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Abstract 
In the current era of information overload, efficient methods for information retrieval are 
crucial. This thesis summarises methods for obtaining vector representations for text and 
audio, also known as semantic vectors. We took a deeper look at joint-representation 
models such as SpeechT5 and SeamlessM4T, which transform these various forms of input 
into one shared vector space. Based on these models, we built a system which allows us 
to search in data regardless of the modality. In order to evaluate the proposed solution on 
semantic search tasks, apart from standard keyword spotting tasks, we labelled a dataset 
to capture similar semantic meanings of the keywords or phrases. Finally, we conducted 
several experiments, where we explored the possibilities of the models used by limiting the 
context seen during finetuning or involving text-to-speech (TTS) systems to improve overall 
performance. 

Abstrakt 
V současné době přetížené informacemi jsou efektivní metody vyhledávání informací velice 
žádané. Tato práce shrnuje metody pro získávání vektorových reprezentací pro text a zvuk, 
známé také jako sémantické vektory. Podívali jsme se hlouběji na multimodální mode
ly, jako jsou SpeechT5 a SeamlessM4T, které transformují tyto typy vstupu do jednoho 
sdíleného vektorového prostoru. Na základě těchto modelů jsme vybudovali systém, který 
nám umožňuje vyhledávat v datech bez ohledu na modalitu. Abychom mohli vyhodnotit 
navrhované řešení, kromě standardního rozpoznávání klíčových slov, také pro úlohy sé
mantického vyhledávání, manuálně jsme označili datovou sadu pro zachycení podobných 
sémantických významů klíčových slov nebo frází. Nakonec jsme provedli několik experi
mentů, kde jsme prozkoumali možnosti modelů omezením pozorovaného kontextu během 
dotrénovaní neuronové sítě nebo zapojením systémů převodu textu na řeč (TTS) ke zlepšení 
celkového výkonu. 
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Rozšířený abstrakt 
V súčasnej dobe preťaženej informáciami a obrovským tokom dát je nevyhnutné zamerať 

sa len na tie skutočne relevantné informácie. Nájdenie tých správnych údajov vyžaduje 
rýchle a spoľahlivé systémy na prehľadávanie v obrovskom objeme dát. Takéto vyhľadávacie 
mechanizmy sú kľúčové pre mnohé profesie, ako sú orgány činné v trestnom konaní, tajné 
služby, investigatívni novinári či bežné profesie pracujúce s informáciami. 

V priebehu rokov sa preto vyvinuli techniky ako vzhľadávanie kľúčových v audiu (KWS) 
či prepis reči do textu (STT). V K W S systémoch môžeme kľúčové slovo zadať bud zvukovou 
nahrávkou - Query-by-Example (QbE) alebo pokročilé systémy K W S podporujú aj textové 
vstupy - Query-by-text. STT nám umožňuje po prepise používať rovnaké techniky ako v 
prípade textu, ale STT vytvára významné množstvo chýb. Avšak tieto techniky nijako 
nezachytávajú aj kontext a význam jednotlivých slov či viet. 

Cieľom tejto práce bolo riešiť všetky vyššie uvedené problémy do jedného spoločného 
systému. Preto bolo nevyhnutné získať takú reprezentáciu textu a reči, ktorá odráža aj 
kontext - takzvané sémantické vektory. V práci boli zhrnuté jednotlivé prístupy získanie 
vektorovej reprezentácie pre text a audio. Hlavne boli opísané modely využívajúce archi
tektúru "transformers", pre text to boli hlavne B E R T a LaBSE a pre audio Wav2vec2 
a H u B E R T . Keďže chceme vytvoriť unifikovaný systém, preskúmali sme aj multimodálne 
modely spoločnej vektorovej reprezentácie a to modely SpeechT5 a SeamlessM4T. 

Tie nám umožnili nezávisle od typu vstupu používať zvukové alebo textové dáta. V tejto 
práci sa posudzovala preveditelnosť a použiteľnosť takéhoto prístupu a ich pripravenosť 
nahradiť aktuálne používané systémy. 

S týmito multimodálnymi modelmi sme navrhli vyhľadávací algoritmus, kde sme sa 
snažili využiť potenciál predtrénovaných modelov SpeechT5. Skúmalo sa, ktoré nastavenie 
funguje najlepšie a to bolo postavné ako základný systém pre ďalší vývoj. V procese vývoja 
sme objavili viaceré nastavenia, ktoré ovplyvňovali kvalitu výsledkov, ako napríklad správne 
narovnanie prehľadávacieho okna pri porovnávaní naskrz modalít. 

Taktiež sme vykonali niekoľko experimentov na zlepšenie základného systému. To za
hŕňalo dotrénovanie modelu SpeechT5, pri ktorom sme sa sústredili na obmedzenie vidi
teľného kontextu a analyzovali sme jeho vplyv na presnosť. Experimentovali sme s novou, 
robustnejšou architektúrou modelov pre spoločnú reprezentáciu - SeamlessM4T, a pokúsili 
sme sa prispôsobiť vlastnosti daného modelu na vytvorený vyhľadávací algoritmus. Nakoniec 
sme zvýšili presnosť navrhovaného systému využitím mechanizmu hlasovej syntézy - text-
to-speech (TTS), ktorý sa zaintegroval ako metóda na predspracovanie textového vstupu. 
Tento prístup sa javil ako ten s najvyšou presnosťou a stabilitou 

Aby sme mohli vyhodnotiť presnosť systémov pre úlohy sémantického vyhľadávania, 
manuálne sme vyznačili pomocou synonymického slovníka sémanticky podobné slová pre 
úlohu sémantického vyhľadávania kľúčových slov. A taktiež sme okrem toho označili aj 
významovo blízke vety pre úlohu vyhľadávania sémantických fráz. Systémy boli vyhod
notené aj na úlohu klasického vyhľadávania kľúčových slov a najlepšie K W S systémy boli 
porovnané aj s komerčným riešením spoločnosti Phonexia. 

Získané výsledky ukazujú veľký potenciál tohto nového prístupu pre vyhľadávanie v 
reči a texte. Avšak pre komerčné nasadenie je potrebný ďalší vývoj. Nasledujúci vývoj 
primárne zahŕňa zlepšenie presnosti, zníženie miery chýb pre falošné označenia a hlavne 
zvýšenie rýchlosti extrakcie vektorovej reprezentácie, a aj rýchlosť samotného vyhľadáva-
cieho procesu. 
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Chapter 1 

Introduction 

In the current era of information overload, it is essential to deal only with the relevant 
information. Finding the right pieces of data requires fast and reliable information retrieval 
systems. Such search mechanisms are crucial for many professions, namely law-enforcement 
agencies, secret services, journalists, and common professions that work with information. 

The simplest system is to search for keywords within text documents. This may be 
sufficient for many use cases, however, it also carries many drawbacks. The query needs 
to match the case exactly, slight changes in spelling or different word forms will ruin the 
quality of the approach. 

In addition, information flows through more sources than just in text form. The most 
natural way for human communication is speech. Processing speech signals or audio, in 
general, brings even more challenges. In speech, not even exact matching is reliably working. 

Therefore, techniques like Keyword Spotting (KWS) or transcribing Speech-To-Text 
(STT) have evolved over the years. K W S works similarly to search in text. We enter the 
keyword either by audio - Query-by-Example (QbE) or advanced K W S systems support 
text queries - Query-by-text. STT allows us to use the same techniques after transcription 
as in the form of text, but STT creates a significant number of errors and is not accessible 
for low-resource languages. 

Additionally, it is often desirable to capture synonyms, other word forms, and similar 
contexts. We either do not remember the exact keyword or want to catch semantically close 
terms. 

This thesis aims to address all of the issues above into one solution. Thus, it is necessary 
to obtain a representation of text and speech that reflects the context. The goal of this 
work is to apply current semantic vector representation approaches to text and speech and 
try to search within these vectors. For the most efficient use, these modalities should be 
interconnected, and thus we will examine joint-representation models. This allows us to 
use audio or text queries interchangeably. This thesis objective is to evaluate the feasibility 
and usability of this approach and determine whether it can replace the currently deployed 
systems. 

The thesis is organised as follows. In Chapter 2 and 3, we will provide an overview of 
techniques to obtain text and audio vector representations. In Chapter 4, we will examine 
architectures of joint-representation models. In Chapter 5, we will describe the datasets 
we are using in development and Chapter 6, we present evaluation metrics. Chapter 7 
presents the proposed search algorithm and the initial system. Finally, Chapter 8 describes 
experiments and the results with the joint-representation models. 
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Chapter 2 

Vector representation for text 

To process a large amount of text from the real world in the world of binary digits, it 
is required to properly encode or convert the desired input. To search exact phrases -
keywords, the plain text form is sufficient. However, even for simpler tasks some level 
of fuzziness is welcomed and expected. Thence the main objective is to evaluate various 
properties of each word to understand the context and therefore bring more satisfactory 
search results. 

2.1 Text representation evolut ion 

The earliest language representations tried to evaluate various properties of each word 
manually. One of the approaches was Semantic Differential [34] which evaluates properties 
for words such as opposites (sweet-bitter, warm-cold, etc.) or other properties and fills this 
data into a vector. The main drawback of the Semantic Differential is that it captures only 
predefined attributes and in addition, it requires a manual annotation which is subjective, 
exhaustive and expensive. The more naive approach was One-hot encoding, which takes 
the idea of a vector of vocabulary size and sets "1" for the position of the word otherwise 

This idea is extended to documents, bringing us to another approach to text represen
tation called Bag of Words (BoW). B o W represents a document as a collection of words. It 
takes a vocabulary-sized vector, where a "1" is added to the corresponding index each time 
a word is present in a sentence, and "0" is placed elsewhere [19]. The difference between 
One-hot encoding and B o W is that One-hot encoding provides binary vectors indicating the 
presence or absence of words, and B o W provides counts of word occurrences in a sentence. 

A more sophisticated approach is term frequency-inverse document frequency (TF-IDF), 
which stems from B o W and takes into account the frequency of each word in the document 
and the frequency of the word in the entire corpus of documents. T F - I D F tf — idf(t, d) of 
term t, of document d is given by the following formula: 

0" is set. 

tf-idf (*, d) = tf(t, d) x idf(t, D). 

Term frequency tf(t, d) of term t in document d is given by: 

(2.1) 

ti(t,d) 
ft,d 

(2.2) 
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where ft)d is the number of times that term t occurs in document d, ^t'€dft',d represents the 
total count of terms in document d. Inverse document frequency (IDF) idf(t, D) of term t, 
where D represents all documents is a measure of the amount of information conveyed by 
a word which is given by the following equation: 

where iV is the number of all documents in the corpus and \{d € D : t € d}\ represents 
the number of documents in the corpus containing term t. T F tells how important the 
term is in the document and IDF shows how unique the term is in general - frequent terms 
are usually less important. These methods have been widely used in Natural Language 
Processing (NLP) for tasks such as text classification, information retrieval or a weighting 
factor [40]. 

2.2 U n s u p e r v i s e d techniques for w o r d embeddings 

However, the methods described in section 2.1 have limitations: i ) lack of capturing the 
meaning of words or the relationships between them, and i i ) high-memory demands. As 
the words in the mentioned methods are represented as a vector of vocabulary size v, all 
words are represented by matrix M of size v x v. Therefore it is unsuitable for large 
dictionaries as M is very sparse. 

To address the issue i i ) to decrease the dimensions of matrix M , respectively dimen
sions of a vector v, researchers involve tokenisation by Byte-pair encoding on word pieces. 
To solve problem i ) , they proposed semantic vectors, which represent words as vectors in 
a high-dimensional space, where the distance between vectors reflects the semantic similar
ity between words. One such model is Word2vec introduced by Tomas Mikolov [29]. 

2.2.1 Word2vec 

Word2vec is a neural network-based technique for generating word embeddings, which are 
vector representations of words in a high-dimensional space. Word2vec is trained on a large 
corpus of text data and learns to predict the context of a word based on its surrounding 
words. The resulting word embeddings can be used for various natural language processing 
tasks such as text classification, sentiment analysis, and machine translation [30]. The 
model proved to solve analogies by using vector arithmetic on the word embeddings. For 
example, to find the missing word in the analogy " M a n is to king as woman is to ?", 
the vector difference can be computed between "man" and "king", add it to the vector of 
"woman", and find the closest word vector to the result. This would return "queen" as the 
answer. Mikolov introduced two methods for training Word2vec: i ) Continuous Bag of 
Words (CBOW) model and i i ) The Skip-gram model [29]. 

i ) C B O W is based on the idea that the meaning of a word can be inferred from the words 
that surround it in a sentence. C B O W uses a neural network to learn word embeddings by 
predicting a target word given its context words. For example, given the sentence "He is 
a great jazz musician.", C B O W would try to predict the word wt = "great" based on the 
words iW{t-Ti,t-i,t+i,t+ra} = { "is", "a", "jazz", "musician"} for a window size ws = 2 x n = 
4. Thus probability p(wt \ wt-n,u)t-i,u)t+i,u)t+n) should be for wt = "great" higher than 
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for wt = "glasses". The objective function JQ of all terms T with a window size 2 x n is 
given by the following equation [30]: 

1 T 

J d = l°£P(Wt I Wt-n, Wt-l,Wt+l, Wt+n) , (2.4) 
i=l 

where wt is the word to predict and wu-n,t+n) a r e words at the input representing the 
context of the word wt-

During the training of the neural network, the objective function of C B O W is to max
imise average log probability from equation 2.4. 

i i ) The Skip-gram model predicts the context words given a target word. Thus it is the 
opposite of the C B O W . For the given sentence "He is a great jazz musician.", for the word 
wt = great Skip-gram predicts the surrounding words. For a window size of ws = 2 x n = 4 
it should predict words W{t-n,t-i,t+i,t+n} = { "is", "a", "jazz", "musician"}. The objective 
function Kg of all terms T with a window size 2 x n is given by the following equation [30]: 

1 T 

K e = ;f £ 12 logp(wt+j | wt) , (2.5) 
t=l -n<j<n,j£0 

where wt is the input word and wt+j are words to predict in the context of the word wt-
A simple neural network without a non-linear hidden layer is used for both models. 

The projection layer, which has a log-linear classifier, is shared for all words. Therefore, all 
words are projected to the same position by averaging their vectors [29]. The architecture 
of the models is shown in Figure 2.1. 

INPUT PROJECTION OUTPUT 

w(t-2) 

w(t-l) 

w(t+l) 

w(t+2) 

C B O W 

INPUT PROJECTION OUTPUT 

w(t-2) 

w(t-l) 

w(t+l) 

w(t+2) 

Skip-gram 

Figure 2.1: Word2vec - C B O W and Skip-Gram architectures. Taken from [29] 
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2.2.2 GloVe 

Another unsupervised learning algorithm for the representation of words as vectors is from 
Stanford University by J.Pennington - Global Vectors for Word Representation (GloVe) [36]. 
GloVe aims to solve drawbacks in methods like Latent Semantic Analysis (LSA) [11] or 
Skip-Gram Word2vec. GloVe improves LSA's performance on the analogy task and unlike 
Word2vec, GloVe makes full use of the corpus statistics. 

GloVe does not rely on local context windows. It is trained on aggregated global word-
word co-occurrence statistics from a corpus, and the resulting representations showcase 
interesting linear substructures of the word vector space. The main intuition behind the 
model is that ratios of word-word co-occurrence probabilities have the potential for encoding 
some form of meaning. Let X be the matrix of word-word co-occurrence counts, where 
elements X j j hold the number of times word j appears in the context of word i. Also, let 
Xi = ^2kXik be the total number of words that appear in the context of word i. Then, 
Pij = P(j | i) = Xij/Xi is the probability of word j appearing in the context of word i. The 
model's objective is to minimise the squared errors of the logarithms of the probabilities, 
using a bilinear function to estimate them. The objective function of GloVe is defined as 
follows: 

V 

J = E / ( ^ ' ) ( w ^ w j + b ; + bj - log Pi3)2 , (2.6) 

where Wi and wj are the word vectors for the i-th and j - t h words, bi and bj are their 
respective biases, is the probability of word j appearing in the context of word i, and 
f(x) is a weighting function that assigns less weight to the more frequent word pairs. 
Pennington claims that GloVe outperforms C B O W and Skip-gram Word2vec on the word 
analogy task, as can be seen in Figure 2.2. The model is scalable and achieved state-of-the-
art performance on word analogy, word similarity, and named entity recognition tasks [36]. 

Training Tirre(hrs) Training Time (hrs) 
1 2 3 4 5 6 3 6 9 12 15 18 21 24 

1357 10 15 20 25 30 40 50 1 2 3 4 5 6 7 10 12 15 20 

Negative Samples (CBOW) Negative Samples (Skip-Gram) 

(a) GloVe vs C B O W (b) GloVe vs Skip-Gram 

Figure 2.2: Comparison of the accuracy between Word2vec [30] and GloVe [36] on the word 
analogy task as a function of training time, which is determined by the number of iterations 
for GloVe and by the number of negative samples for (a) C B O W and (b) Skip-gram. (300-
dimensional vectors were trained on the 6B token corpus - Wikipedia 2014 + Gigaword 
5) [36]. 
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2.3 Language representation models 

Language representation models aim to capture the meaning of natural language in a way 
that can be used for various downstream tasks, such as sentiment analysis, machine trans
lation, and question-answering. These models learn to represent words and sentences as 
vectors in a high-dimensional space - semantic vectors, where similar words and sentences 
are close together and the opposite ones are far apart [43]. One of the most important 
types of language representation models is the Transformers [44], which is based on atten
tion mechanisms. 

Wi th the rise of Transformers, many derivatives of the architecture evolved. One of 
them is Bidirectional Encoder Representations from Transformers (BERT) introduced by 
Google in 2018 [24], which happened to be a baseline for further models [43]. 

