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Abstract
Control systems are widely used as they enable precise management and regulation of
complex processes across various industries. Ordinary differential equations are widely
used in control theory because they provide a mathematical framework to describe the
dynamic behaviour of control systems. They allow stability analysis, have good performance
characteristics and can effectively regulate and optimise systems responses in real-time. The
high-order numerical methods are not often used in the real-time context because of the
large number of operations.

The thesis deals with the numerical solution of ordinary differential equations using a
higher-order variable-step variable-order numerical method based on the Taylor series. The
method is defined for linear and non-linear problems, and several optimisations to increase
its performance are introduced. The positive properties of the method are thoroughly
analysed and demonstrated on a set of real-world technical problems.

The results show that the Taylor-series-based method can be used in the area of control
and regulation and outperforms the state-of-the-art methods in terms of speed and accuracy
of the calculation.

Abstrakt
Systémy pro řízení a regulaci jsou používány téměř ve všech průmyslových oblastech. Pro
jejich modelování se často používají diferenciální rovnice, které popisují dynamické chování
těchto systémů a umožňují je detailněji analyzovat z hlediska přesnosti, stability, výkonu a
reakcí těchto systémů v reálném čase. V této oblasti se běžně nepoužívají metody vyšších
řádů, protože vykonávají velké množství operací.

Tato práce zkoumá numerické řešení obyčejných diferenciálních rovnic s použitím metody
s proměnným řádem a proměnnou velikostí kroku, která je založena na Taylorově řadě.
Metoda je navržena jak pro lineární, tak pro nelineární problémy a jsou implementovány
její optimalizace pro snížení výpočetního času bez degradace jejích vlastností. Pozitivní
vlastnosti metody jsou demonstrovány na sadě příkladů z technické praxe.

Výsledky práce ukazují, že metoda založena na Taylorově řadě může být použita v
oblasti řízení a regulace a má lepší vlastnosti než běžně používané metody.

Keywords
ordinary differential equations, higher-order numerical methods, Taylor series, technical
initial value problems, control, regulation, modelling, controllers, regulators

Klíčová slova
obyčejné diferenciální rovnice, numerické metody vyššího řádu, Taylorova řada, technické
počáteční úlohy, řízení, modelování, regulátory

Reference
VEIGEND, Petr. High order numerical method in modelling and control systems. Brno,
2023. PhD thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Václav Šátek, Ph.D.



Rozšířený abstrakt
Tato práce se zabývá modelováním a simulací reálných problémů pomocí numerické inte-

grační metody vyššího řádu, která je založena na Taylorově řadě. Tato metoda má velké
množství pozitivních vlastností (např. automatické nastavení počtu členů Taylorovy řady,
které se používají pro výpočet, vysokou numerickou stabilitu, vysokou přesnost a rychlost
výpočtu), které lze využít při simulaci systémů, které jsou namodelovány pomocí obyče-
jných diferenciálních rovnic prvního řádu s počáteční podmínkou – technické počáteční
problémy.

V rámci práce jsou nejprve představeny některé běžně používané explicitní numer-
ické metody pro řešení obyčejných diferenciálních rovnic (např. metoda Eulerova, metody
Runge-Kutta, apod.) a jejich vlastnosti. Metoda vyššího řádu založena na Taylorově řadě
(se zkratkou MTSM – Moderní metoda Taylorovy řady) je definována jak pro lineární, tak
pro nelineární problémy včetně detailního popisu možných optimalizací, hlavně pro velmi
výpočetně náročný nelineární výpočet vyšších členů Taylorovy řady. Pozitivní vlastnosti
metody jsou ověřeny na sadě příkladů z různých oblastní technické praxe (astronomie, elek-
trotechnika, fyzika, atp.). V drtivé většině případů metoda řeší definované problémy rych-
leji a se srovnatelnou přesností, než běžně používané numerické metody. Práce se zabývá
aplikací metody v oblasti řízení a regulace, kde je opět na sadě příkladů demonstrováno
chování metody při řešení problémů z této oblasti, včetně možných aplikací.

Práce ukazuje vhodnost použití MTSM v technické praxi a v oblasti řízení a regulace a
ukazuje na další možné výzkumné směry (např. další optimalizace pro výpočet nelineárních
problémů nebo aplikace metody ve skutečném systému).
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Chapter 1

Introduction

The presented thesis deals with quite an expansive problem – how to apply the high-order
numerical integration method into the area of control systems (with a wide range of possible
applications, including systems that have hard limits on time of calculation). These control
systems working in real-time context are widely used, and if they are not working correctly,
in the worst case scenario, lives might be lost. This places a high burden on the used control
system. This thesis tries to answer the following question:

Is a high-order variable step, variable order numerical method suitable for use
in the systems that operate in real-time?

The posed question seems to have a uniform answer in the literature – (no), and that
is going to be discussed in more detail. This answer is due to the fact that the number of
operations is critical in the real-time context, and these methods do not seem to be well
suited for the task.

The thesis deals with state-of-the-art numerical methods that can be used in the real-
time context for comparison and shows how the presented high-order method resolves the
shortcomings these methods might have. In the thesis, I will discuss how the proposed
numerical method and its modifications and optimizations might be used to achieve better
results. First generally and then in the context of a control system using a constructed
simulation model on a set of experiments that are all cyber-physical and therefore have
high usefulness in real-world applications.

1.1 Research objectives
The thesis has several research objectives:

• discuss the currently existing numerical integration methods, particularly in the con-
text of control systems,

• analyse the properties of a high-order integration method based on the Taylor series
and evaluate the applicability of this method on a set of technical problems,

• extend the capabilities of high-order Taylor series method to solve non-linear prob-
lems, propose and discuss possible optimizations,

• show the suitability of the high-order method to be used as a part of the control
system using a set of examples (with strict considerations of time of calculation),
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• show the potential for further research and additional improvements of the method
for both linear and non-linear problems.

1.2 Structure of the thesis
The thesis is structured so that the general topics create a foundation for more specialized
ones. In Chapter 2, the overview of the widely used numerical integration methods is pre-
sented with an emphasis on their properties, including stability and usability in real-world
usage. Chapter 3 introduces the proposed numerical integration method with its positive
properties highlighted compared to the state-of-the-art solvers introduced in the previous
Chapter. The definition of the method for linear and non-linear problems is also included
with the possible optimizations to the non-linear solver, which are non-trivial and can help
to dramatically increase the performance of the calculation. Chapter 4 contains several
linear and non-linear real-world example problems from several different areas (physics,
electrical engineering, astronomy, etc.) that show how the method behaves when solving
different types of problems. After establishing the properties and usability of the method
when solving general problems, Chapter 5 overviews the basics of system control theory
needed to understand the control systems experiments in the final Chapter. Linear and
non-linear controllers are also introduced. Finally, Chapter 6 contains the experiments on
a set of control problems that are solved using the proposed numerical method, showing
that its properties make it suitable for working with control systems.
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Chapter 2

Numerical solution of differential
equations

This Chapter discusses the basics of the numerical solution of differential equations. Then,
due to this thesis’s topic, state-of-the-art methods that can be used in real-time applications
are introduced. Analysis and discussion of commonly used numerical methods of several
types follow with examples. The chapter is primarily compiled from [18], [32], [17], and
other sources cited throughout.

In real-life situations, the differential equation that models the problem is too compli-
cated to solve exactly, and one of two approaches is taken to approximate the solution. The
first approach is to modify the problem by simplifying the differential equation to one that
can be solved exactly and then use the solution of the simplified equation to approximate
the solution to the original problem. The other approach uses methods for approximating
the solution of the original problem. This is the approach that is most commonly taken be-
cause the approximation methods give more accurate results and realistic error information
[17].

The numerical integration methods do not produce a continuous approximation of the
solution of the initial-value problems. Instead, approximations are found at specific points,
often spaced equally apart. These points form a solution mesh. The way of creating the
mesh differs based on a selected method and other considerations.

First, let us briefly discuss how the numerical derivation works on a conceptual level
before applying the principles to the numerical solution of the differential equations.

2.1 Numerical differentiation
When having a function defined by a set of values instead of its analytical solution, we need
to be able to replace the function with a polynomial representation that would approximate
it and create derivatives (or integrate, if need be) of the approximating function. The
derivative of the function 𝑦(𝑥) can be expressed as

𝑦′(𝑥0) = lim
ℎ→0

𝑦(𝑥0 + ℎ) − 𝑦(𝑥0)
ℎ

. (2.1)

The following example shows how to obtain the approximation of the derivative of the
function. A function 𝑦 at the point 𝑥0 can be approximated using the Lagrange polynomial

17



of the original function 𝑦(𝑥)

𝑦(𝑥) = 𝑦(𝑥0)(𝑥 − 𝑥0 − ℎ)
−ℎ

+ 𝑦(𝑥0 + ℎ)(𝑥 − 𝑥0)
ℎ

+ (𝑥 − 𝑥0)(𝑥 − 𝑥1)
2 𝑓 ′′(𝜉(𝑥))

for 𝑥0 ∈ (𝑎, 𝑏) and 𝑥1 = 𝑥0 + ℎ for some ℎ ̸= 0 that is sufficiently small to ensure that
𝑥1 ∈ ⟨𝑎, 𝑏⟩ and 𝜉(𝑥) between 𝑥0 and 𝑥1. Differentiating the polynomial gives

𝑦′(𝑥) = 𝑦(𝑥0 + ℎ) − 𝑦(𝑥0)
ℎ

+ 2(𝑥 − 𝑥0) − ℎ

2 𝑦′′(𝜉(𝑥)) + (𝑥 − 𝑥0)(𝑥 − 𝑥0 − ℎ)
2 𝐷𝑥(𝑦′′(𝜉(𝑥))) .

Deleting the terms involving 𝜉(𝑥) gives the approximation of the derivative. For 𝑥 = 𝑥0 we
can therefore write

𝑦′(𝑥) ≈ 𝑦(𝑥0 + ℎ) − 𝑦(𝑥0)
ℎ

or rather
𝑦′(𝑥) = 𝑦(𝑥0 + ℎ) − 𝑦(𝑥0)

ℎ
− ℎ

2 𝑦′′(𝜉) (2.2)

for 𝑥 = 𝑥0. For small values of ℎ, the quotient 𝑦(𝑥0+ℎ)−𝑦(𝑥0)
ℎ can be used to approximate the

first derivative 𝑦′(𝑥). This formula is known as a forward-difference formula for ℎ > 0 or
backward-difference formula for ℎ < 0 [71]. Figure 2.1 shows the geometric interpretation
of the forward difference formula.

x

y(x)

Slope y′(x0)

Slope y(x0+h)−y(x0)
h

x0 x0 + h

Figure 2.1: Geometric interpretation of the forward difference formula (based on [17]).

If we use more points, the general accuracy increases. However, the number of performed
operations and the rise of round-off error makes higher orders than five generally not prac-
tical [17].

2.2 Ordinary differential equations
The first-order differential equation can be defined as [18]

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) , (2.3)

where 𝑦′(𝑥) = d𝑦
d𝑥 . The differential equation alone does not generally define a unique

solution, and a number of conditions have to be added to the problem – boundary or initial
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conditions (all components of 𝑦 are specified at the single value of 𝑥). If the value 𝑦(𝑥0) = 𝑦0
is given, then the equations

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑦0 , (2.4)

are together known as a initial value problem (abbreviated as IVP). Note that if the IVP is
multidimensional, initial values in all dimensions have to be defined. Therefore, we might
write

𝑦′(𝑥) = 𝑓𝑇 (𝑥,𝑦(𝑥)), 𝑦0 =
[︁
𝑦0

0𝑦1
0𝑦2

0 . . . 𝑦𝑁
0

]︁𝑇
. (2.5)

For natural problems, the differential equations might have higher order. The higher-order
differential equation is in the form

𝑦(𝑛) = 𝜑
(︁
𝑥, 𝑦, 𝑦′, 𝑦′′, . . . , 𝑦(𝑛−1)

)︁
, (2.6)

with initial values given for 𝑦(𝑥0), 𝑦′(𝑥0), 𝑦′′(𝑥0), . . . , 𝑦(𝑛−1)(𝑥0). The methods that can
transform such system into the system of the first-order ODEs are discussed in Section 2.6.

2.2.1 Existence and uniqueness of solutions

A fundamental question when creating a system model is whether a given differential equa-
tion with the associated initial condition can be reliably used to predict the system’s future
state. If the system is acceptable from this point of view, we call it well-posed. For the
system to be well-posed, the following attributes have to be taken into account.

• Does solution exist?

• If solution exists, is it unique?

• How sensitive is the calculated solution to the small changes in the initial condition?

All criteria mentioned above can be satisfactorily answered by using the Lipschitz condition.

Definition 1 The function 𝑓 : [𝑎, 𝑏] × ℛ𝑁 → ℛ𝑁 is said to satisfy a Lipschitz condition in
its second variable if there exists a constant 𝐿, known as Lipschitz constant, such that for
any 𝑥 ∈ [𝑎, 𝑏] and 𝑌 ,𝑍 ∈ ℛ𝑁 , ||𝑓(𝑥,𝑌 ) − 𝑓(𝑥,𝑍)|| ≤ 𝐿||𝑌 − 𝑍||.

Based on the Definition 1, the initial value problem (2.4) can be defined.

Theorem 1 Consider the initial value problem

𝑦′(𝑥) = 𝑓(𝑥,𝑦(𝑥)), (2.7)
𝑦(𝑎) = 𝑦0, (2.8)

where 𝑓 : [𝑎, 𝑏] × ℛ𝑁 → ℛ𝑁 is continuous in its first variable and satisfies the Lipschitz
condition in its second variable. Then unique solution to this problem exists.

The proof of Theorem 1 can be found in [18].
The third requirement for being well-posed is that the solution is not overly sensitive to

the initial condition. This can be assessed for problems that satisfy the Lipschitz condition.
Further analysis can be found in [18]. Of particular note here are stiff systems, that often
have large Lipschitz constants and different approaches to their solution has to be used [83].
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2.3 Numerical integration
In this Section, the concept of numerical integration is briefly introduced and several state-
of-the-art methods that are commonly used are presented. The Section is mostly compiled
from [18], [17] and [32].

The methods presented in this Section are used for comparison with the high-order
method based on the Taylor series, which is going to be presented in detail in Chapter 3.
The primary focus of the Section is going to be on performance, stability, and usefulness,
mainly in real-time applications.

This thesis mainly considers the numerical solution of the ordinary differential equations
(ODEs) with generally arbitrary order. The solution of these equations is performed in the
time domain so that 𝑥 → 𝑡. The thesis discusses several approaches that can be used to
transform the arbitrary order equation to the general form of first-order ODE

𝑔(𝑡, 𝑦(𝑡), 𝑦′(𝑡)) = 0 (2.9)

and for the explicit methods (which are mainly considered in the rest of the thesis), the
general formulation above can be rewritten as (2.7). The general solution defined by (2.7)
contains the integration constant that can have an arbitrary value. To specify the solution
of the problem, the initial condition (2.8) for the function in 𝑡 = 𝑡0 can be specified.

