
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ
FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RÁDIOELEKTRONIKY
DEPARTMENT OF RADIO ELECTRONICS

JEDNODUCHÝ PRŮMYSLOVÝ ETHERNET
INDUSTRIAL LOW COMPLEXITY ETHERNET SYSTEM

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Be. Vladimír Šustek
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. Tomáš Götthans, Ph.D.
SUPERVISOR

BRNO 2019

" r

VYSOKÉ UČENÍ FAKULTA ELEKTROTECHNIKY
TECHNICKÉ A KOMUNIKAČNÍCH
V BRNĚ TECHNOLOGIÍ

D i p l o m o v á p r á c e

magisterský navazující studijní obor Elektronika a sdělovací technika

Ústav rádioelektroniky

Student: Bc. Vladimír Šustek ID: 164421

Ročník: 2 Akademický rok: 2018/19

NÁZEV TÉMATU:

Jednoduchý průmyslový Ethernet

P O K Y N Y P R O VYPRACOVÁNÍ:

Seznamte se s možnostmi implementace IwlP -- IP stacku v embedded systému architektury A R M . Navrhněte

embedded systém implementující univerzální vstupně výstupní zařízení komunikující na IwlP T C P / I P vrstvě

s důrazem na kompatibilitu zařízení s embedded periferiemi komunikujícími pomocí rozhraní P M O D , Arduino

a standardy Analog Devices, Inc. Pro systém použijte mikrokontrolér ADI adUCm4050 a jako linkovou vrstvu

neveřejný prototyp ethernetového připojení s integrovaným M A C . Dalším požadavkem tohoto modulu je

univerzálnost napájení v standardních průmyslových aplikacích stejně jako napájení v uživatelských podmínkách

(USB) a navrhnutí základní ochrany bloku zdroje. Seznamte se s průmyslovými komunikačními protokoly jako

například M O D B U S , či O P C - UA pro další část práce.

Zajistěte výrobu hardwaru zmíněného embedded systému s dodržením zásad při použití vysokorychlostních

komunikačních bloků (Ethernet). Naprogramujte a oživte vytvořený systém, zprovozněte IwlP -- IP stack. Zvolte

praktickou a jednoduchou demonstrační aplikaci (například měření teploty , či tlaku vzduchu) a vyberte vhodný

průmyslový protokol jako nadstavbu systému (M O D B U S , O P C - UA). Daný protokol implementujte a připojte

k vámi vytvořené síti založené na průmyslovém protokolu. Navrhněte grafické rozhraní pro interpretaci získaných

dat. Zhodnoťte robustnost systému, zvažte, případně navrhněte možná bezpečnostní vylepšení a další rozšíření.

DOPORUČENÁ L I T E R A T U R A :

[1] D U N K E L S , A. Design and Implementation of the IwlP TCP/ IP Stack. Swedish Institute of Computer Science

2001. Online https://www.artila.com/download/RIO/RIO-201 OPG/Iwip.pdf

Termín zadání: 4.2.2019 Termín odevzdání: 16.5.2019

Vedoucí práce: doc. Ing. Tomáš Gôtthans, Ph.D.

Konzultant:

prof. Ing. Tomáš Kratochví l , Ph .D.
předseda oborové rady

U P O Z O R N Ě N Í :

Autor diplomové práce nesmí při vytváření diplomové práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným
způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského
zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č.40/2009 Sb.
Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

https://www.artila.com/download/RIO/RIO-201

ABSTRACT
The diploma thesis is focused on the building embedded demonstration application of the
proprietary L o w Complexity Ethernet module for industrial usage further called the
L E N / L E S 2. A t the first, main used technologies such as M C U , or the lightweight IP stack
is discussed, Consequently, there is detailed view on system hardware architecture
proposed by hardware and software requirements. Then though part describes blocks of
embedded system are in term of specific parts and hardware requirements to create
universal board. Following chapters expresses first startup and known hardware bugs,
LWIP implementation and M O D B U S system implementation. The core of the system is
the new released microcontroller an A D u C M 4 0 5 0 and the L o w Complexity Ethernet
MAC-PHY prototype block and much more dependent convenient peripherals of the
M C U based application.

KEYWORDS
Low Complexity Ethernet (LES) , M A C - P H Y , A D u C M 4 0 5 0 , LWIP stack, S D P and
Arduino interface, universal power supply, M O D B U S , O P C - U A

ABSTRAKT
Předmětem diplomové práce je vytvoření vestavěného neboli embedded systému za
účelem demonstračního zařízení s využití neveřejného modulu L o w Complexity Ethernet
pro průmyslové aplikace - tedy jednoduché průmyslového ethernetu. Nejprve se
dokument zabývá technologickými bloky jakožto M C U a použitým L W I P , poté se práce
zaobírá detailním popisem architektury univerzálního systému podle zadaných
požadavků po stránce fyzické (hardwarové) a systémové (softwarové). Další kapitoly se
zabývají oživením desky, včetně vysvětlení technických závad, dále implementací L W I P
stacku a nadstaveným M O D B U S protokolem. Hlavními stavebními bloky jsou zmíněný
Low Complexity Ethernet modul a mikrokontroler A D u C M 4 0 5 0 a další důležité
hardwarové periferie mikroprocesoru.

KLÍČOVÁ SLOVA
Low Complexity Ethernet (LES) , M A C - P H Y , A D u C M 4 0 5 0 , LWIP stack, S D P and
Arduino interface, univerzální napájecí zdroj, M O D B U S , O P C - U A

ŠUSTEK, V . Jednoduchý průmyslový ethernet. Brno: Vysoké učení technické v Brně,
Fakulta elektrotechniky a komunikačních technologií, Ustav rádioelektroniky, 2019.
63 s., 15 s. příloh. Diplomová práce. Vedoucí práce: doc. Ing. Tomáš Gôtthans, Ph.D.

PROHLÁŠENÍ
Prohlašuji, že svoji diplomovou práci na téma Jednoduchý průmyslový ethernet jsem
vypracoval samostatně pod vedením vedoucího diplomové práce a s použitím odborné
literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v
seznamu literatury na konci práce.

Jako autor uvedené diplomové práce dále prohlašuji, že v souvislosti s vytvořením této
diplomové práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl
nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a
jsem si plně vědom následků porušení ustanovení § 11 a následujících zákona č. 121/2000
Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých
zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy V I . díl 4 Trestního zákoníku č.
40/2009 Sb.

V Brně dne

(podpis autora)

PODĚKOVANÍ
Děkuji školnímu vedoucímu diplomové práce doc. Ing. Tomáši Gôtthansovi, Ph.D. a
externímu vedoucímu panu Ing. Michalovi Brychtovi včetně aplikačního týmu A D I ,
Limerick, zejména Connelu O'Sullivanovi za účinnou metodickou, pedagogickou a
odbornou pomoc a další cenné rady při zpracování mé diplomové práce.

CONTENT
Content iv

List of pictures vi

List of tables viii

1 Introduction 9

2 Preliminary 10

2.1 Light Weight T C P IP stack 10

2.1.1 L W I P Stack footprint 12

2.2 A R M microcontroller introduction 13

2.2.1 A R M M - f a m i l y 13

3 System proposal 15

3.1 Power Supply unit 16

3.1.1 Preliminary 16

3.1.2 LTC3630 down converter 17

3.1.3 A D P 7 1 4 2 L D O stabilizer 19

3.1.4 Power supply protection circuitry 20

3.2 Proprietary Low Complexity Ethernet L E S 21

3.3 A D u C M 4 0 5 0 Cortex M 4 - F microcontroller 22

3.4 System connector interfaces 23

3.4.1 S D P platform 24

3.4.2 Arduino interface 25

3.4.3 P M O D interface 26

3.4.4 U S B / U A R T converter interface 27

3.4.5 Auxil iary circuitry 28

4 Hardware proposal and debug 29

4.1 Parts placement 29

4.1.1 M A C - P H Y - R J 45 30

4.1.2 Arduino interface 30

4.1.3 M C U , E E P R O M 30

4.1.4 P M O D SPI, P M O D I2C, A D I SDP, R F connector 30

iv

4.1.5 Buttons 30

4.1.6 Slot microSD 31

4.1.7 U S B micro, J - L I N K - pin 31

4.1.8 L E D s 31

4.1.9 Power Source 31

4.1.10 Thermometer A D T 7 5 31

4.1.11 The remaining components of the schematic 31

4.2 Hardware getting started and hardware bugs 32

5 LWIP Implementation 35

5.1 Getting started with M A C - P H Y 35

5.2 L W I P porting 38

5.2.1 Porting layer ethernetif 39

5.2.2 D H C P and L W I P 43

6 Demonstration system hardware 44

6.1 Fan-based air conditioning 44

7 TCP/IP Modbus APPLICATION 46

7.1 M O D B U S introduction 46

7.2 TCP/Modbus demonstration system 48

7.3 TCP/Modbus master (client) implementation 48

7.4 TCP/Modbus slave (server) implementation 50

8 Conclusion 54

9 Sources 55

10 Quantities And Abrreviations 58

Appendix 61

V

LIST OF PICTURES
Figure 1 Division between TCP/IP and Application 11

Figure 2 General P B U F _ R A M packet chained with P B U F _ R O M packet 11

Figure 3 A R M - M Cores Overview 13

Figure 4 A R M - M operation states and modes 14

Figure 5 Hardware architecture overview 15

Figure 6 L E S power consumption measurement 16

Figure 7 Schematic of the LTC3630 power supply 18

Figure 8 Recommended inductor value graph, assumed from [8] 18

Figure 9 Schematic of the ADP7142 power supply 19

Figure 10 Schematic of power protection circuit 20

Figure 11 U S B power and signal protection circuit 21

Figure 12 Proprietary M A C - P H Y prototype illustration 21

Figure 13 Block diagram of the S D P system 24

Figure 14 The Arduino interface header sorting 25

Figure 15 SPI Type 2A, I2C P M O D connectors 27

Figure 16 Schematic of U S B / U A R T converter 28

Figure 17 L E N / L E S 2 board 29

Figure 18 L E N / L E S 2 board 32

Figure 19 Wrong L E D orientation 32

Figure 20 3V3 and 3V3 M A C - P H Y misconnection 33

Figure 21 Wrong PI3 pinout 33

Figure 22 L E N / L E S 2 board normal consumption 34

Figure 23 Wireshark Syslog frame receiving 35

Figure 24 Frame Syslog payload received by L E N / L E S 2 receiver 36

Figure 25 Calling ping command (no other task processed) 42

Figure 26 D H C P L W I P client 43

Figure 27 Fan control circuit 45

Figure 28 Fan circuit voltage 45

Figure 29 Modbus R T U vs T C P / M O D B U S 46

Figure 30 TCP/Modbus commands 47

Figure 31 TCP/Modbus example transaction read coil (ON-state) 47

vi

Figure 32 The master TCP/Modbus G U I

Figure 33 The slave TCP/Modbus diagram

Figure 34 L o w Complexity Ethernet Demonstration System

Figure 35 TCP/Modbus master-slave communication

vii

LIST OF TABLES
Table 1 Dunkels's LWIP footprint 12

Table 2 STM32F4xx H T T P server demo footprint 12

Table 3 Arduino interface pinout 26

Table 4 P M O D SPI Type 2A, I2C pinout 27

viii

1 INTRODUCTION
Over the last few years, interest in mutually connected computer-based devices has
greatly increased. These devices are becoming more available because of prices have
dropped and so can be used in various areas such as healthcare, industrial production,
safety, transportation etc. Originally the army project named A R P A N E T emerged in
highly developed Internet technology for different purposes with often hard requirements
such as safety, high speed, data rate. This document aims into L o w Complexity Ethernet
module which collect data from essential communication protocol on the one side (SPI,
I2C, U A R T etc.), encapsulates data to convenient ethernet frames and consequently sends
for general processing on the other side. This chapter aims into the fundaments of the
proposed system.

Recently, Analog Devices (ADI) designed the F P G A based low complexity prototype
with two E T H - P H Y s and I2C + SPI access interfaces. This block is proprietary, and its
content is not point of this diploma thesis. This prototype is called as the L E N / L E S
(switchable L o w complexity Ethernet Node/ L o w complexity Ethernet Switch) can be
understood yet not released product providing M A C service. In the further text is this
block called as the M A C - P H Y . This document aims only into to L E S mode system
implementation. Further implementation (up to application layer) is subject of this
document. The main point of this assignment is to create demonstration application board
with the M A C - P H Y included (further called L E N / L E S 2 board). Demonstration board
should highlight potential of the project and it is pre - iteration for final intended SoC
(System on Chip) implementation of the whole described system. The M A C - P H Y
requires host M C U for control - intended part of the final SoC. Final system should use
one of the convenient industrial protocol such M O D B U S , O P C - U A . Note that of the
main corporal requirements is to use new released A R M M C U the A D u C M 4 0 5 0 (M-4F
Cortex) with enhanced power management and convenient peripherals to prove its
performance.

However, there are some constrains during Ethernet implementation in the miniaturized
embedded system - available space memory and computing performance. Therefore, a
LWIP stack is discussed as the first - special variant of a TCP/IP stack for embedded. The
LWIP familiarization is followed by brief introduction to used A R M microcontrollers.
Consequently, the fundaments of the system are described as was mentioned in the
abstract. Finally, last chapters express hardware debug, LWIP implementation and
M O D B U S implementation.

9

2 PRELIMINARY
This chapter is dedicated for brief LWIP stack introduction such as reason of usage in
embedded system or light view on the architecture. Secondly, the basic features of the
A R M M C U s are discussed.

2.1 Light Weight TCP IP stack

The miniaturized computer-based devices such as sensors must be inexpensive and small,
the implemented Internet Protocol must be optimized as well . For these purposes LWP
TCP/IP stack by Adam Dunkles was developed (From the Swedish institute of computer
science) [1]. The ordinary TCP/IP stack provides and IP, I C M P , UDP and a T C P protocol
[3]. The application layer is highly hardware abstract, that entry point of the convenient
stack is in file VO fashion, especially because of fundamental elements implementation
in the system kernel. The TCP/IP is designed as a layered system, whereas layers are
strictly divided and only entry points are exposed for interfacing. Since the stand-alone
layered architecture has advantages such as safety (no other layer can access resources of
neighbor layer except interfacing with dedicated entry points), there is a disadvantage of
performance and memory requirements. For layer division, it is needed to copy all used
data buffers through the stack, therefore significant amount of the memory and computing
time is occupied by system.

However, the typical embedded application has very limited memory resources, so
compromise is needed especially in the buffering. The main goal of LWIP (light weight
TCP/IP stack) is the sharing buffer through the layers, what is violation of strictly divided
layers in the original intended stack. The memory sharing can be easily supervised
because of native the C - language stack implementation. Except supported protocols (IP,
ICMP, U D P , TCP) LWIP needs a few support modules such:

• Emulation layer - only implementation dependent part of stack, includes timers,
process synchronization, message passing etc.

• Buffer and management subsystem - care about memory for processes
• Network Interface functions - the end low layer driver function
• Internet Checksum functions - packet checksum calculation
• Abstraction A P I - for global stack interfacing

In term of process model, LWIP is intended to operate as the single process, whereas user
is interfacing stack A P I (Application Programming Interface) accessing this single
process, or stack is divided into the two process in mutual collaboration comprised from
the A P I and the TCP/IP process. In case of the divided A P I and TCP/IP, both process
communication using an inter-process communication (IPC) using software semaphores,
message passing and memory sharing.

The memory management uses chained structures with necessary variables and pointers
to the pay loads. For example, the packets are represented as a structure as well as the
network driver structure, which represents the certain mapped network devices.

