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Abstrakt

Diserta£ní práce se zabývá asymptotickou stabilitou zpoºd¥ných diferenciálních rovnic a
jejich diskretizací. V práci jsou uvaºovány lineární zpoºd¥né diferenciální rovnice s kon-
stantním i neohrani£eným zpoºd¥ním. Jsou odvozeny nutné a posta£ující podmínky
popisující oblast asymptotické stability jak pro exaktní, tak i diskretizovanou lineární
neutrální diferenciální rovnici s konstantním zpoºd¥ním. Pomocí t¥chto podmínek jsou
porovnány oblasti asymptotické stability odpovídajících exaktních a diskretizovaných
rovnic a vyvozeny n¥které vlastnosti diskrétních oblastí stability vzhledem k m¥nícímu se
kroku pouºité diskretizace. Dále se zabýváme lineární zpoºd¥nou diferenciální rovnicí
s neohrani£eným zpoºd¥ním. Je uveden popis jejích exaktních a diskrétních oblastí
asymptotické stability spolu s asymptotickým odhadem jejich °e²ení. V záv¥ru uvaºu-
jeme lineární diferenciální rovnici s více neohrani£enými zpoºd¥ními.

Summary

The doctoral thesis discusses the asymptotic stability of delay di�erential equations and
their discretizations. The linear delay di�erential equations with constant as well as in�-
nite lag are considered. The necessary and su�cient conditions describing the asymptotic
stability region of both exact and discretized linear neutral delay di�erential equation
with constant lag are derived. We compare asymptotic stability domains of correspond-
ing exact and discretized equations and discuss properties of derived stability regions with
respect to a changing stepsize of the utilized discretization. Further, we investigate the
linear delay di�erential equation with the in�nite lag. We present the description of its
exact and discrete asymptotic stability regions together with asymptotic estimates of its
solutions. The linear delay di�erential equation with several in�nite lags is discussed as
well.
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1. Introduction

1. Introduction
Delay di�erential equations are widely used in science and engineering. They arise in

modeling of problems where the rate of change of a time�dependent process is determined
not only by its present state but also by a certain past state. Then, the use of ordinary
di�erential equations turns out to be insu�cient. Problems of this type occur in various
�elds such as biology, electrodynamics, medicine, economics and many others (various
examples are presented in the book by Kolmanovskii and Myshkis [37]).

Unlike for the ordinary di�erential equations, for which we have several methods to
obtain the analytical solution (e.g. separation of variables, variation of constant method
etc.), there are no computational methods how to �nd the analytical solution of delay
di�erential equations, not even in the linear case. Therefore, the qualitative and numerical
analysis of these equations is of a great importance.

The basic numerical methods utilized to solve the delay di�erential equations originates
from corresponding procedures for ordinary di�erential equations (with some additional
requirements concerning the delayed terms). Although the methods are based on the same
principal, their potential to preserve the qualitative behaviour of the analytic solution may
be di�erent.

One of the most important qualitative properties of di�erential equations is the asymp-
totic stability. Roughly speaking, this property describes a capability of the equation to
eliminate possible errors in input data. The asymptotic stability for the linear delay
di�erential equation can be de�ned as follows.

Consider the linear delay di�erential equation

x′(t) = a x(t) + b x(ξ(t)) , t ∈ (t0,∞), (1.1)

where a, b are real scalars and the function ξ(t) is a continuous function satisfying ξ(t) < t
for all t > t0 (some additional assumptions on ξ(t) will be imposed throughout this thesis).
Then (1.1) is called asymptotically stable if all its solutions x(t) tend to zero as t→∞.

This notion can be introduced in the same sense also to other related linear equations
such as di�erential equation with several delays

x′(t) = a x(t) +
r∑
i=1

bi x(ξi(t)) , t ∈ (t0,∞), (1.2)

or the delay di�erential equation of neutral type

x′(t) = a x(t) + b x(ξ(t)) + c x′(ξ(t)) , t ∈ (t0,∞). (1.3)

Since the resulting numerical formulae of numerical methods applied to (1.1)-(1.3) are
di�erence equations, we are interested in their asymptotic stability, too. Analogously to
the di�erential equation, we have the following de�nition of the asymptotic stability for
a linear di�erence equation of the order k.

Consider the linear di�erence equation

yn + α1yn−1 + α2yn−2 + · · ·+ αkyn−k = 0, n = 0, 1, 2, . . . , (1.4)

where αi are real scalars and k is a positive integer. Then (1.4) is called asymptotically
stable if all its solutions yn tend to zero as n→∞.
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1. Introduction

The aim of this thesis is to investigate a potential of some numerical methods to retain
the asymptotic stability of the linear delay di�erential equations. To do so, we have to
determine conditions for coe�cients a, b under which (1.1) is asymptotically stable and
compare them with those for the corresponding discretized equation. It assumes that
both the conditions for the exact as well as discretized equation are strong enough in the
sense that they are not only su�cient but also necessary.

The thesis is divided into two main parts according to type of the lag ψ(t) = t− ξ(t)
occurring in (1.1). In general, delay di�erential equations can be classi�ed into two
categories, namely those with �nite time lag, i.e.

lim sup
t→∞

ψ(t) <∞

and those with in�nite time lag, i.e.

lim sup
t→∞

ψ(t) =∞ .

There are remarkable di�erences between these two categories of delay di�erential
equations. Let us compare their typical representatives, which are the equations

x′(t) = a x(t) + b x(t− τ), t > 0 (1.5)

and
x′(t) = a x(t) + b x(qt), t > 0, (1.6)

where a, b, τ > 0 and q ∈ (0, 1) are real numbers. Clearly, (1.5) has a �nite lag and (1.6)
belongs to the class of equations with the in�nite lag. One of the di�erences between (1.5)
and (1.6) consists in the decay rate of their solutions in the asymptotically stable case
a < −|b|. While the solution of (1.5) decays exponentially, the solution of (1.6) decays
algebraically. However, the most signi�cant di�erence is in storage. In order to calculate
all the future values of x(t) beyond some t∗ > 0, we must remember all the past values in
the interval 〈t∗ − ψ(t∗), t∗〉, which is bounded in case of (1.5), but unbounded in the case
(1.6) as t∗ → ∞ ([44]). This property plays a key role in their numerical discretization.
For this reason, we treat them separately.

The thesis is organized as follows. Chapter 2 recalls some results on the asymptotic
stability of the di�erence equations relevant to our further analysis.

Chapter 3 discusses stability of numerical methods for linear delay di�erential equa-
tions with constant lags. We consider (1.5) with a = 0 as the simplest case, and (1.3)
with ξ(t) = t − τ as the most general case. The necessary and su�cient conditions for
the asymptotic stability of the exact and discretized equations are presented. Based on
them, we describe some properties of the discretized equations. The short overview of an
equation containing two constant delays is presented, too.

Chapter 4 is devoted to linear delay di�erential equations with in�nite lags. Firstly, we
consider the equation (1.6). We introduce a constrained mesh suitable for its discretization
and recall results concerning the stability of some numerical formulae for (1.6). The
asymptotic estimates of the exact and discretized equations are presented, too. Further,
we generalize the results to the equation with a more general lag of the form (1.1). Lastly,
the extension to the delay di�erential equation with several lags (1.2) is investigated.
We present the su�cient conditions for the asymptotic stability of both the exact and
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1. Introduction

discretized equations. The asymptotic estimate of the analytical solution is provided,
too. Moreover, the necessary and su�cient conditions for the asymptotic stability as well
as some asymptotic estimates are derived for the discretization of the di�erential equation
with two iterated lags.

This thesis is based on the papers [7], [8], [27], [28] and [29].
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2. Some auxiliary results in di�erence equations

2. Some auxiliary results in

difference equations
In this chapter, we recall some results from the theory of di�erence equations. In

the �rst part, we deal with di�erence equations with constant coe�cients and we present
necessary and su�cient criteria for their asymptotic stability. We also derive some con-
sequences for their important particular cases. In the second part, we discuss di�erence
equations with asymptotically constant coe�cient. We recall some well-known results
providing asymptotic description of the solutions.

2.1. Asymptotic stability of di�erence equations with

constant coe�cients

Let us consider the following general linear di�erence equation of the order k

yn + α1yn−1 + α2yn−2 + · · ·+ αkyn−k = 0, n = 0, 1, 2, . . . ,

where αi, i = 1, 2, . . . , k are real scalars. It is well-known that the problem of its asymp-
totic stability is equivalent to the problem whether the characteristic polynomial

P (λ) = λk + α1λ
k−1 + α2λ

k−2 + · · ·+ αk (2.1)

is of a Schur type, i.e. whether all its zeros are located inside the open unit circle (see
Elaydi [17]).

In general, this problem is solved by the Schur-Cohn criterion (see, e.g. Marden [45]),
which yields necessary and su�cient conditions for �xed α1, α2, . . . αk and k ensuring
the required zero property. However, the form of these conditions does not enable to
formulate explicit description of the set of all α1, α2, . . . αk and k such that (2.1) is of
a Schur type. The problem of such a description is solved only in some special cases of
(2.1), e.g. the case of αi < 0, i = 1, 2, . . . , k for which Stevi¢ [54] formulated the following
theorem.

Theorem 2.1. Let αi < 0, i = 1, 2, . . . , k. Then (2.1) is of a Schur type if and only if

k∑
i=1

|αi| < 1 . (2.2)

However, when not all the coe�cients are negative then the condition (2.2) is not
optimal, but only su�cient (see e.g. Koci¢ and Ladas [36]).

Theorem 2.2. The polynomial (2.1) is of a Schur type if

k∑
i=1

|αi| < 1 .
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2. Some auxiliary results in di�erence equations

For the purposes of this work, we are mostly interested in analysis of the following two
di�erence equations

yn+1 + αyn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2, . . . , (2.3)

and
yn+2 + µyn + νyn−k = 0, n = 0, 1, 2, . . . . (2.4)

Considering (2.3), the problem of explicit description of asymptotic stability conditions
has been discussed in some particular cases. In this connection we can mention the work
of Levin and May [41], who derived the explicit necessary and su�cient condition for the
case α = −1 and β = 0. Some other results have been obtained by Kuruklis [40] (the
case β = 0) and Dannan and Elaydi [11] (the case α = 0), but their formulation requires
a solution of an auxiliary non-linear equation. Recently, a system of explicit necessary
and su�cient conditions for a general equation (2.3) has been found by �ermák et al.
[10]. We note that it can be formulated in a more compact form (see Theorem 3.1 and
Theorem 3.2 of [10]), but for its easier treating in the asymptotic stability analysis we
prefer the following one.

Theorem 2.3. Let α, β and γ be real constants and k be a positive integer. Then (2.3)
is asymptotically stable if and only if one of the following conditions holds:

(C1) 1 + α+ β + γ > 0 , 1 + α− β − γ > 0 , 1− α+ β − γ > 0 , 1− α− β + γ > 0
and k is any positive integer;

(C2) 1 + α+ β + γ > 0 , 1 + α− β − γ = 0 , 1− α+ β − γ > 0 , 1− α− β + γ > 0
and k is any positive integer;

(C3) 1 + α+ β + γ > 0 , 1 + α− β − γ > 0 , 1− α+ β − γ = 0 , 1− α− β + γ > 0
and k is any positive odd integer;

(C4) 1 + α+ β + γ > 0 , 1 + α− β − γ > 0 , 1− α+ β − γ > 0 , 1− α− β + γ = 0
and k is any positive even integer;

(C5) 1 + α+ β + γ > 0 , 1 + α− β − γ < 0 , 1− α+ β − γ > 0 , 1− α− β + γ > 0
and k is any positive integer such that

k < arccos
α2 − β2 + γ2 − 1

2|αγ − β|
/

arccos
α2 − β2 − γ2 + 1

2|α− βγ| ; (2.5)

(C6) 1 + α+ β + γ > 0 , 1 + α− β − γ > 0 , 1− α+ β − γ < 0 , 1− α− β + γ > 0
and k is any positive odd integer such that (2.5) holds;

(C7) 1 + α+ β + γ > 0 , 1 + α− β − γ > 0 , 1− α+ β − γ > 0 , 1− α− β + γ < 0
and k is any positive even integer such that (2.5) holds.

Further, we provide consequences of Theorem 2.3 for some particular cases of (2.3),
which are results of well-known discretizations of some delay di�erential equations such
as the trapezoidal rule or both basic Euler discretizations.
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2. Some auxiliary results in di�erence equations

Corollary 2.4. Let α, β be reals and k be a positive integer. Then

yn+1 + αyn + β(yn−k+1 + yn−k) = 0, n = 0, 1, 2, . . .

is asymptotically stable if and only if either

2|β| < 1 + α, α < 1 (2.6)

or
2β = 1 + α, |α| < 1 (2.7)

or

|1 + α| < 2β, α < 1, k < arccos
α + 1

−2β

/
arccos

α2 − 2β2 + 1

2(β2 − α)
. (2.8)

Proof. Setting β = γ, the conditions (C1), (C2) can be read as (2.6) and (2.7), respec-
tively. Since conditions (C3), (C4) and (C6), (C7) lead to a contradiction, it remains
to analyse only condition (C5). After some elementary calculations we can verify that
�rst four inequalities in (C5) occur if and only if |1 + α| < 2β and α < 1. Finally, the
right-hand side of (2.5) can be read for β = γ as

arccos
α2 − 1

2|α− 1||β|
/

arccos
α2 − 2β2 + 1

2|α− β2| .

Obviously α − 1 < 0, β > 0 and α < 2β − 1 ≤ β2, hence α − β2 < 0. This veri�es the
form of (2.8)3.

Corollary 2.5. Let β, γ be reals and k be a positive integer. Then

yn+1 − yn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2, . . .

is asymptotically stable if and only if

β + γ > 0, |β − γ| < 2, k < arccos
γ − β

2

/
arccos

2− β2 − γ2

2(1 + βγ)
. (2.9)

Proof. Substituting α = −1 into (C1)-(C7), the �rst two inequalities lead to a contradic-
tion in all conditions except for (C5), where they become β + γ > 0. Further, the third
and fourth inequalities of (C5) can be read as |β − γ| < 2. Setting α = −1 in (2.5) we
arrive at

k < arccos
−β2 + γ2

2|β + γ|
/

arccos
2− β2 − γ2

2|1 + βγ| .

Since β + γ > 0, the remaining issue is to determine the sign of 1 + βγ. Let us consider
β > 0 and γ < 0. Then |β − γ| = β − γ < 2, which implies

1 + βγ > 1 + γ(2 + γ) = (1 + γ)2 ≥ 0.

The case β < 0 and γ > 0 is analogous. If β and γ are of the same sign, then the positivity
of 1 + βγ is obvious.
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2. Some auxiliary results in di�erence equations

Corollary 2.6. Let β be a real and k be a positive integer. Then

yn+1 − yn + β(yn−k+1 + yn−k) = 0, n = 0, 1, 2, . . .

is asymptotically stable if and only if

0 < β < tan
π

4k
. (2.10)

Proof. If we put β = γ in stability conditions of Corollary 2.5, then (2.9)1 and (2.9)2

imply β > 0. Further, (2.9)3 becomes

k < arccos 0
/

arccos
1− β2

1 + β2
=

π

4 arctan β
,

which yields (2.10).

Corollary 2.7. Let γ be a real and k be a positive integer. Then

yn+1 − yn + γyn−k = 0, n = 0, 1, 2, . . .

is asymptotically stable if and only if

0 < γ < 2 cos
kπ

2k + 1
. (2.11)

Proof. The stability condition (2.11) follows directly from Corollary 2.5 by use of β = 0
and arccos ((2− γ2)/2) = π − 2 arccos(γ/2). We emphasize that (2.11) was �rst proved
by Levin and May in [41].

The asymptotic stability of (2.4) has been discussed in several papers, too. We mention
Kipnis and Nigmatullin [35] who described the stability region via some straight lines
and certain parametric curves de�ning its boundary. Another paper on this topic has
been presented by Ren [51], who gave a system of necessary and su�cient conditions
for asymptotic stability of (2.4), but its formulation needs to solve a non-linear auxiliary
equation, similarly to the result of Kuruklis mentioned above. We utilize the assertion by
�ermák and Tomá²ek [9], which formulates the necessary and su�cient conditions in the
explicit form with respect to k.

Theorem 2.8. Let µ, ν be arbitrary reals such that µν 6= 0 and k be a positive integer.

(a) Let k be even and ν(−µ)k/2+1 < 0. Then (2.4) is asymptotically stable if and only
if

|µ|+ |ν| < 1 . (2.12)

(b) Let k be even and ν(−µ)k/2+1 > 0. Then (2.4) is asymptotically stable if and only
if

|µ|+ |ν| ≤ 1 , (2.13)

or

||µ| − |ν|| < 1 < |µ|+ |ν|, k < 2 arccos
µ2 + ν2 − 1

2|µν|
/

arccos
µ2 − ν2 + 1

2|µ| (2.14)

holds.

9



2. Some auxiliary results in di�erence equations

(c) Let k be odd and µ < 0. Then (2.4) is asymptotically stable if and only if (2.12)
holds.

(d) Let k be odd and µ > 0. Then (2.4) is asymptotically stable if and only if either
(2.13), or

ν2 < 1− µ < |ν|, k < 2 arcsin
1− µ2 − ν2

2|µν|
/

arccos
µ2 − ν2 + 1

2|µ| (2.15)

holds.

For our further analysis, it will be useful to mention also the corollary of the previous
theorem for the case |µ| = 1 (for the detailed derivation see [9]).

Corollary 2.9. The equation (2.4) with |µ| = 1 is asymptotically stable if and only if

k is even, ν(−µ)k/2+1 > 0 and |ν| < 2 sin
π

2(k + 1)
.

2.2. Asymptotic behaviour of di�erence equations with

asymptotically constant coe�cients

Let us consider the Poincaré di�erence equation of the form

yn + (α1 + δ1,n)yn−1 + · · ·+ (αk + δk,n)yn−k = 0, n = 0, 1, 2, . . . , (2.16)

where αk 6= 0, αj ∈ R, 1 ≤ j ≤ k and

lim
n→∞

δj,n = 0, 1 ≤ j ≤ k . (2.17)

The equation (2.16) can be regarded as a perturbation of the limiting constant coe�cient
di�erence equation

yn + α1yn−1 + · · ·+ αkyn−k = 0, n = 0, 1, 2, . . . (2.18)

having the characteristic polynomial

P (λ) = λk + α1λ
k−1 + α2λ

k−2 + · · ·+ αk . (2.19)

It is natural to expect that the solutions of (2.16) retain some properties of the solutions
of (2.18). This question has been studied by Poincaré and Perron, whose results can be
summarized as follows (see e.g. [16]).

Theorem 2.10. Suppose (2.17) holds and let the zeros λj of characteristic polynomial

(2.19) have distinct moduli. Then (2.16) has a fundamental set of solutions y
(1)
n , . . . , y

(k)
n

such that

lim
n→∞

y
(j)
n+1

y
(j)
n

= λj, 1 ≤ j ≤ k .
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2. Some auxiliary results in di�erence equations

This result has been improved by Elaydi [16] who derived the asymptotic estimates
of the fundamental set of solutions. We state here the results relevant to our further
analysis.

Theorem 2.11. Suppose that the zeros λj of characteristic polynomial (2.19) are distinct.
If

∞∑
n=0

|δj,n| <∞, 1 ≤ j ≤ k, (2.20)

then (2.16) has a fundamental set of solutions y
(1)
n , . . . , y

(k)
n such that

y(j)
n = (cj + o(1))λnj , cj 6= 0, 1 ≤ j ≤ k .

