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Abstract

Spin waves (and their quasi-particle magnons) have the potential to be used as a new
platform for data transfer and processing, as they can reach wavelengths in the nano-
meter range and frequencies in the terahertz range. However, currently, the only tech-
nique enabling the spatial investigation of the nanoscale spin waves is time-resolved x-ray
microscopy, requiring synchrotron radiation and making investigation of nanoscale-rela-
ted phenomena time and resource demanding. On the contrary, Brillouin light scattering
(BLS) is a common tabletop technique available in many magnonics laboratories. During
my PhD research, I brought the possibility of measuring nanoscale spin waves to standard
micro-focused BLS setup by utilizing Mie resonances in dielectric nanoresonators. I inves-
tigated this phenomenon by measuring thermally induced spin waves in NiFe layer using
a single silicon disk as a Mie resonator. To analyze the obtained data, I developed a theo-
retical model for micro-focused BLS. Moreover, by introducing the periodical structures,
I demonstrated the measurement of the nanoscale spin waves with in-plane wavevector
resolution. I measured the dispersion relation of thermally excited spin waves down to
the wavelengths of 50 nm, which is one order of magnitude improvement compared to the
conventional BLS. Finally, I investigated coherently excited spin waves, where the pha-
se-resolved measurements are demonstrated by measuring the spin-wave wavelength of
204 nm with the uncertainty of only 6 nm. In summary, the presented results open a new
way of analyzing the micro-focused BLS data and measuring nanoscale spin waves. The
presented approach is general and can revolutionize the field of condensed matter physics
and mechanobiology in the same way as a plasmon-enhanced Raman spectroscopy.

Abstrakt

Spinové vlny (magnony) maji potencidl byt pouzity jako nova platforma pro prenos a zpra-
covani dat, protoze mohou dosahnout vlnovych délek v rozsahu nanometri a frekvenci
v rozsahu terahertzti. Ovsem nyni je mozné mérit spinové viny s vlnovymi délkami
pod difrakénim limitem svétla pouze pomoci rentgenové mikroskopie s pouzitim velkych
urychlovacii ¢astic. Toto razantné zpomaluje a zdrazuje vyzkum a vyvoj zafizenich za-
loZenych na spinovych vinach. Béhem svého doktorského studia jsem hledal moznosti, jak
tento problém prekonat. Vyuzitim Mieho rezonanci v dielektrickych strukturach muzeme
meérit spinové viny s srovnatelnymi vlnovymi délkami pomoci standardni optické sestavy
urcené pro méreni mikroskopie Brillouinova rozptylu svétla. Tento proces jsem studoval
na silikonovém disku umisténém na vrstveé nikl-zeleza. Tato technika muze byt upravena
pro ziskani rozliseni pro vlnové délky kratké az 50nm v roviné vzorku pomoci pole si-
likonovych prouzkt se subdifrakéni periodou. V posledni ¢asti mé teze se vénuji méreni
koherentné vybuzenych spinovych vin, kde demonstruji fazové rozlisSenim zmétrenim dis-
perzni relace spinovych vin. Prezentované vysledky mtzou zménit vyzkum v oblasti fyziky
pevnych latek a mechano-biologie.

Keywords
magnonics, spin wave, Brillouin light scattering, Mie resonances, light-matter interaction

Klicova slova
magnonika, spinové viny, Brillouintiv rozptyl, Mieho rezonance, interakce svétla a hmoty



WOJEWODA, Ondrtej. Brillouin light scattering characterization of nanoscale spin waves.
Brno, 2024. 138 p. Doctoral thesis. Brno University of Technology. Central European
Institute of Technology BUT. Supervised by Michal URBANEK.



I hereby declare that I have written my treatise on the topic of Brillouin light scattering
characterization of nanoscale spin waves independently, under the guidance of the PhD
supervisor, Ing. Michal Urbanek, Ph.D., and using the technical literature and other
sources of information which are all properly quoted in the thesis and detailed in the list
of literature at the end of the thesis.

Place and date Ing. Ondrej Wojewoda






ACKNOWLEDGMENT

My deepest gratitude goes to my PhD supervisor, Michal Urbanek, who created a sup-
portive and professional environment inside the magnonics group at CEITEC. Moreover,
he extensively contributed to my personal and scientific growth through endless discus-
sions about (science) ethics, data management, leadership, communication, etc. He also
provided me with many opportunities, including attending conferences and participating
in interesting scientific collaborations. I have not forgotten to appreciate his physics intu-
ition, which many times guided our research to the positive direction. Last but not least,
[ thank him for the careful proofreading (not only) of this thesis. I hope many other
(PhD) students will have the same opportunity to work under Michal’s supervision.

I am indebted to Martin Hrton, who guided me through the Green function formalism
and shared his codes, which formed the backbone of the developed model. I want to ac-
knowledge Filip Ligmajer, who helped me with all scattering experiments and depositions
of the metallic nanospheres. I am grateful to Martin Hrton, Filip Ligmajer, Michal Kvapil,
and Jakub Kréma, who performed FDTD calculations. I acknowledge Francesca di Croce
for ellipsometry measurement of silicon layer. I thank Jan Klima, Meena Dhankar, Jakub
Kréma, Jakub Holobradek, Kristyna Davidkova, and Dominik Pavelka for sample fabrica-
tion. I am grateful to Jon Ander Arregi and Jan Cechal for many discussions on various
physics topics. I acknowledge Jakub Zlamal for help with the multiphysics model in
Comsol. I am grateful to Jakub Holobradek for performing VSM measurements. I thank
Andrii Chumak, Jan Cechal, and Eric Glowacki for helping me to navigate through the
scientific environment. I am also very grateful to Ludovico Migliaccio, Jakub Holobradek,
Sebastian Knauer, Dominik Pavelka, Filip Ligmajer, Michal Stano, Peter Kepi¢, Jakub
Kréma, and Jan Klima, who carefully proofread the thesis.

I want to thank all the people who supported me during my PhD journey. I thank the
whole magnonics group (big Kuba, small Kuba, Honza, Dominik, Ekaterina, Jagan, Ludo,
Ahmed), including former members (Mara, Flash, Igor, Kristyna, Véna, Lucka, Zdenék,
Meena, Xavi) for fostering a supportive and friendly atmosphere. It was an honor to work
with you. I have to emphasize the role of Lukas, who supervised me during my bachelor’s
and inspired me at the onset of my scientific career. I acknowledge my friends at CEITEC
(and beyond) (Libor, Tom&s, Kata, Bea, Peter, Joni, Michal, Risa, Vojta, Oleksii, Peter,
Filip, Zdenék, Ivos, Tesy, Grim, Radek, Milan, Jifina) for endless coffee discussions and
running/biking sessions. I express my gratitude towards my parents and sister for their
neverending support during my studies. Finally, I want to mention my fiancée Misa. Her
kindness and unwavering love made me a better person than I would ever imagine, and
her presence by my side always reminds me life’s true priorities. She deserves my deepest
gratefulness for all the support and understanding that she already gave me and will give
me throughout our life journey.

Ondrej Wojewoda

CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for
the financial support of the measurements/sample fabrication at CEITEC Nano Research
Infrastructure.






Contents

Introduction

1. Theory of spin waves

2.

1.1.

1.2.
1.3.
1.4.

1.5.

Micromagnetic energies . . . . . . ... ..o Lo
1.1.1. Exchange energy . . . . . .. .. .. .. ...
1.1.2. Zeeman energy . . . . . . .. .. i i e e
1.1.3. Dipolar energy . . . . . . . ...
1.1.4. Anisotropy €nergy . . . . . . . . ..o e
Effective field . . . . . . . . .

1.4.1. Whatis aspin wave? . . . . . . . .. .. oo
1.4.2. Quantum description . . . . . . . . ... Lo
1.4.3. Mesoscopic description . . . . . . ... o oo

1.4.4. Spin wave’s group velocity, decay length, and lifetime . . . . . . . .
1.4.5. Bloch function of spin waves . . . . . . . . .. .. ...
Materials used in spin-wave research . . . . . . ... ..o
1.5.1. Material parameters of YIG, Permalloy, and CoFeB . . . . . . . ..
1.5.2. Spin-wave characteristics of Permalloy layer . . . . . .. ... ...

Spin wave profiles in Permalloy layer . . . . . .. .. ... .. ...

Bloch function of spin waves in Permalloy layer . . . . .. .. ...

Theory of inelastic light scattering

2.1.

2.2.

Types of inelastic scattering processes . . . . . . . .. .. ... ... ...
2.1.1. Quasi-elastic scattering . . . . . . . . .. ...
2.1.2. Raman scattering . . . . . . . . . .. ... oo
2.1.3. Brillouin light scattering . . . . . . . . . .. .. ... ..
Classical description of u-BLS . . . . . . . . ..o o000
2.2.1. Structure of the model . . . . . . . . .. ...
2.2.2. Semi-analytic modeling of the driving field . . . . . . ... ... ..
Effect of the polarization . . . . . . . ... .. .. ... ...
Effect of the defocus . . . . . . . . . ... Lo
Effect of the filling factor . . . . . . ... ..o
Focusing of higher-order laser modes . . . . . .. .. ... .. ...
2.2.3. Induced polarization . . . . . . . ... ... oo
Example of the induced polarization in a Permalloy layer . . . . . .
2.2.4. Far-field transition . . . . . . .. ... o
Dipole radiation . . . . . .. ..o



2.2.5. Resulting BLS spectra . . . . . . .. ... L0
Thermal spin waves field sweep . . . . . . ... ... 0L
Influence of the film thickness on the thermal spin wave spectra . .
Influence of the measurement geometry . . . . . . . . . .. .. ...

Influence of the numeric aperture and the filling factor of the ob-
jective lens . . . . . ..o
Influence of the Cotton-Moutton effect . . . . . . .. ... .. ...
2.3. Phenomenological model of the BLS signal . . . . .. .. ... ... ... .
2.4. BLS in the presence of a scattering center . . . . . . .. .. .. ... ...
2.4.1. Mie theory . . . . . . . . . e
2.4.2. Calculation of the BLS signal enhanced by Mie resonance . . . . .

. Experimental methods

3.1. Micro-focused Brillouin light scattering . . . . . . .. .. .. ... .. ...
3.1.1. Light source . . . . . . . . .. ..
3.1.2. Phaseresolution . . . . . .. .. ... oo
Experimental realization . . . . . . . ... ..o
3.1.3. Microscope . . . . . . ..o e
Imaging system . . . . . ... Lo
Magnetic field . . . . . . ...
3.1.4. Tandem-Fabry-Perot interferometer . . . . . . . . . ... ... ...
3.2. Ferromagnetic resonance measurement . . . . .. .. ...
3.2.1. Theoryof FMR . . . . . . . . . ... ..
3.2.2. Experimental realization of FMR measurement . . . . . ... ...
3.3. Scattering measurements . . . . . . . ... oo
3.3.1. Cross-section terms . . . . . . . . . . . ..o
3.3.2. Experimental setup . . . . . . .. .. Lo
3.4. Numerical solving of the differential equations . . . . .. .. ... .. ...
3.4.1. Finite-differences-time-domain (FDTD) simulations . . . . . . . ..
Practical implementation of the FDTD simulations . . . . . . . ..
3.4.2. Micromagnetic simulations . . . . .. .. ... 00000000
3.4.3. Multiphysics simulation of heat distribution around laser spot . . .

Procedure of multiphysics simulation of heat distribution around
laser spot . . . . . . L
3.5. Extraction of dispersion relation from micromagnetic simulations . . . . .
3.5.1. Micromagnetic simulation and excitation of broadband spin waves .
3.5.2. Analysis of the simulation results . . . . . .. .. ... ... ..

. Mie-enhanced Brillouin light scattering spectroscopy

4.1. Basic concepts . . . . . ..

4.2. Plasmon-enhanced Brillouin light scattering . . . . . .. ... ... . ...
4.2.1. Plasmon-enhanced BLS on 200 nm-wide silver sphere . . . . . . ..

4.3. Sample design of silicon disks for Mie-enhanced BLS . . . . .. ... ...
4.3.1. Sample fabrication . . . . . . .. ..o
4.3.2. Inspection of the sample . . . . . .. ... .. ... L.

4.4. Magnetic layer characterization . . . . . .. ... ... .. .0 0L
4.4.1. Dynamic characterization . . . . .. ... .. ... ... ... ..
4.4.2. Static characterization . . . . . . ... o000



4.5. Mie enhancement of the BLS signal on the single silicon disk . . . . . . ..
4.5.1. Comparison of measurements on 175 nm-wide silicon disk and bare
film . ..o

4.5.2. Sweep of the diameter of the silicon disks . . . . . ... ... ...

84

4.5.3. Influence of the index of refraction of dielectric disk on Mie resonances 87

4.6. Simulation of the Mie-enhanced BLS signal . . . . . . .. . ... ... ...
4.6.1. Theoretical description . . . . . . .. .. ... L.
4.6.2. Obtained spectra for various disk diameters . . . . ... ... ...

4.7. Heating of the magnetic layer under the nanoresonator . . . . . ... . ..
4.7.1. Multiphysics simulation . . . .. .. .. ... o000
4.7.2. Measurement with different laser powers . . . . . .. ... ...

4.8. Sweeps over the edges of the silicon disk with a diameter of 1500nm . . . .
4.8.1. Measurement on the edges of the disk . . . . ... ... ... ...
4.8.2. Linescan across the edges of thedisk . . . .. .. .. ... ... ..

4.9. Versatility of the Mie-enhanced BLS . . . . .. ... ... ... ... ...
4.9.1. Measurement with laser wavelength of 457nm . . . . . . . . . . ..
4.9.2. Enhancement on the 100 nm thick CoFeB layer . . . . . . .. ...

5. Mie-induced wavevector resolution in the micro-focused Brillouin light
scattering spectroscopy
5.1. Basic concepts . . . .. ..o
5.2. Sample design and fabrication . . . . . . .. ... 0 Lo
5.3. Simulation of the electric field in the periodic structures . . . . ... ...
5.4. k-resolution in silicon stripes array . . . . . .. ... oL

6. Mie-enhanced Brillouin light scattering microscopy

6.1. Coherent excitation . . . . . . . . . ... L Lo
6.1.1. Theoretical description . . . . . . . . .. ...
6.1.2. Experiment on the single silicon disk . . . . . .. ... ... .. ..
6.1.3. Two-dimensional spatial scanning of nanoscale spin waves . . . . .
6.1.4. Polarization of BLS light from nanoscale coherent spin waves

6.2. Phase-resolved measurement . . . . . .. .. ... oo
6.2.1. Two wave interference linescans of nanoscale spin waves . . . . ..

6.2.2. Full-phase reconstruction of nanoscale spin waves . . . . . . .. ..
6.2.3. FDTD simulation of silicon disks array . . . . .. .. .. ... ...
Conclusion
References

Selected activities performed during doctoral studies

89






Introduction

Magnonics is a prospective beyond CMOS (complementary metal-oxide semiconductor)
technology which uses magnons, the quanta of spin waves, for low-power information
processing. Spin wave propagation does not involve the motion of electrical charges,
hence it does not dissipate energy through the Joule heating mechanism. Thus, the overall
losses are orders of magnitude smaller than in conventional circuits which employ electric
currents [1-4]. Spin waves also provide an interesting computational framework, as both
amplitude and phase can be used to encode information. Thus, spin waves can simplify
logic gates and even perform complicated computing tasks such as Fourier transform with
a single computational element [5]. Due to the quantum nature of magnon, the spin waves
can also be utilized in quantum computing systems [6, 7].

Many magnonic concepts and devices have recently been demonstrated on macro and
microscales. Nevertheless, magnonics practical implementation in computational elements
is still missing. To achieve competitiveness of the proposed magnonic devices, the wave-
length of the used spin waves has to be significantly shortened. However, these efforts are
slowed down by the fact that there is no table-top technique capable of spatially mapping
nanoscale spin waves. For mapping macro- and micro-scale spin waves, Brillouin light
scattering (BLS) spectroscopy and microscopy is a commonly used technique. It enabled
many pioneering magnonic experiments, however, due to its fundamental limit in a max-
imum detectable magnon momentum, the standard BLS cannot be used to characterize
nanoscale spin waves.

This thesis shows an approach how to overcome this limitation. I show that Mie
resonances hosted in dielectric nanoparticles extend the range of accessible spin-wave
wavevectors beyond the BLS fundamental limit. The method is universal and can be
used in many magnonic experiments dealing with thermally excited as well as coherently
excited high-momentum, short-wavelength spin waves. This research can significantly
extend the usability and relevance of the BLS technique for nanoscale magnonic and
other condensed matter research.

Moreover, despite the fact that micro-focused BLS (u-BLS) is used for more than
twenty years, its full theoretical description was missing. This knowledge gap became
apparent when I was analysing the data from Mie-enhanced BLS experiments. Thus,
I developed a model describing the exact shape of the acquired BLS spectra. This model
is based on the continuum theory of inelastic scattering applied to the micro-focused light.
The model can be solved semi-analytically for the case of the bare film, and can be fur-
ther extended to account for any spatial perturbation by employing Maxwell equations
simulations. In combination with micromagnetic simulation, the model can be used to
obtain micro-focused BLS signal in any scenario, such as measuring of magnons in nanos-
tructures, or nonlinear phenomena. The spin-wave community will greatly benefit from
this model, as it provides a whole new dimension for the analysis of the acquired BLS

1



INTRODUCTION

spectra, as not only the frequency positions and intensities but also the exact shape of
the BLS spectra can be analyzed.

This thesis is structured as follows: the first chapter deals with the basic theoretical
background of the physics of spin waves needed for the understanding of u-BLS spectra
modeling and analysis described in the following chapters. In the second chapter, scatter-
ing processes are introduced, and the newly developed model for u-BLS signal is presented.
I show the implications of various parameters, such as numeric aperture, magneto-optical
constants, and film thickness, and in the final part, the model is verified against the exper-
imental data. The third chapter summarizes the experimental and simulation techniques
used to achieve the results presented in this work. The main emphasis is on Brillouin
light scattering (BLS) as it is the integral technique of the presented experiments. In the
fourth chapter, the results obtained in the main topic of my PhD, BLS characterization of
the nanoscale spin waves, are presented. In the first section, the geometry and fabrication
of the samples are shown. Afterward, I investigate the enhancement of the BLS signal
by Mie resonances. With the use of experiment and simulation, I also treat the different
geometries of the resonators. Furthermore, I explore the heating of the underlying layer.
The disks with big diameter of 1500 nm we fabricated to explore the role of the edges
of the nanoresonator. I demonstrate the wavevector resolved measurement by utilizing
a periodic array of silicon stripes. By using various periodicities, I reconstruct the disper-
sion relation of the fundamental and first-standing spin-wave modes. In the last chapter,
I show the usage of the Mie resonators with coherently excited spin waves. I demonstrate
the measurement of the dispersion relation to nanoscale wavelengths with the use of the
phase-resolved BLS.



1. Theory of spin waves

This thesis deals with the Brillouin light scattering on spin waves. In order to fully
understand the presented results, it is necessary to have fundamental insights into the
theory of magnetism, and specifically into the dynamic eigenstates of magnetization, which
are described by the dispersion relation. In this chapter, I aim to provide only a basic
description of the spin waves in thin films, which is needed to understand the modeled and
measured spectra. For a more in-depth review of spin waves, I recommend the books by
Stancil and Prabhakar [8] and Melkov [9] and dissertation theses by Flajsman, Jungfleish,
Bozhko, Schneider, and Vanatka [10-14]. For the basic theory of micromagnetism, the
reader can consult books by Coey, Blundell, Krishnan, or Guimaraes [15-18]. For a quick
introduction to both topics, I recommend two courses given by Prof. Chumak recorded
on the YouTube platform [19, 20].

The chapter is structured as follows: First, I start with the relevant micromagnetic
energies. Then, I present the Landau-Lifschitz-Gilbert equation and its solution for dipole-
exchange spin waves. In the last part, I formulate the Bloch function and discuss the
impact of various parameters.

1.1. Micromagnetic energies

In the following text I describe the magnetization dynamics with the mesoscopic approach
using the quantum properties of magnetism. However, they are applied to continuum ap-
proximation. This approximation is sufficient to properly describe all phenomena encoun-
tered in the scope of this thesis. I consider only the four most relevant energies: Zeeman,
dipolar, exchange, and anisotropy. The energies in Fig. 1.1 are presented differently, in
order to show the contribution of each individual energy. Other energy contributions,
such as magnetostriction or Dzyaloshinskii-Moriya [15], can be considered, but they are
not important for the results presented in this thesis.

1.1.1. Exchange energy

The exchange energy has its origin in quantum physics. The hand-wave explanation
is given in Feynman lectures on physics [21], while more thorough derivation can be
found in, e.g., Griffith’s introduction to quantum mechanics [22]. This interaction prefers
(energy is lowest) when the magnetization is aligned parallel to each other. The exchange
energy density can be written as

(1.1)



1. THEORY OF SPIN WAVES

where A.y is exchange constant, M is magnetization, and M is saturation magnetization.
The (VM)? is so-called Frobenius product and is calculated as follows
1 oM\’
VM)?* = “

i7j

(1.2)

where indices 7,5 run over all spatial coordinates.

The exchange interaction is significant only to tiny distances, typically comparable to
the (tens of) inter-atomic distances (0.3546 nm for NiFe [23]). The characteristic exchange
length, which defines the distance in which this interaction is prevailing, can be defined

as
2Aex
ex — 9 13
l ‘/quE (1.3)

where p is permeability of vacuum. If only exchange energy is considered, the ordering of
the magnetization would be entirely uniform, as is depicted in Fig. 1.1a.

1.1.2. Zeeman energy

The Zeeman energy (ez) represents the energy of magnetization in an external magnetic
field, and its density can be expressed as (except the constant)

€z = HOM . Hext> (14)

where H . is external field. This energy is maximized when the magnetization is aligned
anti-parallel in the direction of the applied field and minimized when the magnetization
is parallel to the direction of the applied field. When the external field is increased, the
energy is increased as well; however, if the field is uniform, no force will be exerted on the
magnetization as potential energy does not depend on its position within the field.

1.1.3. Dipolar energy

The dipolar energy (eq;,) is the same as Zeeman, but the magnetization itself creates the
external field. Its density can be calculated from the following equation

1
€dip = §PLOM : Hdip> (1-5)

where H 4, is dipolar field. This field can be calculated using Maxwell’s equation (Gauss
law)

V-B =0, (1.6)
where B is magnetic induction and is given by
B = HO(M+Hdip+Hext)- (17)

By applying the divergence to the whole equation and using Eq. 1.6 we get
V'Hdip+V'Hext:_v'M- (18)

This equation gives guidance on how to calculate the demagnetizing field (Hg;,). From
the above equation, it is visible that the magnetization avoids so-called magnetic charges.
This is known as avoidance principle and results in fluz-closure patterns, as can be seen in
Fig. 1.1b, where the magnetization is parallel to the edges of the studied structure. Now
the difference of Zeeman and exchange energy can be demonstrated. The domain in the
direction of the applied field enlarges, as can be seen in Fig. 1.1c.

4



1.1. MICROMAGNETIC ENERGIES
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Figure 1.1: Magnetic energies at play. Results of micromagnetic simulations, where the
energies are gradually taken into account. a, Exchange energy. b, exchange +
dipolar energy. c, exchange + dipolar + Zeeman energy. d, exchange + dipolar
+ Zeeman + anisotropy energy. The contribution of the Zeeman energy is visible
as the slight discrepancy between the sizes of top and bottom domain. The spatial
distribution was obtained using MuMax3, with cell size 43 nm?, total area 2% um?
and material parameters for permalloy.



1. THEORY OF SPIN WAVES

1.1.4. Anisotropy energy

Due to the crystallographic properties, some materials can pose a preferable directions,
where magnetization tends to align. In mesoscopic approximation, this is expressed
as anisotropy energy contribution, which depends on the angle between the preffered
crystallographic direction and magnetization. For simplicity, in the following, we will
consider only uniaxial anisotropy with first-order approximation®

euni = K, sin? 9, (1.9)

where theta is an angle between the magnetization and easy axis (preferable direction),
and K, is a anisotropy constant. From the above equation, it can be seen that the
magnetization energetically prefers to lay in the direction of the uniaxial anisotropy bi-
vector. This is demonstrated in Fig. 1.1d, where the two domains in the bi-direction of
the easy axis dominated the whole magnetization landscape.

1.2. Effective field

Once one finds all relevant energy terms and sums it up to total energy density (e), the
effective field (H.g), which is felt by magnetization, can be calculated from the following

equation
1 Oeyor

o OM’
where the e is energy density. By inserting previously introduced energy terms to the
Eq. 1.10, we obtain [18, 25]

Hg=— (1.10)

2 2K
Hy=—V (AuVM) — Hoo + Hyyy + —2
T },LOV ( V ) t+ dp+u0M2

S

(M -e,) ey, (1.11)

where e, is a direction of easy axis. This field represents the effective field, which is felt
by the magnetization. In other words, in the stationary case (with no applied time-
dependent fields), the magnetization will align itself to the direction of the effective field
after a sufficiently long time. The toque 7 exerted on the magnetization can be expressed
as

T =uM x Hy. (1.12)

1.3. Equation of motion

The motion (time-dependency) of magnetization is governed by torque equation with
damping [26]
dM o dM

M M x H. Mx &2 1.13
at THo M Bler + M X (1.13)

where v is the gyromagnetic ratio, and « is Gilbert damping. This form of the damping
term was first phenomenologically added by Gilbert in his PhD thesis and presented at
the first MMM conference in Pittsburgh in 1955; however, it was not published in a peer-
reviewed journal until 2004 [27]. It was intended to correct original form proposed by

L Another more complex form of anisotropy energies can be used, such as cubic [15, 24].
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Landau and Lifshitz for high damping materials?. There are still discussions about the
appropriate term for damping (energy dissipation) see, for example, [28, 29].

