VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

USTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

JEDNODUCHY PRUMYSLOVY ETHERNET

INDUSTRIAL LOW COMPLEXITY ETHERNET SYSTEM

DIPLOMOVA PRACE
MASTER'S THESIS

AUTOR PRACE Bc. Vladimir Sustek

AUTHOR

VEDOUCI PRACE doc. Ing. Tomas Gotthans, Ph.D.
SUPERVISOR

BRNO 2019

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
VBRNE TECHNOLOGII

Diplomova prace

magistersky navazujici studijni obor Elektronika a sdélovaci technika
Ustav radioelektroniky
Student: Bc. Vladimir Sustek ID: 164421
Roc¢nik: 2 Akademicky rok: 2018/19

NAZEV TEMATU:

Jednoduchy pramyslovy Ethernet

POKYNY PRO VYPRACOVANI:

Seznamte se s moznostmi implementace IwlP -- IP stacku v embedded systému architektury ARM. Navrhnéte
embedded systém implementujici univerzalni vstupné vystupni zafizeni komunikujici na IwlP TCP/IP vrstvé
s dirazem na kompatibilitu zafizeni s embedded periferiemi komunikujicimi pomoci rozhrani PMOD, Arduino
a standardy Analog Devices, Inc. Pro systém pouzijte mikrokontrolér ADlI adUCm4050 a jako linkovou vrstvu
nevefejny prototyp ethernetového pfipojeni s integrovanym MAC. DalSim pozadavkem tohoto modulu je
univerzalnost napajeni v standardnich primyslovych aplikacich stejné jako napajéni v uzivatelskych podminkach
(USB) a navrhnuti zakladni ochrany bloku zdroje. Seznamte se s primyslovymi komunikaénimi protokoly jako
napfiklad MODBUS, ¢i OPC - UA pro dalSi ¢ast prace.

Zajistéte vyrobu hardwaru zminéného embedded systému s dodrzenim zasad pfi pouziti vysokorychlostnich
komunikaénich blokl (Ethernet). Naprogramuijte a ozivte vytvoieny systém, zprovoznéte IwlP -- IP stack. Zvolte
praktickou a jednoduchou demonstracni aplikaci (napfiklad meéfeni teploty , i tlaku vzduchu) a vyberte vhodny
pramyslovy protokol jako nadstavbu systému (MODBUS, OPC- UA). Dany protokol implementujte a piipojte
k vami vytvorené siti zalozené na primyslovém protokolu. Navrhnéte grafické rozhrani pro interpretaci ziskanych
dat. Zhodnotte robustnost systému, zvazte, pfipadné navrhnéte mozna bezpecnostni vylepSeni a dalSi rozSireni.

DOPORUCENA LITERATURA:

[1] DUNKELS, A. Design and Implementation of the IwIP TCP/IP Stack. Swedish Institute of Computer Science
2001. Online https://www.artila.com/download/RIO/RIO-2010PG/Iwip.pdf

Termin zadani: 4.2.2019 Termin odevzdani: 16.5.2019

Vedouci prace: doc. Ing. Tomas Gétthans, Ph.D.
Konzultant:

prof. Ing. Tomas Kratochvil, Ph.D.
predseda oborové rady

UPOZORNENI:

Autor diplomové prace nesmi pfi vytvareni diplomové prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zplisobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledk(poruseni ustanoveni § 11 a nasledujicich autorského
zékona ¢&. 121/2000 Sb., v&etn& moznych trestnépravnich disledkl vyplyvajicich z ustanoveni &asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunikacénich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 /616 00 / Brno

https://www.artila.com/download/RIO/RIO-201

ABSTRACT

The diploma thesis is focused on the building embedded demonstration application of the
proprietary Low Complexity Ethernet module for industrial usage further called the
LEN/LES 2. At the first, main used technologies such as MCU, or the lightweight IP stack
is discussed, Consequently, there is detailed view on system hardware architecture
proposed by hardware and software requirements. Then though part describes blocks of
embedded system are in term of specific parts and hardware requirements to create
universal board. Following chapters expresses first startup and known hardware bugs,
LwlIP implementation and MODBUS system implementation. The core of the system is
the new released microcontroller an ADuCM4050 and the Low Complexity Ethernet
MAC-PHY prototype block and much more dependent convenient peripherals of the
MCU based application.

KEYWORDS

Low Complexity Ethernet (LES), MAC-PHY, ADuCM4050, LwIP stack, SDP and
Arduino interface, universal power supply, MODBUS, OPC — UA

ABSTRAKT

Predmétem diplomové prace je vytvoreni vestavéného neboli embedded systému za
ucelem demonstra¢niho zafizeni s vyuziti nevefejného modulu Low Complexity Ethernet
pro prumyslové aplikace — tedy jednoduché pramyslového ethernetu. Nejprve se
dokument zabyva technologickymi bloky jakozto MCU a pouzitym LWIP, poté se prace
zaobira detailnim popisem architektury univerzalniho systému podle zadanych
pozadavku po strance fyzické (hardwarové) a systémové (softwarové). Dalsi kapitoly se
zabyvaji ozivenim desky, vCetné vysvétleni technickych zavad, dale implementaci LWIP
stacku a nadstavénym MODBUS protokolem. Hlavnimi stavebnimi bloky jsou zminény
Low Complexity Ethernet modul a mikrokontroler ADuCM4050 a dalsi dulezité
hardwarové periferie mikroprocesoru.

KLiCOVA SLOVA

Low Complexity Ethernet (LES), MAC-PHY, ADuCM4050, LwIP stack, SDP and
Arduino interface, univerzalni napajeci zdroj, MODBUS, OPC — UA

SUSTEK, V. Jednoduchy priimyslovy ethernet. Brno: Vysoké uceni technické v Brng,
Fakulta elektrotechniky a komunikacnich technologii, Ustav radioelektroniky, 2019.
63 s., 15 s. priloh. Diplomova prace. Vedouci prace: doc. Ing. Tomas Goétthans, Ph.D.

PROHLASENI

Prohlasuji, ze svoji diplomovou praci na téma Jednoduchy primyslovy ethernet jsem
vypracoval samostatné pod vedenim vedouciho diplomové prace a s pouzitim odborné
literatury a dalSich informacnich zdroja, které jsou vSechny citovany v praci a uvedeny v
seznamu literatury na konci prace.

Jako autor uvedené diplomové prace dale prohlasuji, Ze v souvislosti s vytvorenim této
diplomové prace jsem neporusil autorska prava tretich osob, zejména jsem nezasahl
nedovolenym zptisobem do cizich autorskych prav osobnostnich a/nebo majetkovych a
jsem si plné védom nasledku poruseni ustanoveni § 11 a nasledujicich zakona ¢. 121/2000
Sb., o pravu autorském, o pravech souvisejicich s pravem autorskym a o zméné nekterych
zakonu (autorsky zakon), ve znéni pozd€jsSich predpist, vCetn€ moznych trestnépravnich
dusledka vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku ¢.
40/2009 Sb.

VBMEANe ..o e
(podpis autora)

PODEKOVANI

Dékuji Skolnimu vedoucimu diplomové prace doc. Ing. Tomasi Gotthansovi, Ph.D. a
externimu vedoucimu panu Ing. Michalovi Brychtovi véetné aplikacniho tymu ADI,
Limerick, zejména Connelu O’Sullivanovi za u¢innou metodickou, pedagogickou a
odbornou pomoc a dalsi cenné rady pfi zpracovani mé diplomové prace.

CONTE

Content

NT

List of pictures

List of tables

1 Introduction

2 Preliminary

2.1
2.1.1

2.2
2.2.1

Light Weight TCP IP stackccooiiiiiiiniiiin
LWIP Stack fOOtPrint.........cccccvvviuiiinuiiiniiieniieeieeeieen

ARM microcontroller introducCtionceevvvvuveieeeeerereevenenennn.

ARM M — familycoooviiiiiiiiiiiiiiiiiiiie e

3 System proposal

3.1
3.1.1
3.12
3.1.3
3.14

3.2

3.3

3.4
3.4.1
3.4.2
343
3.44
345

Power Supply UNit......cccecveviiiiiiiiiiiieieie e
Preliminary......oooeeeeeeeiiiieiiiciie e
LTC3630 dOWN CONVETLET ...vvvveeueeeeeiiiiiiiiiieinieeeeiieeeeiie s
ADP7142 LDO stabilizer.......cccooccvviiiiiiiiiiiiiiiieieiieeeee
Power supply protection CIrCUItIy........ccevvereeieeiienienieneenne

Proprietary Low Complexity Ethernet LES.................coc...

ADuCM4050 Cortex M4-F microcontroller............c.ccceeennenne.

System connector iNterfacesc.cooveevireeiniininniiecn
SDP platformccoecviviiiiiiiiiiiiiiee e
Arduino INterfacecceeveeeerieeriieeenieiiiie e
PMOD INterfaceccovvveevveeeiieeiieeciiie i
USB/UART converter interface..........cccocueevvurrinieeniiecnnnnn

AUXIHATY CITCUILTY ..ottt

4 Hardware proposal and debug

4.1
4.1.1
4.1.2
413
4.14

Parts placementcc.ocuiiiiiinniiiiinie e
Y VNG 2 5 0 S TS
ATduino INEEITACE «.coovvveiiiiiiiiiiieieeee e

MCU, EEPROMcccccoiiiiiiiiiiiiiiiiniiiei e

PMOD SPI, PMOD 12C, ADI SDP, RF connector

v

iv

vi

viii

8

9

O S T 51111 10)) OO SPPOPPRP DTSRRI
4.1.6 S1ot MICTOSDuiiiiiie ettt
4.1.7 USB micro, J-LINK — Pill.cc.cooiiiiiiiiiiiiie i
A.1.8 LEDS cuuiiiiiieeeie ettt etteee ettt st ettt st st b e e s
4.1.9 POWET SOUICE ...ccuuvveeeieiirieeeiiiieeeeiieeeseitirie e sarae s e s rasaeas s e e s saitaeee e
4.1.10 Thermometer ADTT7S ...oooiiiiiiiiieeieciiieii e

4.1.11 The remaining components of the schematicc.cocoveveinininne

4.2 Hardware getting started and hardware bugs

LWIP Implementation
5.1 Getting started with MAC-PHY
5.2 LWIP POItingccccoeevvvvuiiniimiieiieniienieeeenne
5.2.1 Porting layer ethernetifccocceeiis
522 DHCPand LWIPccooiiiiiiiiiiiins

Demonstration system hardware

6.1 Fan-based air conditioning.........c.cccccceuueenen.

TCP/IP Modbus APPLICATION
7.1 MODBUS introduction........ccccccceeueeevuueeennne.
7.2 TCP/Modbus demonstration system.............

7.3 TCP/Modbus master (client) implementation...........ccoceevvienieeieeieennnens

7.4 TCP/Modbus slave (server) implementation
Conclusion

Sources

10 Quantities And Abrreviations

Appendix

35
35
38
39
43

44
44

46
46
48
48
50

54
55
58

61

LIST OF PICTURES

Figure 1 Division between TCP/IP and Applicationccovvevienieneninenincninecne 11
Figure 2 General PBUF_RAM packet chained with PBUF_ROM packet..................... 11
Figure 3 ARM-M COres OVEIVIEWcooeiiiiiiniiiiiiiieie ittt 13
Figure 4 ARM-M operation states and MOdes............cooeeeviiiiiiiiniiiienineni e 14
Figure 5 Hardware architeCture OVEIVIEWccccooiiiiiieiiniiiieniiie st 15
Figure 6 LES power consumption Measureémentc..ocueeuueniienieneenienienienienecne e 16
Figure 7 Schematic of the LTC3630 power Supplyccoooieiiimiieniininiiiece 18
Figure 8 Recommended inductor value graph, assumed from [8]..........cccoceniininnnne 18
Figure 9 Schematic of the ADP7142 power SUPPLYc.ccoveiiiiiiiiiiiieiceeee 19
Figure 10 Schematic of power protection CIrCUIL..........cceevieieienieiienieiesie e 20
Figure 11 USB power and signal protection CirCUitocueveevivieieerinienieinienieineneenes 21
Figure 12 Proprietary MAC-PHY prototype illustration.............oceeeevenieneeinenieinenennns 21
Figure 13 Block diagram of the SDP System..........cccooiiiiiiiiiiiiiie 24
Figure 14 The Arduino interface header SOTting...........ccovveiiiiniinenineni e 25
Figure 15 SPI Type 2A, I2C PMOD CONNECLOTSoouiiviiniieiiiiiiieieeiieii e 27
Figure 16 Schematic of USB/UART CONVEITETccoouiiiiiiiiiiieieieiecie e 28
Figure 17 LEN/LES 2 DOAIdccveiiiiiiiiiiiiiiiiiiiiiieiiie ettt 29
Figure 18 LEN/LES 2 DOAIc.cccciuiiiiiiiiiitiiiieieett ettt 32
Figure 19 Wrong LED Orientation...........ccccoivuiiiiiiinieiii i 32
Figure 20 3V3 and 3V3 MAC-PHY miSCONNECHION.ccoiiiuiiiiiieeiiiee e 33
Figure 21 Wrong P13 pInouULcc.ccuiiiiiiiiiiiiii e 33
Figure 22 LEN/LES 2 board normal cOnSUMPLIONcccoviiiiiieniineniineeieeeiee e 34
Figure 23 Wireshark Syslog frame reCeivingcooveieiiiiiiiiniiieninenice e 35
Figure 24 Frame Syslog payload received by LEN/LES 2 receiver.........cocoovevenieieienns 36
Figure 25 Calling ping command (no other task processed)ccoouveniiininiinininnn 42
Figure 26 DHCP LWIP CLHENt......c.ociiiiiiiiiiiiiiiitiiiieicee et 43
Figure 27 Fan control CIFCUILccuivuiiiiiiiiiiiiiii i 45
Figure 28 Fan Circuit VOItaZecccoiuiiiiiiiiiiiiiiiie it 45
Figure 29 Modbus RTU vs TCP/MODBUSccoooiiiiiiii e 46
Figure 30 TCP/Modbus cOmMMAaNAScccccoviiiiiiiiiiiiiiiiieeie e 47
Figure 31 TCP/Modbus example transaction read coil (ON-State)ccooeveinenninnne 47

vi

Figure 32 The master TCP/Modbus GUIcoiiiiiiiiniiiiies 49

Figure 33 The slave TCP/Modbus diagramccoeoiirinciininininiiiii 50
Figure 34 Low Complexity Ethernet Demonstration System...........ccoovnvnininniiiiinnnnn 52
Figure 35 TCP/Modbus master-slave cCOMmUNiCationc.cocococecriiirimnmnmnnnnininissnnes 53

vii

LIST OF TABLES

Table 1 Dunkels's LwIP fOOtPIINtcc.ooviiiiiniiiiiiiiit e 12
Table 2 STM32F4xx HTTP server demo fOOtPrintccoeevveiieeiiienieniiniinececiciienes 12
Table 3 Arduino interface PINOUL.........ccuiiiiriiniiiiiieee e 26
Table 4 PMOD SPI Type 2A, I2C PINOUL. ...c.couiiiiiieieiiieneiiiencin e 27

viii

1 INTRODUCTION

Over the last few years, interest in mutually connected computer-based devices has
greatly increased. These devices are becoming more available because of prices have
dropped and so can be used in various areas such as healthcare, industrial production,
safety, transportation etc. Originally the army project named ARPANET emerged in
highly developed Internet technology for different purposes with often hard requirements
such as safety, high speed, data rate. This document aims into Low Complexity Ethernet
module which collect data from essential communication protocol on the one side (SPI,
I12C, UART etc.), encapsulates data to convenient ethernet frames and consequently sends
for general processing on the other side. This chapter aims into the fundaments of the
proposed system.

Recently, Analog Devices (ADI) designed the FPGA based low complexity prototype
with two ETH - PHY's and 12C + SPI access interfaces. This block is proprietary, and its
content is not point of this diploma thesis. This prototype is called as the LEN/LES
(switchable Low complexity Ethernet Node/ Low complexity Ethernet Switch) can be
understood yet not released product providing MAC service. In the further text is this
block called as the MAC-PHY. This document aims only into to LES mode system
implementation. Further implementation (up to application layer) is subject of this
document. The main point of this assignment is to create demonstration application board
with the MAC-PHY included (further called LEN/LES 2 board). Demonstration board
should highlight potential of the project and it is pre — iteration for final intended SoC
(System on Chip) implementation of the whole described system. The MAC-PHY
requires host MCU for control — intended part of the final SoC. Final system should use
one of the convenient industrial protocol such MODBUS, OPC - UA. Note that of the
main corporal requirements is to use new released ARM MCU the ADuCM4050 (M-4F
Cortex) with enhanced power management and convenient peripherals to prove its
performance.