10

A p p l i c a t i o n T C P / I P

IPC
•

4
API

IPC
•

4
API

Figure 1 Division between TCP/IP and Application

The memory manager splits memory into the small chunks and places small structure
with flag used/unused there. This allows to maintain memory and prevent fragmentation.
Also , the manager maintains only dedicated part of the memory so cannot occupy room
of other blocks

The packet buffers are example of the chained structure instances. The packet may reside
in a PBUF_RAM, PBUF_ROM or might be stored in the fastest way to the pre-located
static PBUF_POOL memory. The PBUF_ROM memory is suitable for constant data to
be sent, PBUF_RAM data are used to send packet and PBUF_POOL for its fast access is
used for incoming packets. Note that in the M C U is available only the R A M and the
F L A S H memory for protentional data, so packet of the R O M character is both read/write
accessible. The PBUF structure contains following parts such pointer of the next PBUF

instance pbuf, pointer of packet payload, length of packet, length chained packets, flags
and reference bits. The data of payload pointer are stored in the though frame of pbuf as
the last member of structure. In term of size is the biggest PBUF_POOL, because of
incoming packet size (huge amount of received payload data). Figure 2 express chained
packets of types P B U F _ R A M and P B U F _ R O M , whereas P B U F _ R O M has external
payload storage.

PBUF RAM

next
payload

len

totjen

flags ref

PBUF ROM
next

payload payload

len
totjen

flags ref

ROM payload

Figure 2 General P B U F _ R A M packet chained with P B U F _ R O M packet

Network interfaces are also handled using chained structure defined as netif. Structure
contains pointer for chaining, name of interface, interface number, IP address, netmask,
gateway field and state flag, but especially contain two function pointers for low layer
packet handling during receiving and transmitting. IP and U D P protocols are presented
as structures as well .

11

2.1.1 LWIP Stack footprint

The Adam Dunkels's proposal of the LWIP was tested only for the program R O (Read
Only) memory usage (data, instruction). Also, reached results are old - fashioned in term
of the implementation (compiled for x86 and 6502), note that reference document was
issued in the year 2001. Dunkels's original stack takes 23kB of the flash memory and
there is not specified application of usage.

In point of view from LWIP original proposal, the S T M recently issued document of the
LWIP stack for its A R M M - 4 Cortex microcontrollers STM32F4xx (year 2013) [4]. S T M
compiled LWIP in result of 98kB used F L A S H (RO data and R O program), and 33kB of
the R A M usage in case of the H T T P 1.0. Note that the S T M uses the hardware abstract
functions and the used microcontroller is much more advanced in compare to 6502 used
by Dunkels (STMF4xx family represents 32 - bit A R M M - 4 Cortex M C U) .

Table 1 Dunkels's lwIP footprint

Module Size [B]
TCP 11461
Support functions 4149
API 3847
UDP 1264
IP 1211
ICMP 714
Total 22646

Table 2 STM32F4xx HTTP server demo footprint

Module

RO code
F L A S H
[B]

RO data
F L A S H
[B]

R W data
S R A M [B]

Ethernet driver and interface 2828 0 9360
lwIP memory management and IP modules 18634 20 19978
Application Modules: general initialization 6988 52385 1581
S T M Peripheral drivers and board support 3720 5 16
Others (stack, heap, ect.) 8456 4573 32
Total 40626 57091 32770

Regards to the footprint of the LWIP stack is mandatory to mention the uIP stack
developed for the 8-bit microcontrollers with the footprint < l k B of F L A S H and <100B
of the R A M , also by Adam Dunkels [2]. Constraints caused by footprints w i l l be
discussed in the M C U related chapter 4.

12

2.2 A R M microcontroller introduction

It may be said with exaggeration that the A R M based 32-bit M C U s rule the world. The
Advanced RISC Machines are used not only in the miniaturized embedded solution, but
also in the devices with high computing performance [5].

Although the RISC (Reduced Instruction Set Computing) is part of the name
abbreviation, most of the used instruction is CISC (Complex Instruction Set Computing).
A R M company does provide only the IP core for the silicon vendors which produce M C U
with their customized peripherals.

Once of the main advantage is a core native debug interface standard J T A G / S W D , what
is also only direct entry point to the core. Consequently, the core provides ethe entry high
performance A X I and simpler A P B bus for interfacing with other important block of
M C U such as clock section, memories (S R A M , F L A S H) , etc. A R M is designed for A R M
- 32b instructions, but also provides option of the T H U M B 2 16/32b instruction set.The
A R M microcontrollers are marked as the Harvard architecture devices, because data and
program can be accessed simultaneously. This device processes with virtualize memory,
so even i f F L A S H and R A M is content from different H W memories, user accesses them
in linear order.

A R M cores are divided into:

• A R M - A : High performance devices such as mobile phones, tablets and small
computers. This type of core supports 7 modes of operation with its own
processing necessary registers. Only this core uses full scale of A R M instructions.
A R M instruction might be used as very powerful using Assembler fashion
programming.

• A R M - R: Devices with the highest timing requirements. This core is used in
application, whereas is needed timing accuracy (e.g. during ISR routines) such as
very precise motor control.

• A R M - M : Brief description in following subchapter.

2.2.1 ARM M - family
The A R M v 7 M architecture of A R M - M devices was developed to offer better industrial
leading-edge system performance, support natively C/C++ coding, deterministic
instruction and interrupts timings [6]. M - family requirement was to allow producing
enhanced low-cost miniaturized applications, whereas full performance of core may be
needed. The A R M company market offers a few M-cores sorted in increasing order of
performance and complexity.

A R M - M Cores:

M O M 0 + M l M 3 M 4 M 7 M 2 3 M 3 3 M 3 5 P
H 1 I 1 I 1 1 1 1 •

CORE performance

Figure 3 A R M - M Cores Overview

13

The devices support two (three) operational modes in frame of the Thumb State [5]. The
number of modes is very limited in compare to " A " and " R " A R M devices. There is the
privileged handler mode for exception (interrupt) processing and privileged/unprivileged
thread mode for normal instruction execution. The unprivileged thread mode prevents
from accessing sensitive parts of the M C U such memory or peripherals and uses its own
stack pointer - ensures advanced reliability of the system. However, the unprivileged
mode does not have to be used at all, especially in the simple applications.

Exception
request

Thumb State
Privilegeded
Handler Mode
Executes exceptions

Privilegeded
Thread Mode
Executes normally

Exception
request

Exception feturn

MJnprivilegeded
Thread Mode
Executes normally
Separated Stack

Pointer (SP)
Software
switches

Debug
event

Unhalt
request

Debug State
processor stops
execution
If is debugger
connected only

Figure 4 A R M - M operation states and modes

The register bank is composed from 16 registers of 32-bit width, whereas first 12 of them
are for general purposes. The 13 t h register is Stack Pointer and can be M S P (Main SP) or
PSP (Process SP) according to the current state of operation. Then, there is a register to
hold return address, program counter. The A R M s have a few of status registers a xPSR
(Application, Execution, Interrupt), what also ensures higher reliability of the system.

One of the most mentioned feature of the A R M high performance is the three-stage
pipeline. The three-stage pipeline is implementation begins in M 3 family and then in the
better cores. The pipelining allows fetch-execute-store fashion of execution, what allows
to process most of the instruction in one clock cycle such multiplication. Note that clock
the frequency may exceed 100 M H z up to 200 M H z [5].

14

3 SYSTEM PROPOSAL
This chapter discusses important hardware blocks used in the L E N / L E S 2 board. A t the
first is discussed power supply unit, secondly there is brief introduction to the proprietary
M A C - P H Y block. The third part expresses properties of the used M C U A D u C M 4 0 5 0
application. Consequently, there are subchapters about universal interfacing units - such
as U S B / U A R T interface and connectors. The detailed view on the embedded system is
Figure 5. Schematic of the proposed system is enclosed as the appendix.

Buttons
RST, BOOT

ResetIC

LEDs
ATD75

Thermometer

EEPROM

SWD J - T A G (SWD
9 - pin
J - LINk SPl/'

mini USB 3.81 Terminal
Connector

5.5 mm JACK
Connector

USB/UART
FT232RQ

Power Supply
LTC3630 & ADP7412

13.3V & 4-5V source

Safe circuit
Overvoltage
and inteference

MCU

ADuCM4050
M4 - Cortex

mircoSD
Card Slot

SPI/ ISR MAC PHY
LES

IDIFF.

ITX/RX

SPI/I2C

SDP
ADI 120-pin
connector

2x RJ -45
Ethernet
connectors

S P I / I 2 C / G P I O N S P I / G P I O

PMODs
l2CandSPI
connectors

Arduino
Interface
headers

Testpoints
SPI, GPIO,
ISR pins

Figure 5 Hardware architecture overview

The Hardware architecture depicts blocks and its signal and external power connections.
The white blocks represent passive mechanical connectors for board interfacing - note
that there are only around the core. The core of the architecture is M A C - P H Y block and
M C U (brown and black). The light blue color marks ICs used for auxiliary functions such
as reset circuit, U S B to U A R T etc. The red block contains power supply circuitry and
provides power supply 3.3V to the system. Note that whole system is powered by 3.3V
except the U S B / U A R T - internally powered by the L D O . There is 4-5V power source
stabilized by the 5 V L D O ADP7412, the usage is only for the S D P interface connector.
The green block is composed from two buttons, first for reset circuit, the second for the
B O O T pin of the M C U , note that signal connection between B O O T and M C U is not
drawn - expressed only by distinct green color. For signalization there are a few L E D s
dedicated (pink).

15

The simple thin arrows are used for SPI/I2C/GPIO/ISR connections. The thick black
arrow leads between M C U and M A C - P H Y block of external reset requirement. The
uncomplete thick red arrow should outline power supply options.

3.1 Power Supply unit

3.1.1 Preliminary
One of the typical features of the miniaturized devices is range of power supply voltage
and low power requirements. Because of the used M A C - P H Y PFGA-based block
(discussed in the next chapter), the low power requirements may be abandoned. During
the pre-iteration of the L o w Complexity Ethernet system was measured consumption of
the whole system including M C U around 300 m A (Figure 5).

Figure 6 LES power consumption measurement

Auxil iary consumption measurement is depicted in figure 5. There is voltmeter on the
left, ammeter in the middle and the very first L E S device with the hosting A D u C M 4 0 5 0
board A D Z S - A D u C M 4 0 5 0 E Z K I T - the universal M C U evaluation board [7]. The
E Z K I T ensured up to 500mA current at 3.3V for hosted application. During the
measurement, the L E S was linked with the P C (processed packet on the A R P layer -
traffic load). The current consumption reached approximately 300mA, what did not vary
across adjusting traffic significantly. Note that the E Z K I T was supplied using its U S B
interface by desktop P C - D E L L O P T I P L E X .

However, A D I (Analog Devices International) stopped production of E Z K I T and started
to produce more practical and economic replacement E V - C O G - A D 4 0 5 0 [14].
Replacement board though does not have enough power supply unit because of its
purpose - evaluating microcontroller A D u C M 4 0 5 0 in lower power efficient applications.
The result was that M A C - P H Y block was kept in brown-out state so reliable system with
A D u C M 4 0 5 0 and M A C - P H Y module in collaboration is needed - the diploma thesis
assignment.

16

3.1.2 LTC3630 down converter
The Analog Devices acquired Linear Technology (year 2017) and became company with
wide offer of power supply converters or stabilizers. Logically, usage of corporal IC for
power supply is required. Described circuit is part of the red block in figure 5.

Global power supply requirements of the system:

• 5 V for S D P requirement and 3.3V for L E S , M C U and related circuits

• U S B - VBUS 5 V power supply source (down to 4.2V in worst case)

• Industrial 2 4 V D C ±10V source, overvoltage and interference safe circuits

• Direct 3.3V voltage power supply source - exceptional, debug purposes

• Provide 500mA at 3.3V, voltage cannot decrease down to 3.20V

• Provide 5 V for S D P purposes and 3.3V for M C U and L E S (next subchapter)

LTC3630 was chosen as an appropriate down converter due to following properties [8]:

• Operating range 4 - 6 5 V D C

• Adjustable 50 - 500mA output current

• A l l - i n including switch, only external inductor working point passives needed

• L o w - dropout in case of VIN ~ VOUT, switch RDSON 1.9Q at 100% duty cycle

• L o w profile footprint 3.5mm x 5mm with thermal pad

There are a few evaluated typical applications in the official LTC3630 datasheet [8]. The
best suits "4V to 65V Input to 3.3V Output, 500mA Step-Down Converter" from the first
page. Because LTC3630 contains optional pins (unused in mentioned application), the
original schematic was enhanced (Figure 6). Especially, there is a pin for output current
settings, which is originally left floated ~ maximal current.

The output current IOUT (500mA) is set by switched IPEAK which are related as:

I OUT = I PEAK 2 -> I PEAK = 2 X I 0 U T -> I P E A K = 1.0 A (3.1)

R I S E T = IPEAK x 0.2 x 1 0 6 = 1 x 0.2 x 1 0 6 = 200/cfl (3.2)

The equation 3.2 calculates value of 200kQ resistor which is connected to the ISET pin.

17

LTC3630

VlN -A ^ F 4 * ^ 7 U H

47uH

200 kQ

2x
10 nF 100 uF

OUT

Figure 7 Schematic of the LTC3630 power supply

The value 47 u H of the switching inductor at the terminal S W was obtained from the graph
of figure 7. Value 47uH is on in the optimal center of the recommended inductance graph.
As it is recommended in the datasheet, quality M S S - 1048 family inductor by Coilcraft
vendor was chosen. Estimated switching frequency should be approx. 80kHz.

1000

1000
PEAK INDUCTOR CURRENT (mA)

Figure 8 Recommended inductor value graph, assumed from [8]

Although there are formulas for the output and input capacitor calculation, vendor
recommend increased values of mentioned discrete parts. However, by experienced
colleagues in application department was recommended to use greater value of capacity
in VOUT pin represented by cascade of the recommended capacitors. The 4x 4.7uF and
lOnF were placed in the input in order to bypass it appropriately. The output stage of the
converter is bypassed by vendor recommended 2x lOOuF capacitors. Note that type of
chosen capacitor is X 5 R and X 7 R (material of the dielectric - stable capacity across
voltage). There is not sketched connection of thermal P A D in the schematic - connected
t o G N D .

Terminals R U N , and F B were left floating, because F B (Feedback) takes its place only in
the application of LTC3630 cascade. The R U N pin is dedicated for voltage lockout,
floating R U N sets input voltage lockout to internal 3.5 V + 3.7 V of input voltage.

18

3.1.3 ADP7142 LDO stabilizer
The main source voltage 3.3V is provided by LTC3630 described upper. However, for
A D I S D P purposes, also 5 V voltage is required. Due to economy drive, just the L D O was
used. There may be occur problem with providing 5V, i f input voltage is lower
than 5 V - output voltage of the L D O is never higher than input. The ADP7412 is
originally A D I L D O circuit and there is fixed 5 V instance - A D P 7 1 4 2 A C P Z N 5 . 0 - figure
9.

V, IIM-B

10 nF 4.7uH

10 kO
>

10nF_i_
ADP7142 T "

10 nF _

OUT

Figure 9 Schematic of the ADP7142 power supply

The input and output of the IC are bypassed by capacitors (recommend values are 2.2 uF
in the input and output [9]). However, greater capacitors were placed at the terminals.
The Pin SS controls soft start of the IC, whereas tied capacitor of the value 10 nF
corresponds with calculated time:

SSTIME — tsTARTUP(0pF) + (0-6 X CSS) • ISS
(3.3)

Whereas the tsTARTUP(OpF) is constant of value 380us as well as the bias Iss= 1.15uA

The calculate time is:

SS TIME = 380 x 10~ 6 + (0.6 x 10~ 8) H- 1.15 x 10~ 6 = 5.5ms (3.4)

The feedback composed from the lOkQ resistor and optional the lOnF capacitor causes
stabilized 5 V output voltage (SS adjusts loop gain i f VTN is not equal to V O U T) , whereas
capacitor may prevent circuit oscillations. E N pin connected to VTN permanently enables
L D O function. The diode at the output stage prevents reverse current flow - discussed in
the subchapter of protection circuitry. Note that the input capacitors are quality X 7 R / X 7 S
(stable capacity across work voltage range).

