
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y

DEPARTMENT OF INFORMATION S Y S T E M S

A NEW APPROACH TO LL AND LR PARSING

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE ŠTEFAN MARTIČEK
AUTHOR

BRNO 2015

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y

DEPARTMENT OF INFORMATION S Y S T E M S

NOVY PŘISTUP K LL A LR SYNTAKTICKÉ ANALYZE
A NEW APPROACH TO LL AND LR PARSING

BAKALÁŘSKÁ PRAČE
BACHELOR'S THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

STEFAN MARTIČEK

Prof. RNDr. ALEXANDER MEDUNA, CSc.

BRNO 2015

Abstrakt
Cílem té to práce je vytvořit nový efektivní způsob syntaktické analýzy propojením L L a
L R přístupů. Pro demonstrační účely je zhotoven nový programovací jazyk podle vzoru
programovacího jazyka P H P . Tento jazyk je rozdělen na části, kde pro každou část je
použita ta nejvhodnejší ze zmíněných metod. Jednotlivé metody jsou zde podrobněji pop
sané v kontextu dvou typů přístupů. Jedním z nich je syntaktická analýza shora dolů a
tím druhým opačná verze, syntaktická analýza zdola nahoru. Pro každou separovanou část
je vytvořen samostatný syntaktický analyzátor. Táto práce poskytuje kompletní teoretický
základ k sestrojení všech zde použitých syntaktických analyzátorů a rozkladových tabulek.
Nakonec jsou sestrojené analyzátory společné propojeny, což je úspěšné zakončení praktické
demonstrace naší metody. V závěru jsou diskutovány dosažené výsledky práce jako efek
tivnější druh syntaktické analýzy, modularita přístupu a podobně. Je zde také diskutovaná
použitelnost navržené metody za účelem zefektivnění vývoje a rychlosti překladu. Jako
poslední jsou uvedeny náměty pro další výzkum v této oblasti.

Abstract
The aim of this thesis is to create a new effective parsing method via connection of L L and
L R approaches. For demonstration purpose is made a new programming language according
to the pattern of P H P . The language is separated into the sections and for constituent
sections is chosen the most appropriate from the mentioned methods. For every section
is created its own syntax analyser. The thesis provides a complete theoretical basis to
construct every syntax analyser that has been used here. Finally, the syntax analysers are
connected together and new method is practically presented. In conclusion, contributions
of this work are discussed, such as the faster parser or the improved development. It also
discusses usability of the designed method and suggestions for the next possible research in
this area.

Klíčová slova
LL-parser, LR-parser, bezkontextová gramatika, Panic-mode zotavení z chyb, Phrase-level
zotavení z chyb, spojení syntaktických analyzátorů

Keywords
LL-parser, LR-parser, context-free grammar, Panic-mode error recovery, Phrase-level error
recovery, connection of syntax analysers

Citace
Štefan Martiček: A New Approach to L L and L R Parsing, bakalářská práce, Brno, FIT
V U T v Brně, 2015

A New Approach to L L and L R Parsing

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana prof.
RNDr . Alexandra Medunu, CSc. Uvedl jsem všechny literární prameny a publikace, ze
kterých jsem čerpal.

Štefan Martiček
July 30, 2015

Poděkování
Tímto bych rád poděkoval panu Prof. Alexandru Medunovi za jeho kvalitní odbornou
pomoc a ochotu spolupracovat i na dálku. Dále bych rád poděkoval Prof. Wolfgang Auer
za jeho cenné rady a konstruktivní kritiku. Nakonec bych rád poděkoval Prof. Regine Bolter
za její vynikající kurs, který poskytl cenné informace a rady k tvorbě této bakalářské práce.

© Stefan Martiček, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Structure of the document 4

2 Basic terms and definitions 5
2.1 Context-free Grammar 5
2.2 Pushdown Automata 6

3 Principles of Syntax Analysis 9
3.1 Top-down Parsing 9

3.1.1 Set Empty 10
3.1.2 Set First 10
3.1.3 Set Follow 11
3.1.4 Set Predict 11
3.1.5 Parsing Table 12
3.1.6 L L Grammar 13
3.1.7 Recursive Descent Parser 13
3.1.8 Table-driven Parser 13
3.1.9 Panic-Mode Error Recovery 13

3.2 Bottom-up Parsing 15
3.2.1 Shift-reduce Parsing 15
3.2.2 L R Parsing 16
3.2.3 Construction of L R table 16
3.2.4 L R Parser 17
3.2.5 Using ambiguous grammars 20
3.2.6 Error Recovery in L R Parsing 20

4 Specification of the new parsing method 21
4.1 Grammars 21
4.2 Connection of the L L and L R Parser 23
4.3 L R Table 24
4.4 L L Table 24
4.5 Error Recovery 24

4.5.1 Panic-Mode for L L Parser 25
4.5.2 Phrase-level Recovery for L R Parser 26
4.5.3 Connection of the Error Recovery methods 27

1

5 Implementation of the new parsing method 28
5.1 Application structure 28
5.2 Representation of data 28

5.2.1 S L R Table 28
5.2.2 L L table, rules and the set First 29
5.2.3 Three Address Code 29

5.3 Implementation of the Lexical Analysis 29
5.4 Implementation of the Syntax Analysis 29

5.5 Implementation of the Three Address Code 30

6 Conclusion 31

A Content of C D 34

B Manual 35

2

Chapter 1

Introduction

1.1 Motivation

The world is pretty fast these days and who is effective and able to keep the pace with mod
ern trends is successful. We apply the principles of effectiveness that also bring innovations
to what we do in every sphere of our activity. Companies pay for specialists to invent new
technologies, sports teams have specialists to provide them with new strategies, and so on.
The IT realm is spreading with relentless speed all over the world. Wi th technical innova
tions of hardware in computing we can see also a huge improvement in software. Computer
programmes are more complex, longer and thus the compiling process is often very slow.
The most effective way and evolving method today to solve the problem of speed is parallel
computing. Let us get off the mainstream subject of parallel computing and try to look at
another area.
The structure of a basketball team is the perfect example of what is being discussed in this
thesis. Usually the tallest players play the position near the basket where they are the most
effective. They can use their long hands to get rebounds and score with ease from a close
distance. Contrariwise, small players are suitable to play further from the basket. This is
because they are quicker than someone who is tall with better motor skills that allows them
to have better ball handling and better shooting ability, even from a further distance.
Let us try to apply this principle into the syntax analysis. So far, there has been many
parsing methods invented and usually all of them have some advantages and disadvantages
just as our basketball players. The basic idea is to try to separate programming language
into the sections and use different parsing methods to make a syntax analysis of the given
sections. For every section we are going to choose the method that is more proper con
sidering its advantages and disadvantages. The goal of the thesis is not to build the new
faster parsing method that can face competition from other parsing methods. It is just to
demonstrate our idea on the simple example and to discuss new findings as well as results
and the next development of this concept. For a demonstration purpose, we will use an L L
and L R parsers as the most commonly used parsing methods. We suppose that using an
L L and L R syntax analysis, the concept of our idea can be clearly presented, which is our
expected achievement.

3

1.2 Structure of the document

The content of the thesis is separated into chapters that cover the basic concepts that we
divided to logical units and particularly described in sections and subsections. In chapter 2
we define basic terms from the scope of formal languages that are essential to understand
the presented concept, chapter 3 deals with a basic description of syntax analysis. It has
been separated into two main sections, where first one describes principles of top-down
parsing and tutorial how to construct one specific type of top-down parser which is an
LL(1) parser. The second section describes the method of bottom-up parsing called an L R
analysis. It as well provides the user with tutorial how to construct an S L R (l) parser. In
both sections we describe parsing tables in detail, because they are the core of the parsers
and the error recovery methods that have been used for our two parsers. The main part of
the thesis is described in chapter 4. We introduce here a new programming language using
2 grammars. Every grammar specifies the part of the language it has been chosen for. After
specifying the language we define the connection of parsing methods to create one parser for
the language as a puzzle. In the following sections are specified details in the form of parsing
tables and error recovery routines for every method as well as their connection according
to the pattern of the connection of the parsing methods. The penultimate chapter 5 is
dedicated to implementation. The main focus is to describe the structure of application,
the data representation and we will also shortly deal with some specifics of the code. The
last but not least is chapter 6 which is a conclusion. Here we discuss the achievement of
the thesis and the next possible development, i.e., improvements of the method and next
possible applications of the method.