However, there are some constrains during Ethernet implementation in the miniaturized
embedded system — available space memory and computing performance. Therefore, a
LwlP stack is discussed as the first — special variant of a TCP/IP stack for embedded. The
LwlP familiarization is followed by brief introduction to used ARM microcontrollers.
Consequently, the fundaments of the system are described as was mentioned in the
abstract. Finally, last chapters express hardware debug, pwIP implementation and
MODBUS implementation.

2 PRELIMINARY

This chapter is dedicated for brief LwIP stack introduction such as reason of usage in
embedded system or light view on the architecture. Secondly, the basic features of the
ARM MCUs are discussed.

2.1 Light Weight TCP IP stack

The miniaturized computer-based devices such as sensors must be inexpensive and small,
the implemented Internet Protocol must be optimized as well. For these purposes LwP
TCP/IP stack by Adam Dunkles was developed (From the Swedish institute of computer
science) [1]. The ordinary TCP/IP stack provides and IP, ICMP, UDP and a TCP protocol
[3]. The application layer is highly hardware abstract, that entry point of the convenient
stack is in file I/O fashion, especially because of fundamental elements implementation
in the system kernel. The TCP/IP is designed as a layered system, whereas layers are
strictly divided and only entry points are exposed for interfacing. Since the stand-alone
layered architecture has advantages such as safety (no other layer can access resources of
neighbor layer except interfacing with dedicated entry points), there is a disadvantage of
performance and memory requirements. For layer division, it is needed to copy all used
data buffers through the stack, therefore significant amount of the memory and computing
time is occupied by system.

However, the typical embedded application has very limited memory resources, so
compromise is needed especially in the buffering. The main goal of LwIP (light weight
TCP/IP stack) is the sharing buffer through the layers, what is violation of strictly divided
layers in the original intended stack. The memory sharing can be easily supervised
because of native the C — language stack implementation. Except supported protocols (IP,
ICMP, UDP, TCP) LwIP needs a few support modules such:

e Emulation layer — only implementation dependent part of stack, includes timers,
process synchronization, message passing etc.

e Buffer and management subsystem — care about memory for processes

e Network Interface functions — the end low layer driver function

e Internet Checksum functions — packet checksum calculation

e Abstraction API — for global stack interfacing

In term of process model, LwIP is intended to operate as the single process, whereas user
is interfacing stack API (Application Programming Interface) accessing this single
process, or stack is divided into the two process in mutual collaboration comprised from
the API and the TCP/IP process. In case of the divided API and TCP/IP, both process
communication using an inter-process communication (IPC) using software semaphores,
message passing and memory sharing.

The memory management uses chained structures with necessary variables and pointers
to the payloads. For example, the packets are represented as a structure as well as the
network driver structure, which represents the certain mapped network devices.

10

Application TCP/IP

IPC
API API

A

Figure 1 Division between TCP/IP and Application

The memory manager splits memory into the small chunks and places small structure
with flag used/unused there. This allows to maintain memory and prevent fragmentation.
Also, the manager maintains only dedicated part of the memory so cannot occupy room
of other blocks

The packet buffers are example of the chained structure instances. The packet may reside
in a PBUF_RAM, PBUF_ROM or might be stored in the fastest way to the pre-located
static PBUF_POOL memory. The PBUF_ROM memory is suitable for constant data to
be sent, PBUF_RAM data are used to send packet and PBUF_POOL for its fast access is
used for incoming packets. Note that in the MCU is available only the RAM and the
FLASH memory for protentional data, so packet of the ROM character is both read/write
accessible. The PBUF structure contains following parts such pointer of the next PBUF
instance pbuf, pointer of packet payload, length of packet, length chained packets, flags
and reference bits. The data of payload pointer are stored in the though frame of pbuf as
the last member of structure. In term of size is the biggest PBUF_POOL, because of
incoming packet size (huge amount of received payload data). Figure 2 express chained
packets of types PBUF_RAM and PBUF_ROM, whereas PBUF_ROM has external
payload storage.

PBUF_RAM PBUF_ROM
next next ROM payload
payload payload >
len len
tot_len tot_len
flags | ref flags | ref

Figure 2 General PBUF_RAM packet chained with PBUF_ROM packet

Network interfaces are also handled using chained structure defined as netif. Structure
contains pointer for chaining, name of interface, interface number, IP address, netmask,
gateway field and state flag, but especially contain two function pointers for low layer
packet handling during receiving and transmitting. IP and UDP protocols are presented
as structures as well.

11

2.1.1 LWIP Stack footprint

The Adam Dunkels’s proposal of the LwIP was tested only for the program RO (Read
Only) memory usage (data, instruction). Also, reached results are old — fashioned in term
of the implementation (compiled for x86 and 6502), note that reference document was
issued in the year 2001. Dunkels’s original stack takes 23kB of the flash memory and

there is not specified application of usage.

In point of view from LwIP original proposal, the STM recently issued document of the
LwlP stack for its ARM M-4 Cortex microcontrollers STM32F4xx (year 2013) [4]. STM
compiled LwIP in result of 98kB used FLASH (RO data and RO program), and 33kB of
the RAM usage in case of the HTTP 1.0. Note that the STM uses the hardware abstract
functions and the used microcontroller is much more advanced in compare to 6502 used

by Dunkels (STMF4xx family represents 32 — bit ARM M-4 Cortex MCU).

Table 1 Dunkels's LwIP footprint

Module Size [B]
TCP 11461
Support functions 4149
API 3847
UDP 1264
1P 1211
ICMP 714
Total 22646
Table 2 STM32F4xx HTTP server demo footprint
RO code | RO data
FLASH |FLASH |RW data
Module [B] [B] SRAM [B]
Ethernet driver and interface 2828 0 9360
LwIP memory management and IP modules 18634 20 19978
Application Modules: general initialization 6988 52385 1581
STM Peripheral drivers and board support 3720 5 16
Others (stack, heap, ect.) 8456 4573 32
Total 40626 57091 32770

Regards to the footprint of the LwIP stack is mandatory to mention the pIP stack
developed for the 8-bit microcontrollers with the footprint < 1kB of FLASH and <100B
of the RAM, also by Adam Dunkels [2]. Constraints caused by footprints will be

discussed in the MCU related chapter 4.

12

2.2 ARM microcontroller introduction

It may be said with exaggeration that the ARM based 32-bit MCUs rule the world. The
Advanced RISC Machines are used not only in the miniaturized embedded solution, but
also in the devices with high computing performance [5].

Although the RISC (Reduced Instruction Set Computing) is part of the name
abbreviation, most of the used instruction is CISC (Complex Instruction Set Computing).
ARM company does provide only the IP core for the silicon vendors which produce MCU
with their customized peripherals.

Once of the main advantage is a core native debug interface standard JTAG/SWD, what
is also only direct entry point to the core. Consequently, the core provides ethe entry high
performance AXI and simpler APB bus for interfacing with other important block of
MCU such as clock section, memories (SRAM, FLASH), etc. ARM is designed for ARM
- 32b instructions, but also provides option of the THUMB2 16/32b instruction set.The
ARM microcontrollers are marked as the Harvard architecture devices, because data and
program can be accessed simultaneously. This device processes with virtualize memory,
so even if FLASH and RAM is content from different HW memories, user accesses them
in linear order.

ARM cores are divided into:

e ARM - A: High performance devices such as mobile phones, tablets and small
computers. This type of core supports 7 modes of operation with its own
processing necessary registers. Only this core uses full scale of ARM instructions.
ARM instruction might be used as very powerful using Assembler fashion
programming.

e ARM - R: Devices with the highest timing requirements. This core is used in
application, whereas is needed timing accuracy (e.g. during ISR routines) such as
very precise motor control.

e ARM — M: Brief description in following subchapter.

2.2.1 ARMM - family

The ARMV7M architecture of ARM-M devices was developed to offer better industrial
leading-edge system performance, support natively C/C++ coding, deterministic
instruction and interrupts timings [6]. M — family requirement was to allow producing
enhanced low-cost miniaturized applications, whereas full performance of core may be
needed. The ARM company market offers a few M-cores sorted in increasing order of
performance and complexity.

ARM-M Cores:
MO MO+ M1 M3 M4 M7 M23 M33 M35P

CORE performance

Figure 3 ARM-M Cores Overview

13

The devices support two (three) operational modes in frame of the Thumb State [5]. The
number of modes is very limited in compare to “A” and “R” ARM devices. There is the
privileged handler mode for exception (interrupt) processing and privileged/unprivileged
thread mode for normal instruction execution. The unprivileged thread mode prevents
from accessing sensitive parts of the MCU such memory or peripherals and uses its own
stack pointer — ensures advanced reliability of the system. However, the unprivileged
mode does not have to be used at all, especially in the simple applications.

/ Thumb State \

Privilegeded /
. Handler Mode . Debug Debug State
i Executes exceptions Exception event processor stops
request request X
Exception|return ” execution
Privilegeded Unprivilegeded Unhalt Ifis debuggerl
request
Start Thread Mode Thread Mode a connected only
Executes normally Executes normally
Separated Stack
Pointer (SP)

/

Figure 4 ARM-M operation states and modes

The register bank is composed from 16 registers of 32-bit width, whereas first 12 of them
are for general purposes. The 13™ register is Stack Pointer and can be MSP (Main SP) or
PSP (Process SP) according to the current state of operation. Then, there is a register to
hold return address, program counter. The ARMs have a few of status registers a xPSR
(Application, Execution, Interrupt), what also ensures higher reliability of the system.

One of the most mentioned feature of the ARM high performance is the three-stage
pipeline. The three-stage pipeline is implementation begins in M3 family and then in the
better cores. The pipelining allows fetch-execute-store fashion of execution, what allows
to process most of the instruction in one clock cycle such multiplication. Note that clock
the frequency may exceed 100 MHz up to 200 MHz [5].

14

3 SYSTEM PROPOSAL

This chapter discusses important hardware blocks used in the LEN/LES 2 board. At the
first is discussed power supply unit, secondly there is brief introduction to the proprietary
MAC-PHY block. The third part expresses properties of the used MCU ADuCM4050
application. Consequently, there are subchapters about universal interfacing units — such
as USB/UART interface and connectors. The detailed view on the embedded system is
Figure 5. Schematic of the proposed system is enclosed as the appendix.

Buttons mini USB 3.81 Terminal |**°| 5.5 mm JACK
RST, BOOT Connector Connector
usB 4.5V

Reset IC *4—36\/
GPIO USB/UART 220v| Safe circuit

m Overvoltage

ATD75 FT232RQ 3.3V & 4 — 5V source and inteference
Thermometer RsT ||
h 4
12C
EEPROM — MCU 2% RJ -45
SPI/ISR
.| ADUCM4050 MACPHY [g IVINENSY
SQWD. * M4 - Cortex LES connectors
— pin
J —_ LlNk SP| A
/sm SPWCT w@m SPI/GPIO
Y

mircoSD sDP PMODs Arduino Testpoints

Card Slot ADI'120 - pin 12C and SPI Interface SPI, (?PIO,
connector connectors headers ISR pins

Figure 5 Hardware architecture overview

The Hardware architecture depicts blocks and its signal and external power connections.
The white blocks represent passive mechanical connectors for board interfacing — note
that there are only around the core. The core of the architecture is MAC-PHY block and
MCU (brown and black). The light blue color marks ICs used for auxiliary functions such
as reset circuit, USB to UART etc. The red block contains power supply circuitry and
provides power supply 3.3V to the system. Note that whole system is powered by 3.3V
except the USB/UART - internally powered by the LDO. There is 4-5V power source
stabilized by the 5V LDO ADP7412, the usage is only for the SDP interface connector.
The green block is composed from two buttons, first for reset circuit, the second for the
BOOT pin of the MCU, note that signal connection between BOOT and MCU is not
drawn — expressed only by distinct green color. For signalization there are a few LEDs
dedicated (pink).

15

The simple thin arrows are used for SPI/I2ZC/GPIO/ISR connections. The thick black
arrow leads between MCU and MAC-PHY block of external reset requirement. The
uncomplete thick red arrow should outline power supply options.

3.1 Power Supply unit

3.1.1 Preliminary

One of the typical features of the miniaturized devices is range of power supply voltage
and low power requirements. Because of the used MAC-PHY PFGA-based block
(discussed in the next chapter), the low power requirements may be abandoned. During
the pre-iteration of the Low Complexity Ethernet system was measured consumption of
the whole system including MCU around 300 mA (Figure 5).

Figure 6 LES power consumption measurement

Auxiliary consumption measurement is depicted in figure 5. There is voltmeter on the
left, ammeter in the middle and the very first LES device with the hosting ADuCM4050
board ADZS - ADuCM4050 EZKIT - the universal MCU evaluation board [7]. The
EZKIT ensured up to 500mA current at 3.3V for hosted application. During the
measurement, the LES was linked with the PC (processed packet on the ARP layer —
traffic load). The current consumption reached approximately 300mA, what did not vary
across adjusting traffic significantly. Note that the EZKIT was supplied using its USB
interface by desktop PC - DELL OPTIPLEX.

However, ADI (Analog Devices International) stopped production of EZKIT and started
to produce more practical and economic replacement EV-COG-AD4050 [14].
Replacement board though does not have enough power supply unit because of its
purpose — evaluating microcontroller ADuCM4050 in lower power efficient applications.
The result was that MAC-PHY block was kept in brown-out state so reliable system with
ADuCM4050 and MAC-PHY module in collaboration is needed — the diploma thesis
assignment.

16

3.1.2 LTC3630 down converter

The Analog Devices acquired Linear Technology (year 2017) and became company with
wide offer of power supply converters or stabilizers. Logically, usage of corporal IC for
power supply is required. Described circuit is part of the red block in figure 5.

Global power supply requirements of the system:
e 5V for SDP requirement and 3.3V for LES, MCU and related circuits
e USB - Vgus 5V power supply source (down to 4.2V in worst case)
e Industrial 24VDC +10V source, overvoltage and interference safe circuits
e Direct 3.3V voltage power supply source — exceptional, debug purposes
e Provide 500mA at 3.3V, voltage cannot decrease down to 3.20V
e Provide 5V for SDP purposes and 3.3V for MCU and LES (next subchapter)

LTC3630 was chosen as an appropriate down converter due to following properties [8]:
e Operating range 4 — 65VDC
e Adjustable 50 — 500mA output current
e All-in including switch, only external inductor working point passives needed
e Low —dropout in case of Vin = Vour, switch Rpson 1.9Q at 100% duty cycle

e Low profile footprint 3.5mm x Smm with thermal pad

There are a few evaluated typical applications in the official LTC3630 datasheet [8]. The
best suits “4V to 65V Input to 3.3V Output, 500mA Step-Down Converter” from the first
page. Because LTC3630 contains optional pins (unused in mentioned application), the
original schematic was enhanced (Figure 6). Especially, there is a pin for output current
settings, which is originally left floated ~ maximal current.

The output current Iout (500mA) is set by switched Ipeak which are related as:

lour = Ipgak + 2 = Ipgak = 2 X loyr = Ippak = 1.04 (3.1)
R,SET = Ipgag X 0.2 X 10° =1 x 0.2 x 10° = 200kQ (3.2)

The equation 3.2 calculates value of 200k(resistor which is connected to the Iser pin.

17

LTC3630
IN SW

47uH

VlN_A 10 nF 4x 4.7uH

VOUT

+ '_L % RUN V 2x
FB

; L SS 10nF 100 uF

VPRG] VPRGZj_-I |-___

% FBO lser —{___ 9

GND 200 kQ
e _L_ g

Figure 7 Schematic of the LTC3630 power supply

The value 47uH of the switching inductor at the terminal SW was obtained from the graph
of figure 7. Value 47uH is on in the optimal center of the recommended inductance graph.
As it is recommended in the datasheet, quality MSS — 1048 family inductor by Coilcraft
vendor was chosen. Estimated switching frequency should be approx. 80kHz.