Theorem 2.12. Suppose that the characteristic polynomial (2.19) has a double multiple
zero λ1 = λ2 and the remaining zeros λj are distinct. If

∞∑
n=0

n|δj,n| <∞, 1 ≤ j ≤ k,

then (2.16) has a fundamental set of solutions y
(1)
n , . . . , y

(k)
n such that

y(1)
n = (c1 + o(1))nλn1 , c1 6= 0,

y(j)
n = (cj + o(1))λnj , cj 6= 0, 2 ≤ j ≤ k .

Another generalization has been provided by Pituk [49] who considered the case when
(2.19) has one dominant zero.

Theorem 2.13. Suppose that the characteristic polynomial (2.19) has a simple dominant
root λ̃ and let (2.20) hold. Then

lim
n→∞

((λ̃)−nyn) <∞ .

Furthermore, Agarwal and Pituk also presented in [1] the following assertion comparing
the growth rates of (2.16) and (2.18).

Theorem 2.14. Suppose (2.17) holds. If yn is a solution of (2.16) then the quantity

ρ = ρ(y) = lim sup
n→∞

n
√
|yn|

is equal to the modulus of one of the characteristic zeros of (2.19).

11



3. Delay di�erential equation with constant lag

3. Delay differential equation

with constant lag

3.1. The equation x′(t) = b x(t− τ )
3.1.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = b x(t− τ), t > 0, (3.1)

where b, τ > 0 are real scalars. The asymptotic stability interval I∗τ for (3.1) is de�ned
as the set of all reals b for which any solution x(t) of (3.1) tends to zero as t→∞. It is
well-known (see e.g. Kolmanovskii and Myshkis [37]) that I∗τ for (3.1) is given by

I∗τ =
{
b ∈ R : 0 > b > − π

2τ

}
,

which yields the necessary and su�cient condition for the asymptotic stability of (3.1).
In the sequel, we present the corresponding stability sets for some discretizations of (3.1)
and we show their mutual relations as well as their relations with respect to I∗τ .

3.1.2. Discretization of the di�erential equation

We consider the uniform mesh of points tn = nh, n = 0, 1, . . . , where h > 0 is the stepsize
satisfying

h = τ/k, for a suitable positive integer k.

The involvement of this stepsize constraint is standardly used in discrete approximations
of (3.1) with the aim to avoid an interpolation process concerning the appropriate re-
placement of the delayed term (see, e.g. Bellen and Zennaro [2]). We assume its validity
throughout this chapter.

We start with the Θ-method discretization, which is a weighted mean of two basic dis-
crete formulae originating from a replacement of the derivative term in (3.1) by the stan-
dard forward and backward di�erence operator, respectively. Then the application of the
Θ-method to (3.1) yields the four-term linear di�erence equation

yn+1 − yn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2, . . . (3.2)

with
β = −Θbh, γ = −(1−Θ)bh, k = τ/h . (3.3)

We recall that the Θ-method involves, among others, both basic Euler discretizations (the
cases Θ = 0 and Θ = 1) as well as the trapezoidal rule discretization (the case Θ = 1/2).

Another possible discretization, apart from the Θ-method, is the midpoint rule (also
known as the modi�ed Euler method). It yields the recurrence

yn+2 − yn − 2bh yn−k+1 = 0, n = 0, 1, 2, . . . (3.4)

12



3. Delay di�erential equation with constant lag

Analogously to the continuous case, by the discrete asymptotic stability interval IΘ
τ (h)

or IMτ (h) we understand the set of reals b for which any solution yn of (3.2), (3.3) or (3.4)
tends to zero as n→∞, respectively.

The concept of τ(0)-stability originates from an inclusion relation between I∗τ and
corresponding discrete stability intervals. More precisely, the Θ-method (3.2), (3.3) for
delay di�erential equation (3.1) is called τ(0)-stable if

I∗τ ⊂
∞⋂
k=1

IΘ
τ (h) , h = τ/k .

The notion of τ(0)-stability for the midpoint rule is introduced analogously.

3.1.3. Numerical stability of the Θ-methods and related issues

In this section, we provide the system of necessary and su�cient conditions de�ning
IΘ
τ (h). We discuss their mutual relations as well as a relation between asymptotic stability
conditions in the discrete and continuous case. The results presented in this subsection
originates from [7] and [27].

Theorem 3.1. A scalar b belongs to IΘ
τ (h) if and only if

b < 0, |(1− 2Θ)bh| < 2 ,

τ arccos

(
1− b2h2

2(1 + Θ(1−Θ)b2h2)

)
< h arccos

(2Θ− 1)bh

2
. (3.5)

Proof. This theorem is a direct consequence of Corollary 2.5 with coe�cients β = −Θbh,
γ = −(1−Θ)bh and k = τ/h.

In particular, considering the trapezoidal rule we have

I1/2
τ (h) =

{
b ∈ R : −2

h
tan

πh

4τ
< b < 0

}
,

whereas for Euler discretizations it holds

I0
τ (h) =

{
b ∈ R : −2

h
cos

τπ

2τ + h
< b < 0

}
and

I1
τ (h) =

{
b ∈ R : −2

h
cos

(τ − h)π

2τ − h < b < 0

}
(3.6)

by use of Corollary 2.6 and Corollary 2.7, respectively.
Our next aim is to investigate some basic properties of IΘ

τ (h). Doing so, we �rst
consider the non-delayed (trivial) case τ = 0, i.e. the equation x′(t) = bx(t). Denote by
I∗ and IΘ(h) intervals of exact and discretized asymptotic stability for such an equation.
Both these stability intervals can be directly calculated as

I∗ = {b ∈ R : b < 0}, IΘ(h) = {b ∈ R : |1 + (1−Θ)bh| < |1−Θbh|} .

13



3. Delay di�erential equation with constant lag

This implies the following well-known properties of IΘ(h) with respect to a changing
parameter h and I∗: Let h1 > h2 > 0 be arbitrary. Then

IΘ(h1) ⊂ IΘ(h2) ⊂ I∗ if 0 ≤ Θ < 1/2 ,

IΘ(h1) = IΘ(h2) = I∗ if Θ = 1/2 ,

IΘ(h1) ⊃ IΘ(h2) ⊃ I∗ if 1/2 < Θ ≤ 1 .

In particular, the inclusion

I∗ ⊆ IΘ(h), h > 0 is arbitrary

(de�ning the notion of A-stability) holds if and only if 1/2 ≤ Θ ≤ 1.
We are going to discuss a possible validity of such monotony properties also for stability

sets IΘ
τ (h). First, we investigate the behaviour of IΘ

τ (h) as h → 0. Using the L'Hospital
rule we can observe that IΘ

τ (h) approaches the exact asymptotic stability region I∗τ as
h→ 0 for any 0 ≤ Θ ≤ 1.

Further, considering the backward Euler discretization, we note that a monotony prop-
erty of I1

τ (h) has been observed by Kipnis and Levitskaya [34] experimentally, i.e. for sev-
eral �xed values of parameter h. We show its general validity and, moreover, demonstrate
that stability intervals I1/2

τ (h) and I0
τ (h) have a certain monotony property, too (see [7],

[27]).

Theorem 3.2 (Proposition 4.1 and Proposition 4.3 in [7]). Let k1 < k2 be arbitrary
positive integers and let h1 = τ/k1 > τ/k2 = h2 be corresponding stepsizes. Then

I0
τ (h1) ⊂ I0

τ (h2), I1/2
τ (h1) ⊃ I1/2

τ (h2), I1
τ (h1) ⊇ I1

τ (h2) .

Moreover, the equality sign in the last inclusion occurs if and only if h1 = τ and h2 = τ/2.

Proof. We start with Θ = 0. Let b̃ ∈ I0
τ (h1) be arbitrary, but �xed. We show that

b̃ ∈ I0
τ (h2). On this account we introduce the function

f̃(h) = − b̃h
2
− cos

τπ

2τ + h
, 0 ≤ h ≤ τ

(we drop the constraint h = τ/k and we consider f̃(h) as a function of a continuous
argument h). Obviously f̃(0) = 0. We consider its derivatives

f̃ ′(h) = − b̃
2
− τπ

(2τ + h)2
sin

τπ

2τ + h
, f̃ ′′(h) =

τ 2π2

(2τ + h)4
cos

τπ

2τ + h
+

2τπ

(2τ + h)3
sin

τπ

2τ + h
.

Since f̃ ′′(h) > 0 for any 0 ≤ h ≤ τ , we can claim that f̃(h1) < 0 implies f̃(h2) < 0 for
any τ ≥ h1 > h2 > 0. Consequently, b̃ ∈ I0

τ (h1) implies b̃ ∈ I0
τ (h2).

Further, we show that I0
τ (h1) is a sharp subset of I0

τ (h2). Let b̄ < 0 be such that

b̄h1

2
+ cos

τπ

2τ + h1

= 0 ,

i.e. b̄ /∈ I0
τ (h1). De�ne

f̄(h) = − b̄h
2
− cos

τπ

2τ + h
, 0 ≤ h ≤ τ.

14



3. Delay di�erential equation with constant lag

Since f̄(0) = f̄(h1) = 0 and f̄ ′′(h) = f̃ ′′(h) > 0 for all 0 ≤ h ≤ τ , we get f̄(h2) < 0 due to
h1 > h2 and this implies b̄ ∈ I0

τ (h2).
A similar approach can be used for Θ = 1. We wish to show here that if b̃ ∈ I1

τ (h2)
then b̃ ∈ I1

τ (h1). De�ne

g̃(h) = − b̃h
2
− cos

(τ − h)π

2τ − h , 0 ≤ h ≤ τ.

We have g̃(0) = 0 and

g̃′(h) = − b̃
2
− τπ

(2τ − h)2
sin

(τ − h)π

2τ − h ,

g̃′′(h) =
τ 2π2

(2τ − h)4
cos

(τ − h)π

2τ − h −
2τπ

(2τ − h)3
sin

(τ − h)π

2τ − h .

Analysis of the sign of g̃′′(h) yields g̃′′(h) < 0 for any 0 ≤ h ≤ τ/2 and g̃′′(τ) > 0.
Consequently, g̃(h2) < 0 implies g̃(h1) < 0 for 0 < h2 < h1 ≤ τ/2, which shows that
b̃ ∈ I1

τ (h2) implies b̃ ∈ I1
τ (h1). A sharp inclusion between stability domains I1

τ (h1) and
I1
τ (h2) can be proved using the same line of arguments as given for Θ = 0. The equality
sign between I1

τ (τ) and I1
τ (τ/2) follows immediately from (3.6).

A proof of the monotony property for the trapezoidal rule (the case Θ = 1/2) is
analogous to the proof of the same property for a more general, neutral, equation (see
Theorem 3.21). Therefore we omit its proof here.

Further, we show that a generalization of monotony properties of stability intervals
I0
τ (h), I1/2

τ (h) and I1
τ (h) to other values of Θ is not generally possible. To show that,

we �rst make some observations about the behaviour of IΘ
τ (h) for h close to zero. As it

has been remarked above, the discrete stability sets IΘ
τ (h) approach the exact stability

set I∗τ as h → 0. We wish to �nd a relation between I∗τ (corresponding to h = 0) and
IΘ
τ (h) for h close to zero. On this account, we consider the stability condition (3.5) in the
form of equality de�ning an implicit function b = b(h) in a right neighbourhood of zero.
This function essentially represents a dependence of the left endpoint of IΘ

τ (h) on h (the
right endpoint of IΘ

τ (h) is always zero). Using the implicit di�erentiation formula and the
L'Hospital rule we can observe that

lim
h→0+

b′(h) = −(2Θ− 1)π

2τ 2
.

Consequently, starting from h = 0 and assuming 0 ≤ Θ < 1/2, the discrete stability
intervals IΘ

τ (h) become smaller with h increasing (but su�ciently small), i.e.

IΘ
τ (h1) ⊂ IΘ

τ (h2) ⊂ I∗τ (3.7)

for any such Θ and any h1 = τ/k1 > τ/k2 = h2, where k1, k2 ∈ Z+ are su�ciently large.
On the other hand, we can easily formulate a condition on Θ guaranteeing that

I∗τ ⊂ IΘ
τ (τ) . (3.8)

Substituting h = τ into (3.5) and considering the asymptotic stability condition for (3.1),
we can arrive at the relation Θ > 1− 2/π ensuring the validity of (3.8).
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3. Delay di�erential equation with constant lag

To summarize this, assuming 1− 2/π < Θ < 1/2 and comparing (3.7) with (3.8), we
cannot expect a monotony behaviour of IΘ

τ (h) analogous to that described in Theorem
3.2. We illustrate this phenomenon by an example characterizing a typical behaviour of
discrete stability intervals IΘ

τ (h) for such values of Θ.

Example 3.3. We consider the delay di�erential equation

x′(t) = b x(t− 1), t > 0

and its Θ-method discretization with Θ = 0.4 ∈ (1− 2/π, 1/2) and h = 1/k, k ∈ Z+, i.e.

yn+1 − yn − 0.4bhyn−k+1 − 0.6bhyn−k = 0, n = 0, 1, 2, . . . .

Obviously I∗1 = (−π/2, 0). The dependence of I0.4
1 (h) on changing h is depicted in the

following table (we denote here l and r the left and right endpoints of I0.4
1 (h), respectively).

h 0 1/1000 1/100 1/10 1/5 1/4 1/3 1/2 1
l -π/2 -1.5706 -1.5693 -1.5582 -1.5513 -1.5499 -1.5503 -1.5612 -1.6667
r 0 0 0 0 0 0 0 0 0

Table 3.1: The stability intervals for Θ = 0.4

We can observe that for increasing, but small values of h the left endpoints of I0.4
1 (h)

are decreasing (in modulus). After reaching h = 1/4 the situation is reversed, the left
endpoints of I0.4

1 (h) become to increase (in modulus) up to h = 1 when I0.4
1 (1) even exceeds

I∗1 .

Theorem 3.4. The Θ-method applied to (3.1) is τ(0)-stable if and only if 1/2 ≤ Θ ≤ 1.

Proof. The part corresponding to 1/2 ≤ Θ ≤ 1 follows from conclusions made for a more
general equation by Guglielmi in [20]. The part corresponding to 0 ≤ Θ < 1/2 is a direct
consequence of (3.7).

3.1.4. Numerical stability of the midpoint rule and related issues

In this section, we deal with the necessary and su�cient conditions for the asymptotic
stability of the midpoint method discretization. Based on these conditions we discuss also
some fundamental properties of IMτ (h) concerning its behaviour with respect to changing
stepsize h as well as its comparisons with the asymptotic stability interval of the underlying
equation I∗τ and the forward Euler discretization I0

τ (h). These results have been presented
in [29].

Firstly, we provide the necessary and su�cient conditions describing the asymptotic
stability interval IMτ (h).

Theorem 3.5 (Corollary 4 in [29]). A scalar b belongs to IMτ (h) if and only if

k is odd, 0 > b > −1

h
sin

πh

2τ
.
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3. Delay di�erential equation with constant lag

Proof. The proof discusses stability conditions of Corollary 2.9 with parameter ν = −2bh.
Let us note, that equation (2.4) is of the order k + 2, while equation (3.4) is of the order
k + 1. Taking this into account, the �rst condition of Corollary 2.9 can be read as k is
odd and the other two conditions easily implies the inequalities constraining b.

Theorem 3.6. The midpoint method applied to (3.1) is not τ(0)-stable.

Proof. Since (3.4) is asymptotically stable only for k odd, the condition for τ(0)-stability
is not satis�ed.

The behaviour of asymptotic stability regions as h → 0 belongs among the basic
properties of numerical methods. Similarly to the Θ-methods, the asymptotic stability
interval of the midpoint rule discretization IMτ (h) is approaching I∗τ as h→ 0, which can
be veri�ed by the use of the L'Hospital rule.

Being motivated by obtained results in the case of Θ-methods, we investigated also
the monotony property of IMτ (h) with respect to changing stepsize h.

Theorem 3.7 (Theorem 5 in [29]). Let 3 ≤ k1 < k2 be arbitrary positive odd integers and
let h1 = τ/k1 > τ/k2 = h2 be corresponding stepsizes. Then

IMτ (h2) ⊃ IMτ (h1).

Proof. Likewise in the proof of Theorem 3.2, we investigate the dependence of the left
endpoint of IMτ (h) on stepsize h. We de�ne a function

f(h) = −1

h
sin

πh

2τ
, 0 < h ≤ τ/3. (3.9)

We assume here that f(h) is a function of a continuous argument h. Then

f ′(h) =
1

h2
sin

πh

2τ
− π

2τh
cos

πh

2τ
, 0 < h ≤ τ/3.

Since sin πh
2τ
> 0 for 0 < h ≤ τ/3, then f ′(h) > 0 if

cot
πh

2τ
<

2τ

πh
, 0 < h ≤ τ/3.

If we substitute s = πh
2τ
, the last relation becomes

tan s > s, 0 < s ≤ τ/6. (3.10)

Obviously tan (0) = 0 and (tan s)′ = cos−2 s > 1 = s′ for 0 < s ≤ τ/6. Therefore (3.10)
holds for any 0 < s ≤ τ/6. Thus, we have proved that f ′(h) > 0 for 0 < h ≤ τ/3 and
consequently IMτ (h2) ⊃ IMτ (h1).

Remark 3.8. We have shown that − 1
h

sin πh
2τ

is an increasing function for 0 < h ≤ τ/3
(see the proof of Theorem 3.7). Considering also its limit property as h→ 0, we conclude
that

I∗τ ⊃ IMτ (h)

for any h = τ/k, where k is odd.
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3. Delay di�erential equation with constant lag

Finally, we discuss a relation between IMτ (h) and the asymptotic stability intervals for
the forward Euler discretization of (3.1).

Theorem 3.9 (Theorem 8 in [29]). Let k ≥ 3 be an arbitrary positive odd integer and let
h = τ/k be the corresponding stepsize. Then

IMτ (h) ⊃ I0
τ (h).

Proof. Since the right endpoints of IMτ (h) and I0
τ (h) are zero for any h, we are interested

only in the behaviour of the left endpoints with respect to changing stepsize h. We de�ne
a function

g(h) = −2

h
cos

τπ

2τ + h
, 0 < h ≤ τ,

which expresses the dependence of the left endpoint of I0
τ (h) on h. We recall that we

describe the analogy for IMτ (h) via f(h) de�ned by (3.9). In the further analysis, we drop
the constraint h = τ/k and consider both functions f(h) and g(h) to be functions of a
continuous argument for 0 < h ≤ τ (we extend the domain of f(h) to simplify the proof).
Our aim is to show that f(h)− g(h) < 0 for any 0 < h < τ , i.e.

− sin
πh

2τ
+ 2 cos

πτ

2τ + h
< 0, 0 < h < τ. (3.11)

To do this, we introduce next proposition:

Lemma. Let F ∈ C3(〈a, b〉) be a function such that F (a) = F (b) = 0, F ′(a) ≤ 0,
F ′(b) > 0, F ′′(a) < 0, F ′′(b) > 0 and F ′′′(t) > 0 for all a ≤ t ≤ b. Then F (t) < 0 for all
a < t < b.