4

Chapter 2

Basic terms and definitions

Following definitions and theorems are taken from [3].

Definition 2.0.1 (Alphabet).

A n alphabet is a finite nonempty set of elements, which are called symbols.

Definition 2.0.2 (String).
Let E be an alphabet, e is a string over E . If x is a string over E and a £ E then xa is a
string over E .
Definition 2.0.3 (Concatenation of Strings).

Let x and y be two strings over E . The concatenation of x and y is xy.

Definition 2.0.4 (Reversal of String).
Let x be a string over E . The reversal of x, reversal(x), is defined as:

1. if x = e then reversal(e) = e.

2. if x = a\...an then reversal(a\...an) = an...a\ for some n > 1, and Oj 6 S for all
i = 1 , n .

Definition 2.0.5 (Length of String).

Let x be a string over E . The length of x, \x\, is defined as follows:

1. if x = e then \x\ = 0.

2. if x = a i . . . a n then \x\ = n for some n > 1, and G E for all i = 1, . . . , n .

Definition 2.0.6 (Language).
Let E* denote the set of all strings over E . Every subset L C E* is a language over E .

2.1 Context-free Grammar

Definition 2.1.1 (Context-free grammar).

A context-free grammar (CFG) is a quadruple G = (N, T, P, S), where

• is an alphabet of nonterminals

• T is an alphabet of terminals, N n T = 0

• P is a finite set of rules of the form A —>• x, where i 6 JV, j ; 6 (Af U T)*

5

• S G N is the start nonterminal

Definition 2.1.2 (Derivation Step in C F G) .
Let G = (N,T,P,S) be a C F G . Let u, v G (N U Tf and p = A -> x G P . Then, uAu
directly derives uxv according to p in G, written as uAv =4> uxv [p] or, simply, uAv =4> uxv.

Definition 2.1.3 (Leftmost Derivation in C F G) .
Let G = (N,T,P,S) be a C F G , let u e T*, v e (NU T)*. Let p = A -> x G P be a
rule. Then, 1M1; directly derives uxv in the leftmost way according to p in G, written as
uAv =>im uxv [p] or, simply, 1M1; =4>;m uxv.

Definition 2.1.4 (Rightmost Derivation in C F G) .
Let G = (N,T,P,S) be a C F G , let u G (N U T)*, u G T*. Let p = A -)• x G P be a
rule. Then, i M i ; directly derives uxv in the rightmost way according to p in G, written as
uAv =4>rm uxv [p] or, simply, i M i ; =4>rm uxv.

Definition 2.1.5 (Sequence of Derivation Steps in C F G) .
Let G = (N, T, P, S) be a C F G .

• Let it G (iVUT)* . G makes a zero-step derivation from u to u; in symbols, it =4>° it [e]
or, simply, u =4>° it.

• Let i t o , u n G (iV U T)*,n > 1, and itj_i =4> itj [pj],Pi G P, for all i = 1 , n ; that is
no =>• iti [pi] =>• 112 [p2]--- =>• «ji [pn] Then, G makes n derivation steps from UQ to u„,
u0 =>n un [pi...p„] or, simply, i t 0 =4>n u„ .
If «o =^n M for some n > 1, then ito properly derives un in G, written as ito
u„ [7r] or, simply, u0 =>+ un.
If ito =^n "it [TT] for some n > 0, then ito derives u„ in G, written as ito «« [vr] or,
simply, i t 0 un.

Definition 2.1.6 (Language generated by C F G) .
Let G = (N, T, P, S) be a C F G . The language generated by G, L(G), is defined as L(G) =
{w:w G T*,S ^* w}.

Definition 2.1.7 (Context-free Language).
Let L be a language. L is a context-free language (CFL) if there exists a context-free
grammar that generates L.

Definition 2.1.8 (Left Recursion).
Let G = (N, T, P, S) be a C F G . A rule of the form A -> Ax, where A G N, x G (iV U T)* is
called a Ze/t recursive rule.

Definition 2.1.9 (Grammatical Ambiguity in C F G) .
Let G = (N, T, P, S) be a C F G . If there exists x G with more than one derivation tree,
then G is ambiguous; otherwise, G is unambiguous. A C F L , L, is inherently ambiguous if
L is generated by no unambiguous grammar.

2.2 Pushdown Automata

Definition 2.2.1 (Pushdown Automaton).
A pushdown automaton (PDA) is a 7-tuple M = (Q, S, T, R, s, S, P) , where

6

• Q is a finite set of states

• E is an input alphabet

• r is a pushdown alphabet

• R is a finite set of rules of the form: Apa —>• wq where A G T, p, q G Q, a G S U { e } , to G

• s G Q is the start state where S G T is the start pushdown symbol

• F C Q is a set of final states

Definition 2.2.2 (PDA Configuration).

Let M = (Q, E , r, R, s, S, F) be a P D A . A configuration of M is a string x G T*QT,*.

Definition 2.2.3 (PDA Move).
Let xApay and xwqy be two configurations of a P D A , M , where x,w G r*,̂ 4 G r,p,q G
Q,o £ EU{e}, and y G E*. Let r = ^4pa —>• iuq G i? be a rule. Then, M makes a move from
xApay to xux/y according to r, written as xApay h xux/y [r] or, simply, xApay h xwqy.
Definition 2.2.4 (Sequence of Moves in P D A) .
Let M = (Q, E , r, R, s, S, F) be a P D A .

• Let x be a configuration. M makes a zero moves from \ to x; in symbols, x I - 0 X [e]
or, simply, x ^° X-

• Let XO) X i) •••) Xn be a sequence of configurations, n > 1, and X i - i l~ X« G -R> for
all i = 1, .. . ,n; that is xo l~ X i [^i] l~ X2 t^]--- l~ X n [^n]- Then M makes n moves from
Xo to X n , Xo ^™ X n [ri.. .rn] or, simply, xo ^™ X n -
If Xo I"™ X n [p] for some n > 1, then xo ^+ Xn [p] or, simply, xo ^+ Xn-
If Xo ^n Xn [p] for some n > 0, then xo ^* X n [p] or, simply, xo ^* X n -

Definition 2.2.5 (Language accepted by P D A) .
Let M = (Q, E , T, R, s, S, F) be a P D A .

1. The language that M accets by final state, denoted by L(M) f, is defined as L(M) f =
{w:w eZ*,Sswh* zf,z €T*,f G F}.

2. The language that M accets by empty pushdown, denoted by L (M) e , is defined as
L(M)€ = {w:w G T.*,Ssw h* zf,z = e,f€ Q}.

3. The language that M accets by final state and empty pushdown, denoted by L(M) fe,
is defined as L(M)fe = {w:we T,*,Ssw h* zf,z = e,f G F}.

Theorem 2.2.1 (Equivalence of Three Types of Acceptance).
L = L(Mf)f for a PDA Mf & L = L(Mfe)fe for a PDA Mfe.
L = L(M€)€ for a PDA Me ^ L = L(Mfe)fe for a PDA Mfe.
L = L(Mf)f for a PDA Mf & L = L(M€)€ for a PDA Me.

Definition 2.2.6 (Deterministic P D A (D P D A)) .
Let M = (Q, E , r, R, s, S, F) be a P D A . M is a deterministic P D A if for each rule Apa —>
wq G R, it holds that R — {Apa —>• wq} contains no rule with the left-hand side equal to
Apa or Ap.

7

Theorem 2.2.2 (PDAs are Stronger than DPDAs) .

There exists no DPDA Mfe that accepts L = xy : x,y G E*,y = reversal(x).