However, if energy dissipation is not of interest (e.g. when finding spin-wave eigenval-
ues), the simplified version (called the Landau-Lifshitz equation) can be formulated

dM
W = —'}/H(]M X Heﬂ‘. (114)

1.4. Spin waves

A proper description of the spin waves is essential for the correct interpretation of the
results obtained in this thesis. This section starts with the quantum description of the spin
waves and derivation of the dispersion relation, which takes into account the forming of
the Brillouin zone caused by the finite distances between the magnetic moments (atoms).
However, the theory I used in this thesis is based on the mesoscopic approach [30]. In
this approach, I assume that the magnetization is a continuum. This allows me to find
an approximate zeroth perturbation solution of the dispersion relation. The problem
is further reformulated in the form of an infinite matrix to allow for a numerical solution
without neglecting off-diagonal terms. Afterward, the dispersion characteristics, group
velocity, decay length, and lifetime are discussed. At the end of this section, I present
my own approach to obtain the Bloch function (spectral density of states) of spin waves,
based on the approximation of spin-wave resonances with Lorentzian shape.

1.4.1. What is a spin wave?

If we assume the solution of the Eq. 1.13 in the form of waves, we get the solution of
eigenstates of spin waves. A spin wave is a collective excitation of the magnetization with
a certain frequency and wavenumber. Bloch predicted them to explain the temperature
dependence of the magnetization [31]. If the wavenumber is zero, thus the wavelength
is infinite, and the magnetization oscillates in phase in the whole volume of the sample,
it is called ferromagnetic resonance. Its depiction is shown in Fig. 1.2a.

If there is a certain wavenumber (wavelength) of the excitation (periodicity in spatial
dimensions), we can talk about the spin waves. Its depiction is shown in Fig. 1.2b. The
Brillouin zone of spin wave systems, spans to =~ 10000 T—£3. This is a 1000 times bigger
wavevector than what is usually accessible in Brillouin light scattering experiments, so it
is not necessary in the scope of this thesis to take this into account.

1.4.2. Quantum description

Hamiltonian for Heisenberg ferromagnet with external field in z-direction can be expressed
as |
H=52 JijSi+S;— gupHe 357, (1.15)
[2¥) 1
where J is constant of exchange interaction between the spins, S is an operator of spin,

g is a Lande g-factor, and pup is a Bohr magneton. The factor % is to ensure that the

2Assuming frequency independent gyromagnetic ratio
3Brillouin zone boundary is given by =, where a is lattice parameter
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Figure 1.2: Ferromagnetic resonance and spin waves. a, Schematics of ferromagnetic
resonance. The upper panel shows the oscillation of the magnetization of the
ferromagnetic mode (k = 0). The lower panel shows a spatial evolution of the
dynamic components of the magnetization. b, Schematic of a spin wave. The
upper panel shows magnetization oscillations with k # 0. The lower panel shows
the spatial evolution of dynamic components.

spins will not be accounted twice, as the summation runs along all spins. The Holstein-
Primakoff transformation is used to go from this spin operator to bosonic one [32]. The
transformation is expressed as follows

Srj +15y; = a;j\/255\/1 = a;aj/QS, (1.16a)
SIJ' — iSy,j = \/2Sj\/1 — a;aj/ZS, (116b)

S.; =S —ala;, (1.16c)

where a; and a} are annihilation and creation of boson (magnon) operators, respectively.
They obey the usual commutation rule

[aj,al] = 65, (1.17)

where 0, ; is the Kronecker delta function. If only a small magnon density is assumed, we
can expand the square root in 1.16. For example in 1.16a we get

Sp; +1iS,; = V28 (aj - (a;ajaj/ZLS) +.. ) . (1.18)

The creation and annihilation operators can be defined in reciprocal space with respect
to the wavenumber instead of real space using the Fourier transformation

a; = H%Ze}{p (—ik - 7;) ay, (1.19a)
q
/1 .
a} =\ > exp (ik - r;) al, (1.19Db)
q

where N is the total number of magnetic sites, and k is spin wave wavevector. Now, the
Hamiltonian (eq. 1.15) can be rewritten in terms of boson operators

H=—-NS(J05/2+ gupHext) Zw(k)alak + Huo, (1.20)
k
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where Hpo stands for higher order terms (nonlinear interactions), and J,. is exchange
interaction to the nearest neighbor,

w(k) = gupHex + J.0S(1 — ), (1.21)

where [ is structural factor and is given by
1
B =—> exp(ik-d), (1.22)
z0

where zo is a number of the nearest neighbors, and d is a vector of the nearest neighbor.
These equations give the dispersion relation of the magnons, assuming only exchange in-
teraction and external field in bulk magnets. Near the center of the Brillouin zone, the
dispersion can be approximated with quadratic dependency on the wavevector. The treat-
ment based on the Landau-Lifshitz equation (Eq. 1.14) can lead to the dispersion relation
for more complicated geometries and description of nonlinear processes such as three- and
four-magnon scattering [33].

1.4.3. Mesoscopic description

This section aims to provide the dispersion relation of spin waves in thin films, which
is rather cumbersome to achieve with quantum description. The dispersion relation is of
high interest, as its proper knowledge is crucial to solving some fundamental questions
and designing devices for spin wave applications. If one is interested in spin waves with
either long wavelengths (typically larger than &~ 1um), or short wavelengths (shorter
than ~ 100nm), simple solutions exist and can be found e.g. here [8]. However, the
intermediate region is the most relevant to the topics presented in this thesis. To tackle
this challenge, the linearized Landau-Lifshitz equation (Eq. 1.14) has to be solved together
with the Maxwell equations employing standard electrodynamics and exchange boundary
conditions.

Two main theoretical approaches to solve this problem were formulated. The first
is based on plane waves. Here, the magnetization, magnetic fields, and magnetic potential
are formulated as a sum of plane waves. They are plugged into the Landau-Lifshitz
equation inside the medium and Laplace equation outside the magnetic medium. This
leads to a system of linear conditions, and by requiring vanishing determinant, resulting
in a 8 X 8 matrix. Such matrix does not have an analytical solution. Thus, this method
is only solvable by using numerical methods. This approach was used in e.g. [34-37].
This method can also be applied to the multi-layer systems (mostly known as Hillebrands
method) [38].

The second approach is based on formulating an integro-differential equation and
assuming the solution in form of spin-wave modes. The advantage of this approach is that
an approximate analytical solution can be found?. At the same time, it can be used to
obtain exact dispersion by numerical means. In the coming text, we follow the simplified
derivation given in [30].

The assumed geometry is shown in Fig. 1.3a, b. Usage of the two coordinate system
simplifies the notation of all formulated equations, as z axis coincides with the static mag-
netization direction, and { axis coincides with the propagation direction. In such notation,
angle ¢ (1) defines the in-plane (out-of-plane) angle between the static magnetization and

4The solution can be formulated with desired accuracy using perturbation theory
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Figure 1.3: Geometry for calculation of dispersion relation. a, b, Geometry in in-plane
(a) and cut through thin film (b). The axis with z’,z” shows only projection to the
current view-plane. The coordinate system z, y, z is chosen to coincide with the
static magnetization direction (axis z is in the direction of the static magnetization
and axis y is in the plane of the sample). The coordinate system (,o,¢ is aligned
with the sample axis, and the axis ( coincides with the direction of propagation of
the spin wave.

propagation direction (sample plane), respectively. The magnetization is assumed to be
in the form of propagating wave

m((,§) = mq(§) exp [i (wt — QC)], (1.23)

where w is a spin wave angular frequency, () is an in-plane wavevector, and mg is the
amplitude of magnetization distribution connected to the specific in-plane wavevector.
The created dipole field can be expressed as

h(¢,€) = hq(&) exp [Ji (wt — Q)] (1.24)

where h is the amplitude of field distribution connected to the specific in-plane wavevec-
tor. Now, by using Maxwell’s theory, this two equations can be rewritten in integral
form

hol€) = / G (€€ Yo (€)¢, (1.25)

where é@& is dyadic Green function

Gp—4d6(£—-¢) 0 iGq

Gepe(8€) = i(gQ 8 _E;P : (1.26)

where
Gr = Lesp(~Qle —€)). (1.272)
fes {C—;nggr(f@_) U {1.270)

10
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We assume only small amplitudes, i.e. static magnetization® is not changing, the
Eq. 1.26 can be geometrically transformed to the 2 x 2 ((A}'my) matrix in z, y, y coordinate
system (there will be non-zero dynamic magnetization components only in the direction of
z, y axes). Now, the obtained results ((A}'my), together with the Landau-Lifshitz equation
(Eq. 1.14) give the integro-differential equation

L
Pmg(€) = [ Guy(e&Ima(¢)d¢ (1.29)
0
where F' is a matrix differential operator
. o+ 2.Q*+ lngg %
il G 2

where wy = W yMs, and wy = WoYHex. The boundary conditions are given by mixed
exchange boundary condition [39]

dg’gf 4 o (€) cos (29) = 0, (1.30a)
dd—? + vramy (€) cos (9)% = 0, (1.30b)

where v = fs is pinning parameter, K is surface anisotropy, and the subscript numbers

denote different boundaries. To simplify the further derivation, we will focus only on cases
without surface anisotropy, i.e., totally unpinned surface spins. Next step to proceed is to
find the spin wave modes (i.e., spin wave profiles in ¢ direction). To obtain them one
has to find the eigenfunction of matrix differential operator from Eq. 1.29, assuming only
diagonal elements (Fdlag) of the matrix operator F

FausS(€) = FS(0), (1.31)

with boundary condition given by Eq. 1.30. This is the so-called Sturm—Liouville problem
[40]. For the completely unpinned surface spins, one obtains

L__ cos (226
< gr ) _ ( TR i, (1.32)
y T cos (%
where n = 0,1,2,3,---. Now, by knowing spin-wave modes, the Eq. 1.23 can be rewritten
to the form of infinite sum
=Y mS(¢). (1.33)

Now, substituting this to integro-differential equation Eq. 1.29 and after some further
transformation, we get
H,,m,+ > Wm, =0. (1.34)
n#n’
Now, in a zero-order approximation, we may neglect off-diagonal elements, and by the
requirement of the vanishing determinant, we can solve the eigenvalue problem and obtain
dispersion relation for non-degenerate spin waves

w? = (wH + lswakz) (wH + 12 wnk? + wMFn) , (1.35)

SProjection of magnetization into the z-axis direction

11
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where P (1P )
F, = P, +sin(9)? (1 - P, [1 + COS(QO)Q]) 4 oM :;IE +_12 Z)l\;j;(gp) , (1.36)
where
% - %t[&(1-ew(-Qn)] n=0
Po=00 o . (1.37)
%—%—4 [ﬁ(l—exp(—QL)ﬂ n+#0

Here, We stress one more time that this solution is only approximate and does not work for
cases where one branch of spin-wave mode crosses another (degenerate state). Moreover,
this zeroth order approximation does not provide modification in the spin-wave profile, and
calculated profiles strictly follow cosine without any modification, which is not consistent
with experiments. The correction can be made using perturbation theory to get a more
precise solution, but it is rather cumbersome. For example, the second perturbation
theory for degenerate states was implemented to model avoided crossing in 100 nm thick
CoFeB layer [14, 41].

Numerical solution

In my opinion, currently, a more convenient way to calculate dispersion relation is to
numerically solve the eigenvalue problem [42]. For this purpose, the Landau-Lifshitz
equation (Eq. 1.14) can be expressed in the matrix notation

wmegp = CQ'ITLQ, (138)
where Cg is an infinite matrix
Co =
—(aog + Coo)  —(b+ poo) 0 —q10 —Cy —P20
(b+ poo) —(aog + Coo) —q10 0 P20 Cao
0 —qo1 —(a19+C11) —(b+p11) 0 —qo1
—qo1 0 (b+p11) (a1 +Ch1) —q21 0 A I
—Co2 —Po2 0 —q12 —(azqg + C22) —(b+ p22)
Po2 Co2 —q12 0 (b+ p22) (a2qg + C22)
(1.39)
where
n@ = ng + %M (1.40a)
%Y1
— ¥ 1.40b
=) (1.40b)
where
5 5 nm 2
QnQ = Wy —I—leeX Q"+ f . (1.41)
The other coefficients are
Con = —WTM (1 — sin? gp) B, (1.42a)
Py = —WTM (1 + sin? gp) B, (1.42D)
Gy = —2wpt (1 + sin @) Qv (1.42¢)

12
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where

an/ =

N2
e G 2 @) i (i
e \ (m=)” = (m=)" QL 2K | /(4 Gon) (1 + 6ow) 2 ’

(1.43)
and P,,, defined by Eq. 1.37. The found eigenvalues of the matrix Cg (Eq. 1.39) represent
the dispersion relation of the three lowest energy modes (each mode is represented two
times, by positive and negative frequency), and the eigenvector represents mode ampli-
tudes for z and y components. The mode profiles can be calculated using Eq. 1.32. All
presented models are implemented in own-made open-source code available at GitHub
platform [41]. The resulting dispersion relation and mode profiles for Permalloy layer are
discussed in Section 1.5.2.

1.4.4. Spin wave’s group velocity, decay length, and lifetime

From the dispersion relation, one can obtain more spin wave characteristics. The rate
of wave energy transfer is described by the group velocity (vg). This quantity can be
obtained from the dispersion relation

_ o
- Ok’

As the dispersion relation of the spin waves is highly anisotropic, the spin-wave wavevec-
tor and group velocity do not have to point in the same direction. In the limiting case
of in-plane magnetized thin film (© = 7), two pronounced geometries can be defined:
Damon-Eshbach geometry (DE, wavevector perpendicular to the static magnetization di-
rection, ¢ = 7) and backward-volume (BV, wavevector parallel to the static magnetization
direction, ¢ = 0). In the case of DE geometry, the group velocity has the same direction
as a wavevector, but in the case of BV, each faces the opposite direction. In between
these two limiting cases (0 < ¢ < 7)) the angle between them continuously evolve. This
behavior gives rise to interesting phenomena, such as caustic beams [43-46].

Another characteristic, which can be phenomenologically obtained from the dispersion
relation, is spin-wave lifetime (7) [8, 47]

Vg (1.44)

Oow

T = <(aw + YuoHAa) ﬂ>_ , (1.45)

where H is so-called inhomogeneous broadening. The contribution of this inhomogeneous
broadening to the lifetime is typically significant only for Yitrium-Iron-Garnet (YIG).
Usually, the spin-wave lifetime is not strongly dependent on the wavevector or thickness
of the magnetic layer.

If one knows the group velocity and lifetime, then the spin wave decay length (A),
a distance where the spin-wave amplitude is decreased to % ~ (.38, can be calculated as

A =T, (1.46)

The decay length is very important for the design of the experiments or functional
devices. The propagation of the spin waves can be measured only to several multiples of
the decay length. In a typical experiment, reliable measurement is only possible within
~ 3\, which means that only 5% of the original spin-wave amplitude is left.

13
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1.4.5. Bloch function of spin waves

This section introduces the procedure for obtaining Bloch spectral density of states of
thermally excited spin waves. The term Bloch spectral density of states or Bloch function
[D(w,k)] is often used for function describing the density of states in frequency-wavevector
space, i.e. [48, 49]. Another terms, used throughout the literature are power spectral
density, or spectral density [8, 50, 51]. In this thesis we use the term Bloch function. We
present here phenomenological approach, which can be used together with any method
for obtaining dispersion relation together with calculated (or estimated) lifetime of the
spin waves. This Bloch function is then used later in Chapter 2 to obtain the Brillouin
light scattering signal.

A complex circular magnetization is assumed (the possible ellipticity of the spin wave
mode will be accounted for later)®

M(w,k) = M, (w,k) +iM,(w,k). (1.47)

This complex circular magnetization now describes the possible spin-wave resonances. If
we assume only one spin wave mode, on the given in-plane wavevector, the frequency-
dependent complex magnetization will have Lorentzian shape [9],

1 1
M(w,k) x +1 ,
? (WO - (.U)2 + (%)2

(wo —w)* + (2)
where the width of the resonance is given by the spin-wave lifetime 7. To obtain the
Bloch function we take the absolute value out of the complex magnetization and, as we

are interested in thermally excited spin waves, correct the resulting function for Bose-
Einstein distribution

(1.48)

1

D o V2ngp(w) 5, (1.49a)
(WO — (.U)2 + (%)
where the Bose-Einstein distribution is given by
= ! 1.50
npg = oxp (h(;ub}”)) 7 (1.50)

1 is a chemical potential, k;, is the Boltzman constant, & is the reduced Planck constant,
and T is a thermodynamic temperature.

To obtain the out-of-plane and in-plane magnetization (this transformation will be
useful for calculating the interaction with light in Chapter. 2)7, we need to multiply the
solution by the spin-wave profile amplitude

MIP(Q>W>€) = mQ,Q(Q>w>€)D(Q>w)> (151&)
MOOP(Q>W>€) = zmQ@(Q,w,&)D(Q,w) (151b)

5For more information refer to Bogoluibov transformation, e.g., [8, 9].
"In the limiting case of magnetization pointing out of the plane (¢ = 0), a similar procedure to
acquire two in-plane dynamic components can be used.

14
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1.5. Materials used in spin-wave research

To support spin-wave propagation, a ferromagnetic or ferrimagnetic material with reason-
ably high saturation magnetization and low damping has to be used. Several materials
fulfill these demands. I have selected the three most used materials in spin wave re-
search, namely Yttrium Iron Garnet, Permalloy, and CoFeB and summarized them in
Table 1.1. However, the material research is searching for novel material systems, such
as half-metallic Heusler alloys, which can provide low damping and high saturation mag-
netization at the same time [52, 53].

1.5.1. Material parameters of YIG, Permalloy, and CoFeB

The first material shown is a nm-thick Yttrium Iron Garnet (YIG). It is a magnetic
insulator and single-crystal. It has one of the lowest damping of all materials, making it
the ideal candidate for future application in devices for telecommunication technologies.
The disadvantage of this material is its requirement of a single crystal substrate. For
this purpose, gadolinium gallium garnet (GGG) is usually used. This material is also
extensively used for research because long decay lengths simplify performed experiments
[69-71].

The second material is Permalloy, a poly-crystalline alloy of nickel and iron, hence
is often called NiFe. It was specifically designed to provide a low anisotropy field. However,
it has approximately one order of magnitude higher damping than YIG. On the other

Table 1.1: Three materials commonly used in spin-wave research. The material parameters
and spin wave characteristic for K = 10rad/pm (A ~ 2 um), external field of Bey =
= 50mT and film thickness of ¢ = 30nm are given for each material. Inspired by

[47, 54).
nm-thick Permalloy CoFeB
Yttrium Iron (Py, NiFe)
Garnet (YIG)
Chemical composition Y3Fe50q9 NiggFesq CoygFespBog
Gilbert damping a (-107%) 2 70 40
Sat. magnetization 140 800 1250
M, (kA/m)
Exchange constant Ay, 3.6 16 15
(pJ/m)
Typical thickness (nm) 5-100 5-100 5-100
Anisotropy field (mT) <1mT <1mT <1mT
Frequency DE/BV 3.6 12.0 18.4
(GHz) 3.0 6.4 8.2
Group velocity DE/BV 0.4 2.1 3.5
(km/s) 0.1 -0.05 0.1
Lifetime DE/BV (ns) 25.5 1.4 1.6
23.6 1.6 1.52
Decay length DE/BV 10.0 3.0 0.2
(um) 2.9 0.07 0.09
References [55—61] [62—65] [66—68]
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Figure 1.4: Dispersion relation calculated with zeroth perturbation approximation

and numeric solving of eigenvalues. a, b, Dispersion relation for first two
modes of 30 nm (a) and 100 nm (b) thick Permalloy layer. Faint dashed lines show
zeroth perturbation approximation and solid lines show the numeric calculation.

hand, this is compensated by higher saturation magnetization. However, decay lengths
are still comparatively shorter in permalloy than in nm-thick YIG. The integration of the
Permalloy to the existing CMOS is technologically viable, as it can be easily grown on the
silicon substrate. However, it is not optimal for telecommunication technologies, as higher
damping causes lower quality factors. Due to its easiness of fabrication of micro/nano-
structures and longevity of the produced samples, it is as well often used in research [43,
62, 72-75].

The third material is an alloy of cobalt, iron, and boron (CoFeB). This material
is widely used in spintronic research and applications [76, 77|, especially in magnetic
tunnel junction structures. Due to this extensive use, the fabrication and deposition
technologies are thoroughly researched. Thus any potential implementation of spin wave
devices based on CoFeB would be prompt. Moreover, it has lower damping in comparison
to Permalloy and higher saturation magnetization. However, in our laboratory experience,
it is not as persistent as Permalloy layers, and thus Permalloy can provide advantages for
the easiness of experimental work.

1.5.2. Spin-wave characteristics of Permalloy layer

In this section, I show the dispersion characteristics of the 30 nm-thick Permalloy (NiFe)
layer, which is used in the majority of the presented result in Chapters 4,5, and 6. The
NiFe layer with a thickness of 100 nm is shown for comparison. First, I show the dispersion
characteristics, followed by a discussion of the spatial profiles of various spin-wave modes.
At the end of this section, the spin wave Bloch function, which is essential in calculating
BLS spectra of 30 nm-thick layer, is shown.

In Fig. 1.4a, b the dispersion relations of 30nm and 100 nm thick permalloy layers
are shown. For the case of 30nm thick permalloy layer, the full analytical calculation,
which uses zeroth perturbation theory (Eq. 1.35) is in full agreement with semi-analytical
calculation (Eq. 1.38). On the other hand, in the case of 100 nm thick Permalloy layer,
there is a significant deviation in the region, where the two modes get close to each other,
see especially crossing around 20 f—£ in Fig. 1.4b. This is caused by the interaction between
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Figure 1.5: Spin wave profiles for in-plane magnetized thin film. a, b, c, d, e, f
Spin-wave profiles of 100nm (a, b, ¢) and 30nm (d, e, f) thick Permalloy layer.
The backward volume geometry is in panels (a, d), Damon-Eshbach in panels (b,
e), and n=1 mode in Damon-Eshbach like geometry is in panels (¢, f). Dashed
curves represent out-of-plane components, while solid curves represent in-plane
components. The k-vector is encoded to color, see legend. The external magnetic
field was set to 10mT.

the modes represented by off-diagonal elements in Eq. 1.34, which were omitted in the
zeroth perturbation approach.

Spin wave profiles in Permalloy layer

We calculated the spin-wave profiles (Fig. 1.5) for three different modes: backward volume,
Damon-Eshbach, and first perpendicular standing spin wave mode propagating perpen-
dicularly to the static magnetization direction (n=1, Damon-Eshbach like). In the case of
k = 0 the situation is straightforward: spin wave mode is always homogeneous across the
thickness of the layer for n = 0 modes, see black curves in Fig. 1.5a,b,d,e. For the case of
perpendicular standing spin wave mode (n = 1), cosine profile without any disturbances
can be observed, see black curves in Fig. 1.5¢, f.

If the wavenumber is increased the situation gets more complex. In BV geometry, the
spin-wave in-plane amplitude is increased in the middle of the layer, see Fig. 1.5a,d. This
behavior is more pronounced for the thicker layer. Interestingly, there is very weak oppo-
site behavior for the out-of-plane component. In DE geometry, we can observe localization
of the spin-wave in-plane amplitude to the upper boundary®, see Fig. 1.5b.e. Again, for
the out-of-plane component, the behavior is opposite. For very high wavenumber, the ex-
change energy dominates (which is isotropic), and the spin-wave profile resembles a very
similar shape as in BV geometry, compare blue solid curve in Fig. 1.5a and Fig. 1.5b.

The ratio between the in-plane and out-of-plane components defines the ellipticity.
One can observe that with £ = 0, n = 0, the ellipticity is not significantly dependent on
the layer thickness. In DE geometry, the ellipticity increases with increasing wavenumber

8The boundary on which spin wave is localized depends on the direction of the propagation.
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Figure 1.6: Full in-plane dispersion and Bloch functions of spin waves. a Spin wave
dispersion relation for all propagation directions for in-plane magnetized 30 nm-
thick Permalloy film. The transparent planes depicts the frequency positions of
the calculated Bloch functions. b, ¢, d, e, Calculated Bloch functions for 3 GHz
(b), 6 GHz (c), 9GHz (d), and 12GHz (e). The external field was set to 10mT
and chemical potential —1 THz.

(see Fig. 1.5b,e); however, in BV geometry, the trend is weakly opposite. In the case of
k =0, n =1 the ellipticity is increased with decreased layer thickness, see Fig. 1.5¢,f.

Bloch function of spin waves in Permalloy layer

These examples only dealt with spin waves in two specific geometries (spin waves prop-
agating parallel and perpendicular to the magnetization direction). However, the spin
waves can propagate in all in-plane directions. In Fig. 1.6a, the dispersion relation for all
directions in the in-plane magnetized Permalloy layer is shown. In Fig. 1.6b,c,d,e, Bloch
functions are shown for selected frequencies. At 3 GHz (Fig. 1.6b), the resonance is only
in the BV direction, i.e., on the cut through k,, there is not any intensity. For higher
frequencies (above ferromagnetic resonance frequency) the resonance for DE geometry
appears, see Fig. 1.6¢,d,e. With increasing frequency, one can observe that the linewidth
in k;,k, space becomes wider. This is especially visible for the spin-wave modes with low
wavenumber, see Fig. 1.6b,c,d.
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2. Theory of inelastic light scattering

Inelastic scattering refers to the type of light scattering where the frequency of the scat-
tered light differs from the frequency of the incident light, i.e. exhibits so-called frequency
shift. It is a useful tool in condensed matter physics, as it can provide insight to the prop-
erties of the excitations of matter, such as magnons or phonons. The frequency, amplitude
and phase of the scattered light can be analysed, and thus the otherwise inaccessible in-
formation about excitation of matter can be investigated. However, to correctly interpret
measured data it is essential to fully understand the mechanism of scattering.

The chapter is structured in the following way. First, I introduce different types of
inelastic scattering and their simplified description using a quantum-mechanical approach.
However, this approach is unsuitable for obtaining quantitative values, especially in spa-
tially non-homogeneous cases, such as focused light. For this purpose, I have developed
a model based on continuum approximation (classical approach) [78] for a description of
micro-focused Brillouin light scattering (BLS). The description of this model starts by
showing its structure, and afterward, individual steps are discussed more closely. I use
the developed theory to model micro-focused BLS spectra and show various dependencies.
At the end of the chapter, I introduce a simple phenomenological model and compare it
with developed theory and experimental data.