1000

S
~
.
_
= i
w
Db
= 100
o \.\
E o~
o
2
= TN
~
\,\\
10
100 1000

PEAK INDUCTOR CURRENT (mA)

Figure 8 Recommended inductor value graph, assumed from [8]

Although there are formulas for the output and input capacitor calculation, vendor
recommend increased values of mentioned discrete parts. However, by experienced
colleagues in application department was recommended to use greater value of capacity
in Vour pin represented by cascade of the recommended capacitors. The 4x 4.7uF and
10nF were placed in the input in order to bypass it appropriately. The output stage of the
converter is bypassed by vendor recommended 2x 100uF capacitors. Note that type of
chosen capacitor is X5R and X7R (material of the dielectric - stable capacity across
voltage). There is not sketched connection of thermal PAD in the schematic — connected
to GND.

Terminals RUN, and FB were left floating, because FB (Feedback) takes its place only in
the application of LTC3630 cascade. The RUN pin is dedicated for voltage lockout,
floating RUN sets input voltage lockout to internal 3.5V + 3.7V of input voltage.

18

3.1.3 ADP7142 LDO stabilizer

The main source voltage 3.3V is provided by LTC3630 described upper. However, for
ADI SDP purposes, also 5V voltage is required. Due to economy drive, just the LDO was
used. There may be occur problem with providing 5V, if input voltage is lower
than 5V — output voltage of the LDO is never higher than input. The ADP7412 is
originally ADI LDO circuit and there is fixed 5V instance - ADP7142ACPZNS5.0 — figure
9.

10 kQ
1 a
| | h
10 nF L
Vins ADP7142 ! Vour

VIN VouT
SENSE
ss =100 uF

EN
10 nF —= GND

10 nF| 4.7uH

Figure 9 Schematic of the ADP7142 power supply

The input and output of the IC are bypassed by capacitors (recommend values are 2.2 uF
in the input and output [9]). However, greater capacitors were placed at the terminals.
The Pin SS controls soft start of the IC, whereas tied capacitor of the value 10 nF
corresponds with calculated time:

SStime = tstartupopr) T (0.6 X Css) + Isg (3.3)
Whereas the tstarrupopr) 18 constant of value 380us as well as the bias Iss=1.15pA
The calculate time is:

SSrime =380 X 107% + (0.6 X 1078) ~ 1.15x 107® = 5.5ms (3.4)

The feedback composed from the 10kQ resistor and optional the 10nF capacitor causes
stabilized 5V output voltage (SS adjusts loop gain if VIN is not equal to VOUT), whereas
capacitor may prevent circuit oscillations. EN pin connected to VIN permanently enables
LDO function. The diode at the output stage prevents reverse current flow — discussed in
the subchapter of protection circuitry. Note that the input capacitors are quality X7R/X7S
(stable capacity across work voltage range).

19

3.1.4 Power supply protection circuitry

Refers to the previous subchapter, a few protective discrete parts were used. The main
requirement was to prevent overvoltage passed to the power supply terminal damage the
circuitry. Generally, digital circuits need interference suppression, thus filters were
implemented as well.

Vins Vuss sv
05A
Vsupewy + 470 uH N Vin-a
L1
100 pF 10 nF
o
y TR
SUPPLY, 33V
EARTH N — SV_DeT
Vsupewy

GND ' - —
100 pF

Figure 10 Schematic of power protection circuit

The figure 10 depicts the noise suppression and the overvoltage safe circuit. Note that the
enclosed external power supply may be used as positive VsuppLy + ground (negative)
VsuppLy gnp and optional VsuppLy earth for enhanced noise suppression. From the input
point of view, the input current goes through the PTC — based resettable 0.5A poly-fuse
[11], which increase its resistance in case of higher than nominal current, because of
semiconductor current heating. Also, there are symmetrically tied 100 pF capacitors to
the earth potential. The current through the fuse may be increased by 33V transil, which
vice versa decrease its resistance in case of higher than nominal voltage [10].

Consequently, 470uH common mode choke suppresses symmetrical and unsymmetrical
interference. The inductor works as the serial inductance in the first mode and suppresses
usual high frequency signals. The second mode of operation is, when there is some
interference noise in both input lines. The common mode choke produces magnetic flux
in its the core, which causes signal subtraction in the magnetic domain — therefore also in
signal domain. Choke output is bypassed by additional 10 nF capacitor.

Then, there is a few of power Schottky diodes to block reverse current flow in case of
multiply connected power sources [12]. Basically, the diodes prevent to force voltages
Vuss_sv and Vsv_pgr in case of used VsuppLy+ and vice versa in another 2 combinations
(the three diodes connected to the Vin.a node). The diode of the Vin-g and diode of figure
9 may prevent reverse current in case of used SDP daughterboard with external power
supply. The 100pF capacitors contains COG dielectric (very stable) and the rest of
capacitors are of X7R dielectric type.

20

600 Q at

5V HS protection 10 MHz VUSB 5V
VUSB_VBUS VIN VIN
< USB_DP VIN VIN|¢YSB-PP USB_DP
P uUsB_DM USB_DM
«— : VIN GND VIN==="> 40 0f |10 nF

Vuss_eno lmnFlmnF —
17l] L—

Figure 11 USB power and signal protection circuit

Figure 11 illustrates the USB overvoltage (might never take place) and signal interference
protection. All the lines are protected against increased voltage by protective circuit IC
[13]. Additionally, there is placed a ferrite bead with convenient 600Q at 10MHz value.
Power supply line is also bypassed by two capacitors connected to the Vuss_sv node.
Also, as in the previous cases the chosen capacitor were used with the X7R dielectric.

The chapter 3.1 and proposed circuits are based on the results of the currently produced
EV-COG-AD4050 [14] and its ancestor ADZS - ADuCM4050 EZKIT [7].

3.2 Proprietary Low Complexity Ethernet LES

Following chapter is intended to sketch necessary properties of the unreleased — secret
prototype with MAC — PHY service implemented. As was mentioned previously in the
power supply articles, the FPGA based device has significant consumption depicted in
figure 6 (300 mA at normal network traffic).

To describe MAC-PHY as a black box is necessary to say, that in this application is
interfaced by host processor using the SPI and a few optional GPIO pins (ISR). Another
user part of interface — network interface is supporting convenient double socket “RJ —
45” with internal transformers. In the block are implemented the 10/100-BASE Ethernet
domains. Currently is prototype continually developed and would result in the complex
SoC chip.

DIFFERENTIAL
TX/RX PHY

SPI/ISR

Figure 12 Proprietary MAC-PHY prototype illustration

21

3.3 ADuCM4050 Cortex M4-F microcontroller

The ARM cores are sold and implemented by a lot of silicon vendors. Typically, certain
vendor uses convenient core such as M3 or M4, adds its specific peripherals what results
in microcontroller for specific usage — see chapter 2.2 and related sources.

The ADuCM4050 might be highlighted for its integrated power management — field of
the application in low power sensors for medical, industrial, agricultural and other low
power sensor-based applications [15]. The power management offers 3 sleep modes with
various depth of system hibernation and support fast wake — up. The deepest sleep mode
guarantees consumption around 40 nA and the MCU may be woken using 4 various
interrupts. Typical consumption in active mode is 400 uA/MHz [16].

For the general IoT purposes is the ADuCM4050 equipped with up to 128 kB SRAM and
512 kB flash memory. The SRAM could be divided into 32 kB partitions and part of
SRAM is optional 4 kB cache for efficient processing. The “F” letter in the M4-F
designation expresses the floating-point unit with various support to floating computing.
The rest of the features such peripherals might be marked as convenient.

However, in this application the power management will not be used due to significant
LES consumption (see 3.1.1). The exact model of the used MCU is the
ADUCM4050BCPZ-U2 in the 64 — LCSFP package (9x9x0.75mm).

Following hardware peripherals are used (corresponds to figure 5):

SPI (Serial peripheral Interface):

e SPI0O-ADISDP
e SPI1 - SPIPMOD socket, microSD slot, SPI/I2C Arduino header
e SPI2 (highest performance [16]) - MAC-PHY module, EEPROM

I2C (Inter Integrated Circuit — Two Wire Interface):

o J2C0-12CPMOD socket, ADI SDP, SPI/I2C Arduino header, Thermometer
ADT75

UART (Universal Asynchronous Receiver and Transmitter):

e UART 0 - via USB/UART connected to USB
e UART 1 - UART/GPIO Arduino header, ADI SDP

SPORT (Serial PORT — parallel SPI):
e SPTO0- ADISDP

WAKE External Interrupts:

e WAKE 0 - Arduino UART/GPIO header, PMOD SPI
e WAKE 1 - MAC-PHY module

e WAKE 2 — Arduino UART/GPIO header, SDP

e WAKE 3 — Arduino UART/GPIO header

22

ADC (Analog to Digital Converter) channels:

e ADC 0 - Arduino ADC header, SDP
e ADC 1 - Arduino ADC header, SDP
e ADC 2 — Arduino ADC header, SDP
e ADC 3 — Arduino ADC header, SDP
e ADC 4 — Arduino ADC header

e ADC 5 — Arduino ADC header, SDP
e ADCG6-SDP

e ADC 7 —not used

The ADuCM4050 allows (LF) low frequency and (HF) high frequency external clock
sources, both instances were implemented — LF using 32.7680 kHz and HF using 26 MHz
XTAL.

Then, there are features such as GPIO, Timer, BOOT or various VCC and GND pins,
which detailed view is not in range of the thesis — see attached schematic and datasheets
[15] [16].

3.4 System connector interfaces

One of the main aspects for useful universal embedded system is synoptically sorted
interfacing. For development purposes is important to raise enough number of available
peripherals and feature - in the best case all of them. However, problems caused by
extended wiring may occur (especially in ADC or high-speed digital communication).

Following connectors are required:

e SDP platform — 120-pin interface with GPIO, TIMER pins, UART, SPI, 12C,
ADC, SPORT and WAKE peripheral

e Arduino interface — 4 female 2.54mm headers. In this document divided to Power
header, ADC header, SPI/I2C header and UART/GPIO header.

e PMOD interface — two row 90° 2.54mm female header according to the Digilent
specification, implemented SPI and 12C.

e microSD slot — SPI based slot for removable flash microSD card storage

e RJ - 45 (double) — network connectivity with the system (MAC-PHY)

e J—link (9 — pin) for ARM — debugging/flashing interface

e Power supply 5.5mm jack barrel — for powering using conventional connectors

e Socket 3.81mm terminal — for powering in industrial conditions

e microUSB — for UART interfacing, used USB/UART FT232RQ converter

23

3.4.1 SDP platform

The SDP platform was found by the ADI in order to reuse central elements in system
demonstration [17]. Basically, the SDP demonstration system comprises from (figure 13):

Motherboard — The FPGA/MCU based universal board, with 120 — pin
connectors to interface up to 2 SDP daughterboard devices. Motherboard has
USB connector for PC interfacing. Motherboard usually powers
daughterboard. There are supported interfaces such an ADC, SPORT,
UART, SPI, GPIO/W AKE various parallel ports and I12C (for daughterboard
identifying).

PC - convenient desktop or laptop, running application software

Daughterboard — demonstrated module or system board. Daughterboard may
sink power supply current from motherboard, but in high consumption
cases may be used its external power source. Each daughterboard should have
EEPROM with stored ID (accessed via 12C). Kind of protocol to access
demonstrated circuit is optional.

This proposed system may be understood as motherboard instance. However, function is
very limited in compare to dedicated universal motherboard devices. For more

information

see attached schematic — page 5 or source [17] and its related.

SDP 120 — pin
connectors
Application
SW Motherboard
, FEEEEEEEEE USB Daughterboard
., FESFFESFSFEE USB N
) eEEsEsEssE \/
, Y7727y 7y 77
Il’ + 1
T LINE
Power :' ;
supply Power o Power ,-
supply 5V/3V supply 5V/3V

Figure 13 Block diagram of the SDP system

24

3.4.2 Arduino interface

The Arduino standard is one of the most popular standards for amateur technics and
programmers. The Arduino is open-source platform based on easy to use software and
hardware. From the embedded point of view, The Arduino board may be understood as
universal development board with certain implemented MCU. The most famous is
the UNO board with 8 — bit Atmel ATmega328 [18]. Although 8 — bit processor board
might be mark as insufficient for high performance application, the UNO Arduino
contains one important interface - special female 2.54m headers sorting known as the
Arduino interface. Figure 14 illustrates sorting of 4 headers. There is power header, ADC
header, SPI/I2C header and UART/GPIO header. Nowadays exist a lot of Arduino shields
— daughterboard of Arduino, which are hosted by motherboard MCU board and became
helpful for easy development in professional embedded field.

10 spi/iac

] header
Power 1 —
header []
— 1 [

: 8 8 : UART/GPIO

ADC o1 H header
header | —
6 1 O

Figure 14 The Arduino interface header sorting

In the LEN/LES 2 board was attempted to follow Arduino interface pinout as much as
possible. Following chart expresses matches and differences. Note that some
requirements could not be follow (missing ATmega timer-related output, the
ADuCM4050 provides complex timer outputs).

25

Table 3 Arduino interface pinout

Original LEN/LES 2 demo
10 | ADC5/IC2_SCL GPI10/12C_SCL
9 ADC4/IC2_SDA GPI10O/12C_SDA
Original LEN/LES2 demo 8 AREF M_REF

1| NC NC 7 GND GND
2 | IOREF IOREF 6 GPIO/SPI_SCK GPIO/SPI_SCK
3 | RESET RESET 5 GPIO/SPI_MISO GPIO/SPI_MISO
4 | 3.3V 3.3V 4 GPIO/OC2A/SXPI_MOSI | GPIO/SXPI_MOSI
5| 5V 5V 3 GPI0/OC1B/SPI_CS GPIO/SPI_CS
6 | GND GND 2 GPIO/OC1A GPIO/RTC1_SS2
7 | GND GND 1 GPIO/CLKO/ICP1 GPIO/TMR2_0
8 | VIN VIN

8 GPIO/AIN1 GPIO/WAKEO

7 GPIO/AINO/OCOA GPIO/TMR2_0
1 | ADCO ADCO 6 GPIO/XCK/T1/0COB GPIO/TMR1_0
2 | ADC1 ADC1 5 GPIO/XCK/TO GPIO
3 | ADC2 ADC2 4 GPIO/WAKE1/0C2B GPIO/WAKE3/TMR2_0
4 | ADC3 ADC3 3 GPIO/WAKEQ GPIO/WAKE2
5 | ADC4/12C | ADC4 2 GPIO/UART_TX GPIO/UART_TX
6 | ADC5/12C | ADC5 1 GPIO/UART_RX GPIO/UART_TX

Table 3 represents pinout and deviation table of the Arduino Headers. Red color
highlights deviation in function in compare to original Arduino. Originally, ATmega
MCU were used and contains timers with various output functions such Output Compare
etc. (OCXY).

ADuCM4050 does not support this fashion of timer output — there is a few universal timer
outputs instead. The ADC header deviated in pins 5 and 6 where ADuCM4050 does not
support multiplexing with I2C stage. In the UART/GPIO header are deviated pins 8 — 5.
The 8 — 7 deviates, because ADuCM4050 does not support analog comparator on used
pins and 6 — 7 because of external timer clocks (also not supported). The same problem
occurred in the SPI/I2C header pins 4 — 1 and because ADuCM4050 does not multiplex
ADC in the 12C stage (pins 10 —9).

Anyway, important features such external interrupt or wake interrupt are followed. Also
SPI, I12C, UART and ADC stages are connected to Arduino convenient headers.

3.4.3 PMOD interface

The PMOD is originally Digilent output standard for low frequency interfacing [19].
PMOD is intended for devices of 3V or 5V logic and currents appropriate to digital
circuits (at least 2 mA). Logically, the current should not exceed low values of usual
digital processing. Nowadays exist a lot of pluggable modules using PMOD interface

26

such as UART/USB converter, RTC module and various wireless modules. PMOD
currently specifies 6 kind of interface and some interface has A and B extinguishing. In
the LEN/LES 2 board are used 12C PMOD and SPI type 2 PMOD. Note that PMOD is
usually 2.54mm two-row socket with 12 — 24 pins with 90° angle.

PMOD SPI Type 2A PMOD I12C

Figure 15 SPI Type 2A, I2C PMOD connectors

Table 4 PMOD SPI Type 2A, I2C pinout

PMOD SPI Type 2A

SS | MOSI | MISO | SCK | GND | VCC | INT RESET | N/S | N/S | GND | VCC
1 |2 3 4 5 6 7 8 9 10 11 12
PMOD I2C
SCL SCL | SDA | SDA | GND | GND VCC | VCC
1 2 3 4 5 6 7 8

As itis shown at Figure 15 and Table 4, there are more than data lines in case of SPI Type
2A. The INT pin is dedicated for interrupt purposes and is connected to WAKEQ — the
highest priority interrupt of the ADuCM4050. The RESET pin may be output pin for
slave reset. N/S (Not Specified) are connected to GPIO (see schematic page 5).