Before defining the methods commonly used for numerical integration, the general prin-
ciple should be discussed first. When solving an IVP using a numerical method [28], we
find the approximate values of the function 𝑦(𝑡) in the defined nodes of the solution mesh
{𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑚} in the interval ⟨𝑎, 𝑏⟩. The nodes of the mesh on the interval are therefore
defined as 𝑎 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑚 = 𝑏. The step size of the mesh can be calculated as
ℎ𝑖+1 = 𝑡𝑖+1 − 𝑡𝑖, for 𝑖 = 0, 1, . . . , 𝑛 − 1. The step size can be the same in all areas of the
mesh – equidistant mesh, or it can change during the calculation – non-equidistant mesh.

The basic principle of the numerical solution of differential equations is in Figure 2.2.

t

f(t)
y(t)

y0 y(t0)
y1

y(t1)
y2 y(t2)

y3
y(t3) ym−1 y(tm−1)

ym y(tm)

t0 t1 t2 t3 tm−1 tm

h1 h2 h3 hm

Figure 2.2: The basic principle of IVP solution. The problem is defined by
𝑦′ = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0. The curve 𝑦(𝑡) represents the accurate (analytical) solution. The
blue points represent the solutions in the individual mesh points (based on [28]).

The values in the mesh nodes can be calculated using various numerical integration methods.
These methods can be broadly categorized into two major groups:

• single-step methods use the previous mesh point to calculate the value in the next
mesh point,
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• multi-step methods use multiple previous mesh points to calculate the value in the
next mesh point.

The basis for all single-step methods is the Taylor series [17], [83] and [32] which can
be defined using the following Theorem.

Theorem 2 Let 𝐶𝑑(𝑋) be the set of all functions that have the continuous derivative on
𝑋. Suppose 𝑓 ∈ 𝐶𝑑 [𝑎, 𝑏], that 𝑓𝑑+1 exists on [𝑎, 𝑏] and 𝑡0 ∈ [𝑎, 𝑏]. For every 𝑡 ∈ [𝑎, 𝑏] there
exists a number 𝜉(𝑥) between 𝑡 and 𝑡0 with

𝑓(𝑥) = 𝑃𝑁 (𝑥) + 𝑅𝑁 (𝑥) ,

where

𝑃𝑁 (𝑥) = 𝑓(𝑡0) + 𝑓 ′(𝑡)(𝑡 − 𝑡0) + 𝑓 ′′(𝑡)
2! (𝑡 − 𝑡0)2 + · · · + 𝑓 (𝑁)(𝑡0)

𝑁 ! (𝑡 − 𝑡0)𝑁

=
𝑁∑︁

𝑘=0

𝑓 (𝑘)(𝑡0)
𝑘! (𝑡 − 𝑡0)𝑘

and

𝑅𝑁 (𝑥) = 𝑓 (𝑁+1)(𝜉(𝑥))
(𝑁 + 1)! (𝑡 − 𝑡0)𝑁+1 .

The term 𝑃𝑁 (𝑥) is called the nth Taylor polynomial for 𝑓 in the neighbourhood of 𝑡0 and
𝑅𝑁 (𝑥) is called the remainder term (or truncation error – the error involved when using
the truncated summation of an infinite series) associated with 𝑃𝑁 (𝑥). The value of the
function 𝜉(𝑥) cannot be determined explicitly, and Theorem 2 ensures that such function
exists and that its value lies between 𝑡0 and 𝑡. The infinite series obtained by taking a limit
of 𝑃𝑁 (𝑥) as 𝑁 → ∞ is called the Taylor series for 𝑓 in the neighbourhood of 𝑡0. Note that
for 𝑡0 = 0, the Taylor polynomial is often called the Maclaurin series.

All single-step methods are based on the Taylor series. It can provide the best approx-
imation of the function when a sufficient number of the terms are calculated. The biggest
problem while using the methods based on the Taylor series is the calculation of higher
derivatives. This problem can be solved using the method presented in Chapter 3. Proba-
bly the most well-known, simplest and most straightforward single-step method, the Euler
method, is will be discussed first.

2.3.1 Euler method

The Euler method, first published by Leonhard Euler between 1768 and 1770 and repub-
lished in his collected works, is based on a very simple principle that can be generalized
to create more advanced methods. Suppose that a particle is moving in such a way that
at time 𝑡0, its position is equal to 𝑦0, and at that time, the velocity is equal to 𝑣0. The
principle is that in a very short time, the velocity does not change significantly from 𝑣0,
and the change in position will be approximately equal to the change in time multiplied by
𝑦0.

If the motion of the particle is driven by a differential equation, the value of 𝑣0 will be
known as the function of 𝑡0 and 𝑦0. Given 𝑡0, the solution at 𝑡1, assumed to be close to 𝑡0
can be calculated as

𝑦1 = 𝑦0 + (𝑡1 − 𝑡0)𝑣0
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which can be found from the known values of 𝑦0, 𝑡1 and 𝑡0. The numerical solution of
a differential equation is a sequence of approximations at times 𝑡1, 𝑡2, 𝑡3, . . ., 𝑡𝑚 that
should lead to the acceptable approximation of the given function.

Of course, the interpretation is much broader than for a single particle. The dependent
variable 𝑦 might not have a meaning of distance and might not even be scalar. If 𝑦 is
a vector, then it can be interpreted as a collection of scalars 𝑦1, 𝑦2, . . ., 𝑦𝑛. The differential
equation and the initial information together determine the values of 𝑦 components as the
time variable changes can be written in the form

𝑦′(𝑡) = 𝑓(𝑡,𝑦(𝑡)) 𝑦(𝑡0) = 𝑦0 . (2.10)

An important special case is that 𝑓 , or for the vector problems 𝑓1, 𝑓2, . . ., 𝑓𝑛 does not
depend on the time variable at all. In this case, the problem is autonomous and can be
written in the form

𝑦′(𝑡) = 𝑓(𝑦(𝑡)) 𝑦(𝑡0) = 𝑦0 . (2.11)

Using the terms of the Taylor series, the explicit method can be written as

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑦′
𝑖 (2.12)

note that (2.12) contains the first term of the Taylor series. Therefore, the Euler method
is so called first-order method.

In MATLAB, the method is not included in the set of standard solvers (due to its limited
usability in solving real-world problems and its limited stability). However, understanding
the basic principles is helpful because it demonstrates how numerical integration works on
the most basic level. More advanced methods (i.e. the Runge-Kutta methods) that are
going to be discussed next are more complicated.

2.3.2 Runge-Kutta methods

The methods of this type can generally be viewed as generalizations of the Euler method.
The methods are attributed to Runge (1895), with Kutta (1901) and Heun providing further
contributions. The methods came back into focus after the advent of modern digital com-
puters, and new methods with higher orders are being developed and tested that fall into
this broad category (including the methods included in the MATLAB software package).

The basic principle behind any Runge-Kutta method is simple: rather than calculate the
function 𝑓 just once in each time step, the methods might calculate the function multiple
times per time step with different arguments. The number of function evaluations in the
individual time steps can determine the order of the method. Further, the methods can
be additionally augmented with additional calculations to improve the accuracy and other
properties of the methods. For the method with the order 𝑝, at least 𝑠 stages are necessary.

Second-order method

The second-order method (commonly abbreviated as RK2) evaluates the function 𝑓 two
times during each time step. One evaluation is performed at the beginning of an inte-
gration step, and the second evaluation can be calculated, for example, in the middle of
an integration step (mid-point). This can, however be difficult, but the second value can
be approximated using a similar formula as the Euler method. With two approximations
completed, all the data are available to calculate the second-order function approximation
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using the trapezoidal rule formula. The second-order method that uses the mid-point can
be formulated as:

𝑘1 = 𝑦𝑖−1 + ℎ𝑓(𝑡𝑖−1, 𝑦𝑖−1)

𝑦𝑖 = 𝑦𝑖−1 + ℎ

2 (𝑓(𝑥𝑖, 𝑘1) + 𝑓(𝑡𝑖−1, 𝑦𝑖−1)) .
(2.13)

The construction of the second-order Runge-Kutta method can be generalized by using
an arbitrary value for the distance into the current integration step (denoted as 𝜑). Using
the second-order quadrature formula∫︁ 1

0
𝜑(𝑡)d𝑡 ≈ (1 − 1

2𝜑
)𝜑(0) + 1

2𝜑
𝜑(0).

As stated above, the distance 𝜑ℎ can be arbitrary, most commonly 𝜑 = 1
2 . The Runge-Kutta

methods can also be described using the coefficient tableau with the following form.

𝑐 𝐴

𝑏𝑇

Vector 𝑐 indicates the positions of the stage values within the step, matrix 𝐴 indicates the
dependence of the stages on the derivatives found at other stages, and 𝑏𝑇 is a vector of
weights, showing how the final result depends on the derivatives computed at the various
stages. The tableaus of this configuration are commonly referred to as Butcher or Runge-
Kutta tableaus [18]. As an example, consider the following tableau for the Euler method.

0
1

For the second-order method we are currently discussing in this section, multiple con-
figurations of the tableau can be created based on the value of 𝜑. For the general value of
𝜑, the tableau can be written as follows.

0
𝜑 𝜑

1 − 1
2𝜑

1
2𝜑

Table 2.1: Butcher tableau for the second-order Runge-Kutta method (general value of 𝜑).

For 𝜑 = 1
2 , the values are substituted, and the resulting tableau is therefore simpler.

0
1
2

1
2
0 1

Table 2.2: Butcher tableau for the second order Runge-Kutta method (𝜑 = 1
2).
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For clarity, the equations for the mid-point (𝜑 = 1
2) variant of the Runge-Kutta method

with coefficients presented in Table 2.2 are

𝑘1 = 𝑓(𝑡𝑖, 𝑦𝑖)

𝑘2 = 𝑓(𝑡𝑖 + 1
2ℎ, 𝑦𝑖 + 1

2ℎ𝑘1) .
(2.14)

The tableaus can be used to construct higher-order methods (for more examples, see
[18]). Let us briefly look at the construction of the most common order of the Runge-Kutta
method in technical practice – the fourth-order method. Note that the construction of
the methods using polynomial conditions (as presented in [18]) is practical only up to the
fourth order due to the massive increase in complexity of the conditions for the higher
orders. Several polynomial conditions have to hold in order to construct the method [18].
These polynomial conditions can be solved, and the obtained coefficients can be used to
derive several variants of the Runge-Kutta methods – the most common solution being
shown in Table 2.3.

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Table 2.3: Butcher tableau for commonly used fourth-order Runge-Kutta method.

Based on Table 2.3, the most common formulation of the fourth-order Runge-Kutta method
can be written as

𝑦𝑖+1 = 𝑦𝑖 + 1
6𝑘1 + 1

3𝑘2 + 1
3𝑘3 + 1

6𝑘4 = 𝑦𝑖 + 1
6(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) . (2.15)

where coefficients 𝑘1,𝑘2,𝑘3 and 𝑘4 are calculated using

𝑘1 = ℎ𝑓(𝑡𝑥𝑖, 𝑦𝑖),

𝑘2 = ℎ𝑓(𝑡𝑖 + 1
2ℎ, 𝑦𝑖 + 𝑘1

2 ),

𝑘3 = ℎ𝑓(𝑡𝑖 + 1
2ℎ, 𝑦𝑖 + 𝑘2

2 ),

𝑘4 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑦𝑖 + 𝑘3).

(2.16)

Dormand-Prince method

Similarly to the Euler method, the basic fourth-order Runge-Kutta methods are not imple-
mented in MATLAB as presented in Table 2.3. In MATLAB [69] Dormand–Prince method
is used [25]. It uses six function evaluations and a simple error predictor to increase ac-
curacy and determine the optimal step size. This variant of the Runge-Kutta method is
very widely implemented in other software and suites for numerical integration. The first
of these methods [18], RK5(4)7M the method has the Butcher tableau 2.4.
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0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561

212
729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656
1 35

384 0 500
1113

125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

- 71
57600 0 71

16695 − 71
1920

17253
339200 − 22

525
1
40

Table 2.4: Butcher tableau for the Dormand-Prince method.

First of the output approximations has order 𝑁 + 1 = 5 and propagates. This method has
the so-called FSAL (first Same As Last) property. This means that vector 𝑏, corresponding
to the output approximation, has the last component equal to zero, and it is identical to the
last row of the matrix 𝐴. As a consequence, while the method has seven stages, it operates
as if it only has six (the seventh stage derivative can be retained as the first derivative of
the subsequent step). The method can be defined without this property or with different
coefficients (that would lead to a larger region of stability). For more information, see [18].

Fehlberg method

The Fehlberg methods represents the early attempt at incorporating the error estimation
into the Runge-Kutta method. When writing the tableaus, the following notation can be
used

𝑐 𝐴

𝑏𝑇

�̂�𝑇

𝑑𝑇

where

𝑐 𝐴

𝑏𝑇

is the tableau for the Runge-Kutta method of order 𝑝 and

𝑐 𝐴

�̂�𝑇

is the tableau for the Runge-Kutta method of order 𝑝+1. The additional vector 𝑑𝑇 = �̂�𝑇 −𝑏𝑇

is used for error estimation. The fifth-order method, with sixth-order error estimation, can
be expressed as
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0
1
6

1
6

4
15

4
75

15
76

2
3

5
6 −8

3
5
2

4
5 −8

5
144
25 −4 16

25
1 362

320 −18
5

407
128 −11

80 − 55
128

0 − 11
640 0 11

256 − 11
160

11
256 0

1 93
640 −18

5
803
256 − 11

160
99
256 0 1

31
384 0 1125

2816
9
32

125
768

5
66 0 0

7
1408 0 1125

2816
9
32

125
768 0 5

66
5
66

− 5
66 0 0 0 0 − 5

66
5
66

5
66

Table 2.5: Butcher tableau for the Fehlberg method.

Methods derived by Fehlberg can have difficulty with error estimation when the formulas
characterized by the vectors 𝑏𝑇 and �̂�𝑇 are identical, which would mean that the error
estimate is going to be too optimistic. Further information about the Fehlberg methods
and their drawbacks can be found in [18].

Trapezoidal rule

The trapezoidal rule is another one of the very well-known methods. These methods can
be generally written as

𝑦𝑖+1 = 𝑦𝑖 + 1
2ℎ (𝑓(𝑡𝑖, 𝑦𝑖) + 𝑓(𝑡𝑖+1, 𝑦𝑖+1)) .

These methods are implicit and very efficient for solving stiff problems.