Definition 2.2.7 (Extended P D A (E P D A)) .
A n Extended pushdown automaton(EPDA) is a 7-tuple M = (Q,E ,r , R, s, S, F), where
Q,Yl,T,R,s,S,F are defined as in a P D A and R is a finite set of rules of the form vpa —>• wq,
where v,w G T* ,p, q G Q,a G S U {e}.
Definition 2.2.8 (E P D A Move).
Let xvpay and xwqy be two configurations of an E P D A , M , where x,v,w G T*,p,q G
Q, a G E U {e}, and y G E*. Let r = vpa —>• iuq £ i? be a rule. Then, M makes a mcwe
from xvpay to xux/y according to r, written as xvpay h xux/y [r] or, simply, xvpay h xwqy.

Definition 2.2.9 (Sequence of Moves in E P D A) .
Let M = (Q, E , r, i?, s, S, F) be a E P D A .

• Let x be a configuration. M makes a zero moves from x to x> in symbols, x H° % [e]
or, simply, x ^° X-

• Let XO) Xi) •••) X n be a sequence of configurations, n > 1, and X i - i l~ X« G -R> for
all i = 1, .. . ,n; that is xo l~ X i [7*1] l~ X2 — I - X n [rn]- Then M makes n moves from
Xo to X n , Xo ™̂ X n [ri...rn] or, simply, xo ™̂ X n -
If Xo I"™ X n [p] for some n > 1, then xo ^+ X n [p] or, simply, xo ^+ Xn-
If Xo ™̂ X n [p] for some n > 0, then xo ^* X n [p] or, simply, xo ^* X n -

8

Chapter 3

Principles of Syntax Analysis

In this chapter we talk about concepts and theory basics that were mentioned [2, 1]. The
algorithms and definitions were borrowed from [1, 3] and adjusted according to our notation.
Some sources reference to elements of third set in grammar quadruple as rules and other use
the more specific name productions. In this document we will use both terms as synonyms.
In the course of syntax analysis or parsing, a compiler is trying to check if a source chain
of input symbols is a string of the given language. These input symbols are called tokens
and they are the result of a lexical analyser. Token is a complex structure that carries
information not just about its type, but also about its data. The type of a token is important
for a parser. Nevertheless, tokens are sent to semantic analyser through our parser, which
uses the data for semantic control. That is the reason why the input for syntax analyser
are tokens and not just the types of the input symbols.
The result of the syntax analysis is a tree-like intermediate representation that depicts the
grammar structure of the token stream. Two basic principles to create a parser are top-down
and bottom-up parsing. The top-down parsing is trying to create the input string by an
expansion of nonterminals beginning with the starting nonterminal. Contrariwise, bottom-
up parsing is trying to create the starting nonterminal from the input string. To these two
approaches correspond two types of a grammar, namely, L L and L R grammars. Top-down
as well as bottom-up parsing will be described in this chapter as the main methods to create
the parser used in this thesis.

3.1 Top-down Parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for the in
put string, starting from the root and creating the nodes of the parse tree in preorder.
Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an input
string. [1]
Top-down parser can be described as a pushdown automaton that consists of an input
buffer, a stack containing a sequence of grammar symbols, a parsing table constructed by
Algorithm 4 and an output stream. The pushdown automaton reads symbols from input
buffer and writes the numbers of applied productions to the output stream. The output
sequence of the productions is called a left parse. Left parse is a sequence of rules used
in the leftmost derivation of the input string [3]. Initially, configuration of the P D A (see
2.2.2) is the string

eS#w

9

where # is special symbol representing a bottom of the stack and w is the input string.
When the input string w is accepted, the automaton is in a final configuration

7r$e

where IT is the left parse and $ represents the end of the input string. Two most commonly
used methods to implement the top-down parser are recursive descent and a nonrecursive
table driven predictive parser.
In this section will be described one of the methods for constructing a parsing table. This
method uses the set Empty as well as the sets Fist and Follow to create the set Predict, which
is directly used to create the parsing table. Subsequently, the algorithm for a nonrecursive
predictive parser will be mentioned. Finally, the basics for panic-mode error recovery used
in our top-down parser will be described.

3.1.1 Set Empty

Definition 3.1.1 (Set Empty).
Let G = (N,T, P, S) be a C F G . Empty(x) = {e} if x =4>* e; otherwise, Empty(x) = 0 ,
where x G (N U T)*.

Algorithm 1 Set Empty
Input: G = (N, T, P, S)
Output: Empty(X) for every X G N U T
Method:

for all a G T do
Empty{a) := 0

end for
for all A e N do

if A -> e G P then
Empty(a) := {e}

else
Empty(a) := 0

end if
end for
repeat

if A X1X2...Xn G P and Empty(Xi) = {e} for all i = 1, . . . ,n then
Empty(a) := {e}

end if
until No Empty set can be changed

3.1.2 Set First

Definition 3.1.2 (Set First).
Let G = (N,T,P,S) be a C F G . For every x G (N U T)*, we define the set First(x) as
First(x) = {a : a G T,x ^* ay;y G (N U T)*}.

10

Algorithm 2 Set First
Input: G = (N, T, P, S)
Output: First(X) for every I g J V U T
Method:

1: for all a G T do
2: First(a) := {a}
3: end for
4: for all A G N do
5: First(A) := 0
6 : end for
7 : repeat
8 : if A -> X iX 2 . . .X f c _ iX f c . . .X„ G P then
9 : add all symbols from First{X\) to First (A)

10: if Empty(Xi) = {e} for all i = 1 , / c — 1, where k > n then
11: add all symbols from First(Xk) to First(^4)
12: end if
13: end if
14: until Afo First set can be changed

3.1.3 Set Follow

Definition 3.1.3 (Set Follow).
Let G = (N,T,P,S) be a C F G . For every A e N, we define the set Follow(A) as
FoMow(A) = {a : a G T, 5 =̂>* xAay; x, y G (iV U T)*} U {$: S =>* xA, x € (iV U T)*}.

Algorithm 3 Set Follow
Input: G = (N, T, P, S)
Output: Follow{A) for every A G iV
Method:

10
11

Follow(S) := $
repeat

if A ->• x S y G P then
if y 7̂ e then

add all symbols from First(y) to Follow(B)
end if
if Emptyiy) = {e} then

add all symbols from Follow (A) to Follow(B)
end if

end if
until Â o Follow set can be changed

3.1.4 Set Predict

Definition 3.1.4 (Set Predict).

Let G = (N, T, P, S) be a C F G . For every A ->• x G P , we define Predict(A ->• x) so that

• if Empty{x) = {e} then Predict(A —>• x) = First(x) U Follow(A)

11

• if Empty(x) = 0 then Predict(A —>• x) = First(x)

3 .1 .5 Parsing Table

In the following definitions and examples we consider the pushdown automaton C =
(Q, E , T, R, s, S, F), the grammar G = (N, T, P, S), the symbol # that represents the bot
tom of the stack and the symbol $ that stands for the end of the input string. Parsing table
is a function M : (E U N U {#}) x (E U {$}) —> {expand 1,expand 2,...,expand n, pop,
accept, error}. The meaning of the actions in the table is as follows:

• expand i Let pi : A —>• a be a rule of the grammar. On top of the stack is
nonterminal A and input symbol is a. If ML4,a] = expand i automat will do the
move

nAflax h itiaflax

i.e., top nonterminal A is replaced by a and i is written to the output stream.

• pop The same terminal symbol is on top of the stack and in the input. The
automaton will do the move

-Kaj3ax h ir(3x

i.e., the symbol a is removed from top of the stack as well as from the input.

• accept The Automaton is in its final configuration, input string has been accepted
and complete left parse of the input string is in the output.

• error The input string w is not an element of the language L accepted by the
grammar G.

w L

Algorithm 4 Construction of a parsing table
Input: G = (N, T, P, S)
Output: Parsing table M
Method:

1 for all rules pi G P of the form A —>• a
2 for all a G Predict(A —> a) do
3 add expand i to ML4,a]
4 end for
5 end for
6 for all x G T do
7 add pop to M [x , x]
8 end for
9 M [# , $] —accept

10 for all blank entries in M do
11 set to an error
12 end for

12

3.1.6 L L Grammar

Algorithm 4 is applicable for every grammar G. However, for some grammars the parsing
table M will include more than one action in some entries. If a grammar has a left recursive
rule or it is ambiguous, the table M will have at least one multiply defined entry. If every
entry uniquely identifies an action, the grammar is called an LL(1) grammar. The first
letter „L" means that input is read from left to right. The second „L" stands for a left
parse that is the result of analysis and „ 1 " is the number of input symbols that must be
known to make decision about the next step.