2.3.1 B E R T 

B E R T is a multi-layer bidirectional Transformer encoder for language representation and 
many N L P tasks. It is pretrained on the BookCorpus and English Wikipedia. B E R T shows 
the importance of bidirectional pretraining as opposed to a unidirectional approach like 
in [37] and presents unsupervised pretraining by using two tasks: i i ) Masked L M and i i ) 
Next Sentence Prediction (NSP) [24]. 

i) Masked L M is based on masking tokens at the input. To train a deep bi-directional 
representation model B E R T authors masked 15 % of all tokens from the corpus. 

Out of these masked 15 % of the input sequences, 80 % has a randomly chosen n-th token 
of the sequence, which is masked using [MASK] token. For example, from the sentence 
" [CLS] I have a new computer [SEP]" a randomly chosen 5-th token will be masked -
" [CLS] I have a new [MASK] [SEP] ", where [CLS] is a special token added in front of every 
input example and [SEP] is a special separator token. Afterwards, the masked token is 
predicted. 

Next 10% of the masked input sequences has the n-th token replaced by a random 
word - " [CLS] I have a new water [SEP] ". 

The rest 10% of the times, the chosen token remains unchanged. Which should put 
bias to the representation model to prefer the actual observed word. The purpose of this 
method is that the Transformer encoder cannot predict which tokens it will need to generate 
or which ones have been randomly substituted by other words. Therefore, it has to maintain 
a contextual representation of every input token based on its distribution [24]. 

i i ) Next Sentence Prediction (NSP) Language modelling is typically a word-level 
representation, but it does not explicitly model the semantic relation between two sentences. 
However, this relation is crucial for many N L P tasks, such as question answering or natural 
language inference, that require reasoning and inference skills. 

To learn relations between sentences B E R T is pretrained for a binarised NSP task. 
First, sentence pairs A and B for training are chosen, where A is the currently processed 
sequence. 50 % of the times B is the actual next sentence from the corpus and is labelled 
with flag IsNext. The other 50% times sentence B is not the next sentence but a randomly 
chosen sequence from the corpus and it is labelled as NotNext. Authors claim that NSP 
is very beneficial to question answering, and after proper finetuning, for natural language 
inference too [24]. 
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Figure 2.3: B E R T pretraining architecture (finetuning architecture is analogical). B E R T 
takes sentence pairs with masked tokens as input. C is the vector of tokens representing 
the prediction of the next sentence for binarized NSP. Adapted from [24]. 

The architecture of B E R T pretraining is shown in Figure 2.3. The self-attention mecha
nism in the Transformer makes B E R T versatile enough to handle many downstream tasks, 
which simplifies the finetuning process. For each task, it is enough to change input pair 
sentences A and B to the desired input, a model of such quality is necessary for proper word 
representation to get semantic vectors. 

2.3.2 L a B S E 

Unfortunately, B E R T is not suitable as a cross-lingual model, as it is trained on English 
corpora only. The multilingual model version of B E R T - m B E R T is pretrained from mono
lingual corpora in 104 languages. However, m B E R T is not equally effective for all lan
guages [38] - Language-agnostic BERT Sentence Embedding (LaBSE) [16] comes in place 
to solve this language inequality. 

LaBSE is a multilingual B E R T model designed to generate language-agnostic sentence 
embeddings for 109 languages. The pretraining process of LaBSE combines masked lan
guage modelling ( M L M ) with translation language modelling ( T L M ) . M L M works the same 
way as in the B E R T model - M L M is explained in detail in subsection 2.3.1. 

T L M is an extension of M L M , where instead of BERT's pairs of word streams, T L M 
uses pairs of parallel sentences in two different languages - lang 1, lang 2 [10]. A n additional 
difference is that it masks words in both the source and target sentences in a complementary 
manner. For example, let lang 1 to be English and lang 2 to be German. Source sentence 
in English is "He is very tired and exhausted." and the corresponding target sentence 
in German uEr ist sehr müde und erschöpft". The source and target sentences can be 
masked the following way - "He is [MASK] tired and [MASK]." and "Er [MASK] sehr [MASK] 
und erschöpft". Thus, to predict a masked word in lang 1, the model can either attend 
to surrounding words of lang 1 or take the word from lang 2. This should align the 
representation of both languages. The position is reset each time to the beginning to help 
the alignment process [10]. 
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LaBSE adapts dual-encoder architecture by M.Guo [18] as it is an effective approach 
for cross-lingual training. The dual-encoder architecture encodes two sequences x and y in 
parallel with separate encoders. Then, the embedding space similarity (j)(x, y) is given by 
a dot-product of the encoded input to vectors u, v: 4>(x,y) = uT • v [18], the architecture 
is shown in Figure 2.5. 

For LaBSE the source and target sentences are encoded separately. The sentence cross-
lingual embeddings are trained with in-batch negative sampling 1 for a translation ranking 
task [16]. To set a more distinctive and compact boundary between the target translation 
and nearby non-translations LaBSE is using Additive Margin Softmax. It introduces a large 
margin, m, around positive pairs in the scoring function - it applies as follows: [48]: 

The visualisation of what Additive Margin Softmax does to an original embedding space is 
depicted in Figure 2.4. 

Figure 2.4: A comparison of embedding spaces with and without additive margin softmax. 
The shapes correspond to sentences and the same shapes are translations in various lan
guages. Taken from [48]. 

LaBSE shows great performance on large-scale bilingual-text retrieval, and downstream 
classification tasks and it boosts translation ranking performance [16]. It shows it makes 
sentence embedding space of good quality which allows to use the semantic vectors in a truly 
language-agnostic way. The LaBSE architecture is shown in Figure 2.5. 

(2.7) 

Original 
Embedding Space 

Additive Margin Softmax 
Embedding Space 

l r The objective function is to maximise the similarity between the source sentence and the corresponding 
true translation and minimise it with other incorrect translations. 
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Figure 2.5: (a) a dual-encoder architecture consists of two groups of hidden layers. One 
group encodes the source sentence x into a vector, and the other encodes the target sentence 
y. The score cp(x,y) is the dot product of these encoded vectors. Taken from [18]. (b) 
LaBSE architecture - a dual encoder model with B E R T initialisation. Taken from [16]. 
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Chapter 3 

Vector representation for audio 

Vector representation for audio respectively speech is a more challenging task than for text. 
Speech signals are more diverse than text. For example, the word "sunset" has only one 
written form, but it is pronounced differently each time due to varying speed, speaker, 
volume, tone, or environmental noise. 

For a long time, the standard approach for speech processing was to extract some 
features from audio signals and then process them accordingly to the specific task, such 
as speech recognition, speaker identification, or speech synthesis. Some of the common 
features that were used are [1]: 

1. Discrete cosine transform (DCT) - It is a mathematical operation that converts a sig
nal into a sum of cosine functions with different frequencies and amplitudes [49]. 

2. Fast Fourier transform (FFT) - F F T is an efficient algorithm for computing the 
discrete Fourier transform (DFT), which decomposes a signal into a sum of complex 
exponential functions with different frequencies and amplitudes, thus it converts the 
signal from the time domain to the frequency domain. 

3. Mel-frequency cepstral coefficients (MFCC) - They are based on the human perception 
of sound and capture the signal's spectral envelope. 

4. Linear predictive coding (LPC) - It models the vocal tract as a linear filter and 
estimates its coefficients from the signal. 

5. Linear predictive cepstral coefficients (LPCC) - L P C C are derived from the L P C 
coefficients by applying a discrete cosine transform (DCT). 

To obtain better quality features or embeddings than the ones based purely on acoustics, 
these features could be used as input for clustering. G M M - H M M models or neural nets 
generate different types of features [1]. Clustering is a technique for grouping similar data 
points based on some distance or similarity measure. G M M - H M M models are a combination 
of Gaussian mixture models ( G M M ) and hidden Markov models (HMM) that are used to 
model some statistical distribution and temporal dynamics of speech signals. Neural-net 
training is a process of learning some parameters of a neural network. The neural net is 
a computational model that consists of multiple layers of interconnected units that can 
perform complex nonlinear transformations of the input. Features or embeddings are some 
encoded representations of the input data that are extracted or learned by these techniques. 
These methods can capture the relevant information for the given task [1]. The evolution 
of signal processing for the past decades is depicted in Figure 3.1. 

12 



Figure 3.1: Evolution of speech recognition techniques. Adapted from [49]. 

Lately, research is moving towards using raw audio to learn distinct features directly 
from waveform [49]. Researchers tried to bring Mikolov's idea of Word2vec [29] to audio 
- Yu-An's Audio Word2Vec [6] or Ashwin's Sound-Word2Vec [46]. They proved that the 
concept used in the text has potential for speech as well. Sound- Word2 Vec works decently 
with onomatopoeia and Audio Word2Vec shows potential for keyword spotting (KWS) task. 
However, both of these papers struggle with polysemous words. This idea was taken and 
reinvented further with Word2 Vec [42]. The research in unsupervised speech representation 
has made a huge leap forward in recent years. Architectures like Wav2vec2 [4], H u B E R T [21] 
or W a v L M [5] brought improvement for automatic speech recognition (ASR) systems. 

3.1 K e y w o r d spot t ing 

Keyword Spotting (KWS), also referred to as Spoken Term Detection (STD) is a task with 
the primary objective of detecting predefined keywords or phrases within continuous speech. 
Two main approaches can be defined for K W S : i ) Query-by-Text (QbT) and i i ) Query-
by-Example (QbE). 

Query-by-text K W S is an approach when the query is given in the textual form. For 
QbT K W S , it is assumed that the target language is well-documented, with a lot of resources 
such as transcribed data, phoneme sets, and pronunciation dictionaries to train a phoneme 
recogniser. Text queries have to be automatically transcribed into strings of phonemes or 
other sub-word units. The units can then be converted to the signal form. The differences 
between the textual representation of queries and the actual spoken form of the search data 
make the QbT K W S application difficult for low-resource languages [15]. 

Query-by-example, as opposed to QbT K W S , uses the actual speech signal as a query. 
QbE K W S systems search for a spoken query within a set of recordings with speech, deliv
ering a list of detections with their scores and timestamps. Therefore, QbE K W S is suitable 
even for low-resource languages [15]. 

The following approaches are common in QbE K W S systems: 
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Dynamic Time Warping (DTW) Dynamic time warping (DTW) is an algorithm used 
to find the shortest distance and compare two time series data when the time indices are 
not synchronised [31]. 

Statistical modelling ( H M M / G M M ) It is a simplified model of A S R systems where 
we use only two models - one for the keyword, and one for the background model. 

By using Hidden Markov Models (HMM) and Gaussian Mixture Models ( G M M ) tech
niques the keyword model is trained on features of the keyword, and the background model 
is trained on features from all terms in the training dataset [15]. 

When matching the utterances, respectively features of the input, their likelihood ratios 
are estimated by both the keyword model and the background model, which yield the scores 
for the sequence and help us to choose the hypothesis with the higher probability and make 
the decision [45]. 

Statistical modelling ( H M M / N N ) This concept uses Neural Networks (NN) instead 
of G M M for estimating the likelihood of the samples in G M M states. Thus, instead of 
fitting G M M by the Expectation-Maximization algorithm, NNs are trained to learn the 
distribution [45]. NNs help to capture complex patterns and relationships within the data 
better than G M M s . 

Seq2Seq approach Wi th better and more accessible hardware, Seq2Seq approaches have 
also been explored for the K W S task. One of the approaches is to train the Seq2Seq model 
to output a special token whenever it encounters the keyword in the input speech. During 
inference, the presence of this special token in the output sequence indicates that the 
keyword was spotted in the input [26]. 

3.2 Wav2vec 

Wav2vec presented by Meta in 2019 [42] is a model for unsupervised pretraining for improve
ment of supervised speech recognition. Wav2vec is a type of Convolutional Neural Network 
(CNN) that processes raw audio waveforms as input and produces a general representation 
which can then serve as an input for a speech recognition system. 

It is based on predicting future samples from a given context in the input waveform. 
But first the input samples Xj of the raw audio X are encoded to a feature representation 
/ : X i-> y. y is a C N N encoder which encodes 30 ms of 16 kHz with a 10 ms stride. 

Then context network is applied: g : y i-> Z which takes gradually n samples from y-. 
(yj, . . . , yi-n) as a history and creates one tensor Zj = g(yi, • • •, yi-n), Zj £ Z. 

The modelling of the data distribution is more accurate by using the encoded input X 
to Z, since doing it straight from the signal is more challenging [42]. 

The model is trained by minimising contrastive loss objective function. Let k be the 
count of samples to predict the encoded sequence y. Then the goal is to correctly iden
tify a sample ŷ +fc from the future while uniformly choosing "distractor" samples y from 
distribution pn from audio sequence. Where pn(y) = ^ and T is the sequence length. For 
prediction steps of K compute loss C as follows: 
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where cr(...) is sigmoid and a (yj+khk (zj)) is the probability of the true prediction of sample 
yi+k, hk is step-specific affine transformation, A is set to the count of y. Wav2vec's ability 
to carry context in the obtained representation shows great potential for unsupervised 
boosting of speech-to-text systems [42]. 

3.3 Wav2vec2 

Ideas from Wav2vec proved to be efficient in boosting Word Error Rate (WER) of speech-
to-text systems. Wav2vec2 [4] extend the proposed solution with updated architecture with 
the use of Transformers. 

Wav2vec2 still relies on the dual model architecture - ( i ) CNN encoder and ( i i ) 
contextualized representation. 

C N N Encoder is based on several blocks of temporal convolution with a normalisation 
layer with Gaussian Error Linear Unit ( G E L U ) 1 activation function. Again, the raw audio 
is first encoded / : X i-> y. Then y is discretised with quantisation module q : y i-> Q to 
a finite set of speech representations by using product quantisation2, with given G codebook 
groups and V entries. The feature encoder output y G y is mapped to logits and the 
probabilities 1 G R G x l / for v G V entry of codebook g G G. is chosen for each entry Encoder 
output y is also the input for the Transformer to create contextualised representations 
g-.y^z. 

The pretraining of the model is inspired by the M L M in B E R T explained in 2.3.1, where 
a certain proportion of time steps are masked from encoder output y. The masked feature 
vectors are replaced with one shared trained feature vector. Inputs Q of quantised y are 
not masked. The final model is then finetuned on the labelled data. The objective function 
of Wav2vec2 is sum of Contrastive Loss and Diversity Loss: C = Cc + aCd, where a is 
a tunable hyperparameter [4]. 

Contrastive Loss Cc is computed similarly as explained for Wav2vec in section 3.2. 
The goal is to distinguish the correct quantised latent audio representation q t G Q at 
masked time t of N + 1 of quantised candidates q G Qt, qt G Qt from a set of distractors 
k for each masked time step, |re| = N: 

Cc = - log = — — ——^ , (3.2) 
L q ~ Q t e x p (sim (z t,q)//e) 

where zt is the output of the contextual network Z at the centred time step over the masked 
time step t and sim is cosine similarity sim(u, v) = uT • v / (||u|| ||v||). Distractors k are 
uniformly sampled from the same utterance but from other masked time steps. 

Diversity Loss Cd increases the use of the quantised codebook representations. The 
purpose is to prompt the model to use all entries in the codebook equally often. To ensure 
that each of the G codebooks has an equal usage of the V entries, Cd maximises the entropy 
H of the Gumbel-Softmax distribution 3 for each codebook pg in a batch of utterances. Cd 
is obtained as shown in equation 3.3 [4]. 

1 Gaussian Error Linear Unit ( G E L U ) is an activation function x&(x), where is the standard Gaus
sian cumulative distribution function. Consequently, the G E L U can be thought of as a smoother R e L U [20]. 

2 Product quantisation is a method for approximate nearest neighbour search that reduces the memory us
age and the computational cost of comparing high-dimensional vectors. It works by decomposing the vector 
space into a Cartesian product of low-dimensional subspaces and quantising each subspace separately [23]. 

3 Gumbel-Softmax is a continuous distribution that can approximate categorical samples, and whose 
parameter gradients can be easily computed [22] 
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Figure 3.2: Wav2vec2 framework illustration. Wav2vec2 is designed to learn contextualised 
speech representations and a set of discretised speech units together. Taken from [4]. 

3 . 4 H u b e r t 

Hidden-Unit BERT (HuBERT) [21] is another self-supervised approach for learning speech 
representation. H u B E R T is a BERT-based approach which generates noisy labels (pseudo 
targets) from an offline clustering for pretraining - it is based on masking continuous speech 
features to predict cluster assignments. The main idea behind the proposed architecture is 
that it emphasises the importance of consistency of the targets in addition to the correctness 
of the targets. This focus helps H u B E R T model the sequential structure of the input. 

H u B E R T follows a similar architecture as Wav2vec as it uses CNN encoder followed 
by BERT encoder. However, the pretraining process differs. H u B E R T does not use any 
quantisation module to the output of the C N N encoder. H u B E R T instead creates pseudo 
targets - hidden units, by a clustering process from a raw audio. 

Hidden units are frame-level targets obtained from the waveform. Let X be the input 
raw audio with speech of S frames, [ x i , . . . , xg] = X . Let Y be M F C C s features extracted 
from frames of X. Then the pseudo targets are estimated as h(Y) = [zi,..., zt], where 
h(Y) is a clustering algorithm, for instance k-means and zi € {1 , . . . , C} are class categorical 
variable of C classes. 

The next step follows the original B E R T by using the M L M objective for training. 
Around 50 % of transformer encoder input features from C N N encoder are masked, where 
p % of the time steps are selected randomly as start indices and spans of I steps are masked. 
Instead of contrastive and diversity loss as Wav2vec, H u B E R T uses cross-entropy loss over 
masked Cm and unmasked Cu time steps. Cm is defined as: 
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Cm = V l o g p / (zt \W,t) , (3.4) 

where M is the set of masked time steps, W is the edited sequence of length T, where 
wt ,t € M is replaced with a mask embedding w. a distribution over the targets at each 
time step is defined as pf(zt\W,t). Cu is obtained accordingly, but we sum over time steps 
which are unmasked. Then, the final loss is obtained as: 

C = aCm + (1 - a)Cu , (3.5) 

where a is a tunable parameter from 0 to 1. H u B E R T authors claim a = 1 forces the model 
to learn the acoustic representation of unmasked segments and also the speech data's long-
term temporal structure. In addition, this setup brings better quality to the targets from 
clusters [21]. 