2.3.3 Multi-step methods

The multi-step methods are widely used in the area of real-time simulation [49], so this
thesis is going to discuss the commonly used ones in greater detail. For the non-stiff linear
problems, the Adams methods are the most important. These methods approximate the
solution at 𝑡𝑛 either by

𝑦𝑖+1 = 𝑦𝑖 + ℎ(𝛽1𝑓(𝑡𝑖, 𝑦𝑖) + 𝛽2𝑓(𝑡𝑖−1, 𝑦𝑖−1) + · · · + 𝛽𝑘𝑓(𝑡𝑖−𝑘, 𝑦𝑖−𝑘)) (2.17)

(Adams-Bashforth methods) or

𝑦𝑖+1 = 𝑦𝑖 + ℎ(𝛽0𝑓(𝑡𝑖, 𝑦𝑖) + 𝛽1𝑓(𝑡𝑖−1, 𝑦𝑖−1) + · · · + 𝛽𝑘𝑓(𝑡𝑖−𝑘, 𝑦𝑖−𝑘)) (2.18)

(Adams-Moulton methods) where the constants 𝛽0, 𝛽1, 𝛽2, . . . , 𝛽𝑘 are chosen to give the
highest possible order.

For Adams-Bashforth methods, assuming that no other errors were introduced when
approximation at 𝑡𝑖 is about to be calculated, the terms on the right-hand side can be
replaced by the quantities that are approximated, that is, by 𝑦𝑖−1, 𝑦′

𝑖−1, 𝑦′
𝑖−2, . . . , 𝑦′

𝑖−𝑘

respectively. The amount by which the approximation written in this form differs from 𝑦(𝑡𝑖)
is the error generated in the particular step. If this error can be estimated for a smooth
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problem as 𝒪(ℎ𝑁+1), then the method has the order 𝑁 . For Adams-Moulton methods, the
term with 𝑓(𝑡𝑖, 𝑦𝑖) complicates the calculation of the order. However, the resulting order is
similar to the Adams-Bashforth methods. Generally, this class of methods are specialized
in that the dependence of 𝑦𝑖 on previously computed values ignores 𝑦𝑖−1, 𝑦𝑖−2, . . . , 𝑦𝑖−𝑘.

Adams-Bashfort methods

The coefficients of the Adams-Bashfort method (𝛽0 = 0) for 𝑘 = 1 . . . 6 steps are in Ta-
ble 2.6.

𝑘 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6

1 1
2 3

2 −1
2

3 23
12 −16

12
5
12

4 55
24 −59

24
37
24 − 9

24
5 1901

720 −2774
720

2616
720 −1274

720
251
720

6 4277
1440 −7923

1440
9982
1440 −7298

1440
2877
1440 − 475

1440

Table 2.6: Coefficients for the Adams-Bashfort method [18].

For 𝑘 = 1, the explicit Euler method (2.12) can be obtained. For higher values of 𝑘, the
multistep methods can be obtained. For example, using 𝑘 = 2

𝑦𝑖+1 = ℎ

(︂3
2𝑓(𝑡𝑖, 𝑦𝑖) − 1

2𝑓(𝑡𝑖−1, 𝑦𝑖−1)
)︂

.

Adams-Moulton methods

The coefficients of the Adams-Moulton method (𝛽0 = 1) for 𝑘 = 0 . . . 5 steps are in Ta-
ble 2.7.

𝑘 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5

0 1
1 1

2
1
2

2 5
12

8
12 − 1

12
3 9

24
19
24 − 5

24
1
24

4 251
720

646
720 −264

720
106
720 − 19

720
5 475

1440
1427
1440 − 858

1440
482
1440 − 173

1440
27

1440

Table 2.7: Coefficients for the Adams-Moulton method [18].

By substituting the coefficients into (2.18), the implicit methods can be obtained (the
implicit Euler method for 𝑘 = 1, trapezoidal rule for 𝑘 = 2). A multi-step method is
obtained by using 𝑘 ≥ 3.

The biggest drawback of the multi-step methods is the need to generate the 𝑘 starting
points 𝑦0, 𝑦1, . . . , 𝑦𝑘−1. One of the approaches that can be used for 𝑘-step Adams-Bashfort
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method calculated again using Adams-Bashfort method, 𝑦1 using the one-step Adams-
Bashfort method, 𝑦2 using two-step Adams-Bashfort method and 𝑦𝑘−1 using 𝑦𝑘−1-step
Adams-Bashfort method.

Predictor-corrector methods

The Adams-Bashfort and Adams-Moulton methods are rarely used on their own. They
are more commonly used combined as so-called predictor-corrector methods. The predictor
(preliminary calculation in 𝑦𝑖) is being performed by the Adams-Bashfort method. This pre-
liminary predicted solution at the new step value is then used to evaluate an approximation
to the derivative value at the new point.

This calculation scheme is often referred to by the abbreviation PECE (predict-evaluate-
correct-evaluate). The steps on the scheme for the second-order predictor-corrector method
can be written as follows:

• 𝑃 2nd order Adams-Bashfort method 𝑦*
𝑖+1 = 𝑦𝑖 + 1

2ℎ (3𝑓𝑖 − 𝑓𝑖−1)

• 𝐸 𝑓*
𝑖+1 = 𝑓(𝑡𝑖+1, (𝑦*

𝑖+1)

• 𝐶 2nd order Adams-Moulton method 𝑦𝑖+1 = 𝑦𝑖 + 1
2ℎ
(︀
𝑓*

𝑖+1 + 𝑓𝑖
)︀

• 𝐸 𝑓𝑖+1 = 𝑓(𝑡𝑖+1, (𝑦𝑖+1).

2.4 Implementation of integration methods in MATLAB
Some methods introduced in Section 2.3 are implemented in MATLAB [54]. The most
widely used numerical solvers in MATLAB that are used in the thesis are summarized in
Table 2.8.

Solver Method
ode23 Bogacki-Shampine [69]
ode45 Dormand-Prince [25]
ode113 Adams-Bashfort method with predictor-corrector PECE scheme

Table 2.8: List of used state-of-the-art numerical integration methods.

In several experiments, Runge-Kutta second-order (2.14) and fourth-order (2.15) meth-
ods are used.

2.5 Errors of the numerical integration methods
When calculating the solution using the selected numerical integration method, it is im-
perative to have a good understanding of errors that are present. There are two types of
errors that have to be taken into account:

• local truncation error and

• global truncation error.
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Local truncation error at the specified step measures the amount by which the exact solu-
tion of the differential equation fails to satisfy the difference equation being used for the
approximation at that step [17].

For the initial value problem

𝑦′ = 𝑓(𝑡, 𝑦), 𝑎 ≤ 𝑡 ≤ 𝑏, 𝑦(𝑎) = 𝛼

the difference method can be defined as

𝑤0 = 𝛼

𝑤𝑖+1 = 𝑤𝑖 + ℎ𝜑(𝑡𝑖, 𝑤𝑖)

for each 𝑖 = 0, 1, . . . , 𝑛 − 1. This difference method has local truncation error

𝜏𝑖+1 = 𝑦𝑖+1 − (𝑦𝑖 + ℎ𝜑(𝑡𝑖, 𝑦𝑖))
ℎ

= 𝑦𝑖+1 − 𝑦𝑖

ℎ
− 𝜑(𝑡𝑖, 𝑦𝑖)

for each 𝑖 = 0, 1, . . . , 𝑛 − 1, where 𝑦𝑖 denotes the solution in the time 𝑡𝑖 and 𝑦𝑖+1 denotes
the solution in the time 𝑡𝑖+1.

For the Euler method, defined previously in this Chapter, the local truncation error at
the ith step

𝜏𝑖+1 = 𝑦𝑖+1 − 𝑦𝑖

ℎ
− 𝑓(𝑡𝑖, 𝑦𝑖)

for each 𝑖 = 0, 1, . . . , 𝑁 − 1. This is indeed a local error because it measures the accuracy
at the specific step, assuming that the method was accurate at the previous step. For a
method, it depends on

• differential equation,

• the selected step size and

• the particular step of the approximation.

The Euler method (2.12) has
𝜏𝑖+1(ℎ) = ℎ

2 𝑦′′(𝜉𝑖)

for some 𝜉𝑖 in (𝑡𝑖, 𝑡𝑖+1). It can be proven [17] that the local truncation error of the Euler
method is 𝑂(ℎ). If the method based on the Taylor series is used to approximate the
solution of the function

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) , 𝑎 ≤ 𝑡 ≤ 𝑏 𝑦(𝑎) = 𝛼 ,

with step size ℎ, 𝑦 ∈ 𝐶𝑛+1[𝑎, 𝑏] the series can be rewritten

𝑦𝑖+1 − 𝑦𝑖 − ℎ𝑓(𝑡𝑖, 𝑦𝑖) − ℎ2

2! 𝑓 ′(𝑡𝑖, 𝑦𝑖) − . . . − ℎ𝑛

𝑛! 𝑓 (𝑁−1)(𝑡𝑖, 𝑦𝑖) = ℎ𝑁+1

(𝑁 + 1)!𝑓
(𝑁)(𝜉𝑖, 𝑦(𝜉𝑖)) ,

for some 𝜉𝑖 in (𝑡𝑖, 𝑡𝑖+1). The local truncation error can therefore be written as

𝜏𝑖+1(ℎ) = 𝑦𝑖+1 − 𝑦𝑖

ℎ
− 𝑃 (𝑁)(𝑡𝑖, 𝑦𝑖) = ℎ𝑁

𝑁 + 1!𝑓
(𝑁)(𝜉𝑖, 𝑦(𝜉𝑖)) ,

for each 𝑖 = 0, 1, . . . , 𝑁 − 1. Since 𝑦 ∈ 𝐶𝑁+1[𝑎, 𝑏], 𝑦(𝑁+1)(𝑡) = 𝑓 (𝑁)(𝑡, 𝑦(𝑡)) bounded on
[𝑎, 𝑏] and 𝜏𝑖(ℎ) = 𝒪(ℎ𝑁 ), for each 𝑖 = 1, 2, . . . , 𝑁 . Global truncation error accumulates the
local truncation error over the solution, assuming that the initial condition is given exactly.
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2.6 Transformation of higher-order ODEs into the system of
first-order ODEs

The higher-order ODEs can be transformed into the equivalent system of first-order ODEs
using several known approaches. These approaches have their roots in analogue compu-
tations but are still used today [12]. More information is provided in [64] or in [42], used
block algebra is defined in Appendix A.

2.6.1 Method of Derivative Order Reduction

The first discussed method (Method of Derivative Order Reduction – abbreviated as MDOR)
is the simplest. It can be used with systems that have the input (coercive, forcing) function
𝑧 with no derivatives. Consider the following equation:

𝑦′′′′ + 𝑎3𝑦′′′ + 𝑎2𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑏0𝑧 (2.19)

with initial conditions 𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0. As stated before, to use the
MDOR method, the forcing function does not contain a derivative. It can be rewritten
using a differential Laplace operator 𝑠

𝑦′ = 𝑠𝑦

𝑦′′ = 𝑠2𝑦

𝑦′′′ = 𝑠3𝑦

...
𝑦(𝑛) = 𝑠𝑛𝑦

to obtain
𝑠4𝑦 + 𝑎3𝑠3𝑦 + 𝑎2𝑠2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏0𝑧 . (2.20)

It is possible to rearrange (2.20) to as the system of first-order ODEs (2.21)). Elements 1
𝑠

denote numerical integrators

𝑠4𝑦 = 𝑏0𝑧 − 𝑎3𝑠3𝑦 − 𝑎2𝑠2𝑦 − 𝑎1𝑠𝑦 − 𝑎0𝑦

𝑠3𝑦 = 1
𝑠

𝑠4𝑦 𝑠3𝑦(0) = 0

𝑠2𝑦 = 1
𝑠

𝑠3𝑦 𝑠2𝑦(0) = 0

𝑠𝑦 = 1
𝑠

𝑠2𝑦 𝑠𝑦(0) = 0

𝑦 = 1
𝑠

𝑠𝑦 𝑦(0) = 0 .

(2.21)

Figure 2.3 shows the corresponding block scheme.
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Figure 2.3: Block scheme for MDOR.

2.6.2 Method of Derivation Order Reduction with an Additional Variable

Another method that can be used, is the Method of Derivation Order Reduction with an
Additional Variable, abbreviated as MDORAV. The differential equation (2.19) did not have
the derivative of the forcing function 𝑧. If the differential equation contains the derivative
of the forcing function, the MDOR cannot be used. For example, consider following higher
order ordinary differential equation

𝑦′′′′ + 𝑎3𝑦′′′ + 𝑎2𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑏4𝑧′′′′ + 𝑏3𝑧′′′ + 𝑏2𝑧′′ + 𝑏1𝑧′ + 𝑏0𝑧 , (2.22)

with initial conditions 𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0 and 𝑧(0) = 1, 𝑧′(0) = 𝑧′′(0) =
𝑧′′′(0) = 𝑧′′′′(0) = 0. Using a similar transformation as with the (2.19), equation (2.22) can
be simplified.

𝑠4𝑦 + 𝑎3𝑠3𝑦 + 𝑎2𝑠2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏4𝑠4𝑧 + 𝑏3𝑠3𝑧 + 𝑏2𝑠2𝑧 + 𝑏1𝑠𝑧 + 𝑏0𝑧

𝑦(𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0) = 𝑧(𝑏4𝑠4 + 𝑏3𝑠3 + 𝑏2𝑠2 + 𝑏1𝑠 + 𝑏0) .
(2.23)

The output of the system 𝑦 can be expressed from (2.23) as

𝑦 = 𝑧
𝑏4𝑠4 + 𝑏3𝑠3 + 𝑏2𝑠2 + 𝑏1𝑠 + 𝑏0
𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0

, (2.24)

with so-called additional variable 𝑣 defined as

𝑣 = 𝑧

𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0
. (2.25)

The output of the system can therefore be written as

𝑦 = 𝑏4𝑠4𝑣 + 𝑏3𝑠3𝑣 + 𝑏2𝑠2𝑣 + 𝑏1𝑠𝑣 + 𝑏0𝑣 , (2.26)

which means that to calculate the output of the system, the higher derivatives of the
additional variable are required. Simplifying the (2.25), the equation for the additional
variable can be obtained

𝑠4𝑣 + 𝑎3𝑠3𝑣 + 𝑎2𝑠2𝑣 + 𝑎1𝑠𝑣 + 𝑎0𝑣 = 𝑧 .
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This equation does not contain the derivative of the forcing function 𝑧, so the order can be
reduced using the MDOR (defined in subsection 2.6.1).

𝑠4𝑣 = 𝑧 − 𝑎3𝑠3𝑣 − 𝑎2𝑠2𝑣 − 𝑎1𝑠𝑣 − 𝑎0𝑣

𝑠3𝑣 = 1
𝑠

𝑠4𝑣 𝑠3𝑣(0) = 0

𝑠2𝑣 = 1
𝑠

𝑠3𝑣 𝑠2𝑣(0) = 0

𝑠𝑣 = 1
𝑠

𝑠2𝑣 𝑠𝑣(0) = 0

𝑣 = 1
𝑠

𝑠𝑣 𝑣(0) = 0 .

(2.27)

The block scheme representing equations (2.27) and (2.26) is in Figure 2.4.

Figure 2.4: Block scheme for MDORAV.

