF 0.5 13.21 % 0.21 16.14 % 0.11 14.62 % 0.13 13.07 % 0.06
HF 1.0 12.24 % 0.22 15.03 % 0.11 13.61 % 0.14 13.43 % 0.06
HF 1.5 11.64 % 0.28 14.40 % 0.12 13.58 % 0.15 13.60 % 0.08
HF 2.0 11.52 % 0.30 14.01 % 0.13 13.19 % 0.16 12.93 % 0.09

Table 7.2: Collar settings for the base and Hugging Face SpeechT5 pretrained models.
Evaluated on Librispeech dev subset according to the task, using the input queries as
specified in Chapter 6. The chosen value for the collar is 1.0 as it is the best compromise
between EER and MinDCF.

10Audacity https://www.audacityteam.org/
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Figure 7.5: A comparison of the base and Hugging Face SpeechT5 pretrained models, with
varying collar settings, performed on the keyword spotting (KWS) task. The DET curves
for the base model are shown on the left and those for the Hugging Face model on the
right. The Exact KWS only recognises the literal form of the query, whereas the Fuzzy
KWS accepts close terms, measured by the Levenshtein distance. The evaluation sets are
derived from the Librispeech dev subset.
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Figure 7.6: DET curves comparing the base and Hugging Face SpeechT5 pretrained mod-
els, with different collar settings, evaluated on sets for keyword spotting with synonyms
(KWS+ synonyms) and Semantic phrases search (Sem phrases search) tasks. The KWS
with synonyms task evaluates matches for the query, its synonyms, and various grammatical
forms. The Semantic phrases search task identifies sentences that are semantically similar
to the query. The evaluation sets are derived from the Librispeech dev subset.
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Chapter 8

Experiments

This chapter presents experiments and their results aimed at the enhancement of search
accuracy and quality. We introduce experiments which investigate the capabilities of
SpeechT5 model finetuning. Additionally, the SeamlessM4T model was tested to assess
its advantages and disadvantages within the search. Finally, a new approach incorporating
TTS systems into the search algorithm pipeline was explored.

8.1 Finetuning SpeechT5 models
In this section, we present an approach for finetuning SpeechT5 models to boost the search
accuracy.

The main idea is to take Hugging Face pretrained models and learn them to focus
more on the desired search window by limiting the context seen during training. We are
limiting the context by feeding n-grams of text and the corresponding slices of audio during
finetuning. To see the real impact of such an assumption, the finetuned models were
trained from 3-grams segments, up to 11-grams, with a step-by-2 per finetuned model. The
finetuning was performed on Hugging Face pretrained models finetuned for ASR tasks and
TTS tasks. In total, 10 models were finetuned, 5 models per one Hugging Face pretrained
model.

Data preparation First, several finetuning datasets were prepared. We used the Lib-
rispeech train-clean-360 subset as the raw data. The dataset shares the structure of
a typical ASR training dataset – audio recordings together with corresponding transcripts.
The final format is compatible with the Hugging Face dataset format. The data were
prepared as follows:

• Specified N-grams. The datasets were prepared for each experiment. Thus, for each
3/5/7/9/11-gram experiment, a new subset was prepared.

• N-gram segmentation from STM file. STM was created from Librispeech subset
train-clean-360 by forced alignment technique with each word (keyword) segmented
separately to a new line. The N-gram segmented recording was created by selecting
𝑁 segments (STM file rows) consecutively segment-by-segment (row-by-row) from
the STM file. From these 𝑁 -segments, the actual slice of the original recording
was saved, together with the corresponding transcript – 𝑁 words. For example, 5-
gram recordings from the sentence “Nice day for fishing ain’t it?” are created as
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follows: [Nice day for fishing ain’t] and [day for fishing ain’t it]. Two
recordings are created.

• Final count. Each subset consists of 10, 000 N-grammed recordings with corresponding
transcripts. The process from the previous bullet is repeated until the count is reached.
This approach implies that the 11-gram dataset has more hours of recordings and
therefore takes up more space than the 3-gram dataset to store.

Training The finetuning is performed with the ASR objective, thus we feed SpeechT5
with audio and use tokenised transcripts as the desired output. We run finetuning for 10
epochs (10, 000 steps) with the Adam optimiser. Loss functions are used as proposed in
the SpeechT5 paper during the finetuning. The finetuning is handled by the Hugging Face
trainer.

SpeechT5 ASR model finetuning
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Figure 8.1: The finetuning process of the SpeechT5 ASR model involves various sets that
limit the visible context. Figures show a noticeable difference between the training of the
3-gram and 11-gram approaches.
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The initial learning rate is set to 10−5 with 500 warmup steps. For optimisation of
performance, the gradient accumulation1 step is set to 2.

The training process of the SpeechT5 ASR model (pretrained for the automatic speech
recognition task) is shown in Figure 8.1 and for SpeechT5 TTS model (pretrained for the
text-to-speech task) is in Figure 8.2. The finetuning was converging towards the objective.
However, noticeably worse for the 3-gram approach, which could be expected as just 3
words are seen.

SpeechT5 TTS model finetuning

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 2k 4k 6k 8k 10k 12k

Tr
a
in

in
g
 l
o
ss

E
v
a
l 
lo

ss

Training steps

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2k 4k 6k 8k 10k 12k

Eval

3-gram

5-gram

7-gram

9-gram

11-gram

Train

3-gram

5-gram

7-gram

9-gram

11-gram

Figure 8.2: The finetuning process of the SpeechT5 TTS model with sets varying the
visible context. Similarly to the finetuning of the SpeechT5 ASR model, the figures indicate
a higher deviation for the 3-gram training process.

Results The primary objective of the proposed finetuning experiments was to develop
a model dedicated to the keyword spotting task, or more generally, a model optimised for
shorter queries in semantic search.

However, as shown in Table 8.1, limiting the context seen during finetuning does not
make significant performance changes. Interestingly, TTS finetuned models performed

1Gradient accumulation is a strategy that enables training with larger batch sizes than hardware could
typically fit in memory. It involves collecting gradients across multiple batches and updating the optimiser
only after predefined steps of batches have been processed.
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counter-intuitively better for 3-gram nearly every time – even for semantic phrases search.
ASR finetuned models behaved more predictably. The 7-gram model performed better for
Exact KWS and KWS+ synonyms, indicating that a context of 7 words provides better
embeddings. The 3-gram model performs the best at Fuzzy KWS as it matches keywords
that are not just semantically similar, but also look/sound similar, thus it does not require
a long context. The 11-gram ASR model performed the best for the semantic phrases
search, proving that a wider context is beneficial.