3.4.4 USB/UART converter interface

The ADuCM4050 does not support USB stage, so converter for universal PC interfacing
is needed. The FTDI USB/UART converter FT232RQ is quite mostly used IC in
embedded application [20]. The USB differential signal passed to the input of FT232 is
processed and converted to UART protocol. Note that PC, which is sending USB signal
requires installed and supported virtual COM ports.

Anyway, the FT232RQ supports conversion of another protocols such RS232 or RS485,
thus more than UART RX and UART TX is required in term of the IC pinout. The
mentioned chip is used only as USB/UART converter and the rest of the input pins is
terminated using 10 kQ. Using internal LDO is whole active chip powered by 3.3V, so
UART is in the 3.3V LOGIC mode (ADuCM4050 supports only this mode). The outputs
are left floating except N_RTS (Request to Send) — may be used for flow control with
N_CTS cooperation. Note that UART RX and UART TX signals must swapped when
connecting to the MCU UART stage.

27

100 nF
Veras2 Vuss_sv T
1

V 10 kQ | I 100 nF
“UBV 1 [N ReseT veco vec 3vsoutl 4
TEST 0SCO| yarTo_Rx
oscll TXD |———=— -4
UARTO_TX N_DTR 10kO —
— 4x10kQ RXD NRTS [}——
N_RI
— N_DSR FT232RQ CBUSO
) i) CBUSL
— ‘ CcBUS2
N_CTS
B CBUS2 10 kQ
CBUS3
USB_DP
———{ USB_DP CBUS4 —1
Vuss_sv USB_DM —
USB_DM EPAD GND Veras2

il

Figure 16 Schematic of USB/UART converter

3.4.5 Auxiliary circuitry

The scope of the diploma thesis is limited, so following chapter is only brief comment to
the rest of used IC is the design.

Reset Circuit ADM6315-29D2ARTZR7 [21] supervises power voltage and generates
reset signal, when voltage drops below its trip-point 2.93V to prevent brown out of the
MAC-PHY module at the first (ADuCM4050 operates at much lower voltage level). The
reset signal is then connected to the NAND gate, so MAC-PHY can be reset by MCU
GPIO signal or by reset circuit (page 3 of schematic).

The ADT75 is 1° C precision thermometer with the I2C output and its address is set by
external resistor [22]. Thermometer should be placed further from the MAC-PHY and
MCU otherwise will measure its power dissipation.

To distinguish more LEN/LES 2 boards according to the MAC addresses, there is used
EEPROM 25LCO1A of the storage size 128kB with lock (read-only) capability [28].

It is planned to use a few LEDs for signalizing POWER, RESET, and 2 GPIO LEDs. For
boot and reset options, the RESET and BOOT button is intended (pull upped to VCC).

28

4 HARDWARE PROPOSAL AND DEBUG

This chapter focuses on the hardware PCB parts placement and PCB layout. The
placement of the parts had been done by writer of the thesis, however layout services such
as routing and layering had been done by ADI layout specialist — Pat Sheahan (internal
ADI regulation). The precise hardware layout is included in appendix (the end of the
document). Note that board is 4 — layer.

4.1 Parts placement

Refer to chapter 4, there is needed a few restrictions during the parts placement. For
example, the Arduino interface requires specific placement of all 4 connectors regards to
coordinates. Also, the MAC-PHY block should be placed as close as possible to its
Ethernet connector. Generally, useful components such interface connectors should be
placed to correct places for comfortable usage and debug by user/developer. The result
of placement discussion is following placement proposal of figure 17. The scale of the
picture approx. corresponds with real intended dimensions (if page size is A4).

4 Daughterboard

RESET, BOOT BUTTON hole ole

(629] PMOD SPI (039)
=le) i B

li\\

ADI SDP

; th 1
h?elf -REET c Ardumo{jweaders ermome Iecr g
-, \“;::_________ _
. RESET LED] N hole
! T _""--‘
/
=} settings /
GP LEDs
=

/
/
,
= -/ 4
= .
_I I
-

UART - USB
micro
|USB -
direct power
/supplvjumpers
POWER
i SUPPLY LEN
[| CIRCUIT LEDS
h% industrial RJ - 45 ®
Sy hole
socket -
(| ba
PWR LED

Figure 17 LEN/LES 2 board

29

4.1.1 MAC-PHY -RJ 45

The most important trace connection is between MAC-PHY and RJ-45 connector, so both
parts are placed close to each other, and its interfacing differential signals +Tn, — Tn and
+Rn, -Rn are routed with the same length using meander trace (n is port number: 1, 2).
In case of not matched traces could occur errors during delayed signal of any ethernet
line. Note that the MAC-PHY block requires 25MHz oscillator, which must be placed
close as well.

4.1.2 Arduino interface

As it is explained in the chapter 3 (Arduino section), the correct sorting and placement
for Arduino shield compatibility is needed [18]. The Arduino top orientation of figure 17
is portrait, so upper left connectors contains power signals. Also, between the Arduino
interface and RJ-45 connector should be leave at least 2-3cm place, because the Arduino
shields are often bigger than dimensions of the connector interface.

4.1.3 MCU, EEPROM

Regards to intended high speed SPI communication (up to 2.5Mbps) between MCU and
the MAC-PHY port, the distance between them should be small and no sources of
interference should be located around. On the other hand, the EEPROM shall be used
only during startup to read MAC address bytes, so its placement has no special
restrictions.

4.1.4 PMOD SPIL, PMOD 12C, ADI SDP, RF connector

PMOD connectors usually lay on the PCB (axial connector orientation), so the best
location in any PCB edge, that’s why are both PMODs placed to the top edge of the board.
Also, at least centimeter clearance between them may improve connector’s accessibility.
The ADI SDP motherboard connector shall be placed at the bottom side of the board
(because daughterboard connector is on the top) and except holes for bolting has special
requirement. To explain this requirement, see Figure 17 and the hatched daughterboard.
The red arrow shows that daughterboard could be arbitrarily high and wide of the arrow
directions, but the left bottom corner of the daughterboard (from the point of view Figure
17) must be aligned as depicted. This fact limits placing dimensional components and
stand-offs around the SDP connector such. The RF connector is 8-pins two row connector
of nRF24L01+ transmitter/receiver and shall be placed to the edge for compatibility.

4.1.5 Buttons

As the conventional buttons are by finger accessible almost everywhere, they should be
placed to the corner of the LEN/LES 2 board. RESET button capability only resets whole
system (drives reset circuit), but BOOT button except boot functionality of the MCU may
be used as GPIO button of the microcontroller.

30

4.1.6 Slot microSD

The slot for the microSD card is usually placed at the bottom of the boards, so this board
shall not be exception. Also, placing to the edge of the board improves accessibility

4.1.7 USB micro, J-LINK — pin

For device connectivity, it is necessary to place USB connector to the any edge of the
board. J-LINK debug/flash port shall be placed to the edge as well for better connectivity.
For flawless communication between USB and MCU the USB-UART FDTI converter
shall be placed close to the USB connector. Note that J-LINK connector P10 is only way
to debug/flash MCU (except UARTO in the boot mode [7][16]).

4.1.8 LEDs

There are four LEDs indicating LEN/LES 2 system. The orange LED placed in the up-
left corner will be used when is the system in reset state (RESET button pressed or reset
IC triggered undervoltage). The green LED is placed in the left-down corner shall light
when the board is powered (3.3V power source supplies voltage). Two general purpose

LEDs of red and blue color located on the left-upside are connected via pull-ups to 3.3V
and MCU.

4.1.9 Power Source

Many times, placement of the switched power source is tricky task. However, in this
design there is no sensitive device, as the ethernet PHY communicates on the much higher
frequency than LTC3630 switches (estimated frequency according to the current and load
is 80kHz [8]). For better accessibility, the source circuitry will be placed to the separate
part of the (left-down corner) as well as its connector (DC barrel and three-way terminal).

4.1.10 Thermometer ADT75

The thermometer is placed as far as possible from the MAC-PHY (expected increased
temperature around this block) to measure approximate average temperature of the board
(left up).

4.1.11 The remaining components of the schematic

In the schematic (included in attachments in the end of this document) there are a few
DNI connectors for debugging, especially of MAC-PHY block (e.g. SPI), as well as direct
connector for 3.3V supply (in case of main power source failure) and most of the crucial
traces is connected by 0Q) resistors (some of the also DNI) for disconnections or probe
accessibility. Thus, resistor, which may be changed were not placed to the plastic parts
such as header female connector (to do not damage plastic by heat). The crystals for MCU
and protection diodes were placed to the related components.

31

4.2 Hardware getting started and hardware bugs

The LEN/LES 2 board had been manufactured by analog device PCB vendor, so no
manual soldering or placement was needed. The real board photograph is following
picture (figure 18). For a first time, board was powered using power source with current
limit and no fatal shortcut was detected.

r.:; = I f‘,“ﬂ
2§

DEMO-LEN/LES2-ARDZ

(61}
wi
=18
<>
Z
<0

Figure 18 LEN/LES 2 board

However, the first bug was found as the green LED DS4 is placed in reverse mode. To
debug this is needed only remove and rotate appropriately DS4.

PWR INDICATOR

PLACE CLOSE TO THE USB AND JACK

DS4_GREEN

Ra3 IR 3v3
%7 GND 680 ALTC

KPT-1608LVZGCK

Figure 19 Wrong LED orientation

32

Originally intended capability to disconnect completely power supply is not possible
during misconnection of 3V3 and 3V3_REG. Figure 20 depicts problem, whereas R24
must be removed and wire placed between 3V3 and right side of resistor (MAC-PHY
power supply). This problem is not fatal, and board can work normally, but if P26 jumper
is removed, MAC-PHY is still powered.

3V3 REG 3V3 REG R24 0

R30 10K R36
P26
47 SYS WAKEL R23 0

Figure 20 3V3 and 3V3 MAC-PHY misconnection

The third found bug is misunderstanding when choosing two-row male pin header P13.
The jumper purpose was to set up to 4 different UART settings using two jumpers. All of
parts used in the system are in ADI corporal library and this header was there as well.
However, header in the library has pinout not usual to header, but pinout as integrated
circuit. That is why is not possible to use 2 jumpers as originally intended. To fix this bug
is needed to use wires terminated by female header or create female matching reduction.
To understand this problem more, see schematic included in the appendix.

P13

1DBG_RX 6FT_TXD
1 6 2DBG_TX/SWO 5FT_RXD
! 3UART_RX 4UART_TX/SWV
EE
3 4 1UART_TX
‘. | 2UART_TX/SWV
1 P27 3SPI1_CSO/SWV

Connect at P13: 6 and 5 for FT232RQ loopback test

Figure 21 Wrong P13 pinout

Of course, the firmware development and creating external equipment was done
gradually, however to approve system consumption in usual mode following figure 22
depicts measurement of current consumption during TCP bidirectional traffic (LwIP TCP-
layer firmware is running and exchanges string messages with the PC).

33

Figure 22 LEN/LES 2 board normal consumption

Figure 22 shows, that during normal operation (with LwIP stack and TCP bidirectional
communication with 0.3s period, payload > 50 bytes) and whole system takes 303 mA at
voltage 3.034V provided by on board power source. Note that the same system with
powered off MAC-PHY takes 8.3 mA (estimated MCU consumption running on the
frequency 26 MHz is = 1.5 mA [15]).

Arduino interface, RF (nRF24L01+) interface, PMODs and SDP was tested successfully
as well as buttons and LEDs. The most important part MAC-PHY also communicates
with the MCU and basic firmware of static frame send/receive approved that system is
ready to implement main assigned goals (for more see following chapter).

All of three currently known bugs do not prevent normal operational of the MCU and
MAC-PHY (if developer does not fix them).

34

S LWIPIMPLEMENTATION

There is a lot of customized LwIP implementation available under free license. As was
mentioned in chapter 2, originally LwIP is based on Adam Dunkel’s stack. In fact, the
basic LwIP implementation to custom system may include only porting layer
implementation and system settings definition file. This chapter may be helpful for
someone who attempts implement LwIP for a first time (always is needed device such as
MAC-PHY).

5.1 Getting started with MAC-PHY

To use the MAC-PHY with LwIP, necessary functionalities had to be tested and defined.
To keep the proprietary driver of MAC-PHY secret, wrapper layer MAC_PHY has been
implemented and lower than this layer is not published in this document. The first
firmware functionality is UDP Syslog frame send and receive with string payload of the
common first call “Hello World” with MAC address of device and frame number. Syslog
is UDP based protocol intended for debug messages, so it’s useful for test purposes [25].

For the test, two LEN/LES 2 were used. First board worked as the Syslog transmitter,
meanwhile the second as the receiver. Transmitter worked on its own with periodically
triggered frame sending with no logging and receiver’s firmware sent all received valid
frames to the UART console (logged on the PC via putty terminal). However, for
illustration, following Figure 23 depicts caught frames by WireShark (transmitter
connected to the PC), Figure 24 mentioned communication of two LEN/LES 2 boards.

3092 554.714511 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG: Hello World! No:0@115
3093 554.814775 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG: Hello World! No:©@116
36894 554.915044 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG: Hello World! No:0@117
3095 555.015387 192.168.100.2 192.168.100.10 Syslog 66 KERN.DEBUG: Hello World! No:0@118

Frame 3@93: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0

Ethernet II, Src: ©02:00:00:00:10:01 (02:00:00:00:10:01), Dst: IPvdmcast @1 (01:00:5e:00:00:01)
Internet Protocol Version 4, Src: 192.168.100.2, Dst: 192.168.100.180

User Datagram Protocol, Src Port: 1024, Dst Port: 514

Syslog message: KERN.DEBUG: Hello World! No:@@116

G0 00 S5e 00 00 @1 02 90 00 00 10 01 08 00 45 09
0016 E 72 54 c@ a8 64 82 c@ a8
0020 @ 00 00 3c 37 3e 48 65 o6
GEEOC 6 6 oc 64 21 20 de 6f 3a 3@ 30 3

0040 ENEELR

Figure 23 Wireshark Syslog frame receiving

35

E@ COMY - PuTTY

Session Specia

| Command Window Logging
n 1471

00:20:51 Connecte SERIAL/115200 8

Figure 24 Frame Syslog payload received by LEN/LES 2 receiver

1. #define MAC LNG (uint32 t) (6)

2. #define FRAME LNG (uint32 t) (66)

3. #define PLD OFFSET (uint32 t) (45)

4.

5. //#define RX 1 /* When receiver should be flashed */

6. //#define TX 1 /* When transmitter should be flashed */

7.

8. #ifdef TX

9.

10. uint8_t device mac[MAC LNG] = {0x2, 0x0, 0x0,a

11. 0x0, 0x10, Ox1};

12.

13. uint8_t multicast mac[MAC LNG] = {0Oxl, 0x0, O0Ox5e,

14. 0x0, 0x0, Ox1};

15.

lo. uint8_t udpframe [FRAME LNG] = {

17.

18. 0x01, 0x00, Oxb5e, 0x00, 0x00, 0x01l, /* Multicast address */
19. 0x02, 0x00, 0x00, 0x00, 0x10, 0x01l, /* Device MAC */

20. 0x08, 0x00, /* IP Ethertype (0x0800) */

21. /* IP Header */

22. 0x45, /* IP V4 -- header length 20 bytes */
23. 0x00, /* differentiated services field */
24 . 0x00, 0x34, /* total length (length of ASCII + 31)*/
25. 0x00, 0x07, /* identification */

26. 0x00, 0x00, /* flags/fragment offset */

27. 0xFF, /* time-to-live 255%*/

28. 0x11, /* protocol —-- UDP */

29. 0x00, 0x00, /* header checksum */

30. 192u, 168u, 100, 2u, /* Receiver's IP */

31. 192u, 168u, 100, 10u,/* Transmitter's IP */

32.

33. /* UDP Header */

34. 0x04, 0x00, /* UDP source port 1024 */

35. 0x02, 0x02, /* UDP destination port 514 Syslog */
36. 0x00, 0x20, /* length (total 20, ASCII + 11) */
37. 0x00, 0x00, /* UDP checksum (0 = don't check) */
38. /* Syslog Message */

39. 0x3C, 0x37, 0x3e, /* KERNAL DEBUG message */

40. /* message contents (ASCII) */

41.