Definition 3.1.5 (LL(1) grammar).
Let G = (N, T, P, S) be a C F G . G is an LL grammar if for every a G T and every A G iV
there is no more than one ^4-rule A —> X\X2-..Xn G P such that a G Predict{A —>
X\X2...Xn).

3.1.7 Recursive Descent Parser

One of the well known methods how to implement a top-down parser is the recursive
descent. Every nonterminal of the grammar has its own procedure that implements its
analyse. When we have the nonterminal A, which has only one production A —> X\X2...Xn,
the body of the procedure for the nonterminal will be a sequence of calls for every Xi with
i from 1 to n. If Xi is a nonterminal, corresponding procedure will be called, otherwise
algorithm will check if input symbol corresponds to Xi. We initiate the analysis by calling
the procedure of the starting nonterminal.

3.1.8 Table-driven Parser

A nonrecursive predictive parser is built with implemented stack, not via recursive calls.
The structure of the parser is depict on the figure 3.1. The symbol $ is an endmarker for
the input string and can be used as well to mark the bottom of the stack instead of the
symbol The parser looks for a production in the table only when a nonterminal is on
top of the stack. Solution for terminals is provided in algorithm 5 without using a parsing
table. Therefore we can create the parsing table M using the algorithm 4 without code on
lines 6, 7, 8 and 9.

3.1.9 Panic-Mode Error Recovery

The main idea of the Panic-mode error recovery is to skip symbols on the input until a token
in a selected set of synchronizing tokens appears. Effectiveness of this method depends on
the choice of the synchronizing set. The sets are chosen with respect to the grammar, so
that in practice, the parser can quickly recover from common errors. Some heuristics are
as follows:

1. At first, we place all symbols in Follow(A) into the synchronizing set for nonterminal
A.

2. Programming languages have often hierarchical structure, e.g., expressions appear
within statements, which appear within blocks, and so on. Accordingly we can add
the symbols that begin higher-level constructs to the synchronizing set of a lower-level
constructs.

13

Input

Stack

X

Y

a + b $

Predictive
parsing

program

Parsing table M

Output

Figure 3.1: Model of table-driven predictive parser []

Algorithm 5 Table-driven predictive parser
Input: Parsing table M for grammar G = (N, T, P, S) and string w$, w £ T*
Output: Left parse if w € L(G); otherwise, an error
Method:

1: push $ on the stack
2 : push S on the stack
3 : set a to the current token
4 : set X to the top stack symbol
5 : while stack is not empty do
6 : if X = $ then
7 : if a = $ then success()
8 : else error()
9 : end if

1 0 : else if X = a then
1 1 : pop the stack and a := next token
1 2 : else if X is terminal then error()
1 3 : else if M[X, a] is an error entry then error()
1 4 : else if r : X -> x G M[X, a] then
1 5 : write production r to the output
1 6 : replace X with reversal(x) on the stack
1 7 : end if
1 8 : set X to the top stack symbol
1 9 : end while

14

3. If we add symbols from the First(A) to the synchronizing set for nonterminal A, we
can possibly skip the additional or wrong input symbols and resume according to A
if a symbol in First(A) appears in the input.

4. We can postpone error detection, but never miss it, by using production A —>• e for
nonterminal A if possible. This approach will reduce the number of nonterminals that
have to be considered during error recovery.

5. If terminal on top of the stack does not match the input symbol, we can pop it and
issue a message saying that the terminal was inserted.

3.2 Bottom-up Parsing

A bottom-up parse corresponds to the construction of a parse tree for an input string
beginning at the leaves (the bottom) and working up towards the root (the top). [1]
We can imagine bottom-up parsing also as the process of „reducing" an input string to
the start symbol of the grammar. At the reduction step, a specific substring matching the
right side of a production is replaced by the nonterminal on the left side of the production.
Comparing to top-down parsing, a reduction is the reverse of a step in the derivation. The
reverted sequence of productions that is the result of bottom-up parsing is called rightmost
derivation (see 2.1.4). In this section we will shortly introduce a general style of bottom-up
parsing called shift-reduce parsing. The largest class of grammars for which shift-reduce
parsers can be built are L R grammars. The L R grammars and also basic algorithms to
build an L R parser will be introduced here as well.

3.2.1 Shift-reduce Parsing

The Shift-reduce means that the two basic operations are used for the parsing method -
shift and reduction. In this method a stack is used to hold the grammar symbols. We use $
symbol to mark the bottom of the stack as well as the end of the input string. As a starting
point the stack and the input are in the following configuration

Stack : $ Input : w$

When the string w is accepted by the parser, the configuration is

Stack : $S Input : $

where S is the starting symbol of the grammar. In this method that uses a stack, the
reduction is made only on top of the stack and it never goes deeper, which is also a practical
reason to use the stack. Four possible actions of the parser are as follows:

• Shift The next input symbol is pushed on the stack.

• Reduce On top of the stack must be a string to reduce. The left symbol of the
string is found within the stack and the analyser will try to decide about the nonter
minal that will replace it.

• Accept The string was accepted by the parser.

• Error The analyser has detected a syntax error.

15

There exist context-free grammars, e.g. ambiguous grammars, for which shift-reduce pars
ing cannot be used. During the syntax analysis of such grammar shift/reduce or reduce/reduce
conflicts could appear. In shift/reduce conflict the parser cannot decide whether make
shift or reduction. When more productions have the same right side, the conflict reduce/reduce
may appear, because the parser is unable to choose between reductions. These grammars
are not L R grammars.

3.2.2 L R Parsing

Following sections will describe the LR(k) syntax analysis, where k < 1, that is the most
prevalent method of bottom-up parsing. The „L" means that the input string is read from
left to right. The „R" represents the rightmost derivation, which is the result of the parsing
method and (k) is the number of input symbols used to make a decision about the next
step. Sometimes (k) is not used, in that case we assume k equals 1. A n equivalent model
of L R parser is an extended pushdown automaton (see 2.2.7). A few advantages of L R
parsing are as follows:

• We can use L R parsing for almost all language constructions of programming lan
guages defined by context-free grammars.

• The method is nonbacktracking. It means that we can write an effective parser for it.

• The parser detects errors right after they occur.

The drawback is that the manual construction of an L R parser for commonly used program
ming languages is difficult. Ordinarily we use for that purpose a specialized tool called an
L R parser generator.

3.2.3 Construction of L R table

The L R parsing is table-driven method as well as nonrecursive predictive parsing. In this
section we describe a construction of Simple LR(SLR) table and the general algorithm for
L R parser. A n S L R method is the least powerful considering the number of grammars
that we can analyse by this method. Nevertheless, for the purpose of this thesis is the
method sufficient. The L R parser maintains the states that represent sets of items. Item
is a production with the special symbol • that separates part of the production body(right
side of a production) that has been analysed and part of the production body which is
expected on the input.

Definition 3.2.1 (Item).

Let G = (N, T, P, S) be a C F G , A ->• x G P, x = yz. Then, A ->• yz is an item.

For the production A —>• xy we have 3 items:

A —>• *xy
A —>• x*y
A —>• xy

The production A —>• e generates only one item A —> • . The items, where no terminal
symbol is specified are called LR(0) items. As mentioned before, the states represent sets
of LR(0) items. These sets are called canonical LR(0) collection. We use canonical LR(0)

16

collection to create deterministic LR(0) automaton that makes parsing decisions. In the
automaton every state represents one set of the canonical LR(0) collection. For the purpose
of constructing the canonical LR(0) collection we have to define an extended grammar as
well as the functions Closure and Goto.

Definition 3.2.2 (Extended grammar).
Let G = (N,T,P,S) be a C F G , S' £ N. Extended grammar for G is grammar G' =
(NU{S'},T,PU{S' -»• S},S').

The dummy production S' —>• S that is part of extended grammar functioning as an
indicator to the parser to stop analysis. The input string is accepted only when parser is
in the state with item S' —>• S1*, intending to reduce by this production.