2.1. Types of inelastic scattering processes

In this section, I discuss different types of inelastic scattering. Here, for a simplified
description, I use the quantum approach. In the case of this approach, the light is con-
sidered as a particle with momentum and energy. This allows me to find the frequency
shift value solely based on the conservation laws of momentum and energy in the system
of interacting particles and quasi-particles.

All the described processes of the inelastic light scattering are the same from the
physical point of view. However, in the scope of this thesis, I divide them to three
categories based on the absolute value of the frequency shift of the scattered light. The
first process is called quasi-elastic scattering. This term is used for the process where
frequency shifts of the scattered light do not exceed 1 GHz. Second process, Raman
scattering, usually describes the process, where frequency shifts of the scattered light are
above 500 GHz. The last process is called Brillouin scattering, and is integral for the
presented thesis. Usually the term Brillouin scattering is used to describe the scattering
processes in between the quasi-elastic and Raman scattering.
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2. THEORY OF INELASTIC LIGHT SCATTERING

2.1.1. Quasi-elastic scattering

The quasi-elastic light scattering happens on either particles in solution, or particles of
solid matter. First, we start with the equations of conservation of energy and momentum.
Let’s consider the energy of the incident photon and the kinetic energy of the particle
on which the photon is scattered. By applying the conservation laws of momentum and
energy, we can derive a set of equations that describe the relationship between the incident
and scattered photon and particle (with given momentum and kinetic energy)

1 1
T + §mv§ = hw{ + va'i, (2.1a)
hk, + mk, = hk; + mk;, (2.1b)

where £ is the Planck constant, w; is the frequency of light, and m (v,) is the mass (velocity)
of the particle on which the light is scattered, k; is a wavevector of light. Typically, the
kinetic energy of the particles is much lower than the energy of the incident light, so this
interaction results in a small broadening (less than 500 MHz) of the spectral width of the
scattered light. This type of scattering is known as quasi-elastic scattering. The total
cross-section is proportional to [79)]

i
Wy _Ws)z +72’

s ~ - (2.2)

where w; is the incident frequency of light, wy is the frequency of scattered light, and ~
is a broadening parameter that depends on e.g. thermal energy, entropy, heat capacity of
the sample material. One can see that the highest scattering efficiency is reached when
the scattered light has the same frequency as the incident light. This type of scattering
is used for analysis of e.g. particle sizes in liquids [80, 81].

2.1.2. Raman scattering

This process usually involves scattering on intrinsic vibrational, rotational, or higher ex-
cited states of matter. There is no clear distinction between the Brillouin and Raman
light scattering, but usually the scattering is called Raman, if the frequency shift is at
least above 1 THz. This scattering is also ruled by the equations of conservation of energy
and momentum of the whole system of all relevant particles. When the photon inelasti-
cally scatters on the excitation of matter, it is transferred to the state with the energy
difference equal to the energy of that excitation. However, this assumes that scattering
involves only one transition, there is no absorption (thus, all wavevectors are real), and
the sample is infinite. The reality is usually much more complex and exact description
of all involved energies and momenta is cumbersome. The cross-section for particular
transition is proportional to [82, p. 379,

wi(w + wy)?
OR—aS ™~ , 2.3a
S -l R 2
_ 3
ors ~ 3 =) (2.3D)

o (W — WS)Q + '7}21’

where wy is the frequency of transition and 73 is damping parameter. The Raman reso-
nances can occur for several frequencies, depending on the number of allowed transitions.
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2.1. TYPES OF INELASTIC SCATTERING PROCESSES
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Figure 2.1: Schematical overview of the scattering processes.

Typically, the frequencies of transitions in Eq. 2.3 are in the terahertz range, as can be
seen in Fig. 2.1.

Raman scattering is used to analyze substances, because transition frequencies are
intrinsic properties of molecules. Also, the number of layers in graphene or binding pa-
rameters between layers could be determined [83]. The Raman scattering is also widely
used in biology and pharmaceutical research for e.g. estimation of the molecular activ-
ity [84, 85].

2.1.3. Brillouin light scattering

Now, we consider the case where the photon is scattered on a quasi-particle, e.g., a phonon
or a magnon. This scattering happens in a frequency range between hundreds of mega-
hertz to hundreds of gigahertz. A schematic of a typical Brillouin light scattering (BLS)
spectrum is shown in Figure 2.1. In this case, we get a set of energy and momentum
conservation equations

e 4 hwgy, = hw| + hwl,, (2.4a)
hk) + hkq, = k| + k), (2.4D)

where h is the Planck constant, w is the frequency of light and wq, is the frequency of
the quasi-particle. To conserve both the energy and the momentum, two main processes
are present. In the first one, the quasi-particle’s final energy is zero (the quasi-particle
is annihilated). Subsequently, the scattered light’s energy is increased, resulting in a shift
towards a higher frequency. This is called the Anti-Stokes process, and it is schematically
shown in Fig. 2.3a. In the second case, the initial energy and momentum of the quasi-
particle are equal to zero, then the energy and the momentum of the incident light are
transformed to the quasi-particle. Thus, the frequency of the scattered light is lower. This
is called the Stokes process, and it is shown in Fig. 2.3b. Both processes can generally
include more quasi-particles or photons, such as scattering on two or three magnons, but
these processes become important only if the process between three particles is prohib-
ited [86].

Two main experimental approaches to measure BLS spectra are being used: k-resolved
BLS (also called conventional) and pu-BLS (micro-focused BLS). Both of them are depicted
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2. THEORY OF INELASTIC LIGHT SCATTERING
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Figure 2.2: Experimental realization of the BLS. a, Schematics of the k-resolved BLS
where the sample is tilted in respect to the incident light. b, Schematics of the
u-BLS with objective lens with high numerical aperture.

in Fig. 2.2a, b. The main difference between the two approaches is the numeric aperture
of the lens. In k-resolved BLS it is beneficial to use the focusing lens with small numeric
aperture in order to achieve good wavevector resolution!. On the other hand, in u-BLS the
spatial resolution is usually of the main interest, thus the objective lens with high numeric
aperture is usually used. Due to this difference, the spatial resolution in k-resolved BLS
is limited to spot sizes in order of tens of microns, and there is no wavevector resolution
in w-BLS of thermally excited spin waves.

Typically, in the k-resolved BLS the back-scattering geometry is used in experiments,
as shown in Figure 2.3c. In the thin film, the probed quasi-particle wavenumber is then
equal to twice the in-plane component of the wavenumber? of the incident light. The
limit of maximum probed k-vector versus angle of incidence using 532 nm laser is shown
in Figure 2.3d. The maximum value of wavenumber is reached in the case where the laser
beam is parallel with the surface of the sample and is 23.6rad - um™!, which is equal to
the wavelength of 266 nm.

Due to the typically low frequencies of the quasi-particles involved in BLS (see Fig. 2.1),
the shift of the magnitude of free-space momentum (given by Aw, = cAk;) between the
incident and scattered light is negligible, and conservation of momentum is satisfied by
only slight changes in the angle of the scattered light.

2.2. Classical description of u-BLS

In this section, I present my own model developed for the calculation of the u-BLS spectra.
During the development of this theory, I was helped by Martin Hrton, who introduced me
to Green function formalism. The structure is as follows. First, I show the general design
of the model. Then, the semi-analytic theory for calculating the electric field focused by
a thin lens is introduced. I discuss the consequences of various parameters on the electric
field distribution. Next, I elaborate on the mechanism of inducing polarization and show
an example calculated for the NiFe layer. Afterward, the far-field transition is discussed

1On the contrary, the lower numeric aperture means lower signal strength, thus typically some sweet
spot is targeted during designing the experimental setup.
2Le. projection of the light to the sample plane.
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Figure 2.3: The Stokes (a) and anti-Stokes (b) processes are schematically shown. (c¢) The
schematic of back-scattering geometry. (d) Detectable spin-wave wavenumber de-
pending on the angle of incidence of light with a wavelength of 532 nm.

and demonstrated on the dipole radiation. Finally, I use this theory to show the influence
of various parameters on the calculated spectra.

Although the quantum approach can give some general insight into the inelastic light
scattering, the classical approach is far more convenient to get quantitative values of the
acquired signal. This is especially true for the p-BLS, where the quantum mechanical
model would be cumbersome. In this section the model is built with u-BLS in mind,
however it can also be used to calculate k-resolved spectra just by decreasing the numeric
aperture of the focusing lens [86-89]. Inelastic scattering can originate from all kinds of
excitation, but here we solely focus on inelastic scattering on spin waves. In order to cover
e.g. light scattering on phonons, the coupling mechanism between the excitation and light
has to be adjusted (i.e. adjust the calculation of the time-dependent susceptibility tensor).

This section presents only the case of simple magnetic film with linearly excited spin
waves, however current research usually investigates much more complicated situations.
Fortunately, using numerical simulations of Maxwell equations, the model can be extended
to include spatial perturbation such as optical resonators to, e.g., extend the range of
measurable wavevectors or measure only specific wavevectors. In the same manner, the
model can be easily extended also by using micromagnetic simulation, to obtain the BLS
intensities from the magnetic structures, which cannot be modelled analytically, such
as complicated 3D structures (e.g. helix, disk with hollow center), nonlinear phenomena
(e.g. parametric pumping, three-magnon scattering), or non-homogeneous landscapes (e.g.
heated magnetic layer by laser spot, corrugated waveguides).

2.2.1. Structure of the model

To model the u-BLS spectra we use the approach of Landau and Lifshitz presented in
[78, p. 413] applied to micro-focused light. First, the structure of the presented model
is discussed, and later in this section, each step is carefully described. The model can be
divided to four steps, as is shown in Fig. 2.4.

Obtaining the electric field distribution in the magnetic layer

The first step is to compute electric field in the sample (E4). Usually, this is easier to
perform in real space coordinates. However, for the subsequent calculation it is far more
convenient to transform it into the Fourier space

Ed(wl,k') = f(Ed(wl,r')) . (25)

The electric field shape is dependent on e.g. the used objective lens (especially on its
numeric aperture), used light wavelength, or defocus of the light. Futhermore, the sub-
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Figure 2.4: Schematics of the structure of the calculation of BLS signal within clas-
sical approach. The k represents the wavevectors in plane of a magnetic layer,
while k represents the wavevectors of scattered free light. The schematics provides
simplified view and is not completelly correct. For more detailed discussion please
follow explanation given in the text.

strate, magnetic layer material or some capping layers (e.g. antireflecting coating) can
modify the electric field distribution, however in the presented approach we neglect these
contributions. If needed, full Maxwell simulation can account for these effects.
Obtaining the time-dependent susceptibility

The time-dependent susceptibility (x) is integral part of the model for calculating BLS
spectra. This quantity represents the mechanism of interaction between the light and ex-
citation of matter. In the specific case of the interaction between the spin waves and light,
this interaction is called magneto-optical coupling. To calculate the time-dependent sus-
ceptibility, one has to know the magnetization distribution dependent on the wavevector
and frequency of the spin waves

X < M (wm,k'). (2.6)

Calculation of the polarization
The driving field and time-dependent susceptibility are used to calculate induced polar-
ization in the magnetic layer by their convolution

P(w,k) = Eq(w,k) * x(w,k). (2.7)

Generally, the polarization with wavevectors double of the incident driving field can be
induced®. However, the possible states of the polarization in the k-space are still limited
by the eigenstates of the spin waves, i.e. can occur only at the positions of the spin-wave
resonance.

Transition to the far field and calculation of the BLS signal

Now, the polarization has to be propagated to the far field. In order to do that, we use
Green function formalism®. In the studied case, the polarization source can be regarded

3See the convolution in Eq. 2.7.
4In simple words, Green function represents the impulse response to the point source.
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2.2. CLASSICAL DESCRIPTION OF u-BLS

as a sum of the dipoles (point sources); thus, by integrating over them, the overall electric
field can be obtained. This can be expressed as

Err(wk,) = G(wk, k,)P(w,k)). (2.8)

However, this equation describes all emission of all wavevectors, including those which
are not able to reach the detector. For this reason, subsequent trimming of the electric
field has to be done, such as trim by numeric aperture of the objective lens, or assuming
only wavevectors parallel to the optical axis after passing through the objective lens.

To get the resulting BLS signal, one has to square the electric field. The obtained
quantity can then be fitted or compared to the acquired BLS signal.

2.2.2. Semi-analytic modeling of the driving field

In this section, I use the semi-analytical method developed by Richards and Wolf [90, 91]
to obtain electric field on the surface. I follow the notation given by Novotny and Hecht
in [92]. The geometry of the calculation is depicted in Fig. 2.5. The collimated beam
is clipped by the back aperture of the objective lens and is focused on the sample. For
convenience, the spherical coordinate system is used after the objective lens is used. This
calculation is based on the two basic principles:

e Sine condition - each ray that converges to the focus intersects its conjugate ray
(ray in the collimated beam) in the position of the lens.

o Intensity law - the energy flux along each ray needs to stay constant.

The electric field E(p,p,z) can be expressed as

Omax 21

ik ik
E(p,p,2) = tko/ exp (iko/) / /Em(@,é)exp ikoz cos © expikppsin © cos (¢ — ¢)dPO,
0 0

21
(2.9)
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Figure 2.5: Schematics of the calculation geometry for focal fields. In the region of the
collimated beam, we use cartesian coordinates as depicted in the sketch. The filling
factor is the ratio between the beam waist and back aperture (entrance pupil) of
an objective lens. The beam profile in Cartesian coordinates can be calculated in
arbitrary z-plane.
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2. THEORY OF INELASTIC LIGHT SCATTERING

where the electric field in far-field E(0,P) reads

] ( 1+ cosO — (1 — cos ©) cos 2® )

Z—; (cos©)%,  (2.10)

E . (0,0) = Emc’m(@,@b —(1 — cos ©) sin 2
—2cosPsin©®

ko is the wavelength of the free-space light, f is the effective focal length of the objective
lens®, and Ejy..(0,®) is the field incident on the objective lens, which we assume to be
the lowest Hermite-Gaussian mode

Eine.(0.0) = Eyf.(0), (2.11a)

—1 sin?@
() = . smu ) 2.11b
o) =exr (3 o | 2.110)
where fj is a filling factor of the lens and is given by the ratio between the waist of the
beam and the back aperture of the objective lens, and Ej is the amplitude of the light.
Integration through the angle ® can be carried out by analytic means using the following

relations
27

/COS n® exp (iz cos (& — ¢)) d® = 2r (i") J,(z) cos ny, (2.12a)
0

2m

/sin n® exp (iz cos (¢ — ¢)) dP = 2n (i) J, () sin nep, (2.12b)

0

where J,(x) is the Bessel function of the nth-order. The focal field can now be expressed
in cylindrical coordinates as

ikof? [n Loo + Loz cos 2¢
E(p,p,2) = 0 —1E0 exp (—ikf) Lo sin 20 , (2.13)
2 "2 —2ily; cos @

where

®max

Lo = / fuw(©) (cos @)1/2 sin © (1 4+ cosO) Jy (kosin ©) exp (ikgz cos ©)dO,  (2.14a)
0

®max

loy = / fuw(©) (cos @)1/2 sin? ©.J; (kosin ©) exp (ikgz cos ©) dO, (2.14Db)
0

®max

I = / 1(©) (cos ©)?sin © (1 — cos ©) J, (kosin ©) exp (ikgz cos ©)dO.  (2.14c)
0
These integrations have to be carried out numerically®.

The magnitude of the z-component (Fig. 2.6a) have full polar symmetry, while the
y-component (Fig. 2.6b), and z-component (Fig. 2.6¢) resembles four-fold and two-fold

5The focal length only affects the phase factors in the field.
6In our code, we used Trapezoidal numerical integration implemented in Matlab 2021a [93]

26



2.2. CLASSICAL DESCRIPTION OF p-BLS

@ E2, (V¥m?) o) E3, (V2/m?) © E2, (V¥m?)
O EE ) 56410 0 BN 7E+7 0 BT 4E49
3 3
2 2
1 1
g 0 0
> -1 -1
-2 -2
-3 -3
-3 2-1 0 1 2 3 -3 21 0 1 2 3 3 -2-1 0 1 2 3
E,, (V/im E,, (V/im E,, (V/im
(d) dx ( ) (e) dx ( ) (f) dx ( )
e Sl — ] —-2E+2 BT 2F+2 -7E+4 T 7E+4
3 3 3
2+ 2+ 24
14 14 1+
IS an .
\3 0 - 0 . 0 °
-1 4 -1 4 -1+
-2 4 -2 4 -2 4
_3 T T T T T _3 T T T _3 T T T T T
-3 2-1 0 1 2 38 -2 0 2 3 -2-1 0 1 2 3
X (um) X (um) X (um)

Figure 2.6: Semi-analytically calculated magnitude and real part of the focal field
of Gaussian beam. a,b,c The squared z- (a) y- (b) and z- (c) component of
the focal field of 00 Hermite-Gaussian mode. d, e, g The real part of z- (d) y- (e)
and z- (f) component of the focal field of 00 Hermite-Gaussian mode.

symmetries, respectively. The magnitude of the z-component is the largest. The maxi-
mum value of the squared field in the z-component is &~ 12.5 and the y-component is ~ 715
smaller than the z-component. Thus, the z-component (along the polarization axis) is the
most important for the calculation of the BLS signal in most scenarios. However, in spe-
cific geometries (e.g. for out-of-plane magnetized thin film) its contribution can cancel out
and other components can become significant. From the images of the real parts of the
electric field vector (Fig. 2.6d, e, f), one can see phase differences between the parts of the
intensity distribution. This implies, that the non-zero net intensity is present only in the
z-component. In the other two components (y and z), the regions of high intensity have
exactly opposite phases and cancel each other out. This can possibly further decrease
obtained signal in specific scenarios.

After the Fourier transformation to reciprocal space these results can be used in cal-
culation using Eq. 2.21. In the calculation, we neglect the effect of the substrate on the
beam shape, i.e., the reflection and refraction on a possible multilayer stack. However,
in the studied cases this approximation leads to the qualitatively same results as the full
simulation of the Maxwell equations (without any approximation). The semi-analytical
formulation for the driving fields, including the effects of the boundaries, can be achieved
by using transfer-matriz method and following the approach given in section 3.9 in [92].

27



2. THEORY OF INELASTIC LIGHT SCATTERING

(a) (b) (c)

NA=0.5 NA=0.75 NA=1
6E+10
|— = x-cut | y—cut|
& 4E+10 o - -
£
N\>/ -
U 2E+10 - - E I
- , ‘
OE+0 T T T T T T .4-\ T T
-1.0 -05 00 0.5 10 -1.0 -05 0.0 0.5 10 -10 -05 0.0 0.5 1.0
Dimension ( um) Dimension ( um) Dimension ( um)

Figure 2.7: Effect of the polarization axis on the beam waist. a,b,c The cut through
squared z-component of the electric field in the z- and y-direction for objective
lens with numeric aperture NA=0.5 (a), NA=0.75 (b), and NA=1 (c¢). The red
dashed line shows the cut along the linear polarization direction, and the black
solid line shows the cut perpendicular to the linear polarization direction.

Effect of the polarization

The polarization effects affect the shape of the beam even in the component along the
polarization axis (z-component in our geometry). The beam spot is slightly enlarged in the
direction of the polarization and thus it is not circular but elliptical. This effect becomes
more pronounced when the beam dimensions reach the diffraction-limited sizes. For the
objective lens with NA= 0.5 there is no difference in beam shape for both perpendicular
directions, see Fig. 2.7a. The waist of the spot is 464+ 1nm. The increase of the numeric
aperture to NA= 0.75 causes the shrinking of the beam spot to 295 4+ 1 nm in y-direction,
and the difference is now clearly visible and is 20 + 2nm, see Fig. 2.7b. The highest
possible numerical aperture with non-immersion objective lens NA= 1 gives the beam
spot waist of 204 + 1 nm in the y-direction. The difference between the two orthogonal
cuts now becomes 44 4+ 2nm, see Fig. 2.7c.

Another effect that becomes more pronounced with the tighter focus of the beam, here
achieved by increase in numeric aperture, is the formation of the side peaks, so-called Airy
disc [94]. In the case of the objective lens with NA= 0.5 (Fig. 2.7a), we can observe only
Gaussian distribution in both cross sections. As the numerical aperture increases, the
formation of the side peaks becomes apparent, see Figs. 2.7b, c. Interestingly, these
peaks occur only in the direction perpendicular to the incident polarization.

Effect of the defocus

We have so far calculated only the fields directly in the focus (z = 0, see Fig. 2.5).
However, in the experiment, the z-direction can be changed by the out-of-plane movement
of the sample stage. This movement can be done on purpose (to enlarge the measurement
spot) or, more commonly, unintentionally by thermal fluctuations or vibrations. The
calculated beam shapes in dependence on the z-direction (defocus) are shown in Fig. 2.8.
The summed magnitude of electric field along the polarization axis (z-axis) is shown in Fig.
2.8a, b, c. The region of z-coordinate, where the waist width is relatively constant, is called
the depth of focus. For our set of parameters, this region has depth of roughly 500 nm.
In the case of z-component, we can observe focusing to only a single beam spot, while
for the case of y- and 2- component, we observe two maxima, which is in agreement with
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Figure 2.8: Effect of the defocus on the beam spot shape. a,b,c The integrated squared
z- (a), y- (b), z (c) component of the electric field in zz plane. The integration
is done along the y-direction. d, e, f Real part of the cut in y = 0 of z- (d),
y- (e), z- (f) component of the electric field. g The fitted waist of the squared
z-component of the electric field in y = 0 cut for different values of z (defocus).

Fig. 2.6. In the cross-section of real parts of the electric field along direction perpendicular
to polarization (x = 0) (Fig. 2.8d, e, f), phase evolution in z-direction can be observed.
In the cross-section of the y-component, there is no intensity, as there is no electric field
in the central plane (see Fig. 2.6e).

To get more insights into the behavior of the beam shape, we fitted the Gaussian
function to squared z-component of the electric field in y = 0 cut for different values of z.
The result is plotted in Fig 2.8g. Near the z = 0, we can observe relatively constant width
of the waist, so-called depth of focus. For our parameters, this is &~ 500 nm wide, i.e., if
the sample is moved by 250 nm in either out-of-plane direction from the ideal position,
there will not be any significant change in the beam spot shape. The dependence of the
beam spot width becomes quickly linear once it is out of depth of focus, see Fig. 2.8g.
The increase in the width of the beam spot with the defocused distance is 1.126 £ 0.002
in linear regime. This means that if the beam is focused 1 um above the focus on the
surface of the studied film, its width is increased by ~ 1 um.

Effect of the filling factor

Another important parameter for beam waist is the filling factor of the objective lens.
Contrary to the naive view’, if the incident beam to the back aperture of the objective
lens (see Fig. 2.5) is narrower, the resulting beam waist will be broader. In Fig. 2.9a de-
pendence of the magnitude of the y-cut from z-component of the driving field on the filling
factor is shown. We can observe, that with small filling factors (narrow beam incidence to

"By naive view we mean expectation that resulting beam would be narrower, if the incident beam to
the objective lens is narrower as well.
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Figure 2.9: Effect of the filling factor on the beam shape and waist. a Magnitude of
the y-cut of z-component of the electric field in dependence on filling factor. b
Extracted beam waist.

the back aperture of the objective lens), the beam spot is very wide (above 2 um). With
the increasing filling factor, the Gaussian beam becomes narrower. This comes at the
cost of losing the total incidence power, but this is not captured by the semi-analytical
modeling. When the filling factor reaches values above 0.7, we can observe the formation
of the Airy disc [94].

The extracted beam waists are shown in Fig. 2.9b. For the lowest calculated filling
factor value (fo = 0.05), the beam waist is 4.4376 £ 0.0002 um. When the filling factor
is fo = 2, the waist is 0.3159 = 0.0009 um, which is 10 % broader than the waist with
infinite filling factor, i.e. 0.287 £ 0.001 pwm.

Focusing of higher-order laser modes

The previously developed theory allows us to consider also focusing of spatially more
complicated laser modes. The radially and azimuthally polarized doughnut modes get
a lot of attention, as they can provide, e.g., tighter focuses or beams with orbital angular
momentum for application in light tweezers [95, 96]. We focus here on the so-called
Laguerre-Gaussian modes, namely on the radially and azimuthally polarized doughnut
modes.

The radially and azimuthally polarized doughnut mode can be generated by, e.g., laser
cavity with conical mirrors [97-99], or by interferometric techniques [100, 101]. However,
the most common technique nowadays is the use of so-called wvorter plates [102, 103].
Then, one can freely switch between radially and azimuthally polarized doughnut modes
just by rotating the vortex plate. The intensity in the center is equal to zero, and there
is cylindrical symmetry. The polarization bivector always points to/out of the center
for the radially polarized doughnut mode and is axially symmetrical for the azimuthally
polarized doughnut mode.

The electric field can be obtained in from of superposition of the Hermite-Gaussian
fields as

ik f2 ny i:[rad COs
E(p,p,2) = 0 —FEgexp (—ikf) | ilagsing |, (2.15)
2\ —4il,
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Figure 2.10: Focusing of the higher order laser modes. a, b, ¢ The z- (a), y- (b), 2-

(c), of the real part of the focal electric field of radially polarized doughnut mode.
d, e, f The z- (d), y- (e), z- (f), of the squared focal electric field of radially
polarized doughnut mode. g, h, i The z- (g), y- (h), 2- (i), of the real part of
the focal electric field of azimuthally polarized doughnut mode. j, k, 1 The z-
(4), v- (k), z- (1), of the squared focal electric field of radially polarized doughnut
mode. The sketches of the incident field on the objective lens are depicted on the
left side for both modes.
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where
@max
Liag = / f(©) (cos ©)*?sin? ©.J; (kosin ©) exp (ikoz cos ©) dO, (2.16a)
0

®max

Iip = / fuw(©) (cos @)1/2 sin? ©.J; (kosin ©) exp (ikgz cos ©) dO. (2.16D)
0

The electric field for azimuthally polarized doughnut mode can be expressed as

1 2 iloym sin
E(p,p,2) = ihof EEO exp (—ikf) | —iliumcose |, (2.17)
2 Uy 0
where
®max
Lom = / f(©) (cos ©)?sin® ©.J; (kosin ©) exp (ikoz cos ©) dO. (2.18)

0

In Fig. 2.10, we can see the results of Eq. 2.15. In Figs. 2.10a-f are results for radially
polarized doughnut mode. In this case, the majority of the intensity is in the out-of-plane
direction, compare Figs. 2.10d-f. The intensity in the in-plane direction is completely
symmetrical, see Figs. 2.10a, b, d, e around one symmetry axis. The out-of-plane intensity
has rotational symmetry and a Gaussian shape.