19

3.1.4 Power supply protection circuitry
Refers to the previous subchapter, a few protective discrete parts were used. The main
requirement was to prevent overvoltage passed to the power supply terminal damage the
circuitry. Generally, digital circuits need interference suppression, thus filters were
implemented as well .

V. S U P P L Y +

100 pF

S U P P L Y

GfJD

0.5 A 470 uH

S U P P L Y ^ 3 3 V

E A R T H

VlN-B VuSB_5V

10 riF

100 pF

/ T V

V , I N - A

5V DGT

Figure 10 Schematic of power protection circuit

The figure 10 depicts the noise suppression and the overvoltage safe circuit. Note that the
enclosed external power supply may be used as positive VSUPPLY + ground (negative)
VSUPPLY G N D and optional VSUPPLY E A R T H for enhanced noise suppression. From the input
point of view, the input current goes through the P T C - based resettable 0.5A poly-fuse
[11], which increase its resistance in case of higher than nominal current, because of
semiconductor current heating. Also, there are symmetrically tied 100 pF capacitors to
the earth potential. The current through the fuse may be increased by 33V transil, which
vice versa decrease its resistance in case of higher than nominal voltage [10].

Consequently, 470uH common mode choke suppresses symmetrical and unsymmetrical
interference. The inductor works as the serial inductance in the first mode and suppresses
usual high frequency signals. The second mode of operation is, when there is some
interference noise in both input lines. The common mode choke produces magnetic flux
in its the core, which causes signal subtraction in the magnetic domain - therefore also in
signal domain. Choke output is bypassed by additional 10 nF capacitor.

Then, there is a few of power Schottky diodes to block reverse current flow in case of
multiply connected power sources [12]. Basically, the diodes prevent to force voltages
VUSB_5V and VSV_DGT in case of used VSUPPLY+ and vice versa in another 2 combinations
(the three diodes connected to the VIN-A node). The diode of the VIN-B and diode of figure
9 may prevent reverse current in case of used S D P daughterboard with external power
supply. The lOOpF capacitors contains COG dielectric (very stable) and the rest of
capacitors are of X 7 R dielectric type.

20

V
5V HS protection

600 0 at

10 MHz VUSB 5V
USB VBUS

USB DP

USB D M

V. USB GND
10 nF 10 nF

/ 7 7 / 7 7

10 nF

Figure 11 USB power and signal protection circuit

Figure 11 illustrates the U S B overvoltage (might never take place) and signal interference
protection. A l l the lines are protected against increased voltage by protective circuit IC
[13]. Additionally, there is placed a ferrite bead with convenient 600Q at 10MHz value.
Power supply line is also bypassed by two capacitors connected to the VUSB_SV node.
Also , as in the previous cases the chosen capacitor were used with the X 7 R dielectric.

The chapter 3.1 and proposed circuits are based on the results of the currently produced
E V - C O G - A D 4 0 5 0 [14] and its ancestor A D Z S - A D u C M 4 0 5 0 E Z K I T [7].

3.2 Proprietary Low Complexity Ethernet LES

Following chapter is intended to sketch necessary properties of the unreleased - secret
prototype with M A C - P H Y service implemented. As was mentioned previously in the
power supply articles, the F P G A based device has significant consumption depicted in
figure 6 (300 m A at normal network traffic).

To describe M A C - P H Y as a black box is necessary to say, that in this application is
interfaced by host processor using the SPI and a few optional GPIO pins (ISR). Another
user part of interface - network interface is supporting convenient double socket " R J -
45" with internal transformers. In the block are implemented the 10/100-BASE Ethernet
domains. Currently is prototype continually developed and would result in the complex
SoC chip.

DIFFERENTIAL
TX/RX PHY

Figure 12 Proprietary M A C - P H Y prototype illustration

21

3.3 ADuCM4050 Cortex M4-F microcontroller

The A R M cores are sold and implemented by a lot of silicon vendors. Typically, certain
vendor uses convenient core such as M 3 or M 4 , adds its specific peripherals what results
in microcontroller for specific usage - see chapter 2.2 and related sources.

The A D u C M 4 0 5 0 might be highlighted for its integrated power management - field of
the application in low power sensors for medical, industrial, agricultural and other low
power sensor-based applications [15]. The power management offers 3 sleep modes with
various depth of system hibernation and support fast wake - up. The deepest sleep mode
guarantees consumption around 40 n A and the M C U may be woken using 4 various
interrupts. Typical consumption in active mode is 400 u A / M H z [16].

For the general IoT purposes is the A D u C M 4 0 5 0 equipped with up to 128 k B S R A M and
512 k B flash memory. The S R A M could be divided into 32 k B partitions and part of
S R A M is optional 4 kB cache for efficient processing. The " F " letter in the M 4 - F
designation expresses the floating-point unit with various support to floating computing.
The rest of the features such peripherals might be marked as convenient.

However, in this application the power management w i l l not be used due to significant
L E S consumption (see 3.1.1). The exact model of the used M C U is the
A D U C M 4 0 5 0 B C P Z - U 2 in the 64 - L C S F P package (9x9x0.75mm).

Following hardware peripherals are used (corresponds to figure 5):

SPI (Serial peripheral Interface):

• SPI 0 - A D I S D P
• SPI 1 - SPI P M O D socket, microSD slot, S P M 2 C Arduino header
• SPI 2 (highest performance [16]) - M A C - P H Y module, E E P R O M

I2C (Inter Integrated Circuit - Two Wire Interface):

• I2C 0 - I2C P M O D socket, A D I SDP, SPPI2C Arduino header, Thermometer
A D T 7 5

U A R T (Universal Asynchronous Receiver and Transmitter):

• U A R T 0 - via U S B / U A R T connected to U S B
• U A R T 1 - U A R T / G P I O Arduino header, A D I S D P

S P O R T (Serial P O R T - parallel SPI):

• SPT 0 - A D I S D P

W A K E External Interrupts:

• W A K E 0 - Arduino U A R T / G P I O header, P M O D SPI
• W A K E 1 - M A C - P H Y module
• W A K E 2 - Arduino U A R T / G P I O header, S D P
• W A K E 3 - Arduino U A R T / G P I O header

22

A D C (Analog to Digital Converter) channels:

• A D C 0 - Arduino A D C header, SDP
• A D C 1 - Arduino A D C header, SDP
• A D C 2 - Arduino A D C header, SDP
• A D C 3 - Arduino A D C header, SDP
• A D C 4 - Arduino A D C header
• A D C 5 - Arduino A D C header, SDP
• A D C 6 - S D P
• A D C 7 - not used

The A D u C M 4 0 5 0 allows (LF) low frequency and (HF) high frequency external clock
sources, both instances were implemented - L F using 32.7680 k H z and H F using 26 M H z
X T A L .

Then, there are features such as GPIO, Timer, B O O T or various V C C and G N D pins,
which detailed view is not in range of the thesis - see attached schematic and datasheets
[15] [16].

3.4 System connector interfaces

One of the main aspects for useful universal embedded system is synoptically sorted
interfacing. For development purposes is important to raise enough number of available
peripherals and feature - in the best case all of them. However, problems caused by
extended wiring may occur (especially in A D C or high-speed digital communication).

Following connectors are required:

• S D P platform - 120-pin interface with GPIO, T I M E R pins, U A R T , SPI, I2C,
A D C , S P O R T and W A K E peripheral

• Arduino interface - 4 female 2.54mm headers. In this document divided to Power
header, A D C header, SPI/I2C header and U A R T / G P I O header.

• P M O D interface - two row 90° 2.54mm female header according to the Digilent
specification, implemented SPI and I2C.

• microSD slot - SPI based slot for removable flash microSD card storage
• R J - 45 (double) - network connectivity with the system (M A C - P H Y)
• J - link (9 - pin) for A R M - debugging/flashing interface
• Power supply 5.5mm jack barrel - for powering using conventional connectors
• Socket 3.81mm terminal - for powering in industrial conditions
• microUSB - for U A R T interfacing, used U S B / U A R T FT232RQ converter

23

3.4.1 SDP platform
The S D P platform was found by the A D I in order to reuse central elements in system
demonstration [17]. Basically, the S D P demonstration system comprises from (figure 13):

• Motherboard - The F P G A / M C U based universal board, with 120 - pin
connectors to interface up to 2 S D P daughterboard devices. Motherboard has
U S B connector for P C interfacing. Motherboard usually powers
daughterboard. There are supported interfaces such an A D C , SPORT,
U A R T , SPI, G P I O / W A K E various parallel ports and I2C (for daughterboard
identifying).

• P C - convenient desktop or laptop, running application software

• Daughterboard - demonstrated module or system board. Daughterboard may
sink power supply current from motherboard, but in high consumption
cases may be used its external power source. Each daughterboard should have
E E P R O M with stored ID (accessed via I2C). K i n d of protocol to access
demonstrated circuit is optional.

This proposed system may be understood as motherboard instance. However, function is
very limited in compare to dedicated universal motherboard devices. For more
information see attached schematic - page 5 or source [17] and its related.

SDP 1 2 0 - p i n
connectors

- - . ^ LINE
Power
supply

supply 5V/3V
Power / Power

supply 5V/3V

Figure 13 Block diagram of the SDP system

24

3.4.2 Arduino interface
The Arduino standard is one of the most popular standards for amateur technics and
programmers. The Arduino is open-source platform based on easy to use software and
hardware. From the embedded point of view, The Arduino board may be understood as
universal development board with certain implemented M C U . The most famous is
the U N O board with 8 - bit Atmel ATmega328 [18]. Although 8 - bit processor board
might be mark as insufficient for high performance application, the U N O Arduino
contains one important interface - special female 2.54m headers sorting known as the
Arduino interface. Figure 14 illustrates sorting of 4 headers. There is power header, A D C
header, SPI/I2C header and U A R T / G P I O header. Nowadays exist a lot of Arduino shields
- daughterboard of Arduino, which are hosted by motherboard M C U board and became
helpful for easy development in professional embedded field.

Figure 14 The Arduino interface header sorting

In the L E N / L E S 2 board was attempted to follow Arduino interface pinout as much as
possible. Following chart expresses matches and differences. Note that some
requirements could not be follow (missing ATmega timer-related output, the
A D u C M 4 0 5 0 provides complex timer outputs).

25

Table 3 Arduino interface pinout

Original LEN/LES 2 demo
10 ADC5/IC2_SCL GPI0/I2C_SCL
9 ADC4/IC2_SDA GPI0/I2C_SDA

Original LEN/LES2 demo 8 AREF M_REF
1 NC NC 7 GND GND
2 IOREF IOREF 6 GPIO/SPI_SCK GPIO/SPI_SCK
3 RESET RESET 5 GPIO/SPI_MISO GPI0/SPI_MIS0
4 3.3V 3.3V 4 GPI0/0C2A/SXPI_M0SI GPI0/SXPI_M0SI
5 5V 5V 3 GPI0/0C1B/SPI_CS GPIO/SPI_CS
6 GND GND 2 GPI0/0C1A GPI0/RTC1_SS2
7 GND GND 1 GPIO/CLK0/ICP1 GPIO/TMR2_0
8 VIN VIN

8 GPI0/AIN1 GPIO/WAKEO
7 GPIO/AIN0/OC0A GPIO/TMR2_0

1 ADCO ADCO 6 GPIO/XCK/T1/OC0B GPIO/TMR1_0
2 ADC1 ADC1 5 GPIO/XCK/T0 GPIO
3 ADC2 ADC2 4 GPI0/WAKE1/0C2B GPIO/WAKE3/TMR2_0
4 ADC3 ADC3 3 GPIO/WAKEO GPI0/WAKE2
5 ADC4/I2C ADC4 2 GPIO/UARTTX GPIO/UART_TX
6 ADC5/I2C ADC5 1 GPIO/UART_RX GPIO/UART_TX

Table 3 represents pinout and deviation table of the Arduino Headers. Red color
highlights deviation in function in compare to original Arduino. Originally, ATmega
M C U were used and contains timers with various output functions such Output Compare
etc. (O C X Y) .

A D u C M 4 0 5 0 does not support this fashion of timer output - there is a few universal timer
outputs instead. The A D C header deviated in pins 5 and 6 where A D u C M 4 0 5 0 does not
support multiplexing with I2C stage. In the U A R T / G P I O header are deviated pins 8 - 5 .
The 8 - 7 deviates, because A D u C M 4 0 5 0 does not support analog comparator on used
pins and 6 - 7 because of external timer clocks (also not supported). The same problem
occurred in the SPLT2C header pins 4 - 1 and because A D u C M 4 0 5 0 does not multiplex
A D C in the I2C stage (pins 1 0 - 9) .

Anyway, important features such external interrupt or wake interrupt are followed. Also
SPI, I2C, U A R T and A D C stages are connected to Arduino convenient headers.

3.4.3 PMOD interface
The P M O D is originally Digilent output standard for low frequency interfacing [19].
P M O D is intended for devices of 3 V or 5 V logic and currents appropriate to digital
circuits (at least 2 mA) . Logically, the current should not exceed low values of usual
digital processing. Nowadays exist a lot of pluggable modules using P M O D interface

26

such as U A R T / U S B converter, R T C module and various wireless modules. P M O D
currently specifies 6 kind of interface and some interface has A and B extinguishing. In
the L E N / L E S 2 board are used I2C P M O D and SPI type 2 P M O D . Note that P M O D is
usually 2.54mm two-row socket with 1 2 - 2 4 pins with 90° angle.

PMOD SPI Type 2A PMOD I2C

Figure 15 SPI Type 2A, I2C PMOD connectors

Table 4 PMOD SPI Type 2A, I2C pinout

PMOD SPI Type 2A
ss MOSI MISO SCK GND VCC INT RESET N/S N/S GND VCC
1 2 3 4 5 6 7 8 9 10 11 12

PMOD I2C
SCL SCL SDA SDA GND GND VCC VCC
1 2 3 4 5 6 7 8

As it is shown at Figure 15 and Table 4, there are more than data lines in case of SPI Type
2A. The INT pin is dedicated for interrupt purposes and is connected to W A K E O - the
highest priority interrupt of the A D u C M 4 0 5 0 . The R E S E T pin may be output pin for
slave reset. N /S (Not Specified) are connected to GPIO (see schematic page 5).

3.4.4 USB/UART converter interface
The A D u C M 4 0 5 0 does not support U S B stage, so converter for universal P C interfacing
is needed. The F T D I U S B / U A R T converter FT232RQ is quite mostly used IC in
embedded application [20]. The U S B differential signal passed to the input of FT232 is
processed and converted to U A R T protocol. Note that P C , which is sending U S B signal
requires installed and supported virtual C O M ports.

Anyway, the FT232RQ supports conversion of another protocols such RS232 or RS485,
thus more than U A R T R X and U A R T T X is required in term of the IC pinout. The
mentioned chip is used only as U S B / U A R T converter and the rest of the input pins is
terminated using 10 kQ. Using internal L D O is whole active chip powered by 3.3V, so
U A R T is in the 3.3V L O G I C mode (ADuCM4050 supports only this mode). The outputs
are left floating except N _ R T S (Request to Send) - may be used for flow control with
N _ C T S cooperation. Note that U A R T R X and U A R T T X signals must swapped when
connecting to the M C U U A R T stage.