H u B E R T proposed an idea for improving the quality of cluster targets by using vari
ous clustering methods - e.g. creating k-means models ensemble. Let be the target 
sequences generated by the k-th clustering model. Then loss Cm can be written as: 

(*) fjk) Cm = ^/^/logP)K)[zr\W,t) . (3.6) 
teM k 

Cu is obtained accordingly by taking unmasked time steps. 
H u B E R T iteratively refines cluster assignments, a new generation of clusters can be 

obtained by training a discrete latent model on the learned representations. Then the 
learning process continues with the newly found units. 

Encoder proceeds to parametrise the distribution p^\c\W, t) by: 

P f ( ' ' ) " E ^ 1 e x p ( s i m ( ^ ) o t , e c , ) / r ) ' ^ 

where A is the projection matrix, e c is the embedding of class c, sim is the cosine similarity 
between two vectors, and r scales the logit. When cluster ensembles are used, one projection 
matrix is applied for each clustering model k. The architecture is depicted in in 
Figure 3.3 

H u B E R T shows better performance for finetuning A S R systems than Wav2vec. In 
addition, audio-to-vector representations generated by H u B E R T are robust enough even 
for other downstream tasks, e.g. generative tasks [21]. 
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Figure 3.3: H u B E R T model illustration. H u B E R T is designed to predict hidden cluster 
assignments of the masked frames, generated by k-means clustering. Taken and vectorised 
from [21]. 
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Chapter 4 

Joint-representation models 

Self-supervised learning has the same general idea for different modalities, but the specific 
algorithms and objectives vary a lot as they are designed for a given modality. Joint-
representation models create such semantic subspace, that is shared for all the modalities. 
This is done to capture the relationships and interactions between these different types of 
input. This thesis focuses on models that use both speech and text modalities to create 
a joint representation. Several architectures relevant to this thesis are for example SpeechT5 
model developed by Ao J., Wang R. [2], Data2vec by Baevski A . which is also using images 
as additional modality [3] or SeamlessM4 T by Meta [9]. 

4.1 SpeechT5 

SpeechT5 is a multimodal speech/text encoder-decoder model. SpeechT5 evolved over ideas 
from text and speech state-of-the-art like B E R T [24], Wav2vec [4] or H u B E R T [21]. How
ever, the main idea stems from the Text-To-Text Transfer Transformer (T5) method [39]. 
SpeechT5 aims to range of text/speech downstream tasks than just ASR, but also speech 
translation, speech identification, text-to-speech, voice conversion, and speech enhance
ment [2]. 

The goal of SpeechT5 is to use an encoder-decoder framework for every spoken language 
processing task, whether it involves speech or text as input or output. Then the same 
pretrained model can be applied with bimodal data to different tasks. 

To achieve this, the input for downstream tasks needs to be in the same vector space. 
This text and speech mapping into shared quantisation space is accomplished by pre
processing by several pre-nets according to the modality. To learn better cross-modal fea
tures the quantised latent representations are randomly mixed together with the contextual 
states. Then it is connected to the encoder-decoder backbone which ensures sequence-to-
sequence conversion and then post-nets are applied accordingly to the required modality [2]. 

4.1.1 SpeechT5 encoder 

For this thesis, the crucial part is the encoder and the multimodal mapping into joint vector 
space. The architecture of the SpeechT5 encoder is built by the i ) speech pre-net, i i ) text 
pre-net - producing discrete tokens which are shared for the i i i ) quantiser - capturing 
the modality-invariant information. The architecture is depicted in Figure 4.1. 
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Figure 4.1: SpeechT5 multimodal encoder architecture. Vectorised from [2]. 

i) Speech pre-net The component has Wav2Vec2 [4] convolutional feature extractor as 
pre-net (explained in section 3.3). Let's assume data points X s p of dataset V. The raw 
recordings of X s p are downsampled by Wav2vec2 to produce sequence encoded of speech 
utterances H = ( h i , . . . , hjv)- The Speech pretraining utilises unlabelled data from V to 
learn general speech representations with self-supervised techniques. Training is based on 
HuBERT [21] (explained in section 3.4), where acoustic hidden units provide the frame-
level targets Z = ( z i , . . . , zjy). Let H be the masked pre-net output H , where 8% of 
time-steps are selected randomly as start indices and span mask approaches of size 10 
timesteps are applied. From the masked input H , H u B E R T based encoder produces hidden 
representations U = ( u i , . . . , u j v ) - Over the masked timesteps in H the cross-entropy loss 
Cce is calculated as follows: 

Cce = ^2 lo&P (z™ I ** ,n) , (4.1) 

where M is the set of the masked timesteps from H and z n , z n £ Z is the frame-level target 
at the corresponding timestep n [2]. 

The final loss for the whole speech part module can be computed as follows: 

CSp — f-'ce ~T" C'X ~\~ £*bce > (^-2) 

where C\ is the L\ distance between the original data X s p and the reconstruction of the 
original data which were obtained by using the randomly masked input. Cbce is binary 
cross-entropy loss for the stop token. 

i i ) Text pre-net SpeechT5 uses shared embeddings for both text-encoder pre-net and 
text-decoder pre/post-nets. The pre-net converts a token index into an embedding vec
tor, while the post-net turns the hidden state into a probability distribution of tokens, 
normalised by the softmax function. 

Similar to the speech nets training, text pretraining also employs unlabelled data Xtxt 
of dataset V. The training is accomplished by reconstructing the output of the model 
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Y = ( y i , . . . , yjy) to the original X.txt data with the use of the corrupted data X.txt- The 
corrupted data X-txt is produced by using the text spans masking approaches presented in 
BART [27], where 30% of text spans are randomly chosen to mask of various length from 
a Poisson distribution of A = 3.5. Every span is then substituted with a single masked 
token. The objective function is maximum likelihood estimation Cmie computed as follows: 

N 
Xtxt) , (4.3) 

n=l 

where y<„ is the text seen before the y n [2]. 

i i i ) Joint vector space mapping Approaches described in i ) and i i ) are limited to 
either speech or text data to model acoustic or linguistic information separately. 

To establish a cross-modality mapping between speech and text a cross-modal vector 
quantisation approach is proposed to create a shared representation that captures modality-
invariant information. SpeechT5 authors used a shared codebook to create quantised em-
beddings for alignment as shown in Figure 4.1. Let Uj be the continuous representations 
of speech and text obtained from i ) and i i ) modules. The quantiser converts Uj into 
discrete representations c, by using a fixes-size codebook CK, where K is the number of 
learnable embeddings. Therefore, Cj is obtained by using the nearest neighbour search via 
the Euclidean L2 distance between the Uj and the embedding of each latent code Cj G CK 

calculated as 
Cj = min lluj — CjII . 

J6[X] 
Afterwards, 10% of the contextual representations are replaced with quantised latent repre
sentations at corresponding time steps and the cross-attention is computed on the combined 
representations. This process explicitly directs the quantiser to extract cross-modal infor
mation [2]. 

The final pretraining loss £fin with unlabeled data of both speech and text is represented 
as follows: 

Cfm = 4reC?0 + + ̂  , (4-4) 
where 7 = 0.1 is set for pretraining. Cd is the diversity loss obtained by maximising the 
entropy of the averaged Softmax distribution computed as follows: 

1 K 

k=l 

where pk represents the average probability of selecting the fc-th code from the codebook. 
It is computed as follows: 

1 N 

P k = jv ^2 softmax(xnk), 
n=l 

where N is the number of data points in the batch and xnk is the output for the n-th data 
point and the fc-th code. 
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4.2 SeamlessM4T 

SeamlessM4T (Seamless Massively Multi l ingual & Mult imodal Machine Translation) is 
a multimodal multilingual model developed by Meta in 2023 [9]. SeamlessM4T provides 
speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-
text translation, and automatic speech recognition. It supports up to 100 languages. 

4.2.1 SeamlessM4T encoder 

For training, one million hours of open speech audio data were utilised to learn self-
supervised speech representations using w2v-BERT 2.01. a multimodal corpus of automat
ically aligned speech translations was created - Seamless A l i g n 2 . Then the human-labelled 
data were filtered and merged with the pseudo-labelled data in a total of 406,000 hours. 

SeamlessM4T utilises shared multilingual and multimodal embeddings space named 
S O N A R (Sentence-level mult imodal and laNguage-Agnostic Representations) proposed 
by Duquenne et al. 2023 [13]. S O N A R presents different methods for encoding text and 
speech. The architecture is shown in Figure 4.2. 
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Figure 4.2: SeamlessM4T encoder architecture for shared embedding space of both text and 
speech - S O N A R [9]. It is trained with a combination of machine translation loss, mean 
square error loss and auto-encoder loss as denoted in equation 4.5. Taken and vectorised 
from [13]. 

Text modality Data preparation for text follows NLLB dataset and utilises the topline 
N L L B IB model for initialisation. 

In text encoding, an encoder-decoder approach is utilised to learn sentence embeddings 
with a translation objective, computed thanks to the additional decoder. This approach 
differs from the sequence-to-sequence model in the bottleneck layer and the pooling function 

1 W 2 v - B E R T 2.0 is based on w 2 v - B E R T [7] which combines contrastive learning of Wav2vec and masked 
prediction learning of B E R T . W 2 v - B E R T 2.0 enhances the original w 2 v - B E R T by additional codebooks into 
both of its learning objectives. 

2 Seamless A l i g n is the large open dataset for multimodal translation - totalling 470,000 hours. The 
dataset has automatically created alignments for speech and text multil ingual data [9]. It is developed by 
Meta wi th a freely available reconstructible recipe at https:/ / t inyurl .com/27p6vphp . 

3 N L L B (No Language Left Behind) dataset for machine language translation with more than 200 lan
guages and it also includes low-resource languages [32]. Accessible at https://tinyurl.com/25byfb5o . 
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which computes a fixed-size sentence representation between the encoder and the decoder 
by pooling the token-level outputs of the encoder. Rather than performing cross-attention 
over a variable-length sequence of encoder outputs, the decoder focuses on this single vector 
during each step of decoding. The translation objective decoder employs a finetuning 
method called random interpolation decoding. It is based on an encoder-decoder model 
with a bottleneck representation. In this approach, the encoder weights are frozen, and 
only the decoder weights are finetuned for a specific task: given a bilingual text pair x, y, 
both x and y are encoded using the frozen encoder. Then, a new embedding z is generated 
as a random interpolation of the embeddings of x and y, and the model is trained to decode 
this interpolated embedding z back into y. This method effectively blends translation with 
auto-encoding1. 

Audio modality Data preparation for audio gathers publicly available repositories of 
crawled web data first. Pre-processing involves resampling of crawled data to 16KHz. 
Afterwards, the non-speech data with the Audio Event Detection (AED) model were filtered 
out. Recordings were also split into smaller chunks mapped closely to contain a pseudo 
sentence, similar to sentences in text corpora. The length of each segment corresponds to 
that of a typical sentence. This automatic sentence-segmentation algorithm is proposed in 
Duquenne's work [12]. 

Multilingual sentence representations for speech are trained with a teacher-student 
method. The teacher model is an encoder for multi-lingual sentence embeddings trained on 
text which converts embeddings into new trained text sentence embedding space. 

The student is using a speech encoder with w2v-BERT 2.0, optimised for 143 languages, 
which encodes audio and the output is transformed into fixed-size representations by using 
Attention-pooling. It is trained to minimise the Mean Squared Error (MSE) loss between 
the transcription sentence embeddings and the speech sentence embeddings. Thanks to 
M S E loss the S O N A R text encoder could be used on input for speech. Data used for 
training were also manually transcribed datasets for A S R , with collected at least 100 hours 
per language. Languages of the same linguistic family were grouped and the groups were 
trained together in one speech encoder. As the Sonar embedding space comes with a text 
decoder, the speech encoder is evaluated by the individual speech encoders on a speech-to-
text-translation task. 

The S O N A R training combines the translation loss CMT, the auxiliary M S E loss CMSE 
and the denoising auto-encoding loss CAE/DAEI to create the S O N A R embedding space. It 
is computed as: 

-C = £mt + OL • £mse + P • Aa.e/dae , (4.5) 

where a is set to 0.1 and j3 to 0.01. The whole SeamlessM4T architecture with embedded 
S O N A R encoder is shown in Figure 4.3. 

4 Auto-encoder is an approach used to learn efficient representation of unlabelled data. A n auto-encoder 
learns two functions: an encoding function that transforms the input data, and a decoding function that 
reconstructs the input data from the encoded representation. Auto-encoders have the advantage of encour
aging the encoding of fine-grained details of the input. However, this objective alone is unlikely to learn the 
proper semantic representation of sentences. It is simpler to learn than a translation objective [9]. 
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Figure 4.3: SeamlessM4T training with S O N A R encoder to train for speech-to-text-
translation and speech-to-speech-translation pairs. Taken from [9]. 
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Chapter 5 

Datasets 

This chapter will describe the datasets required for the evaluation of the proposed methods. 
Since the thesis is in the text and speech domain, naturally datasets for automatic speech 
recognition were chosen. One of the most used datasets in the evaluation of A S R systems 
is LibriSpeech [35]. However, the dataset that more reliably simulates the real use case of 
semantic search is the Fisher dataset. 

5.1 L i b r i S p e e c h 

The LibriSpeech corpus is derived from audiobooks that are part of the LibriVox1 project, 
and contains 1000 hours of speech sampled at 16 kHz. LibriSpeech is freely available2 

under C C B Y 4.0 license. The dataset contains in total 1000 hours of speech sampled at 
16 kHz. The data are only in English. The dataset is equally balanced among genders and 
has uniform per-speaker durations. The recordings are short ~ 30 seconds long utterances. 
The split of LibriSpeech to subsets is presented in Table 5.1. For this thesis, subsets 
t r a i n - c l e a n - 3 6 0 and dev-clean are chosen. Most of the experiments were processed 
with Librispeech's dev-clean subset for its size and flexibility and t r a i n - c l e a n - 3 6 0 served 
mainly during data preparation for finetuning. 

Subset Hours Minutes per 
speaker 

Speakers 
(female) 

Speakers 
(male) 

Speakers 
(total) 

dev-clean 5.4 8 20 20 40 
test-clean 5.4 8 20 20 40 
dev-other 5.3 10 16 17 33 
test-other 5.1 10 17 16 33 
train-clean-100 100.6 25 125 126 251 
train-clean-360 363.6 25 439 482 921 
train-other-500 496.7 30 564 602 1166 

Table 5.1: Subsets of LibriSpeech dataset [35]. 

Librispeech is delivered with metadata about the speakers like name, sex, total spoken 
speech length, and each is given a specific ID. The given transcripts are raw. They are 
given per file without any timestamps. Also, no additional tags like [laugh], [sigh] and 

1 ht tps : / / l ibr ivox .org/ - L ibr iVox is a global community of volunteers who record audiobooks from public 
domain texts and make them available for free on the internet. 

2 https://www.openslr .org/12 - LibriSpeech A S R corpus wi th al l available subsets for download. 
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similar tags are used - which is natural given how the data was obtained. Given that the 
thesis aims to evaluate innovative methods for a keyword spotting system and to search 
for semantically similar expressions, the raw transcripts are not sufficient. It is required to 
have at least timestamps per word. Therefore forced alignment techniques are applied to 
the Librispeech dataset as explained in section 5.3. 

5.2 F isher 

Fisher English Training Speech dataset was developed by the Linguistic Data Consortium 
( L D C ) 3 . The Fisher dataset closely resembles real telephone conversations, making it suit
able for testing and building a working system. It comes in two parts and contains 1,960 
hours of English conversational telephone speech (CTS), in a total number of 11, 699 record
ings. The gender distribution for the entire collection of participants makes in total of 6,813 
females and 5,104 males. 

The Fisher telephone conversation collection was created to build robust automatic 
speech recognition (ASR) systems. Fisher data creators asked a large number of participants 
to make up to 10-minute calls with varied topics. 

Fisher is distributed with additional information regarding the speakers involved and 
the types of telephones used. It is provided with detailed precise transcriptions including 
tags for emotions, sighs, etc. The audio files are presented in NIST S P H E R E format and 
contain two-channel mu-law data sampled at 8000 Hz [8]. 

Fisher subset As the Fisher dataset contains too many recordings, a subset was cre
ated for efficiency in development and evaluation. This subset consists of 60 recordings of 
telephone conversations, 10.12 hours in total. The 60 recordings were chosen accordingly: 

• 30 recordings are from the Fisher part 1 and the other 30 from Fisher part 2 

• The 30 recordings within the part of the dataset consisted of 10 recordings from purely 
male calls, 10 from purely female calls, and the remaining 10 mixed. 

• The recordings were chosen uniformly. 

Fisher metadata comes with aligned phrases to audio, however, it uses a different format 
than S T M and it does not provide alignments per word. Therefore the same technique as 
for Librispeech - forced alignment is applied as explained in the following section 5.3. 

Additional changes to the transcripts were applied according to the used model, as each 
tokeniser expects different input tokens. This mainly consists of deleting tags in transcripts 
about non-verbal communication, some diacritics, or transcribing numbers into text form. 
However, models utilised throughout the thesis required generally specific modifications 
namely: 

• Upsampling - all of the models used require 16 kHz recordings thence all data needs 
to be upsampled from 8 kHz to 16 kHz 

• Channels - When processing audio, models require mono channel audio on input. 
Since Fisher data are telephone conversations, they are stereo tracks having separate 

3 Fisher dataset is available under L D C subscription: https://catalog.ldc.upenn.edu/LDC2004S13 
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channels for caller and receiver. Two solutions are performed: i ) splitting stereo 
channels into two mono channels A-left channel and B-right channel and i i ) merg
ing two stereo tracks into one mono channel track. The first approach doubles the 
recordings of the dataset, while the second method affects the original audio because 
of the merge. 