Figs. 2.10a-f show the results for azimuthally polarized doughnut mode. In this case,
all intensity is concentrated in-plane, see Figs. 2.10f-1. The symmetry in the in-plane
direction is reversed with respect to radially polarized mode, compare Figs. 2.10a, b and
2.10g, h. For the radially polarized doughnut mode, there is no out-of-plane magnetic
field, while for the azimuthally polarized mode, the majority of the magnetic field intensity
is in the out-of-plane direction, which is opposite behavior to the electric field. This can
be used in designing experiments where there is need for specific electric of magnetic
component. For more detailed discussion, see [92].

2.2.3. Induced polarization

In the continuum model, the inelastic scattering (shift of the frequency of the scattered
light) is caused by the time-dependent susceptibility. This mechanism can be, e.g., acusto-
optic (photoelastic effect), electro-optic (Pockels and Kerr effect), or in the case of spin
waves magneto-optical coupling [104, 105]. This mechanism is usually described by two
contributions: the so-called Voigt effect, which is linear in magnetization, and the Cotton-
Mouton effect, which is quadratic in magnetization. The susceptibility induced by the
magneto-optical coupling (x,o) can be written as

0 iM.Q  —iM,Q BiM2  ByM,M, ByM,M.
o= | | =M@ 0 iM,Q |+ | B:M,M, BM2 ByM,M. ||,
iM,Q —iM,Q 0 ByM,M. ByM,M. ByM?

(2.19)
where M,,M,, M, denote the magnetization vector components, B;,B, are Cotton-Mouton
magneto-optical constants, and () is Voigt magneto-optical constant.
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In this model, the incident electric field E4 probes the dynamic modulation of the sus-
ceptibility via magneto-optical coupling, which gives the polarization inside the magnetic
material in the form [86, 87, 106]

P(tr) = E4(t,r)x(t,r), (2.20)

where X = Xnat + Xsw(t,7) is a sum of the static material susceptibility X,,.. and of the
additional dynamic contribution caused by spin waves Xqw(¢,7). It should be stressed out
that the modulations in the susceptibility caused by magnons are on a vastly different time
scale than the optical cycle of the probing photons. Thus, from the light’s point of view
the situation is somehow similar to the scattering on a static grating. As a consequence,
there is a mixing of the frequencies both in temporal and spatial domains, namely

P(w.kp.,2) = X(Wm,km,2)Eq(w — wm,kp — km,2), (2.21)

where w denotes the frequency of the induced polarization, kp stands for its in-plane
wavevector (parallel to the magnetic layer), while wy,, and k,, represent their magnon
counterparts. This equation represents the convolution of the Fourier images of the sus-
ceptibility x and the driving field E4. The vertical profile of the dynamic magnetization
(along z) depends on the exact geometry and mode of the spin wave and should be
considered for precise calculations. In the presented analysis, we disregard this depen-
dency. However, this approximation can be insufficient in the case, where there is strong
dependency of mode profile on z-coordinate comparable to the penetration depth of the
light. This can especially be true for transparent materials like Ytrium-Iron-Garnet (YIG),
where the penetration length can be longer than the sample thickness. Another approxi-
mation, which can be safely made, since w > wy,, is to drop the exact dependence of the
driving field on w,,. Thanks to this approximation, the driving field E4 can be calculated
numerically, or in simple geometries even by analytic formulas.

Example of the induced polarization in a Permalloy layer

We present a semi-analytical calculation of the induced polarization in reciprocal space
(Eq. 2.20) in the 30nm thick NiFe slab on the silicon substrate with magnon frequency
of wy, = 27 GHz. The calculation starts with the semi-analytic calculation of the electric
driving field (E,), see Fig. 2.11a, b, ¢. The z-component (in polarization axis of the
incident light, Fig. 2.11a) has intensity higher by approx. two orders of magnitude
in comparison to y- and z- components. While z-component has polar symmetry, the
y-component has four-fold (see 2.11b) and z-component has two-fold symmetry in the
polarization axis (see 2.11c).

To calculate the magneto-optical part of the susceptibility tensor (x), we have to
obtain all magnetization components. We have done this by following Bloch function
calculation described in Chapter 1. The z-component of the magnetization (Fig. 2.11d)
has no dynamics since the static magnetization points in this direction. In the y- and
z-component (Fig. 2.11e, f) are visible allowed states at the studied frequency. The mag-
nitude is roughly similar, which can be interpreted as a nearly circular precession of the
magnetic moments. There is a phase delay of 90 degrees (n/2) between these two com-
ponents, but since we show squared value, this is not directly visible on the presented
plots.

We calculated the resulting polarization using a built-in 2-dimensional convolution
function in Matlab 2022b and considering only linear Voigt contribution. The code is avail-
able on the code-sharing platform [107]. The polarization currents are then calculated by
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Figure 2.11: The calculation of the induced polarization. a, b, ¢ The squared Fourier-
transformed z- (a), y- (b), and z (¢) component of the electric driving field E4.
d, e, f The squared Fourier-transformed magnetization z- (d), y- (e), and z (f)
component. g, h, i The squared Fourier-transformed induced polarization z- (g),
y- (h), and z-component (i).
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Figure 2.12: Schematics of the geometry for far-field transition. The light is focused
on the magnetic layer by the objective lens, which is in the superstrate (usually
air). We can assume an arbitrary number of layers above (coating) and beneath
the magnetic layer. The polarization (radiation source) is placed in the middle
of the magnetic layer. For simplicity, we assume for all materials p = 1.

the equation Eq. 2.21. We can observe that the current in z-component (Fig. 2.11g) has
one order of magnitude lower intensity in comparison to the y- and z-components (Fig.
2.11h, i). Also note that polarization currents with free light inaccessible wavevectors are
formed (in this case k > 10rad/pum).

2.2.4. Far-field transition

The polarization vector in (2.21) acts as a local radiation source that eventually forms
the detected BLS signal. The contribution of a particular spatial frequency to this signal
is determined by its ability to efficiently couple to the free space continuum and pass
through the optical setup towards the detector. In the case of the so-called k-resolved
BLS, the spatial frequencies are given by the wavevector of the incident light and its angle
with respect to the sample normal. In the case of the micro-focused BLS, the range of
spatial frequencies that can reach the detector is mainly limited by the numerical aperture
of the used objective.

The transition from polarization source to far-field can be mathematically expressed
using Green’s function formalism

Err(w.ky) = G(wky k,)P(w,k)). (2.22)

The dyadic Green’s function® G(w,kp,k;) embodies the response of a system to a local
source and it can account fully for the presence of any scattering object, substrate effects
or complex geometries. The term dyadic means here that it relates the spatial frequencies
of polarization (w,k;) to the spatial frequencies in the far field (w,kp).

Here, we present a representation of the Green function for (possibly) multilayer con-
tinuous film® with Gaussian illumination by the objective lens. We use the theory devel-

8This approach is general and can also be used for solving complex anisotropic cases (such as the
presence of the resonator, see chapter 4).
9This is commonly called stratified medium.
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oped by Sommerfield [108] and further extended by Weyl [109]. The approach follows the
explanation in the book Principles of Nano-Optics [92].

We assume infinite layers in xy plane with broken symmetry in z-direction, as depicted
in Fig. 2.12. The superstrate (in our calculation air) and substrate are semi-infinite also
in z-direction. Between them, we assume a stack of optically active layers, of which at
least one is magnetic'®.

Now, the dyadic Green function can be formulated as follows:

A

G(k,) = @ // d*ky, M exp (kzstmaglay.), (2.23)

where
k2 — k2 —kyky  Ekpkys

—koky KK thyk, |, (2.24)
dhoky gk k2 — k2

~ 1
 k2kgs

Tmag.lay. 1s @ thickness of the magnetic layer, ks is a wavevector in the magnetic material,
and k,, = ,/k? — k2 — k2 is its longitudinal projection. The sign + at some terms in

2.24 is for back-scattered waves (+) and for forward-scattered (—) waves. This dyadic
Green function allows us to calculate propagating and evanescent waves originating from
all orientations of polarization P. To properly calculate the field that is back-scattered
to the far field, we have to include the refraction and reflection on all involved boundaries.
We can calculate transmission and reflection on all boundaries for p- and s- polarization
by using the following set of equations

kzs - kzs
7 (kg ky) = kiﬁ (2.25a)
2k,

12 (kg key) = kl% (2.25b)
» _ ok — €1k, 295
(ke ky) eoks1 + €1k (225¢)

2
. O (2.25d)

ok + €1k, | €2

Now, by employing the transfer-matriz method, we can calculate effective transmission
and reflection coefficient for s- and p- polarized light for both direction (back-scattered and
forward-scattered) light [110, 111]. However, to apply this transfer-matriz method to our
dyadic Green function, we have to decompose it to the s and p parts. This decomposition
can be accomplished by splitting the matrix M to

» . K2 —kky, 0
M =—F—— | —kk, Kk 0 (2.26a)
k(282 0 0 o
1 sk kukoky, Lk (K2 + K2
M=—_ kyskok, sk th, (K2 +k2) |, (2.26b)

k2 (k24 k2) th, (K24 82) £k, (242 (K24 k) Jhae

0Tn our practical examples, we assume only a single NiFe layer between air and silicon.
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Now, by multiplying M’ and M’ by appropriate reflection and transmission coeffi-
cient, we can obtain a full electric field in the far field. However, for practical calculation,
we transform the above result to spherical coordinates [110]. In spherical coordinates in
the far field, the radial component must be zero, simplifying the problem only to the 2 x 3
matrix. For transferring to spherical coordinates, we use the following substitution

Mg = —sinpM,5 + cos pM,g, (2.27a)
Myp = —sinp cos VM,s + sin ¢ cos UMz — sin VM 4. (2.27D)

Using 2.27 and 2.26 we get

N 1 2 _ 1.2 _ 1.3 2
i — - < By (K2 = k2) =3+ kok? 0 ) (2.280)
b (K2 + 12) 0 0 0
. 0 0 0
M’ = ks 4k VERRZ(14RS) ] (2.28Db)
ksy/k2+k2 kK2 +h2 k3kas

By inserting (2.21) into (2.22) and integrating over all spatial frequencies supplied by
the driving electric field, the far-field angular spectrum becomes

Err(wnKmw K,) = / A2k, G (wkp k)X (@ Kin ) Ea (@, K — ). (2.29)

Another important aspect of the BLS detection process is the limited area from which
the signal is collected. This is equivalent to the statement that only rays virtually parallel
to the microscope’s optical axis can successfully reach the detector. Assuming that the
collection spot has a Gaussian spatial profile h(z,y) = e~ (@ Hy?)/w? , the detectable portion
of the far-field radiation amounts to

Bre(r)) = hir)) [ & Ben(k,), (2.30)
kep <koNA
where the integration limits reflect the restrictions placed on the spatial frequencies by
the numerical aperture of the objective lens.

Finally, to estimate the strength of the BLS signal at a particular frequency wy,, one has
to sum up the contributions from all magnons (i.e., integrate over k;,). The exact nature
of this summation depends on the coherence properties of the magnon population. In the
case of thermal magnons (which are inherently incoherent), the proper procedure is to
add intensities originating from individual magnon contributions. In the case of coherent
magnons (e.g., excitation by vortex core motion), one must account appropriately for the
phase and sum of all waves before calculating intensities. The modeled BLS signal for
thermal magnons (integration after squaring) reads

o(wm) :/d2r|| /dzkm

2
hry) / &2k, o) / A2, G (ke K,) K (W ) B (K, — k)|

kp<koNA

(2.31)
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Figure 2.13: Radiation of the dipole oriented along Cartesian axis. a, b, ¢ Magnitude
of the electric field, which is able to arrive at the detector, in the plane of dipole
oriented along z- (a), y- (b), and 2- (c) axis. The arrows show the orientation of
the electric field at a certain moment in time and help to visualize polarization. d,
e, f Representation of the summed electric field intensity using Lissajous curves.
The dipole is oriented along z- (d), y- (e), and z- (f) axis. Due to the rotational
symmetry in (c), there is no net electric field in (f).

while for coherent magnons (integration before squaring), we get

2
U(wm) :| /d27’|| /ko,m h(['”) /dzk-p eikp'rﬂ /dzk;é‘t(kp,k;) X(wm,km)Ed(k; — km)
kp<koNA
(2.32)

Dipole radiation

To see the behavior of the developed theory, we calculated the resulting far-field of the
dipoles with k& = 0 oriented along the direction of all three axes (z, y, and z), see Fig. 2.13.

The in-plane oriented dipole radiation (Fig. 2.13a, b) creates identical results, which
are just rotated by 90 degrees. The resulting net electric field in the perpendicular axis to
dipole radiation is near the numerical error (approximately 13 orders of magnitude smaller
than the net polarization in the axis parallel to the dipole orientation). This is caused
by the compensation of the perpendicular electric field (see the mirror symmetry along
y = 0 in Fig. 2.13a, or x = 0 in Fig. 2.13b). The polarization state is visualized by the
use of Lissajous curves. These curves show the E, and E, values through one period of
oscillation. The straight lines correspond to perfectly linearly polarized light, which is the
case for Fig. 2.13d, f.

In the case of the out-of-plane oriented dipole radiation, we get a rotationally symmet-
rical shape, with the polarization axis aligned to the center (see Fig. 2.13c). The electric
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field magnitude forms a doughnut shape with zero intensity in the center. Due to the
rotational symmetry, the net electric field (polarization) is equal to zero (see Fig. 2.13f).

2.2.5. Resulting BLS spectra

In this section, we use the built theory to show the effects of the various factors on the
resulting u-BLS spectra. We investigate thermal spin waves in various external fields and
thicknesses of the magnetic layers. The consequences of the different geometries, numerical
aperture, filling factor, and Cotton-Moutton effect is investigated on the coherent spin
waves.

Thermal spin waves field sweep

Zeeman energy is one of the factors that contribute to the spin wave frequency. If the
magnetization is saturated to the direction of the applied magnetic field, then with higher
applied field, the spin wave frequency is increased, i.e., the spin wave dispersion is shifted
to higher frequencies. The increase of this energy also changes the slope of the dispersion
and the lifetime of magnons.

In Fig. 2.14a, the BLS spectra are calculated according to Eq. 2.31 for NiFe 30 nm thin
film. In all fields, we can observe two peaks. The one with lower frequencies corresponds
to the fundamental mode, while the one with higher frequencies corresponds to the first
perpendicular standing spin wave mode. The decrease of the BLS signal with higher fields
can be observed, which is caused by the decreased spin wave population (the chemical
potential —1 THz is assumed). The used theory assumes that there is no evolution in
spin wave amplitude across the thickness of the magnetic layer, which is not fulfilled
for perpendicular standing spin waves. Due to this, the presented theoretical treatment
can not precisely estimate the ratio between these two peaks. This may be solved by
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Figure 2.14: BLS spectra in different external magnetic fields. a, Calculated BLS
spectra using Eq. 2.31 in external magnetic fields from 10 mT to 500 mT. We
used parameters for NiFe and calculated the signal for fundamental and first
thickness modes. The chemical potential is —1 THz. b, c, Slices of the panel
(a) in the lowest (10mT, (b)) and the highest (500mT, (b)) magnetic field.
The dispersion relations in the direction of high symmetry (Damon-Eshbach and
Backward volume) are shown as blue dotted curves for fundamental and fist
thickness modes.
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calculating the induced polarization in many planes inside the magnetic layer. It would
require calculating the focal fields with semi-infinite metallic films and amplitude profiles
of the spin waves in the out-of-plane direction, as done in Sec. 1.5.2.

The linewidth of the first perpendicular thickness mode is solely determined by the
lifetime of these spin waves (for the given parameters). This statement is only valid for
the calculation following the Eq. 2.31. In experiments with the Sandercock type tandem
Fabry-Perot interferometer [112], the frequency linewidth is usually determined by the
instrumental transmission function, as it ranges from several hundreds of megahertz to
a few gigahertz and increase with higher measurement frequencies.

The decrease of the BLS signal towards the higher fields is caused by the fact that
the spin wave frequencies are increased, and as a result (as spin waves obey Bose-Einstein
distribution, as considered in Sec. 1.5.2), their population is decreased.

In the low fields, the fundamental mode exhibits distinct peaks in its lowest frequen-
cies. This peak is caused by the low group velocity (and the resulting high density of
states) of spin waves in backward volume geometry, see Fig. 2.14b, light blue dotted
curve). The group velocity of BV spin waves is very low, as there is competition between
dipolar interaction, which tends to have a negative contribution to the group velocity, and
exchange interaction, which has a positive contribution with higher wavenumbers. As the
field increases, the importance of the dipolar interaction increases as well. In turn, the
absolute value of the group velocity increases, and the minimum frequency (point with
zero group velocity) is moved towards the inaccessible wavenumbers, see Fig. 2.14c, light
blue dotted curve. The resulting spectra then resemble a Gaussian shape.

Influence of the film thickness on the thermal spin wave spectra

The change in the thickness of the film does not affect the frequency of ferromagnetic
resonance (k = 0). However, it dramatically affects spin wave dispersion, particularly
spin wave group velocities. Also, the spin-wave signal is proportional to the interaction
volume, which is decreased when the thickness of the film is low. The light propagation
in the magnetic medium is assumed to be uniform, with just exponential attenuation on
the way to and out of the material. This introduces the power of two to the volume factor
§$. This approach is a good approximation as long as the thickness of the magnetic layer
is not larger than the depth of focus of the used objective lens. To account for this we
introduced a factor (§),

tmag

5= /exp(—kexckoz)2 dz, (2.33)
0

where tn,, is thickness of the magnetic layer, ket is the extinction coefficient of the
magnetic material, and kg is free space wavenumber of the used light. The whole equation
for the BLS signal then reads as

o(wm) :/d2r|| /dzkm
(2.34)

This equation approximates magnetization dynamics with a uniform precession angle
across the thickness of the magnetic layer. This is quite a strong approximation, especially
in the case of the quantized thickness modes. But it also neglect the case of non-zero
wavenumbers or non-zero spin pinning on the layer boundaries.

2
3 h(r)) / A%k, eke I / d*k, G (kyp kL) X (W km)Ea(k), — kn)| -

kp<koNA
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Figure 2.15: BLS spectra of NiFe and YIG with different thicknesses. a, b Calculated
BLS spectra of NiFe using Eq. 2.34 in 10mT (a), and 500 mT (b) of thicknesses
ranging from from 1nm to 100 nm. We used parameters for NiFe and calculated
the signal for fundamental and first thickness modes. The chemical potential
is —1THz. c, Integrated signal of all four shown peaks. d, e Calculated BLS
spectra of YIG using Eq. 2.34 in 10mT (a), and 500 mT (b) of thicknesses
ranging from from 1nm to 200 nm. f, Integrated signal of all four shown peaks.

The resulting BLS spectra for NiFe and YIG layers are shown in Fig. 2.15. The NiFe
is metallic and thus has strong attenuation of the light in the material, with an extinction
coefficient of key. = 3.842. On the other hand, the YIG is almost transparent and has
extinction coefficient kexe ~ 1-107%. On these two examples, we can see the consequences
of different light attenuation in magnetic material. Note, that it is not possible to compare
the strength of the calculated signal between the two materials, as it depends mostly on
the Voigt constant Eq. 2.19, which we assumed () = 1 in both cases.

As shown in Fig. 2.14 in low magnetic fields (Bex = 10mT), the turning point in
BV geometry is accessible by the u—BLS, and this exhibits itself as strong signal in
the lowest detected frequency as can be seen across all thicknesses in Fig. 2.15a. With
increasing thickness, we can observe broadening to both lower and higher frequencies.
This is caused by the increase in the group velocity of the spin waves in all directions.
This increase is more steep in the so-called Damon-Eshbach geometry, thus the spectrum
is more broadened towards the higher frequencies. In the high magnetic field (Bexy =
= 500mT), the BLS spectrum is much more symmetrical, see Fig. 2.15b.

In both magnetic fields, when the thickness of the layer increases, the frequency of the
first thickness mode decreases and is slowly reaching the value of ferromagnetic resonance.
The higher thickness modes were not considered.

In Fig. 2.15¢, the intensities of all four peaks are integrated. In integrated intensities
a fundamental spin-waves (solid lines), we can see that the signal strength reaches the
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Figure 2.16: BLS spectra of coherently excited spin waves in different measurement
geometries. a Calculated BLS spectra by using Eq. 2.32 for polarization along
y-axis (black and red curves) and z-axis (blue and green curves). The spin waves
are propagated in Damon-Eshbach-like geometry (black and blue curves) and
backward-volume-like geometry (red and green curves). b, ¢ The Lissajous curves
represent the polarization state for light scattered on coherent spin-waves with
different wavenumbers. The polarization axis of the driving field E4 was in z-axis
(b), and y-axis (c). The solid (dashed) curves show Damon-Eshbach (backward-
volume)-like geometry.

maximum for thickness of the magnetic layer around 25nm for field of 500 mT, and
50nm for field of 10 mT. This position of maximum signal is determined by the interplay
between the contribution of larger interaction volume and from lower group velocity in
thinner NiFe layers. However, the interaction volume does not increase linearly with the
increasing thickness, and after reaching ~ 70nm is not increased at all due to the fast
decay of the light in the NiFe layer.

In the case of the first thickness mode (dashed lines), the intensity is almost zero for
low thicknesses as the frequencies of these modes reach several terahertz. Due to the
Bose-FEinstein distribution, the population of the magnons on these frequencies is very
low in comparison to the frequencies in the order of several gigahertz. On the other hand,
as the group velocity is increased in the range of the accessible wavevectors for thicknesses
above 40 nm, this results in the decrease of the signal. These two factors cause formation
of the optimal thickness for the signal strength at ~ 50 nm.

The results for YIG films are shown in Figs. 2.15d, e, f. The attenuation of the light
in these layers is minimal, and thus, the signal increases for all calculated thicknesses
of the fundamental modes as the volume factor F increases practically linearly with the
thickness of the YIG layer. In the first thickness mode, we can observe a pronounced
maximum of signal strength at 150nm of YIG layer thickness. This is caused by the
increase of the group velocity in the backward-volume-like geometry of the spin waves in
first thickness mode after it reaches approx. 150 nm.

Influence of the measurement geometry

The BLS signal is also affected by the exact mutual orientation of the wavevector of coher-
ently excited spin waves, driving field polarization, and static magnetization orientation.
These effects are investigated in Fig. 2.16.
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2.2. CLASSICAL DESCRIPTION OF u-BLS

If we assume only the perpendicular orientation of the spin-wave wavevector, static
magnetization, and driving field polarization there are four possible configurations. Let’s
assume that the static magnetization always points in the direction of the z-axis. The
highest detection sensitivity for coherent spin waves is reached when the driving field
is perpendicular to the static magnetization (electric field is along y-axis), and parallel to
the wavevector (in so-called Damon-Eshbach-like geometry), see black line in Fig. 2.16a.
On the other hand, the lowest detection sensitivity is reached when magnetization and
propagation direction are pointing in the z-direction and electric field in the y-direction,
see red line in Fig. 2.16a.

The resulting BLS signal is linearly polarized for three configurations — when the
driving field is along y-axis, and when the driving field is along z-axis, and spin-waves
propagates in backward-volume-like geometry. This can be checked in Lissajous curves
representation of the electric field in far-field in dashed curves in Fig. 2.16b and Fig. 2.16c.
Nevertheless, the driving field along z-axis and spin waves propagating in Damon-Eshbach-
like geometry give rise to ellipticity. The major axis of the ellipse is rotated by 90 degrees
with respect to the incident polarization axis. Depending on the magnitude of the spin-
wave wavevector, one can observe the change in the ellipticity parameter.

Influence of the numeric aperture and the filling factor of the objective lens

The numeric aperture has a pronounced effect on the formed polarization in the material
through the change of the driving field Eq4 (see Eq. 2.20, Fig. 2.7), but it also affects the
far-field transition (see Eq2.30). On the other hand, the change of the beam waist before
the back aperture of the objective lens (filling factor) only affects the formation of the
polarization and does not directly influence the radiation process.

Fig. 2.17 illustrates the effects of both previously mentioned factors. In Fig. 2.17a, b,
one can observe that with a higher numeric aperture, higher wavenumbers can be de-
tected. This increase is linear, with the slope of (15.9 + 0.2) rad/pum and intercept of
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Figure 2.17: BLS spectra calculated for objective lenses with different numeric aper-
tures and filling factors. a Calculated BLS spectra by using Eq. 2.32 for ob-
jective lenses with different numeric aperture (NA) and filling factor of 2. b 2D
map of BLS signal in dependence to numeric aperture and wavenumber. ¢ BLS
spectra in dependence on the filling factor of the objective lens with a numeric
aperture of 0.75. All panels assume the 30 nm thick NiFe layer on a silicon sub-
strate.
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2. THEORY OF INELASTIC LIGHT SCATTERING

(0.9 4+ 0.1) rad/pum. Also the strength of the signal and shape of the spectra are changed
as well, see Fig. 2.17a.

In the cases of the varying filling factor, the situation is different. In the range from
0.7 to 2, there is only a small variation of the highest detectable wavenumber (from = 9.5
to 10.5rad/pum). In the cases of lower fillings factor (0.01—0.5) we can observe linear
increase with the slope of (8.1 + 0.2) rad/pm and intercept of (5.33 = 0.09) rad/pm.