27

Vu

Vu

Vn VuSB_5V

N _ R E S E T V C C I O V C C

TEST

OSCII

RXD

N_RI

N_DSR

N _ D C D

N_CTS

U S B _ D P
USB D M

FT232RQ

3 V 3 0 U T
O S C O

T X D
N_DTR
N_RTS

CBUSO
C B U S 1
C B U S 2
C B U S 2
C B U S 3
C B U S 4

Figure 16 Schematic of USB/UART converter

3.4.5 Auxiliary circuitry
The scope of the diploma thesis is limited, so following chapter is only brief comment to
the rest of used IC is the design.

Reset Circuit A D M 6 3 1 5 - 2 9 D 2 A R T Z R 7 [21] supervises power voltage and generates
reset signal, when voltage drops below its trip-point 2.93V to prevent brown out of the
M A C - P H Y module at the first (ADuCM4050 operates at much lower voltage level). The
reset signal is then connected to the N A N D gate, so M A C - P H Y can be reset by M C U
GPIO signal or by reset circuit (page 3 of schematic).

The A D T 7 5 is 1° C precision thermometer with the I2C output and its address is set by
external resistor [22]. Thermometer should be placed further from the M A C - P H Y and
M C U otherwise w i l l measure its power dissipation.

To distinguish more L E N / L E S 2 boards according to the M A C addresses, there is used
E E P R O M 25LC01A of the storage size 128kB with lock (read-only) capability [28].

It is planned to use a few L E D s for signalizing P O W E R , R E S E T , and 2 GPIO L E D s . For
boot and reset options, the R E S E T and B O O T button is intended (pull upped to V C C) .

28

4 HARDWARE PROPOSAL AND DEBUG
This chapter focuses on the hardware P C B parts placement and P C B layout. The
placement of the parts had been done by writer of the thesis, however layout services such
as routing and layering had been done by A D I layout specialist - Pat Sheahan (internal
A D I regulation). The precise hardware layout is included in appendix (the end of the
document). Note that board is 4 - layer.

4.1 Parts placement

Refer to chapter 4, there is needed a few restrictions during the parts placement. For
example, the Arduino interface requires specific placement of all 4 connectors regards to
coordinates. Also, the M A C - P H Y block should be placed as close as possible to its
Ethernet connector. Generally, useful components such interface connectors should be
placed to correct places for comfortable usage and debug by user/developer. The result
of placement discussion is following placement proposal of figure 17. The scale of the
picture approx. corresponds with real intended dimensions (if page size is A4) .

RESET, BOOT BUTTON
1 • II • (i
hole

hole
—I & I

. . . D a u g h t e r b o a r d
2ZZZZZZZZZZZZZZZZZZZZZ

<g) RESET IC
RESET LED

! RF IF
! PMOD j
•
n G P LEDs

microSD
[card slot] A D I S D P

Arduino headers

UART
settings

micro
USB

D
D

hole

direct power
sjpply jumpers

POWER
SUPPLY
CIRCUIT

industrial
3-way

thermometer J |
I C ®
hole

PWR LED

Figure 17 LEN/LES 2 board

29

4.1.1 MAC-PHY - RJ 45
The most important trace connection is between M A C - P H Y and RJ-45 connector, so both
parts are placed close to each other, and its interfacing differential signals +Tn, - Tn and
+Rn, -Rn are routed with the same length using meander trace (n is port number: 1, 2).
In case of not matched traces could occur errors during delayed signal of any ethernet
line. Note that the M A C - P H Y block requires 2 5 M H z oscillator, which must be placed
close as well .

4.1.2 Arduino interface
As it is explained in the chapter 3 (Arduino section), the correct sorting and placement
for Arduino shield compatibility is needed [18]. The Arduino top orientation of figure 17
is portrait, so upper left connectors contains power signals. Also, between the Arduino
interface and RJ-45 connector should be leave at least 2-3cm place, because the Arduino
shields are often bigger than dimensions of the connector interface.

4.1.3 MCU, EEPROM
Regards to intended high speed SPI communication (up to 2.5Mbps) between M C U and
the M A C - P H Y port, the distance between them should be small and no sources of
interference should be located around. On the other hand, the E E P R O M shall be used
only during startup to read M A C address bytes, so its placement has no special
restrictions.

4.1.4 PMOD SPI, PMOD I2C, ADI SDP, RF connector
P M O D connectors usually lay on the P C B (axial connector orientation), so the best
location in any P C B edge, that's why are both P M O D s placed to the top edge of the board.
Also, at least centimeter clearance between them may improve connector's accessibility.
The A D I S D P motherboard connector shall be placed at the bottom side of the board
(because daughterboard connector is on the top) and except holes for bolting has special
requirement. To explain this requirement, see Figure 17 and the hatched daughterboard.
The red arrow shows that daughterboard could be arbitrarily high and wide of the arrow
directions, but the left bottom corner of the daughterboard (from the point of view Figure
17) must be aligned as depicted. This fact limits placing dimensional components and
stand-offs around the S D P connector such. The R F connector is 8-pins two row connector
of nRF24L01+ transmitter/receiver and shall be placed to the edge for compatibility.

4.1.5 Buttons
As the conventional buttons are by finger accessible almost everywhere, they should be
placed to the corner of the L E N / L E S 2 board. R E S E T button capability only resets whole
system (drives reset circuit), but B O O T button except boot functionality of the M C U may
be used as GPIO button of the microcontroller.

30

4.1.6 SlotmicroSD
The slot for the microSD card is usually placed at the bottom of the boards, so this board
shall not be exception. Also, placing to the edge of the board improves accessibility

4.1.7 USB micro, J-LINK - pin
For device connectivity, it is necessary to place U S B connector to the any edge of the
board. J - L I N K debug/flash port shall be placed to the edge as well for better connectivity.
For flawless communication between U S B and M C U the U S B - U A R T F D T I converter
shall be placed close to the U S B connector. Note that J - L I N K connector P10 is only way
to debug/flash M C U (except U A R T O in the boot mode [7][16]).

4.1.8 LEDs
There are four L E D s indicating L E N / L E S 2 system. The orange L E D placed in the up-
left corner w i l l be used when is the system in reset state (R E S E T button pressed or reset
IC triggered undervoltage). The green L E D is placed in the left-down corner shall light
when the board is powered (3.3V power source supplies voltage). Two general purpose
L E D s of red and blue color located on the left-upside are connected via pull-ups to 3.3V
and M C U .

4.1.9 Power Source
Many times, placement of the switched power source is tricky task. However, in this
design there is no sensitive device, as the ethernet P H Y communicates on the much higher
frequency than LTC3630 switches (estimated frequency according to the current and load
is 80kHz [8]). For better accessibility, the source circuitry w i l l be placed to the separate
part of the (left-down corner) as well as its connector (DC barrel and three-way terminal).

4.1.10 Thermometer ADT75
The thermometer is placed as far as possible from the M A C - P H Y (expected increased
temperature around this block) to measure approximate average temperature of the board
(left up).

4.1.11 The remaining components of the schematic
In the schematic (included in attachments in the end of this document) there are a few
D N I connectors for debugging, especially of M A C - P H Y block (e.g. SPI), as well as direct
connector for 3.3V supply (in case of main power source failure) and most of the crucial
traces is connected by 0Q resistors (some of the also DNI) for disconnections or probe
accessibility. Thus, resistor, which may be changed were not placed to the plastic parts
such as header female connector (to do not damage plastic by heat). The crystals for M C U
and protection diodes were placed to the related components.

31

4.2 Hardware getting started and hardware bugs

The L E N / L E S 2 board had been manufactured by analog device P C B vendor, so no
manual soldering or placement was needed. The real board photograph is following
picture (figure 18). For a first time, board was powered using power source with current
limit and no fatal shortcut was detected.

Figure 18 LEN/LES 2 board

However, the first bug was found as the green L E D DS4 is placed in reverse mode. To
debug this is needed only remove and rotate appropriately DS4.

PWR I N D I C A T O R
PLACE CLOSE TO THE USB AND JACK

GREEN
I ™ d » | ™
I GND SSO AU^C

KPT-1608LVZGCK

Figure 19 Wrong L E D orientation

32

Originally intended capability to disconnect completely power supply is not possible
during misconnection of 3V3 and 3 V 3 _ R E G . Figure 20 depicts problem, whereas R24
must be removed and wire placed between 3V3 and right side of resistor (M A C - P H Y
power supply). This problem is not fatal, and board can work normally, but i f P26 jumper
is removed, M A C - P H Y is still powered.

3V3 3V3 REG 3V3 REG

P26

R30 10K
— A V

GND R23 0
SYS_WAKE1 A A A

R24 0
—vW—

R36
> A / V —

Figure 20 3V3 and 3V3 M A C - P H Y misconnection

The third found bug is misunderstanding when choosing two-row male pin header P13.
The jumper purpose was to set up to 4 different U A R T settings using two jumpers. A l l of
parts used in the system are in A D I corporal library and this header was there as well .
However, header in the library has pinout not usual to header, but pinout as integrated
circuit. That is why is not possible to use 2 jumpers as originally intended. To fix this bug
is needed to use wires terminated by female header or create female matching reduction.
To understand this problem more, see schematic included in the appendix.

P13

m

1DBGRX 6FTTXD
2 DBG_TX/SWO 5FT_RXD
3 UARTRX 4UARTJX/SWV

P27

1 UART_TX
2 UARTJX/SWV
3SPI1_CS0/SWV

Connect at P13: 6 and 5 for FT232RQ loopback test

Figure 21 Wrong PI3 pinout

Of course, the firmware development and creating external equipment was done
gradually, however to approve system consumption in usual mode following figure 22
depicts measurement of current consumption during TCP bidirectional traffic (LWIP TCP-
layer firmware is running and exchanges string messages with the PC).

33

Figure 22 LEN/LES 2 board normal consumption

Figure 22 shows, that during normal operation (with LWIP stack and T C P bidirectional
communication with 0.3s period, payload > 50 bytes) and whole system takes 303 m A at
voltage 3.034V provided by on board power source. Note that the same system with
powered off M A C - P H Y takes 8.3 m A (estimated M C U consumption running on the
frequency 26 M H z is ~ 1.5 m A [15]).

Arduino interface, R F (nRF24L01+) interface, P M O D s and S D P was tested successfully
as well as buttons and L E D s . The most important part M A C - P H Y also communicates
with the M C U and basic firmware of static frame send/receive approved that system is
ready to implement main assigned goals (for more see following chapter).

A l l of three currently known bugs do not prevent normal operational of the M C U and
M A C - P H Y (if developer does not fix them).

34

5 LWIP IMPLEMENTATION
There is a lot of customized LWIP implementation available under free license. As was
mentioned in chapter 2, originally LWIP is based on Adam Dunkel 's stack. In fact, the
basic LWIP implementation to custom system may include only porting layer
implementation and system settings definition file. This chapter may be helpful for
someone who attempts implement LWIP for a first time (always is needed device such as
MAC-PHY).

5.1 Getting started with MAC-PHY

To use the M A C - P H Y with LWIP, necessary functionalities had to be tested and defined.
To keep the proprietary driver of M A C - P H Y secret, wrapper layer M A C _ P H Y has been
implemented and lower than this layer is not published in this document. The first
firmware functionality is U D P Syslog frame send and receive with string payload of the
common first call "Hello Wor ld" with M A C address of device and frame number. Syslog
is U D P based protocol intended for debug messages, so it's useful for test purposes [25].

For the test, two L E N / L E S 2 were used. First board worked as the Syslog transmitter,
meanwhile the second as the receiver. Transmitter worked on its own with periodically
triggered frame sending with no logging and receiver's firmware sent all received valid
frames to the U A R T console (logged on the P C via putty terminal). However, for
illustration, following Figure 23 depicts caught frames by WireShark (transmitter
connected to the PC) , Figure 24 mentioned communication of two L E N / L E S 2 boards.

3092 554.714511 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG Hello World! No:00115
3093 554.814775 192.168.IBB.2 192.168.160.16 Syslog 66 KERN.DEBUG
3094 554.915044 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG
3095 555.015307 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG

Hel l o World! Ho:00116
Hello World! No:00117
Hello World! No:00118

Frame 3093: 66 bytes on wire (528 b i t s) , 66 bytes captured (528 b i t s) on in t e r f a c e 0
Ethernet I I , Src: 02:00:00:00:19:01 (02:00:00:00:10:91), Dst: IPv4mcast_91 (91:99:5e:00:00:01)

> Internet Protocol Version 4, Src: 192.168.100.2, Dst: 192.168.100.10
User Datagram Protocol, Src Port: 1024, Dst Port: 514

> Syslog message: KERN.DEBUG: Hello World! No:00116

0000
0010
0020
0030
0040

01 00 5e 00 00 01 02 00
00 34 00 07 00 00 f f 11
64 0a 04 00 02 02 00 20
6c 6f 20 57 6f 72 6c 64
31 J o H

00 00 10 01 08 00 45 00
72 54 c0 aS 64 02 c0 aS
90 00 3c 37 3e 48 65 6c
21 20 4e 6f 3a 30 39 31

Figure 23 Wireshark Syslog frame receiving

35

ßp C0M9 - PuTTY
Session Special Command Window Logging
Hello World! No:00471
Hello World! No:00472
Hello World! No:00473
I

00:20:51 Connects SERIAL/115200 S

Figure 24 Frame Syslog payload received by LEN/LES 2 receiver

I.
2 .
3.
4 .
5.
6.
7 .
8 .
9.
10.
I I .
12 .
13.
14 .
15.
16.
17 .
18 .
19.
20.
21.
22 .
23.
24 .
25.
26.
27 .
28 .
29.
30.
31.
32 .
33.
34 .
35.
36.
37 .
38 .
39.
40.
41.
42 .
43.
44 .
45.
46.
47 .

d e f i n e MAC_LNG (u i n t 3 2 _ t) (6)
d e f i n e FRAME_LNG (u i n t 3 2 _ t) (6 6)
d e f i n e PLD_OFFSET (u i n t 3 2 _ t) (4 5)

/ / f t d e f i n e RX 1 /* When r e c e i v e r s h o u l d be f l a s h e d */
// # d e f i n e TX 1 /* When t r a n s m i t t e r s h o u l d be f l a s h e d */

i f d e f TX

u i n t 8 t d e v i c e mac[MAC LNG] = {0x2, 0x0, 0x0,a
0x0, 0x10, 0x1};

u i n t 8 t m u l t i c a s t mac[MAC LNG] {0x1, 0x0, 0x5e,
0x0, 0x0, 0x1};

u i n t 8 t udpframe[FRAME_LNG] {

0x01,
0x02,
0x08,
/* IP
0x45,
0x00,
0x00,
0x00,
0x00,
OxFF,
0x11,
0x00,
192u,
192u,

0x00, 0x5e, 0x00,
0x00, 0x00, 0x00,
0x00,
Header */

0x00, 0x01, /* M u l t i c a s t a d d r e s s */
0x10, 0x01, /* D e v i c e MAC */
IP E t h e r t y p e (0x0800) */

/* IP V4 — header l e n g t h 20 b y t e s */
/* d i f f e r e n t i a t e d s e r v i c e s f i e l d */
/* t o t a l l e n g t h (l e n g t h o f ASCII + 3 1) * /
/* i d e n t i f i c a t i o n */
/* f l a g s / f r a g m e n t o f f s e t */
/* t i m e - t o - l i v e 255*/
/* p r o t o c o l — UDP */
/* header checksum */

2u, /* R e c e i v e r ' s IP */
168u, 100, 10u,/* T r a n s m i t t e r ' s IP */

0x34,
0x07,
0x00,

0x00,
168u, 100,

7 /* UDP Header
0x04, 0x00,
0x02, 0x02,
0x00, 0x20,
0x00, 0x00,
/* S y s l o g Message
0x3C, 0x37, 0x3e,

/* UDP s o u r c e p o r t 1024 */
/* UDP d e s t i n a t i o n p o r t 514 S y s l o g */
/* l e n g t h (t o t a l 20, ASCII + 11) */
/* UDP checksum (0 = don't check) */