2.6.3 Method of Successive Integration

The last method discussed in this section is the Method of Successive Integration, abbrevi-
ated as MSI. Once again, the coercive function 𝑧 has a derivative. Consider the following
differential equation

𝑦′′′′ + 𝑎3𝑦′′′ + 𝑎2𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑏4𝑧′′′′ + 𝑏3𝑧′′′ + 𝑏2𝑧′′ + 𝑏1𝑧′ + 𝑏0𝑧 . (2.28)

with initial conditions 𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0 and 𝑧(0) = 1, 𝑧′(0) = 𝑧′′(0) =
𝑧′′′(0) = 𝑧′′′′(0) = 0. Equation (2.28) can again be rewritten using the differential operator

𝑠4𝑦 + 𝑎3𝑠3𝑦 + 𝑎2𝑠2𝑦 + 𝑎1𝑠𝑦 + 𝑎0𝑦 = 𝑏4𝑠4𝑧 + 𝑏3𝑠3𝑧 + 𝑏2𝑠2𝑧 + 𝑏1𝑠𝑧 + 𝑏0𝑧 . (2.29)

32



The equation (2.29) can be rewritten so that the derivatives of the same order are grouped
together

𝑠4𝑦 = 𝑏4𝑠4𝑧 + 𝑠3(𝑏3𝑧 − 𝑎3𝑦) + 𝑠2(𝑏2𝑧 − 𝑎2𝑦) + 𝑠(𝑏1𝑧 − 𝑎1𝑦) + (𝑏0𝑧 − 𝑎0𝑦)
𝑠3𝑦 = 𝑏4𝑠3𝑧 + 𝑠2(𝑏3𝑧 − 𝑎3𝑦) + 𝑠(𝑏2𝑧 − 𝑎2𝑦) + (𝑏1𝑧 − 𝑎1𝑦) + 𝑣1

𝑠2𝑦 = 𝑏4𝑠2𝑧 + 𝑠(𝑏3𝑧 − 𝑎3𝑦) + (𝑏2𝑧 − 𝑎2𝑦) + 𝑣2

𝑠𝑦 = 𝑏4𝑠𝑧 + (𝑏3𝑧 − 𝑎3𝑦) + 𝑣3

𝑦 = 𝑏4𝑧 + 𝑣4 .

(2.30)

Variables 𝑣1, 𝑣2, 𝑣3 and 𝑣4 can be calculated using the following system

𝑣1 = 1
𝑠

(𝑏0𝑧 − 𝑎0𝑦) 𝑣1(0) = 0

𝑣2 = 1
𝑠

(𝑏1𝑧 − 𝑎1𝑦 + 𝑣1) 𝑣2(0) = 0

𝑣3 = 1
𝑠

(𝑏2𝑧 − 𝑎2𝑦 + 𝑣2) 𝑣3(0) = 0

𝑣4 = 1
𝑠

(𝑏3𝑧 − 𝑎3𝑦 + 𝑣3) 𝑣4(0) = 0 .

(2.31)

If 𝑎𝑖, 𝑏𝑖 > 0 then the block scheme in Figure 2.5 can be constructed.

Figure 2.5: Block scheme for MSI.

2.6.4 Comparison of the methods

To compare MDORAV (Subsection 2.6.2) and MSI (Subsection 2.6.3), the following example
problem can be used

𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑏2𝑧′′ + 𝑏1𝑧′ + 𝑏0𝑧 (2.32)

with 𝑎1 = 2, 𝑎0 = 3, 𝑏2 = 8, 𝑏1 = 13, 𝑏0 = 1 and 𝑧 = sin(𝑡). The error between two methods
(𝑦𝑀𝑆𝐼 − 𝑦𝑀𝐷𝑂𝑅𝐴𝑉 ) when solving the equation is in Figure 2.6.
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Figure 2.6: Comparison between MSI and MDORAV.

The error between the methods is very near to the numerical zero (1 × 10−15), which
means that the systems of equations generated by the methods are equivalent and can be
used interchangeably.

2.7 Real-time considerations
Due to the nature of this thesis, the methods discussed above should not only provide results
that are as accurate as possible but also provide those results before the hard limit of the
real-time system is reached and performed calculations become useless. This might have
disastrous consequences. The approaches and methods discussed in this Chapter should be
viewed with an added focus on real-time applications that add additional constraints and
requirements. One step of the real-time integration step usually consists of [19]:

• A/D conversion of the values obtained by the sensors. The values are obtained with
a given accuracy,

• numerical calculations is the core problem discussed in this thesis,

• D/A conversion takes the calculated results and writes them back as analogue values,

• event handling and busy waiting waits for the end of the current integration step.

One integration step is visualized in Figure 2.7.

34



t

tn tn+1

A
/
D

C
o
n
ve
rs
io
n

Numerical computations

D
/A

C
o
n
ve
rs
io
n

E
x
te
rn
a
l
ev
en
ts

B
u
sy

w
a
it
in
g

Figure 2.7: One integration step in the system working in real-time. Only the numerical
computation part can be directly influenced by the method presented in this thesis.

As noted above, this thesis aims to determine if the variable-step, variable-order nu-
merical integration method can be used in real-time context. It is, therefore necessary to
establish properties of the method relevant to the context and compare them to the meth-
ods that are commonly used in real-time simulations. According to [19], the main classes
of methods that might be useful in real-time context are:

• multi-step methods
Due to the fact that these methods use higher-order polynomials, the usefulness in
real-time real-world systems that do not produce smooth data is limited (the methods
might give inaccurate results).
As noted above, the methods have a lower number of evaluations, which is crucial in
the real-time context.

• explicit single-step methods
These methods again use few resources and can handle discontinuous inputs. They
are not particularly well suited for stiff systems or systems that would require a larger
step size than the stability criteria allows.

• implicit single-step methods
These methods can again be used. However, they can be more computationally
intensive (due to the need to solve a system of non-linear equations at each time step).
This can be partially solved by limiting the number of iterations that is performed,
however, that modifies the stability domain of the method.

• high-order methods
According to the [19], due to the small sampling intervals that are used in real-time
systems, it is rare to find a real-time system that uses a method with an order higher
than two or three.

When considering a real-time system, the integration method races against the defined
constraints of the system. If the method misses the integration step, it might lead to
dire consequences. Therefore, used integration method has to end the calculation in the
predetermined time as fast as possible. When we find that the method does not meet the
required time constraints of the system, we can:
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• increase the step size of the integration method (if it is possible), thereby decreasing
the load and the time it takes to perform a computation of one step,

• optimize the model (to remove stiffness, for example) or

• improve the speed of the chosen algorithm.

The newly developed integration method (used in the thesis and was thoroughly tested
on both linear and non-linear problems) cannot modify or optimize the state space model
(even though some of the examples in this thesis were numerically optimized).

This thesis will show how are the state-of-the-art methods capable of handling real-
time tasks and that the proposed method can be more efficient without a loss of precision.
Further, with the proposed method using a higher order, the solution might be faster,
and the method uses fewer operations than the state-of-the-art single-step and multi-step
methods.
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Chapter 3

High order Taylor series method

The high-order method based on the Taylor series is presented in this Chapter. This method
is used for experiments and comparison with the state-of-the-art numerical integration
methods presented in Chapter 2. The Chapter also shows positive properties of the method
for possible applications in systems working in a real-time context, which is going to be
demonstrated in the experiments in Chapter 4 and 6.

First, the method is defined for both linear and non-linear systems. Then, the posi-
tive properties (stability, accuracy, number of operations it performs in comparison to the
state-of-the-art methods, etc.) are shown. The Chapter also shows the possible hardware
implementation and its effectiveness.

Throughout this Chapter and the rest of the thesis, the method is going to be abbrevi-
ated as MTSM (Modern Taylor Series Method).

The best-known and the most accurate method of calculating a new value of the nu-
merical solution of an ODE (as stated in the previous Chapter) is to construct the Taylor
series in the form

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑡𝑖, 𝑦𝑖) + ℎ2

2! 𝑓 ′(𝑡𝑖, 𝑦𝑖) + · · · + ℎ𝑛

𝑛! 𝑓 [𝑛−1](𝑡𝑖, 𝑦𝑖) , (3.1)

where ℎ is the size of integration step, 𝑦𝑖 = 𝑦(𝑡𝑖) is the previous value and 𝑦𝑖+1 = 𝑦(𝑡𝑖 + ℎ)
is the next value of the function 𝑦(𝑡) [32].

MTSM very effectively implements the variable-step-size, variable-order numerical so-
lution of differential equations using the Taylor series. It is based on a recurrent calculation
of the Taylor series terms for each integration step. Therefore, the complicated calculation
of higher-order derivatives does not need to be performed. Rather the value of each Taylor
series term can be numerically calculated [45]. Equation (3.1) can be rewritten in the form

𝑦𝑖+1 = 𝐷𝑌 (0)𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖 , (3.2)

where 𝐷𝑌 denotes the Taylor series terms. The function, which defines the number of
used Taylor series terms during the current integration step 𝑦𝑖+1 can be denoted as 𝑂𝑅𝐷
(𝑂𝑅𝐷𝑖+1 = 𝑁).

The first implementation of MTSM is TKSL/386 (TKSL stands for Taylor-Kunovsky
Simulation Language) [47]. Currently, MTSM has been implemented and tested in MAT-
LAB [54], C++ (FOS [41], TKSL/C software [87]), Python and Julia (implemented by the
author). Additionally, the method can be effectively implemented in hardware, which is
going to be discussed in Section 3.7.

37



Multiple authors have presented several implementations of the Taylor series method in
a variable-order, variable-step-size context. For example:

• TIDES software [66],

• TAYLOR [37] (includes a detailed description of a variable step size version),

• ATOMF [21],

• COSY INFINITY [52],

• DAETS [57].
The variable-step-size variable-order scheme is also described in [6], [7], [8] and [56], where
simulations on a parallel computer are shown. The approach based on an approximate
formulation of the Taylor methods can be found in [4]. Further research is being done, for
example, in [3], which describes a generalized implementation of the Taylor series-based
method with its order limited to three.

The solution of higher derivatives is different for linear and non-linear systems. Solution
for linear systems is more straightforward and is going to be discussed first.

3.1 Modern Taylor Series Method for linear systems
For linear systems of ODEs, the equation (2.3) is in the form

𝑦′ = 𝐴𝑦 + 𝑏 , (3.3)

and the Taylor series (3.1) can be rewritten in matrix-vector notation as

𝑦𝑖+1 = 𝑦𝑖 + ℎ(𝐴𝑦𝑖 + 𝑏) + ℎ2

2! 𝐴(𝐴𝑦𝑖 + 𝑏) + · · · + ℎ𝑁

𝑁 !𝐴
(𝑛−1)(𝐴𝑦𝑖 + 𝑏) , (3.4)

where 𝐴 is the constant Jacobian matrix and 𝑏 is the constant right-hand side vector. The
Taylor series terms 𝐷𝑌 in (3.2) can be computed recurrently using

𝐷𝑌 (0)𝑖 = 𝑦𝑖, 𝐷𝑌 (1)𝑖 = ℎ(𝐴𝑦𝑖 + 𝑏),

𝐷𝑌 (𝑟)𝑖 = ℎ

𝑟
𝐴𝐷𝑌 (𝑟 − 1)𝑖, 𝑟 = 2, . . . , 𝑁.

(3.5)

3.2 Modern Taylor Series Method for non-linear systems
The calculation using the method for non-linear systems is more complicated than for lin-
ear ones. This is due to the fact that the function being calculated is not multiplied by
a constant but by other functions, and therefore, the chain rule has to be applied. This
multiplication has to be performed more than once, and the number of function multiplica-
tion might be very large. This leads to a very high number of operations being performed
in contrast to the linear solver, which was discussed previously. The basic principles of
non-linear calculation using the method are therefore going to be discussed in great detail,
including possible optimizations and drawbacks.

The solution of non-linear problems was first analysed in detail when the hardware
implementation of the method was being considered and developed (several bachelor and
diploma theses, for example [53] and [86]) and it is currently one of the main focuses of the
FIT BUT HPC research group1.

1https://www.fit.vut.cz/research/group/hpc/.en
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3.2.1 Two-function multiplication and higher derivatives

Consider the following IVP
𝑦′ = 𝑞𝑟 𝑦(0) = 𝑦0 , (3.6)

where 𝑞 and 𝑟 are arbitrary functions. To numerically solve this IVP using MTSM, the
Taylor series in the form (3.2) for all functions (𝑦, 𝑞 and 𝑟) have to be constructed

𝑦𝑖+1 = 𝑦𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + 𝐷𝑌 (3)𝑖 + 𝐷𝑌 (4)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖

𝑞𝑖+1 = 𝑞𝑖 + 𝐷𝑄(1)𝑖 + 𝐷𝑄(2)𝑖 + 𝐷𝑄(3)𝑖 + 𝐷𝑄(4)𝑖 + · · · + 𝐷𝑄(𝑁)𝑖

𝑟𝑖+1 = 𝑟𝑖 + 𝐷𝑅(1)𝑖 + 𝐷𝑅(2)𝑖 + 𝐷𝑅(3)𝑖 + 𝐷𝑅(4)𝑖 + · · · + 𝐷𝑅(𝑁)𝑖,

(3.7)

where function 𝑦 represents the Taylor series for the final solution. The higher derivatives
for the (3.6) can be constructed using the chain rule (3.8).

𝑦′ = 𝑞𝑟

𝑦′′ = 𝑞′𝑟 + 𝑞𝑟′

𝑦′′′ = 𝑞′′𝑟 + 𝑞′𝑟′ + 𝑞′𝑟′ + 𝑞𝑟′′ = 𝑞′′𝑟 + 2𝑞′𝑟′ + 𝑞𝑟′′

𝑦[4] = 𝑞′′′𝑟 + 𝑞′′𝑟′ + 2𝑞′′𝑟′ + 2𝑞′𝑟′′ + 𝑞′𝑟′′ + 𝑞𝑟′′′ = 𝑞′′′𝑟 + 3𝑞′′𝑟′ + 3𝑞′𝑟′′ + 𝑞𝑟′′′

...

(3.8)

Note that multiplicative constants next to derivatives create the Pascal triangle (shown
here for 𝑛 = 3).

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1

The higher derivatives can therefore be calculated using the Binomial theorem, which can
be generally written as

𝑦[𝑛+1] =
𝑁∑︁

𝑛=0

(︃
𝑁

𝑛

)︃
𝑞[𝑛−𝑁 ]𝑟[𝑛] . (3.9)

From (3.8) and (3.1), equations for the Taylor series terms can be expressed

𝐷𝑌 (1)𝑖

ℎ
= 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑌 (2)𝑖

ℎ2

2!
= 𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ

𝐷𝑌 (3)𝑖

ℎ3

3!
= 𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖 + 2𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ
+ 𝐷𝑄(0)𝑖

𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑌 (4)𝑖

ℎ4

4!
= 𝐷𝑄(3)𝑖

ℎ3

3!
𝐷𝑅(0)𝑖 + 3𝐷𝑄(2)𝑖

ℎ2

2!