• Audio format - NIST .sph (SPHERE) format is not a widely used audio format, 
therefore all of the audios are converted to a more typical format for easier pro
cessing - F L A G 1 . 

5.3 Forced A l i g n m e n t 

For such scenarios when we have audio and the corresponding transcript, a method known 
as forced alignment is utilised for creating timestamps of the corresponding text within 
the audio. Forced alignment could be done with several techniques like Dynamic Time 
Warping (DTW) [31], Hidden Markov Model (HMM) [45] or Deep Neural Networks (DNN), 
Recurrent Neural Net (RNN) used for example in the Kaldi toolkit 0 . However, the technique 
used for forced alignment is based on Wav2Vec2 from section 3.3. The method is based on 
CTC-segmentation [25]. The C T C segmentation process involves three main steps: 

1. Forward propagation: Probabilities for each character at every time step are obtained 
from Wav2vec2 output. These probabilities are mapped to a trellis diagram. 

2. Backtracking: Starting with the time step that has the highest probability for the 
last character, backtracking identifies the most likely sequence of characters across all 
time steps. 

3. Confidence score: This method produces a probability for each aligned character or 
word, allowing for the derivation of a confidence score for each utterance. This score 
helps in identifying and filtering out utterances that are likely misaligned. 

Since Wav2Vec2 improves A S R tasks it is also performing sufficiently for forced align
ment. The used format for forced aligned transcriptions is' in STM format. The STM 
format contains columns with base filename, channel, speaker ID, the start of the segment 
in seconds and end segment timestamp in seconds, the full path of the input audio and 
finally the keyword - the transcript within the segment. A n example of an S T M file on the 
LibriSpeech dev-clean subset is as follows: 

1272-128104-0002 A 128104 0.60 0.70 </dev-clean/audio/1272-128104-0002.flac> HE 
1272-128104-0002 A 128104 0.76 1.00 </dev-clean/audio/1272-128104-0002.flac> TELLS 
1272-128104-0002 A 128104 1.12 1.22 </dev-clean/audio/1272-128104-0002.flac> US 
1272-128104-0002 A 128104 1.40 1.58 </dev-clean/audio/1272-128104-0002.flac> THAT 
1272-128104-0002 A 128104 1.72 1.80 </dev-clean/audio/1272-128104-0002.flac> AT 
1272-128104-0002 A 128104 1.84 2.02 </dev-clean/audio/1272-128104-0002.flac> THIS 
1272-128104-0002 A 128104 2.14 2.56 </dev-clean/audio/1272-128104-0002.flac> FESTIVE 
1272-128104-0002 A 128104 2.62 3.08 </dev-clean/audio/1272-128104-0002.flac> SEASON 
1272-128104-0002 A 128104 3.14 3.22 </dev-clean/audio/1272-128104-0002.flac> OF 
1272-128104-0002 A 128104 3.26 3.36 </dev-clean/audio/1272-128104-0002.flac> THE 
1272-128104-0002 A 128104 3.40 3.66 </dev-clean/audio/1272-128104-0002.flac> YEAR 

4 F L A C - Free Lossless A u d i o Codec, is an audio coding format for lossless compression developed by 
the non-profit organisation - X i p l i . O r g Foundation. 

5 K a l d i Speech Recognition Toolkit: https: / /kaldi-asr .org/ 
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Additional metadata with timestamps per word is necessary to properly evaluate the 
K W S performance. 
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Chapter 6 

Evaluation 

This chapter presents evaluation metrics and an approach for measuring the quality of 
the developed systems. This part is crucial for comparing the performance of the novel 
approaches to the legacy technologies, for example, keyword spotting (KWS) also known 
as spoken term detection. 

In the sections Keyword spotting evaluation 6.1 and Semantic search evaluation 6.2, we 
present the tasks used for evaluation. There are 4 tasks in total: 

1. Exact K W S : This task is the standard keyword spotting task. It searches for entered 
input queries literally. 

2. Fuzzy K W S : This task extends the Exact K W S task by allowing some Levenshtein 
distance between the matching strings. 

3. K W S + synonyms: The task involves thesaurus which extends Exact K W S by in
cluding all grammar forms of the keywords and their synonyms. 

4. Semantic phrases search: The task objective is to match semantically similar 
phrases. 

Tasks 1, 2 and 3 share the same list of input queries for evaluation. The list includes 
queries as follows: 

s t a r t 
meeting 
suspect 
p l a c e 
a c t i v i t y 
smoking 
drug 

However, the evaluation sets are changed which are expanded according to the task. Task 4 
uses both input query phrases and the evaluation set independently. 

The ground truths for tasks 1 and 2 can be estimated automatically, while tasks 3 and 4 
require manual intervention. 
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6.1 K e y w o r d spot t ing evaluation 

Evaluating the K W S task is more straightforward compared to the semantic search task. 
The objectivity stems as it searches for specific keywords or phrases, eliminating any am
biguity. This makes it easy to distinguish between correct and incorrect results. 

Since K W S is not a novel technology, it can be compared to existing systems. The 
chosen system for comparisons is the 6th generation Keyword Spotting by the Phonexia 
company1. 

Ground truths TP, T N , F P and F N are calculated using the inference outputs of the 
models for the given queries and using the S T M file, which provides per-word alignments 
to audio. To evaluate K W S tasks 1 and 2, two strategies were implemented for estimating 
the correct search results for the given shared list of input queries list. 

The first is the strict one (referred to as Exact KWS), to address task 1. The ground 
truth search results are the literal exact matches of the query within the given S T M file. 
This approach reflects standard K W S . 

The second is more benevolent (referred to as Fuzzy KWS), to address task 2. The 
ground truth search results are obtained by comparing the query to the keywords within 
the S T M file with the fuzzy string matching 2. This method allows for a slightly broader 
variability. For instance, for the search query "start", cases like "starts", "started", or 
"starting" will be accepted. However, cases like "smart", and "tarts" will also be matched. 

The output produced from the proposed systems is scored for consecutive time frames. 
The size of the time frame varies depending on the query size, the model used, and mod
ifications to the search algorithm. Therefore, in order to accept results where a correctly 
found case does not align exactly with the ground truth time segment, a relaxed collar is 
used. This approach is illustrated in Figure 6.1. 

6.1.1 Evaluation metrics 

One of the commonly used evaluation metrics is standard Equal Error Rate (EER) [15] 
and measures like precision and recall. Commonly used for comparing the quality of the 
proposed systems are Detection Error Trade-off (DET) curves, together with Receiver 
Operating Characteristic (ROC) curves. 

E E R Equal error rate represents the percentage for the given threshold OEER where the 
number of false negatives - ( F N ) 3 are equal to the same amount of false positives (FP) . 
The lower the equal error rate value is, the higher the accuracy of the system [15]. 

While Equal Error Rate (EER) is a commonly used metric in general, it may not be ideal 
for Keyword Spotting (KWS) due to varying recording lengths. This is because the number 
of false acceptances is proportional to the length. Therefore, the length normalisation is 
required. However, in our specific case, the datasets used have similar lengths, which should 

1 T h e Phonexia Keyword Spotting system can utilise both query-by-example and text-based queries. 
More details at https://t inyurl.com/23g64hdd 

2 F u z z y string matching is a method of approximate string matching by using Levenshtein distance [50]. 
3 False negative is also known as missed detection, underestimation or false rejection. It is the error of 

the incorrectly rejected sample. 
4False positive is also known as false alarm, overestimation or false acceptance - the error of incorrectly 

accepted samples. 
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Figure 6.1: The Figure presents the relaxed collar. The Figure shows scenarios when the 
automatic evaluation accepts the search result as correct results - scenarios a), b), c), d). 
The scenario when the result is not accepted is depicted in e). Thanks to the proposed 
relaxed collar, it is enough to interfere anyhow with the target keyword to accept the result. 

not lead to an imbalance. Particularly, we are comparing the created systems to each other 
relatively. Therefore, it is important to follow the relative improvement of E E R . 

As the E E R is a pooled metric, just one global threshold OEER is applied for all queries. 
The metric is defined as: 

T?T?T) — ^ Q s A Ntar get ( Q ) - N T P ( Q , 9 E E R ) / 

= v N 77f\ ' ( J 

where Q is the query, A is the set of all queries and Ntarget is the number of the target 
search results. The following conditions have to be satisfied: 

NTARGET(Q) - NTP(Q, OEER) = £ NFP{Q, 9 E E R ) , (6.2) 
Q e A Q e A 
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where NTP is the number of true positives ( T P ) J and Npp is the number of false posi
tives [15]. 

E E R can also be interpreted as the point at which the False Acceptance Rate (FAR) 
curve and False Rejection Rate (FRR) curve intersect. F A R and F R R are computed as 
follows: 

FP 
F A R 

F R R 

FP + TN 
(6.3) 

FN 
FN + TP 

where TN is the count of true negatives. 

Precision and recall The Phonexia's K W S system is also evaluated with precision and 
recall. Precision explains what is the proportion of those identified truly correctly (TP) 
to positive identifications (TP + FP). Recall shows the proportion of the cases identified 
correctly (TP) to the positive cases (TP + FN). Precision and recall are calculated as 
follows: 

„ TP 
Precision 

Recall 

TP + FP 
(6.4) 

TP 

TP + FN 
Precision and recall are computed at a specific operation point. The setting depends on the 
actual use case and the cost of the F P error, respectively the cost of the F N error. In the 
context of K W S , higher precision is more beneficial when the cost of the F P is high - the 
better the precision, the fewer irrelevant search results occur - less false alarms. The higher 
recall is more suitable when the F N cost is high, which means that the higher the recall, 
the fewer relevant search results are missed. Phonexia K W S system is calibrated towards 
the higher recall, as the cost of the miss is high in the domain. 

D E T The Detection Error Trade-off (DET) is a widely used method to display the per
formance of systems across different operational points. It plots the F N probability (PFN) 
and F P probability (PFP) on its axes, providing insights into both types of errors. Optimal 
system performance is indicated by a D E T curve that approaches the lower left corner [28]. 

For a given threshold 9 D E T is defined as a dependency of F N probability PFN (&) and F P 
probability PFP(0). D E T curve does not give a single value but provides a comprehensive 
graph depicting the system's performance across various operating points [15]. 

R O C A receiver operating characteristic (ROC) curve is similar to D E T curves. However, 
the R O C curve represents the plot of the T P probability (PTP) against the F P probability 
(PFP) at various operating points. 

Optimal system performance is depicted by the R O C curve approaching the top left 
corner. The Area Under the ROC Curve (ROC A U C ) , which ranges from 0 to 1 and is 
a real number, quantifies the system's performance. Therefore, the ideal cut-off value is the 

5 True positive is also known as hit or true acceptance - a correctly found sample. 
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one that achieves the highest true positive rate (to 100%) [14] and the lowest false positive 
rate (to 0%). 

M i n D C F Minimum Detection Cost Function (MinDCF) depicts the operation point 
where the cost of the error is minimal. M i n D C F shows additional information to other 
metrics as it involves the imbalances of the number of target samples and non-target sam
ples [33]. It is defined as a weighted sum of the F N probabilities a{9) and F P j3{9) at 
a given threshold 9: 

DCF{9) = CFN x a(9) x Ptar + CFN x (3(9) x 
Pnontar • 

(6.5) 
The parameters CFN and CFN are the relative costs of detection errors, and the parameter 
Ptar is the a-priori probability of the target and Pnontar = 1 — Ptar [47]. It is usual to 
indicate MinDCF on D E T curves to show the M i n D C F operation point. 

6.2 Semantic search evaluation 

The K W S evaluation approach measures only a fraction of the capabilities of the proposed 
system. Unfortunately, the evaluation for semantically similar matches is not as straight
forward as for the K W S evaluation. The capabilities are captured by tasks 3 and 4 -
"KWS'+ synonyms" and "Semantic phrases search" tasks. 

For example, let us assume the following keyword "start". Semantically similar words 
to "start" could be keywords like "beginning", "kickoff", "opening", "initiate" or "launch". 
To get this similar meaning it is sufficient to look up the thesaurus. 

However, things become more ambiguous for phrases where looking up synonyms may 
not be sufficient. For example, consider the following phrases: "I had an exam at the 
university" and "I took a test at the faculty". Are these phrases semantically close enough 
to be considered valid search results? Or consider another example: "I had an exam at the 
university", "They had written a test at the elementary school", and "The teacher corrected 
the tests at the high school." Are these examples close enough to be accepted? These are 
the questions that are crucial for creating a functional system. The main problem is that it 
is difficult to objectively evaluate the correct answers. While some users may consider the 
second example as a close result, some may not even accept the first example. 

To solve this ambiguity evaluation sets with manually labelled ground truths for the 
predefined list of queries are created. The first evaluation set is based solely on keywords 
with synonyms from the thesaurus. The second evaluation set consists of manually labelled 
phrases which are considered to be semantically close enough to the predefined query phrase. 

Wi th these evaluation sets, the results are then measured analogously to the standard 
K W S tasks (1 and 2). In addition, the same relaxed collar as presented in Figure 6.1 is 
used. 

6.2.1 Evaluation set with synonym keywords 

This manual ground truth aims to increase the relevance of the objective evaluation for the 
semantic search tasks. The ground truth for this evaluation set is labelled within Librispeech 
dev-clean subset. The created set evaluates the KWS+ synonyms task. 

Initially, we took the shared input queries list, with keywords as follows: "start", "meet
ing", "suspect", "place", "activity", "smoking", "drug". Then, thanks to the created S T M 
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file as proposed in section 5.3, we can choose the segments with the chosen keywords in
cluding all of the grammatical forms of the keyword. Afterwards, for each keyword, we find 
synonyms, by using the English Thesaurus by Cambridge University , and search for all 
grammatical forms in S T M file segments. 

For example, the keyword "smoking" is found only once in the Librispeech dev-clean 
subset. However, synonyms like "burning" appears 6 times, "blazing" and "fiery" 2 times, 
"kindled" and "glowing" once. 

Therefore, we expect that the false acceptance errors detected in standard K W S evalua
tion with high match scores should belong to semantically similar terms, such as synonyms. 

6.2.2 Evaluation set with semantically similar phrases 

Analogous to keywords, an evaluation set with ground truths with semantically similar 
phrases is proposed. This evaluation set is used to measure task 4 - Semantic phrases 
search. 

Initially, we selected three sentences from the Librispeech dev subset as predefined input 
query phrases: i ) "It was the worst Sunday", i i ) "The wind was so strong", i i i ) "I had 
much pleasure in reading". These sentences were chosen for their general meaning, which 
they express: i ) unpleasant experience, i i ) weather related, outdoor conditions, i i i ) joy 
from something. Then these sentences are also the ground truth target phrases which need 
to be found. 

Next, semantically similar phrases to the predefined input queries were chosen. Unfor
tunately, selecting the phrases within the S T M file of Librispeech cannot be accomplished 
using a thesaurus directly. While dictionaries may provide synonyms, the Librispeech sub
set is sufficiently small to allow for matching similar sentences with only one or two-word 
changes. While dictionaries may provide synonyms, simply replacing words with their syn
onyms is not enough to find similar sentences within a text. In the end, the decision needs 
to be performed subjectively by a human. 

For the target phrase "The wind was so strong" examples of the chosen semantically 
similar sentences include the following: "It's surely a terrible storm", "Outside the wind 
rattled the tiles of the roof", " A l l night it had been blowing and raining". The chosen 
sentences for "It was the worst Sunday" involve: "It was a horrible journey", "The accident 
in question occurred upon the Sunday", "He fell off dead". A n d the chosen ground truth 
segments for "I had much pleasure in reading": "I had the pleasure of meeting him in 
society", "Get in its favorite newspapers", "She enjoyed every hour of life". 

Cambridge Thesaurus published by Cambridge University Press https:/ / t inyurl .com/y9c4yly4 
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Chapter 7 

Baselines 

In this chapter, we describe proposed approaches and tools for a baseline system for keyword 
search using semantic vectors. 

7.1 U s e d tools 

This thesis utilised standard Python machine learning frameworks including PyTorch, Scipy, 
ScikitLearn, Numpy, and Hugging Face. Data loading and processing were done by libraries 
such as Pandas, Librosa, and Rapidfuzz. 

The computational work was conducted on a variety of hardware like Phonexia's Sun 
Grid Engine (SGE) clusters, a personal laptop and High-Performance Computing (HPC) 
systems, including L U M I and IT4I Karolina. 

7.2 P r o p o s e d Search A l g o r i t h m 

The proposed search algorithm consists of several steps: pre-processing of the input data, 
specifying the list of queries, and the search itself. The proposed workflow is presented in 
Figure 7.1. 

The proposed search algorithm is explained in the following steps: 

1. Pre-processing of the input dataset. This involves embedding extraction, model-
specific data cleaning and normalisation. 

The data pre-processing includes audio resampling or cleaning of the input text by 
removing incompatible characters or splitting the audio/text into smaller chunks if it 
exceeds the maximum model context. 

The embedding extraction process is preceded by modality-specific actions. For text 
it is an input tokenisation, for audio it is a feature extraction. Afterwards, the embed-
dings are extracted by the model's encoder. Then the embeddings are saved together 
with the metadata, like the source path and the extracted segment timestamps. 

2. Processing input queries. Queries can be entered either via text or via audio sample. 
Then each query is processed according to the modality the same way as in step 1.. 
Thus, for each query, an embedding is obtained by the same model as for input data. 

3. Pre-search processing. Each query can have a different length, it is therefore nor
malised by the Frobenius norm [17] or by 2-norm if the embedding is just one vector. 
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Frobenius norm is given by: 

^ a b s (aij) 
1/2 

(7.1) 

Then pooling is applied to the normalised vector sequence. The used pooling strategy 
is described in paragraph 7.3. 