Proof. Since F ′′′(t) > 0 for all a ≤ t ≤ b, the function F ′′(t) is increasing. Since F ′′(a) <
0 < F ′′(b), there is a unique point t1 ∈ (a, b) such that F ′′(t1) = 0. Thus, the function
F ′(t) is decreasing in (a, t1) and increasing in (t1, b). Further, since F ′(t1) < F ′(a) ≤ 0
and F ′(b) > 0, there is a unique point t2 ∈ (a, b) such that F ′(t2) = 0. Therefore, F (t) is
decreasing in (a, t2) and increasing in (t2, b). Taking into account F (a) = F (b) = 0, we
obtain that F (t) < 0 for all a < t < b.

Next, we denote s = 2 + h/τ . Then we de�ne

f̃(s) = sin
πs

2
+ 2 cos

π

s
, 2 < s < 3,

which is equivalent to the left-hand side of (3.11). It holds that

f̃(2) = f̃(3) = 0, f̃ ′(2) = 0, f̃ ′(3) =

√
3π

9
> 0,

f̃ ′′(2) = −π
2
< 0, f̃ ′′(3) =

π2

4
− π2

81
− 2
√

3
π

27
> 0.

Further,

f̃ ′′′(s) =
12π2

s5
cos

π

s
− π3

8
cos

πs

2
+

2π

s6
(6s2 − π2) sin

π

s
> 0,

because each term in the sum is non-negative for all s ∈ 〈2, 3〉. Then, by the previous
lemma, we have that f̃(s) < 0 for all 2 < s < 3 and consequently f(h) < g(h) for
0 < h < τ which concludes the proof.
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3.2. The equation x′(t) = a x(t) + b x(t− τ )
3.2.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = a x(t) + b x(t− τ), t > 0, (3.12)

where a, b, τ > 0 are real scalars. The asymptotic stability region S∗τ for (3.12) is then
de�ned as the set of all real couples (a, b) for which any solution x(t) of (3.12) tends to
zero as t → ∞. The description of S∗τ for (3.12) is known either in the form of the line
a+ b = 0 and a parametric curve

a = Φ cot(τΦ), b = − Φ

sin(τΦ)
, Φ ∈ (0, π/τ)

de�ning the stability boundary (see e.g. Kolmanovskii and Myshkis [37]), or directly in
the form of explicit conditions on a, b and τ :

a ≤ b < −a (3.13)

and

|a|+ b < 0, τ <
arccos(−a/b)
(b2 − a2)1/2

(3.14)

(see e.g. Hayes [25]). Note that (3.13) holds for all positive values of τ . Hence, this
condition forms a delay-independent stability region. Contrarily, the condition (3.14)
contains a restriction on τ and therefore it de�nes the so-called delay-dependent stability
region.

The asymptotic stability region is depicted in Figure 3.1 to the left from the blue lines.
The dashed line divides the delay dependent and independent parts.

Figure 3.1: The asymptotic stability region S∗1
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3.2.2. Discretization of the di�erential equation

Similarly to the one-term equation, we consider the Θ-method and the modi�ed midpoint
rule to be a tool of discretization.

The Θ-method applied to (3.12) yields the four-term linear di�erence equation

yn+1 + αyn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2, . . . , (3.15)

with

α = −1 + (1−Θ)ah

1−Θah
, β = − Θbh

1−Θah
, γ = −(1−Θ)bh

1−Θah
, k = τ/h (3.16)

and the stepsize h satisfying Θah 6= 1.
We introduce also the modi�ed midpoint rule, which is another possible discretization

of (3.12). The numerical formula is derived by integration over two steps, where the
integrals of terms on the right-hand side of (3.12) are approximated via the trapezoidal
rule and the midpoint rule, respectively. Moreover, we assume the equidistant mesh with
the stepsize h = τ/k, where k ≥ 2, k ∈ Z+. Then, by the application of the modi�ed
midpoint rule on (3.12) we obtain the three-term linear di�erence equation

yn+2 + µyn + νyn−k+1 = 0, n = 0, 1, 2, . . . , (3.17)

where
µ = −1 + ah

1− ah, ν = − 2bh

1− ah, k = τ/h . (3.18)

We assume ah 6= 1.
By the asymptotic stability region SΘ

τ (h) of the Θ-method discretization of (3.12) we
understand the set of real couples (a, b) for which any solution yn of (3.15), (3.16) tends
to zero as n→∞. Likewise, the asymptotic stability region SMτ (h) of the midpoint rule
discretization is formed by all real couples (a, b) for which any solution yn of (3.17), (3.18)
tends to zero as n→∞.

We say that the Θ-method for (3.12) is τ(0)-stable if it satis�es

S∗τ ⊂
∞⋂
k=1

SΘ
τ (h) , h = τ/k .

Analogously, the modi�ed midpoint rule for (3.12) is τ(0)-stable if

S∗τ ⊂
∞⋂
k=2

SMτ (h) , h = τ/k .

3.2.3. Numerical stability of the Θ-methods and related issues

First, we state the basic property concerning the stability of Θ-method applied to (3.12).

Theorem 3.10. The Θ-method applied to (3.12) is τ(0)-stable if and only if 1/2 ≤ Θ ≤ 1.
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This theorem was proved by Guglielmi in [20] using the boundary locus technique.
Such approach leads to a description of SΘ

τ (h) via parametric curves de�ning its boundary.
Utilizing Theorem 2.3 we derive an explicit description of SΘ

τ (h), i.e. a discrete counterpart
to (3.13), (3.14). Based on this description, we present also some important properties of
Θ-methods extending the τ(0)-stability property. The results in this subsection originate
from [7].

First, we introduce the symbols for given a, b and Θ

τ̄Θ
1 (h) =h arctan

(
(b+ a)(2 + (1− 2Θ)(a+ b)h)

(b− a)(2 + (1− 2Θ)(a− b)h)

)1/2
/

arctanh

(
b2 − a2

(2 + (1− 2Θ)(a+ b)h)(2 + (1− 2Θ)(a− b)h)

)1/2

and

τ̄Θ
2 (h) =h arctan

(
(b+ a)(2 + (1− 2Θ)(a+ b)h)

(b− a)(2 + (1− 2Θ)(a− b)h)

)(−1)k/2
/

arccot

(
(b2 − a2)h2

(2 + (1− 2Θ)(a+ b)h)(2 + (1− 2Θ)(a− b)h)

)1/2

.

Then we can formulate the following conditions.

Theorem 3.11 (Theorem 3.1 and Theorem 3.2 in [7]). (a) Let 0 ≤ Θ < 1
2
. Then a

real couple (a, b) belongs to SΘ
τ (h) if and only if one of the following conditions

holds:

|b|+ a < 0, 2 + (1− 2Θ)(a− |b|)h > 0 ;

a = b < 0, 1 + (1− 2Θ)ah > 0 ;

a < (−1)k+1b < 0, 2 + (1− 2Θ)ah = (−1)k(1− 2Θ)bh ;

|a|+ b < 0, 2 + (1− 2Θ)(a+ b)h > 0, τ < τ̄Θ
1 (h) ;

a+ (−1)kb < 0, |2 + (1− 2Θ)ah| < (−1)k(1− 2Θ)bh, τ < τ̄Θ
2 (h) .

(b) Let Θ = 1
2
. Then a real couple (a, b) belongs to SΘ

τ (h) if and only if either

a ≤ b < −a (3.19)

or

|a|+ b < 0, τ arctan

(
h

2
(b2 − a2)1/2

)
<
h

2
arccos

a

|b| . (3.20)

(c) Let 1
2
< Θ ≤ 1. Then a real couple (a, b) belongs to SΘ

τ (h) if and only if one of the
following conditions holds:

a ≤ b < −a ;

|(2Θ− 1)bh| < (2Θ− 1)ah− 2 ;

(−1)k(2Θ− 1)bh = (2Θ− 1)ah− 2 ;

|a|+ b < 0, 2 + (2Θ− 1)(b− a)h > 0, τ < τ̄Θ
1 (h) ;

a+ (−1)k+1b > 0, |2− (2Θ− 1)ah| < (−1)k(2Θ− 1)bh, τ < τ̄Θ
2 (h) .
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3. Delay di�erential equation with constant lag

Proof. A technique of the proof is analogous to the technique used in the proof of Theorem
3.17, hence we leave it out here. We provide here only the proof of the case Θ = 1/2,
because the coe�cient β and γ coincides for the trapezoidal rule discretization of (3.12)
and therefore it is enough to reformulate conditions (2.6)-(2.8) of Corollary 2.4 with
respect to (3.16).

If 2 − ah > 0 then some simple calculations imply that the condition (2.6) can be
converted into |b| < −a. If 2 − ah < 0, then the latter relation of (2.6) cannot occur,
hence |b| < −a is an equivalent expression of (2.6). Analogously, the substitution of (3.16)
into (2.7) leads to a = b < 0, which along with |b| < −a de�nes the delay independent
stability region of S1/2

τ (h) via the condition (3.19).
Now we consider (2.8). Substituting (3.16) into (2.8) we get that the �rst two inequal-

ities of (2.8) can be read as |a|+ b < 0, 2− ah > 0. Furthermore, the last relation of (2.8)
is convertible into the form

τ arccos
4− (b2 − a2)h2

4 + (b2 − a2)h2
< h arccos

a

|b| .

Using the formula

2 arctan s = arccos
1− s2

1 + s2
= 2 arccot

1

s
, s > 0,

we can simplify this delay restriction to the form (3.20)2 which, along with |a| + b < 0
implies 2 − ah > 0. Thus, we have fully described the stability region for (3.15), (3.16)
and Θ = 1/2 in terms of the conditions (3.19), (3.20).

Similarly to the case a = 0 discussed in the previous section, the asymptotic stability
region of the discretization SΘ

τ (h) approaches the exact asymptotic stability region S∗τ as
h→ 0. This can be veri�ed by investigation of the limit form of Theorem 3.11.

Further, we focus on the trapezoidal rule discretization of (3.12) which is the only
Θ-method of the order 2. Note that its description is also the only one invariant to the
parity of k. We con�rm that the trapezoidal rule keeps the inclusion property of stability
regions, which was observed also for purely delayed equation (see Theorem 3.2).

Theorem 3.12 (Proposition 4.1 in [7]). Let k1 < k2 be arbitrary positive integers and let
h1 = τ/k1 > τ/k2 = h2 be corresponding stepsizes. Then

S1/2
τ (h1) ⊃ S1/2

τ (h2) ⊃ S∗τ .

Proof. We refer to the proof of Theorem 3.21, where this property is derived for a more
general equation and can be easily simpli�ed to obtain this result.

The monotony property for a delay τ = 1 is depicted in Figure 3.2 . To the left from
the blue curves there is the asymptotic stability region for the di�erential equation (the
dashed line divides the delay-dependent and independent parts). The red curve (together
with the line a + b = 0) is de�ning the stability area S1/2

1 (1), while the green one is a
boundary of S1/2

1 (1/2).
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3. Delay di�erential equation with constant lag

Figure 3.2: The asymptotic stability regions S1/2
1 (h)

3.2.4. Numerical stability of the modi�ed midpoint rule and re-

lated issues

In this section, we provide a set of necessary and su�cient conditions guaranteeing the
asymptotic stability of (3.17), (3.18) as they were derived in [29]. The analysis of (3.17),
(3.18) falls naturally into two parts according to the parity of k. For an e�ective and clear
formulation of the main result, we introduce the symbols

τ̄M1 (h) = h+ 2h arcsin
a+ b2h

(1 + ah)|b|
/

arccos
1 + a2h2 − 2b2h2

a2h2 − 1
,

τ̄M2 (h) = h+ 2h arccos
a+ b2h

|(1 + ah)b|
/

arccos
1 + a2h2 − 2b2h2

|a2h2 − 1| ,

which are utilized in these two parts, respectively.

Theorem 3.13 (Theorem 3 in [29]). (a) Let k ≥ 2 be even. Then a real couple (a, b)
belongs to SMτ (h) if and only if one of the following conditions holds:

|bh| ≤ 1, |b|+ a < 0; (3.21)

2 < 2b2h2 < 1− ah, τ < τ̄M1 (h). (3.22)

(b) Let k ≥ 3 be odd and ` = (k− 1)/2. Then a real couple (a, b) belongs to SMτ (h) if and
only if one of the following conditions holds:

a ≤ b < −a, |bh| < 1; (3.23)

|b|+ a < 0, (−1)`bh = 1; (3.24)

b+ |a| < 0, bh > −1, τ < τ̄M2 (h); (3.25)

(−1)`b+ a < 0, (−1)`bh > 1, τ < τ̄M2 (h); (3.26)

(−1)`b+ a > 0, (−1)`+1bh > 1, τ < τ̄M2 (h). (3.27)

23
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Proof. The proof is based on application of Theorem 2.8 to (3.17), (3.18) and the ensuing
analysis of the obtained conditions. We point out that the equation (2.4) is of the order
k + 2, while equation (3.17) is of the order k + 1.

Case (a): Investigating the case k even, we utilize parts (c) and (d) of Theorem 2.8.
Firstly, we focus on the condition (c): Considering the coe�cients (3.18), the assumption
µ < 0 implies |ah| < 1. Thus, (2.12) is equivalent to |b|+ a < 0. Therefore, condition (c)
coincides with |bh| < −ah < 1.

Now, we analyse the condition (d): The assumption µ > 0 implies |ah| > 1. Hence,
(2.13) gives |bh| ≤ 1 providing ah < −1, while relation (2.13) cannot occur for the case
ah > 1. We now turn to (2.15). Relation (2.15)1 can be read as 2 < 2b2h2 < 1 − ah.
Furthermore, the restriction (2.15)2 becomes

k − 1 < 2 arcsin
−a− b2h

|(1 + ah)b|
/

arccos
1 + a2h2 − 2b2h2

|a2h2 − 1| .

Since |ah| > 1 and k = τ/h, it can be written as τ < τ̄M1 (h). Therefore, condition (d) is
satis�ed if and only if either |bh| ≤ 1, ah < −1 or (3.22).

Finally, Theorem 2.8 does not cover the case of µν = 0 (i.e. ah = −1 or b = 0). In
our case, we do not consider the eventuality b = 0 because we deal with discretization of
(3.12). Accordingly, for ah = −1 equation (3.17), (3.18) turns to

yn+1 − bhyn−k+1 = 0, n = 0, 1, . . .

and the necessary and su�cient condition for its asymptotic stability is |bh| < 1. Summa-
rizing above discussion we conclude that if k is even, then (3.17), (3.18) is asymptotically
stable if either (3.21) or (3.22) holds.

Case (b): For k odd we consider the conditions (a) and (b) of Theorem 2.8. Condition
(a) can be rewritten as

−2bh

1− ah

(
1 + ah

1− ah

)1+`

< 0,

∣∣∣∣1 + ah

1− ah

∣∣∣∣+

∣∣∣∣ 2bh

1− ah

∣∣∣∣ < 1 (3.28)

by use of (3.18). With respect to the parity of power in the �rst relation we obtain a set
of conditions equivalent to (3.28) as

|ah| < 1, b > 0, a < −b; (3.29)
ah < −1, b > 0, bh < 1

for ` odd and (3.29),
ah < −1, b < 0, −bh < 1

for ` even.
In the case (b) of Theorem 2.8 condition (2.13) can be reformulated as

−2bh

1− ah

(
1 + ah

1− ah

)1+`

> 0,

∣∣∣∣1 + ah

1− ah

∣∣∣∣+

∣∣∣∣ 2bh

1− ah

∣∣∣∣ ≤ 1. (3.30)

Analogous analysis as above shows that for ` odd (3.30) is equivalent to

|ah| < 1, b < 0, a ≤ b; (3.31)
ah < −1, b < 0, − bh ≤ 1.
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In the case ` even condition (3.30) is satis�ed if and only if (3.31) or

ah < −1, b > 0, bh ≤ 1

holds. The above discussion including the case α = 0 (i.e. ah = −1, |bh| < 0, see Case
(a)) can be jointly written as (3.23)�(3.24).

Now it remains to analyse the condition (2.14) adapted for equation (3.17), (3.18), i.e.∣∣∣∣∣∣∣∣1 + ah

1− ah

∣∣∣∣− ∣∣∣∣ 2bh

1− ah

∣∣∣∣∣∣∣∣ < 1 <

∣∣∣∣1 + ah

1− ah

∣∣∣∣+

∣∣∣∣ 2bh

1− ah

∣∣∣∣ , τ < τ̄M2 (h)

under the assumption −2bh
1−ah

(
1+ah
1−ah

)1+`
> 0. In the same manner as above we get the

equivalence to the following set of conditions

|ah| < 1, b < 0, 1 + ah ≤ −2bh, b < a, bh > −1, τ < τ̄M2 (h); (3.32)

|ah| < 1, b < 0, 1 + ah > −2bh, b < −|a|, τ < τ̄M2 (h; (3.33)

ah > 1, b > 0, 1 + ah ≤ 2bh, b < a, τ < τ̄M2 (h); (3.34)

ah > 1, b > 0, 1 + ah > 2bh, bh > 1, τ < τ̄M2 (h); (3.35)

ah < −1, b < 0, 1 + ah < 2bh, bh < −1, τ < τ̄M2 (h); (3.36)

ah < −1, b < 0, 1 + ah ≥ 2bh, bh < −1, a < b, τ < τ̄M2 (h) (3.37)

for ` odd and (3.32), (3.33),

ah > 1, b < 0, 1 + ah ≤ −2bh, b > −a, τ < τ̄M2 (h); (3.38)

ah > 1, b < 0, 1 + ah > −2bh, bh < −1, τ < τ̄M2 (h); (3.39)

ah < −1, b > 0, 1 + ah < −2bh, bh > 1, τ < τ̄M2 (h); (3.40)

ah < −1, b > 0, 1 + ah ≥ −2bh, bh > 1, b < −a, τ < τ̄M2 (h) (3.41)

for ` even. These conditions are jointly expressed by (3.25)�(3.27). In fact, (3.25) coincides
with (3.32), (3.33). Condition (3.26) is equivalent to (3.36), (3.37) and (3.40), (3.41) for
` odd and ` even, respectively. Finally, (3.27) is the same as (3.34), (3.35) for ` odd and
(3.38), (3.39) for ` even. The proof is complete.

Concerning the relation between the exact and discretized stability region, we investi-
gate a limit form of Theorem 3.13 as h→ 0. For k even, the asymptotic stability region
for (3.17), (3.18) becomes |b|+ a < 0. Let us note that, with the exception of the bound-
ary, this region corresponds to (3.13), i.e. the delay-independent stability region of S∗τ .
Considering k ≥ 3 odd, it may be shown (by the L'Hospital rule) that the asymptotic
stability conditions turn into

a ≤ b < −a,
|a|+ b < 0, τ < arccos(−a/b)/(b2 − a2)1/2 .

These relations are equivalent to the conditions de�ning S∗τ , i.e. (3.13), (3.14).

Theorem 3.14. The midpoint method applied to (3.12) is not τ(0)-stable.