𝐷𝑅(1)𝑖

ℎ
+ 3𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(2)𝑖

ℎ2

2!
+ 𝐷𝑄(0)𝑖

𝐷𝑅(3)𝑖

ℎ3

3!
...

(3.10)
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Simplifying the (3.10), the equations for the individual Taylor series terms can finally be
derived:

𝐷𝑌 (1)𝑖 = ℎ𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑌 (2)𝑖 = ℎ

2 (𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖)

𝐷𝑌 (3)𝑖 = ℎ

3 (𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖)

𝐷𝑌 (4)𝑖 = ℎ

4 (𝐷𝑄(3)𝑖𝐷𝑅(0)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(2)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(3)𝑖)
...

(3.11)

Generally, the higher derivatives for two-function multiplication can be calculated using the
following formula

𝐷𝑌 (𝑛)𝑖 = ℎ

𝑛

𝑛∑︁
𝑎=1

𝐷𝑄(𝑛 − 𝑎)𝑖𝐷𝑅(𝑎 − 1)𝑖 , 𝑛 = 1, . . . , 𝑁. (3.12)

The number of element-by-element multiplications performed can be significant for higher
orders of the Taylor series. The problem becomes more pronounced when more function
multiplications are introduced (which is common in real-world systems).

3.2.2 Three-function multiplication and higher derivatives

For the three-function multiplication, the same principle can be applied as for the two-
function multiplication. For three multiplications, the elementary IVP can be written as

𝑦′ = 𝑞𝑟𝑠 𝑦(0) = 𝑦0 , (3.13)

where 𝑞, 𝑟 and 𝑠 are arbitrary functions. To numerically solve the IVP using MTSM, the
Taylor series for all functions (𝑦, 𝑞, 𝑟 and 𝑠) have to be constructed

𝑦𝑖+1 = 𝑦𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + 𝐷𝑌 (3)𝑖 + 𝐷𝑌 (4)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖

𝑞𝑖+1 = 𝑞𝑖 + 𝐷𝑄(1)𝑖 + 𝐷𝑄(2)𝑖 + 𝐷𝑄(3)𝑖 + 𝐷𝑄(4)𝑖 + · · · + 𝐷𝑄(𝑁)𝑖

𝑟𝑖+1 = 𝑟𝑖 + 𝐷𝑅(1)𝑖 + 𝐷𝑅(2)𝑖 + 𝐷𝑅(3)𝑖 + 𝐷𝑅(4)𝑖 + · · · + 𝐷𝑅(𝑁)𝑖

𝑠𝑖+1 = 𝑠𝑖 + 𝐷𝑆(1)𝑖 + 𝐷𝑆(2)𝑖 + 𝐷𝑆(3)𝑖 + 𝐷𝑆(4)𝑖 + · · · + 𝐷𝑆(𝑁)𝑖.

(3.14)

The higher derivatives for the (3.13) can be constructed:

𝑦′ = 𝑞𝑟𝑠

𝑦′′ = 𝑞′𝑟𝑠 + 𝑞𝑟′𝑠 + 𝑞𝑟𝑠′

𝑦′′′ = 𝑞′′𝑟𝑠 + 𝑞′𝑟′𝑠 + 𝑞′𝑟𝑠′ + 𝑞′𝑟′𝑠 + 𝑞𝑟′′𝑠 + 𝑞𝑟′𝑠′ + 𝑞′𝑟𝑠′ + 𝑞𝑟′𝑠′ + 𝑞𝑟𝑠′′

= 𝑞′′𝑟𝑠 + 𝑞𝑟′′𝑠 + 𝑞𝑟𝑠′′ + 2𝑞′𝑟′𝑠 + 2𝑞′𝑟𝑠′ + 2𝑞𝑟′𝑠′

𝑦[4] = 𝑞′′′𝑟𝑠 + 𝑞′′𝑟′𝑠 + 𝑞′′𝑟𝑠′ + 𝑞′𝑟′′𝑠 + 𝑞𝑟′′′𝑠 + 𝑞𝑟′′𝑠′ + 𝑞′𝑟𝑠′′ + 𝑞𝑟′𝑠′′ + 𝑞𝑟𝑠′′′+
+ 2𝑞′′𝑟′𝑠 + 2𝑞′𝑟′′𝑠 + 2𝑞′𝑟′𝑠′ + 2𝑞′′𝑟𝑠′ + 2𝑞′𝑟′𝑠′ + 2𝑞′𝑟𝑠′′ + 2𝑞′𝑟′𝑠′ + 2𝑞𝑟′′𝑠′ + 2𝑞𝑟′𝑠′′

= 𝑞′′′𝑟𝑠 + 𝑞𝑟′′′𝑠 + 𝑞𝑟𝑠′′′ + 3𝑞′′𝑟′𝑠 + 3𝑞′′𝑟𝑠′ + 3𝑞′𝑟′′𝑠 + 3𝑞𝑟′′𝑠′ + 3𝑞′𝑟𝑠′′ + 3𝑞𝑟′𝑠′′ + 6𝑞′𝑟′𝑠′

...

(3.15)
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From (3.15) and (3.1), equations for the Taylor series terms can be expressed

𝐷𝑌 (1)𝑖

ℎ
= 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑌 (2)𝑖

ℎ2

2!
= 𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ

𝐷𝑌 (3)𝑖

ℎ3

3!
= 𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑆(2)𝑖

ℎ2

2!
+

2𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖 + 2𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ
+ 2𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(1)𝑖

ℎ
𝐷𝑌 (4)𝑖

ℎ4

4!
= 𝐷𝑄(3)𝑖

ℎ3

3!
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(3)𝑖

ℎ3

3!
𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑆(3)𝑖

ℎ3

3!
+

+ 3𝐷𝑄(2)𝑖

ℎ2

2!

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖 + 3𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ
+ 3𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑆(0)𝑖+

+ 3𝐷𝑄(0)𝑖
𝐷𝑅(2)𝑖

ℎ2

2!

𝐷𝑆(1)𝑖

ℎ
+ 3𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖

𝐷𝑆(2)𝑖

ℎ2

2!
+ 3𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(2)𝑖

ℎ2

2!
+

+ 6𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(1)𝑖

ℎ
...

(3.16)

Simplifying (3.16), the equations for the individual Taylor series terms can finally be derived:

𝐷𝑌 (1)𝑖 = ℎ𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑌 (2)𝑖 = ℎ

2 (𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖)

𝐷𝑌 (3)𝑖 = ℎ

3 (𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖+

+ 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖)

𝐷𝑌 (4)𝑖 = ℎ

4 (𝐷𝑄(3)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(3)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(3)𝑖+

+ 𝐷𝑄(2)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(2)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖)

...

(3.17)

Generally, the higher derivatives for three-function multiplication can be calculated using
the following formula

𝐷𝑌 (𝑛)𝑖 = ℎ

𝑛

𝑛−1∑︁
𝑎=0

𝐷𝑄(𝑎)𝑖

𝑛−𝑎∑︁
𝑏=1

𝐷𝑅(𝑏 − 1)𝑖𝐷𝑆(𝑛 − 𝑎 − 𝑏)𝑖 , 𝑛 = 1, . . . , 𝑁. (3.18)

The derivation for more function multiplications is in Appendix C. Equations (3.11),
(3.17), (C.5) and (C.10) show that the number of operations needed to calculate the Taylor
series terms increases quite rapidly with more function multiplications and for higher orders.
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3.2.3 Matrix-vector representation

When solving the non-linear systems of ODEs that contain one or more multiplications of
functions, (2.3) can be rewritten as

𝑦′ = 𝐴𝑦 + 𝐵1𝑦𝑗𝑘 + 𝐵2𝑦𝑗𝑘𝑙 + . . . + 𝑏, 𝑦(0) = 𝑦0, (3.19)

where 𝐴 ∈ 𝑅𝑛𝑒×𝑛𝑒 is the constant matrix for the linear part of the system (see Section 3.1),
the 𝐵1 ∈ 𝑅𝑛𝑒×𝑛𝑚𝑗𝑘 , 𝐵2 ∈ 𝑅𝑛𝑒×𝑛𝑚𝑗𝑘𝑙 are the constant matrices for non-linear part of the
system. The vector 𝑏 ∈ 𝑅𝑛𝑒 is the right-hand side for the forces incoming to the system, 𝑦0
is a vector of the initial conditions and symbol 𝑛𝑒 stands for the number of equations of the
system of ODEs. Symbols 𝑛𝑚𝑗𝑘 and 𝑛𝑚𝑗𝑘𝑙 represent the number of two and three-function
multiplications, respectively.

The unknown function 𝑦𝑗𝑘 ∈ 𝑅𝑛𝑚𝑗𝑘 represents the vector of multiplications 𝑦𝑗 ⊙ 𝑦𝑘

and similarly 𝑦𝑗𝑘𝑙 ∈ 𝑅𝑛𝑚𝑗𝑘𝑙 represents the vector of multiplications 𝑦𝑗𝑗 ⊙ 𝑦𝑘𝑘 ⊙ 𝑦𝑙𝑙, where
indices 𝑗, 𝑘, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 ∈ (1, . . . , 𝑛𝑒) come from multiplications terms in (3.19). The operation
⊙ stands for element-by-element multiplication, i.e. 𝑦𝑗 ⊙ 𝑦𝑘 is a vector (𝑦𝑗1𝑦𝑘1 , 𝑦𝑗2𝑦𝑘2 ,. . .,
𝑦𝑗𝑛𝑚𝑗𝑘

𝑦𝑘𝑛𝑚𝑗𝑘
)𝑇 . For simplification, the matrices 𝐴,𝐵1,𝐵2, . . . and the vector 𝑏 are constant.

The higher derivatives of the terms 𝐵1𝑦𝑗𝑘,𝐵2𝑦𝑗𝑘𝑙 in (3.19) can be included in a recurrent
calculation of the Taylor series terms 𝐷𝑌𝐵1 and 𝐷𝑌𝐵2

𝐷𝑌 (1)𝐴 = ℎ(𝐴𝑦𝑖 + 𝑏) ,𝐷𝑌 (1)𝐵1 = ℎ(𝐵1𝑦𝑗𝑘) ,𝐷𝑌 (1)𝐵2 = ℎ(𝐵2𝑦𝑗𝑘𝑙) ,

𝐷𝑌 (𝑟)𝐴 = ℎ

𝑟
𝐴𝐷𝑌 (𝑟 − 1) ,

𝐷𝑌 (𝑟)𝐵1 = ℎ

𝑟

(︃
𝐵1

𝑟∑︁
𝑎=1

𝐷𝑌 (𝑎 − 1)𝑗 ⊙ 𝐷𝑌 (𝑟 − 𝑎)𝑘

)︃
,

𝐷𝑌 (𝑟)𝐵2 = ℎ

𝑟
𝐵2

𝑟−1∑︁
𝑎=0

𝐷𝑌 (𝑎)𝑗𝑗 ⊙
(︃

𝑟−𝑎∑︁
𝑏=1

𝐷𝑌 (𝑏 − 1)𝑘𝑘 ⊙ 𝐷𝑌 (𝑟 − 𝑎 − 𝑏)𝑙𝑙

)︃
,

(3.20)

where 𝑟 = 2, . . . , 𝑁 . Finally, the Taylor series terms are calculated as a sum of linear and
non-linear terms

𝐷𝑌 (𝑛) = 𝐷𝑌 (𝑛)𝐴 + 𝐷𝑌 (𝑛)𝐵1 + 𝐷𝑌 (𝑛)𝐵2 , 𝑛 = 1, . . . , 𝑁 , (3.21)

where 𝑟 and 𝑛 are the current indexes of the Taylor series terms, 𝑎 and 𝑏 are the auxiliary
indexes for the summation of two and three-term multiplications in non-linear part of the
Taylor series, 𝐷𝑌 (𝑟−1)𝐴 is the linear term computed using recurrent calculation for linear
systems (see Chapter 3.1). The next value of the function can be calculated using

𝑦𝑖+1 = 𝐷𝑌 (0)𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + . . . + 𝐷𝑌 (𝑁)𝑖 , (3.22)

where 𝐷𝑌 (1)𝑖 is the value of the function 𝑦𝑖, 𝐷𝑌 (1)𝑖, . . . , 𝐷𝑌 (𝑛)𝑖 are the Taylor se-
ries terms calculated using (3.21). Multiplication terms of the the Taylor series for more
multiplications 𝐷𝑌𝐵3, 𝐷𝑌𝐵4, . . . can be calculated recurrently in a similar way.

3.3 Performance of the Modern Taylor Series Method and
its optimizations

In this section, the performance of MTSM is going to be discussed in comparison with other
state-of-the-art numerical methods that were discussed in Chapter 2. Several fundamental
improvements to increase the performance of the method further are also presented.
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3.3.1 Linear problems

For linear problems, the number of basic arithmetic operations (addition, subtraction, mul-
tiplication and division) can be calculated using (3.5). For the first term of the Taylor
series (𝑛 = 1), the method performs:

• one matrix-vector multiplication (𝐴𝑦 = 𝐴𝑦),

• one matrix-vector addition (𝐴𝑦 + 𝑏), one matrix multiplication by constant (𝐷𝑌1 =
ℎ(𝐴𝑦 + 𝑏)),

and for higher terms of the Taylor series (𝑛 = 2, . . . , 𝑁) it performs

• one matrix-vector multiplication (𝐴𝑦𝑛−1),

• one division by constant (𝐷𝑌𝑛 = ℎ
𝑛(𝐴𝑦𝑛−1).

Overall, the method (for the worst case 𝑛 = 𝑚𝑎𝑥𝑂𝑅𝐷 ) performs

• 𝑛 matrix vector multiplications and

• 𝑛 matrix vector additions.

When using a method in a non-parallel fashion, the standard definition of the method
outperforms the state-of-the-art numerical solvers by wide margins. It has many positive
properties (more on that in Section 3.5). However, it does not work well when trying to use
it in the multiple worker configuration, which is often required to solve complex problems.
This is due to the fact, that every worker has to have all initial conditions (vector 𝑦) for
every Taylor series term. This bottlenecks the computation severely.

To alleviate this problem, the matrix 𝐴 and vector 𝑏 can be pre-calculated for the
selected step size and order so that the method becomes fixed-step fixed-order. When doing
so, the resulting matrix can be easily column-wise decomposed and split between workers
that then use only their respective slices of the initial condition vector. This approach is
thoroughly discussed in [59], [60], [43] and other publications of our research group.

It is usable even when not performing the calculation in parallel. However, the pre-
calculation of large matrices might be time-consuming. And the fact that step size and
the maximum order of the method have to be set before the pre-calculation and cannot
be changed afterwards causes several problems. The step size has to be small enough
so that the halving of the step size that occurs when 𝑂𝑅𝐷 > 𝑁 cannot occur, and the
results become unusable. This can be mitigated by estimating the step size. However,
the estimate is not necessarily optimal for the method and might lead to performance
degradation. Therefore, this approach might be very risky in the real-time control context
with strict time constraints.