DET curves in Figure 8.3 and Figure 8.4 show that the proposed approach for ASR
and TTS models’ finetuning, outperforms the chosen baseline Hugging Face model only for
semantic phrases task, otherwise, it leads to worse performance.

Eval set Exact KWS Fuzzy KWS KWS+ synonyms Sem phrases search
Model ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF
ASR 3 15.85 % 0.02 13.01 % 0.09 15.01 % 0.11 12.04 % 0.18
ASR 5 15.74 % 0.02 14.47 % 0.09 15.13 % 0.11 11.47 % 0.07
ASR 7 12.72 % 0.02 13.87 % 0.09 14.59 % 0.11 10.35 % 0.04
ASR 9 14.63 % 0.02 16.02 % 0.09 15.16 % 0.11 10.68 % 0.05
ASR 11 15.56 % 0.02 15.54 % 0.09 15.23 % 0.11 10.19 % 0.05
TTS 3 14.12 % 0.02 15.55 % 0.09 14.90 % 0.11 11.17 % 0.04
TTS 5 15.14 % 0.02 15.15 % 0.09 14.91 % 0.11 12.18 % 0.04
TTS 7 14.96 % 0.02 15.43 % 0.09 15.00 % 0.11 11.31 % 0.04
TTS 9 15.73 % 0.02 15.44 % 0.09 15.19 % 0.11 11.58 % 0.04
TTS 11 16.05 % 0.02 15.67 % 0.09 15.42 % 0.11 12.45 % 0.04

Table 8.1: The evaluation of SpeechT5 finetuning experiments. The results show that
models finetuned on the ASR model provide better and more predictable outcomes.

SpeechT5 N-gram finetuning
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Figure 8.3: DET curves of the best finetuned ASR model and TTS model compared to the
chosen baseline Hugging Face model. Evaluated on sets for the Exact KWS task (left) and
the Fuzzy KWS task (right) .
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SpeechT5 N-gram finetuning
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Figure 8.4: DET curves of the best finetuned ASR model and TTS model compared to the
chosen baseline Hugging Face model. Evaluated on sets for the KWS+ synonyms task, and
the Semantic phrases search task.

8.2 SeamlessM4T model
In this section, experiments with the SeamlessM4T model are presented.

SeamlessM4T is a robust multi-modal multi-lingual model. It should offer better joint
vector space – SONAR, as it was trained on more diverse data and utilises advanced align-
ment techniques as explained in section 4.2.

The model also provides more advanced approaches which solve some of the issues of
the SpeechT5 model. The main improvement is the alignment between audio and text
embeddings. As a result, the embeddings are segmented to a size which corresponds to the
length of a character for both text and speech.

SeamlessM4T also allows us to put longer text sequences at the input than SpeechT5.
SpeechT5 allows a maximum of 450 tokens for text and 4000 frames for audio (corresponds
to 64 seconds for default settings of SpeechT5 feature extractor), while SeamlessM4T v2
allows for 2048 tokens for text. The audio maximum length is similar allowing 4096 units.

Several pretrained models are available for SeamlessM4T2: v2-Large, v1-Large, v1-
Medium, v1-Unity-Small. For the experiments, we used SeamlessM4T v23 pretrained model
from Hugging Face.

However, the model is 8 times larger than the SpeechT5 models and thus requires
a larger GPU and longer processing time.

Thanks to the improvements, the search algorithm workflow is more similar to the
LaBSE baseline as there is no need to use the so-called “scaler” when matching across
modalities. However, SeamlessM4T uses the character tokenisation, not words and thus
the collar is set to 1 which worked better for SpeechT5 models.

2SeamlessM4T pretrained models by Meta on Hugging Face: https://tinyurl.com/2b2fwm2k
3SeamlessM4T v2 pretrained model: https://tinyurl.com/2bgn5b42
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Figure 8.5: DET curves of the SeamlessM4T-based system and the SpeechT5 baseline
system for exact KWS and fuzzy KWS tasks. The SeamlessM4T model outperforms the
baseline SpeechT5 model (in red). The blue DET curve evaluated jointly on input queries
entered by text (QbT) and by audio (QbE) shows elbow around the EER operation point.
Additional DET curves (green, purple) evaluate QbT input and QbE separately. The
SeamlessM4T model requires different calibrations depended on the input modality.
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Figure 8.6: DET curves of the SeamlessM4T-based system and the SpeechT5 baseline
system for KWS with synonyms and Semantic phrases search tasks. The SeamlessM4T
model outperforms the baseline SpeechT5 model (in red). The elbow for joint QbT & QbE
evaluation (blue) is present as well.

Results SeamlessM4T shows potentials in various ways. From the examples shown in
Appendix A.3, it is visible that the quality of the SONAR joint embedding space is higher
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Eval set Exact KWS Fuzzy KWS KWS+ synonyms Sem phrases search
Model ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF
QbT & QbE 9.29 % 0.19 12.80 % 0.27 9.57 % 0.27 8.22 % 0.19
QbE only 9.93 % 0.03 9.68 % 0.13 9.97 % 0.15 11.11 % 0.07
QbT only 9.82 % 0.02 15.23 % 0.11 10.30 % 0.10 7.65 % 0.05

Table 8.2: The SeamlessM4T system’s performance on the LibriSpeech dev-clean subsets is
assessed using both audio query-by-example (QbE) and query-by-text (QbT). It is consis-
tent with all other measurements. Additionally, the DET is evaluated separately for each
input modality due to differing optimal operation points.

than the SpeechT5 embeddings. SeamlessM4T shows similar scores for matching the con-
tent either in text or audio. It may be caused by the better alignment between modalities.
Also, the false alarms are more semantically close to the target query, than SpeechT5-based
models.

These statements are supported by the evaluations, as seen in Table 8.2 and in DET
curves 8.5 and 8.6.

Evaluation is performed in the same way as with SpeechT5 models. Both query-by-text
(QbT) and query-by-example (QbE) are evaluated together. In DET curves a visible elbow
appeared. Therefore, separate measurements for input query modalities were conducted.
The modalities within subsets were left unchanged. SeamlessM4T seems to require different
operation point calibrations depending on the modality of the input.