4. Search - vector comparison. First, a search window is set to the original size of 
the currently processed query. Then each embedding from the input dataset is com
pared using this sliding search to the query. The search window is sliding within 
the embedding with a certain hop. The embedding slice under the search window is 
pre-processed the same way as in the step 3. 
Vectors are compared either by cosine similarity - CS or by Euclidean distance1 - E D . 
Thence, for each step of the sliding search window across the embeddings a similarity 
score (CD) or distance (ED) is obtained. Finally, slices of the embeddings where the 
scores are above (CS) or below (ED) a certain threshold are identified as the final 
search results. This step is performed for every input query. 

Extraction & pre-processing 

t mill' 
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Figure 7.1: Workflow of the proposed search algorithm. 

The proposed solution shows the search results with the following output format: 

["<"|">"]"THRESH":<FL0AT> ["COS"I"EUC"] (<INT>, <INT>) <FL0AT>":" <STRING> 

Individual parts of the output are explained as follows: 

• Threshold. It utilises the following format: ["<" I ">"] "THRESH":<FL0AT>, where 
<FL0AT> represents any valid float number. The inequality symbols indicate whether 
the search results are above or below the threshold. 

• Used method for vector comparison. "COS" represents the cosine similarity. "EUC" 
represents Euclidean distance. 

• Position of the match (optional) - interval of the query found in the given data. 

• Obtained score. The computed score for the given query. 

• Text with the highlighted matched parts. 

The examples of the output are shown in the following sections or in Appendix A . 
1 A l s o known as L2 distance. 
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7.3 L a B S E baseline 

This baseline is not multimodal as LaBSE works only with text input as explained in 
section 2.3.2. Nevertheless, LaBSE is a decent option for setting a baseline for the given 
task at least in the text domain. LaBSE gives decent results for multilingual tasks which 
is useful for text search as well. The model is trained to understand relations between 
sentences. 

For this baseline, a pretrained model of L a B S E 2 is utilised. The search algorithm from 
section 7.2 was used as follows: 

Sliding window step The sliding window step is set to 1 - as the used LaBSE model can 
provide embeddings tokenised per word. Therefore, it compares the query consecutively 
to the embeddings word by word. This property solves issues such as wrong comparison 
alignment. This way we omit meaningless comparisons. Those would occur if LaBSE 
produces embeddings per-character3. 

Processing of queries LaBSE adds start and end tokens for each sequence, which are 
then projected to the extracted embeddings as well. Therefore, these start and end tokens 
are cut from the extracted query off before comparison. Otherwise, this would cause the 
query to be more likely found at the beginning or the end of the compared sequences. The 
probability of being found in the middle of the sequences would be decreased. 

The search window size The search window is given by the query size: \win\ = \query\. 
However, for a one-word query, it would mean \win\ = \query\ = 1 which will lead to word 
comparisons only. Therefore, to see a wider context, the window is enlarged by the following 
equation: \win\ = \query\ + [a x \query\ + 1/2J, where a = 1/2. The different search results 
for enlarged window size and without enlargement are shown in Figure 7.2. The results 
indicate significant a difference for Euclidean distance, whereas the difference for Cosine 
similarity is marginal. Since the results obtained by Euclidean distance show unstable 
behaviour, the Cosine similarity is used in the follow-up experiments. 

Pooling strategies We compare two sequences of embeddings and we need to eventually 
compare two fixed-size vectors. This is even more important when we are changing the 
scope of the sliding window. Here, we have varying sizes of the embedding blocks for both 
the query and the input data. For pooling, some standard approaches like mean and max 
were utilised. Additionally, the attention pooling mechanism was used in the same way as 
proposed in Paragraph 7.4.1. 

Example output from the search algorithm for the query "start" is presented in Fig
ure 7.2. Some more detailed results for a longer query phrase are shown in Appendix A . l . 

D E T curves comparing the performance of the 3 search tasks are shown in Figure 7.3. 
The Exact KWS is the task with the evaluation set where only the literal query found 
is accepted, KWS+SYN is the task which extends the Exact K W S evaluation set by using 
synonyms of the query and all corresponding grammatical forms, and SEM PHR is the task 

2 L a B S E pretrained model by Google: https://tinyurl.com/249rle9x . 
3 F o r example, comparison of the query "Hel lo" to phrase "Welcome here!", with step = 1 wi l l consecu

tively move window of size = 5 like the following: [Welco], [elcom], [lcome] and so on. 
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to match semantically close phrases where the evaluation set has manually selected phrases 
to match the target query phrase. The results show worse performance for Exact KWS and 
KWS+SYN tasks. After investigation, one of the reasons for the higher E E R is an off-by-one 
alignment error, when sometimes the correct word is aligned to the ground truth word 
before the target one. 

M i n D C F eval metric is configured differently for each of the evaluation sets as the 
target prior probability differs for each approach (pfar°* ~ 0.0001, pta^lKWS ~ 0.0005). 
However, all share a higher cost for false rejection error of 10. Thus, M i n D C F tolerates 
false acceptance errors more. 

Cosine similarity Euclidean distance 

<THRESH:0.5 COS 0.60 : I THOUGHT THAT WAS THE WAY TO >THRESH:0.9 EUC ( 1.87: [ [GEORGE]] 
[[BEGIN]] 3081-166546-( 1008.txt 

7 8 5 0 - 2 8 1 3 1 8 - 0 0 1 5 - t x t >THRESH:0.9 EUC ( 1.88 : [ [ Y E S ] ] 
<THRESH:0.5 COS 0.55 : INDEED IT IS NOT A NEST AT ALL 3081-166546-( 1073.txt 
ONLY THE [ [BEGINNING]] OF ONE >THRESH:0.9 EUC ( 1.88 : I THOUGHT THAT WAS THE WAY TO 

78 5 0 - 2 8 1 3 1 8 - 0 0 0 1 - t x t [ [BEGIN]] 
<THRESH:0.5 COS 0.55 : ANYTHING WAS GOOD ENOUGH SO LONG 7850-281318-( 1015.txt 
AS IT PAID SAY FIVE DOLLARS A WEEK TO [[BEGIN]] WITH >THRESH:0.9 EUC ( 1.88 : FESTIVE [ [ Y E S ] ] 

a) 2 2 7 7 - 1 4 9 8 7 4 - 0 0 1 6 . t x t 2428-83699-0( ) 0 1 - t x t a) <THRESH:0.5 COS 0.54 : WHEN ARE YOU GETTING RID OF THESE >THRESH:0.9 EUC ( ).8 9 : [[LECTURES]] 
CATS I'M NOT FIXING TO [[START]] AN ANNEX TO KATE'S CAT 251-136532-0( 1 2 2 . t x t 
HOME >THRESH:0.9 EUC 0.89 : [[HONESTLY]] 

1 9 8 8 - 2 4 8 3 3 - 0 0 0 3 . t x t 8297-275155-( 1021.txt 
<THRESH:0.5 COS 0.54 : WE HAD BETTER [[START]] THE DRIVE 
THIS MORNING 

631 3 - 7 6 9 5 8 - 0 0 3 1 . t x t 
<THRESH:0.5 COS 0.53 : [[GEORGE]] 

3 0 8 1 - 1 6 6 5 4 6 - 0 0 0 8 . t x t 

<THRESH:0.5 COS 0.58 : I THOUGHT THAT WAS THE [[WAY TO >THRESH:0.81 EUC 0.76 : I THOUGHT THAT WAS THE [[WAY TO 
BEGIN]] BEGIN]] 

7 8 5 0 - 2 8 1 3 1 8 - 0 0 1 5 - t x t 7850-281318-( 1015.txt 
<THRESH:0.5 COS 0.54 : INDEED IT IS NOT A NEST AT ALL >THRESH:0.81 EUC 0.78 : INDEED IT IS NOT A NEST AT ALL 
ONLY [[THE BEGINNING]] OF ONE ONLY [ [THE BEGINNING]] OF ONE 

78 5 0 - 2 8 1 3 1 8 - 0 0 0 1 - t x t 7850-281318-( 1001.txt 
<THRESH:0.5 COS 0.52 : ANYTHING WAS GOOD ENOUGH SO LONG >THRESH:0.81 EUC 0.79 : WE HAD BETTER [[START]] THE 
AS IT PAID SAY FIVE DOLLARS A WEEK [[TO BEGIN]] WITH DRIVE THIS MORNING 

227 7 - 1 4 9 8 7 4 - 0 0 1 6 . t x t 6313-76958-0( 1 3 1 . t x t 
b) <THRESH:0.5 COS 0.51 : WE HAD BETTER [[START]] THE DRIVE >THRESH:0.81 EUC 0.80 : IT SEEMED AS I F HIS FAMILY 

THIS MORNING TROUBLES WERE [[JUST BEGINNING]] 
6 3 1 3 - 7 6 9 5 8 - 0 0 3 1 . t x t 2277-149897-Í 1024.txt 

<THRESH:0.5 COS 0.51 : IT SEEMED AS I F HIS FAMILY >THRESH:0.81 EUC 0.80 : ANYTHING WAS GOOD ENOUGH SO LONG 
TROUBLES WERE [[JUST BEGINNING]] AS IT PAID SAY FIVE DOLLARS A WEEK [[TO BEGIN]] WITH 

22 7 7 - 1 4 9 8 9 7 - 0 0 2 4 . t x t 2277-149874-( 1016.txt 
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HOME 2078-142845-Í 1029.txt 
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Figure 7.2: Samples of the search results of the L a B S E model. The prompted query is 
"start" and the used input text is the Librispeech dev subset. On the left side, the Cosine 
similarity for vector comparison is used, and on the right side the Euclidean distance. 
The search results in a) are obtained without extension of the search window and with 
extension b). 
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LaBSE baseline 
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Figure 7.3: D E T curve for three evaluation tasks. Exact KWS refers to the standard K W S 
task accepting only the exact query, KWS+SYN task extends the Exact K W S task with the 
query synonyms and all grammatical variations, and SEM PHR is the semantic phrases search 
task with evaluation set of manually chosen sentences that are semantically similar to the 
input query phrases. The evaluation sets are based on the Librispeech dev subset. 

7.4 SpeechT5 baseline 

The SpeechT5 model provides decent performance for the A S R , T T S and Speech-to-Speech 
(S2S) tasks. The J S A L T 2023 workshop1 at Le Mans Universitě showed that SpeechT5 
is suitable also for intent classification task within research of Conversational models 5. 
SpeechT5 finetuned to the intent classification task on the Slurp dataset6 takes advantage 
of SpeechT5's text/audio multimodality support. The workshop's results show potential in 
the multimodal approach working with a shared vector space, where audio is used straight
forward instead of an automatic transcription of speech to text mid step. This thesis builds 
upon these discoveries and aims to bring multimodal benefits for search in speech recordings 
regardless of the input. The initial overview of the quality of the shared vector space is 
shown in Figure 7.4. 

The workflow of SpeechT5 stays in line with the proposed search algorithm and matches 
query embeddings to data as demonstrated in the LaBSE proof-of-concept. For the initial 

4 A n intensive 6-week research workshop on speech and language engineering held in 2023 in Le Mans: 
https://www.clsp.jhu.edu/2023-jelinek-summer-workshop/ 

5 Automat ic design of conversational models from observation of human-to-human conversation: 
https://t inyurl.com/26ujuft7 

6 A Spoken Language Understanding Resource Package Creators ( S L U R P ) - a challenging dataset in 
English spanning 18 domains available at Zenodo: https://zenodo.org/records/4274930 

39 

https://www.clsp.jhu.edu/2023-jelinek-summer-workshop/
https://tinyurl.com/26ujuft7
https://zenodo.org/records/4274930


Figure 7.4: SpeechT5 shared vector space of six extracted embeddings reduced to the 3-
dimensional space by principal component analysis. The red points T2, T l are text vectors 
and the blue points AO, Al, A2, A3 are the audio vectors. Points A1,T1 and A2,T2 encodes 
datetime information, while AO, A3 encodes completely unrelated utterance. From the plot, 
it is visible that vectors encoding similar information are closer regardless of the modality. 

SpeechT5 baseline, a pretrained base model developed by Microsoft is utilised'. Since the 
other pretrained SpeechT5 models are available at Hugging Face 8, the base model is mapped 
to be compatible with the Hugging Face models. The SpeechT5 Hugging Face model was 
trained with A S R and TTS as objective tasks and outperformed the base model. These 
fmetuned models perform better for the proposed search task as shown in the results. 

7.4.1 Adaptation of the search algorithm 

In this subsection, we will describe how the search using semantic vectors is utilised. Several 
setups were adopted from the LaBSE baseline. However, the search algorithm needs several 
adjustments due to the model complexity. 

Approaches shared with LaBSE One of the shared approaches with LaBSE is omitting 
the first and the last token from the query. As it still helps to prevent a potential bias to 
prefer matching the beginnings and ends. 

Extending the sliding search window size is adopted as well. However, SpeechT5 does 
not provide embeddings per word/bigger chunks but per frame/character. This raises an 
issue because the same phrase can be said faster or slower, that differs compared to searching 
purely over text. Therefore, the coefficient a = 1.0. The reason to use this coefficient a 

7SpeechT5 pretrained models repository by Microsoft: https://github.com/microsoft/SpeechT5  
8 Hugging Face SpeechT5 models: https://t inyurl .com/2d5pwn8u 
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value is to increase the chance of finding relevant results as Table 7.2 proves. To speed 
up the processing, the hop (step) is changed to hop = 2 for text and to hop = 6 for 
audio. Therefore, we are sliding the search window by 2 characters for text and by 96 ms 
(6 x 16 ms) for audio. 

C r o s s m o d a l i t y a l i g n m e n t s SpeechT5 does not produce fixed-length embedding se
quences across modalities. The default SpeechT5 embedding extracted from audio uses the 
default frame size 64ms and 16 ms hop. For text, the size corresponds to the string length. 

For example, an embedding for the word "start" (embedding size equals 5) is shorter 
than an embedding for audio containing spoken "start" (empirically, size can vary in an 
approximate interval between 25 and 45). Therefore, the search window should dynami
cally adjust when matching across modalities - frame scaling. This dynamic adjustment is 
accomplished by the properties saved in metadata during the extraction process. Therefore, 
with each embedding matched against the query, we scale the search window size based on 
the modality. 

The scaler either widens or narrows the search window. From the obtained interval 
above - the comparison between string length and its audio embedding length, the scaler 
is set to 6. Therefore, when a text query is compared to an audio embedding, the search 
window is multiplied by 6. Conversely, when an audio query is matched to a text embedding, 
the search window frame is divided by 6. Otherwise, the window size remains unchanged. 

It is important to note that generally, a wider search window yields more vague results, 
while a narrower window downgrades the semantic search capabilities, closer to the K W S 
task. 

P o o l i n g strategies A n important part of the SpeechT5 baseline investigates the pooling 
strategies. As for LaBSE, the experiments started with standard mean and max pooling 
techniques. However, an additional technique was explored known as the Self Attention 
Pooling (SAP). S A P was implemented as proposed in Safari's Interspeech 2020 article [41]. 
SAP allows the model to focus on different parts of the input sequence while producing an 
output sequence, providing a kind of alignment between the input and the output. S A P is 
a method that uses self-attention mechanisms to aggregate dependencies between the input 
and the output sequence. This alignment between the input and output is particularly 
helpful for down-sampling pooling strategies. 

SAP shows a better performance on the text embeddings than audio embeddings. Ta
ble 7.1 presents the performance of different pooling methods. Thus, for the proposed 
search algorithm, S A P is applied to text embeddings, and standard mean pooling is used 
for audio embeddings. The tests of pooling strategies are performed per modality. Audio 
queries are searched in audio embeddings and text queries are searched in text embeddings 
only. 

R e s u l t s The SpeechT5 baseline evaluation consists of measuring several search algorithm 
setups and testing the pretrained base model and finetuned Hugging Face models. The mea
surements were performed on the datasets derived from Librispeech dev on both text and 
audio. The systems were tested on tasks for Exact KWS, Fuzzy KWS9, keyword synonym 
search (referred to as KWS + synonyms), and the Semantic phrases search (in tables ab
breviated to Sem phrases search) task. 

9Fuzzy KWS extends exact KWS task by allowing some Levenshtein distance between strings 
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The same input queries for the K W S + synonyms task were also used for Exact K W S 
and Fuzzy K W S tasks so it is objectively comparable. A l l of the input queries were entered 
using both text and audio. The audio queries were newly recorded using the laptop's 
microphone and Audaci ty 1 0 . The Cosine similarity is chosen as the vector comparison 
technique as Euclidean distance provides unstable results as can be seen in the example 
results from the LaBSE baseline. 

The results in Table 7.1 and Table 7.2, and D E T curves in Figure 7.5 and 7.6 show 
potentials of this solution. The best overall accuracy is obtained by the Hugging Face 
model with collar = 2.0. However, this collar setting makes the search window very wide 
as it is 3 times as large as the input query. The example outputs in the Appendix A.2, are 
subjectively considered to be general and semantically distant. Thus, the collar setting is 
chosen to collar = 1.0 as it is the best compromise between measured values and subjective 
evaluation. 

Exact K W S Fuzzy K W S Exact K W S Fuzzy K W S 
Pooling (text only) (text only) (audio only) (audio only) 

| E E R | E E R | E E R | E E R 
H F max 29.74 % 19.80 % 29.54 % 29.99 % 
H F mean 0.21 % 13.54 % 13.47 % 13.70 % 
H F attention 0.14 % 13.31 % 13.57 % 13.83 % 

Table 7.1: Evaluation of different pooling strategies performed with the Hugging Face 
SpeechT5 model. Evaluated on Librispeech dev subset, for each modality separately. The 
figures show that the S A P technique performs better on text than on audio recordings. 
Though, the differences are minimal and they perform quite similarly. 