3.3.2 Non-linear problems

The calculation for non-linear problems using MTSM can be challenging due to the fact that
all possible combinations of derivatives of unknown functions have to be calculated for every
Taylor series term (3.20). This is a serious problem because the method requires calculating
many Taylor series terms to achieve the desired accuracy. The number of element-by-
element multiplications that are required to calculate the Taylor series terms 𝐷𝑌 (𝑛) is in
Figure 3.1.

43



1 2 3 4 5

Taylor series terms

0

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 
e
le

m
e
n
t-

b
y
-e

le
m

e
n
t 
m

u
lt
ip

lic
a
ti
o
n
s 2 functions

3 functions

4 functions

5 functions

Figure 3.1: The number of element-by-element multiplication operations for two, three,
four and five function multiplications.

Note that the number of operations increases exponentially for more function multipli-
cations, so it is imperative to try and decrease the needed number of element-by-element
multiplications as much as possible. To demonstrate the chosen approach, consider the
following set of tables, which show the element-by-element multiplications that need to be
performed during calculation of the Taylor series terms. Note that in the tables, multipli-
cation is column-wise.

Table 3.1 shows the indexes of multiplications between the two terms of the Taylor
series.

n Indexes of Taylor series terms
1 0

0
2 1 0

0 1
3 2 1 0

0 1 2
4 3 2 1 0

0 1 2 3
5 4 3 2 1 0

0 1 2 3 4

Table 3.1: Two term multiplications.

Notice that there are no repeated columns or parts of columns in Table 3.1. This means
that the number of multiplications cannot be decreased for term-by-term multiplication of
two Taylor series terms. Term-by-term multiplications of three Taylor series terms can be
described similarly.
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n Indexes of Taylor series terms
1 0

0
0

2 1 0 0
0 1 0
0 0 1

3 2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

4 3 2 2 1 1 1 0 0 0 0
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3

5 4 3 3 2 2 2 1 1 1 1 0 0 0 0 0
0 1 0 2 1 0 3 2 1 0 4 3 2 1 0
0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

6 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0
0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0
0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

Table 3.2: Three term multiplications.

Notice that indices in the coloured areas in Table 3.2 repeat. This means that the
term-by-term multiplication of the coloured areas can be calculated only once during the
computation, saved as a scalar and used in the multiplications instead. The indexes change
only in the first (uncoloured) row. This approach leads to substantial savings of computa-
tional resources, as can be seen in Figure 3.2.
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Figure 3.2: The number of element-by-element multiplication operations for three multipli-
cations and the performed optimization.

The same approach works for more multiplications. Details are in Appendix D, including
the description of the two different optimizations that were performed. The impact of the
performed optimizations is very substantial, as shown in Figures 3.3 and 3.4.
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Figure 3.3: The number of element-by-element multiplication operations for four multipli-
cations and the performed optimizations.
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Figure 3.4: The number of element-by-element multiplication operations for five multipli-
cations and the performed optimizations.

The results for more multiplications are similar. Other approaches to the optimization of
this problem are going to be the aim of further research. The increase in speed is going to
be shown in the non-linear examples in Chapters 4 and 6.

3.3.3 Step size control for non-linear systems

Additional approaches were tried in order to improve the performance of the non-linear
MTSM solver. For some problems that are going to be discussed in the thesis, the value of
the 𝑂𝑅𝐷 function does not fluctuate during calculation but stays bound around a relatively
low value (i.e. 10). Due to the fact that the method can automatically adjust the value of
𝑂𝑅𝐷 in the current step based on the size of the step, the size can be dynamically increased
to decrease the overall number of operations the method has to perform.

To work with this optimization, let us define ℎ𝑠𝑐𝑎𝑙𝑒 as the scaling factor for the size of
integration step ℎ

ℎ𝑛𝑒𝑤 = ℎ𝑠𝑐𝑎𝑙𝑒 · ℎ .

The new value size of integration step ℎ𝑛𝑒𝑤 is used until the calculation ends. The
scaling factor is only applied when

𝑖∑︁
𝑎=𝑖−3

𝑂𝑅𝐷(𝑎) = 𝑚𝑖𝑛𝑂𝑅𝐷 · 3 ,

where 𝑚𝑖𝑛𝑂𝑅𝐷 is the value of the 𝑂𝑅𝐷 function that has to be kept for three integration
steps. This approach is useful for problems where the previous approach cannot be used
(i.e. for systems that only contain two function multiplications).
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3.3.4 Further optimizations and improvements

The original version of the MTSM solver for non-linear systems 𝑀𝑇𝑆𝑀𝑜𝑟𝑖𝑔 has been im-
proved by the optimizations from Subsection 3.3.2 and Subsection 3.3.3. Additional opti-
mizations (mainly to increase the performance for two function multiplications) were also
performed

• optimization of data structures and variable handling,

• removed unused operations for multiplications that are not performed,

• and other smaller optimizations and improvements.

The optimized solver for non-linear systems 𝑀𝑇𝑆𝑀𝑜𝑝𝑡 is generally faster than 𝑀𝑇𝑆𝑀𝑜𝑟𝑖𝑔

solver and state-of-the-art (see Chapter 4).

3.4 Automatic transformation
To use the method, the system of ODEs that describes the problem has to be transformed
into a system of autonomous ODEs. This new system contains just elementary operations
(addition, subtraction and multiplication) and allows for the recurrent calculation of the
Taylor series terms. This Section presents widely used transformations and examples of
their usage.

3.4.1 Elementary operations

First, let us briefly go over the transformation of basic arithmetic operations – addition,
subtraction, multiplication and division.

Addition and subtraction

Addition and subtraction are rather simple. For the function

𝑦 = 𝑓(𝑡) + 𝑔(𝑡)

the derivative is simply a sum of derivatives of functions 𝑓(𝑡) and 𝑔(𝑡)

𝑦′ = 𝑓(𝑡)′ + 𝑔(𝑡)′ . (3.23)

When the functions 𝑓 and 𝑔 are not functions of time

𝑦 = 𝑓(𝑎) + 𝑔(𝑏) ,

the resulting equation becomes

𝑦′ = 𝑓(𝑎)′𝑎′ + 𝑔(𝑏)′𝑏′ . (3.24)

The operations are the same for subtraction, only with the minus sign instead of the plus
sign.
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Multiplication

Derivative of multiplication
𝑦 = 𝑓(𝑡)𝑔(𝑡)

is
𝑦′ = 𝑓(𝑡)′𝑔(𝑡) + 𝑓(𝑡)𝑔(𝑡)′ .

When the functions 𝑓 and 𝑔 are not functions of time

𝑦 = 𝑓(𝑎)𝑔(𝑏) ,

the resulting equation becomes

𝑦′ = 𝑓(𝑎)′𝑎′𝑔(𝑡) + 𝑓(𝑎)𝑔(𝑏)′𝑏′ . (3.25)

Division

Division is the most challenging operation from the arbitrary ones because it is the most
expansive operation to perform on a modern CPU (it is up to several times slower than
other operations, see2). It would therefore be beneficial to substitute it for a different
operation that would be more effective. One of the possible approaches is to replace the
operation division

𝑦 = 1
𝑓(𝑎) = 𝑓(𝑎)−1

by multiplication. The derivative of 𝑦 can therefore be written as

𝑦′ = −𝑓(𝑎)−2𝑓(𝑎)′𝑎′ ,

and because 𝑓(𝑎)−1 = 𝑦, the equation can be simplified as

𝑦′ = −𝑦2𝑓(𝑎)′𝑎′ .

3.4.2 Elementary functions

Now, let us discuss the transformations for several common elementary functions.

Exponential function

The exponential function in the form
𝑦 = 𝑒𝑡

simple to differentiate, therefore an auxiliary differential equation has a form

𝑦′ = 𝑒𝑡 = 𝑦 .

If exponential function has an arbitrary function (𝑓(𝑎)) in the argument

𝑦 = 𝑒𝑓(𝑎)

the compound rule is applied

𝑦′ = 𝑒𝑓(𝑎)𝑓(𝑎)′ = 𝑦𝑓(𝑎)′ .
2http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
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Sine and cosine functions

Sine and cosine functions are widely used and will be discussed next. For the sine function
with time as the argument

𝑦 = sin(𝑡)
the derivative is well known

𝑦′ = cos(𝑡) .

The aim of the transformation has not been achieved yet, one new function was generated
– the cosine function that has to also be transformed

𝑧 = cos(𝑡) .

This new function can again be derived

𝑧′ = − sin(𝑡) .

The resulting system
𝑦′ = cos(𝑡)
𝑧′ = − sin(𝑡)

can be simplified using the original equations for sine and cosine
𝑦′ = 𝑧 𝑦(0) = sin(0)
𝑧′ = −𝑦 𝑧(0) = cos(0) .

Note that this system generates both sine and cosine functions. If a sine function has a
function in the argument

𝑦 = sin(𝑓(𝑎))
the steps to take are similar. The derivative of 𝑦 can be calculated as

𝑦′ = cos(𝑓(𝑎))𝑓(𝑎)′ ,

the addition equation for the cosine function
𝑧 = cos(𝑓(𝑎))
𝑧′ = − sin(𝑓(𝑎))𝑓 ′(𝑎) ,

and the final system of two ODEs can be obtained
𝑦′ = 𝑧𝑓 ′(𝑎) 𝑦(0) = sin(𝑓(𝑎0))
𝑧′ = −𝑦𝑓 ′(𝑎) 𝑧(0) = cos(𝑓(𝑎0)) ,

where 𝑎0 is the value of the function 𝑓(𝑎) at time 𝑡 = 0.

Nth root

The Nth root can also be represented using an ODE. For example, square root

𝑦 =
√︁

𝑓(𝑡) ,

can be rewritten as
𝑦 = 𝑓(𝑡)

1
2 ,

and an ordinary differential equation

𝑦′ = 1
2𝑓(𝑡)− 1

2 𝑓 ′(𝑡) .
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3.4.3 Transformation example

As an example, consider the following ODE

𝑦′ = sin(
√︁

cos(𝑡)) 𝑦(0) = 𝑦0 . (3.26)

The transformation starts from the innermost function, so in this example, cos(𝑡) function
is substituted

𝑦′ = sin (√𝑦1)
where 𝑦1 is the new auxiliary ODE that can be calculated using the following system

𝑦1 = cos(𝑡) 𝑦2 = sin(𝑡)
𝑦′

1 = − sin(𝑡) = −𝑦2 𝑦1(0) = cos(𝑡0) 𝑦′
2 = cos(𝑡) = 𝑦1 𝑦2(0) = sin(𝑡0) .

Now the √
𝑦1 function can be substituted by the auxiliary ODE

𝑦3 = 𝑦
1
2
1

𝑦′
3 = 1

2𝑦
− 1

2
1 𝑦′

1 = −1
2𝑦2𝑦−1

3

with division 𝑦−1
3 that can also be removed

𝑦4 = 𝑦−1
3

𝑦′
4 = −𝑦−2

3 𝑦′
3 = −𝑦2

4𝑦′
3 = −𝑦2

4(−1
2𝑦2𝑦−1

3 ) = −𝑦2
4(−1

2𝑦2𝑦4) = 1
2𝑦2𝑦4𝑦4𝑦4 𝑦4(0) = 𝑦3(0)−1

so that the equation for 𝑦′
3 has the final form

𝑦′
3 = −1

2𝑦2𝑦4 𝑦3(0) = 𝑦1(0)
1
2 .

The original ODE (3.26) now has the form

𝑦′ = sin(𝑦3)

so that it can be directly replaced by the following system of ODEs

𝑦5 = sin(𝑦3) 𝑦6 = cos(𝑦3)
𝑦′

5 = cos(𝑦3)𝑦′
3 = 𝑦6𝑦′

3 𝑦′
6 = − sin(𝑦3)𝑦′

3 = −𝑦5𝑦′
3

= −1
2𝑦2𝑦4𝑦6 𝑦5(0) = sin(𝑦3(0)) = 1

2𝑦2𝑦4𝑦5 𝑦6(0) = cos(𝑦3(0)) .

When all transformations are finished, the resulting system of autonomous ODEs contains
seven equations

𝑦′ = 𝑦5 𝑦(0) = 𝑦0

𝑦′
1 = −𝑦2 𝑦1(0) = cos(0)

𝑦′
2 = 𝑦1 𝑦2(0) = sin(0)

𝑦′
3 = −1

2𝑦2𝑦4 𝑦3(0) = 𝑦1(0)
1
2 =

√︁
cos(0)

𝑦′
4 = 1

2𝑦2𝑦4𝑦4𝑦4 𝑦4(0) = 𝑦3(0)−1 =
√︁

cos(0)
−1

= 1√︀
cos(0)

𝑦′
5 = −1

2𝑦2𝑦4𝑦6 𝑦5(0) = sin(𝑦3(0)) = sin(
√︁

cos(0))

𝑦′
6 = 1

2𝑦2𝑦4𝑦5 𝑦6(0) = cos(𝑦3(0)) = cos(
√︁

cos(0)) .

(3.27)
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The resulting system (3.27) contains multiplications of functions and is non-linear. To
check if the solution of (3.26) is equal to the solution of (3.27), both can be solved using
the state-of-the-art ODE solver, the ode45 for example.

The difference between the results of (3.26) and (3.27) ||𝑦𝑡𝑀𝐴𝑋 (3.26) − 𝑦𝑡𝑀𝐴𝑋 (3.27)|| is
3.1811 × 10−9. Just for the sake of completeness, the system (3.27) can be solved using the
MTSM. The matrix-vector notation for the MTSM solver is in (3.28).

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

−0.5
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0

−0.5 0
0 0.5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

0.5
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘 =

(︁
5 3

)︁
𝑦𝑗𝑘𝑙 =

(︃
5 3 7
5 3 6

)︃
𝑦𝑗𝑘𝑙𝑚 =

(︁
5 5 5 3

)︁

(3.28)

The vector for the right-hand side 𝑏 is zero. The solution of the ODE (3.26) and the 𝑂𝑅𝐷
function are in Figure 3.5.
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(a) Solution of the ODE (3.26).
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(b) 𝑂𝑅𝐷 function for (3.26).

Figure 3.5: Solution of the ODE (3.26) (Figure 3.5a) and the 𝑂𝑅𝐷 function (Figure 3.5b)
for ℎ = 0.1 s. Note that the 𝑂𝑅𝐷 function increases dramatically as the function approaches
the discontinuity in the solution.

3.5 Positive properties
The presented method (MTSM) has several positive properties. This Section is going to
discuss them in greater detail.

3.5.1 Automatic order setting

The first positive property is an automatic integration order setting. The method uses as
many Taylor series terms as required by the defined accuracy of the calculation. As an
example, consider the system of ODEs

𝑦′ = 𝑧 𝑦(0) = 0
𝑧′ = −𝑦 𝑧(0) = 5

(3.29)
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with the analytical solution

𝑦 = 5 sin(𝑡)
𝑧 = 5 cos(𝑡) .