Algorithm 6 Closure
Input: G = (N, T, P, S); Set of items I
Output: the set Closure(I)
Method:

1: Closure(I) := /
2 : repeat
3 : for all A yBz G Closure(I) and B x G P do
4 : if B —> mx Closure(I) then
5 : add B —>• mx to Closure(I)
6 : end if
7 : end for
8 : until no more items are added to Closure(I) on one round

The common trait for the items in one set is the same position in the production body.
The main idea of the function Closure specified by algorithm 6 is that position marked
by • in front of a nonterminal is the same as position on the start of the production body
of the nonterminal. The task of the function Goto is to simulate the acceptance of an
expected input symbol or a nonterminal and create a new set of items according to the new
position. Goto function also specifies transitions between sets of items. The states and the
transitions together create the LR(0) automaton. The start state is represented by the set
Closure({S' —>• *S}). A l l states are accepting states.

Definition 3.2.3 (Goto).
Let G = (N, T, P, S) be a C F G , I be a set of items, and X G T U N. Then, Goto(I, X) =
Closure({p : p = A —>• yXmz, A —>• yXz G / }) .

The task of the function Goto
We specified everything what was needed to introduce an algorithm for creation of S L R

table. For naming the states we use the following convention. The state i is created from
the set Ii. The state with the item S' —> *S has the number 0. Other states have numbers
from 1 to n, where n + 1 is the number of sets in canonical LR(0) collection.

3.2.4 L R Parser

The algorithm 9 specified below can be used also for other L R parsers than just a S L R
parser. Only difference is in the parsing tables. The L R parser model is depicted in the
figure 3.2.

17

Algorithm 7 Canonical LR(0) collection
Input: Extended grammar G' = (N, T, P, S')
Output: Canonical LR(0) collection C for grammar G'
Method:

1: C := {Closure({S' -»• •S})}
2 : repeat
3 : for all I e C and X G JV U T do
4 : if Goto{I, X)^0 and Goto{I, X) <£ C then
5 : add Goto(I, X) to C
6 : end if
7 : end for
8 : until no new sets of items are added to C on a round

Algorithm 8 SLR(l) table
Input: Extended grammar G' = (N, T, P, S')
Output: S L R (l) table for grammar G
Method:

1: create canonical LR(0) collection C for G
2 : for all sets / in C do
3 : for all productions p in Ii do
4 : if p = A —>• a*a/3, a G T and Goto(Ii, a) = Ij then
5 : action[i, a] := shift j
6 : end if
7 : if p = A ->• 4̂ ̂ 5' then
8 : for all a G Follow (A) do
9 : action[i, a] := reduce A —>• a

1 0 : end for
1 1 : end if
1 2 : if p = 5' -)• £ • then
1 3 : action[i, $] := accept
1 4 : end if
1 5 : if p = A -)• a«5/3, B £ N and Goto{Ih B) = Ij then
1 6 : ffotofi, a] := j
1 7 : end if
1 8 : end for
1 9 : end for
2 0 : for all undefined entries in S L R table do
2 1 : assign an error to the entry
2 2 : end for

18

Algorithm 9 L R parser
Input: A n input string w$ and an LR-parsing table with functions action and goto for a

grammar G
Output: If w is in L(G), the reduction steps of a bottom-up parse for w; otherwise, an

error indication
Method:

set a to the current token
push $ and state 0 on the stack, respectively
repeat

let s be the the state on top of the stack
if action[s, a] = shifti then

push at first a and then state i onto the stack
set a to the next token

else if action[s, a] = reduce A —>• j3 then
pop 2 * |/31 symbols off the stack
let s' be the state on top of the stack
push a and the state goto[s',A] onto the stack, respectively
output the production A —>• j3

else if action[s, a] = accept then
return

else
call error recovery routine

end if
until 0

Input

Stack

»m
X m
>m-l

Xm-1

a + b $
>

LR
parsing

program
Output

$
actions goto

Figure 3.2: Model of an L R parser []

19

3.2.5 Using ambiguous grammars

A n ambiguous grammar cannot be the L R grammar, but in some cases it is a faster and
easier way how to describe specific constructs of a language. Ambiguity can be resolved by
specifying disambiguating rules. A typical example where ambiguous grammar is used are
expressions, where we usually use operators with different priority and associativity. Let
us have a grammar G with rules

E^E + E E^E*E E ->• (E) E ^ i

In the grammar specified this way, the position E —>• E + E* and the position E —> E* * E
are the same. In other words, when on top of the stack is the string E + E and the input
symbol is *, the grammar does not specify if we should reduce E + E or shift * onto the
stack. Therefore, the conflict in corresponding L R parsing table appears. To solve this
conflict we can adjust the grammar as follows

E^E + T\T T^T*F\F F ->• (E) F ^ i

Additional nonterminals will solve the problem of priority, but the grammar has more rules
and some additional reductions have to be performed by an L R parser, because of the rules
E —>• T and T —>• F. Another more appropriate option would be to resolve conflicts in
the L R table by specifying priority and associativity. In our case * has a higher priority,
therefore the correct option in the previously mentioned table entry will be to shift * onto
the stack. The result of this method is the correct syntax analysis without any changes in
the grammar and any additional reductions.

3.2.6 Error Recovery in L R Parsing

For L R Parsing also exists the Panic-mode error recovery, but a much more elaborate and
suitable method for our parser will be the Phrase-level recovery. To use this method, we
need to examine all error entries in the L R parsing table and to create and choose the
appropriate routines to recover from the specific error. It is designed according to the
usage of the programming language. Important facts about an L R analysis are that error
will never be detected in Goto part of the L R table and an erroneous input symbol is never
pushed onto the stack before an error is detected. The created routines can do insertions
or deletions in order to recover, but the parser cannot get into an infinite loop. It is not
recommended to pop the stack, because the construct, which has been already successfully
parsed, is eliminated this way.

20

Chapter 4

Specification of the new parsing
method

For a demonstration purpose has been created the language according to the pattern of
P H P . From the set of statements of the P H P programming language have been chosen
constructions that will serve as an example to show how our new parsing method works.
The language has been separated into two sections.
For the first section we wrote an ambiguous context-free grammar and constructed a top-
down LL(1) parser. This section encompasses the syntax of the statements and describes
a backbone construction of the language. We chose nonrecursive table-driven version of
the parser because of two reasons. If we made changes in the grammar, recursive descent
parser would require us to reimplement the procedures for the nonterminals that have been
changed. Contrary to recursive descent in table-driven parsing we only need to change
the parsing table considering exclusively a syntax analysis. Also we use an error recovery
method that would need to implement additional data structures in recursive descent to
keep the information about the synchronizing set. In our method this information is already
stored on the stack.
For the second section we constructed an ambiguous context-free grammar and a bottom-up
L R parser. The second section processes the expressions which are part of the majority of
the statements. We decided to use an L R grammar for the expressions, because ambiguity
can be easily solved and we will avoid procedures such as the left recursion replacement or
additional derivation steps during the syntax analysis.

4.1 Grammars

The top-down section is described by the following grammar G = (N, T, P, (begin)), where:

N = {(begin), (st_list), (st_list2), (st_list3), (case_def), (par_list), (par_list2),
(exprl), (expr2), (cexpr)}.
T = {<?php\s, {, },(,),;,:,,, var, id, function, while, for, if, elseif, else, return,
switch, case, default, break, continue, EOF}.