The reason for these evaluations was the visible elbow in the DET curve showing joint
input modalities. This claim was supported by additional tests where such a significant
jump no longer occurred.

The main downside of the SeamlessM4T model is the higher demands on computational
resources and a longer time needed for processing, and therefore for searching. However,
the capabilities of SeamlessM4T models are significantly broader due to the multilingual
nature of the models. To test these capabilities, some more in-depth research is required,
including the use of specified multilingual datasets labelled for the primary objective of this
thesis.

8.3 TTS approach
In this section, we present a different approach to the workflow of the proposed search
algorithm. The proposed experiments involve use of the text-to-speech systems to enhance
the quality of the shared embedding space and therefore better performance of the system.

The idea is to add a TTS system before the embedding extraction step for text input.
After the text tokenisation, the input ids are forwarded to TTS in order to generate speech.
This speech output is then used for the embedding extraction. This approach ensures that
similar embeddings are close together, regardless of the input modality, as the model only
transforms speech into a joint vector space. The edited workflow can be seen in Figure 8.7.
It remains unchanged for audio input.

This approach eliminates several issues, such as text/speech alignment, thus avoiding
the need for additional steps like utilising a “scaler”. It also leads to a more error-resistant
system compared to the opposite approach of this idea – ASR system used to create a textual
query from audio. ASR (or speech-to-text) systems are prone to errors in the transcription
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Figure 8.7: The edited workflow of the search algorithm to involve the TTS module.

of audio-to-text. Therefore, TTS systems offer a more reliable and robust solution, as text
lacks the variations encoded in speech, such as pitch, speed, and environmental noise.

However, it comes with some drawbacks. The additional step in the workflow slows down
the system and the use of TTS is a performance bottleneck in the chain. Furthermore, it
introduces model-specific constraints, such as maximum input size, supported languages,
or batch size.

In the TTS approach experiments, the SpeechT5 TTS and SeamlessM4T models are
used. SpeechT5 provides a smaller model exclusively for English, with a batch size restricted
to one. SpeechT5 requires a speaker embedding to generate speech. It supports 512-dim
X-vectors. Some speaker embeddings from CMU ARCTIC dataset4 were used. For all
experiments, the same X-vector5

SeamlessM4T supports up to 35 languages for speech output and it supports batch
processing for TTS. Speaker embeddings can be specified or remain at the default one
preselected for the language. Default speaker embeddings are used throughout these ex-
periments.

Results The SpeechT5 TTS approach demonstrates the best performance among systems
based on SpeechT5. It also delivers decent results for the SeamlessM4T-based system.
Nonetheless, the performance gap between the SeamlessM4T system described in section 8.2
and the SeamlessM4T with the TTS approach is minimal, with most of the evaluation sets
showing slightly lower scores, except for the Semantic phrases search task. Some detailed
results are presented in Table 8.3 and corresponding DET curves are presented in Figure 8.8
and Figure 8.9.

The TTS approach appears to assist SpeechT5 in resolving the alignment issue between
modalities, subsequently demonstrating performance comparable to advanced architectures
such as SeamlessM4T.

4X-vectors extracted from CMU ARTICS set at Hugging Face: https://tinyurl.com/27qryvcw
5Speaker embedding from CMU ARTICS dataset with index 7306, which belongs to US English female

voice: cmu_us_slt_arctic-wav-arctic_a0506
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Eval set Exact KWS Fuzzy KWS KWS+ synonyms Sem phrases search
Model ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF ↓EER % ↓MinDCF
SpeechT5
TTS approach 10.72 % 0.03 10.00 % 0.11 14.29 % 0.13 10.16 % 0.06

SeamlessM4T
TTS approach 10.04 % 0.04 10.42 % 0.16 10.27 % 0.19 7.48 % 0.08

Table 8.3: TTS approach systems results show similar performance for Exact and Fuzzy
KWS tasks regardless of the used model. For the KWS+ synonyms task and the Semantic
phrases search task, SeamlessM4T performs better.
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Figure 8.8: DET curves showing the performance of TTS approach systems compared to
the SpeechT5 baseline, evaluated on sets for Exact KWS and Fuzzy KWS tasks.
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Figure 8.9: DET curves showing the performance of TTS approach systems compared to
the SpeechT5 baseline, evaluated on sets for KWS+ synonyms and Semantic phrases search
tasks.
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8.4 Final comparisons
This section presents and concludes overall comparisons among the top-performing systems.
Additionally, it includes a comparison with the existing keyword spotting system developed
by Phonexia.

Keyword spotting systems comparison Phonexia Keyword Spotting is used as a ref-
erential system to compare created systems. The evaluation tool for Phonexia KWS out-
puts the ROC curve, together with precision and recall of the operation point chosen by
Phonexia. To compare the created systems, an operation point around the minDCF point is
selected for estimating precision and recall. Measurements are performed on the Librispeech
dataset. The results are presented in Table 8.4.

The ROC curves in Figure 8.10 indicate that legacy systems outperform proposed solu-
tions, however, the differences are not significantly big. This gives a positive indication that
the system, built for semantic search tasks mainly, can compete with the exact keyword
spotting systems. In addition, created systems are multimodal and are capable of searching
in both text and audio, while Phonexia’s solution searches in audio only. Moreover, all
newly investigated solutions support both QbT and QbE at the input.

KWS System ↑ Precision ↑ Recall ↑ ROC AUC
Phonexia
KWS 98.59 % 99.61 % 0.9658

SpeechT5 HF
(collar 1.0) 92.66 % 79.37 % 0.9432

SpeechT5 FT
(ASR, 7-grams) 91.37 % 82.34 % 0.9430

SpeechT5
TTS approach 93.22 % 84.72 % 0.9514

SeamlessM4T
v2-Large 90.92 % 90.46 % 0.9218

SeamlessM4T
TTS approach 89.36 % 90.74 % 0.9571

Table 8.4: The table displays precision and recall metrics for systems evaluated for the
exact KWS task, calibrated to operational points near minDCF. ROC Area Under Curve
(ROC AUC) shows high numbers across all systems.