(3.30)

This system of ODEs is linear, (3.3) is used with the following values

𝐴 =
(︃

0 1
−1 0

)︃
, 𝑏 =

(︃
0
5

)︃
.

In the following experiment, the accuracy of all numerical solvers is set to 𝑇𝑂𝐿 = 1×10−12.
Further, the size of the integration step ℎ can be changed arbitrarily without any meaningful
loss of the precision of the calculation. If the step size is increased, it leads to a faster
calculation of the problem. If it is decreased, the problem is calculated slower and with
fewer number of Taylor series terms per step. This behaviour can be seen in Figure 3.6.
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(a) Error function for ℎ = 0.01.

0 1 2 3 4 5 6

Time [s]

0

1

2

3

4

5

6

7

8

O
R

D

(b) The 𝑂𝑅𝐷 function for ℎ = 0.01.
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(c) Error function for ℎ = 1.
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(d) The 𝑂𝑅𝐷 function for ℎ = 1.

Figure 3.6: The comparison between errors of the calculation and values of the 𝑂𝑅𝐷
function for different values of ℎ.

The accuracy of the calculation is similar. The number of Taylor series terms rises to
approximately 19 (up from 9 for ℎ = 1 × 10−2 s). The behaviour of this system changes for
different values of the parameter 𝜔 [rad·s−1]. If (3.29) is modified to

𝑦′ = 𝜔𝑧 𝑦(0) = sin(0) = 0
𝑧′ = −𝜔𝑦 𝑧(0) = cos(0) = 1 ,

(3.31)
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with analytical solution

𝑦 = sin(𝜔𝑡)
𝑧 = cos(𝜔𝑡) .

(3.32)

The system of ODEs is again linear, (3.3) is used with the following values

𝐴 =
(︃

0 𝜔
−𝜔 0

)︃
, 𝑏 =

(︃
0
1

)︃
.

The different values of 𝜔 can be used to compare the performance of MTSM and the state-
of-the-art numerical solvers in MATLAB. Note that for all experiments 𝑡𝑀𝐴𝑋 = 50 s.

For the first set of experiments, consider 𝜔 = 1 rad·s−1. Tolerances of the state-of-
the-art methods are set so that the resulting accuracy matches the set accuracy of MTSM
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−6, that uses step with the size 𝑀𝑇𝑆𝑀ℎ = 0.1 s. The plot for this
system is in Figure 3.7, the plot of the 𝑂𝑅𝐷 function for MTSM solver is in Figure 3.8.
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(a) Circle test for ode23 solver.
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(b) Circle test for ode45 solver.
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(c) Circle test for the MTSM.
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(d) Analytical solution for the circle test.

Figure 3.7: Circle tests for commonly used ODE solvers with the provided analytical solu-
tion for 𝜔 = 1 rad·s−1, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−6.
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Figure 3.8: Plot of the 𝑂𝑅𝐷 function for 𝜔 = 1 rad·s−1, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−6.

Note that values in the column Ratio in the following tables are calculated as ratios of
computation times 𝑟𝑎𝑡𝑖𝑜 = 𝑜𝑑𝑒

𝑀𝑇 𝑆𝑀 , values in the column ||𝑒𝑟𝑟𝑜𝑟|| are norms of differences
between analytical and numerical solutions (||𝑦𝑠𝑜𝑙𝑣𝑒𝑟 − 𝑦𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙||) for the entire solution.
Several experiments for 𝜔 = 1 rad·s−1 were performed. When setting the tolerances of the
numerical solvers to their default values 𝑇𝑂𝐿 = 1 × 10−3, the results are summarized in
Table 3.3.

Solver Number of steps ||𝑒𝑟𝑟𝑜𝑟|| Time of calculation [s] Ratio
MTSM 500 7.587 × 10−6 3.324 × 10−3 –
ode23 245 3.657 × 10−2 1.858 × 10−3 0.56
ode45 277 7.311 × 10−3 6.730 × 10−4 0.2
ode113 134 1.110 × 10−2 2.003 × 10−3 0.6
ode15s 186 5.706 × 10−2 1.167 × 10−2 3.5

Table 3.3: Results for 𝜔 = 1 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−6.

Table 3.3 shows that the proposed method is the slowest of the selected numerical
solvers by a wide margin (except for the ode15s solver). The accuracy of the proposed
method is much higher than the requested accuracy (due to how many Taylor series terms
smaller than the required accuracy are needed to be calculated). The next experiment will
show the impact of equalizing the accuracy between the state-of-the-art solvers and the
MTSM solver. This is achieved by setting the tolerances of all state-of-the-art ode solvers
to 1 × 10−7.
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Solver Number of steps ||𝑒𝑟𝑟𝑜𝑟|| Time of calculation [s] Ratio
MTSM 500 7.587 × 10−6 3.328 × 10−3 –
ode23 1660 8.043 × 10−5 1.040 × 10−2 3.1
ode45 937 9.032 × 10−6 1.911 × 10−3 0.57
ode113 235 1.550 × 10−5 3.333 × 10−3 1
ode15s 441 2.702 × 10−4 2.523 × 10−2 7.6

Table 3.4: Results for 𝜔 = 1 rad·s−1, accuracy of the ode solvers 𝑇𝑂𝐿 = 1 × 10−7,
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−6, 𝑀𝑇𝑆𝑀ℎ = 0.1 s.

Table 3.4 shows that the proposed method is still slower than the ode45 solver but about
three times faster than the ode23 solver. MTSM can make up the difference, because the
size of the integration step can be increased from its default value (𝑀𝑇𝑆𝑀ℎ = 0.1 s) to
a different value, for example, 𝑀𝑇𝑆𝑀ℎ = 10 s. This is not possible using state-of-the-art
methods. To maintain the accuracy across all solvers, the accuracy of the MTSM solver
was set to 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−4. The performance and accuracy of the calculation with
this setting are summarized in Table 3.5.

Solver Number of steps ||𝑒𝑟𝑟𝑜𝑟|| Time of calculation [s] Ratio
MTSM 5 1.039 × 10−5 1.802 × 10−4 –
ode23 3575 8.044 × 10−6 1.693 × 10−2 94
ode45 1485 8.946 × 10−7 2.393 × 10−3 13
ode113 260 2.563 × 10−6 3.282 × 10−3 18
ode15s 645 3.851 × 10−5 9.173 × 10−3 51

Table 3.5: Results for 𝜔 = 1 rad·s−1, accuracy of the ode solvers 𝑇𝑂𝐿 = 1 × 10−7,
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−4, 𝑀𝑇𝑆𝑀ℎ = 10 s.

Table 3.5 shows that the increase in step size leads to an accurate solution faster than the
state-of-the-art solvers. For this setting, the number of used Taylor series terms increases,
which can be seen in Figure 3.9.
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Figure 3.9: 𝑂𝑅𝐷 function for 𝑀𝑇𝑆𝑀ℎ = 10 s.
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The next set of experiments is going to show the behaviour of the system for 𝜔 =
100 rad·s−1. The first experiment for this value of 𝜔 is again with the default tolerances
(𝑇𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−3) of all used numerical solvers, with 𝑀𝑇𝑆𝑀ℎ =
0.1 s. The results are shown in Figure 3.10, the plot of the 𝑂𝑅𝐷 function is in Figure 3.11.
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(a) Circle test for ode23 solver.
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(b) Circle test for ode15s solver.
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(c) Circle test for the Taylor method. (d) Analytical solution for the circle test.

Figure 3.10: Circle tests for commonly used ODE solvers with the provided analytical
solution for 𝜔 = 100 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀ℎ = 0.1 s.
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Figure 3.11: The plot of 𝑂𝑅𝐷 function for 𝜔 = 100 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−3,
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀ℎ = 0.1 s.

Table 3.6 shows that the accuracy of the state-of-the-art solvers is not acceptable (it is also
visible in Figure 3.10).

Solver Number of steps ||𝑒𝑟𝑟𝑜𝑟|| Time of calculation [s] Ratio
MTSM 500 1.218 × 10−2 1.165 × 10−2 –
ode23 23912 1.324 1.263 × 10−1 11
ode45 25489 6.594 × 10−1 3.680 × 10−2 3.2
ode113 12635 5.190 × 10−1 1.420 × 10−1 12
ode15s 17532 6.429 2.731 × 10−1 23

Table 3.6: Results for 𝜔 = 100 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−3, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−3,
𝑀𝑇𝑆𝑀ℎ = 0.1 s.

To increase the accuracy to the level similar to the one achieved in the previous experi-
ment, the tolerances of the state-of-the-art ODE solvers have to be increased to 𝑇𝑂𝐿 = 1 × 10−10,
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−7. The step size remains the same as in the previous experiment
𝑀𝑇𝑆𝑀ℎ = 0.1 s.

Solver Number of steps ||𝑒𝑟𝑟𝑜𝑟|| Time of calculation [s] Ratio
MTSM 500 5.558 × 10−7 1.382 × 10−2 –
ode23 5882740 3.198 × 10−7 2.776 × 101 2000
ode45 763977 3.625 × 10−8 1.124 81
ode113 44501 3.044 × 10−8 5.334 × 10−1 39
ode15s 208852 9.677 × 10−6 2.943 210

Table 3.7: Results for 𝜔 = 100 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−10, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−7,
𝑀𝑇𝑆𝑀ℎ = 0.1 s.

The order used by MTSM solver is in Figure 3.12.
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Figure 3.12: Plot of the 𝑂𝑅𝐷 function for ℎ = 0.1 s, 𝜔 = 100 rad·s−1, 𝑇𝑂𝐿 = 1 × 10−10,
𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−7.

Figure 3.12 shows that MTSM solver uses approximately 48 terms of the Taylor series for
the computation, which approaches the upper limit for the double precision arithmetic (64
terms [45]). Due to this fact, the step size cannot be increased further without decreasing
the required accuracy of the calculation. The method allows for computation with arbitrary
accuracy and step size if variable-precision arithmetic is used.

3.5.2 Accuracy, error propagation

The accuracy of the proposed method does not depend on the step size. The following
example shows this property quite well. It is an ordinary differential equation

𝑦′ = 𝑦 + 𝑡

𝑦 − 𝑡
, 𝑦(0) = 1 , (3.33)

with the analytical solution
𝑦(𝑡) = 𝑡 +

√︀
1 + 2𝑡2 . (3.34)

The differences between the numerical and the analytical solution using the (3.34) are in the
following set of figures. First, the comparison between the second-order and fourth-order
Runge-Kutta methods (with fixed step sizes3) and MTSM.

3https://www.mathworks.com/matlabcentral/answers/98293-is-there-a-fixed-step-ordinary-
differential-equation-ode-solver-in-matlab-8-0-r2012b

59

https://www.mathworks.com/matlabcentral/answers/98293-is-there-a-fixed-step-ordinary-differential-equation-ode-solver-in-matlab-8-0-r2012b
https://www.mathworks.com/matlabcentral/answers/98293-is-there-a-fixed-step-ordinary-differential-equation-ode-solver-in-matlab-8-0-r2012b


0 1 2 3 4 5 6 7 8 9 10

Simulation time [s]

0

0.5

1

1.5

E
rr

o
r 

fu
n

c
ti
o

n

10-4

(a) Absolute error for the RK2 method.
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(b) Absolute error for the RK4 method.

Figure 3.13: Absolute errors of the Runge-Kutta methods for the (3.33).

Note that MTSM cannot solve (3.33) directly. The transformations demonstrated in
Section 3.4 have to be used. The resulting system of ODEs being solved for (3.33) becomes

𝑦′
1 = 𝑦7 𝑦1(0) = 1

𝑦′
2 = 𝑦7 + 1 𝑦2(0) = 1

𝑦′
3 = −𝑦6 + 𝑦5 𝑦3(0) = 1

𝑦′
4 = −3𝑦5𝑦6 + 3𝑦5𝑦5 𝑦4(0) = 1

𝑦′
5 = −2𝑦3𝑦6 + 2𝑦3𝑦5 𝑦5(0) = 1

𝑦′
6 = −2𝑦3𝑦6 + 𝑦4 + −3𝑦6𝑦8 + 3𝑦5𝑦8 𝑦6(0) = 1

𝑦′
7 = 𝑦3𝑦7 + 𝑦3 − 2𝑦2𝑦6 + 𝑦8 𝑦7(0) = 1

𝑦′
8 = 𝑦5𝑦7 + 𝑦5 − 2𝑦6𝑦7 + 2𝑦5𝑦7 𝑦8(0) = 1

with the following matrix-vector representation.

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−3 3 0 0 0 0 0 0 0 0
0 0 −2 2 0 0 0 0 0 0
0 0 1 0 −3 3 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 3 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 6
5 5
3 6
3 5
6 8
5 8
3 7
2 6
5 7
6 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For MTSM, the plot of the error function is in Figure 3.14 for 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 = 1 × 10−9.
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Figure 3.14: Absolute error for the MTSM.

Figure 3.14 shows that the method works very differently with the error and its accumula-
tion during the calculation – it keeps the error bounded near the defined value.

3.5.3 Variable-step-size control

Another important positive property of the method that differentiates it from the commonly
used state-of-the-art methods is its independence on the step size. To show how the method
handles the variable-step-size, problem (3.33) is again used and is calculated using fixed step
size. In the first example, the step size is set to ℎ = 0.1 s and 𝑡𝑚𝑎𝑥 = 10 s, 𝑀𝑇𝑆𝑀𝑇 𝑂𝐿 =
1 × 10−9. Figure 3.15 shows the solution for the commonly used solvers with fixed step
size ℎ = 0.1 s. In the following tables, values in the column ||𝑒𝑟𝑟𝑜𝑟|| are calculated as
(||𝑦𝑠𝑜𝑙𝑣𝑒𝑟 − 𝑦𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙||).
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Figure 3.15: Solution for ℎ = 0.1 s for state-of-the-art fixed step size solvers and MTSM.

The sizes of errors between the numerical solution and the analytical solution using (3.34)
are in Table 3.8.
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Solver ||𝑒𝑟𝑟𝑜𝑟||

rk2 2.679 12 × 10−2

rk4 3.735 96 × 10−6

MTSM 1.271 79 × 10−9

Table 3.8: Comparison of the errors between the analytical and numerical solution for the
(3.33) with ℎ = 0.1 s.

The second experiment shows the same problem using large step size for all solvers
ℎ = 10 s using the same tolerances as with the previous example.
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Figure 3.16: Solution using ℎ = 10 s the accuracy of state-of-the-art fixed step size solvers
and MTSM solver.

Figure 3.16 shows how the accuracy of the state-of-the-art methods depend on step size.
The sizes of the error between the numerical solution and the analytical solution (3.34) are
in Table 3.9. The mean value of the 𝑂𝑅𝐷 function is 25.

Solver ||𝑒𝑟𝑟𝑜𝑟||

rk2 86.8226
rk4 32.0678

MTSM 5.480 79 × 10−8

Table 3.9: Comparison of the errors between the analytical and numerical solution for the
(3.33) with ℎ = 10 s.