The set of rules P looks as follows:

(begin) —>• <?php\s (st_list) (4-1)

21

(stjist) -> (st_list2)(st_list) (4.2

{st_list) —>• function id ((par Jist)){ (stjist2) } (stjist) (4.3

(stjist) ->• £ O F (4.4
(st_list2) ->• while ((exprl) {(st_list2)} (st_list2) (4.5

(st_list2) —>• / o r (war = (expr2) (expr2) var = (exprl) { (st_list2) } (st_list2)
(4.6

(st_list2) -> if ((exprl) {(st_list2)} (st_list3)(st_list2) (4.7

(st_list2) —>• return (expr2) (st_list2) (4.8

(st_list2) —>• switch ((exprl) { (case_def) } (st_list2) (4.9
(st_list2) ->• var = (exp2)(st_list2) (4.10

(st_list2) -> 6rea/c; (st_list2) (4.11

(st_list2) —>• continue; (st_list2) (4.12

(st_list2) ->• e (4.13

(st_list3) ->• eZsez/ ((exprl) { (st_list2) } (st_list3) (4.14

(st_list3) ->• eZse {(st_list2)} (4.15

(st_list3) ->• e (4.16

(case_def) —>• case (cexpr)(st_list2) (case_def) (4.17

(case_def) —>• default : (st_list2)(case_def) (4.18

(case_def) e (4.19
(par_list) —>• war (par_list2) (4.20

(par_list) e (4.21
(par_list2) —>• , war (par_list2) (4.22
(par_list2) -> e (4.23

The statements break and continue can be used only within / o r or switch statement. This
is not specified in the grammar, but it will be controlled semantically in the code generator
part.
The grammar defined like this is not an L L grammar, but we need to create the L L parsing
table for the L L parser. Ambiguity is caused by the following two rules:

(1) (stjist) -> (stjist2) (stjist)
(2) (stjist2) ->• e

These rules are created to simplify the grammar and reduce the cardinality of P . A
function cannot be defined inside another statement, therefore we must create two nonter
minals as (stjist) and (stjist2), where (stjist2) represents the subset of the statements
that can be defined inside another statement. Accordingly the first rule represents a sub
stitution for the subset of rules that (stjist2) stands for. We want to make a derivation
according to the first rule just when the input symbol is in First((stjist2)), because that
is the purpose of the rule. Due to e-rule for nonterminal (stjist2) to the set Predict of
first rule got also the First((stjist)). The simple solution is that we will consider just the
nonterminals in First((stjist2)). Consequently the nonterminals function and EOF will
be excluded from the set Predict of the first rule.
The purpose of the second rule is to finish the block of statements inside another state-

22

ment or to switch back to (st_list) if the input is function or EOF. According to def
inition 3.1.4 Predict((st_list2) —>• e) is Follow((st_list2)\ what is considering the first
rule First({st_list)). For this reason in Predict((st_list2) —>• e) are the symbols from
First((st_list2)) and they need to be removed. Therefore we will exclude all terminals,
which are in the set First of (st_list2) from Predict((st_list2) —>• e). The adjustment of
the mentioned sets will eliminate conflicts in the L L table and it will lead to the correct
syntax analysis.

Three of the nonterminals from the previous grammar do not occur at the left side of
a rule. These nonterminals (exprl), (expr2) and {cexpr) represent the expressions in the
statements and are differentiated according to the end-of-expression symbol. Whenever
these nonterminals have to be processed, the L L parser is switched to the L R parser for the
expressions. The grammar for the expressions looks as follows:

E -
E -•)• id{)
E -•)• E, E
E --> E op5 E
E -+ EopSE
E --> E or E
E -•)• Eop2E
E --> E\\E
E --> E * *E
E -•)• E&&E
E --> E op4 E
E -•>

E - E and E
E --> opl E
E --> i

This grammar is ambiguous, because it does not describe a priority and an associativity
of the operators. On the other side it is a fast solution, because we got rid of additional
reductions of the nonterminals representing operator precedence. In the corresponding L R
table will occur shift/reduction conflicts that will be solved by the specification of priority
and associativity of the operators (see subsection 3.2.5).

4.2 Connection of the LL and LR Parser

As mentioned in the previous section the L L parser creates a main part of syntax, therefore
the L R parser returns control to the L L parser after finishing its part of the syntax analysis.
The language has three different input characters serving as an end-of-expression symbol,
accordingly, three nonterminals represent these expressions. The nonterminals (expr2) and
{cexpr) are terminated by the symbols ; and :, which cannot be part of the expressions. In
that case we can simply substitute for the general end-of-input character these two symbols
according to the type of the expression. Another situation is when expression represented

23

by the nonterminal (exprl) must be terminated by symbol). We use the method that
considers this symbol to be a right parenthesis except the state when the end-of-expression
is expected to successfully finish the analysis. This method allows us to use the same L R
table for all types of the expressions. Regarding a left parenthesis we slightly adjust the
table by replacing the error state with the success when is expected the end-of-input to
successfully terminate the analysis. Wi th respect to the error detection, it is possible that
error messages may be different, but a given error is still detected in both cases. If the
input looks like this:

$foo = 42 - ;

*/(42-){}

Both cases produce the error message „missing operand". But if the input is this:

$/oo = 6 0 0 :

if(boo){}

The error messages differs, because a right parenthesis has another meaning in this context.
For the first line the error message is „A variable must be preceded with $ and a function
must be followed by ()". For the second line we get two error messages „Missing left
parenthesis" and „Unexpected token in the expression E _ L A B R A C K " . When a right
parenthesis follows a function identifier, the algorithm assumes that a left parenthesis is
omitted and the error recovery approach is to insert it as a missing part of a function call.
As soon as a function call expression is complete, the next token is a left bracket which
leads the analysis to an error.

4.3 LR Table

The plan was to use a Lookahead L R and a Simple L R analysis, create the tables accordingly
and give the user a chance to choose which one to use. However for the given L R grammar
both tables were the same. This text does not describe the method how to construct the
L A L R table, but the user can use for the grammar generator Yacc to verify our statement.
For that reason the following table 4.1 represents the core of both the SLR and the L A L R
analysis. The table is adjusted to the error recovery that will be described in the following
section. The operators that belong to the group with the same priority and associativity
have been replaced with the number of the given group. This substitution has been used to
create the table with a reduced number of the states. The conflicts in the table have been
already eliminated using the method described in section 4.1.

4.4 LL Table

In the undermentioned L L table 4.2 are already applied the heuristics of the error re
covery strategy called Panic-Mode Recovery and the ambiguity is solved as mentioned in
section 4.1. Two error states in the table are named err and pop.

4.5 Error Recovery

This section covers the description of the error recovery applied in L R and L L parsing
as well as the description of how these two approaches have been connected to produce a

24

Table 4.1: L R table
Act ions Goto

State 1 3 2 5 4 0 7 6 9 8 i f i () ; B
0 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e4 s24 e3 e2 e2 32
1 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e4 s24 e3 e2 e2 3
2 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4 r l 4
3 r l 3 r l 3 r l 3 r l 3 r l 3 s6 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3 r l 3
4 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 5
5 r9 s8 slO s l 2 s l 4 s6 r9 r9 r9 r9 r9 r9 r9 r9 r9 r9 r9
6 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 7
7 r8 r8 r8 r8 r8 s6 r8 r8 r8 r8 r8 r8 r8 r8 r8 r8 r8
8 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 9
9 r4 r4 slO r4 r4 s6 r4 r4 r4 r4 r4 r4 r4 r4 r4 r4 r4
10 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 11
11 r6 r6 r6 r6 r6 s6 r6 r6 r6 r6 r6 r6 r6 r6 r6 r6 r6
12 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 13
13 r3 s8 slO r3 s l 4 s6 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3
14 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 15
15 r lO s8 slO r l O r lO s6 r l O r lO r lO r lO r lO r lO r lO r lO r lO r lO r l O
16 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 17
17 r7 s8 slO s l 2 s l 4 s6 r7 s4 r7 r7 r7 r7 r7 r7 r7 r7 r7
18 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 19
19 r l 2 s8 slO s l 2 s l 4 s6 s l 6 s4 r l 2 r l 2 r l 2 r l 2 r l 2 r l 2 r l 2 r l 2 r l 2
20 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e2 s24 e3 e2 e2 21
21 r5 s8 slO s l 2 s l 4 s6 s l 6 s4 r5 s l 8 r5 r5 r5 r5 r5 r5 r5
22 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e9 s24 e9 e2 e2 23
23 e5 s8 slO s l 2 s l 4 s6 s l 6 s4 s20 s l 8 e5 e5 r2 e5 r2 r2 r2
24 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e4 s24 e3 e2 e2 25
25 e5 s8 slO s l 2 s l 4 s6 s l 6 s4 s20 s l 8 e5 e5 s22 e5 s26 e6 e6
26 rO rO rO rO rO rO rO rO rO rO rO rO rO rO rO rO rO
27 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e8 e4 s28 e7 e8 e8
28 s l e2 e2 e2 e2 e2 e2 e2 e2 e2 s2 s27 e9 s24 s31 e2 e2 29
29 e5 s8 slO s l 2 s l 4 s6 s l 6 s4 s20 s l 8 e5 e5 s22 e5 s30 e6 e6
30 r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l r l l
31 r l r l r l r l r l r l r l r l r l r l r l r l r l r l r l r l r l
32 c5 s8 slO s l 2 s l 4 s6 s l 6 s4 s20 s l 8 c5 c5 s22 c5 o3 acc acc