Influence of the Cotton-Moutton effect

In all previous calculations, we assumed that the Cotton-Moutton effect does not con-
tribute to the formed BLS signal. However, in reality, there could be a small contribution
from this second-order magneto-optical effect. If there is a product of the two dynamic
magnetization components (e.g. in geometry where the static magnetization is along z-
axis products of M,, and M,), the resulting signal would be present on the double of
the frequency of spin waves. However, if there is the product of the dynamic and static
components, the resulting signal would be on the same (spin wave) frequency [86].

The case of the increasing Cotton-Moutton constant (relative to the Voigt constant @),
see Eq. 2.19) is investigated in Fig. 2.18 for spin waves propagating in backward-volume-
like geometry. In the case of the electric field parallel to the static magnetization, we can
observe an increase in the detected BLS signal, see Fig. 2.18a. On the other hand, when
the electric field is perpendicular to the static magnetization, the BLS signal decreases
with increasing Cotton-Moutton constant, see Fig. 2.18b.

In geometries, where the driving field is parallel with the static magnetization, the
change of the polarization state of the far-field light is possible. However, the exact
influence depends on many factors and needs to be investigated separately for each case,
and general discussion is beyond the scope of this thesis.
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Figure 2.18: BLS spectra with different Cotton-Moutton constants. a, b Calculated
BLS spectra by using Eq. 2.32 for different Cotton-Moutton constants (while @ =
= 1) for geometry where driving field is parallel (a), and perpendicular (b) to the
static magnetization. The other parameters are: NA=0.75, f = 2, tNjpe = 30nm.
The spin waves are propagated in backward-volume-like geometry.
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2.3. PHENOMENOLOGICAL MODEL OF THE BLS SIGNAL

2.3. Phenomenological model of the BLS signal

The theory developed in the previous sections is robust and, with modification, can ac-
count for various discussed effects but also for, e.g., the presence of the scattering cen-
ter [113], nonlinear phenomena [114], or different optical properties. However, it is not
suitable for quantification of the detection efficiency of the BLS setup. For this task,
I developed a simple phenomenological model based on the following equation

ons (f) = // D (fikdey) T (o k) ok, + b, (2.35)

kz,ky

where D (f,k,,k,) is the density of states of spin waves, bg stands for the background
signal, which could be caused by a dark current in the detector, inelastic scattering on
the phonon modes or by stray light, I' (k,,k,) is an instrumental detection function and
opLs (f) is the measured signal. We assume that the detection function I' has a Gaussian

form

k2 K2

2 (HWTM, /v2In10)’ o 2 (HWTM,/v2I10) )’ (2:30)

['=Aexp

where A is the strength of the measured signal, k, (k,) is the spin-wave k-vector in z (y)
direction, and HWTM, (HWTM,) is half width at tenth of maximum of the detection
sensitivity for spin-wave k-vectors in z (y) direction. To quantify the enhancement of the
BLS signal in our data, we only fit two parameters A, and HWTM.

This phenomenological model was used to fit experimental data from 30 nm thick NiFe
layer at 50 mT and 550 mT, see Fig. 2.19a, b. Even with this simple model, we can achieve
perfect agreement with the experimental data in both measured fields. The advantage of
this approach is that it does not require input parameters of the setup and thus can be
used to quantify the detection efficiency with respect to the specific wavenumber. Note,
that the analytic BLS model (Eq. 2.31) was not fitted but calculated based on the known
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Figure 2.19: Comparison between Phenomenological model, BLS model, and exper-
imental data. a, b Calculated BLS spectra by using Eq. 2.35, and Eq. 2.32
for 30nm thick NiFe layer in 50mT (a) and 550 mT (b). Blue curves represent
backward-volume (dashed line) and Damon-Eshbach (solid line) dispersion.
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2. THEORY OF INELASTIC LIGHT SCATTERING

set of parameters. The advantage of this approach is that it can predict the behavior of
the detected signal with respect to various instrument-related parameters.

In order to achieve good agreement between the analytic model and experimental data,
the numeric aperture of the lens had to be lowered by 0.1 to NA = 0.65. This is caused
by inherent aberration to the used objective lens and imperfection in the alignment of the
setup during the measurement.

2.4. BLS in the presence of a scattering center

In this section, I lay theoretical foundations for the description of the main topic of this
PhD thesis: enhancement of the BLS signal by the presence of the scattering center.
First, I divide the materials based on their optical response into two classes: metallic
and dielectric. Afterward, the Mie theory of scattering of electromagnetic waves on the
spherical particle in a homogeneous medium is introduced together with a simulated disk
on the NiFe layer. The differences between the electromagnetic field distributions between
the case of metallic and dielectric particles are discussed. Finally, I present the calculation
procedure developed by Martin Hrton for obtaining the BLS signal in the presence of the
scattering center with a discussion of the role of electromagnetic field shaping, induced
polarization, and transition to the far field.

2.4.1. Mie theory

The theory of scattering of light on particles was first introduced by Gustav Mie [115].
The theory calculates scattering and absorption cross-section depending on the material
of the sphere, its diameter, and the medium in which the sphere is immersed. From the
perspective of optics, the most important material parameter is its dielectric function ().
Dielectric function is connected to the index of refraction (n) by following relation

n?=e. (2.37)

Please note, that dielectric function and index of refraction are complex. The imaginary
part represents the optical losses of the material.

In general, dielectric function depends on the light frequency. Based on this depen-
dency, we can (crudely) divide materials into two groups: dielectric and metallic. Metallic
materials have free charge carriers - electrons. Their behavior (complex dielectric function)
is described by the so-called Drude model [116]

2 2

“p Wy

_wz—{—'yz +2w3—l—'yzw’

e(w)=¢ (2.38)

where e, is the dielectric constant, 7 is the damping collision frequency, and wy, is the
plasma frequency of the free electron gas.

For the dielectric materials with bounded charge carriers, the Lorentz model can be
used. This model is based on the sum of the Lorentz oscillators, which can be formulated
as written as [117]

N (WOJ —w ) al fiwyryjw
2 P Py o A
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2.4. BLS IN THE PRESENCE OF A SCATTERING CENTER

where 7 is number of oscillator, NV is the overall number of oscillators, Wg,j is the resonance
frequency of given oscillator, v; is the damping frequency of oscillator, f; is strength of
oscillator. We note here that these two are only basic models and are sufficient only
for a handful of materials. Some materials even require more complicated descriptions
consisting of more models combined [117].

Mie’s theory assumes that the incident wave is planar, and the scattered one is spher-
ical. Depending on the material of the sphere, we can talk about plasmonic resonance in
the case of metallic materials or dielectric resonance in the case of insulating materials.
The total cross section (oyg) is expressed in the form of infinite series [118, 119]

A

2
2mng

ons = 253 [(27% + 1) (Jas(2mnor /N + |bi(2nn0r/)\)|2)] , (2.40)
where a; and b; are spherical Hankel functions and spherical Bessel functions, respectively.
However, the original Mie theory is not very applicable, as it is restricted to spherical
particles in uniform medium. As the real-world particles with various shapes are often
fabricated by lithography processes on top of a (semi-finite) substrate, numerical solving
of the Maxwell equations is used to predict their optical response to arbitrary shaped
light.

We present the results of the original Mie theory applied to a 180 nm-wide sphere in
the air made out of silicon and silver in Fig. 2.20a, and 180 nm-wide disk out of silicon
and silver as well on top of a 30 nm thick NiFe layer on silicon substrate Fig. 2.20b. First,
we discuss the case of silver (metallic) particle. We can observe that for the silver sphere
and for silver disk, for wavelengths ranging from 200 nm to 300 nm, the scattering is kept
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Figure 2.20: Mie scattering. a, b, Scattering and absorption cross sections. The panel
(a) shows calculation employing the original Mie theory (sphere in homogeneous
medium). The panel (b) shows calculation employing simulation of Maxwell
equations of silicon disk on the NiFe layer. ¢, Index of refraction and absorption
of silver and silicon. d, e, Squared electric field distribution for wavelength
of 532nm in middle of NiFe layer under silicon (d) and silver (e) disks. The
disc circumference is shown as a gray dashed line. Both panels share the same
linear scale. f, g, Squared electric field distribution for wavelength of 532 nm in
XZ-cross section for silicon (f) and silver (g) disks. The profiles of the disks are
depicted by gray dashed lines. Both panels share the same logarithmic scale.
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2. THEORY OF INELASTIC LIGHT SCATTERING

relatively constant. This is caused by the relatively constant index of refraction, see
Fig. 2.20c. Above 300 nm the absorption of the silver sphere slightly falls. This is caused
by crossing the absorption edge of silver, and thus, no light penetrates inside the sphere,
see quick rise in absorption and fall of the index of refraction for silver in Fig. 2.20c. With
further increase of the wavelength, and moving outside the resonance, the absorption
further deacreses. A similar behavior is also visible in the case of a silver disk. However,
it is not pronounced so much because part of the light is absorbed by the NiFe layer and
silicon substrate. At approx. 450 nm the resonance peak is visible for the case of a silver
disk on NiFe. This resonance is most likely caused by the electric dipole resonance, but
for proper analysis, the multipolar decomposition would be necessary [120].

In the case of silicon, the situation is much more constant across the studied wave-
lengths. This is caused by the fact, that there is not so much variation in the index of
refraction (for all wavelengths it is above 1), see Fig. 2.20c. In the case of the sphere in
air, only a small increase in resonance is visible around the wavelength of 700 nm. In the
case of silicon disk on NiFe substrate, we can observe a slight drop in scattering cross
section after wavelength of 400 nm, which is connected to the silicon absorption edge, see
Fig. 2.20c.

Now, we discuss the spatial profile of the electromagnetic field in the case of silicon and
silver discs and their differences. The cross-section in the middle of the NiFe layer is shown
in Fig. 2.20d for the silicon disk and in Fig. 2.20e for the silver disk. We can observe that
in the case of the silicon disk, the majority of the electric field is concentrated under it.
On the other hand, under the silver disk, the situation is completely reversed, and the
majority of the electric field is around the disk. This is caused by the huge difference
in the transparency between the two materials. The silicon disk is at this wavelength
(532nm) absorbing, but transparent medium (n > 1). In the case of silver, the index
of refraction is below 1, and absorption is approx. four times larger than in the case of
silicon, see Fig. 2.20c. Both electric field distributions dominantly resemble characteristics
of the electric dipole resonance. In the case of silver disk, the maximum magnitude of the
squared electric field is higher by approx. 30 % in comparison with silicon disk. Fig.2.20f,
g shows XZ-cross section for silicon and silver disks. In this view, a similar trend can
be observed. The silver disk has squared electric field intensity concentrated to its edges,
while in the case of silicon disk, we can observe electric field distribution inside the disk.

So far, the discussion has focused on the specific case of a disk placed on the top of the
NiFe layer. However, in a more general description, we can summarize that Mie resonances
in dielectric materials (such as silicon) are better suited for far-field applications, where
the penetration of the light into the material is desirable. Moreover, they can have much
more pronounced magnetic resonances (enhance more magnetic field) in comparison to the
metallic particles. These properties allow them to be used in, e.g., so-called metasurfaces
[121]. On the other hand, resonances in metallic (plasmonic) particles provide higher
electric field enhancement and can be miniaturized to smaller sizes.

2.4.2. Calculation of the BLS signal enhanced by Mie resonance

Here, we present the calculation of the BLS signal obtained on the sample with a dielectric
nanoresonator. The calculation is performed in a similar way as previously discussed in
this chapter, however to account for the scattering center, the simulations of Maxwell
equations had to be used.
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Figure 2.21: Induced polarization in case of presence of scattering center. a, b, c
Squared electric field profiles in reciprocal space of each electric field component.
The scale of colorbar is logarithmic. d, e, f, Squared induced polarization in
the NiFe layer. The polarization was calculated for spin waves in 30 nm-thick
Permalloy layer in external magnetic field of 550 mT. The isofrequency surface
for 28 GHz is shown. The colorbar scale is linear.

To calculate the polarization vector in the presence of the scattering center, we solved
the Maxwell equation in time and space and obtained the electric field in the middle of the
NiFe layer. The squared electric field profiles in reciprocal space are shown in Fig. 2.21a-
c. We can observe that in all electric field components, the electric field distributions
span into much higher wavevectors in comparison to the case of illumination of the bare
film, see Fig. 2.11a-c, where it was limited to approx. 10 f—rfl. Also note that z-component
has no longer full polar symmetry, while the y-component keeps the four-fold symmetry,
and z-component keeps the two-fold symmetry. All three components have comparable
squared electric field strengths. This electric field is subsequently used for the calculation
of the polarization vector by using Eq. 2.20, see Fig. 2.21d-f. We can observe that in
the case of the presence of the scattering center (Fig. 2.21d-f) polarization with much
higher wavevectors is induced, in comparison to the case of the bare film (Fig. 2.11g-i),
where it was limited only to approx. 20 f—ri. However, we again stress out, that inducing
the polarization is only the first step. For actual measurement, it is necessary that the
polarization is able to emit towards the far-field and be collected by the objective lens. The
emission of the free-light inaccessible wavevectors (above approx. 10 f—rﬂ) is not possible in
the case of bare film. This emission (as stated before) is described by the dyadic Green
function. In the case of the presence of the scattering center (silicon disk in this case), the
light’s wavevectors are fliped-over to the free-light accessible range, which allows them to
propagate towards the detector and form a BLS signal.

The whole process can be summarized by following equation
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Figure 2.22: Resulting BLS signal in the presence of the scattering center. The
normalized BLS signal was calculated for the case of 180 nm-wide silicon disk
and on bare film for comparison. Both calculations are done for 30 nm-thick
NiFe layer external field of 550 mT. The blue lines show the dispersion relation of
the spin waves in Damon-Eshbach (DE) and backward-volume (BV) geometry.

By solving this equation, with use of numerical tools, we can obtain the BLS spectra
in the presence of the scattering center, see Fig. 2.22. We can observe that the peak
has broadened to both higher and lower frequencies. This suggests that the spin-waves
with higher wavevectors were measured. The broadening towards the higher frequencies
is caused by the increased sensitivity to the spin waves propagating in Damon-Eshbach
geometry, whereas the broadening towards the lower frequencies is caused by the increased
wavevector sensitivity to spin waves propagating in backward geometry.
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3. Experimental methods

This chapter describes used setups and experimental techniques. The most important
technique for this work is Brillouin light scattering. The inelastic scattering theory has
already been described in previous chapters, so the following section only deals with ex-
perimental technicalities. Furthermore, I briefly discuss ferromagnetic resonance measure-
ment for magnetic characterization, scattering measurement for optical characterization,
numerical solving of the differential equations for modeling the investigated systems, and
method for extracting dispersion relation from micromagnetic simulation.

3.1. Micro-focused Brillouin light scattering

For experiments, I used a micro-focused Brillouin light scattering setup [123, 124], which
is located at CEITEC Nano research infrastructure. The setup was originally designed
and built by Lukas Flajsman [10]. Most of the optical parts were ordered from Thorlabs,
Inc., microscope was ordered from THATec Innovation GmbH i.L. and interferometer
from The Table Stable Ltd. In the scope of my master thesis, I rebuilt the setup to make
the alignment more convenient, cover the optical path to improve stability and safety, and
upgraded it with the possibility to perform phase-resolved measurements. [122]. During
my PhD, I added the time-resolved functionality.

The schematics of the setup is shown in Fig. 3.1. In the following text, we go through
the individual parts and sections of the used setup. We start at the light source (laser)
and follow the laser beam through Faraday isolator, Fabry-Perot etalon, beam-splitter for
reference beam, polarizer and lambda half plate, electro-optical modulator, microscope,
and interferometer.

3.1.1. Light source

In order to get stable system with minimum noise a single mode laser is necessary. The
light source has to deliver sufficient power to the sample and, at the same time, provide
coherent light without any undesirable modes!. We use two types of laser sources in our
setup, both with wavelength of 532 nm. The first one is Torus from the Laser Component.
The maximal output power from this laser is 200 mW. The second option is Samba by
Cobolt. This laser provides 300 mW of output power and was used for all experiments
presented in the scope of this thesis. Both lasers provide very similar performance, and
currently inactive laser mainly serves as a back-up.

The stability over prolonged period of time, is necessary over the long BLS measure-
ment (e.g. 2D spatial mapping). To test this, we measured the output power over the span
of two hours, see Fig. 3.2a. From the measured data, one can see, that the both lasers

!By undesirable mode we mean light shifted in frequency in respect to the main output.
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Figure 3.1: (a) Schematic of the used BLS setup. (b) Side-view of the microscope module and
electromagnet. (c) The side-view of the two used lasers. Reproduced from [122].
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Figure 3.2: Stability of the used lasers. a, The power measured directly after the output of
the lasers in time-span of two hours. b, The power measured after the Fabry-perot
etalon (mode filter) in time-span of five hours. Reproduced from [122].

oscillate within the 3mW (& 1.5%). Such stability is sufficient for the measurements
presented in Chapters 4, 5, 6.

If the light is reflected back to the output pinhole of the laser, it can interfere with the
feedback loop of the laser and decrease the stability or damage the laser. To prevent that,
a device called Faraday isolator is employed. This device uses the fact that the Faraday
rotation is nonreciprocal, which means that it depends on the direction of propagation
of the light. Nevertheless, the setup can be safely operated even without the Faraday
isolator, if a tiny misalignment of the Faraday isolator is introduced. In that case, the
reflected light can not pass through the output pinhole of the laser, and thus can not
affect its operation. The Faraday isolator was used for all the presented experiments, but
currently the setup is being operated without it.

Next device in laser path, Fabry-Perot etalon?, can be used to further enhance the
spectral purity of the laser light. In our setup we use the solution provided by Table
Stable ltd. [125]. The cavity length is stabilized based on the feedback loop by the
thermal expansion of the metal plate, on which one of the cavity mirror is mounted. The
feedback loop is based on the optimization of the light signal which passes through the
cavity.

The attenuation of the light in the cavity is approximately 8 %. The stable state of
the feedback loop is reached after roughly two hours of operation. The oscillations of the
laser power are increased to = 2 % after the etalon, see Fig. 3.2b.

Next, a small fraction of the light (about 10%) is split in the beam splitter and guided
towards the Tandem-Fabry-Perot interferometer (TFP1i), where it is used for stabilization.

To control the incident power, the combination of the lambda-half plate and polar-
izer is employed. The ability to change the incident power on sample is essential, as in
most experiment the heating of the sample is undesirable as it can change e.g. effective
saturation magnetization, or affect the shape of the spectra by changing the spin-wave
population. The angle of the polarizer is fixed, and the lambda half plate is in automatic
rotational mount. In this setting the polarization axis of the incident light can be freely
changed without any regard to the incident power, and at the same time the power can
be freely changed without any dependence to the incident polarization.

2Etalon consists of the two reflecting glass plates, which allows transmission only of the light with
wavelength that equals to an integer multiples of the cavity length.
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3. EXPERIMENTAL METHODS

In Fig. 3.3a, the dependence of the incident power on angle of lambda half plate
is shown. The powers in range from near zero (0.1 mW) to 15 mW can be achieved. The
incident power exhibits the four-fold symmetry, as the rotation of the polarization angle
by lambda half plate is double the rotation of its axis [126]. The BLS signal strength has
a linear trend in dependence to the incident power, see Fig. 3.3b. This is in agreement
with developed theory in Chapter 2, see Eq. 2.31.

3.1.2. Phase resolution

To allow phase investigation, and thus the wavevector measurement, signal with constant
phase, sufficient coherency, and the same frequency as is the frequency of the studied
spin wave has to be introduced. This is usually done by modulating part of the laser
beam by electro-optic modulator (EOM) [72, 122, 127-129], see Fig. 3.4a. Introduction of
such reference signal with constant phase allows to observe the interference between this
modulated reference signal and the light undergoing BLS process. As the BLS process
conserves the overall phase (the phase of the light is shifted by the phase of the spin wave),
a constructive or destructive interference between the reference and light which undergoes
BLS process can be observed.

In order to get the information about the phase of spin waves, we need to perform five
separate measurements (usually, only four measurements are performed, but the presented
approach gives better sensitivity when the signal from coherent spin waves becomes com-
parable to the thermal background [122]), see Fig. 3.4b. In the first measurement [E(x)],
only the EOM is pumped and we get only the combination of the elastic scattering of
light, which already has the frequency upshifted by EOM, and background signal, which
is incoherent and mostly originates from the thermally excited spin waves. In the second
measurement [R(z)], only the microstrip antenna, which serves for the excitation of the
spin waves, on the sample is pumped, and in this setting only information about coherent
spin waves and background signal is gathered. In the third measurement [T'(z)] pumping
is completely turned off and the gathered signal represents only incoherent background.
In the fourth and fifth measurements [ro(x),rz (x)] both, EOM and microstrip antenna,
are pumped and the signal represents interference between EOM and BLS. The thermal
incoherent background is present in these two cases as well. The disparity between the
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Figure 3.3: Adjusting the incident laser power by changing the angle of lambda half
plate. a, The incident intensity versus the half-wave plate angle. The measured
data (squares) were fitted with the sin2 (red line). b, Signal strength in dependence
on the incident intensity. The measured data (squares) were fitted with a linear
function (red line). Reproduced from [122].
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3.1. MICRO-FOCUSED BRILLOUIN LIGHT SCATTERING

fourth and fifth measurement is in the phase-difference between the EOM pumping. This
difference has to be set exactly to the n/2rad.

Once we measure all five signals, the complex spin-wave function can be calculated
as

ro(x) — R(z) — E(x) + T'(x)

Re {\Ifsw(l’)} = 5 E(x) = T(:L») N (3.1&)
rx(z) — R(z) — E(z) + T({B) (3.1b)

Im {Vsw(r)} = 2/ E(z) — T(z)

From this complex spin-wave function (Vsw), the spin wave phase (®gw) can be calculated
as

dgw = atan <;—I2> + s, (3.2)
where s = 0, 1 and it depends on the quadrant of the complex spin wave. In homo-
geneus media, the dependency of the phase on distance from the spin wave source (in
our case microstrip antenna) can be used to get the value of the wavevector of measured
spin wave. The wrapped phase exhibits noncontinuous jumps, where the spacing between
them is equal to the wavelength of the studied spin wave, see Fig. 3.4c. If the phase
is unwrapped, the slope of the linear evolution is equal to the spin-wave wavenumber.
Although this technique is quite straightforward, some precautions should be taken into
account. The BLS signal should be given only by a single coherent wave, the wave should
be in linear regime, and there should be no change of the wavelength/frequency with prop-
agation distance. In cases with good signal-to-noise ratio and decay length-to-wavelength
ratio, the wavelength can be also measured with single interference measurement by fitting
experimental data by following equation

x
r(z) = R(x) + E(z) + \/2R(2) E(2) cos (2”X + <1>0) , (3.3)
(@) (b) 20 © 2n
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Figure 3.4: Principle of the phase reconstruction using micro-focused BLS. a,
Schematics of the partition of light present in phase-resolved micro-focused BLS.
b, Model of all-five necessary signals to reconstruct the full-phase of spin waves.
¢, Calculated wrapped phase of the spin waves from modeled signals in panel (b).
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3. EXPERIMENTAL METHODS

where E(x) is assumed as a constant (for homogeneous samples), A is the wavelength of
spin waves, ®q is the phase offset and the R(x) is exponentially decaying function

R = Ra€Xp (—i) , (3.4)
latt

where Ry.x is the maximum of spin wave intensity and [, is the propagation length. This
expression is shown in Fig. 3.4b as green and blue solid lines. By fitting the Eq. 3.3 to
experimental data, one can obtain wavelength (wavenumber), amplitude (Rp.y), and
decay length. But usually, from this fit only the wavelength is of interest, as other
fitting parameters does not give reliable results, and it is generally better to obtain these
parameters from fitting the intensity measurement [R(z)].

Experimental realization

In our setup the EOM is placed in the focal point of the beam expander to achieve good
throughput, see Fig. 3.1. The beam expander consits of the two lenses with focal lengths
of 100 mm and 300 mm. This ratio expands the beam by a factor of 3 to approx. 5 mm in
diameter.

The schematics of the radio-frequency (RF) elements is shown in Fig. 3.5. The RF
signal is formed in signal generator R&S SMB100A. This signal is split by Narda-ATM
P214H 3dB power divider. To allow for full automation of the measurement, the PC
controlled RF switches Teledyne CCR-33S8E-T are employed.

First, let’s discuss the right branch (connected to the antenna on sample). After the
switch, the amplifier can be optionally placed. The SMB100A signal generator can provide
max 10dBm of RF power. This is usually insufficient for investigation of the non-linear
phenomena in metallic samples, as e.g. parametric pumping. In our setup, we usually use
Nextec-RF NB00441, or NB0O0616 amplifiers. The NB00441 works in the frequency range
of 2-20 GHz and can achieve the power up to 20dBm. The second amplifier, NB0O0616,
can achieve higher powers up to 32dBm. but is limited to narrower frequency range of
8-14 GHz.

Signal = oooo
genérator| 2 H8HE O 8
Oos oooo (P
Phase 3 dB power divider
shifter  Attenuator P
d |—| _/
RF switch RF switch
(RF amplifier) Multimeter
= o : GND [ Joo
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Uf)u 47Q

Figure 3.5: Schematics of the phase-resolved RF setup. This schematics only shows
the parts of the setup related to the RF. For the light part see Fig. 3.1. The RF
amplifier (in schematics in brackets) is only optional, and is used when the high
RF power is needed. The resistor with resistance of 47 ) is connected parallel to
the investigated antenna to protect it from burn by measurement current.
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3.1. MICRO-FOCUSED BRILLOUIN LIGHT SCATTERING

To check proper electrical contact between the contacting RF probe and fabricated
antenna we can measure DC resistance. To protect the delicate (nano) antenna structures
on the sample a resistor with resistance of Ry; = 47 (2 is connected parallel to the contacted
antenna. In such setting the current is flowing constantly through this resistor, and thus
the structures on sample are protected from sudden peaks caused by e.g. static discharge.
The resulting resistance of contact and antenna structure (R,) is then calculated from the

measured resistance (Ry,) as .
474
R, = Ro R (3.5)

Now, we discuss the left branch (connected to the EOM). To suppress uncertainties
caused by the noise one has to balance the signal strengths between the EOM and BLS.
For this purpose the attenuator AV884H-10-ITI by Impulse Technologies Inc. is employed.
Usually, the output power is set on signal generator to provide the highest spin-wave
amplitude in linear regime. Then the operator needs to investigate the approximate
distance where the signal becomes undetectable due to the thermal background. Then
roughly in the middle between this point, both signal strengths are equalized with use of
the attenuator.