Proof. It follows from the above mentioned limit property for k even, that there exists
su�ciently small h such that S∗τ ⊃ SMτ (h). Hence, the method is not τ(0)-stable.
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3.3. The equation x′(t) = a x(t) + b x(t− τ ) + c x′(t− τ )
Finally, we deal with the neutral delay di�erential equation. Our main interest is the
Nτ(0)-stability of its Θ-method discretization (a precise speci�cation of this notion will
be introduced later). It is known, that the Θ-method discretization is not Nτ(0)-stable for
0 ≤ Θ < 1/2 and 1/2 < Θ ≤ 1. The Nτ(0)-stability of the trapezoidal rule discretization
(the case Θ = 1/2) has not been su�ciently clari�ed in the existing literature (see e.g.
Guglielmi [21]), especially with respect to the so-called asymptotically critical case |c| =
1. Therefore, in this section we provide the necessary and su�cient conditions for the
asymptotic stability of the di�erential equation as well as for its discretization. By their
comparison, we resolve the question of the Nτ(0)-stability for the trapezoidal rule and
we mention some other consequences following from these conditions. These results have
been presented in [8].

3.3.1. Asymptotic stability of the di�erential equation

We consider the neutral delay di�erential equation

x′(t) = a x(t) + b x(t− τ) + c x′(t− τ), t > 0 , (3.42)

where a, b, c and τ > 0 are real scalars. The asymptotic stability region Σ∗τ for (3.42)
is then de�ned as the set of all real triplets (a, b, c) for which any solution x(t) of (3.42)
tends to zero as t→∞.

The standard way how to describe the asymptotic stability region for linear au-
tonomous functional di�erential equations consists in analysis of zeros of the corresponding
characteristic quasi-polynomial. In the case of (3.42) this quasi-polynomial becomes

P (λ) ≡ λ− a− be−λτ − cλe−λτ . (3.43)

This analysis was used in several papers to obtain asymptotic stability conditions for
(3.42) in the pure delayed case (c = 0 - see the results of Section 3.1.1 and 3.2.1) as well
as in the neutral case (c 6= 0). While the case |c| > 1 easily implies instability of (3.42),
the case |c| < 1 is closely related to stability investigations of (3.12). It is well-known
that the asymptotic stability property for (3.12) can be equivalently expressed as

<(λ) ≤ δ < 0 for a real scalar δ and any zero λ of (3.43) . (3.44)

We recall, that using this fact, descriptions of the exact stability region for (3.12) are
known either in the form of parametric curves de�ning the stability boundary or directly
in the form of explicit conditions on a, b and τ (for their precise formulation see Section
3.2.1). For other types of stability conditions we refer to the recent paper by Huang [30].
The description of the stability boundary via parametric curves is convenient especially
for two-parameter equations, because it enables to depict the stability picture in the plane
of these parameters. However, considering a multi-parameter equation, an explicit system
of conditions seems to be more useful. In this section, we utilize such a system.

The case |c| = 1 turns out to be the most problematic in stability analysis of (3.42)
(sometimes it is called the asymptotically critical case). More precisely, if |c| = 1 and
a + |b| < 0 then all the zeros of (3.43) have negative real parts (see e.g. Freedman
and Kuang [18]), but as observed by Gromova in [19], there always exists a sequence
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of zeros of (3.43) tending to the imaginary axis. Consequently, the condition (3.44),
required in asymptotic stability analysis of the pure delayed case, is not satis�ed. On this
account, some authors involve into the exact stability set Σ∗τ only cases corresponding to
the condition |c| < 1, regarding it as the necessary condition for the asymptotic stability
of (3.42) (see, e.g. Theorem 7.7.1 of [39] and its proof). However, such a description of
Σ∗τ is not precise. Based on the paper by Freedman and Kuang [18], the stability set Σ∗τ
can be described via the following necessary and su�cient conditions for the asymptotic
stability of (3.42).

Theorem 3.15 (Theorem 2.1 in [8]). A triplet (a, b, c) belongs to Σ∗τ if and only if either

a ≤ b < −a, |c| < 1 , (3.45)

or
a+ |b| < 0, |c| = 1 , (3.46)

or
|a|+ b < 0, |c| < 1, τ < τ ∗ , (3.47)

where

τ ∗ =

(
arccos

a− bc
ac− b

)/(b2 − a2

1− c2

) 1
2

. (3.48)

Proof. The prevailing part of this assertion is covered by Theorem 3.1 of [18] and con-
secutive discussions. It remains to dispose with some subcases corresponding to the
asymptotically critical case |c| = 1, which are in [18] either omitted (a > −b sgn c and
a = b sgn c < 0), or their proof seems to be incomplete (a+ |b| < 0).

First we analyse the subcases a > −b sgn c and a = b sgn c < 0. Since P (0) = −a− b
and P (λ) → ∞ as λ → ∞, the polynomial (3.43) has a positive real zero if a + b > 0,
which immediately yields instability of (3.42) in such a case. Consequently, regarding the
case c = 1, it is enough to prove that if a = b < 0 then (3.42) is not asymptotically stable.
Doing this, we show that (3.43) has a purely imaginary zero λ = iv whenever a = b < 0.
Substituting this into (3.43) we get

iv − a− ae−ivτ − ive−ivτ = 0 .

Equating real and imaginary parts we obtain two equations for a and v. Both these
equations are equivalent to

a = −v tan (vτ/2) . (3.49)

Since the right-hand side of (3.49) is a continuous bijection of (0, π/τ) onto (−∞, 0), we
have that for any a < 0 there exists v ∈ (0, π/τ) such that (3.49) holds. In other words,
for any a = b < 0 the polynomial (3.43) has a purely imaginary zero, hence (3.42) is not
asymptotically stable.

Further let c = −1. Using the same line of arguments as given above one can show
that (3.42) is not asymptotically stable in the cases a + b > 0 and a + b = 0. It remains
to discuss the case |a| + b < 0. It is easy to check that, under the conditions c = −1
and |a|+ b < 0, (3.43) has a (unique) negative zero. We show that all imaginary zeros of
(3.43) have non-negative real parts. Put c = −1 in (3.43) and rewrite the corresponding
characteristic equation as

1− λ(1 + e−λτ )

a+ be−λτ
= 0. (3.50)
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Substituting λ = u+ iv, v 6= 0 into (3.50) and separating the imaginary part we arrive at

v(be−τu + aeτu) + (b− a)u sin (τv) + (b+ a)v cos (τv) = 0 . (3.51)

For arbitrary �xed v 6= 0, we consider the left-hand side of (3.51) as a function of variable
u and denote it as fv(u). Let v > 0. Then

fv(0) = v(b+ a)(1 + cos (τv)) ≤ 0

and

d

du
fv(u) = τv(−be−τu + aeτu) + (b− a) sin (τv) > τv(−b)

(
e−τu + eτu − 2

)
> 0

for any u < 0. Consequently, the condition (3.51) is not satis�ed for any u < 0. Anal-
ogously we can dispose with the sign variant v < 0. Summarizing this, the stability
quasi-polynomial (3.43) has imaginary zeros with non-negative real parts, hence (3.42) is
not asymptotically stable.

Finally, we are going to discuss the asymptotically critical case a+|b| < 0, |c| = 1. The
proof procedure performed in [18] revealed that zeros of (3.43) have negative real parts
for all τ > 0 provided (3.46) holds. However, it is shown by Snow [53] that even if all
the zeros of characteristic polynomials of linear autonomous neutral di�erential equations
may have negative real parts, it is still possible to observe instability of such equations. In
particular, this phenomenon may occur when (3.44) is not true. We have already noted
in the introductory part of this section that it is just the case (3.46), when all the zeros of
(3.43) lie in the left half plane, but are asymptotic to the imaginary axis. From this point
of view, the proof procedure based only on the fact that (3.43) has zeros with negative
real parts seems to be insu�cient. Therefore, we give an argumentation con�rming the
asymptotic stability of (3.42) in the critical case (3.46), but not analysing zeros of (3.43).

Let (3.46) hold. The following procedure is due to Junca and Lombard [32], where
the energy method was applied to show the asymptotic stability property for a special
non-linear delay di�erential equation of neutral type. If x(t) is the solution of (3.42), then

(x′(t)− a x(t))2 = (x′(t− τ)± b x(t− τ))2 , (3.52)

where the sign ± corresponds to c = ±1, respectively. One can easily check that

(x′(t)± b x(t))2 = (x′(t)− a x(t))2 − (a2 − b2)(x(t))2 + 2(a± b)x′(t)x(t) .

Substituting this into (3.52) we have

(x′(t)− a x(t))2 − (x′(t− τ)− a x(t− τ))2

+(a2 − b2)(x(t− τ))2 − 2(a± b)x′(t− τ)y(t− τ) = 0 .

If we denote by g(t) an initial function for (3.42), de�ned and di�erentiable in [−τ, 0],
then integration of the last relation over [0, t] yields∫ t

t−τ
(x′(s)− a x(s))2 ds+ (a2 − b2)

∫ t−τ

0

(x(s))2 ds− (a± b)(x(t− τ))2

=

∫ 0

−τ
(g′(s)− a g(s))2 ds− (a2 − b2)

∫ 0

−τ
(g(s))2 ds− (a± b)(g(−τ))2 .
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Since a+ |b| < 0 and t was arbitrary, we get∫ ∞
0

(x(s))2 ds <
1

a2 − b2

∫ 0

−τ
(g′(s)− a g(s))2 ds−

∫ 0

−τ
(g(s))2 ds− 1

a∓ b(g(−τ))2 .

(3.53)

This proves the asymptotic stability property of x(t) under the condition (3.46).

Remark 3.16. (i) The conditions (3.45)�(3.46) describe the delay-independent stability
region for (3.42), i.e. the set of all real triplets (a, b, c) such that the solution x(t) of (3.42)
tends to zero as t → ∞ for all lags τ > 0. We emphasize that this delay-independent
stability region involves also the asymptotically critical case (3.46). One can observe its
certain speci�c property in the frame of this region, namely the fact that the solution
x(t) of (3.42) is no longer decaying exponentially due to the lack of (3.44). A certain
information on the decay rate of the solution x(t) in this critical case is provided by the
inequality (3.53).
(ii) The value τ ∗ given by (3.48) de�nes the stability switch for (3.42), i.e. the critical
value of a lag such that, assuming |a|+ b < 0 and |c| < 1, the solution x(t) of (3.42) tends
to zero as t→∞ if and only if τ < τ ∗. The explicit expression of such a value is important
for theoretical as well as practical reasons and it is a subject of current investigations also
for other types of delay di�erential equations (see e.g. Matsunaga [46] and Matsunaga
and Hashimoto [47]).
(iii) The problem of necessary and su�cient conditions for the asymptotic stability of
(3.42) was discussed also by Ren [50]. The conclusions presented in this paper seem to
be consistent with ours. Since its content is not generally accessible for language reasons
(and also because of the above mentioned vagueness concerning the asymptotically critical
case), we have preferred to discuss this matter in details.

3.3.2. Discretization of the di�erential equation

For the neutral delay di�erential equation (3.42), we consider merely the Θ-method dis-
cretization. It yields the following recurrence

yn+1 + αyn + βyn−k+1 + γyn−k = 0, n = 0, 1, 2, . . . (3.54)

with

α = −1 + (1−Θ)ah

1−Θah
, β = −Θbh+ c

1−Θah
, γ = −(1−Θ)bh− c

1−Θah
, k = τ/h . (3.55)

We assume Θah 6= 1. By the asymptotic stability region ΣΘ
τ (h) of the Θ-method dis-

cretization of (3.42) we understand the set of all real triplets (a, b, c) for which any solution
yn of (3.54), (3.55) tends to zero as n→∞.

Further, we say that the Θ-method for (3.42) is Nτ(0)-stable if

Σ∗τ ⊂
∞⋂
k=1

ΣΘ
τ (h) , h = τ/k . (3.56)
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3. Delay di�erential equation with constant lag

3.3.3. Numerical stability of the Θ-method discretization and re-

lated issues

We begin this section by discussion on asymptotic stability of the trapezoidal rule dis-
cretization, which is the only Θ-method of the order 2 with interesting stability properties
within the considered class (see the previous sections). Our �rst aim is to describe the
stability region Σ

1/2
τ (h) in the form of necessary and su�cient conditions imposed on

a, b, c, τ and h. Having such a description, we can discuss not only some other signi�cant
properties of the trapezoidal rule, but also come back to the issue of its Nτ(0)-stability,
especially with respect to the asymptotically critical case.

Further, we provide the necessary and su�cient conditions for the asymptotic stability
of (3.54), (3.55) for Θ 6= 1/2, too. Analogous to the trapezoidal rule, we mention also
some consequences following from such a description. These consequences concern only
the case 1

2
< Θ ≤ 1 because the case 0 ≤ Θ < 1

2
is not interesting from the stability

viewpoint.
At the end of this section, we deal with the forward Euler discretization for x′(t) =

b x(t−τ)+c x′(t−τ). Besides the description of its asymptotic stability region, we discuss
also a monotony property with respect to changing h. The results for the particular case
a = 0 have been published in [28].

For given a, b, c, we introduce the symbol

τ̃ 1/2(h) =

(
h arccos

a− bc
|ac− b|

) /(
2 arctan

(
h

2

(
b2 − a2

1− c2

) 1
2

)ω)
, ω = sgn (1− |c|) .

Using this notation we have

Theorem 3.17 (Theorem 3.2 in [8]). A triplet (a, b, c) belongs to Σ
1/2
τ (h) if and only if

one of the following conditions holds:

a ≤ b < −a, |c| < 1 ; (3.57)

a+ |b| < 0, (−1)k+1c = 1 ; (3.58)

|a|+ b < 0, |c| < 1, τ < τ̃ 1/2(h) ; (3.59)

−|a|+ |b| < 0, sgn (a)(−1)kc > 1, τ < τ̃ 1/2(h) . (3.60)

Proof. The trapezoidal rule discretization of (3.42) yields the recurrence (3.54) with

α = −2 + ah

2− ah, β = −bh+ 2c

2− ah , γ = −bh− 2c

2− ah . (3.61)

By Theorem 2.3, we have to analyse conditions (C1)-(C7) with α, β and γ given by (3.61).
We start with (C1) and (C2). Substituting (3.61), we distinguish two cases with

respect to the sign of 2 − ah. While the case 2 − ah < 0 leads to a contradiction, for
2− ah > 0 the conditions (C1), (C2) become

a+ |b| < 0, |c| < 1,

a = b < 0, |c| < 1 ,
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which can be written jointly as (3.57) (we note that the inequality 2− ah > 0 is involved
here implicitly due to a < 0). Similarly, conditions (C3) and (C4) yield

a+ |b| < 0, c = 1 for k odd ,
a+ |b| < 0, c = −1 for k even ,

which is equivalent to (3.58). The delay-independent part of Σ
1/2
τ (h) is complete.

Conditions (C5)�(C7) already contain the restriction on k, hence they de�ne a delay-
dependent part of Σ

1/2
τ (h). First we omit (2.5), substitute (3.61) into the four sign condi-

tions of (C5)�(C7) and similarly to the delay-independent part we obtain

|a|+ b < 0, |c| < 1, 2− ah > 0, k is arbitrary , (3.62)

−|a|+ |b| < 0, sgn (−a) c > 1, sgn (−a) (2− ah) > 0, k is odd

and

−|a|+ |b| < 0, sgn (a) c > 1, sgn (−a) (2− ah) > 0, k is even ,

respectively. Of course, the last two relations can be captured jointly as

−|a|+ |b| < 0, sgn (a)(−1)kc > 1, sgn (−a) (2− ah) > 0, k is arbitrary. (3.63)

Now we discuss the form of (2.5). Using (3.61) we can rewrite it as

τ arccos
4(1− c2) + (a2 − b2)h2

|4(1− c2)− (a2 − b2)h2| < h arccos
a− bc
|b− ac| . (3.64)

The left-hand side of (3.64) can be treated by use of the relation

arccos s = 2 arctan
(1− s2)1/2

1 + s
, −1 < s ≤ 1 , (3.65)

which results either in

2τ arctan

(
h

2

(
b2 − a2

1− c2

) 1
2

)
if 4(1− c2)− (a2 − b2)h2 > 0 ,

or in

2τ arccot

(
h

2

(
b2 − a2

1− c2

) 1
2

)
if 4(1− c2)− (a2 − b2)h2 < 0 .

Obviously, 4(1 − c2) − (a2 − b2)h2 > 0 if (3.62) holds, and 4(1 − c2) − (a2 − b2)h2 < 0
if (3.63) holds. Then, after some simple calculations, we get that (3.64) is equivalent to
τ < τ̃ 1/2(h).

Finally, we show that the sign conditions involving the term 2−ah in (3.62) and (3.63)
are super�uous if we consider (3.62) and (3.63) along with τ < τ̃ 1/2(h). Doing this, we
use again (3.65) to transform the right-hand side of (3.64) into
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2h arctan

(
(b+ a)(1− c)
(b− a)(1 + c)

) 1
2

if b− ac < 0 ,

or into

2h arccot

(
(b+ a)(1− c)
(b− a)(1 + c)

) 1
2

if b− ac > 0 .

Note that b − ac < 0 if |a| + b < 0, |c| < 1 or −|a| + |b| < 0, sgn (a)c > 1, whereas
b − ac > 0 if −|a| + |b| < 0, sgn (−a)c > 1. Now let (3.62) hold. Since the condition
2 − ah > 0 is trivial if a ≤ 0, in the sequel we consider only the case a > 0. Using the
previous calculations we can rewrite (3.64) as

2τ arctan

(
h

2

(
b2 − a2

1− c2

) 1
2

)
< 2h arctan

(
(b+ a)(1− c)
(b− a)(1 + c)

) 1
2

.

A necessary condition for the validity of this relation for a given h is

h

2
|b− a| < |1− c| .

Since |a|+ b < 0 and |c| < 1, it is equivalent to

2− ah > 2c− bh .

On the other hand, for a > 0 it holds

2c− bh > ah− 2 .

Comparing the last two relations we get that 2 − ah > 0. In other words, if 2 − ah < 0
then τ < τ̃ 1/2(h) does not hold for a given h.

Analogously, it can be proved that the condition sgn (−a) (2− ah) > 0 is super�uous
in (3.63) provided τ < τ̃ 1/2(h). Thus, we have fully described the delay-dependent part
of Σ

1/2
τ (h) and the proof is complete.

In Figure 3.3 and Figure 3.4 we illustrate Σ
1/2
τ (h) for a �xed parameter c. Figure 3.3

depicts this region in the case |c| > 1, which is described by (3.60). In the left part, we
can see Σ

1/2
1 (1/2) for c = −1.1, while the right part corresponds to Σ

1/2
1 (1/2) for c = 1.1.

Since the underlying di�erential equation is not asymptotically stable for any |c| > 1,
these regions do not have their continuous counterparts. In Figure 3.4 we illustrate the
case |c| < 1. The line a − b = 0 divides the delay-dependent and independent parts.
While the delay-independent part (above this line) is common for both Σ∗τ and Σ

1/2
τ (h),

the delay-dependent part (below this line) is larger for Σ
1/2
τ (h) (Σ∗τ is restricted by the

dashed curve). Note the resemblance of the stability region Σ
1/2
τ (h) for |c| < 1 to the

stability region S1/2
τ (h) (see Figure 3.2). The case |c| = 1 is discussed below.