Tab] e 4.2: L L table
Nonterm i d () ; <?php\s while i f return switch for
(begin) err err err err err err 1 err err err err err

(st_l ist) err err err err err err err 2 2 2 2 2
(st_list2) err err err err err err err 5 7 8 9 6
(st_list3) err err err err err err err 16 16 16 16 16
(casedef) err err err err err err 1 err err err err err
(par list) err err err 21 err err 1 err err err err err

(par list 2) err 22 err 23 err err 1 err err err err err
Nonterm break continue function else elseif case default = { } E O F var
(begin) err err err err err err err err err err pop err

(st_l ist) 2 2 3 err err err err err err err 4 2
(st_list2) 11 12 13 err err 13 13 err err 13 13 10
(st_list3) 16 16 16 15 14 16 16 err err 16 16 16
(casedef) err err err err err 17 18 err err 19 pop err
(par_l is t) err err err err err err err err err err pop 20

(par_l is t2) err err err err err err err err err err pop err

complex error recovery for the whole parser.

4.5 .1 Panic-Mode for L L Parser

The method used for the L L section is called Panic-Mode Error Recovery. We use the
following heuristics for a nonrecursive predictive parsing:

• A synchronizing set is created from the terminals and the nonterminals that are
actually on the stack. When an input for a nonterminal leads to an error marked
as err in the table, the method starts searching through the stack looking for the
matching terminal or the nonterminal that has the input in the set First. We start
searching from the nonterminal on top of the stack, so when there is some additional
input symbol we can skip it and continue with the same nonterminal which led us
to an error first. If the algorithm finds no matching terminal or nonterminal, it will
continue to read the input symbols until a match in the synchronizing set is found.
After the appropriate symbol is found on the stack, algorithm sets top of the stack to
the symbol that has been found and syntax analysis can continue.

25

• The error marked as pop represents an opposite relation of the top nonterminal and
the input as the error symbol e r r . The top nonterminal in that case is popped from
the stack, as it cannot be matched, because the given input symbol is part of the
Follow set for the nonterminal.

• If the terminal is on top of the stack and it is not matched we pop it and subsequently
the error informs user that the symbol has been inserted.

4.5.2 Phrase-level Recovery for L R Parser

For the state that calls for a particular reduction, error entries have been replaced with the
reduction to postpone an error that will still be caught before any shift move takes place.
For the rest of error entries in the L R table have been created 9 special routines as the most
likely assumption for the cause of an error.

e l : This routine does not produce an error, but detects a unary minus operator in an
expression where a binary minus will cause an error. Consequently, the binary minus
is replaced by the unary minus and the syntax is still correct.

e2: This routine represents an error, where an operand is omitted. Therefore a false
operand is inserted.

$foo = $boo + *42:

$foo = %boo + % false * 42:

e3: Only when the end symbol is not a right parenthesis, this error can appear, otherwise
it is replaced by err2 or success. It represents an unbalanced right parenthesis that
is immediately removed from the input.

$foo = %boo > 42):

e4: A comma can appear just as a delimiter for function parameters, every other appear
ance of that character in the given input is considered to be an error and the comma
symbol is skipped.

$foo= (,42);

e5: The routine is raised when an operator is omitted. As a solution a false operator is
inserted.

$foo = 42$boo:

$foo = 42 + $boo;

e6: A function arguments or an expression in parentheses must be enclosed. This routine
inserts a right parenthesis when it is omitted in the states 25 and 29.

$foo = (42:

$foo = 6oo(42:

e7: A function identifier must be followed by left parenthesis. This routine is raised only
in the state 27. A left parenthesis is pushed on the stack to continue the analysis.

$foo = boo):

26

e8: This error can appear in the state 27 and is similar to err7. The difference is that in
the input is neither a left nor a right parenthesis. Most likely a user forgot to precede a
variable with the symbol $ or he forgot to write parentheses after a function identifier.
The parentheses are pushed on the stack in order to recover and continue.

$foo = boo:

$foo = boo():

e9: In some cases when a comma and a parenthesis or a comma and a comma symbols
are confronted, most likely a user omitted to state a function parameter. Therefore a
false operand is inserted to continue.

$foo = 6oo(, 42):

4 . 5 . 3 Connection of the Error Recovery methods

The set of input symbols for the L L section and the set of input symbols for the L R section
are different. In connection with this fact we must solve the problem when an input symbol
from the L L section appears in the L R section and vice versa. In the L L section an invalid
input symbol is skipped and the error message „Unexpected token . . . " is produced. In
the L R section an invalid input symbol is returned to the L L section, the L R analysis
is terminated and the error message „Unexpected token in expression . . . " is produced.
This approach expects that the end-of-expression symbol has been omitted. The control is
handed over to the superordinate L L section.

27

Chapter 5

Implementation of the new parsing
method

The application has been implemented in C programming language. We use only functions
that are a part of standard libraries. The program is written as a console application and
it does not provide the user with additional GUI.

5.1 Application structure

The application is separated into four logical units. The first unit encompasses lexical
analysis. The implementation is in the module scanner.c. The second and the third units
contain algorithms for the L L and L R parsers, respectively. Main module that implements
the L L parser is syntax.c. Syntax analysis for expressions performed by the L R parser is
implemented in module expressions.c. The last unit 3ac.c embraces an implementation of
the three address code generator. The main module of the application is called main.c. The
parsing tables, rules and sets are defined in tables.c. The other modules are pushdowns.c,
expressions.c and debug.c. These modules contain ancillary functions and data such as
an implementation of the stacks, debugging functions, tables and other data structures.

5.2 Representation of data

This section describes the most important data structure in the application. To under
stand how the following concept works it is important to know that the terminals and the
nonterminals are represented together in the one type enum.

5.2.1 S L R Table

The action part of the SLR table is represented by a two dimensional array. The rows
represent the states and the columns stand for the set of input symbols for the L R section.
The table entries have four different types. The shift entries are numbers lower than 100
that represent a value of the state in the next step. The reduction entries represent numbers
of the rules increased by 100. Therefore these entries are numbers higher than 100 and lower
than 200. The numbers over 200 represent the error codes. The highest number of a type
unsigned char stands for the success symbol. This concept of a data representation is one
of many possible solutions how to differentiate the entries in the table.

28

The goto part is created by the only one nonterminal E. Therefore the table has been
separated and for this part has been created the one dimensional array.

5.2.2 L L table, rules and the set First

The L L table is represented as a two dimensional array. The rows are the nonterminals and
the columns represent the set of input symbols for the L L section. The entries are numbers
of the rules, where the first rule has a number 1. The number 0 and the highest number of
a type unsigned char 255 represents the error states err and pop, respectively.
The rules are represented as a structure of one integer and an array. The array is a
representation of a right side of a rule. The integer represents a number of terminals and
nonterminals on the right side.
The set First is two dimensional array where the rows represent the nonterminals. In every
row are terminals that belong to the set First of the represented nonterminal. The number
of columns is determined by the set First with the highest cardinality.

5.2.3 Three Address Code

The generated code is at first prepared as a structure in memory. At the end of the syntax
analysis this structure is used to produce the text output. The created instructions are
pushed on the stack, therefore in memory they are stored in order in which they have been
created. Additionally every instruction has a reference to the next one. The references are
used as a valid chain of instructions that can be written to an output.