Eval set Exact K W S Fuzzy K W S K W S + synonyms Sem phrases search 
Collar | E E R % J M i n D C F | E E R % J M i n D C F | E E R % JJVIinDCF | E E R % JJVIinDCF 
Base 0.5 18.67 % 0.26 19.19 % 0.11 17.48 % 0.14 14.03 % 0.06 
Base 1.0 17.63 % 0.27 18.09 % 0.11 16.58 % 0.15 14.16 % 0.07 
Base 1.5 16.90 % 0.29 17.31 % 0.12 16.01 % 0.15 14.24 % 0.08 
Base 2.0 16.59 % 0.30 16.82 % 0.13 15.44 % 0.16 14.65 % 0.09 

H F 0.5 13.21 % 0.21 16.14 % 0.11 14.62 % 0.13 13.07 % 0.06 
H F 1.0 12.24 % 0.22 15.03 % 0.11 13.61 % 0.14 13.43 % 0.06 
H F 1.5 11.64 % 0.28 14.40 % 0.12 13.58 % 0.15 13.60 % 0.08 
H F 2.0 11.52 % 0.30 14.01 % 0.13 13.19 % 0.16 12.93 % 0.09 

Table 7.2: Collar settings for the base and Hugging Face SpeechT5 pretrained models. 
Evaluated on Librispeech dev subset according to the task, using the input queries as 
specified in Chapter 6. The chosen value for the collar is 1.0 as it is the best compromise 
between E E R and M i n D C F . 

'Audacity https://www.audacityteam.org/ 
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Figure 7.5: A comparison of the base and Hugging Face SpeechT5 pretrained models, with 
varying collar settings, performed on the keyword spotting (KWS) task. The D E T curves 
for the base model are shown on the left and those for the Hugging Face model on the 
right. The Exact K W S only recognises the literal form of the query, whereas the Fuzzy 
K W S accepts close terms, measured by the Levenshtein distance. The evaluation sets are 
derived from the Librispeech dev subset. 

43 



SpeechT5 base model SpeechT5 Hugging Face model 

KWS + synony 

# COL - e - EER = 
0.5 • minDCF 

ms 

L7.48% 
: = 0.14 

« COL 
* 1.0 

EER = 
• minDCF 

L6.58% 
: = 0.15 

~ COL 
* 1.5 

« COL 

- ® - EER = 
• minDCF 

- * - EER = 

16.01% 
: = 0.15 

L5.44% 
2.0 • minDCF = 0.16 

0.6 0.8 

Sem phrases search eval 

COL EER = 14.03% 
* 0.5 e minDCF = 0.06 

_ COL 
* 1.0 

- COL 
* 1.5 

* C ° L 

- e - EER = 
• minDC 

ID EER = 

14.16% 
= = 0.07 

14.24% 
= = 0.08 

14.65% 

_ COL 
* 1.0 

- COL 
* 1.5 

* C ° L 

• minDC 

- e - EER = 

14.16% 
= = 0.07 

14.24% 
= = 0.08 

14.65% 

•̂u ® minuL = = 0.09 

0.2 0.4 0.6 
False Acceptance Rate 

KWS + synonyms 

COL - » - EER = 14.62% 
minDCF = 0.13 

EER = 13.61% 
minDCF = 0.14 

EER = 13.58% 
minDCF = 0.15 

0.0 0.2 0.4 0.6 0.8 

Sem phrases search eval 

COL - • - EER = 13.07% 
0.5 

COL 

• minDCF = 0.06 

- » - EER = 13.43% 
1.0 • minDCF = 0.06 

COL - e - EER = 13.60% 
• minDCF = 0.08 

« - EER = 12.93% 
minDCF = 0.09 

0.0 0.2 0.4 0.6 
False Acceptance Rate 

Figure 7.6: D E T curves comparing the base and Hugging Face SpeechT5 pretrained mod
els, with different collar settings, evaluated on sets for keyword spotting with synonyms 
(KWS + synonyms) and Semantic phrases search (Sem phrases search) tasks. The K W S 
with synonyms task evaluates matches for the query, its synonyms, and various grammatical 
forms. The Semantic phrases search task identifies sentences that are semantically similar 
to the query. The evaluation sets are derived from the Librispeech dev subset. 
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Chapter 8 

Experiments 

This chapter presents experiments and their results aimed at the enhancement of search 
accuracy and quality. We introduce experiments which investigate the capabilities of 
SpeechT5 model finetuning. Additionally the SeamlessM4T model was tested to assess 
its advantages and disadvantages within the search. Final ly a new approach incorporating 
T T S systems into the search algorithm pipeline was explored. 

8.1 F i n e t u n i n g SpeechT5 models 

In this section, we present an approach for finetuning SpeechT5 models to boost the search 
accuracy. 

The main idea is to take Hugging Face pretrained models and learn them to focus 
more on the desired search window by limiting the context seen during training. We are 
limiting the context by feeding n-grams of text and the corresponding slices of audio during 
finetuning. To see the real impact of such an assumption, the finetuned models were 
trained from 3-grams segments, up to 11-grams, with a step-by-2 per finetuned model. The 
finetuning was performed on Hugging Face pretrained models finetuned for A S R tasks and 
T T S tasks. In total, 10 models were finetuned, 5 models per one Hugging Face pretrained 
model. 

Data preparation First, several finetuning datasets were prepared. We used the Lib-
rispeech train-clean-360 subset as the raw data. The dataset shares the structure of 
a typical A S R training dataset - audio recordings together with corresponding transcripts. 
The final format is compatible with the Hugging Face dataset format. The data were 
prepared as follows: 

• Specified N-grams. The datasets were prepared for each experiment. Thus, for each 
3/5/7/9/11-gram experiment, a new subset was prepared. 

• N-gram segmentation from S T M file. S T M was created from Librispeech subset 
train-clean-360 by forced alignment technique with each word (keyword) segmented 
separately to a new line. The N-gram segmented recording was created by selecting 
iV segments ( S T M file rows) consecutively segment-by-segment (row-by-row) from 
the S T M file. From these iV-segments, the actual slice of the original recording 
was saved, together with the corresponding transcript - iV words. For example, 5-
gram recordings from the sentence "Nice day for fishing ain't it?" are created as 
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follows: [Nice day f o r f i s h i n g a i n ' t ] and [day f o r f i s h i n g a i n ' t i t ] . Two 
recordings are created. 

• Final count. Each subset consists of 10, 000 N-grammed recordings with corresponding 
transcripts. The process from the previous bullet is repeated until the count is reached. 
This approach implies that the 11-gram dataset has more hours of recordings and 
therefore takes up more space than the 3-gram dataset to store. 

Training The finetuning is performed with the A S R objective, thus we feed SpeechT5 
with audio and use tokenised transcripts as the desired output. We run finetuning for 10 
epochs (10, 000 steps) with the Adam optimiser. Loss functions are used as proposed in 
the SpeechT5 paper during the finetuning. The finetuning is handled by the Hugging Face 
trainer. 

5peechT5 ASR model finetuning 

t v a l 

# 3 -g ram 

t v a l 

# 3 -g ram 

® 5 -gram 

® 7 -gram 

(Si Q . n r s m 

® 11-gram 

0 2k 4k 6k 8k 10k 12k 14k 16k 

Figure 8.1: The finetuning process of the SpeechT5 A S R model involves various sets that 
limit the visible context. Figures show a noticeable difference between the training of the 
3-gram and 11-gram approaches. 
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The initial learning rate is set to 1 0 - 5 with 500 warmup steps. For optimisation of 
performance, the gradient accumulation 1 step is set to 2. 

The training process of the SpeechT5 A S R model (pretrained for the automatic speech 
recognition task) is shown in Figure 8.1 and for SpeechT5 TTS model (pretrained for the 
text-to-speech task) is in Figure 8.2. The finetuning was converging towards the objective. 
However, noticeably worse for the 3-gram approach, which could be expected as just 3 
words are seen. 
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Figure 8.2: The finetuning process of the SpeechT5 T T S model with sets varying the 
visible context. Similarly to the finetuning of the SpeechT5 A S R model, the figures indicate 
a higher deviation for the 3-gram training process. 

Results The primary objective of the proposed finetuning experiments was to develop 
a model dedicated to the keyword spotting task, or more generally, a model optimised for 
shorter queries in semantic search. 

However, as shown in Table 8.1, limiting the context seen during finetuning does not 
make significant performance changes. Interestingly, T T S finetuned models performed 

1 Gradient accumulation is a strategy that enables training with larger batch sizes than hardware could 
typically fit in memory. It involves collecting gradients across multiple batches and updating the optimiser 
only after predefined steps of batches have been processed. 
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counter-intuitively better for 3-gram nearly every time - even for semantic phrases search. 
A S R finetuned models behaved more predictably. The 7-gram model performed better for 
Exact K W S and K W S + synonyms, indicating that a context of 7 words provides better 
embeddings. The 3-gram model performs the best at Fuzzy K W S as it matches keywords 
that are not just semantically similar, but also look/sound similar, thus it does not require 
a long context. The 11-gram A S R model performed the best for the semantic phrases 
search, proving that a wider context is beneficial. 

D E T curves in Figure 8.3 and Figure 8.4 show that the proposed approach for A S R 
and T T S models' finetuning, outperforms the chosen baseline Hugging Face model only for 
semantic phrases task, otherwise, it leads to worse performance. 

Eval set Exact K W S Fuzzy K W S K W S + synonyms Sem phrases search 
Model | E E R % J M i n D C F | E E R % J M i n D C F | E E R % JJVIinDCF | E E R % J M i n D C F 
A S R 3 15.85 % 0.02 13.01 % 0.09 15.01 % 0.11 12.04 % 0.18 
A S R 5 15.74 % 0.02 14.47 % 0.09 15.13 % 0.11 11.47 % 0.07 
A S R 7 12.72 % 0.02 13.87 % 0.09 14.59 % 0.11 10.35 % 0.04 
A S R 9 14.63 % 0.02 16.02 % 0.09 15.16 % 0.11 10.68 % 0.05 
A S R 11 15.56 % 0.02 15.54 % 0.09 15.23 % 0.11 10.19 % 0.05 
T T S 3 14.12 % 0.02 15.55 % 0.09 14.90 % 0.11 11.17 % 0.04 
T T S 5 15.14 % 0.02 15.15 % 0.09 14.91 % 0.11 12.18 % 0.04 
T T S 7 14.96 % 0.02 15.43 % 0.09 15.00 % 0.11 11.31 % 0.04 
T T S 9 15.73 % 0.02 15.44 % 0.09 15.19 % 0.11 11.58 % 0.04 
T T S 11 16.05 % 0.02 15.67 % 0.09 15.42 % 0.11 12.45 % 0.04 

Table 8.1: The evaluation of SpeechT5 finetuning experiments. The results show that 
models finetuned on the A S R model provide better and more predictable outcomes. 

SpeechT5 N-gram finetuning 
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Figure 8.3: D E T curves of the best finetuned A S R model and T T S model compared to the 
chosen baseline Hugging Face model. Evaluated on sets for the Exact K W S task (left) and 
the Fuzzy K W S task (right) . 
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SpeechT5 N-gram finetuning 

Figure 8.4: D E T curves of the best fmetuned A S R model and T T S model compared to the 
chosen baseline Hugging Face model. Evaluated on sets for the K W S + synonyms task, and 
the Semantic phrases search task. 

8.2 SeamlessM4T m o d e l 

In this section, experiments with the SeamlessM4T model are presented. 
SeamlessM4T is a robust multi-modal multi-lingual model. It should offer better joint 

vector space - S O N A R , as it was trained on more diverse data and utilises advanced align
ment techniques as explained in section 4.2. 

The model also provides more advanced approaches which solve some of the issues of 
the SpeechT5 model. The main improvement is the alignment between audio and text 
embeddings. As a result, the embeddings are segmented to a size which corresponds to the 
length of a character for both text and speech. 

SeamlessM4T also allows us to put longer text sequences at the input than SpeechT5. 
SpeechT5 allows a maximum of 450 tokens for text and 4000 frames for audio (corresponds 
to 64 seconds for default settings of SpeechT5 feature extractor), while SeamlessM4T v2 
allows for 2048 tokens for text. The audio maximum length is similar allowing 4096 units. 

Several pretrained models are available for SeamlessM4T 2: v2-Large, vl-Large, vl-
Medium, vl-Unity-Small. For the experiments, we used SeamlessM4T v2 3 pretrained model 
from Hugging Face. 

However, the model is 8 times larger than the SpeechT5 models and thus requires 
a larger G P U and longer processing time. 

Thanks to the improvements, the search algorithm workflow is more similar to the 
LaBSE baseline as there is no need to use the so-called "scaler" when matching across 
modalities. However, SeamlessM4T uses the character tokenisation, not words and thus 
the collar is set to 1 which worked better for SpeechT5 models. 

2 SeamlessM4T pretrained models by Meta on Hugging Face: https://t inyurl .com/2b2fwm2k  
3 SeamlessM4T v2 pretrained model: https://tinyurl.com/2bgn5b42 
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SeamlessM4T v2-large model 

Figure 8.5: D E T curves of the SeamlessM4T-based system and the SpeechT5 baseline 
system for exact K W S and fuzzy K W S tasks. The SeamlessM4T model outperforms the 
baseline SpeechT5 model (in red). The blue D E T curve evaluated jointly on input queries 
entered by text (QbT) and by audio (QbE) shows elbow around the E E R operation point. 
Additional D E T curves (green, purple) evaluate QbT input and QbE separately. The 
SeamlessM4T model requires different calibrations depended on the input modality. 

Figure 8.6: D E T curves of the SeamlessM4T-based system and the SpeechT5 baseline 
system for K W S with synonyms and Semantic phrases search tasks. The SeamlessM4T 
model outperforms the baseline SpeechT5 model (in red). The elbow for joint QbT & QbE 
evaluation (blue) is present as well. 

Results SeamlessM4T shows potentials in various ways. From the examples shown in 
Appendix A.3, it is visible that the quality of the S O N A R joint embedding space is higher 
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Eval set Exact K W S Fuzzy K W S K W S + synonyms Sem phrases search 
Model | E E R % | M i n D C F | E E R % | M i n D C F | E E R % | M i n D C F | E E R % | M i n D C F 
QbT & QbE 9.29 % 0.19 12.80 % 0.27 9.57 % 0.27 8.22 % 0.19 
QbE only 9.93 % 0.03 9.68 % 0.13 9.97 % 0.15 11.11 % 0.07 
QbT only 9.82 % 0.02 15.23 % 0.11 10.30 % 0.10 7.65 % 0.05 

Table 8.2: The SeamlessM4T system's performance on the LibriSpeech dev-clean subsets is 
assessed using both audio query-by-example (QbE) and query-by-text (QbT). It is consis
tent with all other measurements. Additionally, the D E T is evaluated separately for each 
input modality due to differing optimal operation points. 

than the SpeechT5 embeddings. SeamlessM4T shows similar scores for matching the con
tent either in text or audio. It may be caused by the better alignment between modalities. 
Also, the false alarms are more semantically close to the target query, than SpeechT5-based 
models. 

These statements are supported by the evaluations, as seen in Table 8.2 and in D E T 
curves 8.5 and 8.6. 

Evaluation is performed in the same way as with SpeechT5 models. Both query-by-text 
(QbT) and query-by-example (QbE) are evaluated together. In D E T curves a visible elbow 
appeared. Therefore, separate measurements for input query modalities were conducted. 
The modalities within subsets were left unchanged. SeamlessM4T seems to require different 
operation point calibrations depending on the modality of the input. 

The reason for these evaluations was the visible elbow in the D E T curve showing joint 
input modalities. This claim was supported by additional tests where such a significant 
jump no longer occurred. 

The main downside of the SeamlessM4T model is the higher demands on computational 
resources and a longer time needed for processing, and therefore for searching. However, 
the capabilities of SeamlessM4T models are significantly broader due to the multilingual 
nature of the models. To test these capabilities, some more in-depth research is required, 
including the use of specified multilingual datasets labelled for the primary objective of this 
thesis. 

8.3 T T S approach 

In this section, we present a different approach to the workflow of the proposed search 
algorithm. The proposed experiments involve use of the text-to-speech systems to enhance 
the quality of the shared embedding space and therefore better performance of the system. 

The idea is to add a TTS system before the embedding extraction step for text input. 
After the text tokenisation, the input ids are forwarded to TTS in order to generate speech. 
This speech output is then used for the embedding extraction. This approach ensures that 
similar embeddings are close together, regardless of the input modality, as the model only 
transforms speech into a joint vector space. The edited workflow can be seen in Figure 8.7. 
It remains unchanged for audio input. 

This approach eliminates several issues, such as text/speech alignment, thus avoiding 
the need for additional steps like utilising a "scaler". It also leads to a more error-resistant 
system compared to the opposite approach of this idea - A S R system used to create a textual 
query from audio. A S R (or speech-to-text) systems are prone to errors in the transcription 
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Figure 8.7: The edited workflow of the search algorithm to involve the T T S module. 

of audio-to-text. Therefore, T T S systems offer a more reliable and robust solution, as text 
lacks the variations encoded in speech, such as pitch, speed, and environmental noise. 

However, it comes with some drawbacks. The additional step in the workflow slows down 
the system and the use of TTS is a performance bottleneck in the chain. Furthermore, it 
introduces model-specific constraints, such as maximum input size, supported languages, 
or batch size. 

In the TTS approach experiments, the SpeechT5 T T S and SeamlessM4T models are 
used. SpeechT5 provides a smaller model exclusively for English, with a batch size restricted 
to one. SpeechT5 requires a speaker embedding to generate speech. It supports 512-dim 
X-vectors. Some speaker embeddings from C M U A R C T I C dataset1 were used. For all 
experiments, the same X-vector 5 

SeamlessM4T supports up to 35 languages for speech output and it supports batch 
processing for TTS . Speaker embeddings can be specified or remain at the default one 
preselected for the language. Default speaker embeddings are used throughout these ex
periments. 