Remark 3.18. Theorem 3.17 can be taken for a direct discrete counterpart to Theorem
3.15. In particular, the value τ̃ 1/2(h) de�nes the stability switch for (3.54), (3.61) as a
discrete analogue of the value τ̃ ∗ given by (3.48). One can easily check that

τ̃ 1/2(h)→ τ̃ ∗ as h→ 0 .
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Figure 3.3: Stability regions Σ
1/2
1 (1/2) for c = −1.1 (the left part) and c = 1.1 (the right

part)
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Figure 3.4: Stability regions Σ
1/2
1 (1/3) and Σ∗1 for c = −0.5

Later we show that this convergence is monotonous. Therefore, it might be natural to
expect that Σ

1/2
τ (h) becomes Σ∗τ as h → 0. However, a more detailed insight shows that

this is not true. The problem appears at a part of the stability boundary correspond-
ing to the asymptotically critical case |c| = 1. More precisely, triplets (a, b, c) satisfying
(3.46) belong to the exact stability region Σ∗τ due to Theorem 3.15, but their involve-
ment to Σ

1/2
τ (h) is restricted by the additional requirement (−1)k+1c = 1 (see Theorem

3.17). Its ful�lment depends on parity of k, hence the limit as h → 0 cannot be consid-
ered. Moreover, this fact has another consequence concerning the property (3.56) de�ning
Nτ(0)-stability of the numerical method. In view of the previous discussion, this property
cannot be obviously satis�ed. It implies

Corollary 3.19. The trapezoidal rule is not Nτ(0)-stable.

This conclusion does not agree with the existing results on this topic (see e.g. Theorem
5.2 of [21]). The explanation of this discrepancy is clear. Assertions con�rming Nτ(0)-
stability of the trapezoidal rule utilize the description of the exact stability region Σ∗τ
involving only triplets (a, b, c) with |c| < 1. However, as pointed out in Theorem 3.15,
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the triplets (a, b, c) satisfying (3.46) belong to Σ∗τ as well. Although they are lying on the
boundary of Σ∗τ , a rigorous approach to the de�nition of Nτ(0)-stability yields the above
mentioned conclusion. In this sense, the Θ-method for the neutral equation (3.42) is not
Nτ(0)-stable for any 0 ≤ Θ ≤ 1.

In this connection, one can observe the following interesting fact. The exact equation
(3.42) is under the condition (3.46) asymptotically stable, but the decay rate of its solu-
tions is only algebraic, not exponential. If we consider its trapezoidal rule discretization
(3.54), (3.61) under the condition (3.46), then considering only the fact that (3.54) is a
linear homogeneous autonomous di�erence equation, we can expect just two possibilities:
this discretization is either asymptotically stable with an exponential decay rate of its
solutions (i.e. it is exponentially stable), or it is not asymptotically stable; nothing "be-
tween" like in the continuous case. Our analysis summarized in Theorem 3.17 shows that
the discretization (3.54), (3.61) in the asymptotically critical case respects, in a certain
sense, this dilemma: it is asymptotically stable for (a, b, c) satisfying (3.46) and k ∈ Z+ if
and only if (−1)k+1c = 1. In such a case this stability is even exponential.

The following example illustrates this dependence of the asymptotic stability property
on parity of k in the critical case c = 1.

Example 3.20. We consider the equation

x′(t) = a x(t) + x′(t− τ), t > 0 ,

x(t) = g(t), −τ ≤ t ≤ 0,
(3.66)

a < 0 < τ , whose thorough stability analysis was performed by Snow in [53]. This analysis
revealed, among others, a rate of approach of the characteristic zeros to the imaginary
axis and described an algebraic decay of the solutions x(t) to zero via the function t−κ (as
t→∞), where κ > 0 depends upon the smoothness of g(t).

The following table presents the numerical solution yn of (3.66) with a = −1 and τ = 1
when applied the trapezoidal rule with k = 2, 3, . . . , 7. Since the characteristic equation of
this discretization becomes

λk+1 +
1− 2k

1 + 2k
λk − 2k

1 + 2k
λ+

2k

1 + 2k
= 0 , (3.67)

one can check by use of (C3) in Theorem 2.3 that all the zeros of (3.67) are located
inside the unit circle for k odd, but considering k even, a simple zero λ = −1 appears.
In our case, this zero is dominating (in the absolute value), hence the numerical solution
yn is eventually oscillatory and |yn| tends to a non-zero �nite limit. These observations
correspond to the theoretical conclusions of Theorem 3.17 and are supported by the data
in Table 3.2 (we set here y0 = · · · = y−k = 1).

Notice also that an exponential rate of convergence of yn to zero becomes smaller with
respect to increasing (odd) k which corresponds to the fact that the decay of the exact
solution x(t) is not exponential.

Theorem 3.17 implies other important properties of Σ
1/2
τ (h). One of them describes

an inclusion property of these stability regions with respect to changing h. This property
was shown in the delayed case c = 0 (see Theorem 3.12) and we con�rm its validity (up
to switches of parity of k) also in the neutral delay case (c 6= 0).
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tn |yn|
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

10 4.4893E-2 6.2780E-2 6.7592E-2 6.9577E-2 7.0594E-2 7.1186E-2
100 5.8824E-2 4.6100E-2 4.2130E-2 5.9877E-3 9.2572E-3 4.6205E-3
1000 5.8824E-2 1.4998E-5 1.5390E-2 9.6526E-3 1.8766E-3 4.7342E-3
5000 5.8824E-2 2.9242E-11 1.5385E-2 1.5357E-3 6.9534E-3 4.6110E-3
10000 5.8824E-2 4.3482E-20 1.5385E-2 8.7120E-5 6.8967E-3 1.0461E-3
15000 5.8824E-2 7.3859E-29 1.5385E-2 3.1290E-6 6.8966E-3 3.5255E-4

Table 3.2: The values of |yn| for a = −1, τ = 1

Theorem 3.21. Let k1 < k2 be arbitrary positive integers of the same parity and let
h1 = τ/k1 > τ/k2 = h2 be corresponding stepsizes. Then

Σ1/2
τ (h1) ⊃ Σ1/2

τ (h2) .

Proof. First we show that if (ã, b̃, c̃) ∈ Σ
1/2
τ (h2) then (ã, b̃, c̃) ∈ Σ

1/2
τ (h1). Since the

conditions (3.57) and (3.58) are independent of h, it is enough to consider the delay-
dependent part of Σ

1/2
τ (h) represented by (3.59) and (3.60). More precisely, we are going

to analyse the inequality τ < τ̃ 1/2(h).
Assume that (ã, b̃, c̃) belongs to the delay-dependent part of Σ

1/2
τ (h2) de�ned by (3.59).

It particularly means that

1

h
arctan

h
2

(
b̃2 − ã2

1− c̃2

) 1
2

 <
1

2τ
arccos

ã− b̃c̃
|ãc̃− b̃|

. (3.68)

Obviously, (ã, b̃, c̃) belongs to the delay-dependent part of Σ
1/2
τ (h1) de�ned by (3.59), if

the last inequality is true also for h1. To prove this, it is enough to show that the function

f̃(s) =
1

s
arctan

(sr
2

)
, 0 < s ≤ τ

is decreasing in s for any r ≥ 0. Then

f̃ ′(s) =
1

s2

(
2sr

4 + s2r2
− arctan

(sr
2

))
.

Obviously, f̃ ′(s) < 0 for all 0 < s ≤ τ if and only if g̃(s) < 0 for all 0 < s ≤ τ , where

g̃(s) =
2sr

4 + s2r2
− arctan

(sr
2

)
0 < s ≤ τ .

It holds g̃(0) = 0 and

g̃′(s) = − 4s2r3

(4 + s2r2)2
< 0, 0 < s ≤ τ .

This implies g̃(s) < 0 for all 0 < s ≤ τ , hence f̃(s) is decreasing in (0, τ〉. In particular,
if (3.68) holds for a given triplet (ã, b̃, c̃) and a given stepsize h2, then (3.68) holds for
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(ã, b̃, c̃) and any stepsize h1 such that h2 < h1 ≤ τ . Consequently, if (ã, b̃, c̃) ∈ Σ
1/2
τ (h2)

then (ã, b̃, c̃) ∈ Σ
1/2
τ (h1).

It remains to show that the set equality Σ
1/2
τ (h1) = Σ

1/2
τ (h2) cannot occur for any

0 < h2 < h1 ≤ τ . Consider a real triplet (ā, b̄, c̄) lying on the delay-dependent stability
boundary of Σ

1/2
τ (h2) and satisfying

|ā|+ b̄ < 0, |c̄| < 1, τ = τ̃ 1/2(h2) .

It follows immediately from the above observed monotony property of f̃(s) that

|ā|+ b̄ < 0, |c̄| < 1, τ < τ̃ 1/2(h1)

for any h1 > h2. Thus (ā, b̄, c̄) ∈ Σ
1/2
τ (h1), whereas (ā, b̄, c̄) 6∈ Σ

1/2
τ (h2).

For the delay-dependent part of Σ
1/2
τ (h2) de�ned by (3.60) is the proof procedure

analogous.

Now, we consider Θ 6= 1/2. We state the necessary and su�cient conditions describing
the asymptotic stability regions. Doing that, we introduce the symbols for given a, b, c
and Θ

τ̃Θ
1 (h) =h arctan

(
(b+ a)(2(1− c) + (1− 2Θ)(a+ b)h)

(b− a)(2(1 + c) + (1− 2Θ)(a− b)h)

)1/2
/

arctan

(
(b2 − a2)h2

(2(1− c) + (1− 2Θ)(a+ b)h)(2(1 + c) + (1− 2Θ)(a− b)h)

)1/2

and

τ̃Θ
2 (h) =h arctan

(
(b+ a)(2(1− c) + (1− 2Θ)(a+ b)h)

(b− a)(2(1 + c) + (1− 2Θ)(a− b)h)

)(−1)k/2
/

arccot

(
(b2 − a2)h2

(2(1− c) + (1− 2Θ)(a+ b)h)(2(1 + c) + (1− 2Θ)(a− b)h)

)1/2

.

Then we can formulate the following conditions with respect to 0 ≤ Θ < 1
2
and 1

2
< Θ ≤ 1.

Theorem 3.22. (a) Let 0 ≤ Θ < 1
2
. A triplet (a, b, c) belongs to ΣΘ

τ (h) if and only if
one of the following conditions holds:

a ≤ b < −a, 2 + (1− 2Θ)ah > |2c− (1− 2Θ)bh|;
a+ |b| < 0, 2 + (1− 2Θ)ah = (−1)k+1 (2c− (1− 2Θ)bh) > 0;

|a|+ b < 0, 2 + (1− 2Θ)ah > |2c− (1− 2Θ)bh|, τ < τ̃Θ
1 (h);

|a| − |b| > 0, |2 + (1− 2Θ)ah| < sgn (a) (−1)k (2c− (1− 2Θ)bh) , τ < τ̃Θ
2 (h) .

(b) Let 1
2
< Θ ≤ 1. A triplet (a, b, c) belongs to ΣΘ

τ (h) if and only if one of the following
conditions holds:

a ≤ b < −a, 2− (2Θ− 1)ah > |2c+ (2Θ− 1)bh|;
a ≥ b > −a, 2− (2Θ− 1)ah < −|2c+ (2Θ− 1)bh|;
|a| − |b| > 0, sgn (a) (2− (2Θ− 1)ah) = sgn (a) (−1)k+1 (2c+ (2Θ− 1)bh) < 0;

|a| − |b| < 0, − sgn (b)(2− (2Θ− 1)ah) > |2c+ (2Θ− 1)bh|, τ < τ̃Θ
1 (h); (3.69)

|a| − |b| > 0, |2− (2Θ− 1)ah| < sgn (a) (−1)k (2c+ (2Θ− 1)bh) , τ < τ̃Θ
2 (h) .
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The proof of both these assertions is a technical modi�cation of that of Theorem 3.17 and
is omitted.

Remark 3.23. If 1
2
< Θ ≤ 1 then ΣΘ

τ (h) involves a subregion de�ned by the conditions
(3.45) and (3.46) independently of τ and h. It particularly implies that, contrary to the
trapezoidal rule case, if (a, b) is a real couple satisfying a+ |b| < 0, then (a, b, 1) ∈ ΣΘ

τ (h)
as well as (a, b,−1) ∈ ΣΘ

τ (h) regardless of parity of k. In other words, (3.54), (3.55)
is asymptotically stable in the critical case |c| = 1 for all possible stepsizes h provided
a+ |b| < 0 and 1

2
< Θ ≤ 1.

In the asymptotically critical case |c| = 1, the stability properties of the Θ-method
(3.54), (3.55) are more favourable for Θ > 1/2 than for Θ = 1/2 (see Remark 3.23). If
|c| < 1, the situation is di�erent in the sense that the condition (3.56), de�ning Nτ(0)-
stability of Θ-methods, holds for Θ = 1/2, but not for Θ > 1/2. More precisely, a
deeper analysis of the behaviour of transcendental curves forming a part of the true and
numerical stability boundary reveals that there exist triplets (a, b, c) ∈ Σ∗τ with c close
to −1 such that (a, b, c) /∈ ΣΘ

τ (τ/2) for any 1/2 < Θ < 1 (see Theorem 4.3 of [21] and a
related discussion).

As a consequence of Theorem 3.22, we can extend this result and specify such a
neighbourhood of c = −1 with respect to the values of Θ, h and τ . To make next steps as
clear as possible, we use a simple geometrical argumentation. In particular, we avoid an
analysis of the transcendental boundary curve τ = τ̃Θ

1 (h) and consider instead the �rst
two inequalities of the condition (3.69). These inequalities guarantee the domain of τ̃Θ

1 ,
but also determine an area, where the corresponding curve τ = τ̃Θ

1 (h) is located.
Let 1

2
< Θ ≤ 1. Since the delay-independent part of Σ∗τ is involved in ΣΘ

τ (h) for any
stepsize h (see Remark 3.23), we analyse the delay-dependent part. For a �xed c ∈ (−1, 1)
and a �xed τ > 0, we consider the (a, b)-plane, where the delay-dependent part of Σ∗τ is
bounded above by the lines a+ b = 0, a− b = 0 and below by the transcendental curve

τ

(
b2 − a2

1− c2

)1/2

− arccos
a− bc
ac− b = 0 . (3.70)

Moreover, P1 = ((1− c)/τ, (c− 1)/τ) is a double point for this stability boundary, i.e. the
point, where the line a+ b = 0 and the curve (3.70) intersect.

Now let Ω be a part of the (a, b)-plane bounded above by the lines a+ b = 0, a− b = 0
and consider the delay-dependent part of ΣΘ

τ (h) restricted to Ω. The analytical description
of this area is given by (3.69). In particular, the second condition of (3.69) implies that
such a delay-dependent part of ΣΘ

τ (h) is bounded below by the line

a− b− 2(1 + c)

(2Θ− 1)h
= 0 , (3.71)

which is parallel to a− b = 0 and orthogonal to a+ b = 0. The lines (3.71) and a+ b = 0
intersect at

P2 =

(
(1 + c)

(2Θ− 1)h
,− (1 + c)

(2Θ− 1)h

)
.

Comparing locations of P1 and P2 at the line a + b = 0, one can obtain an obvious
geometrical conclusion: If ΣΘ

τ (h) ⊃ Σ∗τ then P1 is located above P2 or coincides with P2

(equivalently, h(1−c) ≤ (1+c)τ/(2Θ−1)). In the opposite case, when P1 is located below
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3. Delay di�erential equation with constant lag

P2, we can introduce a non-empty region Σ̃Θ
τ (h), bounded by the lines (3.71), a + b = 0

above and by the curve (3.70) below. Obviously, this region satis�es the property

Σ̃Θ
τ (h) = Σ∗τ \ ΣΘ

τ (h) . (3.72)

Both these cases are depicted in Figure 3.5 and Figure 3.6, where Figure 3.5 illustrates
the case when P1 is located below P2 and Figure 3.6 the opposite one. The dashed curve
in both the �gures indicates a part of the stability boundary of the underlying di�erential
equation (see (3.70)) and the line (3.71) is denoted here as p.

a

b

−1 1 2

−2

−1

1a+ b = 0 a− b = 0 p

τ̃0.751 (1/2) = 1

P2

P1

Σ0.75
1 (1/2)

Σ̃0.75
1 (1/2)

Ω

1

Figure 3.5: Delay-dependent parts of the stability regions Σ0.75
1 (1/2) and Σ∗1 for c = −0.9

a

b

−1 1 2 3

−4

−3

−2

−1

1a+ b = 0 a− b = 0

τ̃0.751 (1/2) = 1

P1

P2

p

1

Figure 3.6: Delay-dependent parts of the stability regions Σ0.75
1 (1/2) and Σ∗1 for c = −0.3

Previous considerations can be summarized in the following

Corollary 3.24. Let 1
2
< Θ ≤ 1 and

c <
(1− 2Θ)h+ τ

(1− 2Θ)h− τ (3.73)
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3. Delay di�erential equation with constant lag

for a given h and τ . Then the set Σ̃Θ
τ (h) is non-empty and, by (3.72), for any (a, b, c) ∈

Σ̃Θ
τ (h) the exact equation (3.42) is asymptotically stable, whereas its Θ-method discretiza-

tion (3.54), (3.55) is not asymptotically stable.

Remark 3.25. The condition (3.73) becomes more restrictive with increasing Θ as well
as with increasing h. In particular, letting h→ 0 we can see that this critical value of c is
tending to −1, which corresponds to the stability condition (3.47) for the exact equation.
On the other hand, in the case of the backward Euler method (Θ = 1), the inequality
(3.73) can be read as

c <
h− τ
h+ τ

,

which particularly implies that for any c < 0 one can �nd (a, b, c) ∈ Σ∗τ and a stepsize
h such that the corresponding backward Euler formula is not asymptotically stable, i.e.
(a, b, c) /∈ Σ1

τ (h) .

Our previous observations extend the discussion performed by Guglielmi in [21]. We
recall that we did not employ here analysis of the transcendental curve τ = τ̃Θ

1 (h), but only
a region, where this curve is situated. On this account, the condition (3.73) is su�cient
for the existence of a non-empty set Σ̃Θ

τ (h), characterized by the property (3.72), but
not necessary. Some additional calculations show the necessity of (3.73) when h = τ .
More precisely, if we restrict to the delay-dependent case |a| + b < 0, |c| < 1, then
(a, b, c) ∈ ΣΘ

τ (τ) if and only if

−2(1 + c) + (2Θ− 1)(a− b)τ < 0 < 1− c+ bτ −Θ(a+ b)τ. (3.74)

This condition follows either from (3.69) with h = τ , or it can be derived directly (the
characteristic polynomial is now quadratic). To prove the necessity of (3.73) when h = τ ,
we assume that c ≥ (Θ − 1)/Θ, i.e. P1 is above P2 (see our geometrical argumentation
in the (a, b)-plane). In this case, the delay-dependent part of ΣΘ

τ (τ) is bounded above by
the lines a+ b = 0, a− b = 0, below by the line (3.71) and right by the line

1− c+ bτ −Θ(a+ b)τ = 0 (3.75)

(see (3.74)). We recall that the exact stability set Σ∗τ is bounded below by the curve
(3.70), hence it remains to compare the locations of this curve and the lines (3.71), (3.75).
Straightforward calculations based on derivatives of the curve (3.70) and both the lines
show that (3.70) is located above (3.71) and (3.75) in the investigated area (the only
intersection of (3.70) and (3.75) is the point P1 on the stability boundary). It implies

Corollary 3.26. Let 1
2
< Θ ≤ 1. Then

Σ∗τ ⊂ ΣΘ
τ (τ) ⇐⇒ c ≥ (Θ− 1)/Θ.

In the last part of this section, we deal with the forward Euler discretization for a
particular case of (3.42), namely

x′(t) = b x(t− τ) + c x′(t− τ), t > 0 . (3.76)

We provide the necessary and su�cient conditions describing its stability region and based
on them we investigate its monotony property with respect to changing stepsize h.