/* KERNAL DEBUG message */
/* message c o n t e n t s (ASCII) */

/* P r e p a r e d 21 space c h a r a c t e r s f o r f u r t h e r p a y l o a d * /
I T i i

r
I I I I

r
I I I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

36

48. # e l i f RX
49. u i n t 8 _ t *p_frame = NULL;
50. u i n t 3 2 _ t r x _ l n g = 0;
51. u i n t 8 _ t device_mac[MAC_LNG] = {0x2, 0x0, 0x0,
52. 0x0, 0x10, 0x2};
53. u i n t 8 _ t multicast_mac[MAC_LNG] = {0x1, 0x0, 0x5e,
54. 0x0, 0x0, 0x1};
55.
56. # e n d i f
57. i n t m a i n (i n t a r g c , c h a r * a r g v []) {
58 .
59. u i n t l 6 _ t frame num = 0;
60. /* IDE g e n e r a t e d p i n m u l t i p l e x */
61. a d i i n i t C o m p o n e n t s () ;
62. ^ I n i t i a l i z e ADuCM4050 LEN/LES 2 b o a r d p e r i p h e r a l s */
63. p l a t f o r m l e n l e s 2 i n i t () ;
64. /* I n i t i a l i z e MAC-PHY */
65 . MAC_PHY_start_up() ;
66. /* Set d e v i c e ' s MAC ad d r e s s */
67. MAC PHY s t a t i c mac a d d (d e v i c e mac);
68. # i f d e f TX
69. /* C a l c u l a t e n e c e s s a r y IPv4 checksum */
70. Ipv4 CalcOutGoingChecksum(udpframe);
71.
72 .
73. w h i l e (1) {
74. /* Send frame and w a i t 100 ms and i n c r e m e n t frame
75. number*/
76. MAC_PHY_send_frame(udpframe, FPAME_LNG);
77. s p r i n t f ((c h a r *) u d p f r a m e + PLD_OFFSET,
78. " H e l l o W o r l d ! No:%05d", frame_num);
79. frame num++;
80. t i m _ d e l a y _ m s (1 0 0) ;
81. }
82. # e l i f RX
83. MAC PHY s t a t i c mac a d d (m u l t i c a s t mac);
84.
85. w h i l e (1) {
86.
87. /* P o l l f o r r e c e i v e frame (n o n - b l o c k i n g r e q u e s t) * /
8 8 . MAC_PHY_receive_frame() ;
89. /* Get t h e frame */
90. p_frame = M A C _ P H Y _ g e t _ b u f f (& r x _ l n g) ;
91. /* I f v a l i d frame r e c e i v e d , p r i n t i t s number, c o n t e n t
92. * and c l e a r r e c e i v i n g b u f f e r */
93. i f (r x _ l n g != 0) {
94. p r i n t _ f r a m e (p _ f r a m e + PLD_OFFSET,
95. FRAME_LNG, frame_num);
96. frame num++;
97. M A C _ P H Y _ c l e a r _ b u f f () ;
98. }
99. }
100. # e n d i f
101.
102. }

The code snipped mentioned here may be helpful for beginners implementing ethernet
system with different M A C - P H Y , especially pre-generated udpframe array with filled

37

multicast M A C address. Note that many M A C - P H Y s does not have it included. Be
careful, the IPv4 header checksum must be calculated.

Important is after initializing M A C - P H Y f i l l the M A C address table with expected
addresses (line 67, 83). For example, current M A C - P H Y was not capable to receive
multicast packet without adding multicast M A C (line 83).

5.2 LWIP porting

According to the [26] and [27] (getting started sections), only four files of whole LWIP
stack may be edited to customize stack for specific M A C - P H Y (Ethernet periphery). So,
for a first time (of the LWIP implementation) is the best way to download free LWIP
available at [26] and only override settings of foreign customization. The first is
Iwipopts.h, which contains definitions customizing default LWIP stack settings such
service enabling (e.g. whether D H C P , U D P , T C P ... are enabled). Then very important
definitions are whether LWIP runs with or without R T O S (this LWIP runs without) and the
settings of checksum calculation. M A C - P H Y used in the L E N / L E S 2 board does not
calculate frame checksums on its own, so software calculations are needed (so defined to
be set in Iwipopts.h). Following code snippet of the Iwipopts.h includes mentioned
definitions of N O _ R T O S - N O _ S Y S LWIP with software checksum calculations and
disables R T O S LWIP related modules etc. Note that memory alignment for 32-bit M C U
shall be 4.

1. # i f n d e f LWIPOPTS H
2 .
O

#de f i n e LWIPOPTS H
o .
4 . # i f d e f c p l u s p l u s
5. e x t e r n " C" {
6.
7 .
Q

#endif

O .
9.
10. # d e f i n e WITH RTOS 0
11. # d e f i n e NO SYS 1
12 . # d e f i n e CHECKSUM BY HARDWARE 0
13. # d e f i n e SYS LIGHTWEIGHT PROT 0
14 . # d e f i n e MEM ALIGNMENT 4
15. # d e f i n e LWIP ETHERNET 1
16. # d e f i n e LWIP DNS SECURE 7
17 . # d e f i n e TCP SND QUEUELEN 9
18 . # d e f i n e TCP SNDLOWAT 1071
19. # d e f i n e TCP SNDQUEUELOWAT 5
20. # d e f i n e LWIP NETCONN 0
21. # d e f i n e LWIP SOCKET 0
22 . # d e f i n e RECV BUFSIZE DEFAULT 2000000000
23. # d e f i n e LWIP STATS 0
24 . # d e f i n e LWIP CHECKSUM CTRL PER NETIF 1
25.
26. #endif

38

The second file and the most important is ethernetif module adapting representing layer
between LWIP and custom MAC-PHY (ethernet periphery). The ethernetif w i l l be
discussed later. To be precise, required files to be change are also cc.h and sys_arch.h.
The cc.h includes definitions of the data types (LWIP is not written using stdint.h library,
so e.g. instead of uint8_t type is used u8_t etc.) The sys_arch.c includes mainly necessities
for R T O S based LWIP, SO both may be simply reused in this case.

5.2.1 Porting layer ethernetif
As was discussed upper, this module is the most necessary to be customized. This module
interfaces input/output of used ethernet hardware and the module quality and reliability
wi l l be shared and inherited across whole LWIP. Also , it is recommended to attempt
override any ethernetif then bare metal development.

In total, 7 functions are implemented in this layer including initialization, input, output
and system time management (LWIP counts with 1ms timer). This means, that except
input/output driver for customized M A C - P H Y is needed to implement also reliable
source of the 1 millisecond ticks. Initialization function is easiest and concerns only
simple ethernet interface initialization, eventually storing static M A C address table. Then
very important settings of the netif structure such an A R P setting, hardware address
settings and set the flag signalizing link up [26] [27]. The netif structure is passed through
whole LWIP and includes also device IP address etc.

1. s t a t i c v o i d low l e v e l i n i t (s t r u c t n e t i f * n e t i f) {
2 .
3. u i n t 8 _ t mac_addr[6] = { 0 };
4. /* S t a r t MAC-PHY, r e a d MAC ad d r e s s (from EEPROM)
5. and s t o r e t o t h e d e v i c e * /
6. M A C _ P H Y _ s t a r t _ u p () ;
7. MAC_PHY_read_MAC(mac_addr);
8. MAC_PHY_static_mac_add(mac_addr);
9.
10. n e t i f - > f l a g s |= NETIF_FLAG_LINK_UP;
11. # i f LWIP_ARP || LWIP_ETHERNET
12. /* s e t MAC hardware a d d r e s s l e n g t h */
13. n e t i f - > h w a d d r _ l e n = ETH_HWADDR_LEN;
14. /* s e t MAC hardware a d d r e s s */
15. n e t i f - > h w a d d r [0] = mac a d d r [0] ;
16. n e t i f - > h w a d d r [1] = mac a d d r [l] ;
17. n e t i f - > h w a d d r [2] = mac a d d r [2] ;
18. n e t i f - > h w a d d r [3] = mac a d d r [3] ;
19. n e t i f - > h w a d d r [4] = ma c _ a d d r [4] ;
20. n e t i f - > h w a d d r [5] = mac a d d r [5] ;
21. /* maximum t r a n s f e r u n i t */
22. n e t i f - > m t u = 1500;
23. # i f LWIP_ARP
24. n e t i f - > f l a g s |= NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP;
25. #else
26. n e t i f - > f l a g s |= NETIF_FLAG_BROADCAST;
27. # e n d i f
2 8 . # e n d i f
29. }

39

The output function simple assembles packet content in pbuf chained structures (see
chapter 3) and sends.

1. s t a t i c e r r t
2 .
q

low l e v e l o u t p u t (s t r u c t n e t i f * n e t i f , s t r u c t p b u f *p) {
o .
4 . e r r t e r r v a l = 0;
5. s t r u c t pbuf *q;
6. u i n t 8 t b u f f e r [1 0 2 4] ;
7 .
Q

u i n t 3 2 t b u f f e r o f f s e t = 0;
O .
9. f o r (q = p; q != NULL; q = q->next) {
10 memcpy(buffer + b u f f e r o f f s e t , q->payload, q - > l e n) ;
11 b u f f e r o f f s e t += q->len;
12 }
13 e r r v a l = MAC PHY send f r a m e (b u f f e r , b u f f e r o f f s e t) ;
14
15 r e t u r n e r r v a l ;
16 }

The input function could be tricky to debug because of frame receiving, i f the valid frame
is received must be divided into pbuf for further LWIP processing.

1. s t a t i c s t r u c t pbuf * low l e v e l i n p u t (s t r u c t n e t i f * n e t i f) {
2 .
3. /* B u f f e r i n g f o r LWIP*/
4. s t r u c t pbuf *p = NULL;
5. s t r u c t pbuf *q = NULL;
6.
7. /* Length o f p a c k e t */
8. u i n t 3 2 _ t l e n = 0;
9. /* Remaining b y t e s f o r copy d i s t i n g u i s h */
10. u i n t 3 2 _ t b u f f e r o f f s e t = 0;
11. /* B u f f e r on t h e r e c e i v e d c h a r a c t e r s */
12. u i n t 8 _ t * b u f f e r ;
13.
14. /* get r e c e i v e d frame */
15. i f (MAC_PHY_receive_frame() != MAC_PHY_OK)
16. r e t u r n NULL;
17 .
18. /* Get i n t e r n a l l y s t o r e d b u f f e r and o b t a i n t h e s i z e o f the
19. * p a c k e t and put i t i n t o t h e " l e n " v a r i a b l e . */
20. b u f f e r = M A C _ P H Y _ g e t _ b u f f (& l e n) ;
21. i f (l e n > 0) {
22. /* We a l l o c a t e a pbuf c h a i n o f pb u f s from
23. t h e LWIP b u f f e r p o o l */
24. p = pbuf_alloc(PBUF_RAW, l e n , PBUF_POOL);
25. }
26. i f (p != NULL) {
27. b u f f e r o f f s e t = 0;
28. f o r (q = p; q != NULL; q = q->next) {
29. /* Copy d a t a i n pbuf */
30. m e m c p y ((u i n t 8 _ t *) ((u i n t 8 _ t *) q->payload),
31. (u i n t 8 _ t *) ((u i n t 8 _ t *) b u f f e r +
32. b u f f e r o f f s e t) , q - > l e n) ;
33. b u f f e r o f f s e t = b u f f e r o f f s e t + q->len;

40

34. }
35. }
36. /* C l e a r i n t e r n a l b u f f e r f o r f u r t h e r r e c e i v i n g * /
37 . M A C _ P H Y _ c l e a r _ b u f f () ;
3 8 . r e t u r n p;
39.
40. }
41.

System tick source functions are implemented here, function included inside of them
should return unsigned number of length 32-bit which is each millisecond incremented.

1. u 3 2 _ t sys j i f f i e s (v o i d) {
2. r e t u r n t i m get 1ms t i c k () ;
3. }
4 .
5. u 3 2 _ t sys now(void) {
6. r e t u r n t i m get 1ms t i c k () ;
7. }

Following two functions had been copied and unchanged, in fact only wraps already
written functions to pass them to the LWIP

1. v o i d e t h e r n e t i f i n p u t (s t r u c t n e t i f * n e t i f) {
2. e r r t e r r ;
3. s t r u c t pbuf *p;
4 .
5. /* move r e c e i v e d p a c k e t i n t o a new pbuf */
6. p = low l e v e l i n p u t (n e t i f) ;
7 .
8. /* no p a c k e t c o u l d be r e a d , s i l e n t l y i g n o r e t h i s */
9. i f (p == NULL)
10. r e t u r n ;
11.
12. /* e n t r y p o i n t t o t h e LWIP s t a c k */
13. e r r = n e t i f - > i n p u t (p , n e t i f) ;
14 .
15. i f (e r r != ERR_OK) {
16. LWIP_DEBUGF(NETIF_DEBUG, (" e t h e r n e t i f _
17. i n p u t : IP i n p u t e r r o r \ n ")) ;
18. pbuf f r e e (p) ;
19. p = NULL;
20. }
21. }
22 .
23. e r r t e t h e r n e t i f i n i t (s t r u c t n e t i f * n e t i f) {
24. ~LWIP_ASSERT("netif != NULL", (n e t i f != NULL));
25.
26. # i f LWIP_NETIF_HOSTNAME
27. /* I n i t i a l i z e i n t e r f a c e hostname */
28. n e t i f - > h o s t n a m e = "LWIP";
29. # e n d i f /* LWIP_NETIF_HOSTNAME */
30.
31. netif->name[0] = IFNAME0;
32. netif->name[1] = IFNAME1;
33.

41

34. # i f LWIP_IPV4
35. # i f LWIP_ARP || LWIP_ETHERNET
36. # i f LWIP_ARP
37. n e t i f - > o u t p u t = e t h a r p o u t p u t ;
38. # e l s e
39. /* The u s e r s h o u l d w r i t e i s t own code i n
40. low l e v e l o u t p u t a rp o f f f u n c t i o n */
41. n e t i f - > o u t p u t = low l e v e l o u t p u t a rp o f f ;
42. # e n d i f /* LWIP_ARP */
43. # e n d i f /* LWIP_ARP || LWIP_ETHERNET */
44. # e n d i f /* LWIP_IPV4 */
45.
46. # i f LWIP_IPV6
47. n e t i f - > o u t p u t i p 6 = e t h i p 6 o u t p u t ;
48. # e n d i f /* LWIP_IPV6 */
49.
50. n e t i f - > l i n k o u t p u t = low l e v e l o u t p u t ;
51.
52. /* i n i t i a l i z e t h e hardware */
53. low l e v e l i n i t (n e t i f) ;
54 .
55. r e t u r n ERR_OK;
56. }

Mentioned code allows almost immediately run LWIP. However for the comfortable LWIP
initialization was created function, whereas is called lwip_init(), netif_add(), checked i f
the link is up calling netif_is_link_up() to prompt netif_set_up(). Function netif_add()
requires static netif structure as the first argument and following three arguments are IP
address of this device, netmask and gateway, last two arguments shall be addresses of the
structure-functions ethernetifjnit and ethernetifjnput (previously discussed) This is
fair enough to set up LWIP. TO update LWIP is necessary to call periodically functions
ethernetif_input(), sys_check_timeouts(). Both of last-mentioned function ensures
processing of the received frames may be called as update functions.

Calling sequence of the initialization routines and calling periodically two update
functions (for example in the while loo) is LWIP ready to process ping request from the
PC. The address to be processed by ping command is IP address passed to netif_add().