To change the phase of EOM signal, for acquisition of the signals rz (), and ro(z), the
motorized phase shifter Narda-ATM P1507-28 is used. Due to the motorization, operator
is able to precisely set the number of required steps to achieve the phase shift of 90 degrees
(n/2), thus the experimental systems with signal strength comparable to thermal back-
ground can be easily measured®. After this, the signal finally reaches the EOM QUBIG
TW-15M1-VIS. The output port of the EOM is terminated by 502 terminator.

3.1.3. Microscope

To allow for precise navigation on the sample and sharp focus, a reflective microscope
is built on a rigid aluminum construction. To guide the light to top platform, a periscope
is used, see Fig. 3.1b. The light then goes through 90:10 beam splitter cube, where 90 %
of light is damped and only 10 % passes through. In this way, we are able to recover 90 %
of the BLS signal, and as the laser provides sufficient power, this configuration is optimal.
Above the objective lens, a dichroic mirror is placed. This mirror is tuned to reflect the
green light, but pass through red light. This behavior is used to separate lights used for
imaging (red) and for measurement (green).

In majority of the experiments we use an objective lens with the high numerical
aperture of 0.75 (Zeiss LD EC Epiplan-Neofluar 100x/0.75 BD). The combination of
the imaging system and nano-positioning stage is utilized to position the laser spot on
the sample. The zyz-stage by Physik Instrument is used (V-551, and V-501), which
allows positioning with precision down to 1nm and also has long travel range enabling
the automatized transfer from contacting microscope (large view-field) to measurement
objective lens. Amortization of this transfer makes it easier to find the areas of interest
with big view-field.

The same objective lens collects the back-scattered light. The light then shares the
same path with the incident light until the 90:10 beam splitter cube. Now the 90 % of light

3Typically, in setups where the non-motorized phase shifter is used, the procedure is as follows:
operator puts the laser spot near the antenna to get high signal. Then, maximizes the signal with phase
shifter. After that, the operator moves the phase shifter to either direction while counting the revolutions
until the minimum is reached. Afterwards it is necessary to divide the count by two and move the phase
shifter by this count in opposite direction.
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3. EXPERIMENTAL METHODS

is reflected to the periscope. After two more mirrors, the optional 90:10 beam splitter
cube can be included to use part of the light for maintaning focus. This cube is placed
in a way, that 90 % of light is transmitted and 10 % of light is reflected. The reflected
light then passes through the lens with small focal distance at which an aperture is placed.
After the light passes through the aperture, it hits a photo-diode. If the sample is in the
focus, the backscattered light will be focused to infinity, and transmission through the
aperture would be maximized. By sweeping the z-position of the sample, one can find this
maximum. Such procedure can be performed several times in between the measurements
to maintain good performance e.g. through long 2D scans. In this approach, the 10 % of
signal is lost. The preferable option is to use focusing using the imaging system.

Imaging system

The system is equipped with both, bright field and dark field imaging systems. The
bright field system uses the red light generated in LED. This light is divergent; thus, we
use a system of lenses to focus the light on the back aperture of the objective lens. The
bright field imaging system is also used to navigate the sample and contact the RF probes.
For this purpose, we split the red light on the beam splitter (see Figure 3.1) and guide
it towards the lens with a focal distance of 150 mm. The view-field of this navigation
system is in order of millimeters, while the system with an objective lens has a view-field
of 60 pm.

The dark field option is available only with the objective lens. This is realized by the
white LED with an output power of 2W. The light is also collimated by the lens and its
angle of incidence is around 70 degrees from normal incident, so the reflected light is not
directly collected by the objective lens.

The autofocus routine is implemented in similar fashion as with laser light. The z-
position of the sample is swept. In each z-position, Fourier transform of image is per-
formed, and region with higher reciprocal wavevector (details) is summed and saved
as a scalar value. These scalar values then resembles Gaussian shape in dependancy
to the z-position of the sample. Then the position with the maximal value is selected.
The necessary ingredient for this routine is, that some structures with details (i.e. litho-
graphically prepared or dirts) are present on the sample.

Magnetic field

To create a magnetic field in the sample plane, we use electromagnet GMW5403 on the rail
system (see Figure 3.1). The power to the magnet is supplied by the two bipolar current
sources KEPCO BOP20-DL, which are connected in parallel. The maximum available
field is approximately 670 mT. The field is measured with hall probe LakeShore 450,
placed slightly off center and corrected by a linear factor of 0.96.

3.1.4. Tandem-Fabry-Perot interferometer

To analyze the frequency of the scattered light, the so-called Fabry-Perot interferometer
is utilized. It consists of the two high reflectivity mirrors, with perfectly flat surfaces
mounted parallel to each other. Due to the constructive and destructive interference,
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3.1. MICRO-FOCUSED BRILLOUIN LIGHT SCATTERING

only the light with specific wavelength can pass through it. The transmission function of
single Fabry-Perot interferometer can be expressed as

1

F=torrp /72)sin? (2nL/N)’

(3.6)

where Tj is the maximal transmission (limited by the absorption of the mirrors and the
system in general), F' is a finesse of the mirrors, L is the cavity length, and \ is a wave-
length of the used light. From the Eq. 3.6, it can be seen that the transmission function
have several transmission peaks separated by multiplies of the wavelength. The finesse F'
defines the quality of the interferometer transmission and is defined as [112]

/R

F= R (3.7)

where R is a reflectivity of the Fabry-Perot mirrors. Thus a higher reflectivity would
result into the better transmission characteristic.

In BLS experiments, one has to achieve the resolution in the order of hundreds of
megahertz and at the same time free-spectral range at least in the order of gigahertz.
Knowing the fact, that the frequency of the used light is approximately 563 THz, the
interferometer has to be able able to resolve changes in the order of ~ 107%. Also, as the
cross-section of the BLS process is very low, the desired contrast has to be higher then
10 [112].

To tackle these challenges, one can use the two Fabry-Perot interferometers with dif-
ferent cavity lengths in series, so-called vernier arrangement [112, 130-132]. In this design
the change in the cavity lengths has to obey the following relation

AL, L
ALy Ly’

(3.8)

where L (AL)is length (change) of the first and second cavity.

Such design is really cumbersome, as the cavity lengths have to stay perfectly syn-
chronized during the scanning. One of the first approaches was to change the air pressure
in both cavities simultaneously, and thus the resulting optical length was changed syn-
chronously. However, this approach cannot provide long scan ranges [132, 133]. The
Sandercock’s design of tandem Fabry-Perot interferometer (TFPi) consists of the two
Fabry-Perot cavities. The lengths of both cavities are different but are bounded by the
following geometrical relation, where ¢ is the angle between both cavities and is given by
the construction geometry (see Fig. 3.1)

Ly = Ly cos?. (3.9)

The multiplication of the transmission function of individual cavities then gives the overall
transmission function. The demonstration of this principle is shown in Figure 3.6. In
Fig. 3.6a, b, the transmission functions of the two Fabry-Perot cavities are shown. Both
cavity lengths are aligned in a way, that light with wavelength exactly 532 nm can pass
through it. We can see, that the single cavity cannot provide sufficient free spectral range?,
see Fig. 3.6d,e. Now, if we multiply these two transmission function we get much larger
free spectral range, see Fig. 3.6¢, f.

4Free spectral range is frequency (wavelength) distance between the two transmission maxima, and
effectively defines the largest possible continuous scanning range.

99



3. EXPERIMENTAL METHODS

1.0 1

8jg:(a> 0.8]@ F$R =281 MHz
0.6 - 0.6 1
0.4 4 0.4 1
024——5.32mm 0.2 1
0.0 0.0
f] 10_ T 1 10_ T T T T T
?; 081 ||| } | é 084©  Hsr - 206 v
% 0.6 % 0.6
0.4 £ 0.4
g 024——505mm S 021
= 00 = 0.0 A\
8] 0.020 7
0.6 0.015
0.4 : 0.010 -
0.2 1 In series 0.005 4
0.0 . . 0.000 1
531.99 532.00 532.01
Wavelength (nm) Frequency (GHz)

Figure 3.6: Transmission characteristic of the tandem Fabry-Perot interferometer.a,
b, ¢, Transmission depending on the wavelength for FPis with (a) L; = 5.32 mm,
(b) L; = 5.05mm and (c) both in tandem operation. d, e, f, details of (a), (b)
and (c).

In the Sandercock’s type of TEFPi, the free spectral range (FSR) can be calculated
as [134]
c 150

FSR= —~ — 3.10
2L, Ly’ (3.10)
where ¢ is speed of light. The calculated free spectral range is shown in Fig. 3.7a. The
FSR of ~ 1THz can be achieved, with the mirror spacing of 50 um. But it does not
mean, that the measurement is limited only to this values, as one can also measure in
between the higher transmission maxima (in second, third, ..., FSR window). Note, with
shorter mirror spacing, the resolution is decreased. This can be calculated by the following

formula [12, 134]

FWHM = FSR/F. (3.11)

Fig. 3.7b shows calculated FWHM of the transmission function for mirrors with finesse of
100. For short L; the FWHM is improving rapidly. In 3mm, which was setting for most
of the experiments in this thesis, the FWHM is around 0.5 GHz. At 20 mm, which is still
achievable with reasonable operator’s persistence, the FWHM is below 0.1 GHz.

3.2. Ferromagnetic resonance measurement

The setup used for ferromagnetic resonance (FMR) measurement was developed by Véclav
Roucka and Marek Vanatka [14, 135]. During my PhD, I improved the setup by using
a bigger water-cooled magnet with much larger pole pieces providing a homogeneous
external field. Moreover, the magnet provided higher fields (up to approx. 1.7 T), allowing
the proper analysis of magnetic damping. The analysis procedure is based on the codes
written by Marek Varatka [136].
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Figure 3.7: Characterization of TFPi depending on the mirror distance L;.a, b, Free
spectral range (a), and FWHM (b) in dependence to the mirror distance L;.

3.2.1. Theory of FMR

The ferromagnetic resonance is a state when the magnetization of a sample is in precession
with the same phase. Also, it can be understood as the limiting case of spin waves for
k = 0. The theoretical description for the simplest case (without any anisotropy and for
the external field applied in the in-inplane direction) is given by [137]

Winr = Wi (wn + wn), (3.12)

where wy = oY Hext, wnm = o yMs, 1o is permeability of vacuum, v is gyromagnetic ratio,
H., is external field, and Mg is saturation magnetization. By analysis of the mutual
dependency of the terms in the Eq. 3.12, one can see that if applied external field is com-
parable in magnitude with pyMs, the gyromagnetic ratio and saturation magnetization
can be deduced from a single dataset.

Historically, the FMR was measured using the microwave cavities tuned to the spe-
cific frequency [138, 139]. With advent of the more sensitive instrumentation the so-called
broadband FMR became possible. In such setup, we usually sweep both, external mag-
netic field and frequency|[14, 139, 140].

3.2.2. Experimental realization of FMR measurement

In presented experiments we used the setup shown in Fig. 3.8. To measure scattering
parameters the vector network analyzer (VNA) Rohde&Schwarz ZVA50 is used. From
these scattering parameters, the power absorbed by the so-called device under test (DUT)?
can be calculated. Scattering parameters relate the reflected and transmitted powers from

the two independent ports
by S St a
= , 3.13
<bz> <521 522><a2> ( )

where a; (b;) is the generated (measured) wave from port i, and S;; is a scattering param-
eter between the port ¢ and j. The scattering parameters are complex numbers, which
represent the both, magnitude and the phase of the measured signal. Usually, the VNA

5In described case magnetic sample.
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Figure 3.8: Sketch of the experimental setup used for FMR measurements. the
electromagnet is placed on the rail, so the sample can be placed without changing
the RF path

outputs S-parameters in form of magnitude expressed in dB and phase in radians. To
calculate the absorbed or transmitted power, one can convert this output to real and
imaginary representation with linear scale

Sijmag

Sijiin = 10710 exp (45 mag) - (3.14)

The transmitted power (for Sjp and So;) or absorbed power (S7; and Ssz) can be
calculated
P = SijPinp> (315)

where P is a absorbed or transmitted power, P, is input power.

The measured signal is influenced by a lot of factors, e.g. bends in the connection
cables, not perfect contact, etc., which results in the not completely flat transmission
characteristic. This background signal can be such high, that especially in samples with
lower signal, can hide all the spin-wave related signal. To get rid of the unwanted contri-
bution one can apply median background subtraction [14, 136]. For this, the scattering
parameter has to be acquired for all frequencies across various externals fields. The field
and frequency range has to be chosen in a way, that in the lowest and highest fields the
spin wave spectra will not overlap (even with broadening taken into the account). The
median subtraction can be expressed as

Sijsub = Sij — Medp (S45) , (3.16)

where Medp is median dependent on frequency (taken in accordance to external field for
each measured frequency).

The analysis in the scope of this thesis is focused to the Sy; parameter, which describes
the transmission from the first to the second port. The resonance frequency can be
described by following function

g ot 2A w
12,sub - ?/O T 4(f _ fFMR)2 + w27

(3.17)

where A is a area of the peak, w is full-width-at-half-maximum, fryg is the position of
the ferromagnetic resonance, 1, is the background level.
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In the presented experiments, we used the so-called flip-chip technique. In this tech-
nique, the thin film is placed on the excitation antenna with the magnetic layer facing
down [141].

3.3. Scattering measurements

To optically characterize any scattering center, one can measure relative scattering inten-
sity. For this type of measurement, I used the existing setup Nanonics Imaging MV 4000
maintained by the group of Prof. Tomas Sikola. The setup can serve as a scanning near-
field optical microscope, but here, it was used only for scattering measurement. During
all measurements, I was helped by Filip Ligmajer.

3.3.1. Cross-section terms

Depending on the shape, dimensions, or material, the particles have different optical
responses to the light with different wavelengths, see Chapter 4. The response can be
described by so-called cross-section terms. These terms represent ratio between total
light and scattered (Cgea), extinct (Cee), and absorbed (Cyps) light. The extinct light
is the light which cannot pass through the studied medium

Cexc = Csca + C1aLbs- (318)
The sum of the all ratio should give 1

C’exc + Csca + C’abs =1. (319)

3.3.2. Experimental setup

Used setup allows measurement of scattering coefficient of individual particles using dark-
field confocal spectroscopy, see schematics in Fig. 3.9. As a source of a white light a halo-
gen lamp is used. By employing spectrometer, the scattering coefficient can be directly
measured in dependency to wavelength of light.

The light from halogen lamp is guided to hollow elliptical mirror. In such setting, only
outer ring is illuminated, as central part of the beam passes through the hollow elliptical
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Figure 3.9: Sketch of the setup used for scattering measurements. Adapted from [142].
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mirror and is attenuated in beam damp, see Fig. 3.9. The light is focused to sample by
a dark-field objective lens (Olympus LMPLANFLN 100x NA=0.8). The backscattered
light is collected by the same objective lens, but in central ring and passes through hollow
in elliptic mirror. The slide mirror can be positioned either to the path of reflected light,
or away. If the slide mirror is in the path, the image of nanoparticles can be directly seen
in either eyepiece or on camera. Based on the position of resonance of the nanoparticle,
it appears with different colors, i.e. nanoparticle with resonance centered around 530 nm
appears green. Also, the live image from camera can be used for precise positioning.
To measure spectral response of individual nanoparticle, the collection spot has to be
precisely aligned to its position. To do this, a optical fibre is connected to the white light
source with fibre-ready output. The slide mirror is put to the position with 50:50 beam
splitter. This results in formation of white light spot in the image, formed by the light
from optical fiber. By reciprocal arguments, one can assume that this spot is similar to
a collection spot. By precise positioning of the fibre, one can align the spot to cross-hair.
Once this aligment is done, the nanoparticles are selected by positioning of the sample
stage in a way, that nanoparticle overlaps with the cross-hair. The width of the collection
spot can be tuned by changing the width of optical fiber.

Once everything is aligned, the sliding mirror is completely removed. The light is spa-
tially filtered by a 200 um pinhole of a multimode optical fiber. Then the reflected light
is directly guided to the spectrometer (Andor Shamrock 303i ). In the spectrometer the
individual wavelengths are angularly decomposed by diffraction grating and guided by
parabolic mirrors to a CCD camera (Andor iDus DU420A-BU). The image recorded by
the camera is averaged in vertical coordinates and the horizontal coordinates are recalcu-
lated to the light’s wavelength.

The resulting relative scattering intensity is calculated as

Ind - Ibg

Isca =
;
Iref - Ibg

(3.20)

where I,,4 is the dark-field signal collected from a nanoparticle, Iy, is the background, and
Ler is the signal from a spectrally uniform diffuse reflectance standard (Labsphere Inc.).

3.4. Numerical solving of the differential equations

This section introduces used numerical techniques. All techniques use available simula-
tion tools, namely Lumerical’s FDTD Solutions software for finite-differences-time-domain
(FDTD), MuMax3 for micromagnetic simulations, and Comsol for multiphysics simula-
tions. All FDTD simulations were performed by Martin Hrton, Filip Ligmajer, Michal
Kvapil, and Jakub Kréma, and I have only analyzed the resulting electric field. The mi-
cromagnetic simulations were solely performed by me. During the development of the
Comsol model, I was helped by Jakub Zlamal.

Solving the differential equation is usually needed to get a better insight into the
experiments. Unfortunately, analytically this can be typically done only for a limited set
of cases, especially with elementary geometries. Numerical calculations are essential for
solving the differential equation in complex geometries, which are required to simulate
experimental conditions. To solve spatially dependent differential equations, the space
has to be divided to the so-called evaluation points. These divisions can be done in two
ways. The first one uses regular elements and is called finite differences, see Fig. 3.10a.
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(a) (b) A 8 A
® ® ® ®

Figure 3.10: Comparison between finite differences and finite elements meshing
method. a, Sketch of the regular rectangular grid of finite differences. b, Sketch
of the grid of finite elements.

The advantage of this method is its simplicity. The second method uses irregular elements
and is called finite elements method, see Fig. 3.10b. The advantage of this method is that
the finesse of the mesh can be tuned locally. On the other hand, to use Fast Fourier
transform (FFT) for analysis of the simulation, one has to interpolate results into the
regular grid.

3.4.1. Finite-differences-time-domain (FDTD) simulations

Finite-differences-time-domain (FDTD) method is usually used for numerical solving of
the Maxwell equations. The method was discovered by Yee in 1966 [143]. However it was
named Finite-differences-time-domain and vastly popularized by Taflove in 1980 [144,
145]. This method is widely used in photonics research [146, 147].

The space is discretized into a regular grid (finite-differences method). The primary
cell in this discretization is called Yee cell [143], see Fig. 3.11. On the first sight, it
seems that it complicates the calculation, but the opposite is true. By using this cell the
calculation is divergence free

V.- (eE) =0, (3.21a)
V- (uH)=0, (3.21Db)
1
'Ez
{ ””” H;g
> |k v,
/ﬁy A/i:l/_> } >

Figure 3.11: Sketch of Yee cell used for discretization in FDTD simulations. The
electric and magnetic field are staggered in space.
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where F is a electric field, H is a magnetic field, ¢ is a permittivity, and pu is a permeability.
Calculation is not divergence free if all vector components are placed to origin of the cell
on the boundaries between the two materials. Moreover, the physical boundary condition
on the interface between two materials is naturally preserved. These properties then
reduce the problem only to solving the two curl equations [143]

0B
oD
— -V xH=J 3.22b
_VxH=J, (3.220)
where J is a current vector, and
B =uH, (3.23a)
D =cE. (3.23D)

Now the spatial derivation of the magnetic and electric field is very convenient, as the
central differences gives the value directly in the desired position.

For the calculation to be valid, a proper cell size has to be chosen, so that the electro-
magnetic field does not change significantly. It is necessary to have dimensions of the cell
well below the studied wavelengths. Moreover, if some objects with dimensions smaller
than the studied wavelength are introduced, one has to make the cell smaller than size
of these objects. As the finite-differences method requires uniform discretization in the
whole simulation area, this requirement can quickly make simulation unfeasible. For ex-
ample, if one wants to investigate an interaction between a beam with size of several tens
of microns and a small sphere with a diameter of 100 nm, one has to use cell size with
dimensions in order of tens of nanometers in whole simulation area.

As the theory of electromagnetic waves is linear, the principle of superposition can be
used. Usually, in simulation the electrodynamics is excited via broadband pulse. Typi-
cally, the pulse has shape of the sinc function, therefore all the studied wavelengths are
equally distributed in the simulation. Then, by performing Fourier transformation and fil-
tering in reciprocal domain, the dynamics of individual wavelengths can be imaged. This
significantly speeds up the simulation, where the dependency on wavelength is of interest,
as all information can be extracted from single simulation.

Practical implementation of the FDTD simulations

In the scope of this work, calculations were performed using Lumerical’s FDTD Solutions
software.

The 3D simulation region spanned 5.3 x 5.3 x 1.36 um?, with the shorter side oriented
along the optical axis (out-of-plane direction). Each model included a semi-infinite silicon
substrate covered by a 30 nm thick permalloy thin film, on top of which was a 60 nm thick
silicon disk of varying diameter located at the simulation center, see Fig. 3.12. Staircase
meshing (mesh order 3) was adopted everywhere except in the vicinity of the silicon
disk, where it was fixed to 3nm cells in all directions. Boundary conditions in the form of
perfectly matched layers were used at all simulation boundaries while applying appropriate
symmetry conditions accelerated the computation. Gaussian source, implemented using
the scalar approximation, was focused onto the disk-permalloy interface from the air side
with the waist diameter set to 500 nm. The dielectric function of permalloy was taken from
[148] and the dielectric function of silicon was taken from [149]. The resulting electric field
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Figure 3.12: Sketch of the simulation setting.

vector components were recorded by field monitors and further processed in Matlab2021a
[107].

3.4.2. Micromagnetic simulations

The Landau-Lifschitz-Gilbert equation (LLG) governs the motion of the magnetic mo-
ments. In scope of this thesis, we use MuMax3 which is finite difference solver of LLG.
LLG reads as [27, 150, 151]

om 1
o =15 (m X Beg + a(m x (m X Beg))), (3.24)

where m is magnetization vector, « is Gilbert damping parameter, v is gyromagnetic
ratio, and B.g is an effective field. This effective field in MuMax3 composes of several
contributions, namely:

e B, - Externally applied field

e Bgemag - Magnetostatic field

B - Heisenberg exchange field

Bpy - Dzyaloshinskii-Moriya exchange field
e B..is - magneto-crystalline anisotropy field
¢ Bijerm - thermal field

The challenge now, is to calculate all relevant contributions to the effective field, and
then integrate the Eq. 3.24. In the following three paragraphs we describe calculation
of the three most important field terms for the case studied in the scope of this thesis,
namely externally applied field, magnetostatic field, and Heisenberg exchange field.

The externally applied field By is usually defined by the simulation script. In spin-
wave calculation, this quantity usually contains a bias field (By;,s) and excitation field
(Bexe), thus

Bext = Bbias + Bexc- (325)
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Bias field is usually spanning across the whole simulation area and does not have any time
or spatial dependence. The excitation field usually has both, time and spatial dependency.

The magnetostatic field is calculated with the use of so-called demagnetizing kernel
K. In this way, the magnetostatic field can be calculated by performing the convolution

Biemag = K - mM,,, (3.26)

where M, is saturation magnetization. The convolution is performed with use of Fast
Fourier transform which significantly speeds up all the calculations. The demagnetizing
kernel is calculated by assuming that the magnetization is pointing to z-direction in all
simulation cells.

The exchange field is calculated with use of the six-neighbour approximation [151-153]

Aoy m; —m
Beh =2 , 3.27
" Msat Z AZQ ( )

i

where Ay is exchange constant, i is index of the six nearest neighbouring cells, and A;
is a distance between the evaluated cells.

As the next step, the Eq. 3.24 has to be integrated. In the scope of this thesis, we used
Runge-Kutta method with 5th oreder of convergence and 4th order of error estimation
commonly called Dormand-Prince method [93, 151, 154]. The Dormand-Prince is known,
to provide the best convergence from available methods in MuMax3. The time step in the
simulation is adaptive, which can considerably speed up the simulations in cases, where
the error of calculation (difference between the 5th and 4th evaluation) is approaching
Z€ero.

3.4.3. Multiphysics simulation of heat distribution around laser
spot

The laser light carries energy, which can become very dense if it is focused to small spots.
The absorption of the light can then results to the locally elevated temperatures of the
surface, where the light is focused. Such rise in temperature can then affect material
properties such as index of refraction. This change of index of refraction in turn then
affects again the propagation of light. This forms challenging scenario, where both these
phenomena have to be modeled simultaneously.

The calculation scheme is shown in Fig. 3.13. Initially the value of room temperature
is set in all simulated regions. Afterwards, the distribution of electromagnetic field of
a Gaussian spot is calculated. From this subsequent calculation step generated heat
is deduced. This is then used as the input for calculation of a temperature distribution.
After obtaining the temperature distribution, the space-dependent index of refraction
is calculated and computation proceeds to calculation of electromagnetic distribution
again. The whole procedure is repeated until there is no significant difference between
the iterations.