Fisher subset SpeechT5-based systems were also evaluated on the Fisher subset pre-
sented in section 5.2. Before processing, it was necessary to make several changes as ex-
plained in that section. Two approaches to create a mono channel recording from stereo
recordings were evaluated: i) split stereo channels to two separate mono channel record-
ings (referred to as Split2Mono) and ii) merge stereo recording into one mono channel
recording (referred to as Merge2Mono). This also creates an imbalance in the total speech
length, as Split2Mono has two times more of the recordings.

Additionally, SpeechT5 is unable to process lengthy recordings, such as 10-minute con-
versations within the Fisher dataset. As a result, these recordings are divided into chunks
of 34 seconds each. Each chunk consists of 30 seconds that do not overlap with adjacent
chunks and with an additional 2-second overlap at the beginning and the end. Similarly, the

54



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

Keyword Spotting Systems

Phonexia KWS:  0.9658

SpeechT5 HF baseline
(collar=1.0):

0.9432

SpeechT5 Fine-tuning
(ASR, 7-grams):

0.9430

SeamlessM4T: 0.9218

SeamlessM4T 
TTS approach 0.9571

SpeechT5
TTS approach

0.9514

ROC AUC

Figure 8.10: ROC curves comparing systems for the Exact KWS task. Phonexia KWS
outperforms proposed systems. As Area Under Curve (AUC) indicates, TTS approach
systems perform close to Phonexia KWS.

text must also be shortened for processing. It is divided into strings of 440 characters each,
where 400 characters do not overlap with neighbouring strings, and there is a 20-character
overlap at the beginning and the end.

The results are displayed solely for the Exact and Fuzzy KWS tasks, as the ground
truths for these tasks are automatically estimated from the STM file, and the KWS with
synonyms task and Semantic phrase search task require manual labelling. The DET curves
are shown in Figure 8.11 and Figure 8.12. DET curves show a significant decrease in overall
accuracy.

The drop was expected since the Fisher data are telephone conversations with natural
speech imperfections. Also, compared to Librispeech, even chunked recordings are longer,
which naturally results in more false acceptance errors. Upsampling of data to 16 kHz due
to the SpeechT5 model can also worsen the result – as the model is trained on 16 kHz
recordings.

The results indicate, that further development is required to meet the production level
quality of the technology. Finding an optimal threshold for such systems can be challenging
due to lower performance as it will either significantly increase the false acceptance rates
or decrease the true acceptance rates.
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Figure 8.11: DET curves comparing the best performing SpeechT5 systems on Fisher
dataset (Split2Mono conversion). DET curves show a significant decrease in overall ac-
curacy.
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Figure 8.12: DET curves comparing the best performing SpeechT5 systems on Fisher
dataset (Merge2Mono conversion).

56



Chapter 9

Conclusion

9.1 Summary of the work performed
In this thesis, we have presented the methods for using semantic vectors to search in speech.
Particularly, we focused on joint representation models, which transform text and audio
data into a shared vector space. With these multimodal models, we proposed the search
algorithm where we tried to find optimal settings for the pretrained SpeechT5 models.

Additionally, we performed several experiments to improve the performance of the base-
line. This included finetuning, where we focused on limiting the seen context and analysed
its impact on performance. We experimented with a novel, more robust architecture of
joint representation models – SeamlessM4T, and attempted to adjust the properties of the
model to suit the search algorithm. At the end, we increased the accuracy of the proposed
system by incorporating a text-to-speech (TTS) mechanism into the workflow.

In order to evaluate the systems for the semantic search tasks, we created labelled
subsets using a thesaurus for the semantic keyword spotting task. Additionally, we manually
labelled semantically close sentences for the semantic phrase search task.

We evaluated the solutions against each other using datasets for speech-to-text systems.
Furthermore, we compared the best systems with a legacy commercial keyword spotting
product.

The results show a high potential for this novel approach in audio search. However, some
additional development is required for a commercial deployment. This primarily includes
accuracy improvement, decreasing the false alarm rate, and increasing the speed of both
embedding extraction and search.

9.2 Future work
Additional improvement could focus on investigating the use of the TTS system with models
other than multimodal ones. The Wav2vec2 model and its modifications could serve as the
way for further research.

Moreover, the SeamlessM4T model and its multilingual capabilities require further in-
vestigation. Such a cross-lingual system could assist a wide array of analytical professions.

For the deployment of the proposed system to production and to enable the processing
of high loads, optimisations are required. The main bottleneck lies in the slower extraction
of embeddings and the search process itself. For faster vector comparisons, the Faiss library
developed by Meta can be utilised. This should significantly improve the performance.
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Appendix A

Results of the search algorithm

This appendix presents the detailed results obtained from the searches and the outputs of
the command line.

A.1 LaBSE baseline
In this section, the outputs of the LaBSE model with the default settings of the search
algorithm are presented. Both results for cosine distance (COS) and Euclidean distance
(EUC) are provided. The search results for the keyword “start”, without the enlarged

window, thus |𝑤𝑖𝑛| = 1:

<THRESH:0.5 COS (9, 10) 0.5969 0: I THOUGHT THAT WAS THE WAY TO [[BEGIN]]
7850-281318-0015.txt

<THRESH:0.5 COS (13, 14) 0.5509 1: INDEED IT IS NOT A NEST AT ALL ONLY THE [[BEGINNING]] OF
ONE

7850-281318-0001.txt
<THRESH:0.5 COS (24, 25) 0.5485 2: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE

DOLLARS A WEEK TO [[BEGIN]] WITH
2277-149874-0016.txt

<THRESH:0.5 COS (20, 21) 0.5413 3: WHEN ARE YOU GETTING RID OF THESE CATS I’M NOT FIXING TO
[[START]] AN ANNEX TO KATE’S CAT HOME

1988-24833-0003.txt
<THRESH:0.5 COS (5, 6) 0.5410 4: WE HAD BETTER [[START]] THE DRIVE THIS MORNING

6313-76958-0031.txt
<THRESH:0.5 COS (4, 5) 0.5331 5: AN EARLY [[START]] WAS MADE SO THAT THE PARTY REACHED THE

PROMISED TABLE LANDS SHORTLY BEFORE TEN O’CLOCK IN THE FORENOON
6313-66129-0018.txt

<THRESH:0.5 COS (1, 2) 0.5285 6: [[GEORGE]]
3081-166546-0008.txt

<THRESH:0.5 COS (67, 68) 0.5265 7: IT IS OBVIOUS THAT EVERYWHERE THE DESIGNATIONS OF MORAL
VALUE WERE AT FIRST APPLIED TO MEN AND WERE ONLY DERIVATIVELY AND AT A LATER PERIOD
APPLIED TO ACTIONS IT IS A GROSS MISTAKE THEREFORE WHEN HISTORIANS OF MORALS [[START]]
WITH QUESTIONS LIKE WHY HAVE SYMPATHETIC ACTIONS BEEN PRAISED