42. /* Prepared 21 space characters for further payload*/

43, II,II,II,II,II,II,II,II,

44 . II,II,II,II,II,II,II,II,

45, II,II,II,II,II

6. };

47.

36

48. #elif RX

49. wuint8_t *p frame = NULL;

50. wuint32 t rx 1lng = 0;

51. uint8_t device mac[MAC LNG] = {0x2, 0x0, 0xO0,

52. 0x0, 0x10, O0x2};
53. uint8_t multicast mac[MAC LNG] = {0Oxl, 0x0, O0Ox5e,
54, 0x0, 0x0, Ox1};
55.

56. #endif

57. int main(int argc, char *argv([]) {

58.

59. uintlé_t frame num = O;

60. /* IDE generated pin multiplex */

ol. adi initComponents () ;

62. /*Initialize ADuCM4050 LEN/LES 2 board peripherals */
63. platform len les2 init();

64. /* Initialize MAC-PHY */

65. MAC PHY start up();

66. /* Set device's MAC address */

67. MAC PHY static mac add(device mac);

68. #ifdef TX

69. /* Calculate necessary IPv4 checksum */

70. Ipv4d CalcOutGoingChecksum(udpframe) ;

71.

72.

73. while (1) {

74 . /* Send frame and wait 100 ms and increment frame
75. number*/

76. MAC PHY send frame (udpframe, FRAME LNG) ;
7. sprintf ((char*)udpframe + PLD OFFSET,

78. "Hello World! No:%05d", frame num);
79. frame numt+;

80. tim delay ms (100);

81. }

82. #elif RX

83. MAC PHY static mac add(multicast mac);

84.

85. while (1) {

86.

87. /* Poll for receive frame (non-blocking request)*/
88. MAC PHY receive frame();

89. /* Get the frame */

90. p_frame = MAC PHY get buff(&rx 1ng);

91. /* If valid frame received, print its number, content
92. * and clear receiving buffer */

93. if(rx Ing != 0) {

94. print frame(p frame + PLD OFFSET,

95. FRAME LNG, frame num) ;
96. frame numt+;

97. MAC PHY clear buff();

98. }

99. }

100. #endif

101.

102. }

The code snipped mentioned here may be helpful for beginners implementing ethernet
system with different MAC-PHY, especially pre-generated udpframe array with filled

37

multicast MAC address. Note that many MAC-PHYs does not have it included. Be
careful, the IPv4 header checksum must be calculated.

Important is after initializing MAC-PHY fill the MAC address table with expected
addresses (line 67, 83). For example, current MAC-PHY was not capable to receive
multicast packet without adding multicast MAC (line 83).

5.2 LWIP porting

According to the [26] and [27] (getting started sections), only four files of whole LwIP
stack may be edited to customize stack for specific MAC-PHY (Ethernet periphery). So,
for a first time (of the LwIP implementation) is the best way to download free LwIP
available at [26] and only override settings of foreign customization. The first is
Iwipopts.h, which contains definitions customizing default pwIP stack settings such
service enabling (e.g. whether DHCP, UDP, TCP ... are enabled). Then very important
definitions are whether LwIP runs with or without RTOS (this LwIP runs without) and the
settings of checksum calculation. MAC-PHY used in the LEN/LES 2 board does not
calculate frame checksums on its own, so software calculations are needed (so defined to
be set in lwipopts.h). Following code snippet of the Iwipopts.h includes mentioned
definitions of NO_RTOS — NO_SYS rLwIP with software checksum calculations and
disables RTOS LwIP related modules etc. Note that memory alignment for 32-bit MCU
shall be 4.

1. #ifndef LWIPOPTS H

2. #define LWIPOPTS H

3.

4. #ifdef cplusplus

5. extern "C" {

6. #endif

7.

8.

9.

10. #define WITH RTOS 0
11. #define NO_SYS 1
12. #define CHECKSUM BY HARDWARE 0
13. #define SYS LIGHTWEIGHT PROT 0
14. #define MEM ALIGNMENT 4
15. #define LWIP_ ETHERNET 1
16. #define LWIP DNS SECURE 7
17. #define TCP_ SND QUEUELEN 9
18. #define TCP_SNDLOWAT 1071
19. #define TCP_ SNDQUEUELOWAT 5
20. #define LWIP NETCONN 0
21. #define LWIP_ SOCKET 0
22. #define RECV BUFSIZE DEFAULT 2000000000
23. #define LWIP STATS 0
24. #define LWIP CHECKSUM CTRL PER NETIF 1
25.

26. #endif

38

The second file and the most important is ethernetif module adapting representing layer
between LwIP and custom MAC-PHY (ethernet periphery). The ethernetif will be
discussed later. To be precise, required files to be change are also cc.h and sys_arch.h.
The cc.h includes definitions of the data types (LwIP is not written using stdint.h library,
soe.g. instead of uint8_t type is used u8_t etc.) The sys_arch.c includes mainly necessities
for RTOS based LwIP, so both may be simply reused in this case.

5.2.1 Porting layer ethernetif

As was discussed upper, this module is the most necessary to be customized. This module
interfaces input/output of used ethernet hardware and the module quality and reliability
will be shared and inherited across whole LwIP. Also, it is recommended to attempt
override any ethernetif then bare metal development.

In total, 7 functions are implemented in this layer including initialization, input, output
and system time management (LwlP counts with 1ms timer). This means, that except
input/output driver for customized MAC-PHY is needed to implement also reliable
source of the 1 millisecond ticks. Initialization function is easiest and concerns only
simple ethernet interface initialization, eventually storing static MAC address table. Then
very important settings of the netif structure such an ARP setting, hardware address
settings and set the flag signalizing link up [26][27]. The netif structure is passed through
whole LwIP and includes also device IP address etc.

1. static void low level init(struct netif *netif) {
2.

3. uint8_t mac _addr[e] = { 0 };

4, /* Start MAC-PHY, read MAC address (from EEPROM)
5. and store to the device*/

6. MAC PHY start up();

7. MAC PHY read MAC (mac_addr) ;

8. MAC PHY static mac add(mac_addr) ;

9.

10. netif->flags |= NETIF FLAG LINK UP;

11. #if LWIP ARP | LWIP ETHERNET

12. /* set MAC hardware address length */

13. netif->hwaddr len = ETH HWADDR LEN;

14. /* set MAC hardware address */

15. netif->hwaddr[0] = mac_addr[O0];

lo. netif->hwaddr[1] = mac addr[1];

17. netif->hwaddr[2] = mac_addr[2];

18. netif->hwaddr[3] = mac_addr[3];

19. netif->hwaddr[4] = mac_addr[4];

20. netif->hwaddr[5] = mac_addr[5];

21. /* maximum transfer unit */

22. netif->mtu = 1500;

23. #if LWIP ARP

24 . netif->flags |= NETIF FLAG BROADCAST | NETIF FLAG ETHARP;
25. #else

26. netif->flags |= NETIF FLAG BROADCAST;

27. #endif

28. #endif

29. |}

39

The output function simple assembles packet content in pbuf chained structures (see
chapter 3) and sends.

1. static err_t

2. low level output (struct netif *netif, struct pbuf *p) {
3.

4. err t errval = 0;

5. struct pbuf *qg;

6. uint8_t buffer[1024];

7. uint32 t bufferoffset = 0;

8.

9. for (g = p; g !'= NULL; g = g->next) {

10. memcpy (buffer + bufferoffset, g->payload, g->len);
11. bufferoffset += g->len;

12. }

13. errval = MAC PHY send frame (buffer, bufferoffset);
14.

15. return errval;

16. }

The input function could be tricky to debug because of frame receiving, if the valid frame
is received must be divided into pbuf for further LwIP processing.

1. static struct pbuf * low level input(struct netif *netif) {
2.

3. /* Buffering for LWIP*/

4. struct pbuf *p = NULL;

5. struct pbuf *gq = NULL;

6.

7. /* Length of packet */

8. uint32_t len = 0;

9. /* Remaining bytes for copy distinguish */

10. uint32 t bufferoffset = 0;

11. /* Buffer on the received characters */

12. uint8 t *buffer;

13.

14. /* get received frame */

15. if (MAC PHY receive frame() != MAC PHY OK)

le6. return NULL;

17.

18. /* Get internally stored buffer and obtain the size of the
19. * packet and put it into the "len" variable. */
20. buffer = MAC PHY get buff(&len);

21. if (len > 0) {

22. /* We allocate a pbuf chain of pbufs from
23. the LWIP buffer pool */

24. p = pbuf alloc(PBUF RAW, len, PBUF POOL);
25. }

26. if (p != NULL) {

27. bufferoffset = 0;

28. for (g = p; g !'= NULL; g = g->next) {

29. /* Copy data in pbuf */

30. memcpy ((uint8_ t*) ((uint8_t*) g->payload),
31. (uint8_t*) ((uint8_t*) buffer +
32. bufferoffset), g->len):;

33. bufferoffset = bufferoffset + g->len;

40

34. }

35. }

36. /* Clear internal buffer for further receiving*/
37. MAC PHY clear buff();

38. return p;

39.

40. }

41.

System tick source functions are implemented here, function included inside of them
should return unsigned number of length 32-bit which is each millisecond incremented.

u32_t sys Jjiffies(void) {
return tim get Ims tick();

}

u32_t sys_now(void) {
return tim get Ims tick();

~N oUW

}

Following two functions had been copied and unchanged, in fact only wraps already
written functions to pass them to the LwIP

1. void ethernetif input(struct netif *netif) ({
2. err t err;

3. struct pbuf *p;

4.

5. /* move received packet into a new pbuf */
6. p = low level input(netif);

7.

8. /* no packet could be read, silently ignore this */
9. if (p == NULL)

10. return;

11.

12. /* entry point to the ILWIP stack */

13. err = netif->input(p, netif);

14.

15. if (err != ERR OK) {

le6. LWIP DEBUGF (NETIF DEBUG, ("ethernetif
17. input: IP input error\n"));

18. pbuf free(p);

19. p = NULL;

20. }

21. 1}

22.

23. err t ethernetif init(struct netif *netif) {
24. LWIP ASSERT ("netif != NULL", (netif != NULL));
25.

26. #if LWIP NETIF HOSTNAME

27. /* Initialize interface hostname */

28. netif->hostname = "LWIP";

29. #endif /* LWIP NETIF HOSTNAME */

30.

31. netif->name[0] = IFNAMEO;

32. netif->name[1l] = IFNAME]L;

33.

41

34. #if LWIP IPV4

35. #if LWIP ARP || LWIP ETHERNET

36. #if LWIP ARP

37. netif->output = etharp output;

38. f#else

39. /* The user should write ist own code in
40. low level output arp off function */
41. netif->output = low level output arp off;
42. #endif /* LWIP_ARP */

43. #endif /* LWIP ARP || LWIP ETHERNET */
44. #endif /* LWIP_IPV4 */

45.

46. #if LWIP IPV6

47. netif->output ip6 = ethip6 output;
48. #endif /* LWIP_IPV6E */

49.

50. netif->linkoutput = low level output;
51.

52. /* initialize the hardware */

53. low level init(netif);

54.

55. return ERR OK;

56. }

Mentioned code allows almost immediately run LwIP. However for the comfortable pwIP
initialization was created function, whereas is called Iwip_init(), netif _add(), checked if
the link is up calling netif _is_link_up() to prompt netif _set_up(). Function netif_add()
requires static netif structure as the first argument and following three arguments are IP
address of this device, netmask and gateway, last two arguments shall be addresses of the
structure-functions ethernetif _init and ethernetif input (previously discussed) This is
fair enough to set up LwIP. To update LwIP is necessary to call periodically functions
ethernetif_input(), sys_check_timeouts(). Both of last-mentioned function ensures
processing of the received frames may be called as update functions.

Calling sequence of the initialization routines and calling periodically two update
functions (for example in the while loo) is LwIP ready to process ping request from the
PC. The address to be processed by ping command is IP address passed to netif_add().

Figure 25 Calling ping command (no other task processed)

Note that described system to this point works as system with statically assigned IP
address (host device e.g. PC must be located on the same network 192.168.100.x).

4

5.2.2 DHCP and LWIP

To use the LwIP device as the convenient ethernet device, must be capable to negotiate
for IP address using DHCP protocol. Basic requirement is already fulfilled - UDP enable,
because DHCP uses UDP layer. Expected behavior of the device is that will ask for IP
address, so from the point of view may be marked as DHCP client.

255.255.255.255 DHCP 350 DHCP Discover - Transaction ID @xabcdee@l
255.2 255 DHCP 342 DHCP Offer - Transaction ID @xabcdeeal
255.255.255.255 350 DHCP Request - Transaction ID Oxabcdee@l
255. i .255 342 DHCP ACK ID Oxabcd@oal

23

- Transaction

Broadcast 42 Who has 192.168.100.2?7 Tell 0.0.0.0
6 6.545131 102 Broadcast ARP 42 Who has 192.168.100.2? Tell 9.0.0.0
7 12.545515 102 Broadcast ARP 42 Who has 192.168.100.2? Tell 9.0.0.0
8 22.545409 102 Broadcast ARP 42 Gratuitous ARP for 192.168.100.2 (Request)
9 24.961830 102 Broadcast ARP 42 Gratuitous ARP for 192.168.100.2 (Request)

B COM9 - PuTTY —] ®

Frame 3: 350 byte
Ethernet II, Src
Internet Protocol
User Datagram Proj
Bootstrap Protocoly)

Session Special Command Window Logging Files Transfer Hangup 7

£)

Figure 26 DHCP LWIP client

To enable DHCP is necessary to use after functions during LwIP startup (6.2.1) function
dhcp_start() and wait until communication is between DHCP client and host is done
(Figure 26). Note that all addresses of the netif during netif _add() were set to zero (except
MAC hwadrr).

1. printf ("DHCP started\r\n");

2. dhcp start(&gnetif);

3. uint32_t mscnt = 0;

4. LWIP initialized = true;

5.

6. while (gnetif.ip addr.addr==0) {

7. LWIP CheckRecvIncTime () ;

8. tim delay ms (DHCP FINE TIMER MSECS) ;
9. dhcp fine tmr();

10. mscnt += DHCP FINE TIMER MSECS;
11. if (mscnt >= DHCP_COARSE_TIMER_SECS*1000) {
12. dhcp coarse tmr();

13. mscnt = 0;

14. }

15. }

This code snippet except starting DHCP and waiting for address assign also includes
function LWIP_CheckRecvIncTime(), which encapsulates ethernetif_input(),
sys_check_timeouts() — necessary to receive anything from the DHCP server. Also,
definition: LWIP_DHCP, LWIP_AUTOIP, LWIP_DHCP_AUTOIP_COQP,
LWIP_IPV4 to 1 must be added into to Iwipopts.h. The DHCP server must negotiate with
the device (e.g. default windows DHCP server).

43

6 DEMONSTRATION SYSTEM HARDWARE

To highlight system potential and usage, appropriate and simple demonstration must be
assembled. Unfortunately, limited resources does not allow complex and practical-useful
system and is not purpose of this thesis.

To figure competence of the system, very simple air conditioning was proposed. Air
conditioning is represented by the created Arduino shield and contains brushless fan and
circuitry necessary to drive fan using PWM. Then, the fan blows ambient air on the board,
especially on the on-board ADT75 thermometer and airstream may be adjusted. Also,
resistor load may be placed close to the ADT75 in purpose to heat the air around and
simulate temperature increasing. Let us say, that this could be basic regulated system.

6.1 Fan-based air conditioning

At the first was intended to use low power SVDC PC fan driven directly by LEN/LES 2
MCU PWM stage. However, unavailability of the PWM driven fan resulted in cheap and
convenient DC brushless fan with tentative controller — adjustable voltage source driven
by PWM. The vendor Sunon guarantees [29], that fan works from 3.5V to 6V with
proportional revolutions of the fan. The problem is, that the fan contains inert circuitry to
drive brushless topology and operates within specific range, this means that below 3.5V
fan does not operate and so on fluent revolution control cannot be reach (at 3.5V fan
operates with specific revolutions). Power device like this is not good by PWM, so
voltage control is needed.

To control voltage is suitable to use well-known LDO LM317 [31]. Because of its dropout
voltage (always higher than 1.25V), 12V supply is needed. This device adjust voltage
with basic simple formula:

Vipo = Vapy + 1.25V (6.1)

So, only the PWM — Voltage converter is needed. Suitable way is to filter PWM
waveforms using the LOW-PASS filter (such simple RC) and then correct this voltage
using some operational amplifier (also needed to do not load RC). To do correction
means, that maximal PWM filtered output voltage cannot exceed 3.3 V (MCU powered
by 3.3 V) and this would not reach 6 V according to the formula 6.1. So, approximately
5V must be produced from the initial 3.3V (needed amplify approximately 1.5x). The
operational amplifier may be single-ended and for these purposes is appropriate LM358
[30] in non-inverting mode. Repeated note, that VCC voltage is terminated as 12 VDC.