The temperature distribution is governed by the following differential equation [155]

oCpu - VT +V -q=0Q, (3.28)

where o is density, C,, is specific heat capacity at constant pressure, u is fluid velocity
vector, T is a temperature, ¢ = —kVT is a conductive heat flux, k£ is a thermal conduc-
tivity, and @) is a heat source, which in the studied case was laser spot. The first term
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Initial constantan Calculation of electromagnetic field in
temperature material with temperature dependent]
index of refraction j
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delivered heat

| Calculation of temperature distribution ‘<—J

Figure 3.13: Schematics of the calculation procedure.

in Eq. 3.28 represents the heat transfer by convection and is equal to zero in the studied
case. The second term represents the heat conduction and it is a mechanism responsible
for resulting temperature distribution.

The electromagnetic field distribution is obtained by solving following form of wave
equation in the frequency domain

1
V x o (Vx E)+ (jwa - wzz—:) E =0, (3.29)

where W is permeability, F is electric field vector, j is free current, w is angular frequency,
and ¢ is permittivity.

Procedure of multiphysics simulation of heat distribution around laser spot

We used COMSOL Multiphysics 6.0 [156]. The packages Electromagnetic waves and Heat
transfer in solids were used. In practical implementation, the calculation consisted of
these four steps:

1) Calculation of the Gaussian beam in the air.

In the background, a Gaussian beam with E, polarization is excited. The solution
is transferred to the next step using General Fxtrusion, where it generates the Gaussian
beam at the in interface.

2) Calculation of the Gaussian beam passing through the permalloy layer
and the substrate.

This wave serves as the background wave in the calculation of Gaussian beam scatter-
ing. The electric field strength of the Gaussian beam determined in Part 1 is prescribed
at the in interface. The Scattering Boundary Condition is prescribed at the out interface,
ensuring that the wave is transmitted out of the domain without reflection. The bound-
ary condition Perfect Electric Conductor is prescribed on the vertical boundaries (they
are far enough away from the spatially limited Gaussian beam). The solution, extended
to the perfectly matched layer (PML) domain (where zero electric intensity is artificially
prescribed), is used as the Background Field for the next calculation step.

3) Calculation of the Gaussian beam scattering on the silicon disk on the
permalloy layer and the substrate.

PML is used to attenuate the scattered wave. Total Power Dissipation Density is used
as the heat source in the next calculation step.

4) Calculation of the temperature field in the silicon substrate, permalloy
layer and silicon disk.

Temperature of 20°C is prescribed at the out interface, the other interfaces are iso-
lated (zero heat flux), and radiation to the surroundings is not considered either. The
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temperature field is again artificially extended to air and PML, where a temperature of
20°C is prescribed. The temperature field affects the value of the dielectric function (real
and imaginary part) of the silicon.

These 4 steps are solved using the Frequency-Stationary Solver. Quadratic elements
are used in all calculations. The tetrahedral mesh in each domain has a step of A\/5, where
A is the wavelength of the wave in that domain.

3.5. Extraction of dispersion relation from micromag-
netic simulations

Usually, the micromagnetic simulators works in time domain and real space coordinates.
However, for analysis of spin wave behavior, or calculation of the BLS spectra by following
the approach introduced in Chapter 2, it is often beneficial to transform the results into
frequency and wavevector domain. In this section I show this transformation on the easist
example of obtaining the linear dispersion relation of spin waves in 30 nm-thick NiFe layer.
I developed the methodology and codes presented here during my Bachelor’s and further
improved it during my PhD [157]. The methodology follows standard procedure [158].
However, it brings several innovations, such as using a 3-dimensional excitation function
or correcting for thermal distribution.

3.5.1. Micromagnetic simulation and excitation of broadband spin
waves

The simulations in this work were done in order to obtain dispersion relation, more
precisely Bloch function (density of states in respect to frequency and two-dimensional
wavenumber) D (f,k;,k,). Results shown in the following graphs use material parameters
of NiFe®

The initial magnetization m and the external field pointed in the z direction. The
energy of the system was then minimized by using the relax command of MuMax3.

In order to get the characterization of all spin-wave wavelength out of single simulation
we used similar trick as used in FDTD simulation. All possible spin wave frequencies
and wavevectors were excited by a 3D sinc pulse Beyx. (z,y,t). The spatial mask (B pask)
is depicted in Fig. 3.14a. This mask was generated by sinc function

Bl = sine (k (@ —20)2 + (y - y0)2) z, (3.30)

rad
wm
coordinates, xg, and gy, are center of the pulse (here set to 0 for both), and z is a unit

vector in out-of-plane direction. The evolution of the sinc pulse is depicted in Fig. 3.14b
for center of the simulation. Again, the time evolution By, is governed by the sinc
function

where k. is a cut-off wavenumber, which was set to 150 22, z, and y are in-plane spatial

Biime = A - sinc (2nf.(t — to)), (3.31)

where A = 1mT is the amplitude of the pulse, t is the time of simulation, ¢, = 100 ps
is the time offset of the pulse, and f. is the cut-off frequency, which was set to 60 GHz.

6Saturation magnetization (Mg =741 kA m™!), gyromagnetic ratio (y=29.5 GHz T~!), and exchange
constant (Aex =16pJm~1).
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SIMULATIONS

Now, by multiplying both parts (spatial and temporal) we can get the overall excitation
field (Bexc) as
Bexc = BmaskBtime- (332)

The simulation size was set to 7680 x 7680 x 34.8 nm® with a cell size of 3.75 nm in the
in-plane and 4.35nm in the out-of-plane direction. This allows to investigate spin-wave
wavelengths in the range from 7.5nm to approx. 7.5 um, according to Nyquist theorem
[159]. This is way above and below the wavelengths of interests (see cut-off wavenumber
in Eq. 3.30), which relaxes the needs of filtering. Periodic boundary conditions with 32
repetitions in both in-plane directions were used. This ensures proper calculation of the
magnetostatic field (see Eq. 3.26), and thus subsequent match between the analytical
models and results from the micromagnetic simulation.

While applying the excitation pulse (Bex.) we let the magnetization evolve for 5 ns with
the sampling interval of 8 ps. This, according to Nyquist theorem, is equal to 62.5 GHz
(which is above the frequency cut-off, see Eq. 3.31), and minimal frequency of 200 MHz.

3.5.2. Analysis of the simulation results

All three magnetization components were taken from the top-most layer, so we acquired
a 3D array m (z,y,t). The obtained out-of-plane magnetization component m, in time
of 3ns is shown in Fig. 3.15a. The anisotropic dispersion relation of spin waves, can be
seen there as the lack of rotational symmetry. The spatio-temporal cut through data
is depicted in Fig. 3.15b. The fading of the spin-wave amplitude in later times is visible.
Please note, that only 6 ns are shown, while the simulation lasted till 10 ns, which is above
lifetime of all investigated spin waves.

To obtain the spin wave dispersion and the amplitudes of the individual modes in the
reciprocal space (which can be used in calculation of BLS signal according to Eq. 2.32, or
2.31) the Fourier transform needs to be perfromed

m (kz.ky.f) = F (m(z,y,t)) . (3.33)
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Figure 3.14: Used 3D By (z,y,t) sinc pulse for excitation of micromagnetic dynamics.
a, Spatial mask of the external field. The panel shows only the central part of
the simulation. Outside the shown region the external field was practically zero.
b, Time dependency of the sinc pulse in the center of simulation area. The
panel shows only the first 0.5ns of simulation. After this time the external field
is practically zero.
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Figure 3.15: Simulated magnetization dynamics. a, Snapshot of the z-component of the
magnetization at t=3ns. b, Spatio-temporal evolution of the z-component of
magnetization at x = 0.

The used script code is available at [107]. The m, component is transformed to the
reciprocal space using a built-in FFT function in Matlab2021a. The obtained dispersion
relation was compared with analytical calculation [30, 41}, as shown in Fig. 3.16a, b. No
windowing nor detrending is used. The resulting density of states is then obtained as

1

2T[hf+uchem) — 1

D (f,kmky) =
exp( kpT

mz (fJ’fz,ky)Q 9

where the first fraction is the Bose-Einstein distribution at room temperature with chem-
ical potential Wehen = —1 THz, see in Fig. 3.16c.
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Figure 3.16: Extracted dispersion relation from micromagnetic simulations. a, b
Squared Fourier transform of m,(x,y,t). Panel (a) shows DE spin waves, and
panel (b) shows BV spin waves. Dashed lines show the analytically calculated
dispersion relations [30, 41]. ¢, Normalized Bose-Einstein distribution calculated
for a range of frequencies relevant to spin waves in the magnetic field of 550 mT.
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4. Mie-enhanced Brillouin light scat-
tering spectroscopy

This chapter describes the enhancement of the u-BLS detection sensitivity to spin waves
with high wavenumber exploiting the electromagnetic resonances in individual nanores-
onators. This chapter is mainly based on the results published in [113]. Martin Hrton
and Jakub Kréma performed the FDTD simulations. I was helped with vibrating sample
magnetometry by Jakub Holobradek. I have performed all u-BLS, and FMR experiments,
analyzed all acquired data, and planned all experiments.

This chapter is structured as follows: it starts with the introduction to near-field medi-
ated BLS, followed by the description of plasmon-enhanced BLS and its limitations. Next,
the sample geometry and fabrication for Mie-enhanced BLS are presented, followed by
magnetic layer characterization. The enhancement of the BLS signal on individual disks
is discussed, followed by a discussion of nanoresonator’s material influence. Thereafter,
a theoretical description of the observed phenomena is given. Afterward, the heating
caused by the dissipation of laser power and subsequent change of refractive index are
discussed. Now, the measurement of the disk’s edge is discussed. The influence of the
wavelength of probing light is discussed. Finally the universality of the method is demon-
strated on the different material system, namely 100 nm thick CoFeB layer.

4.1. Basic concepts

Until now, the BLS techniques fell short in the detection of nanoscaled spin waves due to
their fundamental limit in maximum detectable magnon momentum [53, 160-163]. This
limit is given by the law of conservation of momentum in the Stokes process

ki = kr + kmag> (41)

where k; and k, are k-vectors of the incident and reflected light and Ky.g is the k-vector
of the magnon on which the light is being scattered. It means that in a typical BLS exper-
iment in back-scattering geometry, the maximal detectable k-vector of spin waves equals
twice the k-vector of the incident light. For the laser wavelength \; = 532 nm, for example,
the maximum k-vector which can be theoretically detected is bty = 23.6 rad um™". This
corresponds to a minimum spin-wave wavelength A% = X;/2 = 266 nm [123, 124].
Taking inspiration from tip- and surface-enhanced Raman scattering spectroscopy
[164-166], nanosized apertures or other plasmonic structures made of metals have been
used to locally enhance the electromagnetic field and increase the range of the accessible
k-vectors [167-169]. Unfortunately, the efficiency of the plasmonic approach is severely
limited by high optical losses in metallic structures, which makes it unsuitable for con-
venient magnon measurements. A detailed discussion of this phenomenon is given in
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Figure 4.1: Principle of the near-field enhanced Brillouin light scattering. Compari-
son of the conventional and near-field enhanced (Stokes) BLS processes. Near-field
converts an incoming photon into a photon with complex momentum. The real
part of the converted photon can be larger than the momentum of the incident
free-space light. This way, the limit of conventional BLS can be overcome, and
high-k magnons can be optically detected.

section 4.2. However, recent advances in nanophotonics suggest that plasmonic struc-
tures made of metals can be substituted by structures made of dielectric materials. Such
dielectric nanoresonators have an advantage in reduced dissipative losses and associated
heating, while their high refractive index still enables comparatively strong light confine-
ment [170-176].

We use simple geometry consisting only of silicon disks, which support Mie resonances
[121, 177-179]. The Mie resonance creates strong and localized electric fields (hot spots).
When the incident light with momentum k; is restricted to the sub-diffraction hot spots,
its momentum becomes complex

knp = Kj + ikys, (4.2)

and thus its real part k; can be larger than the momentum of the free-space light [180]
(see Fig. 4.1). This way, the fundamental limit of BLS in maximum detectable magnon
momentum can be overcome.

4.2. Plasmon-enhanced Brillouin light scattering

Plasmon resonances have been the first choice for researchers to enhance the BLS signal
for many years. However, all these attempts resulted only in three publications [167-
169]. Quite naturally, when I started to work on my PhD topic, enhancement of the BLS
signal, I also chose plasmon resonances. I have tried many geometries such as bow-ties,
diabolos, disks, apertures, etc [181, 182]. However, most approaches based on the plasmon
resonances drastically reduce the obtained BLS signal. Here, I show the most promising
one, silver spheres. I deposited nanoparticles Michal Kvapil did the FDTD simulations
presented here.

4.2.1. Plasmon-enhanced BLS on 200 nm-wide silver sphere

The light can be focused on sub-diffraction focal spots with the use of localized surface
plasmon resonances (LSPR) [183-185]. These resonances are the collective motion of free
electrons in noble metals. Typically, the nanostructure made of noble metal is either
deposited from solution or fabricated by, e.g., e-beam lithography. They can be used e.g.
for sensing [186, 187], or to increase resolution [188, 189].
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Figure 4.2: Geometry of plasmon-enhanced Brillouin light scattering. a, The sketch
of the geometry of the plasmonic nanoresonator used in presented BLS experiments.
The spacer layer was 2nm thick and the diameter of the silver sphere was 200 nm.
b, Photo of the sample during the deposition (drop-casting) of the silver spheres
with a diameter of 200 nm.

The easiest approach to getting plasmonic nanoresonators on a thin magnetic film
is to deposit them from the solution. The material of choice for these nanoresonators
is silver, as gold has poor performance at the wavelength of 532nm due to inter-band
transitions [190, 191]. The sample was prepared by drop-casting from a commercial
solution (nanoComposix) to a 30 nm thick permalloy layer covered by 2nm of an insulating
AlyO3 spacer prepared by atomic layer deposition, see sketch in Fig. 4.2a.

We deposited 30 ul droplet of the solution containing silver nanospheres with the
diameter of 200 nm to the sample surface and let the sample dry for 120 min, see Fig. 4.2b.
After that, the solution was rinsed in deionized water and blow-dried with clean, dry air.
This is the typical procedure used in e.g. [192-194].

The silver spheres with a diameter of approx. 140 nm provides the resonance at wave-
length of 532nm (see Fig. 4.3a), which is wavelength used in our BLS setup. The com-
mercially available solutions are only suplied with 100 nm, or 200 nm spheres. As 200 nm
spheres provided better results in the following discussion we focus only on them.

The FDTD simulations of the studied geometry (see Fig. 4.3a) were performed by
Michal Kvapil. The results are shown in Figs. 4.3b, ¢. The localization and enhancement
of the light intensity can be observed between the sphere and the magnetic layer. This
is improved by the rather large diameter of the silver sphere, which is enabled by the
relatively high plasma frequency of silver. As there is only a single contact point between
the sphere and spacer layer, the distance between the equator of the sphere and magnetic
layer is enlarged, resulting in further improvements.

Nevertheless, the resonance is constricted only below the sphere. Thus, the light that
is emitted by induced polarization (see Chap. 2) can be reabsorbed by the sphere. This
process is called quenching, and its consequence is a significant lowering of the BLS signal.

The BLS spectra were measured on the individual silver nanosphere and bare film. The
results are shown in Fig. 4.4a. The obtained results were fitted by the phenomenological
model (see Eq. 2.35). The resulting detection function is shown in Fig. 4.4b. The overall
signal strength is reduced from A = (89+5) cts for the bare film to A = (8444) cts for the
silver sphere. This is likely caused by the absorption and quenching. The signal-to-noise
ratio is further reduced by the elevated background signal from bg= (1.6+0.8) cts for the
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Figure 4.3: Scattering of silver nanospheres. a, Calculated scattering cross-section of the
silver nanosphere with a diameter of 100 nm (black solid line), 140nm (red solid
line), and 200 nm (blue solid line) placed on the 30 nm of NiFe. b, ¢, Distribution
of the z- (b) and 2- (c) component of the electric field around the sphere. The
bottom boundary of NiFe is placed to 0 nm in z-direction, i.e., the interface between
the Al;O3 and NiFe is in 30 nm.

bare film to bg= (19 £ 2) cts for the silver sphere. The half-width-at-tenth-of-maximum
(HWTM) of the detection, which defines the maximum detectable wavevector, is slightly
increased from HWTM= (11.2 £ 0.8) rad/um for bare film to HWTM= (13 &+ 2) rad/pm
for silver sphere.

The spheres also introduce the exponentially decaying background to the signal [195—
197]. In Fig. 4.4c, this is shown as a blue exponentially decaying line. Moreover, the
spheres are allowed to vibrate. The first description of the vibrational modes of free
standing spheres were given by Lamb [198]. The modes are acquired by solving the
Navier elastic equation [199, 200]

) ) du

V- (V-u) =01V x (Vxu)= B (4.3)
u is a displacement vector, v¥ (v3) is a longitudinal (transversal) velocity of sound, and ¢
is time. This equation can be solved for simple geometries (e.g., discussed spheres) that
are positioned in free space, i.e., no forces are applied to them. The rough position of the
fundamental vibrational modes can be estimated by using these simple formulas [199]
UL
D 7

n=l _ 0.84%, (4.4b)

where D is a diameter of sphere, and n,l are quantization numbers. If the sound velocities
for silver are used (v, = 37477 and vy = 1740 2 [200]) the resulting frequencies are
16.8 GHz and 7.3 GHz which coincides with first and third measured vibrational peaks.

To precisely associate each peak in the acquired spectra (see Fig. 4.4c) with specific
vibrational mode, one has to perform numerical simulations of the Eq. 4.3 [195, 199, 201].

=109 (4.4a)

76



4.3. SAMPLE DESIGN OF SILICON DISKS FOR MIE-ENHANCED BLS

@ = Agsphere (b) ©
® Bare film |— Exponential background |
120 100
1 Ag sphere
100 - e g 80 - [Z A Bare film 1000 +
0 ~ 0
B 804 S g
T o) B 60 - £ 100 4
i) 2 i)
] = 404 7]
) 404 Q2 0
1 = —1 10+
m @ 204 m
20 + @
(a]
0 0 " 1 T T T T T T L] T
22 24 26 28 30 32 0 5 10 15 20 25 5 10 15 20 25 30 35 40 45
Frequency (GHz) k (rad um'1) Frequency (GHz)

Figure 4.4: Resulting Brillouin light scattering spectra acquired on a silver sphere
with a diameter of 200 nm. a, Thermal spin-wave spectra obtained by u-BLS
on the bare permalloy film (black squares) and on the permalloy film with the silver
nanosphere (red circles) and their corresponding fits (lines). The error margins
represent the 95% confidence interval. b, Detection function extracted from the fits
to the data shown in panel (a). ¢, The whole frequency spectrum is acquired on the
silver sphere (red dots) and bare film (black circles). The blue line represents the
fit of the exponentially decaying background signal acquired on the silver sphere.
The arrows show the vibrational modes of the sphere. The magnetic signals are
present around 27 GHz and 41 GHz. The signal around 35 GHz is a so-called ghost
and is caused by the secondary transmission of TFPi, see Chap. 3.

Nevertheless, these peaks caused by the vibrational modes of the sphere interfere with
the magnetic signal and further complicate a proper analysis of the acquired signal.

4.3. Sample design of silicon disks for Mie-enhanced
BLS

Now, I move from plasmon (metallic) resonances to Mie (dielectric) resonances. In the
presented experiments, I have investigated spin waves in a 30nm thick permalloy film,
on top of which 60 nm thick silicon disks were fabricated, see Fig. 4.5a. The sample was
measured on a standard p-BLS, using a microscope objective lens with NA = 0.75 to
illuminate it by A; = 532 nm coherent laser light (see chapter 3). The sample used in this
investigation was fabricated by Jan Klima (who also made a design in kLayout), Meena
Dhankhar, Kristyna Davidkova, and Jakub Holobradek.

4.3.1. Sample fabrication

To allow the investigation of the influence of the geometry, namely the diameter of the
disk, the design with different disk diameters was prepared, see Fig. 4.5b. The diameters
of the disks ranged from 100nm to 300nm in 5nm steps and from 350 nm to 1500 nm
in 50 nm steps. Each disk was prepared five-times in one fabrication cell and the whole
design shown in Fig. 4.5b was repeated four times on each sample. Thanks to this, the
repeatability and influence of the small fabrication imperfection to enhancement of the
BLS signal could be checked. Moreover, the acquisition of the BLS spectra was fully
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Figure 4.5: Geometry of the experiment. a, Schematics of our u-BLS setup. Laser light
(532nm) is focused onto a silicon disk by a high numerical aperture objective
lens. The disk is placed on the top of a permalloy layer, in which the spin waves
are probed. The inelastically back-scattered light is then analyzed in the tandem
Fabry-Perot interferometer (TFPi) and collected with a single-photon detector. b,
Schematics of the design of the silicon deposited layer.

automatized as the presented design provides features with good visibility that were used
for automatic stabilization and positioning.

Sample was fabricated by electron beam lithography and a lift-off process. We started
with room temperature deposition of a 30 nm thick permalloy film onto a Si(100) substrate
using e-beam evaporation from NiggFeq (at. %) pellets with purity of 99.95%. Then we
spin-coated a double-layer polymethyl methacrylate resist (200 nm thick Allresist AR-P
649.04 200K and 60nm thick AR-P 679.02 950K, this resist combination provides suffi-
cient undercut for lift-off). The pattern was written with RAITH 150-two e-beam writer.
Silicon film with a thickness of 60 nm was consequently deposited onto the patterned sam-
ple by RF magnetron sputtering or by ion beam sputtering system with Kaufmann source
from a crystalline silicon target at room temperature. The lift-off procedure consisted of
immersing the sample in acetone for approx. 8.5 h, followed by 30-second isopropanol rinse
and blow-drying by nitrogen gas.

4.3.2. Inspection of the sample

After the fabrication, sample were checked for its exact shape, size and uniformity by
scanning electron microscopy (Tescan Lyra and Thermofisher Verios 460L) and atomic
force microscopy (Bruker Dimension Icon). The scanning electron microscope image of
the sample with 0deg tilt is shown in Fig. 4.6a. One can observe that the shape of the
disk is circular, and there are no significant aberrations. The bright outer ring is formed
around the disk. This is caused by the ears, which resulted from the deposition of the
silicon on the substrate walls. This is confirmed by doing scanning electron microscope
image under the tilt of 45 deg, see Fig. 4.6b'. The acceleration voltage of 30keV was used,
which resulted in partial transparency of these ears. On some predefined positions, these
ears were removed by rough scanning in an atomic force microscope, and spectra BLS

!Please note that disk with different diameter (450nm) is shown.
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Figure 4.6: Inspection of the sample used for thermal BLS measurements. a, Scan-
ning electron microscope image of silicon disk with diameter of 200 nm taken under
Odeg tilt. b, Scanning electron microscope image of silicon disk with a diameter
of 450 nm was taken under 45deg tilt. ¢, Atomic force microscopy image of the
corner of silicon disks array. The green dashed line indicates the region taken for
height profile in (d). d, Line profile taken from a two-dimensional scan along the
green dashed line.

spectra acquired on disks with and without ears were compared. We did not find any
measurable effect, which was further confirmed by the FDTD simulations.

Atomic force microscopy measurement was performed to precisely judge the height of
the deposited silicon layer. The two-dimensional scan of the corner of the disk array (see
design in Fig. 4.5b) is shown in Fig. 4.6¢c. The formation of the ears is visible. To assess
the height, the line profile was extracted (see green dashed line in Fig. 4.6¢). This line
profile is shown in Fig. 4.6d. The height of the disk is 62 + 1 nm, and the height of the
ears is 195 + 5nm.

4.4. Magnetic layer characterization

To get material and magnetic constants of the fabricated permalloy layer, I performed
flip-chip ferromagnetic resonance (FMR) (see chapter 3) and vibrating sample magne-
tometry (VSM) measurements. The fitted values were then used in the micromagnetic,
electrodynamic, and analytical modeling of the spin-wave systems. The same values are
also used in chapter 6, where a layer from the same deposition is employed. In chapter 5,
all parameters except of thickness are used.

4.4.1. Dynamic characterization

The experimentally measured S12 parameter is shown in Fig. 4.7a. The experimental
data were fitted with the Lorentzian function to find peak’s position, which was used in
the subsequent fitting of the Herring-Kittel formula. The Fig. 4.7b shows BLS thermal
spectra taken on bare NiFe film in different external fields?>. From this data set, we fit
only the first perpendicular standing spin-wave mode. The fitting of FMR frequency from
this data is not trivial since there is a strong dependence of the frequency on the k-vector
within the accessible range by the pu-BLS, although full BLS model (eq. 2.31) can be used.

2The constant signal at approx. 34 GHz originates from a so-called ghost, which is higher-order
transmission of the tandem-Fabry-Perot interferometer, see chapter 3.
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Figure 4.7: Magnetic characterization of the permalloy film used in the experiments.
a, Scattering parameter acquired by a broadband ferromagnetic resonance tech-
nique. Different color lines represent different external magnetic fields (see legend).
Dashed lines are Lorentzian fits of the resonance peak. b, Thermal magnon spec-
tra measured by u-BLS microscopy. The light gray line shows the centers of the
Lorentzian functions. c, Fits of the data from (a) FMR and (b) PSSW. Magnetic
properties extracted from the fit are shown above the graph.

Again, we used Lorentzian fitting to get the frequency position of the first perpendicular
standing spin-wave mode; see the gray solid line in Fig. 4.7b. In Fig. 4.7c, these positions
were fitted. The fitted material and sample properties are summarized in Tab. 4.1.

4.4.2. Static characterization

Vibration sample magnetometry (VSM) measurements were conducted to confirm the
experimental findings from the VNA-FMR. The Fig. 4.8a shows the out-of-plane mea-
surement. The saturation magnetization can be deduced from this type of measurement by
finding the field in which the sample becomes saturated or by finding the overall magnetic
moment and dividing it by the magnetic sample volume. The saturation magnetization
deduced from the saturation field (the first mentioned method) is 750 £ 10 % and from
the overall magnetic moment and volume is 730 4 60 %. Both methods are in agreement
with their uncertainty with the VNA-FMR measurement.