422-122949-0003.txt

>THRESH:0.9 EUC (0, 0) 0.8718 0: [[GEORGE]]
3081-166546-0008.txt

>THRESH:0.9 EUC (0, 0) 0.8750 1: [[YES]]
3081-166546-0073.txt

>THRESH:0.9 EUC (9, 10) 0.8802 2: I THOUGHT THAT WAS THE WAY TO [[BEGIN]]
7850-281318-0015.txt

>THRESH:0.9 EUC (3, 4) 0.8817 3: FESTIVE [[YES]]
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2428-83699-0001.txt
>THRESH:0.9 EUC (3, 4) 0.8854 4: [[LECTURES]]

251-136532-0022.txt
>THRESH:0.9 EUC (3, 4) 0.8907 5: [[HONESTLY]]

8297-275155-0021.txt
>THRESH:0.9 EUC (1, 2) 0.8915 6: AFTER [[THE]] VERY FIRST

1462-170142-0024.txt
>THRESH:0.9 EUC (3, 4) 0.8948 7: THE [[TWENTIES]]

1272-141231-0013.txt
>THRESH:0.9 EUC (0, 0) 0.8990 8: [[TEN]] SECONDS

1272-141231-0016.txt

The search results for the keyword “start”, with the enlarged window, thus |𝑤𝑖𝑛| =
1 + ⌊(1/2× 1 + 1/2)⌋ = 2:

<THRESH:0.5 COS (8, 10) 0.5804 0: I THOUGHT THAT WAS THE [[WAY TO BEGIN]]
7850-281318-0015.txt

<THRESH:0.5 COS (13, 15) 0.5428 1: INDEED IT IS NOT A NEST AT ALL ONLY [[THE BEGINNING]] OF
ONE

7850-281318-0001.txt
<THRESH:0.5 COS (23, 25) 0.5254 2: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE

DOLLARS A WEEK [[TO BEGIN]] WITH
2277-149874-0016.txt

<THRESH:0.5 COS (5, 7) 0.5179 3: WE HAD BETTER [[START]] THE DRIVE THIS MORNING
6313-76958-0031.txt

<THRESH:0.5 COS (15, 17) 0.5177 4: IT SEEMED AS IF HIS FAMILY TROUBLES WERE [[JUST
BEGINNING]]

2277-149897-0024.txt
<THRESH:0.5 COS (19, 21) 0.5161 5: WHEN ARE YOU GETTING RID OF THESE CATS I’M NOT FIXING [[

TO START]] AN ANNEX TO KATE’S CAT HOME
1988-24833-0003.txt

<THRESH:0.5 COS (3, 5) 0.5154 6: THE [[TWENTIES]]
1272-141231-0013.txt

<THRESH:0.5 COS (3, 5) 0.5135 7: AFTER THE [[VERY FIRST]]
1462-170142-0024.txt

<THRESH:0.5 COS (1, 3) 0.5055 8: HE [[STARTED]] TO CONSCIOUS CONFUSION ONLY NEITHER KNOWING
WHERE HE WAS NOR WHAT HE DID

6295-64301-0027.txt
<THRESH:0.5 COS (18, 20) 0.5049 9: THAT TOOK THE CENTER OF INTEREST AWAY FROM ARCHAEOLOGY

[[AND STARTED]] A NEW BURST OF ACTIVITY
251-136532-0002.txt

<THRESH:0.5 COS (11, 13) 0.5047 10: THE BOYS WERE NOW ALL ANXIETY TO [[START]] WHILE THE
PONIES AFTER THEIR SUNDAY REST WERE ALMOST AS FULL OF LIFE AS WERE THEIR OWNERS

6313-66129-0016.txt
2078-142845-0029.txt

<THRESH:0.5 COS (3, 5) 0.5042 11: THE SECOND [[PART BEGINS]] HERE I WAS A THINKING THE
FIRST PART DIVIDES INTO TWO

8842-302203-0008.txt
<THRESH:0.5 COS (3, 5) 0.5023 12: AN EARLY [[START]] WAS MADE SO THAT THE PARTY REACHED THE

PROMISED TABLE LANDS SHORTLY BEFORE TEN O’CLOCK IN THE FORENOON
6313-66129-0018.txt

>THRESH:0.81 EUC (8, 10) 0.7556 0: I THOUGHT THAT WAS THE [[WAY TO]] BEGIN
7850-281318-0015.txt

>THRESH:0.81 EUC (13, 15) 0.7822 1: INDEED IT IS NOT A NEST AT ALL ONLY [[THE BEGINNING]]
OF ONE

7850-281318-0001.txt
>THRESH:0.81 EUC (5, 7) 0.7936 2: WE HAD BETTER [[START]] THE DRIVE THIS MORNING

6313-76958-0031.txt
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>THRESH:0.81 EUC (15, 17) 0.7963 3: IT SEEMED AS IF HIS FAMILY TROUBLES WERE [[JUST
BEGINNING]]

2277-149897-0024.txt
>THRESH:0.81 EUC (23, 25) 0.8027 4: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE

DOLLARS A WEEK [[TO BEGIN]] WITH
2277-149874-0016.txt

>THRESH:0.81 EUC (0, 1) 0.8028 5: [[TO MAKE]] HOT BUTTERED TOAST SEVENTEEN TWENTY SIX
2078-142845-0029.txt

>THRESH:0.81 EUC (3, 5) 0.8057 6: THE SECOND [[PART BEGINS]] HERE I WAS A THINKING THE
FIRST PART DIVIDES INTO TWO

8842-302203-0008.txt
>THRESH:0.81 EUC (1, 3) 0.8085 7: HE [[STARTED]] TO CONSCIOUS CONFUSION ONLY NEITHER

KNOWING WHERE HE WAS NOR WHAT HE DID
6295-64301-0027.txt

Search results for the given query phrase “Nice day to meet” on Librispeech dev subset
with the enlarged search window approach. First for cosine results and then for Euclidean
distance:
Results for Nice day to meet:
<THRESH:0.5 COS (0, 7) 0.5543 0: [[TO MEET WAS TO FIND]] EACH OTHER