Reply from 192.168.196.2: bytes=32 time=7ms TTL=255
Reply from 192.168.100.2: bytes=32 time=6ms TTL=255
Reply from 192.168.100.2: bytes=32 time=25ms TTL=255

Ping statistics for 192.168.100.2:
Packets: Sent = 4702, Received = 4679, Lost = 23

(05! loss).
Approximate round trip times in milli-seconds:

Minimum = 6ms, Maximum = 107ms, Average = 7ms

Figure 25 Calling ping command (no other task processed)

Note that described system to this point works as system with statically assigned IP
address (host device e.g. PC must be located on the same network 192.168.100.x).

42

5.2.2 DHCP and LWIP
To use the LWIP device as the convenient ethernet device, must be capable to negotiate
for IP address using DHCP protocol. Basic requirement is already fulfilled - UDP enable,
because DHCP uses UDP layer. Expected behavior of the device is that w i l l ask for IP
address, so from the point of view may be marked as DHCP client.

r 1 0.000000 0.0.0 0 255.255.255 255 DHCP 350 DHCP Discover - Transaction ID 0xabcd0001
2 8.286852 192.1 8. 100 l 255.255.255 255 DHCP 342 DHCP Offer - Transaction ID 8xabcd8001

X 3 8.531804 0.0.0 8 255.255.255 255 DHCP 350 DHCP Request - Transaction ID 0xabcd0001
4 8.824637 192.1 8. .00 l 255.255.255 255 DHCP 342 DHCP ACK - Transaction ID 0xabcd0001
5 1.044660 20:01 01 01 10 02 Broadcast ARP 42 Who has 192.168.100.V. T e l l 0. .0.0
6 6.545131 20:01 01 e i i e 02 Broadcast ARP 42 Who has 192.168.100.2? T e l l 0. .0.0
7 12.545515 20:01 01 e i l e 02 Broadcast ARP 42 Who has 192.168.100.2? T e l l 0. .0.0
8 22.545489 20:01 01 e i i e 02 Broadcast ARP 42 Gratuitous ARP for 192.168.100 2 (Request)
9 24.961830 20:01 01 Bl 10 02 Broadcast ARP 42 Gratuitous ARP for 192.168.100 2 (Request)

Frame 3: 359 byte
> Ethernet I I , Src:
> Internet Protocol

User Datagram Pro'
Bootstrap Protocq

COM9 - PuTTY -

Session Special Command Window Logging Files Transfer Hangup ADUCM4 050 ready Device1 s IP =0.0.0.0 Device's MAC: 20-01-01-01-10-02 DHCP started DHCP danne, device got: 192.168.100.2 gateway is: 192.168.100.1 netmask is: 255.255.255.0 LWIP and MAC PRY ready

ff>

Figure 26 DHCP LWIP client

To enable DHCP is necessary to use after functions during LWIP startup (6.2.1) function
dhcp_start() and wait until communication is between DHCP client and host is done
(Figure 26). Note that all addresses of the netif during netif_add() were set to zero (except
MAC hwadrr).

1. p r i n t f (" D H C P s t a r t e d \ r \ n ") ;
2. dhcp s t a r t (S g n e t i f) ;
3. u i n t 3 2 _ t mscnt = 0;
4. LWIP i n i t i a l i z e d = t r u e ;
5.
6. w h i l e (g n e t i f . i p addr.addr==0) {
7. LWIP_CheckRecvIncTime();
8. tim_delay_ms(DHCP_FINE_TIMER_MSECS);
9. dhcp f i n e t m r () ;
10. mscnt += DHCP_FINE_TIMER_MSECS;
11. i f (mscnt >= DHCP_COARSE_TIMER_SECS*1000) {
12. dhcp c o a r s e t m r () ;
13. mscnt = 0;
14. }
15. }

This code snippet except starting D H C P and waiting for address assign also includes
function LWIP_CheckRecvIncTime(), which encapsulates ethernetif_input(),
sys_check_timeouts() - necessary to receive anything from the D H C P server. Also,
definition: L W I P _ D H C P , L W I P _ A U T O I P , L W I P _ D H C P _ A U T O I P _ C O O P ,
L W I P _ I P V 4 to 1 must be added into to Iwipopts.h. The D H C P server must negotiate with
the device (e.g. default windows D H C P server).

43

6 DEMONSTRATION SYSTEM HARDWARE
To highlight system potential and usage, appropriate and simple demonstration must be
assembled. Unfortunately, limited resources does not allow complex and practical-useful
system and is not purpose of this thesis.

To figure competence of the system, very simple air conditioning was proposed. A i r
conditioning is represented by the created Arduino shield and contains brushless fan and
circuitry necessary to drive fan using P W M . Then, the fan blows ambient air on the board,
especially on the on-board A D T 7 5 thermometer and airstream may be adjusted. Also,
resistor load may be placed close to the A D T 7 5 in purpose to heat the air around and
simulate temperature increasing. Let us say, that this could be basic regulated system.

6.1 Fan-based air conditioning

A t the first was intended to use low power 5 V D C P C fan driven directly by L E N / L E S 2
M C U P W M stage. However, unavailability of the P W M driven fan resulted in cheap and
convenient D C brushless fan with tentative controller - adjustable voltage source driven
by P W M . The vendor Sunon guarantees [29], that fan works from 3.5V to 6 V with
proportional revolutions of the fan. The problem is, that the fan contains inert circuitry to
drive brushless topology and operates within specific range, this means that below 3.5V
fan does not operate and so on fluent revolution control cannot be reach (at 3.5V fan
operates with specific revolutions). Power device like this is not good by P W M , so
voltage control is needed.

To control voltage is suitable to use well-known L D O L M 3 1 7 [31]. Because of its dropout
voltage (always higher than 1.25V), 12V supply is needed. This device adjust voltage
with basic simple formula:

So, only the P W M - Voltage converter is needed. Suitable way is to filter P W M
waveforms using the L O W - P A S S filter (such simple RC) and then correct this voltage
using some operational amplifier (also needed to do not load R C) . To do correction
means, that maximal P W M filtered output voltage cannot exceed 3.3 V (M C U powered
by 3.3 V) and this would not reach 6 V according to the formula 6.1. So, approximately
5 V must be produced from the initial 3.3V (needed amplify approximately 1.5x). The
operational amplifier may be single-ended and for these purposes is appropriate L M 3 5 8
[30] in non-inverting mode. Repeated note, that V C C voltage is terminated as 12 V D C .

Using basic O A knowledge, gain in non-inverting mode is calculated as:

LDO= VAD] VANR +1.25V (6.1)

G =
R2 2350

= 1.5
(6.2)

RT 4700

44

The R C filter frequency is calculated as 169Hz using 9.4 k Q resistor andlOO nF capacitor.
Filter frequency may be dependent on the carrier frequency of P W M modulation. In this
case, timer running P W M has base frequency 26kHz.

4.7 kn

Figure 27 Fan control circuit

The circuit of Figure 27 had been manufactured using universal P C B to fit into the
Arduino header. Following relation between P W M duty cycle and VADJ and VLDO has
been measured (Figure 28). Also, additional protection diode may be placed at the output
and V c c could by bypassed using high capacitance (L E N / L E S 2 board already has).

PWM to voltage circuit output transfer graph
AD. 1 •ADJ 2 LDO 1 LD0 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Duty Cycle [-]

Figure 28 Fan circuit voltage

Note that Figure 28 depicts voltage with loaded circuits by the mentioned fan (205 m A at
5V). Two shields with described circuitry were created for further usage.

45

7 TCP/IP MODBUS APPLICATION
Regards to complexity, as the first approach to L o w Complexity Ethernet demonstration
system were chosen TCP/Modbus. Intended system uses P C laptop as M O D B U S master
(client) and two L E N / L E S 2 boards as M O D B U S slaves (masters).

7.1 MODBUS introduction

The M O D B U S protocol is widely accepted and known industrial protocol based in the
late 70's [23]. The M O D B U S communication hardware interface may be serial RS-232,
RS-485, various optical communication interfaces even wireless. For this diploma thesis
is most suitable Ethernet TCP/IP based - the TCP/Modbus.

Basically, the M O D B U S is only the application layer sorting transmitted data to the
acceptable form. It is necessary to mention, that protocol is of the master-slave hierarchy.
This means, that only master may start request and slave must reply. Slave is intended to
listen and reply, slave never starts any transaction [23].

The M O D B U S protocol master request consists of the slave device addressing value,
function number, length of the message, data to be read/written, and C R C and descriptors
of the data amount (length of bytes). However, for TCP/IP purposes may the C R C
abandoned due to TCP/IP packet checksum. The TCP/IP is acknowledge-based protocol,
so request may be re-transmitted until reply is received. Also , there is possibility to use
no-acknowledge-based U D P protocol. TCP/Modbus always occupies port 502.

M O D B U S RTU

Slave ID Function Code Data CRC

Transaction ID Protocol ID Length Unit ID Function Code Data

M B A P Header
M O D B U S T C P

Figure 29 Modbus R T U vs TCP/MODBUS

Figure 29 depicts comparison between R T U frame and M O D B U S T C P frame. Basically,
there is depicted, what TPC/IP packet must contain to be as the T C P / M O D B U S frame.
The transaction ID is 16-bit number generated be slave to distinguish packet order (in
case that some replies from the slave were delayed and received after later requests), slave
just replies the same transaction ID. Protocol ID for Modbus T C P is 0x0000.

46

Length describes in 16-bit number the length of further data payload. The Unit ID
contains only 8-bit address number of the slave device. The Function code and Data are
responsible for writing/overriding data to processed.

F u n c t i o n c o d e D e s c r i p t i o n T y p e A c c e s s

0x01 Read DO Read coil state Bool Read

0x02 Read DI Read input state Bool Read

0x03 Read A O Read holding register 16-bit Read

0x04 Read AI Read input register 16-bit Read

0x05 Write single DO Write coil Bool Write

0x06 Write single A O Write holding register 16-bit Write

OxOF Write multiple DO Write multiple coils Bool Write

0x10 Write multiple A O Write multiple register 16-bit Write

Figure 30 TCP/Modbus commands

The figure 30 depicts possible commands included in the function code. It is obvious that
coil or holding register may be read/overridden (e.g. coil can be used as switch, holding
register as P W M duty cycle value). On the other hand, input or input register is read-only,
thus is suitable for measurement values (e.g. temperature).

B y t e R e q u e s t B y t e R e p l y

OxAE Transaction identifier MSB OxAE Transaction identifier MSB

0x3C Transaction identifier LSB 0x3C Transaction identifier LSB

0x00 Protocol identifier MSB 0x00 Protocol identifier LSB

0x00 Protocol identifier MSB 0x00 Protocol identifier LSB

0x00 Length of message M S B 0x00 Length of message M S B

0x06 Length of message LSB 0x04 Length of message LSB

0x01 Slave device address 0x01 Slave device address

0x02 Function code 0x02 Function code

0x00 Address of register to be overridden MSB 0x01 Number of following bytes

0x00 Address of register to be overridden LSB 0x01 Value of the coil

0x00 Addressing the specific coil M S B

0x01 Addressing the specific coil LSB

Figure 31 TCP/Modbus example transaction read coil (ON-state)

47

Figure 31 depicts typical communication cycle, there is master request on the left and
slave's reply on the right. In addition, the M O D B U S has capability to reply error message
(invalid register or coil to read/write etc.), what is always only 9-bytes. The first 6-bytes
are obtained in the same manure as normally (Figure 31), but the length of payload is only
3-bytes. In case of error code message, the payload contents address of the slave, the value
of the function request sent by master with added most significant bit
(read coil 0x01 => 0x81) and error code 8-bit value to distinguish reason of the error
message. For more information about M O D B U S and T C P / M O D B U S see [23] and its
recommended documents.

7.2 TCP/Modbus demonstration system

To demonstrate capability of the diploma thesis hardware (L E N / L E S 2 board), firmware
(LWIP) and software (TCP/Modbus master - described later) was invented simple system
with following peripherals (also mentioned in chapter 7):

• Button (input DI)
• L E D Diode DS3 (coil DO)
• P W M controlled on-board fan (holding register DO)
• On-board temperature measurement (input register AI)
• External temperature measurement (input register AI)

Following subchapters briefly describes master (client) and slave (server)
implementation.

7.3 TCP/Modbus master (client) implementation

In the M O D B U S terminology, the master is the client who can ask whenever wants its
server, who is slave in the point of view. Refers to the intra description of the chapter 8,
the P C laptop is intended to be master (client) [23].

For demonstration purposes is enough to use public Python-language based library
pyModbusTCP [33].

This library is socket-based [34], and maintains TCP/IP M O D B U S session:

• open/close
• acknowledge
• read
• write

Following code snipped expresses all used TCP/Modbus functions in the master
implementation. Note that is also available multiple coils override and multiple holding
registers override, but for the purposes of the 8.2 are not needed.

48

I . f r o m p y M o d b u s T C P . c l i e n t i m p o r t M o d b u s C l i e n t
2 .
3. C r e a t e c o n n e c t i o n
4. TCPModbus_Session.host("192.168.100.2")
5. TCPModbus_Session.port(502)
6. TCPModbus_Session.open()
7 .
8 .
9. """ Read o p e r a t i o n s
10. b u t t o n = T C P M o d b u s _ S e s s i o n . r e a d _ d i s c r e t e _ i n p u t s (0 , 1)
I I . LED_DS3 = T C P M o d b u s _ S e s s i o n . r e a d _ c o i l s (0 , 1)
12. PWM D u t y C y c l e = T C P M o d b u s _ S e s s i o n . r e a d _ h o l d i n g _ r e g i s t e r s (0 , 1)
13. Ambient Tempt= T C P M o d b u s _ S e s s i o n . r e a d _ i n p u t _ r e g i s t e r s (0 , 1)
14.
15. """ W r i t e o p e r a t i o n s " " "
16. T C P M o d b u s _ S e s s i o n . w r i t e _ s i n g l e _ c o i l (0 , 1)
17. TCPModbus S e s s i o n . w r i t e _ s i n g l e _ r e g i s t e r (0 , 1 0 0 0)
18 .
19. C l o s e c o n n e c t i o n
20. TCPModbus S e s s i o n . c l o s e ()

The master was created as the G U I python application using pyModbusTCP and basic
python G U I tkinter [35]. The final appearance of the application is on the following
figure. The button calls pyModbusTCP functions using button callbacks.

t tk
LEN/LES 2 - "2" Board

•
LEN/LES 2 - "3" Board

Connect

Connected

Connect

Connected

° l I I I
nrv

• • '

• H S

Periodic read mode

Connect Periodically Measuring

Periodic read mode

Connect Periodically Measuring

Available commands:

Set Blue LED"DS3"

Set PWM Duty Cycle [%.]

Read Button

Read On-Board temperature

Read Ambient temperature

OFF

1300

OFF

28.1'C

27.27-C

Available commands:

Set Blue LED "DS3"

Set PWM Duty Cycle [%<.)

Read Button

Read On-Board temperature

Read Ambient temperature

OFF

OFF

27.9"C

25.54-C

Figure 32 The master TCP/Modbus GUI

49

7.4 TCP/Modbus slave (server) implementation

Regards to various licensed and limited TCP/Modbus slave C-language libraries was
written custom TCP/Modbus layer (library) by the author of the thesis. The TCP/Modbus
stack is not completed yet and provides only services necessary to interface master in the
settings as was described in the chapter 7.3.

As was mentioned in the chapter 5, current lwIP stack works in polling mode (NO_SYS) and,
thus callbacks usage is needed. From the technical point of view, the TCP/Modbus may be
understood as TCP/IP protocol, so TCP functions lwIP may be used. Figure 33 depicts theory of
MODBUS slave operation. Discussed type pbuf'is equal to PBUF from the chapter 2.