Let us describe its asymptotic stability region via necessary and su�cient conditions
on b, c, τ and h. They can be derived from Theorem 3.22, but they are also a direct
consequence of Corollary 2.5 with β = −c and γ = c− bh.
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3. Delay di�erential equation with constant lag

Corollary 3.27 (Theorem 2.3 in [28]). A real triplet (0, b, c) belongs to Σ0
τ (h) if and only

if

b < 0, |bh− 2c| < 2, τ arccos
2(1− c2) + 2bch− b2h2

2(1 + bch− c2)
< h arccos

2c− bh
2

.

In Theorem 3.2 we have shown the monotony property of stability intervals of forward
Euler discretization for the purely delayed equation (3.1). The analysis of Σ0

τ (h) denies
such a conclusion for the discretization of the neutral equation (3.76).

Theorem 3.28 (Theorem 3.1 in [28]). Let k1 < k2 be arbitrary positive integers and let
h1 = τ/k1 > τ/k2 = h2 be corresponding stepsizes. Then there exist real triplets (0, b1, c1),
(0, b2, c2), (0, b3, c3) such that

(i) (0, b1, c1) /∈ Σ0
τ (h1) and (0, b1, c1) ∈ Σ0

τ (h2)

(ii) (0, b2, c2) ∈ Σ0
τ (h1) and (0, b2, c2) ∈ Σ0

τ (h2)

(iii) (0, b3, c3) ∈ Σ0
τ (h1) and (0, b3, c3) /∈ Σ0

τ (h2)

Proof. First, we recall the form of the stability interval I0
τ (h) of (3.1) (i.e. the case c = 0)

I0
τ (h) =

{
b ∈ R : −2

h
cos

τπ

2τ + h
< b < 0

}
,

for which we have shown that the function de�ning its left endpoint is increasing and
therefore I0

τ (h1) ⊂ I0
τ (h2) ⊂ I∗τ . Moreover, both the inclusions are sharp (see Theorem

3.2). Let b̂ be the left endpoint of I0
τ (h1), i.e.

b̂ = − 2

h1

cos
τπ

2τ + h1

.

Then b̂ ∈ I0
τ (h2) and b̂ /∈ I0

τ (h1). Consequently, (0, b̂, 0) /∈ Σ0
τ (h1) and (0, b̂, 0) ∈ Σ0

τ (h2).
Thus, we have proved (i), where

b1 = − 2

h1

cos
τπ

2τ + h1

and c1 = 0.

Setting h = τ we get

I0
τ (τ) =

{
b ∈ R : −1

τ
< b < 0

}
.

Because of the monotony property of I0
τ (h), it holds (0, b̃, 0) ∈ Σ0

τ (h1) and (0, b̃, 0) ∈ Σ0
τ (h2)

for each b̃ ∈ I0
τ (τ). Consequently, it proves (ii) where b2 ∈ (−1/τ, 0) and c2 = 0.

Further, let us consider c = −1. Then the inequality

τ arccos
2(1− c2) + 2bch− b2h2

2(1 + bch− c2)
< h arccos

2c− bh
2

can be simplify into

−4

h
sin2 πh

2(τ + h)
< b.
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We de�ne
f(h) = −4

h
sin2 πh

2(τ + h)
, 0 < h ≤ τ.

In order to analyse the monotony of f(h), we drop the constraint h = τ/k, k ∈ Z+ and
consider f(h) to be a function of a continuous argument. Then

f ′(h) = −2

h

(
−2

h
sin2 πh

2(τ + h)
+

πτ

(τ + h)2
sin

πh

τ + h

)
.

Obviously, f ′(h) < 0 when

−2sin2 πh

2(τ + h)
+

πτh

(τ + h)2
sin

πh

τ + h
> 0, 0 < h ≤ τ,

or equivalently

tan
πh

2(τ + h)
<

πτh

(τ + h)2
, 0 < h ≤ τ.

Let
g1(h) = tan

πh

2(τ + h)
, g2(h) =

πτh

(τ + h)2
.

We show that g1(h) < g2(h) for some h > 0. Doing this, we investigate their derivatives

g′1(h) =
πτ

2(τ + h)2
cos−2 πh

2(τ + h)
, g′2(h) =

πτ(τ − h)

(τ + h)3
.

It holds g1(0) = g2(0) and

g′1(h) <
2πτ

3(τ + h)2
, 0 ≤ h <

τ

2
.

It implies that g′1(h) < g′2(h) for all h < τ/5. Hence, f(h) is decreasing for 0 < h < τ/5.
The remaining issue is to investigate the behaviour of f(h) for h = τ/k̄, k̄ = 1, 2, 3, 4, 5.
The values of f(h) for such h are computed in the following table.

h τ τ/2 τ/3 τ/4 τ/5
f(h) -2/τ −2/τ −1.757/τ −1.528/τ −1.400/τ

Table 3.3: The values of function f(h) for some particular h

We may conclude that, with the exception of h = τ and h = τ/2, f(h) is decreasing
in h = τ/k, k ∈ Z+. Therefore, by setting

b̄ = − 4

h2

sin2 πh2

2(τ + h2)
, k2 =

τ

h2

> 2

we get (0, b̄,−1) ∈ Σ0
τ (h1) and (0, b̄,−1) /∈ Σ0

τ (h2) for k2 > 2.
To complete the proof we have to �nd a triplet (0, ¯̄b, ¯̄c) such that (0, ¯̄b, ¯̄c) ∈ Σ0

τ (τ) and
(0, ¯̄b, ¯̄c) /∈ Σ0

τ (τ/2). To this purpose we investigate the stability boundary given by

τ arccos
2(1− c2) + 2bch− b2h2

2(1 + bch− c2)
= h arccos

2c− bh
2
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in the neighbourhood of (0,−2/τ,−1), because this point is a common boundary point
for both Σ0

τ (τ) and Σ0
τ (τ/2). Using the implicit di�erentiation formula we get

b′(c) =
τb(bh− 2c) + 2(1− c2) + 2bch

τ [2(1− c2) + bch] + h(1 + bch− c2)
, 4− (2c− bh)2 6= 0, 1 + bch− c2 6= 0.

Setting h = τ we obtain b′(−1) = 1/τ , while for h = τ/2 it holds b′(−1) = 0. Hence, there
exists a point ¯̄c in a left neighbourhood of the value c = −1 such that (0,−2/τ, ¯̄c) ∈ Σ0

τ (τ)
and (0,−2/τ, ¯̄c) /∈ Σ0

τ (τ/2). Thus, we have proved (iii), where for k2 > 2

b3 = − 4

h2

sin2 πh2

2(τ + h2)
and c3 = −1

while for k2 = 2 we have

b3 = −2/τ and c3 = −1− ε,

where ε is a su�ciently small positive number.

The behaviour of Σ0
1(h) is illustrated in the (b, c)-plane in Figure 3.7. The depicted

curves are the asymptotic stability boundaries for di�erent values of the stepsize h. In all
the cases, the stability area is bounded from above by the c-axis.

Figure 3.7: The asymptotic stability regions Σ0
1(h) for a = 0

Remark 3.29. Using formula (3.65), the last relation in Theorem 3.27 can be equivalently
expressed in the form

τ arctan

(
b2h2

(2(1− c) + bh) (2(1 + c)− bh)

)1/2

< h arctan

(
2(1− c) + bh

2(1 + c)− bh

)1/2

,

which can be simpli�ed for h = τ as

b >
c− 1

τ
.

Considering also the remaining conditions of Theorem 3.27 we get the following necessary
and su�cient asymptotic stability condition describing Σ0

τ (τ) in the form

c− 1 < bτ < min(0, 2(1 + c)).
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3. Delay di�erential equation with constant lag

3.4. The equation x′(t) = a x(t) + b1 x(t− τ1) + b2 x(t− τ2)

In this section, we provide an overview of the asymptotic stability results for a delay
di�erential equation with two constant lags.

3.4.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = a x(t) + b1 x(t− τ1) + b2 x(t− τ2), t > 0 , (3.77)

where a, b1, b2, τ1 > 0, τ2 > 0 are real scalars. The asymptotic stability region S∗τ1,τ2 for
(3.77) is then de�ned as the set of all real triplets (a, b1, b2) for which any solution x(t) of
(3.77) tends to zero as t→∞.

The study of the asymptotic stability of (3.77) is based on analysis of zero locations
of its characteristic quasi-polynomial

P (λ) = λ+ a+ b1e−λτ1 + b2e−λτ2 . (3.78)

The equation (3.77) is asymptotically stable if all the zeros λ of P (λ) satisfy

<(λ) ≤ δ < 0 for a real scalar δ . (3.79)

The widely used method to determine the coe�cient space in which (3.79) holds, is
the D-partition. It consists in the determination of hypersurfaces, the points of which
correspond to (3.78) with at least one zero on the imaginary axis. Then, since the zeros of
(3.78) are continuous functions of its coe�cients, the points in each region of D-partition
correspond to (3.78) with the same number of zeros with positive real part. Then, the
region containing only zeros with negative real parts is selected and forms S∗τ1,τ2 .

Such an approach has been used by Levitskaya [42] who considered the case a = 0.
However, because of the complexity of hypersurface description (in this case curves),
the stability domains have been constructed just by means of numerical and graphical
experiments.

A variant of the D-partition method is the τ -decomposition, which involves �rst de-
composing the delay τ -axis into intervals such that within each interval the same stability
character prevails, and then studying the change of stability character as the boundary
points of the intervals are crossed [52].

The combination of the D-partition and τ -decomposition has been used by Ruan and
Wei [52] who investigated (3.77) with a < 0 and b1 = b2. For each a < 0, they de�ned
intervals of coe�cients b1 such that (3.78) has all zeros with negative real part. However,
the determination of the intervals requires to solve of an auxiliary nonlinear equation,
which makes it inconvenient for the asymptotic stability analysis.

The same method have been used also by Maha�y and Busken [48], who studied (3.77)
with τ1 = 1 and τ2 ∈ (0, 1). They introduced the minimum region of stability - i.e region
for which all the zeros of (3.78) have a negative real part independently on τ2. It is given
by the following condition

|b1|+ |b2| < −a .
Further, they observed that the stability regions enlarges signi�cantly for τ2 = 1/`, where
` ∈ Z+. More precisely, it has been shown by graphical and some analytical results, that
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location of S∗τ1,τ2 enlargement depends on parity of `. Further, it seems that if τ2 6= 1/`,
` ∈ Z+, the enlargement is very small comparing to τ2 = 1/`, ` ∈ Z+. However, this
result is based only on graphical experiments.

Summarizing the preceding overview, we may conclude that the asymptotic stability
of (3.77) is an unsolved problem, whose analysis seems to be very di�cult.

3.4.2. Discretization of the di�erential equation

In order to obtain the simplest di�erence equation as numerical approximation of (3.77),
we use the Euler method as a tool of discretization. It yields

yn+1 + αyn + βyn−k1 + γyn−k2 = 0, (3.80)

where α, β, γ are real coe�cients depending on a, b1, b2 and k2 > k1 are suitable positive
integers. A particular case α = −1, which corresponds to Euler discretization of (3.77)
with a = 0, has been investigated by Kipnis and Levitskaya [34] who used the boundary
locus technique, which is a discrete analogue of the D-partition. We recall that (3.80)
with α = −1 is asymptotically stable if and only if its characteristic polynomial

P (λ) = λk2+1 − λk2 + βλk2−k1 + γ

is of a Schur type, i.e. all its zeros are located inside the open unit circle. The boundary
locus technique is based on �nding all curves in (β, γ)-plane, such that their corresponding
P (λ) has at least one zero with modulus equal to one. Such curves divide the plane into
regions which contain same number of zeros with modulus greater than one. The part
of the (β, γ)-plane to which only zeros with modulus less than one belong, is then the
stability region for (3.80). However, Kipnis and Levitskaya performed only the numerical
and graphical experiments, because of the complexity of the resulting curves. The stability
of the same particular case has been investigated also by Györi et al. [24], but under some
speci�c and restrictive assumptions.

Analogously to the continuous case, the asymptotic stability of the discretized equation
is a di�cult task, which has not been answered yet.
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4. Delay differential equation

with infinite lag
In this chapter, we study the delay di�erential equations with in�nite lag. In the �rst

section, we recall known results for the pantograph equation. The second section provides
the generalization of these results for a delay di�erential equation with a general lag.
Finally, in the third section we investigate the delay di�erential equations with several
lags. The results of the second and third section originates from the paper which is now
in a preparation.

4.1. The equation x′(t) = a x(t) + b x(qt)

We begin this chapter with the study of the pantograph equation, which is a typical rep-
resentative of the delay di�erential equations with in�nite lag. We provide a survey of
asymptotic stability results of the di�erential equation involving also an asymptotic esti-
mate of its solution. Unlike for the constant lag case, here we introduce a discretization
on a constrained mesh with a non-constant stepsize which simpli�es the qualitative anal-
ysis of corresponding numerical schemes. The recent results describing the asymptotic
stability region as well as asymptotic behaviour of the numerical solution are presented.

4.1.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = a x(t) + b x(qt), t > 0, (4.1)

where a, b and 0 < q < 1 are real scalars. The asymptotic stability region S∗q for (4.1) is
then de�ned as the set of all real couples (a, b) for which any solution x(t) of (4.1) tends
to zero as t→∞. It is known (see e.g. Kato and McLeod [33]) that S∗q for (4.1) is given
by

S∗q =
{

(a, b) ∈ R2 : |b| < −a
}
,

which yields the necessary and su�cient condition for the asymptotic stability of (4.1).
Furthermore, the analysis of qualitative behaviour performed by Kato and McLeod [33]
and Iserles [31] showed that the solution of (4.1) satis�es

x(t) = O
(
t− logq |b/a|

)
as t→∞, (4.2)

where the constant − logq |b/a| is not improvable.

4.1.2. Discretization of the di�erential equation

In the previous chapter, we have used discretizations on a uniform mesh with a constraint
on its stepsize given by h = τ/k, where τ > 0 was a constant lag of the exact equation
and k a positive integer. By this choice, we have avoided the interpolation of delayed
terms and we obtained the constant coe�cients di�erence equation of the order k +
1. Unfortunately, this approach is not suitable for the delay di�erential equations with
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in�nite lag among which (4.1) also belongs. Considering the uniform grid, the application
of the Θ-method to (4.1) yields a di�erence equation of variable order with non-constant
coe�cients. Moreover, the evaluation of the delayed terms requires a supplementary
interpolation procedures. Therefore, we use a di�erent discretization scheme, which was
proposed and analysed by Liu [44] and Bellen at al. [3] and results in a di�erence equation
of a �xed order.

Let T0 be a �xed positive number. We divide the interval 〈0, T0〉 by p grid points

0 = t0 < t1 < t2 < · · · < tp = T0 .

Further, we build a primary mesh based on the following relation

Tk+1 =
Tk
q
, k = 0, 1, . . .

In this way, we de�ne the primary intervals

Hk = Tk+1 − Tk = T0
1− q
qk+1

, k = 0, 1, . . .

Observe that the primary intervals Hk increases exponentially. Furthermore, we de�ne the
global mesh by partitioning every primary interval into a �xed number m of subintervals
of the same size. We set

hn =
Hb(n−p)/mc

m
=
T0

m

1− q
qb(n−p)/mc+1

n = p, p+ 1, . . . ,

where b(n− p)/mc denotes the integer part of the ratio (n− p)/m.
Setting ` = (n− p) mod m, we de�ne the grid points of the resulting quasi-geometric

mesh as
tn := Tb(n−p)/mc + `hn−1 n = p, p+ 1, . . .

An example of this mesh for q = 2 is depicted in Figure 4.1 (we set the parameters p = 8,
m = 4 and T0 = 1).

0 = t0 1 = tp

T0 T1 T2

2 = tp+m 4 = tp+2m

Figure 4.1: The scheme of quasi-geometric mesh

Note that one of the advantages of this grid consists in the avoidance of the interpo-
lation of the delayed terms due to

qtn = tn−m n = p+m, p+m+ 1, . . .

Using the quasi-geometric mesh, the Θ-method applied to (4.1) yields the recurrence

yn+1 + αyn + βyn−m+1 + γyn−m = 0, n = p+m, p+m+ 1, . . . (4.3)

with

α = −1 + (1−Θ)ahn
1−Θahn

, β = − Θbhn
1−Θahn

, γ = −(1−Θ)bhn
1−Θahn

. (4.4)
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We assume here 1−Θahn 6= 0.
Note that the di�erence equation (4.3), (4.4) is of a �xed order but its coe�cients are

not constant, because we have employed the mesh with a non-constant stepsize. Therefore,
the analysis of the Θ-method discretization for (4.1) cannot be performed in the same way
as for the di�erential equation with a constant delay (3.12), even though the resulting
di�erence equations are seemingly similar (compare (3.15), (3.16) and (4.3), (4.4)).

By the asymptotic stability region SΘ
q,p(m) of the Θ-method discretization of (4.1) we

understand the set of real couples (a, b) for which any solution yn of (4.3), (4.4) tends to
zero as n→∞. We say that the Θ-method for (4.1) is asymptotically stable if it holds

S∗q ⊂
∞⋂
m=1

SΘ
q,p(m) .

4.1.3. Numerical stability of the Θ-methods and related issues

First, we recall the basic result of the Θ-method applied to (4.1) concerning its asymptotic
stability.

Theorem 4.1. The Θ-method applied to (4.1) on the quasi-geometric mesh is asymptot-
ically stable if and only if 1/2 < Θ ≤ 1.

This theorem has been proved by Bellen et al. in [3]. Their result has been extended
by �ermák in [6] who provided the necessary and su�cient conditions describing SΘ

q,p(m)
and derived the following asymptotic estimates of (4.3), (4.4).

Theorem 4.2. Let yn be a solution of (4.3), (4.4), where a, b 6= 0 and 0 < Θ ≤ 1. Then
we distinguish the following cases:

(a) Let |b|Θm ≥ |a|(1−Θ)m. If bΘm + a(Θ− 1)m 6= 0, then

yn = O
(
|b/a| nm

)
as n→∞ . (4.5)

If bΘm + a(Θ− 1)m = 0, then

yn = O
(
n|b/a| nm

)
as n→∞ .

(b) Let |b|Θm < |a|(1−Θ)m. Then there exists a constant η (depending on yn) such that

yn = (η + o(1))

(
Θ− 1

Θ

)n
as n→∞ . (4.6)

Theorem 4.3. Let yn be a solution of (4.3), (4.4), where a, b 6= 0, 1 + ahn 6= 0 for all
n ∈ Z+ and Θ = 0. Then there exists a constant ν (depending on yn) such that

yn = (ν + o(1))
n−1∏
j=0

(1 + ahj) as n→∞ .

The consequence of Theorem 4.2, Theorem 4.3 and their consecutive discussion in [6]
is a description of the SΘ

q,p(m).
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Corollary 4.4. Let 0 < q < 1. A real couple (a, b) belongs to SΘ
q,p(m) if and only if

|b| < |a|, Θ > 1/2 .

We point out that the stability region for the trapezoidal rule is an empty set, which
is in contrast with its application to di�erential equations with a constant lag, for which
we observed the closest resemblance, among the Θ-methods, with the stability regions of
underlying equations. However, it was shown in Remark 3.1 of [3] that any solution yn
of (4.3), (4.4) is bounded if Θ = 1/2 and |b| < |a|. Furthermore, from (4.6) follows that
any solution of (4.3), (4.4) tends to a �nite constant provided Θ = 1/2 and |b| < |a|. In
addition, Corollary 4.3 in [6] provides the following long-time behaviour of trapezoidal
rule on the stability boundary |b| = −a of the exact equation (4.1).