Fig. 4.8b shows a single hysteresis in-plane loop in the external field of 20 mT. Again,
the value of saturation magnetization is in agreement with previous measurements. The
last panel 4.8c depicts the value of the saturation magnetization in dependence on the

Table 4.1: Obtained parameters by fitting of the FMR and 1st PSSW of the studied NiFe layer.
MS(ﬁ) ‘ 7(%) ‘ d(nm) ‘ AeX(p_J) ‘ Bpi(mT)

m T m

740+ 10 | 295401 | 34.8+0.3 | 16 (fixed) | 1.4£0.1
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Figure 4.8: VSM characterization of the magnetic layer. a, Out-of-plane vibrating sam-
ple magnetometry (VSM) measurement of a 20nm thick permalloy film (black
solid line). The value obtained from the overall magnetic moment and measure-
ment of the volume of the sample is Mg = 730 + 60kA/m. The red solid line
represents a piece-wise fit of the saturating field which gives Mg = 750 = 10kA /m.
b,c, In-plane VSM measurement of the permalloy layer used in our experiments.
Temperature-dependent measurement of the magnetization in (c) was performed
in the field of 20mT. The red solid curve is a fit.

temperature of the magnetic layer. One can observe a slight decrease of approx. 200 kA /m
with the increase of temperature by 150 K. These data were fitted by a model based on
the Bloch’s model modified by Kuz'min [202]

M(T) = M, <1 - (Tlc)p> , (4.5)

where M, is saturation magnetization at 0K, 7" is a temperature, T is a critical tem-
perature, and p is a empirical parameter. The fitted values are My = 760 + 30 kA/m,
Tc =670+ 10K, and p = 3.8 +0.3.

4.5. Mie enhancement of the BLS signal on the single
silicon disk

In this section, the main outcome of my PhD research is shown. The enhancement of both
amplitude and maximal detectable wavevectors is demonstrated in two external magnetic
fields on a single silicon disk fabricated on top of a permalloy layer. The phenomenological
model introduced in chapter 2 is used to assess the achieved enhancement.

4.5.1. Comparison of measurements on 175 nm-wide silicon disk
and bare film

The dramatic improvement of high-£* magnon detection sensitivity in the presence of
a 175 nm wide silicon disk is visible in Figure 4.9. One can see that at low magnetic field
of 50mT (Fig. 4.9a the BLS signal increases, and the spin wave band broadens towards
higher frequencies. At higher magnetic field of 550 mT (Fig. 4.9b, BLS signal increases,
and the spin wave band now broadens to both sides.

3Here, by high-k magnon we mean magnons with wavevector, which cannot be detected by standard
pu-BLS.
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Figure 4.9: Enhancement of the BLS spectra. a, b, BLS spectra acquired on a bare
permalloy film (black circles) and on the same film with a 60 nm thick, 175 nm wide
silicon disk on top (red squares). The black and red solid lines represent fits to the
experimental data assuming the Gaussian detection function. The error margins
of the experimental data are estimated on the basis of the Poisson distribution.
The blue lines show spin wave dispersions for Damon-Eshbach (DE) and backward
volume (BV) modes.

Different broadening of the spin wave band at high and low magnetic fields can be ex-
plained by different shapes of the spin wave dispersion relations of the permalloy thin film
for different directions of k-vector k with respect to the direction of magnetization vector
M [30, 203]. The upper part of the spin wave band is limited by the Damon-Eshbach
mode (k L M, DE, Figs. 4.9a, b, light blue solid line), which rises at both values of
the external field, and for exchange dominated (high-k) spin waves converges towards
quadratic dependence of frequency f o k2. Hence, the shift of the right edge of the de-
tected spin-wave band towards higher frequencies always means an enhanced sensitivity
to spin waves with higher k-vectors. The left edge of the spin wave band is limited by the
backward volume mode (k || M, BV, Figs. 4.9a, b, dark blue dashed line), which first
decreases in frequency for dipolar (low-k) spin waves and then increases for exchange dom-
inated (high-k) spin waves (and again converges towards quadratic dependence f oc k?).
In the low magnetic field, the exchange interaction prevails already for the spin waves
with k ~ 10 f—ri and the drop in the frequency for the BV mode is only 0.2 GHz. This
results in a sharp increase of the BLS signal at the left edge of the spin wave band. The
sharp increase is the same for both measured spectra (with the silicon disk and on the
bare film). The u-BLS even without the presence of the dielectric nanoresonator can still
detect spin waves with k-vectors around the mode minimum at k& = 10 f—ri and thus the
complete lower part of the spin wave band is captured in both cases. In the case of high
magnetic field, the onset of the exchange dominated spin waves occurs at much higher
values of k, at approx. 30 f—ri. Here, the BV mode is very pronounced, and the mode
frequency decreases approx. 1.5 GHz down from the ferromagnetic resonance frequency
(FMR, k=0 f—rfl) before it starts rising again (Fig. 4.9b, dark blue dashed line). In this

case, the u-BLS on the bare film cannot detect spin waves above k = 10 f—ri and capture
the whole lower part of the spin wave band.
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Figure 4.10: Gaussian detection functions extracted from the fits. a, b, Extracted
Gaussian detection from experimental data shown in Fig. 4.9 using phenomeno-
logical model (Eq. 2.35). The panel (a) shows the data extracted from data
acquired in 50mT, and panel (b) from data acquired in 550 mT.

By fitting the parameters A and HWTM, we can obtain very good agreement between
the model and the experimentally measured spectra for both the bare film and the silicon-
disk-enhanced measurement (see black and red solid lines in Fig. 4.9a, b. In Fig. 4.10 the
detection function I'(k,) resulting from the fit to the experimental data measured at 50 mT
(Fig. 4.10a), and 550mT (Fig. 4.10b) are plotted for the bare film (black line) and for
the measurement on the silicon disk (red line). This figures give us a direct visualization
of the enhancement of the detection sensitivity caused by the presence of the dielectric
nanoresonator extracted in each field. In 50 mT, the HWTM (i.e. the maximum detectable
k) increased from 9.5 + 1.0 %ﬁ for bare film to 47 + 3f—£ for silicon disk, whereas the A
increased from 245 &+ 6 cts to 259 + 19 cts. Note that the increase in the amplitude of the
Gaussian function does not represent the total increase of the integrated signal. After
integration of the detection function, the value of 2720 4+ 170 cts f—rﬂ is obtained for the
case of the bare film and the value of 14300 £ 1600 cts T_ri for the silicon-disk-enhanced
signal. This gives us an enhancement factor of 5.3.

In 550mT the widening of the detection function is significantly lower, due to the
following two effects. Firstly, in 50 mT, this widening is a bit overestimated, see the
modeled curve and experimental data around 16 GHz. On the other hand, in 550 mT
the widening is underestimated, see model around both detection edges (=~ 25 GHz and
~ 31 GHz). This big uncertainty in fitting is caused by the strong assumption of the
Gaussian shape of detection function. This assumption is valid for simple geometry of
bare film (see comparison between the full BLS model and phenomenological model in
chapter 2), but for the case of Mie-enhanced BLS the situation is more complicated and
simple Gaussian shape of detection function does not completely describe observed BLS
spectrum. The comparison of the main parameters of the fitted detection function for
both fields is shown in Table 4.2.
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Table 4.2: Summary of the fitted parameters of the detection function

Field A HWTM bg
50 mT 245 + 6 cts 9.5+ 1.0m2d 3+ 1cts
bare film Hm
550mT | 131+ 7cts 11.411.03—5 2+ 1cts
Tad
Mie-enhanced 50mT | 259+ 19cts 47+ 3124 10 + 2cts
550mT | 172 + 13 cts 1812;&—5 8 + 4cts

4.5.2. Sweep of the diameter of the silicon disks

Mie resonances are strongly dependent on the geometry of nanoresonators. To investigate
this dependency, we measured a serie of silicon disks with diameters ranging from 100
to 1500 nm. First, we introduce the results obtained in the field of 50 mT, which deals
only with diameters ranging from 100 nm to 300 nm. This is followed by similar analysis
performed in field of 550 mT. We connect the trends in the analysed data with changes
of the resonance modes calculated by FDTD simulations.

Fig. 4.11a shows relative scattering intensities acquired by dark-field optical spec-
troscopy, see chapter 3. A characteristic red shift (shift of the resonances towards the
longer wavelengths) of the Mie resonances with increasing disk diameter can be observed.
For 175nm disk the peak resonance wavelength perfectly matches with the laser in our
w-BLS setup (532nm). To quantify the dependence of the enhancement of the measured
BLS spectra on the disk diameter at 50 mT, we fitted the HWTM (Fig. 4.11b) and A (Fig.
4.11c) parameters for each disk diameter. From these data, we can see that the enhance-
ment of both parameters starts appearing for disk diameters beyond approx. 125nm and
reaches its maximum for the diameters between 170 and 200 nm. When the disk diameter
exceeds 200nm, we observe a sharp decrease of both parameters.
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Figure 4.11: Dependence of the BLS enhancement on the silicon disk diameter at
50 mT. a, Relative scattering intensities of five selected silicon disks measured us-
ing dark-field optical spectroscopy. The dashed line marks the 532 nm wavelength
of the u-BLS laser. b, ¢, Dependence of HWTM (half-width-at-tenth-maximum,
maximum detectable k-vector) and integrated detection function (BLS signal en-
hancement) on the diameter of the silicon disk. The arrows and colored points

refer to the diameters with elastic scattering spectra shown in panel (a).
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Figure 4.12: Dependence of the BLS enhancement on the silicon disk diameter at
550mT. a, b, ¢ Dependence of HWTM (half-width-at-tenth-maximum, maxi-
mum detectable k-vector), amplitude A, and integrated detection function (BLS
signal enhancement) on the diameter of the silicon disk.

We repeated the same experiment at the field of 550 mT, see Fig. 4.12. Here, we show
the data for disk diameters ranging from 100 nm to 800 nm. One can observe that HW'TM
is lower than in the case of lower external field (Fig. 4.11b), which is in agreement with
Fig. 4.10. The amplitude (parameter A in Eq. 2.35) and integrated detection function
are shown in Fig. 4.12b, c. In all three extracted parameters, we can again observe that
the best performance is reached for the disks with diameter in the range from 175nm
to 200nm, followed by sharp decrease. After approximately 300 nm, the width of the
detection function (i.e. maximal detectable k-vector) raises again, see Fig. 4.12a. Here,
the increase in HW'TM is even bigger than in the 200 nm-wide disk. Therefore, these
disks with diameters above 300 nm are not suitable for BLS measurements, as the signal
is drastically reduced, see Fig. 4.12b, c.

The abrupt decrease in performance for diameters larger than 200 nm is visible in
both external fields, see Figs. 4.11b, ¢, and 4.12. This decrease is observable in both the
amplitude and widening of the detection function. Most likely, this is connected to the
change of the main resonance mode in silicon disk.

To get better insights to underlaying physics, we performed the FDTD simulation of
the two disks with diameters 180 nm, and 220 nm, which is before and after the abrupt
decrease in performance. In the case of the 180nm wide disk, we can observe electric
dipole resonance, where the electric field hot-spots (places of high electric field intensity)
are located along the edges in the axis of incident electric field polarization [204, 205], see
Fig. 4.13a. In Figs. 4.13b, the cross-section in the plane of polarization is shown. We
can observe asymmetry caused by the presence of the magnetic layer below the disk. Due
to this, the electric field intensity is mostly located on the top of the silicon disk, see
the colorbar scales in Figs. 4.13a, b. The electric field intensity also has a non-trivial
distribution inside the silicon disk. On the edges, it is attracted to the magnetic layer
below, while in the in-plane center is concentrated in the middle of the disk height. In
plane perpendicular to the polarization axis of the incident light there are no visible
hot-spots, see Fig. 4.13c.

In the case of 220 nm wide disk the resonance is of higher order, see Fig. 4.13d. The
electric field intensity is no more concentrated only along the edges, but now there are
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Figure 4.13: Comparison of Mie resonance in 180 nm and 220 nm wide disks. a, b,
¢, Squared electric field intensity maps of 180 nm wide disk on a 30 nm permalloy
film, which is shown as the cyan dashed rectangle. Polarization of the incident
Gaussian beam with A = 532nm is in the z direction.a, In-plane cross-sections
6nm below the permalloy/air interface. The disk boundary is shown as a gray
dotted line. The red, blue, and green dashed lines in (a-c) label zz, yz, and xy
cross-sections, respectively. b, Cross-section of the zz plane. ¢, Cross-section
through yz plane. d, e, Squared electric field intensity maps of 220 nm wide
disk. d, In-plane cross-sections 6 nm below the permalloy /air interface. e, Cross-
section of the zz plane. f, Squared electric field profile along the polarization axis
6 nm below the permalloy /air interface.
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4.5. MIE ENHANCEMENT OF THE BLS SIGNAL ON THE SINGLE SILICON DISK

two more peaks located closer to the center of the disk. By comparing the cross-section in
the plane of the incident polarization of 220 nm wide disk (Fig. 4.13e) with 180 nm wide
disk (Fig. 4.13b), we can observe that the localization of the electric field intensity is way
lower in the case of 220 nm-wide disk and overall, the intensity is more concentrated in
the middle of the disk. By looking at the electric field profiles taken below the disk in
the plane of polarization, see Fig. 4.13f we can directly see, that in the case of higher-
order resonance hosted by 220 nm wide disk, the intensity is more evenly distributed, in
comparison with 180 wide disk where in the center the intensity is almost zero. The more
even distribution of the electric field intensity in 220 nm wide disk, can result in more
absorption of the inelastically scattered light.

4.5.3. Influence of the index of refraction of dielectric disk on Mie
resonances

In the previous section, we investigated the influence of the disk diameter on BLS signal
enhancement and the mode of the Mie resonance. The change in disk diameter is somehow
similar to the change in the wavelength of the probing light or, similarly, the material index
of refraction (dielectric function). However, with the use of materials with a higher index
of refraction (n), the resonance condition is fulfilled with smaller diameters, which may
allow the detection of spin waves with even shorter wavelengths. The results presented
in this section may serve as a guide for future material research and optimization of
Mie-enhanced BLS.

We performed FDTD simulations of the disks with a diameter of 180 nm and 100 nm
and index of refraction of 2.5, 4.3 (index of refraction assumed in all other simulations),
and 6.0, see Fig. 4.14. The electric field is lower in the case of n = 2.5 (Fig. 4.14a) in
comparison to the case of n = 4.3 (Fig. 4.14b). If the index of refraction is increased even
further, a higher order radial mode occurs in 180 nm-wide disk for n = 6.0, see Fig. 4.14c.
The influence of this higher-order mode is unclear at this moment but may have a negative
effect (see Fig. 4.13). Moreover, increase in index of refraction causes decrease of electric
field intensity around line x = 0.

In the all simulations of the smaller disk (d= 100nm), we can observe smaller hotspots
(see Fig. 4.14d-f), and thus, this miniaturization may enhance the detectable k-vectors
even more. However, the experiment does not confirm this expectation, and at this
moment, the explanation of this is unclear. Moreover, the electric field reaches the highest
intensity for n = 4.3, and with further increase of index of refraction its intensity decreases,
compare Fig. 4.14d-f. The onset of dark region around line z = 0 is visible only in the
case of n = 6.0.

All of these observed phenomena are non-trivial, and it is very difficult to find patterns
in them. This further complicates the design and optimization of the resonators for
Mie-enhanced BLS. Furthermore, even after obtaining electric field distribution, it is not
completely clear how this translates to the obtained signal.
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4. MIE-ENHANCED BRILLOUIN LIGHT SCATTERING SPECTROSCOPY
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Figure 4.14: Influence of the index of refraction to Mie resonances. The squared
electric field intensity is shown for disk of diameter 180nm (a, b,c) and 100 nm
(d, e, f). The index of refraction is n = 2.5 (a, d), n = 4.3 (b, €), and n = 6.0

(c, f).
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4.6. SIMULATION OF THE MIE-ENHANCED BLS SIGNAL

4.6. Simulation of the Mie-enhanced BLS signal

This section deals with calculating the BLS signal in the presence of a scattering center.
The calculation procedure was designed and implemented by Martin Hrton. The model
gives normalized BLS intensity, and as it is based on FDTD simulation, it can account
for various geometries. However, in this approach, polar symmetry is employed, which
significantly reduces the amount of necessary FDTD simulations.

4.6.1. Theoretical description

We follow the approach introduced in Chapter 2. However, the situation is complicated
by the fact that with the scattering center there is no analytical expression for both the
electric field distribution and the dyadic Green function.

To calculate polarization vector (2.20), one has to use the results of FTDT simula-
tion. We again assume that the profile of both the electromagnetic field and spin wave
is constant across the thickness of the magnetic layer. The calculated polarization acts
as a source of inelastically scattered light. However, the main difference to bare film
is that now the polarization with free-light inaccessible wavevectors can be emitted to the
far field and collected by the objective lens and eventually measured in the tandem-Fabry-
Perot interferometer. This is allowed by the presence of perturbation (silicon disk hosting
Mie resonance), which flips-over the wavevectors of induced polarization. Mathematically
this is contained in the Green function, see Eq. 2.30.

Unfortunately, the dyadic Green function of such a system has to be calculated for
each wavevector of induced polarization by FDTD simulations. The resulting BLS signal
can be expressed as (the expression is similar to Eq. 2.31, but for clarity is written here
again)

o(wm) :/d2r|| /dzkm
(4.6)

Inspecting the above expression, there are apparently many factors that can affect the
resulting shape of the BLS spectrum, but the ability to measure signal originating from
high-£ magnons has one clear prerequisite: the driving electric field also has to possess
high-%k components.

2
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4.6.2. Obtained spectra for various disk diameters

From the integral inside the equation, it is visible that the possible scattering processes are
determined by the spatial Fourier transform of the incident electric field. To obtain such
distribution of the electric field inside the sample in real coordinates finite-difference-time-
domain (FDTD) simulations have to be used, see Fig. 4.15a-d. In the bare film, the electric
field has a 2D Gaussian distribution (Fig. 4.15a). However, in the case of 100 nm, 180 nm,
and 220 nm wide silicon disks, we can observe the field localized in subdiffraction regions
due to Mie resonances (see Figs. 4.15b-d for electric field distributions). As stated earlier,
the ability to measure the spin waves with higher k-wavevector is mainly determined by
the Fourier transform of the electric field distribution [i.e. by E(k,,k,)]. In the case
of bare film, the Fourier transform of the Gaussian electric field distribution is again
Gaussian, see Fig. 4.15e. The extent of the intensity is determined by the width of the
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Figure 4.15: Numerical simulation of the electric field distribution and theoretically
calculated BLS signal. a, b, c, d, Real-space distribution of squared electric
field for (a) bare permalloy film and for the same permalloy film with 100 nm (b),
180 nm (c), and 220 nm (d) wide silicon disks on top. e, f, g, h, Reciprocal space
distributions of the data shown in (a), (b), (c), (d), respectively. The colormap
has two linear regions; 0-50 V2m~2 and 50-320 V2m~2 for better clarity. The
boundary between the regions is marked by the dashed line. i, j, k, 1, Calculated
and measured BLS signal for (i) bare permalloy film and for the same permalloy
film with (j) 100 nm, (k) 180 nm, and (1) 220 nm wide silicon disks.
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4.7. HEATING OF THE MAGNETIC LAYER UNDER THE NANORESONATOR

spot in real space, see Chapter 2. In case of the Mie resonances hosted in silicon disk, and
subsequent focusing to subdiffraction hot spots, the electric field spans over a larger area
of the k-space exceeding values of 120 %ﬂ, see Figs. 4.15f-h for their respective Fourier
transform.

The Eq. 4.6 was used to calculate the BLS spectra for bare film and silicon disks with
diameters of 100 nm, 180 nm, and 220 nm at external fields of 550 mT, which is shown with
respective experimental data in Fig. 4.15j-1. In bare film we get perfect agreement between
the Eq. 4.6 and measurement, as in agreement with Fig. 2.19. The presented model shows
huge widening already in the case of 100nm wide disk; however, in experimental data,
this is barely visible, see Fig. 4.15j. In the case of 180 nm and 220 nm wide disk we can
observe qualitatively similar features in both, model and experimental data. However,
the good agreement between the model and experiment wasn’t achieved. The origin of
this discrepancy is currently unknown. This makes optimization of the Mie resonator
by FDTD simulation impossible, and thus the future designs has to extensively rely on
experiments.

4.7. Heating of the magnetic layer under the nanores-
onator

To rule out the presence of the non-linear phenomena and self-focusing caused by the
thermally-induced spatially dependent index of refraction, I performed a multiphysics
simulation [206]. The system, which consists of Gaussian illumination, silicon disk, and
Permalloy layer, was investigated in terms of heating caused by dissipation of the laser
power and subsequent change in refractive index. The model was solved in an iterative
manner until convergence was reached, accounting for the mutual effects of both phenom-
ena. I performed all presented simulations. However, the model was designed by Jakub
Zlamal. All simulations were carried out in Comsol 6.0, see section 3.4.3.

4.7.1. Multiphysics simulation

In contrast to the FDTD calculation, in Comsol, all calculations were done in the fre-
quency domain. The electric field calculation in Comsol agrees with the FDTD, compare
Figs. 4.16a,b and 4.13a,b. This confirms that there is no significant influence of the
temperature-dependent index of refraction for laser power of 3 mW. This laser power was
used in all presented experiments (if not stated differently). There is only small increase in
temperature, see Figs. 4.16¢,d. This increase is at maximum 30 K, which is approx. 10 %
of the initial temperature (room temperature &~ 293 K'). Such increase in temperature
results in the shift of index of refraction of silicon from 4.16 to 4.17.

Another aspect connected to the rise in temperature is the reduction of saturation
magnetization [15, 202]. With increasing temperature, the saturation magnetization
is decreased until the temperature reaches the critical value, so-called Curie tempera-
ture, where the ferromagnetism completely vanishes. We fitted this behavior with model
by Kuz'min, see Eq. 4.5. The fitted dependency is used to calculate change in the FMR
frequency, see Fig. 4.16e. The increase of 30 K reduces the saturation magnetization of
the permalloy by 0.6 percent [see Fig. 4.16 (e)], which in turn shifts down the spin wave
band by approx. 20 MHz, which is far below the resolution of our TFPi with the mirror
spacing set to 3mm [112].

91



4. MIE-ENHANCED BRILLOUIN LIGHT SCATTERING SPECTROSCOPY

E (V/m) (c) Temperature (K)
8x10°8 325
5x108
310
3x10°
2x10° 295
-300-200-100 0 100 200 300 -300-200-100 0 100 200 300
x (nm) £ i) ) X (nm) Temperature (K)
325
2x108
1x108 810
0 295
-400 200 0 200 400 -400 200 0 200 400
X (nm) X(nm)
(f)
6.6 —
(2}
I . - J—
O 63 P £
T 629 2 g
i 6.1+ 9 g
6.0 o 2
5.9 4 6 8 10 12 14 16 18 -
300 350 400 450 500 550
Temperature (K) Frequency (GHz)
(h) Difference in percentage
100
Index of refraction ()
0.25
4.200
100 %0
—= 80 =
€
E 60 4195 £ 0 0.00
> 40 >
20 -
4.190 S0 -0.25
-100
-100
-0.50

x (nm)

Figure 4.16: Local heating of the sample in the vicinity of the silicon disk. a, b,
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Simulations of squared electric field intensity in the zz plane (a) and zy plane
(b). ¢, d, The temperature distribution in the xz plane (¢) and zy plane in z =
= —6nm (d). e, FMR frequency as a function of temperature calculated from the
model presented in Fig. 4.8. f, BLS spectra measured on a silicon disk with laser
power ranging from 1 to 10mW. g, Calculated index of refraction with 10 mW
laser power. h, Difference in percentage in normalized electric field between the
3mW and 10 mW laser power in zy-plane. g, Calculated temperature-dependent
index of refraction for 10 mW incident power. h, Percentage difference between
normalized electric field calculated for 10 mW and 3mW incident power.



4.8. SWEEPS OVER THE EDGES OF THE SILICON DISK WITH A DIAMETER
OF 1500 NM

4.7.2. Measurement with different laser powers

We also measured the thermally excited BLS spectra with higher laser powers. The
results are shown in Fig. 4.16 (f), and it can be seen that even with the highest laser
power of 10 mW, there is no visible reduction of FMR frequency. However, we can see
that the shape of the spectra is affected. The new peak arises at ~ 11 GHz, which can
be caused by change of the electric field shape induced by the local change of refraction
index of silicon. This change inside the disk in zz-plane for 10 mW incident laser power
is calculated in Fig. 4.16g. In the region of the hot-spots (in zz-plane on the edges) the
index of refraction is elevated approx. to 4.2 from a room temperature value of 4.16.
The corresponding temperature is approx. 390 K. This change in refractive index value
induced subsequent changes in electric field distribution. We show the difference in shape
(percentage change in normalized electric field distribution) in Fig. 4.16h. The differences
reaches 0.5%. By increasing the electric field intensity in the position of the disk and
decreasing the intensity on the outer perimeter, one can judge that an elevated index of
refraction causes the concentration of the electric field to a smaller area. However, it is not
clear if this is solely the only reason for the change of the shape of spectra in Fig. 4.16f.

4.8. Sweeps over the edges of the silicon disk with a di-
ameter of 1500 nm

To further explore the role of the nanoresonators’ edges, I studied the enhancement of
the BLS spectra on edges of 1500 nm-wide silicon disk. This diameter is roughly three
times larger than the waist of the probing laser beam, and thus, the role of the finite sizes
of the disk is strongly suppressed. Such a situation is very similar to the measurement
on the semi-infinite film. In the following section, I demonstrate that this lack of polar
symmetry around the probing beam can be utilized to achieve directional sensitivity only
for spin waves propagating perpendicularly to the illuminated edge.

4.8.1. Measurement on the edges of the disk

We measured BLS spectra with the laser spot focused on the right edge and then on the
top edge of a large, 1500 nm wide, disk (see Fig. 4.17a). We can see that compared to the
measurement on a bare film, the overall BLS signal is lower at both laser spot positions,
see Fig. 4.17b. Nevertheless, the enhancement of the maximum detec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>