5.3 Implementation of the Lexical Analysis

Implementation of lexical analysis has been borrowed from my team's school project for
the course IFJ . The language in the mentioned project was as well a subset of P H P . The
implementation was adjusted according to the requirements of the language, which is the
subject of this thesis. The lexical analyser is programmed as a finite state machine. The
token keeps information about its type, current line of code, length and data according to the
type of a token. The function to get the token from the scanner is called scanner_get_token.

5.4 Implementation of the Syntax Analysis

The algorithm for top-down parser is implemented in the function LL_parser. The bottom-
up parser implementation embraces the function LR_parser. To the implementation of
the syntax control are added function calls to notify the code generator about the actions.
The L R parser uses only one table for three kinds of expressions. When the nonterminal
{exprl) is going to be analysed we replace the value of one error entry to a success value.
Afterwards when the L R analysis is terminated we replace it back. The set of the valid
tokens is also different for all three types of the expressions. Therefore we created three
different functions to control the validity of tokens and the function pointer that is set
to corresponding function at the beginning of L R analysis according to the type of the
expression. The implemented algorithms of top-down and bottom-up parsing are described
in chapter 3.

29

5.5 Implementation of the Three Address Code

The task of the code generator is to take data from the syntax analyser and create the
chain of instructions accordingly. The code generator uses its own stack to store the context
about analysed expressions. This stack is also used to control if break or continue has a
corresponding statement. The labels in the generated code have a name of the corresponding
statement and number that is kept and increased for every statement separately.
Three functions are implemented in modules for the syntax analysis. These functions are
Three AC, Expr_3ac and Expr_3ac_single_oprnd. They are called to notify the code
generator about a derivation or a reduction that was performed. When the expression is
only one token, no operation is detected, hence the function Expr_3ac_single_oprnd must
create assignment additionally. Otherwise the assignment is a product of an operation,
where we create a new local variable that stores the result of an operation.
For small actions of the parser we implemented the code generator routines which create
and link instructions. The function that writes the result of the program to the standard
output is called Write3ac. The three address code statements were primarily designed
according to [] and some additional constructions are taken from [4]. The three address
code is just the way how to visualise the results, but the main part is the syntax analysis,
therefore we omit to state the number of local variables at the beginning of the function
declarations. This feature can be added additionally as a part of a next work.

30

Chapter 6

Conclusion

Let us present and discuss the contributions of this thesis. To shortly summarize the
aim of our work, it was to demonstrate a simple idea of the new approach to a syntax
analysis. According to this idea the language is divided into sections. The most effective
and suitable method of parsing is chosen for each section. We construct grammars and the
parsers accordingly. The plan is to connect these parsers as a puzzle and finally create one
hybrid method that is more effective than if any of these methods were used alone.
The theoretical part of the thesis gives the user complete explanation and a mathematical
base to not only understand but also to create the syntax analysers that we use here. We
employed definitions and algorithms to avoid fuzzy explanations of terms and notions. After
specifying the theory base we created a simple language for a demonstration purpose. We
separated the language into the two sections. For one section we created the L L syntax
analyser. The L L syntax analyser is simple enough to be created manually without the
need to use additional generators. For some constructions of the language it was the best
choice. But it also has disadvantages. The L L grammar for expressions is not very effective,
because it has additional productions which make the syntax analysis slower. Also the
basic expression grammar is left recursive so we need to use the left recursion replacement
method to prevent the parser from loops. Using an ambiguous grammar in L L parsing is
not a straightforward method. Therefore, we decided to use an L R parser for the expression
part.
The grammar created for expressions was ambiguous, but conflicts in the L R table were
quickly resolved. The question is now, why did we not use the L R parser for the whole
language. The Simple L R table for the whole language would have more than 100 states.
In a table of this size, it is not easy to orientate and resolve conflicts. Even if conflicts were
resolved by generator software, it would be difficult to implement the Phrase-level recovery
method suitable for expressions, by analysing every error entry in the table that is so big.
The last thing that has to be figured out is how to connect those methods to produce only
one syntax analyser. This thesis only proved that it is possible, but it was not the main
interest. However, this could be an interesting topic for another research.
The result is not only the faster syntax, but also new ideas and suggestions to research
in this area of interest. At first, it was a possibility to separate the language into smaller
parts and reduce the number of entries in L R table using only L R parsers. The idea also
brings a new perspective of a parser modularity, which can improve development of complex
languages. The presented method can be used together with parallel parsing methods, in
which gives us a new topic to research.
If we consider that L R grammars are stronger than L L grammars (see []), we could choose

31

language which has a few constructions that can be analysed only by an L R parser and
try to apply our method there. This approach has been already mentioned and described
in the work of Bostjan Slivnik []. This principle can be applied also for other kinds of
grammars that have different strength.

32

Bibliography

[1] Alfred V. Alio et al. Compilers: principles, techniques & tools. Pearson Education,
Inc, 2006.

[2] M . Češka et al. Gramatiky a jazyky. Skriptum V U T Brno. Ediční středisko V U T
Brno, 1985.

[3] Alexander Meduna. Automata and Languages: theory and applications. Springer, 2000.

[4] Keith Schwarz and Jinchao Ye. Three-address code IR. Lectures for students in
Stanford University, California
http://web.Stanford.edu/class/archive/cs /cs l43/cs l43 .1128/ , 2012.

[5] Boštjan Slivnik. L L conflict resolution using the embedded left L R parser. Computer
Science and Information Systems, 9(3):1105-1124, 2012.

[6] J . P. Tremblay and P. G . Sorenson. The theory and practice of compiler writing.
McGraw-Hill , cl985.

33

http://web.Stanford.edu/class/archive/cs/csl43/csl43.1128/

Appendix A

Content of CD

The content of the attached C D is following:

• src/ folder with application source files

• input/ folder with examples of input files written in the language, which is
introduced by this thesis

• thesis.pdf content of the thesis

• src-latex/ source files for the text of the thesis in latex

34

Appendix B

Manual

The executable file is called main. The program requires only one argument which is the
name of an input file. After the program is successfully terminated, the corresponding
three address code is written to the standard output. When some errors occur during the
syntax analysis, we provide the user with the line number, where it was located and the
error message according to the type of an error.

<?php
$a = f {) and g(22+3, ta/tb, h (S x » » ix;

f o r (* i = 2*2; $ i < 5; f i = J i + 1)
{

break ;
i f (* i === 2)
{

*p = 5+5;
c o n t i n u e ;

$x = p u t _ s t r i
> re tu rn 2Ö+2Ö;

xniarti62@ir.erli: i: ~ / fca .kala .rka.£ ./E.ain t e s t l . p h p
E_0 := CALL f, 0
E l := 22 + 3
E_2 := a / b
PARAM x.
E_3 := CALL h , 1
PARAM E 3
PARAM E_2
PARAM E l
E_4 : = CALL g, 3
E_5 : = E_4 + x.
a : - E_0 and E_5
i := 2 * 2

E 8 := i < 5
IF NOT E_8 GOTO ENDFORO
GOTO ENDFOR_0
E_10 : = i = 2
IF NOT E 10 GOTO ENDIF 0

GOTO F O R D
ENDIF 0:
E 12 := i + 2

PARAM E_13
PARAM E_12
x := CALL p u t s t r i n g , 2
i := i + 1
GOTO F O R D
ENDFOR_0:
E_15 := 20 + 2D
RETURN E l 5
xiuarti62@ii ierl in: - / f caka larksS [

Figure B . l : Example of the output when the syntax of the input file is correct

35

fa - f () and i(22+3, :-Sa Sb h () x)) JK;

f o p [t i = 2*2; $1 < 5 $± = S i + 1)

break;
i f <*i === 2)

cm
i /
$K = pi

] r e t u r n 2&-

i62@merlin: ~ / f c a k a l a r k a $. /main test l .php
2: Variable must be preceded with S and funtrtio:
2: Missing operator
2: Missing operator
4: Missing operator
4: Unexpected token in expression E EQ
4: Unexpected token E E Q , Token E_VAR inserted
10: Unexpected token in expression E COHTINUE
14: Unexpected token E_EABRflCK
i62@rf.erlin: ~ / f c a k a l a r k a £ U

Figure B.2: Example of the output when there is a syntax error in the input file

36