Results The SpeechT5 T T S approach demonstrates the best performance among systems 
based on SpeechT5. It also delivers decent results for the SeamlessM4T-based system. 
Nonetheless, the performance gap between the SeamlessM4T system described in section 8.2 
and the SeamlessM4T with the T T S approach is minimal, with most of the evaluation sets 
showing slightly lower scores, except for the Semantic phrases search task. Some detailed 
results are presented in Table 8.3 and corresponding D E T curves are presented in Figure 8.8 
and Figure 8.9. 

The TTS approach appears to assist SpeechT5 in resolving the alignment issue between 
modalities, subsequently demonstrating performance comparable to advanced architectures 
such as SeamlessM4T. 

4 X-vectors extracted from C M U A R T I C S set at Hugging Face: https:/ / t inyurl .com/27qryvcw  
5Speaker embedding from C M U A R T I C S dataset with index 7306, which belongs to US English female 

voice: cmu_us_slt_arctic-wav-arctic_a0506 
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Eval set Exact K W S Fuzzy K W S K W S + synonyms Sem phrases search 
Model | E E R % 4-MinDCF 4EER % | M i n D C F | E E R % 4-MinDCF J E E R % 4-MinDCF 
SpeechT5 
TTS approach 10.72 % 0.03 10.00 % 0.11 14.29 % 0.13 10.16 % 0.06 

SeamlessM4T 
TTS approach 

10.04 % 0.04 10.42 % 0.16 10.27 % 0.19 7.48 % 0.08 

Table 8.3: TTS approach systems results show similar performance for Exact and Fuzzy 
K W S tasks regardless of the used model. For the K W S + synonyms task and the Semantic 
phrases search task, SeamlessM4T performs better. 

TTS approach experiments 
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Figure 8.8: D E T curves showing the performance of TTS approach systems compared to 
the SpeechT5 baseline, evaluated on sets for Exact K W S and Fuzzy K W S tasks. 

TTS approach experiments 
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Figure 8.9: D E T curves showing the performance of TTS approach systems compared to 
the SpeechT5 baseline, evaluated on sets for K W S + synonyms and Semantic phrases search 
tasks. 
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8.4 F i n a l comparisons 

This section presents and concludes overall comparisons among the top-performing systems. 
Additionally, it includes a comparison with the existing keyword spotting system developed 
by Phonexia. 

Keyword spotting systems comparison Phonexia Keyword Spotting is used as a ref
erential system to compare created systems. The evaluation tool for Phonexia K W S out
puts the R O C curve, together with precision and recall of the operation point chosen by 
Phonexia. To compare the created systems, an operation point around the m i n D C F point is 
selected for estimating precision and recall. Measurements are performed on the Librispeech 
dataset. The results are presented in Table 8.4. 

The R O C curves in Figure 8.10 indicate that legacy systems outperform proposed solu
tions, however, the differences are not significantly big. This gives a positive indication that 
the system, built for semantic search tasks mainly, can compete with the exact keyword 
spotting systems. In addition, created systems are multimodal and are capable of searching 
in both text and audio, while Phonexia's solution searches in audio only. Moreover, all 
newly investigated solutions support both QbT and QbE at the input. 

K W S System t Precision t Recall t R O C A U C 
Phonexia 
K W S 

98.59 % 99.61 % 0.9658 

SpeechT5 H F 
(collar 1.0) 

92.66 % 79.37 % 0.9432 

SpeechT5 F T 
( A S R , 7-grams) 

91.37 % 82.34 % 0.9430 

SpeechT5 
T T S approach 

93.22 % 84.72 % 0.9514 

SeamlessM4T 
v2-Large 

90.92 % 90.46 % 0.9218 

SeamlessM4T 
T T S approach 

89.36 % 90.74 % 0.9571 

Table 8.4: The table displays precision and recall metrics for systems evaluated for the 
exact K W S task, calibrated to operational points near minDCF. R O C Area Under Curve 
(ROC A U C ) shows high numbers across all systems. 

Fisher subset SpeechT5-based systems were also evaluated on the Fisher subset pre
sented in section 5.2. Before processing, it was necessary to make several changes as ex
plained in that section. Two approaches to create a mono channel recording from stereo 
recordings were evaluated: i ) split stereo channels to two separate mono channel record
ings (referred to as Split2Mono) and i i ) merge stereo recording into one mono channel 
recording (referred to as Merge2Mono). This also creates an imbalance in the total speech 
length, as Split2Mono has two times more of the recordings. 

Additionally, SpeechT5 is unable to process lengthy recordings, such as 10-minute con
versations within the Fisher dataset. As a result, these recordings are divided into chunks 
of 34 seconds each. Each chunk consists of 30 seconds that do not overlap with adjacent 
chunks and with an additional 2-second overlap at the beginning and the end. Similarly, the 
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Figure 8.10: R O C curves comparing systems for the Exact K W S task. Phonexia K W S 
outperforms proposed systems. As Area Under Curve (AUC) indicates, T T S approach 
systems perform close to Phonexia K W S . 

text must also be shortened for processing. It is divided into strings of 440 characters each, 
where 400 characters do not overlap with neighbouring strings, and there is a 20-character 
overlap at the beginning and the end. 

The results are displayed solely for the Exact and Fuzzy K W S tasks, as the ground 
truths for these tasks are automatically estimated from the S T M file, and the K W S with 
synonyms task and Semantic phrase search task require manual labelling. The D E T curves 
are shown in Figure 8.11 and Figure 8.12. D E T curves show a significant decrease in overall 
accuracy. 

The drop was expected since the Fisher data are telephone conversations with natural 
speech imperfections. Also, compared to Librispeech, even chunked recordings are longer, 
which naturally results in more false acceptance errors. Upsampling of data to 16 kHz due 
to the SpeechT5 model can also worsen the result - as the model is trained on 16 kHz 
recordings. 

The results indicate, that further development is required to meet the production level 
quality of the technology. Finding an optimal threshold for such systems can be challenging 
due to lower performance as it will either significantly increase the false acceptance rates 
or decrease the true acceptance rates. 
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Figure 8.11: D E T curves comparing the best performing SpeechT5 systems on Fisher 
dataset (Split2Mono conversion). D E T curves show a significant decrease in overall ac
curacy. 
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Figure 8.12: D E T curves comparing the best performing SpeechT5 systems on Fisher 
dataset (Merge2Mono conversion). 
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Chapter 9 

Conclusion 

9.1 S u m m a r y of the work performed 

In this thesis, we have presented the methods for using semantic vectors to search in speech. 
Particularly, we focused on joint representation models, which transform text and audio 
data into a shared vector space. Wi th these multimodal models, we proposed the search 
algorithm where we tried to find optimal settings for the pretrained SpeechT5 models. 

Additionally, we performed several experiments to improve the performance of the base
line. This included finetuning, where we focused on limiting the seen context and analysed 
its impact on performance. We experimented with a novel, more robust architecture of 
joint representation models - SeamlessM4T, and attempted to adjust the properties of the 
model to suit the search algorithm. At the end, we increased the accuracy of the proposed 
system by incorporating a text-to-speech (TTS) mechanism into the workflow. 

In order to evaluate the systems for the semantic search tasks, we created labelled 
subsets using a thesaurus for the semantic keyword spotting task. Additionally, we manually 
labelled semantically close sentences for the semantic phrase search task. 

We evaluated the solutions against each other using datasets for speech-to-text systems. 
Furthermore, we compared the best systems with a legacy commercial keyword spotting 
product. 

The results show a high potential for this novel approach in audio search. However, some 
additional development is required for a commercial deployment. This primarily includes 
accuracy improvement, decreasing the false alarm rate, and increasing the speed of both 
embedding extraction and search. 

9.2 Future work 

Additional improvement could focus on investigating the use of the T T S system with models 
other than multimodal ones. The Wav2vec2 model and its modifications could serve as the 
way for further research. 

Moreover, the SeamlessM4T model and its multilingual capabilities require further in
vestigation. Such a cross-lingual system could assist a wide array of analytical professions. 

For the deployment of the proposed system to production and to enable the processing 
of high loads, optimisations are required. The main bottleneck lies in the slower extraction 
of embeddings and the search process itself. For faster vector comparisons, the Faiss library 
developed by Meta can be utilised. This should significantly improve the performance. 
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Appendix A 

Results of the search algorithm 

This appendix presents the detailed results obtained from the searches and the outputs of 
the command line. 

A . l L a B S E baseline 

In this section, the outputs of the LaBSE model with the default settings of the search 
algorithm are presented. Both results for cosine distance (COS) and Euclidean distance 
(EUC) are provided. The search results for the keyword "start", without the enlarged 

window, thus \win\ = 1: 

<THRESH:0.5 COS (9, 10) 0.5969 0: I THOUGHT THAT WAS THE WAY TO [[BEGIN]] 
7850-281318-0015.txt 

<THRESH:0.5 COS (13, 14) 0.5509 1: INDEED IT IS NOT A NEST AT ALL ONLY THE [[BEGINNING]] OF 
ONE 

7850-281318-0001.txt 
<THRESH:0.5 COS (24, 25) 0.5485 2: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE 

DOLLARS A WEEK TO [[BEGIN]] WITH 
2277-149874-0016.txt 

<THRESH:0.5 COS (20, 21) 0.5413 3: WHEN ARE YOU GETTING RID OF THESE CATS I'M NOT FIXING TO 
[[START]] AN ANNEX TO KATE'S CAT HOME 
1988-24833-0003.txt 

<THRESH:0.5 COS (5, 6) 0.5410 4: WE HAD BETTER [[START]] THE DRIVE THIS MORNING 
6313-76958-0031.txt 

<THRESH:0.5 COS (4, 5) 0.5331 5: AN EARLY [[START]] WAS MADE SO THAT THE PARTY REACHED THE 
PROMISED TABLE LANDS SHORTLY BEFORE TEN O'CLOCK IN THE FORENOON 

6313-66129-0018.txt 
<THRESH:0.5 COS (1, 2) 0.5285 6: [[GEORGE]] 

3081-166546-0008.txt 
<THRESH:0.5 COS (67, 68) 0.5265 7: IT IS OBVIOUS THAT EVERYWHERE THE DESIGNATIONS OF MORAL 

VALUE WERE AT FIRST APPLIED TO MEN AND WERE ONLY DERIVATIVELY AND AT A LATER PERIOD 
APPLIED TO ACTIONS IT IS A GROSS MISTAKE THEREFORE WHEN HISTORIANS OF MORALS [[START]] 
WITH QUESTIONS LIKE WHY HAVE SYMPATHETIC ACTIONS BEEN PRAISED 

422-122949-0003.txt 

>THRESH:0.9 EUC (0, 0) 0.8718 0: [[GEORGE]] 
3081-166546-0008.txt 

>THRESH:0.9 EUC (0, 0) 0.8750 1: [[YES]] 
3081-166546-0073.txt 

>THRESH:0.9 EUC (9, 10) 0.8802 2: I THOUGHT THAT WAS THE WAY TO [[BEGIN]] 
7850-281318-0015.txt 

>THRESH:0.9 EUC (3, 4) 0.8817 3: FESTIVE [[YES]] 
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2428-83699-0001.txt 
>THRESH:0.9 EUC (3, 4) 0.8854 4: [[LECTURES]] 

251-136532-0022.txt 
>THRESH:0.9 EUC (3, 4) 0.8907 5: [ [HONESTLY]] 

8297-275155-0021.txt 
>THRESH:0.9 EUC (1, 2) 0.8915 6: AFTER [[THE]] VERY FIRST 

1462-170142-0024.txt 
>THRESH:0.9 EUC (3, 4) 0.8948 7: THE [[TWENTIES]] 

1272-141231-0013.txt 
>THRESH:0.9 EUC (0, 0) 0.8990 8: [[TEN]] SECONDS 

1272-141231-0016.txt 

The search results for the keyword "start", with the enlarged window, thus \win\ = 
1 + [(1/2 x 1 + 1/2)J = 2: 

<THRESH:0.5 COS (8, 10) 0.5804 0: I THOUGHT THAT WAS THE [[WAY TO BEGIN]] 
7850-281318-0015.txt 

<THRESH:0.5 COS (13, 15) 0.5428 1: INDEED IT IS NOT A NEST AT ALL ONLY [[THE BEGINNING]] OF 
ONE 

7850-281318-0001.txt 
<THRESH:0.5 COS (23, 25) 0.5254 2: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE 

DOLLARS A WEEK [[TO BEGIN]] WITH 
2277-149874-0016.txt 

<THRESH:0.5 COS (5, 7) 0.5179 3: WE HAD BETTER [[START]] THE DRIVE THIS MORNING 
6313-76958-0031.txt 

<THRESH:0.5 COS (15, 17) 0.5177 4: IT SEEMED AS IF HIS FAMILY TROUBLES WERE [[JUST 
BEGINNING] ] 

2277-149897-0024.txt 
<THRESH:0.5 COS (19, 21) 0.5161 5: WHEN ARE YOU GETTING RID OF THESE CATS I'M NOT FIXING [[ 

TO START]] AN ANNEX TO KATE'S CAT HOME 
1988-24833-0003.txt 

<THRESH:0.5 COS (3, 5) 0.5154 6: THE [[TWENTIES]] 
1272-141231-0013.txt 

<THRESH:0.5 COS (3, 5) 0.5135 7: AFTER THE [[VERY FIRST]] 
1462-170142-0024.txt 

<THRESH:0.5 COS (1, 3) 0.5055 8: HE [[STARTED]] TO CONSCIOUS CONFUSION ONLY NEITHER KNOWING 
WHERE HE WAS NOR WHAT HE DID 

6295-64301-0027.txt 
<THRESH:0.5 COS (18, 20) 0.5049 9: THAT TOOK THE CENTER OF INTEREST AWAY FROM ARCHAEOLOGY 

[[AND STARTED]] A NEW BURST OF ACTIVITY 
251-136532-0002.txt 

<THRESH:0.5 COS (11, 13) 0.5047 10: THE BOYS WERE NOW ALL ANXIETY TO [[START]] WHILE THE 
PONIES AFTER THEIR SUNDAY REST WERE ALMOST AS FULL OF LIFE AS WERE THEIR OWNERS 

6313-66129-0016.txt 
2078-142845-0029.txt 

<THRESH:0.5 COS (3, 5) 0.5042 11: THE SECOND [[PART BEGINS]] HERE I WAS A THINKING THE 
FIRST PART DIVIDES INTO TWO 

8842-302203-0008.txt 
<THRESH:0.5 COS (3, 5) 0.5023 12: AN EARLY [[START]] WAS MADE SO THAT THE PARTY REACHED THE 

PROMISED TABLE LANDS SHORTLY BEFORE TEN O'CLOCK IN THE FORENOON 
6313-66129-0018.txt 

>THRESH:0.81 EUC (8, 10) 0.7556 0: I THOUGHT THAT WAS THE [[WAY TO]] BEGIN 
7850-281318-0015.txt 

>THRESH:0.81 EUC (13, 15) 0.7822 1: INDEED IT IS NOT A NEST AT ALL ONLY [[THE BEGINNING]] 
OF ONE 

7850-281318-0001.txt 
>THRESH:0.81 EUC (5, 7) 0.7936 2: WE HAD BETTER [[START]] THE DRIVE THIS MORNING 

6313-76958-0031.txt 
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>THRESH:0.81 EUC (15, 17) 0.7963 3: IT SEEMED AS IF HIS FAMILY TROUBLES WERE [[JUST 
BEGINNING]] 

2277-149897-0024.txt 
>THRESH:0.81 EUC (23, 25) 0.8027 4: ANYTHING WAS GOOD ENOUGH SO LONG AS IT PAID SAY FIVE 

DOLLARS A WEEK [[TO BEGIN]] WITH 
2277-149874-0016.txt 

>THRESH:0.81 EUC (0, 1) 0.8028 5: [[TO MAKE]] HOT BUTTERED TOAST SEVENTEEN TWENTY SIX 
2078-142845-0029.txt 

>THRESH:0.81 EUC (3, 5) 0.8057 6: THE SECOND [[PART BEGINS]] HERE I WAS A THINKING THE 
FIRST PART DIVIDES INTO TWO 

8842-302203-0008.txt 
>THRESH:0.81 EUC (1, 3) 0.8085 7: HE [[STARTED]] TO CONSCIOUS CONFUSION ONLY NEITHER 

KNOWING WHERE HE WAS NOR WHAT HE DID 
6295-64301-0027.txt 

Search results for the given query phrase "Nice day to meet" on Librispeech dev subset 
with the enlarged search window approach. First for cosine results and then for Euclidean 
distance: 

Results f o r Nice day to meet: 
<THRESH:0.5 COS (0, 7) 0.5543 0: [[TO MEET WAS TO FIND]] EACH OTHER 

174-168635-0009.txt 
<THRESH:0.5 COS (7, 15) 0.5268 1: I HAD THE [[PLEASURE OF MEETING HIM IN]] SOCIETY 

3752-4944-0009.txt 
<THRESH:0.5 COS (0, 7) 0.5248 2: [[HER MEETING WITH LETTY]] WAS INDESCRIBABLY TENDER AND 

THE DAYS THAT FOLLOWED WERE PRETTY EQUALLY DIVIDED BETWEEN HER AND HER BROTHER IN 
NURSING THE ONE AND LOVING THE OTHER 

3853-163249-0000.txt 
<THRESH:0.5 COS (9, 17) 0.5182 3: WHICH THING BEING THUS THERE [[CAME A DAY WHEN CERTAIN]] 

LADIES TO WHOM IT WAS WELL KNOWN THEY HAVING BEEN WITH ME AT DIVERS TIMES IN MY TROUBLE 
WERE MET TOGETHER FOR THE PLEASURE OF GENTLE COMPANY 

8842-302201-0001.txt 
<THRESH:0.5 COS (0, 7) 0.5181 4: [[YES I KNOW VERY]] WELL 

1462-170145-0020.txt 
<THRESH:0.5 COS (2, 10) 0.5038 5: HE [[REALLY GRIEVED TO SEE IT]] 