Using basic OA knowledge, gain in non-inverting mode is calculated as:

R, 2350 (6.2)
G=1+—==""2=15
* R, 4700

44

The RC filter frequency is calculated as 169Hz using 9.4 kQ resistor and100 nF capacitor.
Filter frequency may be dependent on the carrier frequency of PWM modulation. In this
case, timer running PWM has base frequency 26kHz.

47 k0
_—
47 k0
LM317
Ve]
Ve
VIN vouT—
LM358 100 nFl ADJ | Viso
vee -
47k1 ATKD om
out
-IN

l_:
UPWM VNJ]
1 L~
1000F | 47 KD GND

Figure 27 Fan control circuit

The circuit of Figure 27 had been manufactured using universal PCB to fit into the
Arduino header. Following relation between PWM duty cycle and Vapy and Vipo has
been measured (Figure 28). Also, additional protection diode may be placed at the output
and Vcc could by bypassed using high capacitance (LEN/LES 2 board already has).

PWM to voltage circuit output transfer graph

7
; ——ADJ 1 ADJ 2 LDO 1 DO 2
— 5
>
a 4
<<
>\ 3 =
8
>
1
0 ——
0 01 02 03 07 08 09 1

0.4 0.5 0.6
Duty Cycle [-]
Figure 28 Fan circuit voltage

Note that Figure 28 depicts voltage with loaded circuits by the mentioned fan (205 mA at
5V). Two shields with described circuitry were created for further usage.

45

7 TCP/IP MODBUS APPLICATION

Regards to complexity, as the first approach to Low Complexity Ethernet demonstration
system were chosen TCP/Modbus. Intended system uses PC laptop as MODBUS master
(client) and two LEN/LES 2 boards as MODBUS slaves (masters).

7.1 MODBUS introduction

The MODBUS protocol is widely accepted and known industrial protocol based in the
late 70’s [23]. The MODBUS communication hardware interface may be serial RS-232,
RS-485, various optical communication interfaces even wireless. For this diploma thesis
is most suitable Ethernet TCP/IP based - the TCP/Modbus.

Basically, the MODBUS is only the application layer sorting transmitted data to the
acceptable form. It is necessary to mention, that protocol is of the master-slave hierarchy.
This means, that only master may start request and slave must reply. Slave is intended to
listen and reply, slave never starts any transaction [23].

The MODBUS protocol master request consists of the slave device addressing value,
function number, length of the message, data to be read/written, and CRC and descriptors
of the data amount (length of bytes). However, for TCP/IP purposes may the CRC
abandoned due to TCP/IP packet checksum. The TCP/IP is acknowledge-based protocol,
so request may be re-transmitted until reply is received. Also, there is possibility to use
no-acknowledge-based UDP protocol. TCP/Modbus always occupies port 502.

MODBUS RTU

Slave ID Function Code Data CRC
Transaction ID Protocol ID Length Unit ID Function Code Data
IMBAP Header PDU

+ ,

MODBUS TCP

Figure 29 Modbus RTU vs TCP/MODBUS

Figure 29 depicts comparison between RTU frame and MODBUS TCP frame. Basically,
there is depicted, what TPC/IP packet must contain to be as the TCP/MODBUS frame.
The transaction ID is 16-bit number generated be slave to distinguish packet order (in
case that some replies from the slave were delayed and received after later requests), slave
just replies the same transaction ID. Protocol ID for Modbus TCP is 0x0000.

46

Length describes in 16-bit number the length of further data payload. The Unit ID
contains only 8-bit address number of the slave device. The Function code and Data are
responsible for writing/overriding data to processed.

Function code Description Type Access
0x01 Read DO Read coil state Bool Read
0x02 Read DI Read input state Bool Read
0x03 Read AO Read holding register 16-bit Read
0x04 Read Al Read input register 16-bit Read
0x05 Write single DO Write coil Bool Write
0x06 Write single AO Write holding register 16-bit Write
0xOF Write multiple DO Write multiple coils Bool Write
0x10 Write multiple AO Write multiple register 16-bit Write

Figure 30 TCP/Modbus commands

The figure 30 depicts possible commands included in the function code. It is obvious that
coil or holding register may be read/overridden (e.g. coil can be used as switch, holding
register as PWM duty cycle value). On the other hand, input or input register is read-only,
thus is suitable for measurement values (e.g. temperature).

Byte | Request Byte | Reply

0xAE | Transaction identifier MSB O0xAE | Transaction identifier MSB
0x3C | Transaction identifier LSB 0x3C | Transaction identifier LSB
0x00 | Protocol identifier MSB 0x00 | Protocol identifier LSB
0x00 | Protocol identifier MSB 0x00 | Protocol identifier LSB
0x00 | Length of message MSB 0x00 | Length of message MSB
0x06 | Length of message LSB 0x04 | Length of message LSB
0x01 | Slave device address 0x01 | Slave device address

0x02 | Function code 0x02 | Function code

0x00 | Address of register to be overridden MSB | 0x01 | Number of following bytes
0x00 | Address of register to be overridden LSB | 0x01 | Value of the coil

0x00 | Addressing the specific coil MSB

0x01 | Addressing the specific coil LSB

Figure 31 TCP/Modbus example transaction read coil (ON-state)

47

Figure 31 depicts typical communication cycle, there is master request on the left and
slave’s reply on the right. In addition, the MODBUS has capability to reply error message
(invalid register or coil to read/write etc.), what is always only 9-bytes. The first 6-bytes
are obtained in the same manure as normally (Figure 31), but the length of payload is only
3-bytes. In case of error code message, the payload contents address of the slave, the value
of the function request sent by master with added most significant bit
(read coil 0x01 => 0x81) and error code 8-bit value to distinguish reason of the error
message. For more information about MODBUS and TCP/MODBUS see [23] and its
recommended documents.

7.2 TCP/Modbus demonstration system

To demonstrate capability of the diploma thesis hardware (LEN/LES 2 board), firmware
(LwIP) and software (TCP/Modbus master - described later) was invented simple system
with following peripherals (also mentioned in chapter 7):

e Button (input DI)

e LED Diode DS3 (coil DO)

¢ PWM controlled on-board fan (holding register DO)

¢ On-board temperature measurement (input register Al)
e External temperature measurement (input register Al)

Following subchapters briefly describes master (client) and slave (server)
implementation.

7.3 TCP/Modbus master (client) implementation

In the MODBUS terminology, the master is the client who can ask whenever wants its
server, who is slave in the point of view. Refers to the intro description of the chapter 8,
the PC laptop is intended to be master (client) [23].

For demonstration purposes is enough to use public Python-language based library
pyModbusTCP [33].

This library is socket-based [34], and maintains TCP/IP MODBUS session:

e open/close

e acknowledge
e read

e write

Following code snipped expresses all used TCP/Modbus functions in the master
implementation. Note that is also available multiple coils override and multiple holding
registers override, but for the purposes of the 8.2 are not needed.

48

1. from pyModbusTCP.client import ModbusClient
2.

3. """ Create connection """

4. TCPModbus_Session.host("192.168.100.2")

5. TCPModbus Session.port(502)

6. TCPModbus Session.open()

7.

8.

9. """ Read operations"""

10. button = TCPModbus Session.read discrete inputs(0,1)

11. LED DS3 = TCPModbus Session.read coils(0,1)

12. PWM DutyCycle = TCPModbus Session.read holding registers(0,1)
13. Ambient Tempt= TCPModbus Session.read input registers (0, 1)
14.

15. """ Write operations
lo. TCPModbus_Session.write_single_coil(O,l)

17. TCPModbus Session.write single register(0,1000)
18.

19. """ Close connection
20. TCPModbus Session.close()

The master was created as the GUI python application using pyModbusTCP and basic
python GUI tkinter [35]. The final appearance of the application is on the following
figure. The button calls pyModbusTCP functions using button callbacks.

7 « - o X
LEN/LES 2 - "2" Board LEN/LES 2 - "3" Board
Connect Connect
Connected Connected

Periodic read mode Periodic read mode
Connect Periodically I Measuring Connect Periodically I Measuring
Available commands: Available commands:
Set Blue LED"DS3" OFF Set Blue LED"DS3" OFF
Set PWM Duty Cycle [%.] 300 Set PWM Duty Cycle [%o] sod
Read Button OFF Read Button OFF
Read On-Board temperature 28.1°C Read On-Board temperature 27.9°C
Read Ambient temperature 27.27°C Read Ambient temperature 25.54°C

Figure 32 The master TCP/Modbus GUI

49

74 TCP/Modbus slave (server) implementation

Regards to various licensed and limited TCP/Modbus slave C-language libraries was
written custom TCP/Modbus layer (library) by the author of the thesis. The TCP/Modbus
stack is not completed yet and provides only services necessary to interface master in the
settings as was described in the chapter 7.3.

As was mentioned in the chapter 5, current LwIP stack works in polling mode (NO_SYS) and,
thus callbacks usage is needed. From the technical point of view, the TCP/Modbus may be
understood as TCP/IP protocol, so TCP functions LwIP may be used. Figure 33 depicts theory of
MODBUS slave operation. Discussed type pbufis equal to PBUF from the chapter 2.

Board
Initialization
LWIP:
Initialization
TCP: create pch
TCP: bind to master
TCP: set callbacks

TCP: Listen for connection

NO
l— TCP: Accepted?

)

NO

window opened?

LWIP: check input/send output
LWIP: handle timers

MODBUS:
request?

MODBUS:
process request

Figure 33 The slave TCP/Modbus diagram

50

At the first LEN/LES 2 board and wIP is initialized. Then is created new TCP/IP session
calling function fcp_new() and consequent binding to master with fcp_bind(). Note that
pcb_new() creates tcp_pbc which has to be passed to any further TCP functions. Also,
the callback of the pointer types: tcp_accept_fn and tcp_recv_fn must be created and their
pointers prepared for consequent passing as an argument of the functions.

The ARP function etharp_gratituous() can be used to notify master about slave’s MAC
address. However, it is important to call tcp_listen_with_backlog() and then function
tcp_accept() with passed function of the pointer type fcp_accept_fn. Note that
tep_listen_with_backlog() will change passed fcp_pcb to smaller new tcp_pbc. To start
receive is necessary to call fcp_recv() and due to changed fcp_pbc is the best to call
tcp_recv() in the callback function of the fcp_accept_fn pointer type and pass to the
tep_recy() its tpc_pbc. The argument of the of the tcp_recv() function must be as well
function of the pointer type tcp_recv_fn. Receiving callback then controls whole loop. In
case of closed connection, receive callback is called with passed NULL pbuf, otherwise
pbuf contains received data (TCP/IP payload). Received data are parsed according to the
TCP/Modbus rules and appropriate reply to the request is created. Created response is
sent calling tcp_write() and tep_output(). Do not forget inform LwIP about received data
calling tcp_recved() and free pbuf calling tcp_free(). Note that NULL as the pbuf
contained in the receiving callback is suitable to signalize “closed windows”.

1. void modbus tcp req read single coil (uint8 t* msg in,

2. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

3.

4. void modbus tcp req write single coil (uint8 t* msg in,

5. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

6.

7. void modbus tcp req read discrete input(uint8 t* msg in,

8. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

9.

10. void modbus tcp req write analog reg(uint8 t* msg in,

11. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

12.

13. void modbus_ tcp req read analog reg(uint8 t* msg in,

14. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

15.

16. void modbus tcp req read input reg(uint8 t* msg in,

17. uint32 t msg in lng, uint8 t *msg out, uint32 t*
msg out 1ng);

This snippet is the list of the slave MODBUS functions to process request (e.g. read DO,
write AO) and create reply (e.g. read Al read AO). There is obvious msg_in containing
modbus incoming request and msg_out where the response is passed.

51

Figure 34 Low Complexity Ethernet Demonstration System

Figure 34 is the photograph of the running TCP/Modbus system using two LEN/LES 2
boards. There are also visible two thermometers BMP280 [32] providing the ambient
temperature. Using these thermometers and on-board ADT75 [22] (hidden under the fan)
was found, that during usage of the board temperature increases by approximately 3°C in
compare to air ambient temperature (FPGA-based MAC- PHY is the source of the heat).
Whole system is supplied by external 12 VDC adapter. The right LEN/LES 2 boards
works also as the switch — packet which are not addressed to the right board are re-
transmitted immediately to the left board (connection via green cable). The grey cable
leads to the PC ethernet port with pre-set static IP address. The white two-wire cable
ensure power supply loop extended from the left LEN/LES board (static IP application).
The whole described system of the Figure 34 is used for conclusion, no other auxiliary
connections had been done. The LwIP runs in the polling mode (user accesses raw API).

52

A Capturing from Ethernet - O X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

CR-gC) XE Qe EF sEEaaal
[Apply a display filter ... <Ctrl-/> -] Expression... +
No. Time Source Destination Protocal Length Info ~

Frame 375: 65 bytes on wire (520 bits), 65 bytes captured (520 bits) on interface @
Ethernet II, Src: 20:01:01:01:10:02 (20:01:01:01:10:02), Dst: Dell 1@:al:9c (98:40:bb:10:a1:9c)
Internet Protocol Version 4, Src: 192.168.100.2, Dst: 192.168.100.10
Transmission Control Protocol, Src Port: 502, Dst Port: 31638, Seq: 1174, Ack: 1333, Len: 11
Modbus/TCP
v Modbus

.080 0100 = Function Code: Read Input Registers (4)

Request Frame: 374

Byte Count: 2

Register 1 (UINT16): 2484

Figure 35 TCP/Modbus master-slave communication

Except the visual functionality of the boards was used Wireshark to sniff communication
between LEN/LES 2 boards (slaves) and PC (master) — Figure 35. The Wireshark tool
recognizes protocol on the side of the slaves as well as on the side on the master. The
packets of the black highlight are outgoing from the PC (master) and signalizes not correct
checksum (will be processed in the PC NIC) — source IP address 192.168.100.10. The
light-blue packets are responses of the slaves. There are two slaves of the IP addresses
192.168.100.3 and 192.168.100.2. Note that 192.168.100.2 is the left one of Figure 34.
At the bottom of Figure 35 is visible typical payload of the slave response — read input
register. In this case the ambient temperature was read and number 2484 is 24.84°C
(measured by BMP280).

53

8 CONCLUSION

The main goal of the assignment to propose hardware based on proprietary MAC-PHY
and ADuCM4050 was done as the semester thesis. This system proposal covers chapters
up to chapter 3. Also, there is brief introduction to LwIP and ARM microcontrollers.

The chapter 4 aims into the first task of the diploma thesis part of assignment hardware
proposal — layout section. The whole system called as LEN/LES 2 board was proposed
by author of this thesis (schematics, physical placement of parts), however layout
finalizing, which concern routing and layering was done by ADI specialist Pat Sheahan.
The subchapter 4.2 publishes known mistakes of proposal, but no one of them is critical
and may prevent full functionality of the LEN/LES 2 board. Although the firmware and
complexity of the system was growing gradually, chapter 5.2 also expresses full-
functionality test and current consumption. The consumption was measured
approximately 0.3 A at 3.3 V power supply.

Consequent chapter 5 describes NO-SYS rLwIP implementation in detail (including
function and code snippets) and so may be useful as reference for other engineers, which
would like to start with LwIP. Result reached in the chapter 5 is measured average ping
7ms during sent 4702 cycles and received 4679 replies (0.0% loss). As an addition the
subchapter 6.2.2 sketches successful LwIP DHCP client implementation (PC as the DHCP
server). Note that LwIP is used as the polling raw API accessing mode.

To use LEN/LES 2 boards in application close to industrial was invented system with
controlled fan, on-board temperature and ambient temperature measurement. The smaller
chapter 6 is about the hardware implementation to ensure fan control.

Finally, chapter 7 aims into the TCP/Modbus master and slave implementation.
Meanwhile the master was implemented as GUI Python application with used
pyModbusTCP, the slave side was implemented as the bare metal. In total two LEN/LES
2 boards were manufactured so TCP/Modbus system with two slaves was assembled. The
distinguish between them was realized using I[P and MAC address recognition. The
system was fully tested and can demonstrate fan control, temperature measurement and
discrete LED switching, button reading. The full application does not occupy more than
half of ADuCM4050 FLASH and RAM resources (512kB, 128kB).