Corollary 4.5. Let Θ = 1/2 and |a| = |b|. Then all solutions yn of (4.3), (4.4) are
bounded if and only if

b+ (−1)ma 6= 0 .

In particular, let a, b be non-zero real scalars and let b = a (b = −a). Then all solutions
of (4.3), (4.4) are bounded if and only if m is even (m is odd), respectively.

Finally, �ermák in [6] investigated the potential of (4.3), (4.4) to retain the asymptotic
estimate (4.2) of the exact solution of (4.1). It was shown, that (4.5) presents exactly the
same asymptotic estimate as it holds for the exact solution of the di�erential equation
(4.1).

4.2. The equation x′(t) = a x(t) + b x(ξ(t))

Our next aim is to extend the results of the previous section to equations where the
delayed argument is given by a general function ξ(t) ∈ C1(〈t0,∞)) satisfying

ξ(t0) = t0 , ξ(t) < t, for t > t0 , lim
t→∞

ξ(t) =∞,
ξ′(t0) < 1 , ξ′(t) > 0, for t ≥ t0 , ξ′(t) is non-increasing for t ≥ t0 .

(4.7)

We introduce a constrained mesh suitable for discretization of such an equation and
determine the asymptotic stability of both the exact and discretized equations. Further,
we provide and compare asymptotic estimates of their solutions.

4.2.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = a x(t) + b x(ξ(t)), t ∈ I = (t0,∞), (4.8)

where a, b are real scalars and ξ(t) is a continuously di�erentiable function on I satisfying
(4.7). The asymptotic stability region S∗ξ for (4.8) is de�ned as the set of all real couples
(a, b) for which any solution x(t) of (4.8) tends to zero as t→∞. To obtain its description,
we �rst recall the result of Heard [26] who studied the asymptotic behaviour of (4.8) using
the Schröder's equation. The Schröder's equation is a functional equation

ϕ(ξ(t)) = qϕ(t), t ∈ 〈t0,∞), (4.9)
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where q ∈ R and ξ(t) is a given function. A study of this equation is given in the book
Kuczma, Choczewski and Ger [38]. Here, we state the result relevant to our further
analysis.

Proposition 4.6. Let ξ(t) be a continuously di�erentiable function on 〈t0,∞) satisfying
(4.7) and let q = ξ′(t0). Then there exists a positive solution ϕ(t) ∈ C1(I) of (4.9) with a
positive and bounded derivative on I such that limt→∞ ϕ(t) =∞.

Proof. The proof of this assertion is covered by Proposition 1 of �ermák [5].

The asymptotic estimate derived by Heard [26] is as follows.

Theorem 4.7. Let a < 0 and q = ξ′(t0). Then the solution x(t) of (4.8) satis�es

x(t) = O
(

(ϕ(t))− logq |b/a|
)

as t→∞, (4.10)

where ϕ(t) is a solution of the Schröder's equation (4.9) with the properties described in
Proposition 4.6.

Moreover, the analysis provided by Heard [26] implies the following necessary and
su�cient condition describing S∗ξ .

Theorem 4.8. Let ξ(t) be a continuously di�erentiable function on I satisfying (4.7). A
real couple (a, b) belongs to S∗ξ if and only if

|b| < −a .

4.2.2. Discretization of the di�erential equation

Similarly to the previous section, the Θ-method discretization of (4.8) on the uniform
grid results in a di�erence equation of variable order with non-constant coe�cients. Since
analysis of such a di�erence equation is a di�cult task, we introduce the following con-
strained grid proposed by Guglielmi and Zennaro [22], which is a generalization of a
quasi-geometric mesh used for the discretization of the pantograph equation (4.1) and
ensures a �xed order of the resulting recurrence.

Let T0 be a �xed positive number. We divide the interval 〈t0, T0〉 by p grid points

t0 < t1 < t2 < · · · < tp = T0 .

Then we build a primary mesh based on the following relation

Tk+1 = ξ−1(Tk), k = 0, 1, . . .

Further, we evenly divide the �rst primary interval 〈T0, T1〉 into �xed number of m subin-
tervals. The division of the subsequent primary intervals is then given by the relation

tn = ξ−1(tn−m), n = p+m, p+m+ 1, . . .

Since ξ′(t) ≤ q̃ = ξ′(t0) < 1 on I, then the stepsize satis�es

hn ≥
hn−m
q̃

, n = p+m, p+m+ 1, . . . (4.11)
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Therefore
lim
n→∞

hn =∞

and, moreover, hn increases exponentially. The resulting mesh is called an almost-
geometric mesh, which is due to property (4.11).

The Θ-method applied to (4.8) on the almost-geometric mesh is formally the same as
for the proportional delay, i.e.

yn+1 + αyn + βyn−m+1 + γyn−m = 0, n = p+m, p+m+ 1, . . . (4.12)

with

α = −1 + (1−Θ)ahn
1−Θahn

, β = − Θbhn
1−Θahn

, γ = −(1−Θ)bhn
1−Θahn

. (4.13)

We assume 1−Θahn 6= 0, too. The di�erence with respect to the proportional case (4.3),
(4.4) consists in a distinct growth of hn.

By the asymptotic stability region SΘ
ξ,p(m) of the Θ-method discretization of (4.8) we

understand the set of real couples (a, b) for which any solution yn of (4.12), (4.13) tends
to zero as n→∞.

We say that the Θ-method for (4.8) is asymptotically stable if it holds

S∗ξ ⊂
∞⋂
m=1

SΘ
ξ,p(m) .

4.2.3. Numerical stability of the Θ-methods and related issues

The asymptotic stability of Θ-methods for (4.8) follows directly from the analysis of more
general equations provided by Guglielmi (see [22] and [23]) and it can be summarized as
follows.

Theorem 4.9. The Θ-method applied to (4.8) on the almost-geometric mesh is asymp-
totically stable if and only if 1/2 < Θ ≤ 1.

However, the precise description of the stability region SΘ
ξ,p(m) as well as the asymp-

totic properties of numerical solution have remained an unsolved problem. We provide
the answer for both these issues. Firstly, we deal with the asymptotics of (4.12), (4.13).

Theorem 4.10. Let yn be a solution of (4.12), (4.13), where a, b 6= 0 and 0 < Θ ≤ 1.
Then we distinguish the following cases:

(a) Let |b|Θm ≥ |a|(1−Θ)m. If bΘm + a(Θ− 1)m 6= 0, then

yn = O
(
|b/a| nm

)
as n→∞ . (4.14)

If bΘm + a(Θ− 1)m = 0, then

yn = O
(
n|b/a| nm

)
as n→∞ .

(b) Let |b|Θm < |a|(1−Θ)m. Then there exists a constant η (depending on yn) such that

yn = (η + o(1))

(
Θ− 1

Θ

)n
as n→∞ .
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Proof. Since (4.12), (4.13) di�ers from (4.3), (4.4) only in the behaviour of the stepsize hn,
the proof of this theorem is analogous to the proof of Theorem 4.2 provided by �ermák
in [6]. The analysis is based on the application of theory of Poincaré di�erence equations.
More precisely, it utilizes Theorem 2.11 and Theorem 2.12 in the case (a), while Theorem
2.13 is employed in the case (b). The key assumption for both cases is validity of (2.20),
which follows from convergence of the sum

∑∞
n=1 1/hn ensured due to (4.11).

Theorem 4.11. Let yn be a solution of (4.12), (4.13), where a, b 6= 0, 1 + ahn 6= 0 for
all n ∈ Z+ and Θ = 0. Then there exists a constant ν (depending on yn) such that

yn = (ν + o(1))
n−1∏
j=0

(1 + ahj) as n→∞ .

Proof. Analogously to the proof of Theorem 4.10, the proof this theorem is only a simple
modi�cation of the proof for the proportional delay provided in [6] and therefore it is
omitted.

The following description of the asymptotic stability region SΘ
ξ,p(m) follows from The-

orem 4.10 and Theorem 4.11 due to fact that their asymptotic estimates cannot be im-
proved. More precisely, there exists solutions of (4.12), (4.13) asymptotically equivalent
to |b/a| nm , n|b/a| nm , (Θ− 1)/Θ and

∏n−1
j=0 (1 + ahj).

Corollary 4.12. Let ξ(t) be a continuously di�erentiable function on I satisfying (4.7).
Then a real couple (a, b) belongs to SΘ

ξ,p(m) if and only if

|b| < |a|, Θ > 1/2 .

The remaining issue is the comparison of the asymptotic estimates of the exact and
discretized equation. First, we observe that

ϕ(tn) = q−b(n−p)/mcϕ(ξ(−b(n−p)/mc)(tn)) = q−b(n−p)/mcϕ(tp+j)

for some j = 0, 1, . . . ,m− 1. Thus,

q
p−m
m ϕ(tp+j) q

− n
m ≤ ϕ(tn) ≤ q

p
m ϕ(tp+j) q

− n
m .

Then, we can rewrite (4.14) as

yn = O
((
qlogq(|b/a|)

) n
m

)
= O

((
q−

n
m

)− logq(|b/a|)
)

= O
(

(ϕ(tn))− logq(|b/a|)
)

as n→∞.

We summarize previous considerations in the following

Corollary 4.13. Let a, b 6= 0, 0 < Θ ≤ 1, |b|Θm ≥ |a|(1−Θ)m and bΘm+a(Θ−1)m 6= 0.
Then the solution yn of (4.12), (4.13) satis�es

yn = O
(

(ϕ(tn))− logq(|b/a|)
)

as n→∞, (4.15)

which presents exactly the same estimate of the numerical solution as (4.10) yields for the
exact solution.
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4.3. The equation x′(t) = a x(t) +
∑r

i=1 bi x(ξi(t))

In this section, we deal with a delay di�erential equation which involves several terms
with unbounded lags. A problem of this type has been studied by Liu and Li [43] for
the multipantograph equation, i.e. equation with several proportional delays. We assume
the case of general unbounded lags and derive the conditions ensuring the asymptotic
stability of the exact as well as discretized equation. Moreover, we provide an asymptotic
estimate of the exact solution, too. Finally, we present necessary and su�cient conditions
describing the stability region of a discretized equation with two (iterated) delays, includ-
ing the asymptotic estimates of its solution for a speci�c sign variant of coe�cients of the
di�erential equation.

4.3.1. Asymptotic stability of the di�erential equation

We consider the delay di�erential equation

x′(t) = a x(t) +
r∑
i=1

bi x(ξi(t)), t ∈ I = (t0,∞), (4.16)

where a, bi are real scalars, r is a positive integer and ξi(t) are functions from the set Fξ
given by

Fξ = {ξ̃(t) : ξ̃(t) ≡ ξj(t), j = 1, 2, . . . } ,
where ξ(t) is a continuously di�erentiable function on I satisfying (4.7) and the symbol
ξj(t) means the j-th iterate of ξ(t).

Analogously to the case r = 1, we de�ne the asymptotic stability region S∗ξ for (4.16)
as the set of all real r+1-tuples (a, b1, b2, . . . , br) for which any solution x(t) of (4.16) tends
to zero as t → ∞. To determine S∗ξ , we �rstly provide the asymptotic estimate of the
solution. Similarly to the case r = 1, we introduce the system of Schröder's equations and
recall assertion discussing existence of its simultaneous solution which is due to �ermák
[5].

Proposition 4.14. Let ξi(t) ∈ Fξ and qi = ξ′i(t0). Then the system of Schröder's equa-
tions

ϕ(ξi(t)) = qiϕ(t), i = 1, 2, . . . , r (4.17)

has a positive solution ϕ(t) ∈ C1(I) with a positive and bounded derivative on I such that
limt→∞ ϕ(t) =∞.

Remark 4.15. Let ξ′(t0) = q. Since ξi(t) ∈ Fξ, then qi = qwi where wi ∈ Z+ denotes the
number of iterations required to obtain ξi(t) from the generating function ξ(t).

Theorem 4.16. Let a < 0 and qi = ξ′i(t0). Then the solution x(t) of (4.16) satis�es

x(t) = O ((ϕ(t))κ) as t→∞, (4.18)

where ϕ(t) is a solution of the system of Schröder's equations (4.17) with the properties
described in Proposition 4.14 and κ ∈ R is a solution of the auxiliary equation

r∑
i=1

|bi|qiκ = −a . (4.19)
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Remark 4.17. Note that f(t) ≡ ∑r
i=1 |bi|(qi)t, qi = ξ′i(t0) is a continuous bijection of

(−∞,∞) onto (0,∞). Therefore, the auxiliary equation (4.19) has exactly one solution κ.
In particular, for r = 1 (4.19) becomes |b|qκ = −a, solution of which is κ = − logq |b/a|.
This coincides with the result given by Theorem 4.7.

The proof procedure of Theorem 4.16 originates from that in [5]. We present it here
in a full version.

Proof. The function ϕ(t) is positive for all t > t0. Then the substitution

s = logϕ(t), z(s) = (ϕ(t))−κx(t), (4.20)

where t > t0, converts (4.16) into the form

z′(s) = (av′(s)− κ)z(s) +
r∑
i=1

biqi
κv′(s)z(s− ui) ,

where s ∈ J = 〈s0,∞), s0 > logϕ(t0), v(s) ≡ ϕ−1(es) on J and ui = log q−1
i for i =

1, 2, . . . , r. Then

d

ds

[
eκs−av(s)z(s)

]
=

r∑
i=1

biqi
κv′(s)eκs−av(s)z(s− ui) . (4.21)

Due to the boundedness of ϕ′(t) on I,

1

v′(s)
=
ϕ′(v(s))

ϕ(v(s))
= O

(
e−s
)

as s→∞. (4.22)

Now we can choose d0 ≥ s0 such that κ−av′(s) > 0 for every s ≥ d0. Put u = min(ui, i =
1, 2, . . . , r) and divide J into intervals J` = 〈d`−1, d`〉, where d` = d0 + `u. Further, set
Z` = max{|z(s)|, s ∈ ∪`k=1Jk}, ` = 1, 2, . . . . If we choose any s∗ ∈ J`+1, then we can
integrate (4.21) over 〈d`, s∗〉 to obtain

eκs−av(s)z(s)|s∗d` =
r∑
i=1

∫ s∗

d`

biqi
κv′(s)eκs−av(s)z(s− ui) ds .

Then

z(s∗) = eκ(d`−s∗)+a(v(s∗)−v(d`))z(d`) + e−κs
∗+av(s∗)

r∑
i=1

∫ s∗

d`

biqi
κv′(s)eκs−av(s)z(s− ui) ds.

Consequently,

|z(s∗)| ≤ Z` eκ(d`−s∗)+a(v(s∗)−v(d`)) + Z` e−κs
∗+av(s∗)

∫ s∗

d`

r∑
i=1

|bi|qiκv′(s)eκs−av(s) ds

= Z` eκ(d`−s∗)+a(v(s∗)−v(d`)) − Z` e−κs
∗+av(s∗)

∫ s∗

d`

av′(s)eκs−av(s) ds

(4.23)
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due to (4.19). We estimate the last integral as∫ s∗

d`

(κ− av′(s))eκs−av(s)ds−
∫ s∗

d`

κeκs−av(s)ds ≤ eκs−av(s)|s∗d` + |κ|
∫ s∗

d`

eκs−av(s)ds. (4.24)

Rewrite the last term of (4.24) as

|κ|
∫ s∗

d`

eκs−av(s)ds =

∫ s∗

d`

|κ|
κ− av′(s)

d

ds
eκs−av(s)ds .

Notice that due to (4.22)

|κ|
κ− av′(s) = O

(
e−s
)

as s→∞.

Then ∫ s∗

d`

|κ|
κ− av′(s)

d

ds
eκs−av(s)ds ≤ N

∫ s∗

d`

e−s
d

ds
eκs−av(s)ds ≤ Ne−d` eκs−av(s)|s∗d`

for a suitable N > 0. Consequently,

−
∫ s∗

d`

av′(s)eκs−av(s)ds ≤ eκs−av(s)|s∗d`(1 +Ne−d`) .

Substituting this back into (4.23) we obtain

|z(s∗)| ≤ Z`e
κ(d`−s∗)+a(v(s∗)−v(d`)) + Z`e

av(s∗)−κs∗ eκs−av(s)|s∗d`(1 +Ne−d`) ≤ Z`(1 +Ne−d`) .

Since s∗ has been chosen arbitrary it holds

Z`+1 ≤ Z`(1 +Ne−d`) ≤ Z1

∏̀
k=1

(1 +Ne−dk), ` = 1, 2, . . .

Letting `→∞ we can see that the in�nite product
∞∏
k=1

(1 +Ne−dk)

converges. This implies that Z` is bounded as ` → ∞, hence z(s) is bounded as s →
∞. Substituting this back into (4.20) we obtain the asymptotic property (4.18). This
completes the proof.

Obviously, the rate of decay κ is negative whenever
∑r

i=1 |bi| < −a. Consequently, we
can state the following condition for the asymptotic stability of (4.16).

Corollary 4.18. Let a < 0 and ξ(t) be a continuously di�erentiable function on I satis-
fying (4.7). Then a real r + 1-tuple (a, b1, b2, . . . , br) belongs to S∗ξ if

r∑
i=1

|bi| < −a . (4.25)

This result is in agreement with results of Liu and Li [43], who derived the su�cient
conditions for (4.16) with ξi(t) = qit, 0 < qi < 1, i = 1, 2, . . . , r using the Dirichlet series
solution. However, their approach is not suitable for a general lags ξ(t). Moreover, the
result of Liu and Li [43] does not provide the asymptotic estimate of the solution.
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4.3.2. Discretization of the di�erential equation

Analogously to the previous section, we use the almost-geometric mesh generated by
the function ξ(t). Then, by application of the Θ-method discretization, we obtain the
di�erence equation

yn+1 +α yn+
r∑
i=1

(βi yn−wim+1 + γi yn−wim) = 0, n = p+wrm, p+wrm+1, . . . (4.26)

where

α = −1 + (1−Θ)ahn
1−Θahn

, βi = − Θbihn
1−Θahn

, γi = −(1−Θ)bihn
1−Θahn

(4.27)

and wi ∈ Z+ denotes the number of iterations required to obtain ξi(t) from the generating
function ξ(t). We assume wr = max(wi, i = 1, 2, . . . , r) and 1−Θahn 6= 0.

By the asymptotic stability region SΘ
ξ,p(m) of the Θ-method discretization of (4.8) we

understand the set of real r+1-tuples (a, b1, b2, . . . , br) for which any solution yn of (4.26),
(4.27) tends to zero as n→∞.

We de�ne the asymptotic stability of the Θ-method for (4.16) with respect to stability
condition (4.25) derived in Corollary 4.18 for (4.16). Denote

S =

{
(a, b1, b2, . . . , br) ∈ Rr+1 :

r∑
i=1

|bi| < −a
}
.

We say that the Θ-method for (4.16) is asymptotically stable if it satis�es

S ⊂
∞⋂
m=1

SΘ
ξ,p(m) .

4.3.3. Numerical stability of the Θ-methods and related issues

In this section, we �rst provide the conditions ensuring the asymptotic stability of (4.26),
(4.27). Based on them, we determine the asymptotic stability of the Θ-methods for (4.16).