174-168635-0009.txt
<THRESH:0.5 COS (7, 15) 0.5268 1: I HAD THE [[PLEASURE OF MEETING HIM IN]] SOCIETY

3752-4944-0009.txt
<THRESH:0.5 COS (0, 7) 0.5248 2: [[HER MEETING WITH LETTY]] WAS INDESCRIBABLY TENDER AND

THE DAYS THAT FOLLOWED WERE PRETTY EQUALLY DIVIDED BETWEEN HER AND HER BROTHER IN
NURSING THE ONE AND LOVING THE OTHER

3853-163249-0000.txt
<THRESH:0.5 COS (9, 17) 0.5182 3: WHICH THING BEING THUS THERE [[CAME A DAY WHEN CERTAIN]]

LADIES TO WHOM IT WAS WELL KNOWN THEY HAVING BEEN WITH ME AT DIVERS TIMES IN MY TROUBLE
WERE MET TOGETHER FOR THE PLEASURE OF GENTLE COMPANY

8842-302201-0001.txt
<THRESH:0.5 COS (0, 7) 0.5181 4: [[YES I KNOW VERY]] WELL

1462-170145-0020.txt
<THRESH:0.5 COS (2, 10) 0.5038 5: HE [[REALLY GRIEVED TO SEE IT]]

6319-275224-0007.txt

>THRESH:0.63 EUC (0, 7) 0.6010 0: [[HER MEETING WITH LETTY]] WAS INDESCRIBABLY TENDER AND
THE DAYS THAT FOLLOWED WERE PRETTY EQUALLY DIVIDED BETWEEN HER AND HER BROTHER IN
NURSING THE ONE AND LOVING THE OTHER

3853-163249-0000.txt
>THRESH:0.63 EUC (9, 17) 0.6043 1: WHICH THING BEING THUS THERE [[CAME A DAY WHEN CERTAIN]]

LADIES TO WHOM IT WAS WELL KNOWN THEY HAVING BEEN WITH ME AT DIVERS TIMES IN MY
TROUBLE WERE MET TOGETHER FOR THE PLEASURE OF GENTLE COMPANY

8842-302201-0001.txt
>THRESH:0.63 EUC (0, 7) 0.6140 2: [[ON THE NEXT DAY BUT]] ONE RANDAL ARRANGED HIS DEPARTURE

FOR SYDENHAM SO AS TO ARRIVE AT THE HOTEL AN HOUR BEFORE THE TIME APPOINTED FOR THE
DINNER

8297-275155-0000.txt
>THRESH:0.63 EUC (41, 49) 0.6204 3: WHETHER THEIR MANNER WAS GRAVE OR FRIVOLOUS HE KNEW

THAT THESE WERE GOOD FRIENDS OF HIS AND HE SINCERELY HOPED THAT [[HE WOULD MEET THEM
AGAIN]]

6295-244435-0020.txt
>THRESH:0.63 EUC (0, 7) 0.6255 4: [[ONE DAY WHEN I]] RODE OVER TO THE SHIMERDAS I FOUND

ANTONIA STARTING OFF ON FOOT FOR RUSSIAN PETER’S HOUSE TO BORROW A SPADE AMBROSCH
NEEDED

2035-147960-0002.txt
>THRESH:0.63 EUC (4, 12) 0.6258 5: ON THE [[ELEVENTH DAY WE SIGHTED]] CAPE PORTLAND OVER

WHICH TOWERED MOUNT MYRDALS YOKUL WHICH THE WEATHER BEING CLEAR WE MADE OUT VERY
READILY
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6241-61943-0008.txt
>THRESH:0.63 EUC (0, 7) 0.6285 6: [[THE DAY IS COMING]] SAID PROMETHEUS WHEN JUPITER WILL

SEND A FLOOD TO DESTROY MANKIND FROM THE EARTH
6319-57405-0005.txt

>THRESH:0.63 EUC (0, 7) 0.6288 7: [[THIS IS VERY GOOD]] OF YOU HE BEGAN GLANCING DOWN AT
THE AGED DETECTIVE’S BUNDLED UP LEGS AND GENTLY PUSHING A CHAIR TOWARDS HIM

3081-166546-0031.txt
>THRESH:0.63 EUC (2, 10) 0.6292 8: HE [[WOULD GET ONE TO DAY IT]] WOULD PROBABLY BE ON HIS

DESK WHEN HE GOT BACK HE WOULD LOOK FOR IT AT ONCE
2277-149896-0013.txt

A.2 SpeechT5 baseline
In this section, we present output results from the search algorithm. We present outputs
obtained from the base and Hugging Face models with different collar settings. All of the
following results are tested within Librispeech dev-clean dataset.

First, the base model output examples for the recorded query-by-example “place”:
Results for ./eval/qbe/place.wav:
<THRESH:0.65 COS (65, 148) 0.7272 0: YOU’VE SOMETHING TO T[[ELL ME I SEE IT IN YOUR FACE]]

DEAR I MUST GO
3853-163249-0023.flac

<THRESH:0.65 COS (23, 106) 0.7216 1: THIS IS[[ THE PROBLEM OF RACE]]
422-122949-0017.flac

<THRESH:0.65 COS (29, 112) 0.6861 2: ILLU[[STRATION RUSKS]]
2078-142845-0049.flac

<THRESH:0.65 (76, 159) 0.6727 3: AT THE END OF IT SHE WAS [[IN A PLACE OF TOMBS]]
6345-64257-0008.flac

For comparison, the same query-by-example processed by SpeechT5 Hugging Face
model:
Results for ./eval/qbe/place.wav:
<THRESH:0.65 COS (185, 234) 0.7284 0: THEY SHOULD BE KEPT IN A CLOSED TIN CANISTER IN [[A

DRY PLACE]] TO PRESERVE THEIR CRISPNESS
2078-142845-0045.flac

<THRESH:0.65 COS (173, 222) 0.6752 1: A PERSON WOULD THINK THAT AFTER A FAMILY HAD LIVED SO
LON[[G IN A PLACE ALL ]]THE NEIGHBORS WOULD BE FOND OF THEM YET IT IS NOT SO