^ start ^

Board
Initialization

LWIP:
Initialization

TCP: create pcb
TCP: bind to master
TCP: set callbacks

TCP: Listen for connection

40

43

LWIP: check input/send output
LWIP: handle timers

YES

MODBUS:
process request

Figure 33 The slave TCP/Modbus diagram

50

A t the first L E N / L E S 2 board and LWIP is initialized. Then is created new TCP/IP session
calling function tcp_new() and consequent binding to master with tcp_bind(). Note that
pcb_new() creates tcp_pbc which has to be passed to any further T C P functions. Also,
the callback of the pointer types: tcp_acceptjn and tcp_recvjn must be created and their
pointers prepared for consequent passing as an argument of the functions.

The A R P function etharp_gratituous() can be used to notify master about slave's M A C
address. However, it is important to call tcp_listen_with_backlog() and then function
tcp_accept() with passed function of the pointer type tcp_acceptjn. Note that
tcp_listen_with_backlog() w i l l change passed tcp_pcb to smaller new tcp_pbc. To start
receive is necessary to call tcp_recv() and due to changed tcp_pbc is the best to call
tcp_recv() in the callback function of the tcpjacceptjn pointer type and pass to the
tcp_recv() its tpcjpbc. The argument of the of the tcp_recv() function must be as well
function of the pointer type tcp_recvjn. Receiving callback then controls whole loop. In
case of closed connection, receive callback is called with passed N U L L pbuf, otherwise
pbuf contains received data (TCP/IP pay load). Received data are parsed according to the
TCP/Modbus rules and appropriate reply to the request is created. Created response is
sent calling tcp_write() and tcp_output(). Do not forget inform LWIP about received data
calling tcp_recved() and free pbuf calling tcp_free(). Note that N U L L as the pbuf
contained in the receiving callback is suitable to signalize "closed windows".

1. v o i d modbus t c p r e q r e a d s i n g l e c o i l (u i n t 8 t * msg i n ,
2. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;
3.
4. v o i d modbus t c p r e q w r i t e s i n g l e c o i l (u i n t 8 t * msg i n ,
5. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;
6.
7. v o i d modbus t c p r e q r e a d d i s c r e t e i n p u t (u i n t 8 t * msg i n ,
8. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;
9.
10. v o i d modbus t c p r e q w r i t e a n a l o g r e g (u i n t 8 t * msg i n ,
11. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;
12 .
13. v o i d modbus t c p r e q r e a d a n a l o g r e g (u i n t 8 t * msg i n ,
14. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;
15.
16. v o i d modbus t c p r e q r e a d i n p u t r e g (u i n t 8 t * msg i n ,
17. u i n t 3 2 t msg i n l n g , u i n t 8 t *msg o u t , u i n t 3 2 t *

msg out l n g) ;

This snippet is the list of the slave M O D B U S functions to process request (e.g. read D O ,
write A O) and create reply (e.g. read A I , read A O) . There is obvious msg_in containing
modbus incoming request and msg_out where the response is passed.

51

Figure 34 Low Complexity Ethernet Demonstration System

Figure 34 is the photograph of the running TCP/Modbus system using two L E N / L E S 2
boards. There are also visible two thermometers B M P 2 8 0 [32] providing the ambient
temperature. Using these thermometers and on-board A D T 7 5 [22] (hidden under the fan)
was found, that during usage of the board temperature increases by approximately 3°C in
compare to air ambient temperature (FPGA-based M A C - P H Y is the source of the heat).
Whole system is supplied by external 12 V D C adapter. The right L E N / L E S 2 boards
works also as the switch - packet which are not addressed to the right board are re­
transmitted immediately to the left board (connection via green cable). The grey cable
leads to the P C ethernet port with pre-set static IP address. The white two-wire cable
ensure power supply loop extended from the left L E N / L E S board (static IP application).
The whole described system of the Figure 34 is used for conclusion, no other auxiliary
connections had been done. The LWIP runs in the polling mode (user accesses raw API) .

52

& Capturing from Ethernet

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

i l l s '• x z q » * • f i p i <a, e
I ,\| 'II, I . > v .11 • "I

192.168.'100. 3
.76... 192.168.168.18
.76... 192.168.188.18

192.168.100.2

192.168.100.10 Modbus/TCP 64Response: Tran s : 55565; U n i t : 1, Func: 2: Read D i s c r e t e Inputs

192.168.100.10 Madbus/TCP 65 Response: Tra n s : 29726; U n i t : 1, Func: 4: Read Input R e g i s t e r s
192.168.10Ö.3 Modbus/TCP
192.168.10Ö.2 Modbus/TCP

4: Read Input R e g i s t e r s
2: Read D i s c r e t e Inputs

.76. 192.168.188.2

.76. 192.168.188.2

.76. 192.168.188.3

192.168.188.18 Modbus/TCP 64 Response: Tra n s : 63441; U n i t : 1, Func: 2: Read D i s c r e t e Inputs

192.168.188.18 Modbus/TCP 65 Response: Tra n s : 15799; U n i t : 1, Func: 4: Read Input R e g i s t e r s

192.168.188.18 Modbus/TCP 65 Response: Tra n s : 52815; U n i t : 1, Func: 4: Read Input R e g i s t e r s

192.168.188.18 Modbus/TCP 65 Response: Tra n s : 52646; U n i t : 1, Func: 4: Read Input R e g i s t e r s

> Frame 375: 65 bytes on wi r e (520 b i t s) , 65 bytes c a p t u r e d (520 b i t s) on i n t e r f a c e 0
Ethernet I I , S r c : 29:81:81:81:13:82 (28:81:81:81:18:82), Dst: D e l l _ 1 0 : a l : 9 c (98:48:bb:18:al:9c)
I n t e r n e t P r o t o c o l V e r s i o n 4, S r c : 192.168.180.2, Dst: 192.168.188.18

> T r a n s m i s s i o n C o n t r o l P r o t o c o l , Src P o r t : 582, Dst P o r t : 31638, Seq: 1174, Ack: 1333, Len: 11
Modbus/TCP

v Modbus
.008 0100 = F u n c t i o n Code: Read Input R e g i s t e r s (4)
TRequest Frame: 3741
Byte Count: 2

> R e g i s t e r 1 (UINT16): 2484

Figure 35 TCP/Modbus master-slave communication

Except the visual functionality of the boards was used Wireshark to sniff communication
between L E N / L E S 2 boards (slaves) and P C (master) - Figure 35. The Wireshark tool
recognizes protocol on the side of the slaves as well as on the side on the master. The
packets of the black highlight are outgoing from the P C (master) and signalizes not correct
checksum (wil l be processed in the P C NIC) - source IP address 192.168.100.10. The
light-blue packets are responses of the slaves. There are two slaves of the IP addresses
192.168.100.3 and 192.168.100.2. Note that 192.168.100.2 is the left one of Figure 34.
A t the bottom of Figure 35 is visible typical payload of the slave response - read input
register. In this case the ambient temperature was read and number 2484 is 24.84°C
(measured by BMP280) .

53

8 CONCLUSION

The main goal of the assignment to propose hardware based on proprietary M A C - P H Y
and A D u C M 4 0 5 0 was done as the semester thesis. This system proposal covers chapters
up to chapter 3. Also , there is brief introduction to LWIP and A R M microcontrollers.

The chapter 4 aims into the first task of the diploma thesis part of assignment hardware
proposal - layout section. The whole system called as L E N / L E S 2 board was proposed
by author of this thesis (schematics, physical placement of parts), however layout
finalizing, which concern routing and layering was done by A D I specialist Pat Sheahan.
The subchapter 4.2 publishes known mistakes of proposal, but no one of them is critical
and may prevent full functionality of the L E N / L E S 2 board. Although the firmware and
complexity of the system was growing gradually, chapter 5.2 also expresses full-
functionality test and current consumption. The consumption was measured
approximately 0.3 A at 3.3 V power supply.

Consequent chapter 5 describes N O - S Y S LWIP implementation in detail (including
function and code snippets) and so may be useful as reference for other engineers, which
would like to start with LWIP. Result reached in the chapter 5 is measured average ping
7ms during sent 4702 cycles and received 4679 replies (0.0% loss). As an addition the
subchapter 6.2.2 sketches successful LWIP D H C P client implementation (PC as the D H C P
server). Note that LWIP is used as the polling raw A P I accessing mode.

To use L E N / L E S 2 boards in application close to industrial was invented system with
controlled fan, on-board temperature and ambient temperature measurement. The smaller
chapter 6 is about the hardware implementation to ensure fan control.

Finally, chapter 7 aims into the TCP/Modbus master and slave implementation.
Meanwhile the master was implemented as G U I Python application with used
pyModbusTCP, the slave side was implemented as the bare metal. In total two L E N / L E S
2 boards were manufactured so TCP/Modbus system with two slaves was assembled. The
distinguish between them was realized using IP and M A C address recognition. The
system was fully tested and can demonstrate fan control, temperature measurement and
discrete L E D switching, button reading. The full application does not occupy more than
half of A D u C M 4 0 5 0 F L A S H and R A M resources (512kB, 128kB).

However, the weakest part of the system is the python master G U I and may be improved
from the visual point of view as well as in term of safety and reliability (uses tentative
libraries). To reach better reliability of the system is best to use R T O S based LWIP
(running with OS) and use socket layer. Although reached ping discussed upper was
reached 7ms, this value can be various across the traffic and so OS LWIP is needed. The
LWIP seems to be optimized and regards to limited resources robust enough. Especially,
application should be tested and optimized with certified TCP/Modbus device to improve
(in this diploma thesis both parts were represented using non-certified equipment).

54

9 SOURCES
[1] D U N K E L S , Adam. Design and Implementation of the L W I P TCP/IP Stack [online].

Swedish Institute of Computer Science, Kista, Sweden, 2001 [cit. 2019-12-06].
Dostupné z: http://dunkels.com/adam

[2] D U N K E L S , Adam. UIP - A Free Small TCP/IP Stack [online]. Swedish Institute of
Computer Science, Kista, Sweden, 2001 [cit. 2019-12-06]. Dostupné z:
http://dunkels.com/adam/

[3] K O L K A , Zdeněk. Počítačové a komunikační sítě [online]. Brno, Czechia, 2007
[cit. 2019-12-06]. Dostupné z: https://moodle.vutbr.cz/course/view.php?id=171162

[4] L W I P TCP/IP stack demonstration for STM32F4x7 microcontrollers: Datasheet
[online]. 2013 [cit. 2019-12-06]. Dostupné z: https://www.st.com/en/embedded-
software/stsw-stm32070.html

[5] Y I U , Joseph. Definitive Guide to A R M (r) Cortex(r)-M3 and Cortex(r)-M4
Processors [online]. A R M Ltd., Cambridge, U K : Newnes, 2014 [cit. 2019-12-06].
Dostupné z: https://www.bookshop.cz/elsevier-science-technology/definitive-
guide-to-arm-r-cortex-r-m3-and-cortex-r-m4-processors

[6] A R M v 7 - M architecture [online]. A R M Ltd. , Cambridge, U K , 2010 [cit. 2019-12-
06]. Dostupné z: https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-
reference-manual

[7] A D u C M 4 0 5 0 E Z K I T : Schematic/Manual [online]. 2017 [cit. 2019-12-06]. Dostupné
z: https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/adzs-u40501f-ezkit.html

[8] LTC3630: Datasheet [online]. Milpitas, C A , U S A , 2012 [cit. 2019-12-06]. Dostupné
z: https://www.analog.com/en/products/ltc3630.html

[9] ADP7142: Datasheet [online]. Norwood, M A , U S A , 2019 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/products/adp7142.html

[10] S M A J 3 3 C A : Datasheet [online]. 2010 [cit. 2019-12-06]. Dostupné z:
https://www.st.com/content/st_com/en/products/protection-devices/eos-10-1000-
microsecond-surge-protection/400w-tvs/smaj.html

[11] PTC1812L: Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:
https://www.littelfuse.com/products/resettable-ptcs/surface-
mount/18121/18121110_33.aspx

[12] M B R A 1 6 0 T 3 : Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:
https://www.onsemi.com/pub/Collateral/MBRA160T3-D.PDF

[13]HSP051: Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:
https://www.st.com/content/st_com/en/products/protection-devices/esd-
protection/high-speed-port-protection/hsp051 -4m 10.htm

[14] E V - C O G - A D U C M 4 0 5 0 : Schematic/Manual [online]. 2019 [cit. 2019-12-06].
Dostupné z: https://wiki.analog.com/resources/eval/user-guides/ev-cog-ad40501z

[15] A D U C M 4 0 5 0 : Datasheet [online]. 2019 [cit. 2019-12-06]. Dostupné z:
https://www.analog.com/en/products/aducm4050.html

55

http://dunkels.com/adam
http://dunkels.com/adam/
https://moodle.vutbr.cz/course/view.php
https://www.st.com/en/embedded-
https://www.bookshop.cz/elsevier-science-technology/definitive-
https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-
https://www.analog.com/en/design-center/evaluation-hardware-and-
https://www.analog.com/en/products/ltc3630.html
https://www.analog.com/en/products/adp7142.html
https://www.st.com/content/st_com/en/products/protection-devices/eos-10-1000-
https://www.littelfuse.com/products/resettable-ptcs/surface-
https://www.onsemi.com/pub/Collateral/MBRA160T3-D.PDF
https://www.st.com/content/st_com/en/products/protection-devices/esd-
https://wiki.analog.com/resources/eval/user-guides/ev-cog-ad40501z
https://www.analog.com/en/products/aducm4050.html

[16] A D U C M 4 0 5 0 : Datasheet H R M [online]. 2019 [cit. 2019-12-06]. Dostupné z:
https://www.analog.com/en/products/aducm4050.html

[17] R Y A N , Rosemary. System Demonstration Platform Facilitates Quick Prototyping
and Evaluation: Standard [online]. Limerick, Ireland, 2011 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/analog-dialogue/articles/demo-platform-
quick-prototyping-evaluation.html#author

[18]Arduino Offical Page [online]. 2019 [cit. 2019-12-06]. Dostupné z:
https://www.arduino.cc/

[19] Digilent P m o d ™ Interface Specification: Standard [online]. Pullwan, W A , U S A ,
2011 [cit. 2019-12-06]. Dostupné z: https://www.digilentinc.com/Pmods/Digilent-
Pmod_%20Interface_Specification.pdf

[20] FT232RQ: Datasheet [online]. Glasgow, U K , 2019 [cit. 2019-12-06]. Dostupné z:
https://www.ftdichip.com/

[21] A D M 6 3 1 5 : Datasheet [online]. Norwood, M A , U S A , 2019 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/products/adm6315.html

[22] A D T 7 5 : Datasheet [online]. Norwood, M A , U S A , 2019 [cit. 2019-12-06]. Dostupné
z: https://www.analog.com/en/products/adt75.html

[23] I N T R O D U C T I O N T O M O D B U S TCP/IP: Standard [online]. Wixom, M L U S A ,
2005 [cit. 2019-12-06]. Dostupné z: https://www.acromag.com/

[24] United Automation - O P C U A : Web Page [online]. 2019 [cit. 2019-12-06]. Dostupné
z: http://documentation.unified-automation.eom/uasdkhp/l.0.0/html/index.html

[25] Learn more about Syslog Protocol: Thomas Porter [online]. 2007 [cit. 2019-05-15].
Dostupné z: https://www.sciencedirect.com/topics/computer-science/syslog-
protocol

[26] Savannah L W I P site [online]. 2019 [cit. 2019-05-02]. Dostupné z:
https://savannah.nongnu.org/bugs/749631

[27]Fandom L W I P wik i [online]. 2019 [cit. 2019-05-02]. Dostupné z:
https://LWIP.fandom.com/wiki/LWIP_Wiki

[28]25LC01A: Datasheet [online]. U S A , 2012 [cit. 2019-05-02]. Dostupné z:
https://www.microchip.com/wwwproducts/en/25LC010A

[29] EB40100S2-1000U-999: Datasheet [online]. Kaohsiung, Taiwan, 2010 [cit. 2019-
05-04]. Dostupné z: http://www.sunon.com/index2/index.php