Theorem 4.19. Let ξ(t) be a continuously di�erentiable function on I satisfying (4.7).
Then a real r + 1-tuple (a, b1, b2, . . . , br) belongs to SΘ

ξ,p(m) if

r∑
i=1

|bi| < |a|, Θ > 1/2 . (4.28)

Proof. The recurrence (4.26), (4.27) is of a Poincaré type, which means that it is a linear
di�erence equation whose non-constant coe�cients have �nite limits. Then, by Theorem
2.14, we have that (4.26), (4.27) is asymptotically stable if the limiting equation

yn+1 +
1−Θ

Θ
yn +

r∑
i=1

(
bi
a
yn−wim+1 +

bi(1−Θ)

aΘ
yn−wim

)
= 0
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is asymptotically stable. This is equivalent to the problem whether all zeros of the corre-
sponding characteristic polynomial

P (λ) = λwrm+1 +
1−Θ

Θ
λwrm +

r∑
i=1

(
bi
a
λ(wr−wi)m+1 +

bi(1−Θ)

aΘ
λ(wr−wi)m

)

=

(
λ+

1−Θ

Θ

)(
λwrm +

r∑
i=1

bi
a
λ(wr−wi)m

) (4.29)

are located inside the unit circle. Obviously, P (λ) has wrm + 1 zeros, where λ1 = Θ−1
Θ

and λ2, λ3, . . . , λwrm+1 are the zeros of the polynomial

P̃ (λ) = λwrm +
r∑
i=1

bi
a
λ(wr−wi)m .

Using Theorem 2.2 we get that |λj| < 1, j = 2, 3, . . . , wrm+ 1 if

r∑
i=1

∣∣∣∣bia
∣∣∣∣ < 1 .

Since |λ1| < 1 for Θ > 1/2, we may conclude that (4.28) ensures the asymptotic stability
of (4.26), (4.27).

Theorem 4.19 immediately implies the asymptotic stability of Θ-methods for (4.16).

Corollary 4.20. The Θ-method applied to (4.16) on the almost-geometric mesh is asymp-
totically stable if and only if 1/2 < Θ ≤ 1.

Note, that in order to analyse the stability of (4.26), (4.27) we have to determine
whether the characteristic polynomial (4.29) is of a Schur type. As it was mentioned in
Chapter 2, to provide the explicit necessary and su�cient conditions guaranteeing this
property is in general a di�cult task. However, we can formulate the necessary and
su�cient conditions describing SΘ

ξ,p(m) for some particular cases where the characteristic
polynomial is of an appropriate type.

4.3.4. Some results on numerical stability of the equation

x′(t) = a x(t) + b1 x(ξ(t)) + b2 x(ξw(t))

In the particular case with just two iterated delayed terms, we provide the necessary
and su�cient conditions describing the appropriate asymptotic stability region SΘ

ξ,p(m).
Moreover, in such a case we present some asymptotic estimates of the numerical solution
and compare it with the corresponding estimate of the exact solution.

Let us consider the di�erential equation

x′(t) = a x(t) + b1 x(ξ(t)) + b2 x(ξw(t)), t ∈ I = (t0,∞), (4.30)

where a, b1, b2 are real scalars, ξ(t) ∈ C1(I) satis�es (4.7) and w is a suitable integer. The
Θ-method discretization of (4.30) on the almost-geometrical mesh yields the recurrence

yn+1 + α yn + β1 yn−m+1 + γ1 yn−m + β2 yn−wm+1 + γ2 yn−wm = 0, (4.31)
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n = p+ wm, p+ wm+ 1, . . . , where

α = −1 + (1−Θ)ahn
1−Θahn

, βi = − Θbihn
1−Θahn

, γi = −(1−Θ)bihn
1−Θahn

(4.32)

for i = 1, 2.
To simplify the description of SΘ

ξ,p(m) for (4.31), (4.32), we introduce the symbols

W1 = arccos
a2 − b2

1 − b2
2

2b1b2

/
arccos

b2
2 − b2

1 − a2

2ab1

,

W2 = arccos
(−1)w(a2 − b2

1 − b2
2)

2b1b2

/
arccos

a2 + b2
1 − b2

2

2ab1

,

where a, b1, b2 are given parameters.

Theorem 4.21. Let ξ(t) be a continuously di�erentiable function on I satisfying (4.7).
A triplet (a, b1, b2) belongs to SΘ

ξ,p(m) for (4.31), (4.32) if and only if Θ > 1/2 and one of
the following conditions holds:

|b1|+ |b2| < |a|; (4.33)

b2 − b1 = a, −|a| < sgn (a) b1 < 0; (4.34)

b1 + (−1)wb2 = a, 0 < sgn (a) b1 < |a|; (4.35)

|a+ b1| < sgn (a) b2, sgn (a)(b1 + b2) < |a|, (w − 1) < W1; (4.36)

|a− b1| < (−1)w+1 sgn (a) b2, sgn (a)((−1)w+1b2 − b1) < |a|, (w − 1) < W2. (4.37)

Proof. Since (4.31), (4.32) is a Poincaré di�erence equation, it can be rewritten as

Sn +Nn = 0, n = p+m, p+m+ 1, . . .

where Sn is the stationary part containing the limiting (constant coe�cient) terms, namely

Sn = yn+1 +
1−Θ

Θ
yn +

b1

a
yn−m+1

b1(1−Θ)

aΘ
yn−m +

b2

a
yn−wm+1 +

b2(1−Θ)

aΘ
yn−wm

and Nn is the non-stationary part of (4.31), (4.32), i.e

Nn = − 1

Θ(1−Θahn)
yn −

b1

a(1−Θahn)
yn−m+1 −

b1(1−Θ)

aΘ(1−Θahn)
yn−m

− b2

a(1−Θahn)
yn−wm+1 −

b2(1−Θ)

aΘ(1−Θahn)
yn−wm .

(4.38)

In order to analyse its asymptotic stability it is su�cient to do so for its limiting
equation Sn = 0 (see Theorem 2.14). The problem of the asymptotic stability of Sn = 0
is equivalent to problem whether its characteristic polynomial

P (λ) = λwm+1 +
1−Θ

Θ
λwm +

b1

a
λ(w−1)m+1 +

b1(1−Θ)

aΘ
λ(w−1)m +

b2

a
λ+

b2(1−Θ)

aΘ

=

(
λ+

1−Θ

Θ

)(
λwm +

b1

a
λ(w−1)m +

b2

a

) (4.39)
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is of a Schur type, i.e. whether it has all the zeros inside the unit circle. Clearly, λ1 = Θ−1
Θ

is a zero of P (λ) and it implies the instability of (4.31), (4.32) for Θ ≤ 1/2. The remaining
zeros of P (λ) are zeros of

P̃ (λ) = λwm +
b1

a
λ(w−1)m +

b2

a
. (4.40)

Substituting σ = λm into (4.40), we arrive at

P̄ (σ) = σw +
b1

a
σw−1 +

b2

a
. (4.41)

To determine the necessary and su�cient conditions ensuring that P̄ (σ) is of a Schur type
we employ Theorem 2.3 with parameters α, β, γ and k given by

α =
b1

a
, β = 0, γ =

b2

a
, k = w − 1 . (4.42)

Substituting (4.42) into (C1) and (C2), we arrive at (4.33), (4.34), respectively. Con-
ditions (C3) and (C4) can be jointly written as (4.35). The condition (2.5) with (4.42)
yields

w − 1 < arccos
b2

1 + b2
2 − a2

2|b1b2|
/

arccos
a2 + b2

1 − b2
2

2|ab1|
.

Then, it is a simple matter to show that (C5) and (C6), (C7) imply (4.36) and (4.37),
respectively.

Therefore conditions (4.33)�(4.37) ensures that all the zeros σ̄ of P̄ (σ) satisfy |σ̄| < 1.
Then equivalently |λj| < 1 for all the zeros λj, j = 2, 3, . . . , wm + 1 of (4.39), which
concludes the proof.

In order to discuss the possible analogy of the asymptotic estimates of the exact and
discretized equation, we �rst reformulate the auxiliary equation (4.19) for (4.30), i.e.

|b1|qκ + |b2|qκw = −a, a < 0, (4.43)

the solution κ of which provides a growth rate of the exact solution. Our aim is to obtain
similar problem formulation as we have for the asymptotic stability of (4.31), (4.32).
Substituting p = q−κ into (4.43) gives

R(p) ≡ pw +
|b1|
a
pw−1 +

|b2|
a

= 0. (4.44)

Since (4.43) has exactly one real zero (see Remark 4.17), then there exists exactly one
positive zero p̃ of R(p). Note, that κ < 0 (i.e. (4.30) is asymptotically stable ) if p̃ < 1.
Thus, the su�cient condition for the asymptotic stability of (4.30) is equivalent to a con-
dition ensuring that the polynomial R(p) is of a Schur type. We recall that (4.31), (4.32)
is asymptotically stable if Θ > 1/2 and P̄ (σ), given by (4.41), is of a Schur type. Com-
paring (4.44) and (4.41), we observe a close resemblance of the the asymptotic stability
problem of the exact and discretized equation.
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Theorem 4.22. Let yn be a solution of (4.31), (4.32), where a < 0, b1 > 0, b2 > 0,
0 < Θ ≤ 1, q = ξ′(t0), ξ(t) is a function generating the almost-geometric mesh and κ is a
solution of an auxiliary equation

b1 q
κ + b2 q

κw = −a . (4.45)

Then we distinguish the following cases:

(a) Let q−κΘm > (1−Θ)m or m is odd and q−κΘm = (1−Θ)m. Then

yn = O
(
q

−κn
m

)
as n→∞. (4.46)

(b) Let q−κΘm = (1−Θ)m for m even. Then

yn = O
(
nq

−κn
m

)
as n→∞. (4.47)

(c) Let q−κΘm ≥ (1−Θ)m. Then there exists a constant η (depending on yn) such that

yn = (η + o(1))

(
Θ− 1

Θ

)n
as n→∞ . (4.48)

Proof. Since a < 0, b1 > 0 and b2 > 0, then (4.45) coincides with (4.43) and therefore
(4.45) can be transformed into R(p), which is identical to P̄ (σ). Since (4.43) has exactly
one real zero (see Remark 4.17), there exists exactly one real positive zero p̃ = q−κ of R(p).
Consequently, there exists a real positive zero σ̃ of P̄ (σ) such that σ̃ = q−κ. Further, we
determine when this zero is the largest in modulus. To do so, we substitute µ = σ/q−κ

into (4.41) and get

P̄ (µ) = q−κwµw +
b1

a
q−κ(w−1)µw−1 +

b2

a
.

The necessary and su�cient condition for all zeros σi of P̄ (σ) to be |σi| ≤ q−κ is that all
zeros µi of P̄ (µ) are |µi| ≤ 1, which is due to Theorem 2.1 if and only if

b1q
κ + b2q

κw ≤ −a .

This is obviously satis�ed. In order to describe a long time behaviour of solutions of (4.31),
(4.32) we are also interested in multiplicity of the zeros of P̄ (σ). We recall that a number ū
is a zero of multiplicity k of a polynomial P (u) if P (ū) = 0, P ′(ū) = 0, . . . , P (k−1)(ū) = 0.
Therefore, all the zeros of P̄ (σ) are distinct if

b2 6= −
(
b1

w

)w (
1− w
a

)w−1

.

Note that since we assume a < 0, b1 > 0 and b2 > 0, this condition is always satis�ed.
Therefore, the characteristic polynomial (4.39) of the limiting equation corresponding

to (4.31), (4.32) has wm + 1 zeros such that λ1 = Θ−1
Θ

, |λ2| = · · · = |λm+1| = q−κ/m

and |λj| < q−κ/m for j = m + 2,m + 3, . . . , wm + 1. In order to provide the asymptotic
estimates of (4.31), (4.32) we distinguish the following cases:
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(a) If q−κΘm > (1−Θ)m or m is odd and q−κΘm = (1−Θ)m . Then |λ2| = · · · = |λm+1| =
q−κ/m ≥ |λ1| and all the roots are distinct. Since

∑∞
n=1 1/hn < ∞, then series given by

the coe�cients of (4.38) are absolutely convergent, i.e.

∞∑
n=1

∣∣∣∣ 1

Θ(1− ahnΘ)

∣∣∣∣ <∞, ∞∑
n=1

∣∣∣∣ bi
a(1− ahnΘ)

∣∣∣∣ <∞, ∞∑
n=1

∣∣∣∣ bi(1−Θ)

aΘ(1− ahnΘ)

∣∣∣∣ <∞
for i = 1, 2. Thus, the assumption of Theorem 2.11 is ful�lled and we can conclude that
(4.46) holds.
(b) If q−κΘm = (1 − Θ)m for m even, then the zero λ1 coincides with some λj, j =
2, 3, . . .m + 1 and |λ1| = |λ2| = · · · = |λm+1| = q−κ/m. By application of Theorem 2.12
we obtain the asymptotic estimate (4.47).
(c) If q−κΘm < (1 − Θ)m, then |λ1| > |λ2| = · · · = |λm+1|. Therefore we apply Theorem
2.13 which implies (4.48).

Using the same line of arguments as for Corollary 4.13 we get

Corollary 4.23. Let a < 0, b1 > 0, b2 > 0, 0 < Θ ≤ 1, q−κΘm > (1 − Θ)m or m is odd
and q−κΘm = (1 − Θ)m, q = ξ′(t0), ξ(t) be a function generating the almost-geometric
mesh and κ be a solution of an auxiliary equation (4.45). Then the solution yn of (4.31),
(4.32) satis�es

yn = O
(
(ϕ(tn))−κ

)
as n→∞,

which presents exactly the same estimate of the numerical solution as (4.18) yields for the
exact solution.
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5. Conclusion
The doctoral thesis concerns with the qualitative and numerical analysis of the linear

delay di�erential equations with constant as well as in�nite lag.
In the �rst part of the thesis, we investigated the linear neutral delay di�erential

equation
x′(t) = a x(t) + b x(t− τ) + c x′(t− τ), t > 0 , (5.1)

where a, b, c and τ > 0 are real scalars. We discretized (5.1) using the Θ-method and
derived the necessary and su�cient conditions describing the stability region of both
exact and discretized equations. Based on them, we concluded that the Θ-method is not
Nτ(0)-stable for any 0 ≤ Θ ≤ 1. Some properties of the discretized stability regions were
mentioned, too. Further, we dealt with the particular cases of (5.1) where c = 0 and
c = a = 0. The explicit conditions for the asymptotic stability regions of the Θ-method
discretization as well as the modi�ed midpoint method were presented. We discussed
some properties of the derived stability regions, mainly with respect to changing stepsize.

The second part of the thesis concerns the delay di�erential equations with in�nite
lag. We investigated the Θ-method discretization on the constrained mesh and provided
the description of the stability regions together with asymptotic estimates for the exact
and numerical solution. The asymptotic stability of the equation with several in�nite
lags was also analysed. We derived the asymptotic estimate of its solution as well as the
su�cient condition under which this equation is asymptotically stable. It was shown that
for 0 ≤ Θ ≤ 1/2 the asymptotic stability region of Θ-method discretization is an empty
set, while for 1/2 < Θ ≤ 1 it contains the presented stability region of the di�erential
equation. The necessary and su�cient conditions and some asymptotic estimates were
provided for the discretized equation with two delayed terms.

Finally, we mention some open problems and general remarks. We analysed separately
the numerical stability of equations with constant and in�nite lag, however the analysis
of the equations with the in�nite lag seems to be less complicated. As it was shown for
di�erential equations with two lags, we are able to provide the necessary and su�cient
conditions for discrete asymptotic stability of the equation with in�nite lags but the
analysis of the constant lag case is still an unsolved problem. The key role in the analysis
of discretization of both kinds of delay di�erential equations plays the analysis of the
corresponding delay di�erence equations. The delay di�erence equations do not have
many original applications and therefore they have not been widely studied. In fact, it is
the numerical discretization which motivates further investigation of qualitative properties
of di�erent types of di�erence equations. In Table 5.1 we provide an overview of the
di�erence equations which had to be analysed in order to discuss the asymptotic stability
of numerical discretizations of the studied equations. We emphasize that our numerical
analysis is based on results of �ermák et al. [9] and [10] who derived the necessary and
su�cient conditions for the asymptotic stability of these di�erence equations in an explicit
form.

The asymptotic stability analysis of the Θ-method for (5.1) is complete in the sense
that the necessary and su�cient conditions describing its exact as well as discrete stability
regions were derived. The open problem remains the investigation of the delay di�erential
equation with two constant lags.
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A numerical motivation The resulting di�erence scheme

Θ-method discretization for x′(t) = a x(t)+b x(t−
τ) + c x′(t− τ)

yn+1 + αyn + βyn−k+1 + γyn−k = 0

Θ-method discretization for x′(t) = a x(t) +
b1 x(ξ(t)) + b2 x(ξw(t))

yn+1 + αyn + γyn−k = 0

trapezoidal rule for x′(t) = a x(t) + b x(t− τ) yn+1 + αyn + β(yn−k+1 + yn−k) = 0

Θ-method discretization for x′(t) = b x(t− τ) yn+1 − yn + βyn−k+1 + γyn−k = 0

trapezoidal rule for x′(t) = b x(t− τ) yn+1 − yn + β(yn−k+1 + yn−k) = 0

Euler methods for x′(t) = b x(t− τ) yn+1 − yn + γyn−k = 0

modi�ed midpoint method for x′(t) = a x(t) +
b x(t− τ)

yn+2 + µyn + νyn−k = 0

midpoint method for x′(t) = b x(t− τ) yn+2 − yn + νyn−k = 0

Table 5.1: The corresponding di�erence equations to the numerical methods for studied
di�erential equations

The presented results for the delay di�erential equation with the in�nite lags are
partial results of our current research and their generalization for the neutral equation is
one of its possible extensions. In particular, if we consider the neutral equation

x′(t) = a x(t) + b x(ξ(t)) + c x′(ξ(t)) , t ∈ (t0,∞), (5.2)

then our results on discretization of this equation in the pure delayed case (c = 0) can be
easily extended to the neutral case (c 6= 0). However, appropriate stability and asymptotic
results on the underlying di�erential equation (5.2) are not known (a possible generaliza-
tion of Theorem 4.7 to neutral equation (5.2) can be the subject of the next research).
Also, the asymptotic estimates for the delay di�erential equation with two in�nite lags
regardless of sign of its coe�cient can be investigated.

The previous results, methods and problems become more complicated if we consider
non-autonomous delay equations. In such a case, we probably cannot expect the optimal
(i.e. necessary and su�cient) stability conditions, which is due to utilized techniques. For
some related results on delay di�erential and di�erence equations we refer, e.g. to papers
[4], [12], [13], [14] and [15], which may also serve as a motivation for future research.
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List of Symbols

R the set of real numbers

Rn the set of real n-tuples

Z the set of integers

Z+ the set of positive integers

C1(I) the set of continuously di�erentiable functions on I

C3(I) the set of functions with three continuous derivatives on I

〈a, b〉 a closed interval of real numbers

x′(t), dx(t)
dt

the �rst derivative of function x(t) with respect to t

sgn a the signum function

|a| the modulus of complex numbers

bac the interger part of a real number

<(a) the real part of a complex number

a mod b remainder of division of a by b

i an imaginary unit

ξj(t) the j-th iterate of function ξ(t)

ξ−1(t) the inverse function to ξ(t)

O(x(t)) the big Omicron notation

o(x(t)) the little omicron notation
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