7850-286674-0000.flac
<THRESH:0.65 COS (305, 354) 0.6741 2: ...WE ALWAYS HAD LOGS OF WOOD BLAZING IN AN OPEN F[[

IREPLACE AND]] SO DID MANY OTHER PEOPLE AND COAL...
2803-161169-0010.flac

<THRESH:0.65 COS (11, 94) 0.6041 3: HE SHOWED HIM[[SELF ON THE PLATFORM]]

Example output obtained with the SpeechT5 Hugging Face model for the text input
query “I had much pleasure in reading” for different collar sizes:
COLLAR=0.5
Results for I had much pleasure in reading:
<THRESH:0.35 COS (0, 45) 0.5835 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY
]] 3752-4944-0009.txt
<THRESH:0.35 COS (5, 50) 0.5803 1: THEN [[I HAD MUCH PLEASURE IN READING IT BUT WAS IND]]

EED SURPRISED AT THE MANY LITTLE POINTS...
2412-153947-0003.txt

<THRESH:0.35 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]]
1919-142785-0029.txt

<THRESH:0.35 COS (95, 140) 0.4299 3: ...HER HUSBAND’S EXERTIONS SHE[[ WOULD HAVE TAKEN
PLEASURE IN READING EVERY W]]ORD OF THE EVIDENCE EVEN THOUGH HER HUSBAND...
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3536-8226-0005.txt
<THRESH:0.35 COS (3, 48) 0.4283 4: I E[[XPRESSED BY SIGNS MY ADMIRATION AND PLEASURE ]]TO

MY GUIDES AND THEY WERE GREATLY PLEASED
2412-153954-0011.txt

<THRESH:0.35 COS (65, 110) 0.4116 5: ...HIS MOTHER AND SISTER TOOK A [[PLEASURE IN
CREDITING HER DAILY WITH SOME FRE]]SH AND UNPLEASING INSTRUMENT...

6345-93306-0025.txt
<THRESH:0.35 COS (0, 44) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE
]] 6345-93306-0003.txt
<THRESH:0.35 COS (1, 46) 0.3918 7: H[[IS FACE HAD A LOOK OF WEARINESS AND PLEASURE ]]LIKE

THAT OF SICK PEOPLE WHEN THEY FEEL RELIEF FROM PAIN
1993-147965-0007.txt

<THRESH:0.35 COS (7, 52) 0.3777 8: MISTER [[POWER IS WAITING ARE YOU READY LOVE QUITE REA]]
DY

3853-163249-0050.txt
<THRESH:0.35 COS (29, 74) 0.3770 9: A MINUTE IS NOT A VERY LARGE [[MEASURE OF TIME AND HIS

BODY NEEDED EVERY FRA]]CTION OF IT
1272-141231-0005.txt

Collar=1.0
Results for I had much pleasure in reading:
<THRESH:0.30 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY]]

3752-4944-0009.txt
<THRESH:0.30 COS (7, 67) 0.5324 1: THEN I [[HAD MUCH PLEASURE IN READING IT BUT WAS INDEED

SURPRISED AT ]]THE MANY LITTLE POINTS OF SIMILARITY...
2412-153947-0003.txt

<THRESH:0.30 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]]
1919-142785-0029.txt

<THRESH:0.30 COS (67, 127) 0.4212 3: ...HIS MOTHER AND SISTER TOOK A PL[[EASURE IN
CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING]] INSTRUMENT...

6345-93306-0025.txt
<THRESH:0.30 COS (19, 79) 0.4200 4: A MINUTE IS NOT A V[[ERY LARGE MEASURE OF TIME AND HIS

BODY NEEDED EVERY FRACTION]] OF IT
1272-141231-0005.txt

<THRESH:0.30 COS (81, 141) 0.4152 5: ...THE JUDGE ORDINARY BY MEANS OF HER HUSBAND’S[[
EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING EVERY WO]]RD OF THE...

3536-8226-0005.txt
<THRESH:0.30 COS (0, 56) 0.3979 6: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY

]]
3853-163249-0050.txt

<THRESH:0.30 COS (0, 45) 0.3972 7: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]]
6345-93306-0003.txt

<THRESH:0.30 COS (0, 59) 0.3819 8: [[I EXPRESSED BY SIGNS MY ADMIRATION AND PLEASURE TO MY
GUIDE]]S AND THEY WERE GREATLY PLEASED

2412-153954-0011.txt
<THRESH:0.30 COS (7, 67) 0.3475 9: HIS FAC[[E HAD A LOOK OF WEARINESS AND PLEASURE LIKE

THAT OF SICK PEO]]PLE WHEN THEY FEEL RELIEF FROM PAIN
1993-147965-0007.txt

Collar=1.5
Results for I had much pleasure in reading:
<THRESH:0.35 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY
]] 3752-4944-0009.txt
<THRESH:0.35 COS (3, 78) 0.5164 1: THE[[N I HAD MUCH PLEASURE IN READING IT BUT WAS INDEED

SURPRISED AT THE MANY LI]]TTLE POINTS OF SIMILARITY...
2412-153947-0003.txt

<THRESH:0.35 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]]
1919-142785-0029.txt

<THRESH:0.35 COS (5, 80) 0.4341 3: A MIN[[UTE IS NOT A VERY LARGE MEASURE OF TIME AND HIS
BODY NEEDED EVERY FRACTION ]]OF IT
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1272-141231-0005.txt
<THRESH:0.35 COS (53, 128) 0.4086 4: ...HIS MOTHER AND SI[[STER TOOK A PLEASURE IN

CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING ]]INSTRUMENT...
6345-93306-0025.txt

<THRESH:0.35 COS (0, 56) 0.3979 5: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY
]]

3853-163249-0050.txt
<THRESH:0.35 COS (0, 45) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]]

6345-93306-0003.txt
<THRESH:0.35 COS (15, 90) 0.3964 7: I EXPRESSED BY [[SIGNS MY ADMIRATION AND PLEASURE TO MY

GUIDES AND THEY WERE GREATLY PLEASED]]
2412-153954-0011.txt

<THRESH:0.35 COS (59, 134) 0.3825 8: ...THE JUDGE ORDINARY BY [[MEANS OF HER HUSBAND’S
EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING E]]VERY WORD...