[30] L M 3 8 5 : Datasheet [online]. Dallas, Texas, U S A , 2019 [cit. 2019-05-04]. Dostupné
z: http://www.ti.com/lit/ds/symlink/lml58-n.pdf

[31] L M 3 1 7 : Datasheet [online]. Dallas, Texas, U S A , 2019 [cit. 2019-05-04]. Dostupné
z: http://www.ti.com/lit/ds/symlink/lm317.pdf

[32]BMP280: Datasheet [online]. Reutlingen, Germany, 2019 [cit. 2019-05-04].
Dostupné z: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
BMP280-DS001.pdf

[33] PyModbusTCP [online]. Python Software Foundation [cit. 2019-05-14]. Dostupné
z: https://pypi.org/project/pyModbusTCP/

56

https://www.analog.com/en/products/aducm4050.html
https://www.analog.com/en/analog-dialogue/articles/demo-platform-
https://www.arduino.cc/
https://www.digilentinc.com/Pmods/Digilent-
https://www.ftdichip.com/
https://www.analog.com/en/products/adm6315.html
https://www.analog.com/en/products/adt75.html
https://www.acromag.com/
http://documentation.unified-automation.eom/uasdkhp/l.0.0/html/index.html
https://www.sciencedirect.com/topics/computer-science/syslog-
https://savannah.nongnu.org/bugs/749631
https://LWIP.fandom.com/wiki/LWIP_Wiki
https://www.microchip.com/wwwproducts/en/25LC010A
http://www.sunon.com/index2/index.php
http://www.ti.com/lit/ds/symlink/lml58-n.pdf
http://www.ti.com/lit/ds/symlink/lm3
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
https://pypi.org/project/pyModbusTCP/

[34] Socket Programming in Python: Nathan Jennings [online]. 2018 [cit. 2019-05-14].
Dostupné z: https://realpython.com/python-sockets/

[35] A n Introduction to Tkinter: Fredrik Lundh [online]. 2005 [cit. 2019-05-14].
Dostupné z: http://effbot.org/tkinterbook/

57

https://realpython.com/python-sockets/
http://effbot.org/tkinterbook/

10 QUANTITIES AND ABRREVIATIONS
VlN Input voltage of the certain system

VoUT Output voltage of the certain system

VuSB_5V Convenient 5V voltage of the USB bus

VFT232RQ Output voltage of the internal LDO in case of the FT232RQ

lorn Output Current

RlSET Resistor for current setting

SSTIME Soft start time

VsUPPLY+ Positive power supply voltage

V SUPPLY GND Ground potential of the voltage source (minus)

V SUPPLY EARTH Earth potential of the source

netif LWIP structure of the network interface

pbuf LWIP structure of the packet

LWIP Light-weight TCP/IP stack

uIP Micro TCP/IP stack (lighter than L W I P)

M A C - P H Y Proprietary prototype implementing M A C layer.

S W D Serial Wire Debug

J T A G Joint Test Action Group (standard)

J - L I N K Debug Interface

M A C Media Access Control

TCP/IP Transmission Control Protocol/Internet Protocol

IP Internet Protocol

I C M P Internet Control Message Protocol

D H C P Dynamic Host Configuration Protocol

U D P User Datagram Protocol

IPC Inter Process Communication

H T T P Hyper Text Transfer Protocol

A P I Application Programming Interface

R A M Random Access Memory

R O M Read Only Memory

F L A S H Solid state non-volatile memory, electronically erasable

R O Read Only

58

R W Read Write

S R A M Static R A M

CISC Complex Instruction Set Computing

RISC Reduced Instruction Set Computing

ISR Interrupt Service Routine

M C U Microcontroller Unit

A R M Advanced RISC Machine

O P C - U A Open Platform Communications - Unified Automation

L E N Proprietary A D I L o w Complexity Ethernet Node module

L E S Proprietary A D I L o w Complexity Ethernet Switch module

A D I Analog Devices International

SoC System on Chip

TCP/IP Transmission Control Protocol/Internet Protocol

IP Internet Protocol

E T H Ethernet

SPI Serial Peripheral Interface

I2C Inter Integrated Circuit (Two Wire Interface)

U A R T Universal Asynchronous Receiver and Transmitter

U S B Universal Serial Bus

GPIO General Purpose Input Output

10 Input Output

P H Y Physical layer of the OSI ethernet model

OSI Open System Interconnection

A X I Advanced Microcontroller Bus Architecture (A M B A) - A X I type

A P B A M B A , version A P B

IC Integrated Circuit

F P G A Field Programmable Gate Array

V D C Voltage caused by Direct Current

H W Hardware

IP Intellectual Property (in term of IP core)

M S P Main Stack Pointer

PSP Process Stack Pointer

xPSR Process Status Register

L D O Low Dropout regulator

59

ss Soft Start (in term of the L D O)

SDP System Demonstration Platform (in term of A D I the platforms)

SPORT Serial P O R T , customized A D I dual SPI interface

A D C Analog to Digital Converter

S W Software

S W Switch (e.g. Transistor)

P T C Positive Temperature Coefficient (e.g. polyfuse)

W A K E High priority interrupts of the A D u C M 4 0 5 0

L F Low Frequency

H F High Frequency

P M O D Peripheral Module

E E P R O M Electronically Erasable Programmable Read Only Memory

ID Identifier (number)

L E D Light Emitting Diode

N A N D Negated Output Logical A N D Gate

S T M ST microcontroller

D N I Do not place

O A Operational Amplifier

R T U Remote Terminal Unit

M B A P M O D B U S Application Header

P D U Protocol Data Unit

G U I Graphical User Interface

D O Digital Out (Modbus coil)

A O Analog Out (Modbus holding register)

A I Analog Int (Modbus input register)

60

APPENDIX

• The L E N / L E S 2 board schematic (5 pages)
• The L E N / L E S 2 board layout (10 pages)

61

T H I S D R A W I N G IS T H E P R O P E R T Y O F A N A L O G D E V I C E S I N C . IT IS
N O T T O B E R E P R O D U C E D O R C O P I E D , IN W H O L E O R IN P A R T , O R
U S E D IN F U R N I S H I N G I N F O R M A T I O N T O O T H E R S , O R F O R A N Y O T H E R
P U R P O S E D E T R I M E N T A L T O T H E I N T E R E S T S O F A N A L O G D E V I C E S .
THE E Q U I P M E N T S H O W N H E R E O N M A Y B E P R O T E C T E D B Y P A T E N T S
O W N E D O R C O N T R O L L E D BY A N A L O G D E V I C E S .

R E L A Y C O N T R O L C H A R T

C O N N E C T O R

J U M P E R T A B L E

JP# ON O F F

1

2

3

5

DESCRIPTION DATE A P P R O V E D

* S E E A S S E M B L Y INSTRUCTIONS

TEMPLATE ENGINEER

P.O S P E C . BK/BD S P E C . S O C K E T O E M

HARDWARE SVSTEMS

TEST ENGINEER

COMPONENT ENGINEER

TEST PROCESS

HARDWARE RL._L.ASL

S C H E M A T I C
A N A L O G
DEVICES

HW TYPE : Customer Evaluati.
DEM0-LEN/LES2-ARDZ

DRAWING NO.

02-049121
REV.

A
SHEET 1 OF 5

http://RL._L.ASL

DESCRIPTION DATE A P P R O V E D

1 A N A L O G
1 DEVICES

SCHEMATIC

OESICM_VIEii>

VLADIMIR SUSTEK

REV I
A

I SHEET 2 OF 5

DESCRIPTION DATE A P P R O V E D

LEN MODE INDICATORS
LED3 , „ „

LES CHIP PAC

R30 10K R36 IK i

R3 R2

ITST-ClSnCKT
I GND R23

CLOCK SOURCE

il-STATE OUTPUT

RESET

: ; - f T-i í : ;_v^íc: ;- , i?-:

ADM6315-29D2ARTZR7

LES RESET (CONDITIONED)

SN74LVC1G0BDBVT

1 " 3 8

MOSI.'IOO P1TX+
MISOIOl P1TX-
102 P1HX+
103 P1RX-
VCC OND
SCLrÜSCL VCC
GND P2TX+
CLKCIN P2TX-
VCC P2HX+
ADDRO ;

i i

P2HX-

LES/LES MODE SET

EEPROM (MAC OF LES)

C2 _L G4
O.OlüF T 1ÜÜF

GND I GND

o.oiuF T louF

GND I GND

2 n,icninATicT

RJ45 PORTA

^ 7 r

RJ45 PORTB

M "

TEST/OUTPUT HEADERS
(OPTIONAL)

PLACE IN ORDER TO SAFE SPACE

LES SPI TEST

ISW-105-0B-G-E

2) TEM-103-08-G-E

LEN/LES ADDRESSES

SSW-106-01-G-E

LEN/LES TMR AND SPEED

I£H-105-08-G-£

I ANALCX3
I DEVICES

SCHEMATIC

OSSICM_VI£ii>

VLADIMIR SUSTEK

REV I
A

I SHEET 3 OF 5

DESCRIPTION DATE A P P R O V E D

MAIN HOST PROCESSOR OF LES

DEMO DATA TEMP SENSOR MCU CLOCK LF/HF XTAL

GND I GND

:::M^i.;I:Z

VISUAL OUTPUT (LEDS)

- c K b s
fT-isns_v;;jc:;-j?-- fr

'T-160BLWBC-C

l i T L

VBAT ADC VBAT ANA1 VBAT ANA2 VBAT DIG1 VBAT D

SYS HFXTAL Its
SYS.LFXTALJN
VREF_ADC
SYS HWRST N

VDCDC CAPm
VDCDC CAP1P
VDCDC CAP2N
VÜCÜC CAľa'

Nl GI'OJS
NJGPI037

N4 SPI
N5SPI
N6SPI
N.' SP

SYS HFXTAL OUT
SYS_LFXTAL_OUT

VDCDC OUT
VLDO OUT

SPI1 CS0.<GPIO25.'SWV
SPI1 MISG'RGB TMRO 3/GP024
SPI1 CLK'RGB TMRO 1/GP022

I CS1ÍSYS CLKOUT/RTC1 S
SPI1 MOSIŕRGB TMRO 2GP

CKGI'OJJ
CS2/RTC1 SS3'GPIO40
CS3GPI041
CiüGI'OIÜ

GPIO06/SWD0 CLU
GPIO07/SWD0 DATA
GPI017/SYS BMODEO
^ C l SS2.<GPI02e
TMR2 OUTOPI029

SPIO RDY/GPIO30
SPIO CS1/SYS CLKIWSPI1 CS3'GPI026
SPIO CSO'SPTO BCNVSPI2 RDY/GPIO03
SPIU MISQSPTO BD0/GPIO2

ŕ ľ 2 CÍ;;jGľ-
SPI? MISCGP'
SPI? MOSI/GP'
SPI2 CLKíGP'

SPTO ADOíUARTO SOUT ENíGP>
SPT0.AFS/UART1 RXGP-

SPT!) ACLK UA.RT1 TXGP.
SPTO ACNVŕSPM CS2/GP'

SYS WAKEĽGPI016
SYS WAKE0/GPIO15
SYS WAKE2/GPI013

SYS WAKE3/TRM2 OUT.<GPI033

GND DIG GND V .LI ADC

PAD J

G18 lup

v G19 D.41UÍ

1 A N A L C G
1 DEVICES

SCHEMATIC

OESICM_VIEÍi>
REV
A

VLADIMIR ŠUSTEK

DESCRIPTION DATE A P P R O V E D

ARDUINO INTERFACE

J-LINK DEBUG UÄRT AND DEBUG
SIGNAL SETTINGS

MOTHERBOARD SDP CONNECTOR

USB TO UART FTDI CHIP

VCCIO
18| IIFi
vcc G8

TEST osco 28
30

O.l'obF

RXD DTR 31
32 R67 DNI

DSP,!*
DC Di
CIS*

CBUSO
CBUS1

22
21
10

10K

USB DM
USDDP

CBUS3
CBUS4 9

EP GND AGND NC

»blslsjlslsl R65
1 A N A L O G
1 DEVICES

OSSICM_VI£ii>

VLADIMIR SUSTEK

SCHEMATIC

REV I
A

I SHEET 5 OF 5

A R T F I L M - SKT

S I L K S C R E E N P R I M A R Y

0 8 - 0 4 9 1 2 1 - 0 3

_ E N / L E S 2 - AROZ Rev A

PWR 5 Q P12 z o o
R43 DS4 P26 I
L2 C36 J C 2 5 a —I—£8

+VDD P 2 4

C 4 3

CO

U9 C 6 -

-R65

rR22 P10 o

U5

IR58 - <»
— R 2 1
^ R 4 5 I IR61

_R34 DR33

DS3 DS2

RESET

nC45
.24V

C40
GND D4|

Dl

R63

R 6 7 [

~C30
J r

•C31 D6 P13

MCUTX

swv

U2 | ^ R 5

R i a l | D S 1

RST

S2

BOOT

F l

L3 D5
C38 C39

M10_ , C 4 8

3 R60

D3

ANALOG
DEVICES

A H E A D O F WHAT 'S POSSIBLE™

P l l

DEHO-LEN/LES2 - ARDZ
08-049121 Rev-A

P16

Ul

Od (O H (VJ O
co r— <o m Tt m *t
en en a: cn cn cn cn

www www: a-
Cl

C24

U3

- P9

U7

P2

R12

P19

Al

P8 I A14

¥1

R14

= R 4 7
= R 4 6
— R 1 8

R16
R15
R17

^ DDDD
cncncncn

I r i o
J R 6 6 R69

PMOD I2C

PMOD SPI

c u n t ™
C 2 0 C 2 2 2-S

C21 I I l u u

R3 L E D 3

R2 LED2

U UR6 2_USJjR31
P6 P3

»1 ,
Y2/^ N R54 R55 1 2

_ L i *
P23

U4

A R T F I L M - SKT

ART FILM - L1_T0P

_1 PR IMARY

0 8 - 049 1 ? ' - 0 1

0 E M O - L E N / L E S 2 - A R D Z R c v - A

ART FILM - Ll_TOP

ART FILM - L2_GND

L2 I n t e r n a I GND

0 8 - 0 4 9 1 2 1 - 0 7

DEMO- E N / E S 2 - A R D Z R e v - A

ART FILM - L2_GND

ART FILM - L3_PWR

L3 I n t e r n a I PWR

0 8 - 0 4 9 1 2 1 - 0 8

DEMO- E N / E S 2 - A R D Z R e v - A

ART FILM - L3_PWR

ART FILM - L4_B0T

_4 SECONDARY

0 8 - 0 / 9 1 ? ' - 0 2

D E M O - L E N / L E S 2 - A R D Z R c v - A

ART FILM - L4_BOT

ART FILM - SKB

S I L K S C R E E N S E C O N D A R Y

0 8 - 0 4 9 1/ 1 - 05

DEMC - E N / E S 2 - ARDZ R e v - A

8U cSflfjrjdSfl

s
I

ART FILM - SKB

INS - W l l i ä IHV

170- 1 2 1 6 ^ 0 - 8 0

A d V H I H d d S V H d d Q l O S

IWS - WIIÄ IHV

ART FILM - SMB

S O L D E R M A S K S E C O N D A R Y

0 8 - 0 4 9 1 2 1 - 0 6

0 E M O - L E N / L E S 2 - A R D Z Rev

o o o

• I
O <

ART FILM - SMB

ART FILM - PMT

P A S T E M A S K P R I M A R Y

08 - 0 4 9 1 2 1 - 09

0EMO L E N / L E S 2 - A R D Z Rev

ART FILM - PMT

ART FILM - PMB

^ A S T E M A S K S E C O N D A R Y

0 8 - 0 4 9 1 2 1 - 1 C

D E M 0 - L E N / L E S 2 - A R D Z R e v - A

4-

ART FILM - PMB