However, the weakest part of the system is the python master GUI and may be improved
from the visual point of view as well as in term of safety and reliability (uses tentative
libraries). To reach better reliability of the system is best to use RTOS based rwIP
(running with OS) and use socket layer. Although reached ping discussed upper was
reached 7ms, this value can be various across the traffic and so OS LwIP is needed. The
LwlP seems to be optimized and regards to limited resources robust enough. Especially,
application should be tested and optimized with certified TCP/Modbus device to improve
(in this diploma thesis both parts were represented using non-certified equipment).

54

9
(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

[9]

SOURCES

DUNKELS, Adam. Design and Implementation of the LWIP TCP/IP Stack [online].
Swedish Institute of Computer Science, Kista, Sweden, 2001 [cit. 2019-12-06].
Dostupné z: http://dunkels.com/adam

DUNKELS, Adam. UIP - A Free Small TCP/IP Stack [online]. Swedish Institute of
Computer Science, Kista, Sweden, 2001 [cit. 2019-12-06]. Dostupné z:
http://dunkels.com/adam/

KOLKA, Zdenék. Pocitacové a komunikacni sit€¢ [online]. Brno, Czechia, 2007
[cit. 2019-12-06]. Dostupné z: https://moodle.vutbr.cz/course/view.php?id=171162

LWIP TCP/IP stack demonstration for STM32F4x7 microcontrollers: Datasheet
[online]. 2013 [cit. 2019-12-06]. Dostupné z: https://www.st.com/en/embedded-
software/stsw-stm32070.html

YIU, Joseph. Definitive Guide to ARM(r) Cortex(r)-M3 and Cortex(r)-M4
Processors [online]. ARM Ltd., Cambridge, UK: Newnes, 2014 [cit. 2019-12-06].
Dostupné z: https://www.bookshop.cz/elsevier-science-technology/definitive-
guide-to-arm-r-cortex-r-m3-and-cortex-r-m4-processors

ARMV7-M architecture [online]. ARM Ltd., Cambridge, UK, 2010 [cit. 2019-12-
06]. Dostupné z: https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-
reference-manual

ADuCM4050EZKIT: Schematic/Manual [online]. 2017 [cit. 2019-12-06]. Dostupné
VA https://www.analog.com/en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/adzs-u40501f-ezkit.html

LTC3630: Datasheet [online]. Milpitas, CA, USA, 2012 [cit. 2019-12-06]. Dostupné
z: https://www.analog.com/en/products/ltc3630.html

ADP7142: Datasheet [online]. Norwood, MA, USA, 2019 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/products/adp7142.html

[10] SMAJ33CA: Datasheet [online]. 2010 [cit. 2019-12-06]. Dostupné z:

https://www.st.com/content/st_com/en/products/protection-devices/eos-10-1000-
microsecond-surge-protection/400w-tvs/smaj.html

[11]PTC1812L: Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:

https://www littelfuse.com/products/resettable-ptcs/surface-
mount/18121/18121110_33.aspx

[12] MBRA160T3: Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:

https://www.onsemi.com/pub/Collatera/MBRA160T3-D.PDF

[13] HSPOS1: Datasheet [online]. 2017 [cit. 2019-12-06]. Dostupné z:

https://www.st.com/content/st_com/en/products/protection-devices/esd-
protection/high-speed-port-protection/hsp051-4m10.htm

[14] EV-COG-ADUCMA4050: Schematic/Manual [online]. 2019 [cit. 2019-12-06].

Dostupné z: https://wiki.analog.com/resources/eval/user-guides/ev-cog-ad40501z

[15] ADUCMA4050: Datasheet [online]. 2019 [cit. 2019-12-06]. Dostupné z:

https://www.analog.com/en/products/aducm4050.html

55

http://dunkels.com/adam
http://dunkels.com/adam/
https://moodle.vutbr.cz/course/view.php
https://www.st.com/en/embedded-
https://www.bookshop.cz/elsevier-science-technology/definitive-
https://developer.arm.com/docs/ddi0403/e/armv7-m-architecture-
https://www.analog.com/en/design-center/evaluation-hardware-and-
https://www.analog.com/en/products/ltc3630.html
https://www.analog.com/en/products/adp7142.html
https://www.st.com/content/st_com/en/products/protection-devices/eos-10-1000-
https://www.littelfuse.com/products/resettable-ptcs/surface-
https://www.onsemi.com/pub/Collateral/MBRA160T3-D.PDF
https://www.st.com/content/st_com/en/products/protection-devices/esd-
https://wiki.analog.com/resources/eval/user-guides/ev-cog-ad40501z
https://www.analog.com/en/products/aducm4050.html

[16] ADUCMA4050: Datasheet HRM [online]. 2019 [cit. 2019-12-06]. Dostupné z:
https://www.analog.com/en/products/aducm4050.html

[17] RYAN, Rosemary. System Demonstration Platform Facilitates Quick Prototyping
and Evaluation: Standard [online]. Limerick, Ireland, 2011 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/analog-dialogue/articles/demo-platform-
quick-prototyping-evaluation.html#author

[18] Arduino Offical Page [online]. 2019 [cit. 2019-12-06]. Dostupné z:
https://www.arduino.cc/

[19] Digilent Pmod™ Interface Specification: Standard [online]. Pullwan, WA, USA,
2011 [cit. 2019-12-06]. Dostupné z: https://www.digilentinc.com/Pmods/Digilent-
Pmod_%?20Interface_Specification.pdf

[20] FT232RQ: Datasheet [online]. Glasgow, UK, 2019 [cit. 2019-12-06]. Dostupné z:
https://www ftdichip.com/

[21] ADM6315: Datasheet [online]. Norwood, MA, USA, 2019 [cit. 2019-12-06].
Dostupné z: https://www.analog.com/en/products/adm6315.html

[22] ADT75: Datasheet [online]. Norwood, MA, USA, 2019 [cit. 2019-12-06]. Dostupné
z: https://www.analog.com/en/products/adt75.html

[23] INTRODUCTION TO MODBUS TCP/IP: Standard [online]. Wixom, MI, USA,
2005 [cit. 2019-12-06]. Dostupné z: https://www.acromag.com/

[24] United Automation - OPC UA: Web Page [online]. 2019 [cit. 2019-12-06]. Dostupné
z: http://documentation.unified-automation.com/uasdkhp/1.0.0/html/index.html

[25] Learn more about Syslog Protocol: Thomas Porter [online]. 2007 [cit. 2019-05-15].
Dostupné z: https://www.sciencedirect.com/topics/computer-science/syslog-
protocol

[26] Savannah LWIP site [online]. 2019 [cit. 2019-05-02]. Dostupné z:
https://savannah.nongnu.org/bugs/?749631

[27] Fandom LWIP wiki [online]. 2019 [cit. 2019-05-02]. Dostupné z:
https://LWIP.fandom.com/wiki/LWIP_Wiki

[28] 25LCO1A: Datasheet [online]. USA, 2012 [cit. 2019-05-02]. Dostupne z:
https://www.microchip.com/wwwproducts/en/25LCO10A

[29] EB40100S2-1000U-999: Datasheet [online]. Kaohsiung, Taiwan, 2010 [cit. 2019-
05-04]. Dostupné z: http://www.sunon.com/index2/index.php

[30] LM385: Datasheet [online]. Dallas, Texas, USA, 2019 [cit. 2019-05-04]. Dostupné
z: http://www.ti.com/lit/ds/symlink/Im158-n.pdf

[31] LM317: Datasheet [online]. Dallas, Texas, USA, 2019 [cit. 2019-05-04]. Dostupné
z: http://www.ti.com/lit/ds/symlink/Im317.pdf

[32] BMP280: Datasheet [online]. Reutlingen, Germany, 2019 [cit. 2019-05-04].
Dostupné z: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
BMP280-DS001.pdf

[33] PyModbusTCP [online]. Python Software Foundation [cit. 2019-05-14]. Dostupné
z: https://pypi.org/project/pyModbusTCP/

56

https://www.analog.com/en/products/aducm4050.html
https://www.analog.com/en/analog-dialogue/articles/demo-platform-
https://www.arduino.cc/
https://www.digilentinc.com/Pmods/Digilent-
https://www.ftdichip.com/
https://www.analog.com/en/products/adm6315.html
https://www.analog.com/en/products/adt75.html
https://www.acromag.com/
http://documentation.unified-automation.eom/uasdkhp/l.0.0/html/index.html
https://www.sciencedirect.com/topics/computer-science/syslog-
https://savannah.nongnu.org/bugs/749631
https://LWIP.fandom.com/wiki/LWIP_Wiki
https://www.microchip.com/wwwproducts/en/25LC010A
http://www.sunon.com/index2/index.php
http://www.ti.com/lit/ds/symlink/lml58-n.pdf
http://www.ti.com/lit/ds/symlink/lm3
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
https://pypi.org/project/pyModbusTCP/

[34] Socket Programming in Python: Nathan Jennings [online]. 2018 [cit. 2019-05-14].
Dostupné z: https://realpython.com/python-sockets/

[35] An Introduction to Tkinter: Fredrik Lundh [online]. 2005 [cit. 2019-05-14].
Dostupné z: http://eftbot.org/tkinterbook/

57

https://realpython.com/python-sockets/
http://effbot.org/tkinterbook/

Vin

Vour

Vuss_sv
VFr232R0

lour

Riser

SSTivE
VsuppLy +

V suppLy GND
V suppLy EARTH

netif
pbuf

LwIP
ulpP
MAC-PHY
SWD
JTAG
J-LINK
MAC
TCP/IP
1P
ICMP
DHCP
UDP
IPC
HTTP
API
RAM
ROM
FLASH
RO

10 QUANTITIES AND ABRREVIATIONS

Input voltage of the certain system
Output voltage of the certain system

Convenient 5V voltage of the USB bus

Output voltage of the internal LDO in case of the FT232RQ

Output Current

Resistor for current setting

Soft start time

Positive power supply voltage

Ground potential of the voltage source (minus)
Earth potential of the source

wlP structure of the network interface

wlP structure of the packet

Light-weight TCP/IP stack

Micro TCP/IP stack (lighter than LWIP)
Proprietary prototype implementing MAC layer.
Serial Wire Debug

Joint Test Action Group (standard)

Debug Interface

Media Access Control

Transmission Control Protocol/Internet Protocol
Internet Protocol

Internet Control Message Protocol

Dynamic Host Configuration Protocol

User Datagram Protocol

Inter Process Communication

Hyper Text Transfer Protocol

Application Programming Interface

Random Access Memory

Read Only Memory

Solid state non-volatile memory, electronically erasable
Read Only

58

RW
SRAM
CISC
RISC
ISR
MCU
ARM
OpPC -UA
LEN
LES
ADI
SoC
TCP/IP
IP
ETH
SPI
12C
UART
USB
GPIO
10
PHY
OSI
AXI
APB
IC
FPGA
VDC
HW
IP
MSP
PSP
xPSR
LDO

Read Write

Static RAM

Complex Instruction Set Computing

Reduced Instruction Set Computing

Interrupt Service Routine

Microcontroller Unit

Advanced RISC Machine

Open Platform Communications — Unified Automation
Proprietary ADI Low Complexity Ethernet Node module
Proprietary ADI Low Complexity Ethernet Switch module
Analog Devices International

System on Chip

Transmission Control Protocol/Internet Protocol
Internet Protocol

Ethernet

Serial Peripheral Interface

Inter Integrated Circuit (Two Wire Interface)
Universal Asynchronous Receiver and Transmitter
Universal Serial Bus

General Purpose Input Output

Input Output

Physical layer of the OSI ethernet model

Open System Interconnection

Advanced Microcontroller Bus Architecture (AMBA) — AXI type
AMBA, version APB

Integrated Circuit

Field Programmable Gate Array

Voltage caused by Direct Current

Hardware

Intellectual Property (in term of IP core)

Main Stack Pointer

Process Stack Pointer

Process Status Register

Low Dropout regulator

59

SS
SDP
SPORT
ADC
SW
SW
PTC
WAKE
LF

HF
PMOD
EEPROM
ID
LED
NAND
STM
DNI
OA
RTU
MBAP
PDU
GUI
DO
AO

Al

Soft Start (in term of the LDO)

System Demonstration Platform (in term of ADI the platforms)
Serial PORT, customized ADI dual SPI interface
Analog to Digital Converter

Software

Switch (e.g. Transistor)

Positive Temperature Coefficient (e.g. polyfuse)
High priority interrupts of the ADuCM4050
Low Frequency

High Frequency

Peripheral Module

Electronically Erasable Programmable Read Only Memory
Identifier (number)

Light Emitting Diode

Negated Output Logical AND Gate

ST microcontroller

Do not place

Operational Amplifier

Remote Terminal Unit

MODBUS Application Header

Protocol Data Unit

Graphical User Interface

Digital Out (Modbus coil)

Analog Out (Modbus holding register)

Analog Int (Modbus input register)

60

APPENDIX

e The LEN/LES 2 board schematic (5 pages)
e The LEN/LES 2 board layout (10 pages)

61

8 7 5 \ 3 2 1
THIS DRAWING IS THE PROPERTY OF ANALOG DEVIGES INC. IT IS JUMPER TABLE REVISIONS
NOT TO BE REPRODUGED OR COPIED, IN WHOLE OR IN PART, OR REV | DESCRIPTION [DATE | APPROVED
USED IN FURNISHING INFORMATION TO OTHERS, OR FOR ANY OTHER ‘ ‘ ‘
PURPOSE DETRIMENTAL TO THE INTERESTS OF ANALOG DEVICES. JP# ON OFF
THE EQUIPMENT SHOWN HEREON MAY BE PROTECTED BY PATENTS 1
OWNED OR CONTROLLED BY ANALOG DEVICES.
2
RELAY CONTROL CHART 8
4
CONTROL CODE DEVICE FUNCTION CONNECTOR 5
* SEE ASSEMBLY INSTRUCTIONS
TEMPLATE ENGINEER DATE ANA Lm
HARDWARE SERVICES SC H E MAT I C DEV‘CES
PAT SHEAHAN A
ARDWARE SYSTEMS HW TYPE : Customer Evaluation
- DEMO-LEN/LES2-ARDZ
TEST ENGINEER -
COMPONENT ENGINEER -
TEST PROCESS -
HARDWARE RELEASE :
p— TRSTER PROJEGT TENPLATE | TESTERTERPLATE
=S ® no. template DRAWING NO. REV.
p——— UNLESS OTHERWISE SPEGIFIED DIIENSIONS ARE NINGHES 02-049121 A
VLADIMIR SUSTEK TOLERANGES
P.OSPEC. |BKBDSPEC. | SOCKET OEM OEM PART# HANDLER CHECKER Decmas FrACTIONS ANGLES SZE | SoAE | copEBNG
- X300K 1-0.005 e e N/A | CodeID |SHEET 1 oOF 5
8 7 5 \ 2 1

http://RL._L.ASL

3 2

¥

REVISIONS
REV [DESCRIPTION [DATE [APPROVED
RE8
10K
D5 s
Ay . .
4V H 2 MBRA160T3G
MBRA160T3G 5
) 2 10 30cE sen w0 a0
gleglec L8
87 8—-"5—-2 soe sy
USB 5V - - o
24V JACK PWR SUPPLY B
GND GND GND GNO_ GND GND
P16 D1
4 F1 L3 470uH D4 MBRA160T3G
3424 £x 1 AngC
ENE &
2 R NM MBRAL60TIG D) g T sy 1 sgley T 512 185 e v
[g - a MBRA160T3G e e e e S mo: e
& ——~ . | B < < < < S
g 1z
KLDX-SMT2-0202-ATR B 8 %3 -[© ~| 87F= 5V_DGT GND GND GND GND
& 5 3
2 g
S H
o | e LTC3630EDHCHPBF
o v 26 U9
L& 69157-102HLI 9
8¢ [12
6 ss/prc!
GND
v
PWR CONNECTOR
3.81MM PWR INDICATOR 3.3V POWER SUPPLY
PLACE CLOSE TO THE USB AND JACK w3
ont
a3 DS4 GREEN 69157-102HLF
N2 V3 P20
%GND 680 ALTC
KPT-1608LVZGCK DIRECT EXTERNAL 3V3
REMOVE P26 BEFORE
!!! APLLY VOLTAGE !!!
GND
\V/
SCHEMATIC
ANAL% HW TYPE : Customer Evaluation
DEV‘CES DEMO-LEN/LES2-ARDZ
— DESIGN VEW DRAWING NO. REV
Jvi——— <DESTGN_VIEW> 02-049121 A
[P70 ENGINEER SzE | SoAE
e VLADIMIR SUSTEK n/a | SHEET 2 OF 5