3536-8226-0005.txt

Collar=2.0
<THRESH:0.35 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY]]

3752-4944-0009.txt
<THRESH:0.35 COS (0, 38) 0.4861 1: [[LEMON JUICE MAY BE ADDED AT PLEASURE]]

1919-142785-0029.txt
<THRESH:0.35 COS (5, 95) 0.4797 2: THEN [[I HAD MUCH PLEASURE IN READING IT BUT WAS INDEED

SURPRISED AT THE MANY LITTLE POINTS OF SI]]MILARITY...
2412-153947-0003.txt

<THRESH:0.35 COS (1, 91) 0.4262 3: I[[ EXPRESSED BY SIGNS MY ADMIRATION AND PLEASURE TO MY
GUIDES AND THEY WERE GREATLY PLEASED]]

2412-153954-0011.txt
<THRESH:0.35 COS (0, 87) 0.4236 4: [[A MINUTE IS NOT A VERY LARGE MEASURE OF TIME AND HIS

BODY NEEDED EVERY FRACTION OF IT]]
1272-141231-0005.txt

<THRESH:0.35 COS (0, 56) 0.3979 5: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY
]]

3853-163249-0050.txt
<THRESH:0.35 COS (0, 45) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]]

6345-93306-0003.txt
<THRESH:0.35 COS (49, 139) 0.3795 7: ...GIRL HIS MOTHER AN[[D SISTER TOOK A PLEASURE IN

CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING INSTRUMENT ]]COULD HAVE HAD...
6345-93306-0025.txt

<THRESH:0.35 COS (43, 133) 0.3715 8: ...THE CASE BEEN BROUGHT BEFORE THE JU[[DGE ORDINARY
BY MEANS OF HER HUSBAND’S EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING ]]EVERY...

3536-8226-0005.txt
<THRESH:0.35 COS (0, 87) 0.3494 9: [[AT SUCH TIME ITS HEIGHT SEEMS MUCH LESS AS IF

CROUCHING AND WEARY IT WERE TAKING REST]]
3000-15664-0009.txt

A.3 SeamlessM4T based system
This appendix section presents examples of the SeamlessM4T model. These examples
demonstrate the robustness of the SONAR embedding space and its quality.

The top results are shown for the phrase “It was the worst Sunday” entered as both
QbT and QbE. The used dataset is Librispeech dev-clean.
Results for It was the worst Sunday:
COSINE >0.7:
<THRESH:0.7 COS (0, 21) 0.9125 0: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HI]]S LIFE

2277-149897-0023.flac
<THRESH:0.7 COS (0, 22) 0.9109 1: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HIS ]]LIFE

2277-149897-0023.txt
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<THRESH:0.7 COS (0, 22) 0.8604 2: [[ON MONDAY THE TIDE WAS]] REVERSED
5694-64025-0013.flac

<THRESH:0.7 COS (0, 23) 0.8399 3: [[THE ACCIDENT IN QUESTION OCCURRED UPON THE SUNDAY]]
EVENING

2428-83705-0006.flac
<THRESH:0.7 COS (0, 29) 0.8196 4: [[HE SAW A BUSY SATURDAY USHERED OUT THE SABBATH IN ]]AND

NOTHING DONE
2277-149897-0021.flac

<THRESH:0.7 COS (0, 14) 0.8096 5: [[IT WAS A HORRIBLE JOUR]]NEY
2428-83699-0014.flac

<THRESH:0.7 COS (0, 14) 0.8092 6: [[IT WAS A HORRIBLE JOURNEY]]
2428-83699-0014.txt

<THRESH:0.7 COS (0, 25) 0.7891 7: [[BUT THE WOOD PIGEON WAS IN THE WORST CASE OF THEM ]]ALL
7850-281318-0022.flac

<THRESH:0.7 COS (0, 30) 0.7589 8: [[ABOUT DAYLIGHT ON SUNDAY MORNING CHALMERS BRIGADE
RELIEVED G]]LADDEN’S

5694-64025-0003.flac
<THRESH:0.7 COS (0, 29) 0.7488 9: THEY SAT ABOUT [[THE HOUSE MOST OF THE DAY AS IF IT WERE

SUNDAY GREASING]] THEIR BOOTS MENDING THEIR SUSPENDERS PLAITING WHIPLASHES
1993-147964-0000.flac

Results for eval/qbe/it was the worst sunday.wav:
COSINE >0.7:
<THRESH:0.7 COS (0, 22) 0.9204 0: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HIS ]]LIFE

2277-149897-0023.txt
<THRESH:0.7 COS (0, 21) 0.9200 1: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HI]]S LIFE

2277-149897-0023.flac
<THRESH:0.7 COS (0, 18) 0.8882 2: [[ON MONDAY THE TIDE]] WAS REVERSED

5694-64025-0013.txt
<THRESH:0.7 COS (0, 14) 0.8579 3: [[IT WAS A HORRIBLE]] JOURNEY

2428-83699-0014.txt
<THRESH:0.7 COS (0, 24) 0.8376 4: [[BUT THE WOOD PIGEON WAS IN THE WORST CASE OF THE]]M ALL

7850-281318-0022.flac
<THRESH:0.7 COS (0, 24) 0.8274 5: [[IT WAS THE AFTERNOON OF A HOLIDAY AND SHE HAD CL]]OSED

EARLY
6295-64301-0001.txt

<THRESH:0.7 COS (0, 14) 0.8273 6: [[IT WAS A HORRIBLE JO]]URNEY
2428-83699-0014.flac

<THRESH:0.7 COS (0, 23) 0.7870 7: [[IT WAS ONE WHICH GAVE ME A SMALL TRIUMPH OVER ]]GEORGE
3081-166546-0028.txt

<THRESH:0.7 COS (0, 24) 0.7269 8: [[HE SAW A BUSY SATURDAY USHERED OUT THE SABBATH I]]N AND
NOTHING DONE

2277-149897-0021.flac
<THRESH:0.7 COS (0, 24) 0.7167 9: [[IT WAS THE AFTERNOON OF ]]A HOLIDAY AND SHE HAD CLOSED

EARLY
6295-64301-0001.flac
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