6319-275224-0007.txt 

>THRESH:0.63 EUC (0, 7) 0.6010 0: [[HER MEETING WITH LETTY]] WAS INDESCRIBABLY TENDER AND 
THE DAYS THAT FOLLOWED WERE PRETTY EQUALLY DIVIDED BETWEEN HER AND HER BROTHER IN 
NURSING THE ONE AND LOVING THE OTHER 

3853-163249-0000.txt 
>THRESH:0.63 EUC (9, 17) 0.6043 1: WHICH THING BEING THUS THERE [[CAME A DAY WHEN CERTAIN]] 

LADIES TO WHOM IT WAS WELL KNOWN THEY HAVING BEEN WITH ME AT DIVERS TIMES IN MY 
TROUBLE WERE MET TOGETHER FOR THE PLEASURE OF GENTLE COMPANY 

8842-302201-0001.txt 
>THRESH:0.63 EUC (0, 7) 0.6140 2: [[ON THE NEXT DAY BUT]] ONE RANDAL ARRANGED HIS DEPARTURE 

FOR SYDENHAM SO AS TO ARRIVE AT THE HOTEL AN HOUR BEFORE THE TIME APPOINTED FOR THE 
DINNER 

8297-275155-0000.txt 
>THRESH:0.63 EUC (41, 49) 0.6204 3: WHETHER THEIR MANNER WAS GRAVE OR FRIVOLOUS HE KNEW 

THAT THESE WERE GOOD FRIENDS OF HIS AND HE SINCERELY HOPED THAT [[HE WOULD MEET THEM 
AGAIN]] 

6295-244435-0020.txt 
>THRESH:0.63 EUC (0, 7) 0.6255 4: [[ONE DAY WHEN I]] RODE OVER TO THE SHIMERDAS I FOUND 

ANTONIA STARTING OFF ON FOOT FOR RUSSIAN PETER'S HOUSE TO BORROW A SPADE AMBROSCH 
NEEDED 

2035-147960-0002.txt 
>THRESH:0.63 EUC (4, 12) 0.6258 5: ON THE [[ELEVENTH DAY WE SIGHTED]] CAPE PORTLAND OVER 

WHICH TOWERED MOUNT MYRDALS YOKUL WHICH THE WEATHER BEING CLEAR WE MADE OUT VERY 
READILY 
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6241-61943-0008.txt 
>THRESH:0.63 EUC (0, 7) 0.6285 6: [[THE DAY IS COMING]] SAID PROMETHEUS WHEN JUPITER WILL 

SEND A FLOOD TO DESTROY MANKIND FROM THE EARTH 
6319-57405-0005.txt 

>THRESH:0.63 EUC (0, 7) 0.6288 7: [[THIS IS VERY GOOD]] OF YOU HE BEGAN GLANCING DOWN AT 
THE AGED DETECTIVE'S BUNDLED UP LEGS AND GENTLY PUSHING A CHAIR TOWARDS HIM 

3081-166546-0031.txt 
>THRESH:0.63 EUC (2, 10) 0.6292 8: HE [[WOULD GET ONE TO DAY IT]] WOULD PROBABLY BE ON HIS 

DESK WHEN HE GOT BACK HE WOULD LOOK FOR IT AT ONCE 
2277-149896-0013.txt 

A . 2 SpeechT5 baseline 

In this section, we present output results from the search algorithm. We present outputs 
obtained from the base and Hugging Face models with different collar settings. A l l of the 
following results are tested within L i b r i s p e e c h dev-clean dataset. 

First, the base model output examples for the recorded query-by-example "place": 
Results f o r ./eval/qbe/place.wav: 
<THRESH:0.65 COS (65, 148) 0.7272 0: YOU'VE SOMETHING TO T[[ELL ME I SEE IT IN YOUR FACE]] 

DEAR I MUST GO 
3853-163249-0023.flac 

<THRESH:0.65 COS (23, 106) 0.7216 1: THIS IS[[ THE PROBLEM OF RACE]] 
422-122949-0017.flac 

<THRESH:0.65 COS (29, 112) 0.6861 2: ILLU[[STRATION RUSKS]] 
2078-142845-0049.flac 

<THRESH:0.65 (76, 159) 0.6727 3: AT THE END OF IT SHE WAS [[IN A PLACE OF TOMBS]] 
6345-64257-0008.flac 

For comparison, the same query-by-example processed by SpeechT5 Hugging Face 
model: 

Results f o r ./eval/qbe/place.wav: 
<THRESH:0.65 COS (185, 234) 0.7284 0: THEY SHOULD BE KEPT IN A CLOSED TIN CANISTER IN [[A 

DRY PLACE]] TO PRESERVE THEIR CRISPNESS 
2078-142845-0045.flac 

<THRESH:0.65 COS (173, 222) 0.6752 1: A PERSON WOULD THINK THAT AFTER A FAMILY HAD LIVED SO 
L0N[[G IN A PLACE ALL ]]THE NEIGHBORS WOULD BE FOND OF THEM YET IT IS NOT SO 

7850-286674-0000.flac 
<THRESH:0.65 COS (305, 354) 0.6741 2: ...WE ALWAYS HAD LOGS OF WOOD BLAZING IN AN OPEN F [ [ 

IREPLACE AND]] SO DID MANY OTHER PEOPLE AND COAL... 
2803-161169-0010.flac 

<THRESH:0.65 COS (11, 94) 0.6041 3: HE SHOWED HIM[[SELF ON THE PLATFORM]] 

Example output obtained with the SpeechT5 Hugging Face model for the text input 
query "I had much pleasure in reading" for different collar sizes: 

C0LLAR=0.5 
Results f o r I had much pleasure i n reading: 
<THRESH:0.35 COS (0, 45) 0.5835 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY 
]] 3752-4944-0009.txt 
<THRESH:0.35 COS (5, 50) 0.5803 1: THEN [[I HAD MUCH PLEASURE IN READING IT BUT WAS IND]] 

EED SURPRISED AT THE MANY LITTLE POINTS... 
2412-153947-0003.txt 

<THRESH:0.35 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]] 
1919-142785-0029.txt 

<THRESH:0.35 COS (95, 140) 0.4299 3: ...HER HUSBAND'S EXERTIONS SHE[[ WOULD HAVE TAKEN 
PLEASURE IN READING EVERY W]]ORD OF THE EVIDENCE EVEN THOUGH HER HUSBAND... 
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3536-8226-0005.txt 
<THRESH:0.35 COS (3, 48) 0.4283 4: I E[[XPRESSED BY SIGNS MY ADMIRATION AND PLEASURE ]]T0 

MY GUIDES AND THEY WERE GREATLY PLEASED 
2412-153954-0011.txt 

<THRESH:0.35 COS (65, 110) 0.4116 5: ...HIS MOTHER AND SISTER TOOK A [[PLEASURE IN 
CREDITING HER DAILY WITH SOME FRE]]SH AND UNPLEASING INSTRUMENT... 

6345-93306-0025.txt 
<THRESH:0.35 COS (0, 44) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE 
]] 6345-93306-0003.txt 
<THRESH:0.35 COS (1, 46) 0.3918 7: H[[IS FACE HAD A LOOK OF WEARINESS AND PLEASURE ]]LIKE 

THAT OF SICK PEOPLE WHEN THEY FEEL RELIEF FROM PAIN 
1993-147965-0007.txt 

<THRESH:0.35 COS (7, 52) 0.3777 8: MISTER [[POWER IS WAITING ARE YOU READY LOVE QUITE REA]] 
DY 

3853-163249-0050.txt 
<THRESH:0.35 COS (29, 74) 0.3770 9: A MINUTE IS NOT A VERY LARGE [[MEASURE OF TIME AND HIS 

BODY NEEDED EVERY FRA]]CTION OF IT 
1272-141231-0005.txt 

Collar=l.0 
Results f o r I had much pleasure i n reading: 
<THRESH:0.30 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY]] 

3752-4944-0009.txt 
<THRESH:0.30 COS (7, 67) 0.5324 1: THEN I [[HAD MUCH PLEASURE IN READING IT BUT WAS INDEED 

SURPRISED AT ]]THE MANY LITTLE POINTS OF SIMILARITY... 
2412-153947-0003.txt 

<THRESH:0.30 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]] 
1919-142785-0029.txt 

<THRESH:0.30 COS (67, 127) 0.4212 3: ...HIS MOTHER AND SISTER TOOK A PL[[EASURE IN 
CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING]] INSTRUMENT... 

6345-93306-0025.txt 
<THRESH:0.30 COS (19, 79) 0.4200 4: A MINUTE IS NOT A V[[ERY LARGE MEASURE OF TIME AND HIS 

BODY NEEDED EVERY FRACTION]] OF IT 
1272-141231-0005.txt 

<THRESH:0.30 COS (81, 141) 0.4152 5: ...THE JUDGE ORDINARY BY MEANS OF HER HUSBAND'S[[ 
EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING EVERY WO]]RD OF THE... 

3536-8226-0005.txt 
<THRESH:0.30 COS (0, 56) 0.3979 6: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY 

]] 
3853-163249-0050.txt 

<THRESH:0.30 COS (0, 45) 0.3972 7: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]] 
6345-93306-0003.txt 

<THRESH:0.30 COS (0, 59) 0.3819 8: [[I EXPRESSED BY SIGNS MY ADMIRATION AND PLEASURE TO MY 
GUIDE]]S AND THEY WERE GREATLY PLEASED 

2412-153954-0011.txt 
<THRESH:0.30 COS (7, 67) 0.3475 9: HIS FAC[[E HAD A LOOK OF WEARINESS AND PLEASURE LIKE 

THAT OF SICK PEO]]PLE WHEN THEY FEEL RELIEF FROM PAIN 
1993-147965-0007.txt 

Collar=l.5 
Results f o r I had much pleasure i n reading: 
<THRESH:0.35 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY 
]] 3752-4944-0009.txt 
<THRESH:0.35 COS (3, 78) 0.5164 1: THE[[N I HAD MUCH PLEASURE IN READING IT BUT WAS INDEED 

SURPRISED AT THE MANY LI]]TTLE POINTS OF SIMILARITY... 
2412-153947-0003.txt 

<THRESH:0.35 COS (0, 38) 0.4861 2: [[LEMON JUICE MAY BE ADDED AT PLEASURE]] 
1919-142785-0029.txt 

<THRESH:0.35 COS (5, 80) 0.4341 3: A MIN[[UTE IS NOT A VERY LARGE MEASURE OF TIME AND HIS 
BODY NEEDED EVERY FRACTION ]]0F IT 
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1272-141231-0005.txt 
<THRESH:0.35 COS (53, 128) 0.4086 4: ...HIS MOTHER AND SI[[STER TOOK A PLEASURE IN 

CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING ]]INSTRUMENT... 
6345-93306-0025.txt 

<THRESH:0.35 COS (0, 56) 0.3979 5: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY 
]] 

3853-163249-0050.txt 
<THRESH:0.35 COS (0, 45) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]] 

6345-93306-0003.txt 
<THRESH:0.35 COS (15, 90) 0.3964 7: I EXPRESSED BY [[SIGNS MY ADMIRATION AND PLEASURE TO MY 

GUIDES AND THEY WERE GREATLY PLEASED]] 
2412-153954-0011.txt 

<THRESH:0.35 COS (59, 134) 0.3825 8: ...THE JUDGE ORDINARY BY [[MEANS OF HER HUSBAND'S 
EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING E]]VERY WORD... 

3536-8226-0005.txt 

Collar=2.0 
<THRESH:0.35 COS (0, 46) 0.5812 0: [[I HAD THE PLEASURE OF MEETING HIM IN SOCIETY]] 

3752-4944-0009.txt 
<THRESH:0.35 COS (0, 38) 0.4861 1: [[LEMON JUICE MAY BE ADDED AT PLEASURE]] 

1919-142785-0029.txt 
<THRESH:0.35 COS (5, 95) 0.4797 2: THEN [[I HAD MUCH PLEASURE IN READING IT BUT WAS INDEED 

SURPRISED AT THE MANY LITTLE POINTS OF SIMILARITY. . . 
2412-153947-0003.txt 

<THRESH:0.35 COS (1, 91) 0.4262 3: I [ [ EXPRESSED BY SIGNS MY ADMIRATION AND PLEASURE TO MY 
GUIDES AND THEY WERE GREATLY PLEASED]] 

2412-153954-0011.txt 
<THRESH:0.35 COS (0, 87) 0.4236 4: [[A MINUTE IS NOT A VERY LARGE MEASURE OF TIME AND HIS 

BODY NEEDED EVERY FRACTION OF IT]] 
1272-141231-0005.txt 

<THRESH:0.35 COS (0, 56) 0.3979 5: [[MISTER POWER IS WAITING ARE YOU READY LOVE QUITE READY 
]] 

3853-163249-0050.txt 
<THRESH:0.35 COS (0, 45) 0.3972 6: [[AND AGAIN HE LISTENED WITH A QUIET PLEASURE]] 

6345-93306-0003.txt 
<THRESH:0.35 COS (49, 139) 0.3795 7: ...GIRL HIS MOTHER AN[[D SISTER TOOK A PLEASURE IN 

CREDITING HER DAILY WITH SOME FRESH AND UNPLEASING INSTRUMENT ]]COULD HAVE HAD... 
6345-93306-0025.txt 

<THRESH:0.35 COS (43, 133) 0.3715 8: ...THE CASE BEEN BROUGHT BEFORE THE JU[[DGE ORDINARY 
BY MEANS OF HER HUSBAND'S EXERTIONS SHE WOULD HAVE TAKEN PLEASURE IN READING ]]EVERY... 

3536-8226-0005.txt 
<THRESH:0.35 COS (0, 87) 0.3494 9: [[AT SUCH TIME ITS HEIGHT SEEMS MUCH LESS AS IF 

CROUCHING AND WEARY IT WERE TAKING REST]] 
3000-15664-0009.txt 

A . 3 SeamlessM4T based system 

This appendix section presents examples of the SeamlessM4T model. These examples 
demonstrate the robustness of the S O N A R embedding space and its quality. 

The top results are shown for the phrase "It was the worst Sunday" entered as both 
QbT and QbE. The used dataset is Librispeech dev-clean. 
Results f o r I t was the worst Sunday: 
COSINE >0.7: 
<THRESH:0.7 COS (0, 21) 0.9125 0: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HI]]S LIFE 

2277-149897-0023.flac 
<THRESH:0.7 COS (0, 22) 0.9109 1: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HIS ]]LIFE 

2277-149897-0023.txt 
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<THRESH:0.7 COS (0, 22) 0.8604 2: [[ON MONDAY THE TIDE WAS]] REVERSED 
5694-64025-0013.flac 

<THRESH:0.7 COS (0, 23) 0.8399 3: [[THE ACCIDENT IN QUESTION OCCURRED UPON THE SUNDAY]] 
EVENING 

2428-83705-0006.flac 
<THRESH:0.7 COS (0, 29) 0.8196 4: [[HE SAW A BUSY SATURDAY USHERED OUT THE SABBATH IN ]]AND 

NOTHING DONE 
2277-149897-0021.flac 

<THRESH:0.7 COS (0, 14) 0.8096 5: [[IT WAS A HORRIBLE JOUR]]NEY 
2428-83699-0014.flac 

<THRESH:0.7 COS (0, 14) 0.8092 6: [[IT WAS A HORRIBLE JOURNEY]] 
2428-83699-0014.txt 

<THRESH:0.7 COS (0, 25) 0.7891 7: [[BUT THE WOOD PIGEON WAS IN THE WORST CASE OF THEM ]]ALL 
7850-281318-0022.flac 

<THRESH:0.7 COS (0, 30) 0.7589 8: [[ABOUT DAYLIGHT ON SUNDAY MORNING CHALMERS BRIGADE 
RELIEVED G]]LADDEN'S 

5694-64025-0003.i l a c 
<THRESH:0.7 COS (0, 29) 0.7488 9: THEY SAT ABOUT [[THE HOUSE MOST OF THE DAY AS IF IT WERE 

SUNDAY GREASING]] THEIR BOOTS MENDING THEIR SUSPENDERS PLAITING WHIPLASHES 
1993-147964-0000.flac 

Results f o r eval/qbe/it was the worst sunday.wav: 
COSINE >0.7: 
<THRESH:0.7 COS (0, 22) 0.9204 0: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HIS ]]LIFE 

2277-149897-0023.txt 
<THRESH:0.7 COS (0, 21) 0.9200 1: [[IT WAS THE WORST SUNDAY HE HAD SPENT IN HI]]S LIFE 

2277-149897-0023.ilac 
<THRESH:0.7 COS (0, 18) 0.8882 2: [[ON MONDAY THE TIDE]] WAS REVERSED 

5694-64025-0013.txt 
<THRESH:0.7 COS (0, 14) 0.8579 3: [[IT WAS A HORRIBLE]] JOURNEY 

2428-83699-0014.txt 
<THRESH:0.7 COS (0, 24) 0.8376 4: [[BUT THE WOOD PIGEON WAS IN THE WORST CASE OF THE]]M ALL 

7850-281318-0022.flac 
<THRESH:0.7 COS (0, 24) 0.8274 5: [[IT WAS THE AFTERNOON OF A HOLIDAY AND SHE HAD CL]]OSED 

EARLY 
6295-64301-0001.txt 

<THRESH:0.7 COS (0, 14) 0.8273 6: [[IT WAS A HORRIBLE JO]]URNEY 
2428-83699-0014.flac 

<THRESH:0.7 COS (0, 23) 0.7870 7: [[IT WAS ONE WHICH GAVE ME A SMALL TRIUMPH OVER ]]GEORGE 
3081-166546-0028.txt 

<THRESH:0.7 COS (0, 24) 0.7269 8: [[HE SAW A BUSY SATURDAY USHERED OUT THE SABBATH I]]N AND 
NOTHING DONE 

2277-149897-0021.flac 
<THRESH:0.7 COS (0, 24) 0.7167 9: [[IT WAS THE AFTERNOON OF ]]A HOLIDAY AND SHE HAD CLOSED 

EARLY 
6295-64301-0001.flac 
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