3 2

1

8 7 6 5 | 4 3 2 | 1

¥

REVISIONS

REV | DESCRIPTION | DATE l APPROVED

LEN MODE INDICATORS LES CHIP PAC EEPROM (MAC OF LES) TEST/OUTPUT HEADERS
LED3 3v3 REG R24 0 3g3 1EN/LES 3v3 LEW/IES — % (OPT IONAL)

R30 10k R36 1K DNI o PIACE IN ORDER TO SAFE SPACE
LTST-C190CKT sl U7
GND
L N
LTST-C190CKT ar__Heox
al MOST se12 MIso
2o RO 0 P SZMSL s E— LES SPI TEST
LG B3 se1z cst s N
é & gl E E : u VSS. SPI2 CSO
E & g 3 2 R
a4 Bkl
GND LN FIDOOS GNZD5LCDlDATIOT w P12 wost
sz wiso R
sazz o
Ry § 22t d 8 se2 ol RSQ TSH-105-08-G-5
222 5& NI
2a
s
L MOST/T00 31| MOSII00 E PITX+ | 20 114 RJ45 PORE;A
CLOCK SOURCE Lursorol 32 MISOlo1 g e R
02 PIRX+ | 18 g1+ 3V3 LEN/IES
o g4fios l l we
v s y Voo 2 o
a $e12 CLK R14.0zan 36} SCLK/SCL 0.01UF 10UF Lt TSW-103-08-G-§
VDD 37/ GND
! TRI-STATE OuTPUT 4 38} CLKCIN
3 zmw/es 39| VCC oD oD -
GND ADDRO 40| ADDRO z
1o B 5
0.010F 25MEGHZ 5
. =283 cuasts
saes: Ls& ;
aND N oD 585908352 203 LEN/IES
v 8528838583 seeEDL RA\\p 470
“Talole] ool ACTIVITYL RBasy, 470
e = e m Al
HEHE FE SHIELD
EEEREN gl g Lo SHI 7499121211
g H
o £ cHasTS
E R620 1w wms/mst
Rt
GND
1K \v4 1200HM
S LEN/LES TMR AND SPEED
EH cnsrs
g7 LES/LES MODE SET ano
KPT-1608LVSYCK-J3-PRV -
0 % ~
 — SPI2 MISO Eo” L MOSI/I00 SPI2 MOSI v L MOSI/I00 RJ4 5 PORTB
P8 TSW-105-08-G-S
ADM6315-29D2ARTZRT7 © - © DNI
g _i 2. 23 Len/ies s
12 wost Lmso/tor se12 miso L msostor
c3 c5
LES RESET (CONDITIONED) 0.01UF 100F
GND GND
cuasts ARTH
3V3 LEN/LES Y.
SeEED? R 470]
acrvie R 470
W3 LayiEs #]
SHIELD

SH2 7499121211

cHASTS

SCHEMATIC
ANA L HW TYPE : Customer Evaluation
DEV‘CES DEMO-LEN/LES2-ARDZ
S — DESIGN VIEW DRAWING NO. REV
S —— <DESTGN_VIEW> 02-049121 A
e o e S7E | SonE
e VLADIMIR SUSTER n/a | SHEET 3 OF 5

8 7 6 5 | 4 3 2 | 1

¥

REVISIONS

REV | DESCRIPTION

DATE | APPROVED

MAIN HOST PROCESSOR OF LES

avs
& & & & &
DEMO DATA TEMP SENSOR MCU CLOCK LF/HF XTAL ol lslols|ole|]
© | o | o | o = S -
c7 3. 7680Knz
Ve)] wxanm 1 D 4 _rexran our aN GNI GNI GN GND
2 ; us O0-10UF sl ol w 14 1 8 34 49 ue
“ s ST+ & S+ & VBAT ADC VBAT ANAT VBAT ANA2 VBAT DIGI VBAT DIG2
5 1200 sc1 2 k2co spa
=
B[wm Ry i 3 ganenr ano oo SYSHPXTAL N ove HexXTAL our |3_tEKmaL oot
7o Y3 w vrEr heF ADG SYS LFXTAL OUT |O—LEXTAL our C18 1ur
1t
| DEFAULT g Al 26.000MEGHZ . i 8o l & SYS_HWRSTN v?/fzg gﬁ; 2 i)
. 2 OC-"5F+3 1
ADDRESS: . HEXTAL OUT - E VDCDG CAPIN SPit GSoGPIORSSIY spr1 csossuy C19 o.470F -
1001000 ADTTSERIZ & :ggzg x;z SPI1_MISORGE TMRO_3/GPIO24 SPILNISO
2 GND VDODG CAPZP SPI1_CLK/RGB TMRO_1/GPI022 e
. . oo . SPI1_CS1/SYS_CLKOUTIRTC1_SS1/GPIO43 SPIlCsl
ADCO_VINOIGPIO35 SPI1_MOSVRGB_TMRO_2GPIO23 SEILMOSE
GND ADCO_VIN1/GPIO36 SPI2 CSOIGPIO2! 53 SPI2 CSO
ADCO_VIN2/GPIOG7 54 P12 wiso
SPI2_MISO/GPIO20
ADCO_VING/GPIO38 rb HOSIGPOT 5 spr2 wost
ADCO_VIN4/SPI2 CS3/GPIO39 P12 CLkGPIOTs | 2 cix
VISUAL OUTPUT (LEDS) BOOTMODE ADCO_VINS/SPI0_ CS2IRTC1_SSYGPIO40 e
ADCO_VING/SPI0_CS3/GPIO41 SPTO_ADO/UARTO_SOUT EN/GPIO12 36&
s ADCO_VIN7/SPI2 CS2/GPIO42 SPTO_AFSIUART1 RXIGPIOR2 oo SERO-ARS/UAKELEX SPTQ_AFS/UARTL RX
=9 ’ SPTO_ACLK/UARTL TX
ol BPRO_TONE_PISPI2 CS1/GPIO09 Ss?ofc%ve::r‘c;ﬁ:gg 45 cpro acw/sert cs2
238 BPRO_TONE_NGPIO0S P
=) - SYS WAKE1/GPIO16
DS2 A3 GPIOOBISWDO_CLK SYS WAKEO/GPIO15| 50
1042/ADC7/SPT2 CS2 ® 1 avs GPIO07/SWDO_DATA SYS WAKE26GPIO13) 51
C™NA e iings GPIO17/SYS_BMODEO 52 /TR2
® Y . a2 SYS_WAKES/TRM2. OUT/GPIO3) SWKY/TIR2 O
KPT-1608LVSECK-J3-PRV 1K 1028/RTC1 552 AT SS26PI028 P
i tozy/mr2 0 43 qypp ourepiozs TWRT OUTIGPIOZ7 (-2 LOLL/THRL O
oL 3lg 56, K 12c0 soa 24 TMRO_OUT/SPI1_RDY/GPIO14 1014/THRO O
ce & 2lz@ 1200 SDAGPIO0S 5
e & 3 Tes K 1o scr 26| 100 SCLGPI0S UARTO_RXIGPIOT! usRTO X
R34 =t @ UARTO TxiGPI0 10| 58 UARTO_TX
1029/TR2 0 EK}A avs EI2E 1030/5210 R 44| o0 ROYIGPIOS0)
680 . P10 C51 SPI0_CS1/SYS_CLKIN'SPI1_CS3(GPIO26 SPI0_MOSI/SPTO BFSIGPIO1 | oo SELO-MOSL/SPE0BES SPLO MOSL/SPTO BES
KPT-1608LVVEC-D SPI0_CSU/SPTO BAWY SPI0_CSO/SPTO_BCNV/SPI2_RDY/GPIO03 SPI0_CLK/SPTO_BCLK/GPIOD |——-SEL0_CLK/SPTO BCIK
o SPTO_MISO/SPTO BDO SPI0_MISO/SPTO_BDO/GPIO2
4 GND_ANA GND_DIG GND_VREFADC PAD
64 48 15 PAD ADUCM4050BCPZ
GND GND GND GND
ANA‘*LCG Hil TYPE : Customer Evaluation
DEVICES DEMO-LEN/LES2-ARDZ
— DESIGN VEW DRAWING NO. REV
S ———— <DESIGN_VIEW> 02-049121 A
commoncen PTD ENGINEER SIZE | SCALE
it VLADIMIR SUSTEK N/A |SHEET 4 OF 5

8 7 6 5 | 4 3 2 | 1

2

¥

ARDUINO INTERFACE

w20 e J-LINK DEBUG UART AND DEBUG
esern o0 am st SIGNAL SETTINGS
USB 5V R200 ARD 5V
e BR0 e o 7
1
fropney I
T1029/TMR2 O — 3
e
ro20 /el st T
SPTO_ACNV/SPI1 CS2 FT XD 5
6
5-146257-3

[
3220-10-0100-00
GND

$50-108-03-6-§ P4

$50-110-03-6-§

fo14/m0 ¢ P3 PMOD I2C

1011/TRL O 550-108-03-G-$

550-106-03-G-5 (g) ADCS/SEI0 Cs2

PMOD SPI

P27

UARTO TX
UARTO TX/SWV
P11 CcsO/sWY

TSW-103-08-G-$

o

it

DO NOT BLACE RE4 T0O CLOSE

70 5DP B1 COMNECTOR FOR.
ERSY PLACE/RENOVE

SP10_CS0/SBTO

Bon

MOTHERBOARD SDP

OT PLACE %39 700 CLOSE
b OMUECTOR FOR

REVISIONS

REV | DESCRIPTION | DATE

[APPROVED

CONNECTOR

¥ BLaCe, RN FX8-120P-SV1 (92)

oNI FX8-120P-5V1(92)

R390

1014/TMRO O
1028/RTCI S52|

1030/SPTO R

SPI0_CS3/7041

1029/THR2 O
1011/THR] O

SWDO pATA
SWDO_CLE
1200 sCL
1200 spA

SPI0 CLE/SPTO_BCLK
SPI0 MISO/SPTO_EDO
SPI0 MOSI/SPTO_EFS
ADCS/SPI0 CS2

SYs WAKE2 |
PPPC042LJBN-RC SPTO ACLK/UARTI_TX
| SPTO ADO
MICRO USB CONNECTOR {10 AES/UBRTL X
| SPI0 MOSI/SPTO_BFS
HSP051-4M10 us SPI0 MISO/SPTO_EDO
4 4 PPPCO62LJBN-RC SPI0 CLK/SPT0_BCLK
[5
MICRO SD CARD SLOT RF MODULE SPI INTERFACE
GND E2
\ 1 /72 Jumsy P14
useo rer: BL—]
usaDe 6000HM \Y4 (1) (2 23
1030/5P10 & 3 " 11 cso/sw
ser1 o & 5 11 105t
Ser1 Iso 7 5 S5 wakEQ
| S
PPPC0O42LJBN-RC
DM3D-SF
3 B
& 2 8Lsg
:] 8+5 8512
° SDP_5V V3
GND GND GND GND
SV _DGT. Hsa, AN
e
USB TO UART FTDI CHIP " ’
ERILRECS
£ PLACE /RENOVT GND GND
FTDI TXD TO MCU RXD v v
FTDI RXD TO MCU RXD
c6
Fmm psm
0.100F !7GND
U
Ra4 VGG Vce c8
N Y ¢ R L) P avaouT m{
10% 53 TEST 0800 %‘; D.lD@GND
GND 27| hsg o 2 FT RXD
R RXD DTR# 5
Fravs RAG\\n 10K a RTs |2 o7
R21, 10K 10K
gg[R): CBUSO ?
8 oSk CBUS1 10
CBUS2
usaow 15050y cBUss (11
usaoe 14] gqpp ceuss |2 . SCHEMATIC
\v4 ANALOG : Customer Evaluation
R65 DEV‘CES DEMO-LEN/LES2-ARDZ
v !
FT232R(10K
Q T e e DRAWING NO. REV
i ———— <DESIGN_VIEW> 02-049121 A
i P70 ENGINEER SzE | SoAE
e VLADIMIR SUSTEK n/a |SHEET 5 OF 5

2 | 1

ART FILM = OKT

ART FILM - SKT

CT e N T \/
SILKSCREEN PRIMARY
08 - -0
(AR NN/
PWR 2 P12
20 Z g* % RS pio o e [hos RESET
R43 054 P26 [ER =
(el E b e .
) DD“’EE%% c26 =
R44 =L >
R24 | | 6 R21
T us Us CJR45 | R61 vz| ~ |2Rs
+VDD pa4 orIC45 : D’ o o = e R4 $2
y—y R67 2Lk R1L Jipst
24V I = I - MCUTX n RST BOOT
C40 e
GND o4 I m— 1 u
hc31
ﬂcao 0Hor H
= [] U o DEVICZS DEMO-LEN/LES2-ARDZ
(R - -
L tdcw 7o Lall DEVICES
L3 DS L 53 J AHEAD OF WHAT'S POSSIBLE™ 08-049121 Rev-A
PIT. - -
ST | 2 BT
R o~ M — N O
° P16 2= 232 s
0ot Jot [Rs1 c24
B ut ° =]
I T TP
- o0 TR -
o RIS PMOD 12C
Cle Po
S R
e ug L R66 Reo
rear2y UL r ~ PMOD SPI
p PR
T R47 Ro4
[R46
~Ris o
RS cu1f] mﬂ-—-
CR17 czo czz 228
cat
o []
L TA14 — Y3
8 "3 LED3 m R54 RSS 12 023
] | Ro[| [[Re Eﬁj LE ©
=] | _R3T ps P3 w - P4 S
R2 LED2 H .
. —

ART FILM — L1_TOP

LT PRIMARY
08-049121-01
DEMO-LEN/LESZ-ARD/Z Rev-A

..~ 0O
IWO cl)ju\—._-:o@o
EOO : liiilliiii] ";u :.,‘f_., --;_\-.

- (jf) (O ‘ h lhhrf .g,

<ol

'c%}ié.

@00

O.
:’ooo

Si e 5
- i /;/{“ "= :
‘ o - LISLLELLL Q/'—'.of_?"' g

i
%

i

O
%0

i
!

[_Jcy©) I@J 00000

ART FILM - L1_TOP

ART FILM - LZ_GND

L7 Internal GND
08-0490121-07

°
(0]

8 o o .
° 0000 °
[] [)

© o e
\Je @ poy

° ®o

('S (]
0000 00000000 ...‘..O... =

ART FILM - L2_GND

ART FILM - L3_PWR

L3 Infernal PWR
08-04901.1-08
DEMO-LEN/LES?-ARD/Z Rev-A

.-"OO

O
©
o
R
o)

S D 5
o o

o)

B
o o o o o o

(0)JoJoJo)o;
(0JOJOJOXE;

ART FILM - L3_PWR

ART FILM - 5SKB

-/

08 -

e asAl | Jass
va |
18D 801
1
]
S€D
eaD ‘aa
[]oza
tl
)
0ef || e

SILKSCREEN SE

CONDARY

N L
) hY
- U0
)
A9)
+100S31AK1
N
!
R
4'—‘
et
esa[] osa[] sed
B een
)
rq*‘
. .
> @
22|
T n
) ad
812
98]
— T]l:ﬁl:)
a1
I\—/OSI
o[| req

ART FILM — SKB

INS — WIId LYY

A9y 74¥¥-2S37/N3T-0NW3d
70-121670-80
AYWIND MSYWHIAT09

JINS — WITA I¥VY

ART FILM = SMB

SOLDERMASK SECONDARY
08-049121-06
DEMO-LEN/LESZ-ARD/Z Rev-A

ART FILM - SMB

ART FILM - PMID

PASTEMASK PRIMARY
08-049121-09
DEMO-LEN/LESZ-ARDZ Rev

o Bl | . -
. . ::“........“E; - -
;P Vmm s H i, m
U :: o - N i :
:: . . . | N | -
mH A
2 I N, m
. k= 2§
" o . B g
| |
- - " = = | I B | [] |]
LT -
| -
- -
]]
- - llllllllll:lll]
[] - H E
— — §.§
— — K : :
- - :: wannnnn
o —H
1 L
" omm o . 2

ART FILM - PMT

ART FILM - PMB

PASTEMASK SECONDARY
08-049121-10

DEMO-LEN/LESZ2-ARDZ Rev-A

ART FILM - PMB