Perhaps not surprisingly, the unmodified Runge-Kutta method cannot achieve the re-
quired accuracy of calculation independent of the step size. MTSM, on the other hand,
calculates the accurate solution independent of step size, which makes it potentially inter-
esting in some control applications where sampling times are not overly small.

3.5.4 Stability, convergence

First, let us very briefly talk about the definition of stability and some general remarks.
This part of the Chapter is mainly based on [83] and [32]. For the stable numerical method,
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the value of the next integration step has to be smaller or equal to the current integration
step

|𝑦𝑖+1| ≤ |𝑦𝑖| . (3.35)

The stability function 𝑅(𝑧) is defined as

𝑅(𝑧) = 𝑦𝑖+1
𝑦𝑖

(3.36)

where 𝑧 = ℎ𝜆. The function is defined as stable in the absolute stability region 𝒟, which is
defined as

𝒟 = {𝑧 ∈ 𝒞 |𝑅(𝑧)| ≤ 1} . (3.37)

The 𝒟(𝑧) function is plotted in Figure 3.17.

Figure 3.17: Function 𝒟(𝑧).

If the following condition holds

𝒟(𝑧) = {𝑧 ∈ 𝒞, 𝑅𝑒(𝑧) ≤ 0} (3.38)

the numerical method is absolutely stable (A-stable). To determine the stability of the
numerical methods, the Dahlquist problem can be used. It is defined as

𝑦′ = 𝜆𝑦, 𝑦(0) = 0, 𝑅𝑒(𝜆) < 0 . (3.39)

For example, for the Euler method, defined in Subsection 2.3.1 with (2.12), after substitut-
ing (2.12) into (3.39)

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝜆𝑦𝑖 = (1 + ℎ𝜆)𝑦𝑖 = (1 + ℎ𝜆)𝑖𝑦0 , (3.40)

where 𝑦(0) = 𝑦0 = 1. For the stability condition (3.35), the following has to hold

|1 + ℎ𝜆| ≤ 1 . (3.41)

The stability region (domain) for the Euler method is in Figure 3.18, the area inside
the shape represents the stable region.
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Figure 3.18: Region of stability 𝒟(𝑧) of the Euler method |1 + 𝑧| ≤ 1.

The calculation of the stability region can be applied for the Runge-Kutta and other explicit
methods mentioned in Chapter 2. For example, for the second-order Runge-Kutta method,
the region of stability expands slightly.
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Figure 3.19: Region of stability 𝒟(𝑧) of the Runge-Kutta 2nd order method.
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It is obvious from Figures 3.18 and 3.19 that the region of stability for the simplest explicit
methods is quite small. The comparison between stability regions of the Euler method and
the Runge-Kutta methods is in Figure 3.20.
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Figure 3.20: Region of stability 𝒟(𝑧) for Runge-Kutta and Euler method.

More complicated methods have bigger regions of stability. For example the Felhberg
method or Dormand–Prince method mentioned in Chapter 2 have their regions of stability
displayed in Figure 3.21.
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Figure 3.21: Region of stability 𝒟(𝑧) for Runge-Kutta methods with the higher order.
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For the variable-order method based on the Taylor series discussed in this Chapter, the
stability characteristics are interesting. Using (3.1) and (3.2), we can again analyse the
Dahlquist problem. First, the higher derivatives in the explicit Taylor scheme have to be
substituted for

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝜆𝑦𝑖 + ℎ2

2! 𝜆2𝑦𝑖 + ℎ3

3! 𝜆3𝑦𝑖 + · · · + ℎ𝑛

𝑛! 𝜆𝑛𝑦𝑖

=
(︃

1 + ℎ𝜆 + ℎ2

2! 𝜆2 + ℎ3

3! 𝜆3 + · · · + ℎ𝑛

𝑛! 𝜆𝑛

)︃
𝑦𝑖

(3.42)

the stability function can be written using (3.42)

𝑅(𝑧) = 1 + 𝑧 + 𝑧2

2! + 𝑧3

3! + · · · + 𝑧𝑛

𝑛! , (3.43)

where again 𝑧 = ℎ𝜆, 𝜆 ∈ 𝒞−. The stability region 𝒟 can be plotted knowing that

|1 + 𝑧 + 𝑧2

2! + 𝑧3

3! + · · · + 𝑧𝑛

𝑛! | ≤ 1 .

Regions of stability for MTSM using orders 20, 40 and 64 is in Figure 3.22.
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Figure 3.22: Region of stability 𝒟(𝑧) for MTSM with orders 20, 40 and 64.

When comparing Figures 3.20 and 3.22, the region of stability the method can utilize is
larger than state-of-the-art methods. Figure 3.22 shows that the area of absolute stability
further increases with more terms of the Taylor series used. More terms of the Taylor series
might be used when using variable-precision arithmetic.
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3.6 Variable-precision arithmetic
The experiments in this thesis always consider the double precision arithmetic (64 bits). The
MTSM can utilise the theoretically unlimited number of bits using the variable precision
arithmetic schemes. The implementation of such schemes can, for example, be achieved by
using the MPFR C library4, and it is used in existing implementations of the method. The
experiments were performed in [46]. To show that the method effectively uses the variable
precision arithmetic where available, consider the following IVP:

𝑦′ = 𝑦 𝑦(0) = 1

with the analytical solution
𝑦 = 𝑒𝑡 ,

using ℎ = 𝑡𝑚𝑎𝑥 = 1 s (the method performs one step), 𝑇𝑂𝐿 = 1 × 10−15. First, consider
the results for double precision arithmetic as summarized in Table 3.10. Values in column
absolute error are calculated as |𝑦1 − 𝑦(1)|.

ORD Reduced value y(1) Absolute error
1 2. 7.182 818 284 590 452 35 × 10−1

2 2. 2.182 818 284 590 452 35 × 10−1

3 2. 5.161 516 179 237 868 3 × 10−2

4 2.7 9.948 495 125 712 053 × 10−3

5 2.71 1.615 161 792 378 750 × 10−3

6 2.718 2.262 729 034 898 66 × 10−4

7 2.7182 2.786 020 507 716 8 × 10−5

8 2.7182 3.058 417 775 609 × 10−6

9 2.718281 3.028 858 531 76 × 10−7

10 2.7182818 2.731 266 091 1 × 10−8

11 2.71828182 2.260 552 523 × 10−9

12 2.718281828 1.728 768 24 × 10−10

13 2.7182818284 1.228 639 4 × 10−11

14 2.71828182845 8.156 81 × 10−13

15 2.71828182845 5.0959 × 10−14

16 2.71828182845904 3.220 × 10−15

17 2.71828182845904 4.44 × 10−16

18 2.71828182845904 3.33 × 10−16

19 2.71828182845904 3.33 × 10−16

20 2.71828182845904 3.33 × 10−16

Table 3.10: Calculation results using the double data type.

Note that the achieved accuracy is approximately 1 × 10−15, which is about the same as
the maximum achievable accuracy for the double data type. To achieve a better accuracy
of calculation, variable precision arithmetic has to be used. The results using 128 bit
arithmetic for 𝑇𝑂𝐿 = 1 × 10−39 are in Table 3.11.

4https://www.mpfr.org/
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ORD Reduced value y(1) Absolute error
1 2. 7.183 × 10−1

2 2. 2.183 × 10−1

3 2.7 5.162 × 10−2

4 2.71 9.948 × 10−3

5 2.718 1.615 × 10−3

6 2.7182 2.663 × 10−4

7 2.7182 2.786 × 10−5

8 2.718281 3.059 × 10−6

9 2.7182818 3.029 × 10−7

10 2.71828182 2.731 × 10−8

11 2.718281828 2.261 × 10−9

12 2.7182818284 1.729 × 10−10

13 2.71828182845 1.229 × 10−11

14 2.71828182845 8.155 × 10−13

15 2.71828182845904 5.077 × 10−14

16 2.718281828459045 2.976 × 10−15

17 2.7182818284590452 1.648 × 10−16

18 2.71828182845904523 8.652 × 10−18

19 2.7182818284590452353 4.315 × 10−19

20 2.7182818284590452353 2.050 × 10−20

21 2.7182818284590452353602 9.300 × 10−22

22 2.71828182845904523536028 4.036 × 10−23

23 2.7182818284590452353602874 1.679 × 10−24

24 2.7182818284590452353602874 6.704 × 10−26

25 2.718281828459045235360287471 2.575 × 10−27

26 2.7182818284590452353602874713 9.523 × 10−29

27 2.718281828459045235360287471352 3.397 × 10−30

28 2.7182818284590452353602874713526 1.170 × 10−31

29 2.718281828459045235360287471352662 3.896 × 10−33

30 2.71828182845904523536028747135266249 1.255 × 10−34

31 2.718281828459045235360287471352662497 3.910 × 10−36

32 2.7182818284590452353602874713526624977 1.102 × 10−37

33 2.7182818284590452353602874713526624977 4.408 × 10−39

34 2.7182818284590452353602874713526624977 4.408 × 10−39

35 2.7182818284590452353602874713526624977 4.408 × 10−39

Table 3.11: Calculation results using the variable-precision arithmetic (128 bits).

Note that the number of valid digits increases significantly and the process can be repeated
to gain additional accuracy by extending the arithmetic.
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3.7 Hardware implementation
This Section covers the basic hardware implementation of the method and shows that
the positive properties also translate to the low-level hardware implementation [42]. This
Section is based on several theses [86], [53], [62] and the Ph.D. thesis [44].

The most important element of the computation system implemented in hardware is
the numerical integrator consisting of computational blocks that perform mathematical
and logical operations. As stated previously, the operations that have to be supported in
hardware are:

• addition,

• subtraction,

• multiplication,

• division,

• multiplication with integration,

• division with integration.

Used integrators are connected using the interconnection network, which connects the out-
puts of integrators to different inputs depending on the computational scheme of the dif-
ferential equation. The output of any integrator can be obtained through the multiplexer.
The block scheme of the network is in Figure 3.23.

Figure 3.23: Block representation of the integrator network [67].

An example of the usage of the network for the system of ODEs

𝑥′ = 𝑥 𝑥(0) = 𝑥0

𝑦′ = 𝑦 + 𝑥 𝑦(0) = 𝑦0
(3.44)

is in Figure 3.24.
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Figure 3.24: Block representation of the integrator network for (3.44) [67].

3.7.1 Operations

This Subsection presents the implementation of needed operations in hardware that use the
following computational blocks:

• RV – result register,

• MPX – multiplexer,

• SUM – parallel adder,

• ACC – accumulator,

• MUL – multiplicator,

• DIV – simple divisor,

• D – resulting Taylor series terms,

• A/C, B/D – registers with constant coefficients and

• CNST – constant register.

Operation addition

The first operation that will be covered is addition. Derivative of addition 𝑦 = 𝑢 + 𝑣 is

𝑦′ = 𝑢′ + 𝑣′

with initial conditions 𝑦(0) = 𝑢0 + 𝑣0, 𝑢(0) = 𝑢0 and 𝑣(0) = 𝑣0. The Taylor series can then
be expressed as a sum of the individual terms

𝑦𝑖+1 = 𝑦𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + 𝐷𝑌 (3)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖 .
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The first term of the Taylor series 𝐷𝑌 (1) can be expressed as

𝐷𝑌 (1) = ℎ(𝑢′ + 𝑣′)
𝐷𝑈(1) = ℎ𝑢′

𝐷𝑉 (1) = ℎ𝑣′ .

(3.45)

The derivatives of 𝑢 and 𝑣 can therefore be expressed as

𝑢′ = 𝐷𝑈(1)
ℎ

𝑣′ = 𝐷𝑉 (1)
ℎ

.

(3.46)

The term 𝐷𝑌 (1) can be calculated using the expressed derivatives

𝐷𝑌 (1) = 𝐷𝑈(1) + 𝐷𝑉 (1) .

The hardware representation of addition is in Figure 3.25.

SUM

RVY

ACC DMPX

A/C

h 

MUL
y (DUx)

B/D

h 

z (DVx)

  

RVZ

DVout

DUout

SUM

ACC DMPX MPX

MPX

 

MUL

MUL

MUL

Figure 3.25: Hardware representation of addition [42].

Operation subtraction

Operation subtraction is fundamentally similar to addition, the plus sign is just replaced
with the minus sign. The hardware representation and the first derivative is very similar.
Just to see the increase in the complexity with higher terms of the Taylor series, the
calculation for the second term of the series is

𝐷𝑌 (2) = ℎ2

2! (𝑢′′ − 𝑣′′)

𝑢′′ = 2!𝐷𝑈(2)
ℎ2

𝑣′′ = 2!𝐷𝑉 (2)
ℎ2 .

(3.47)

The final equation for the second term of the Taylor series for subtraction

𝐷𝑌 (2) = 𝐷𝑈(2) − 𝐷𝑉 (2) . (3.48)
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Operation multiplication

The first derivative of multiplication 𝑦 = 𝑢𝑣 is

𝑦′ = 𝑢′𝑣 + 𝑢𝑣′

with initial conditions 𝑦(0) = 𝑢0𝑣0, 𝑢(0) = 𝑢0 and 𝑣(0) = 𝑣0. The first Taylor series term
for multiplication can be expressed using the following equation

𝐷𝑌 (1) = ℎ(𝑢′𝑣 + 𝑢𝑣′) .

By substituting the first terms (𝐷𝑈(1) and 𝐷𝑉 (1) from (3.46)), the following equation for
the first term of the Taylor series 𝐷𝑌 (1) can be obtained

𝐷𝑌 (1) = ℎ(𝐷𝑈(1)
ℎ

𝑣 + 𝐷𝑉 (1)
ℎ

𝑢)

which can be further simplified as

𝐷𝑌 (1) = 𝐷𝑈(1)𝑣 + 𝐷𝑉 (1)𝑢 . (3.49)

The hardware representation of multiplication is in Figure 3.26.

SUM

ACC

MUL

  

 

u

DU1

DU2

DU3

v

DV1

DV2

DV3

MPX MPX

CNST CNST

DYout SUM

RV

Figure 3.26: Hardware representation of operation multiplication [42].

Operation division

Due to the fact that division can be replaced by multiplication (as shown in Chapter 3.4), the
following section just illustrates the basic principle of the possible hardware implementation.
The first derivative for division 𝑦 = 𝑢

𝑣 is

𝑦′ = 𝑢′𝑣 − 𝑢𝑣′

𝑣2 (3.50)

with initial conditions 𝑦(0) = 𝑢0
𝑣0

, 𝑢(0) = 𝑢0, 𝑣(0) = 𝑣0. Simplifying (3.50)

𝑦′ = 1
𝑣

(𝑢′ − 𝑦𝑣′) (3.51)

and by substituting the first terms of the Taylor series, we get the following equation

𝑦′ = ℎ
1
𝑣

(︂
𝐷𝑈(1)

ℎ
− 𝑦

𝐷𝑉 (1)
ℎ

)︂
. (3.52)

Simplifying (3.52), the final equation for the first term of the Taylor series for division
follows

𝑦′ = 1
𝑣

(𝐷𝑈(1) − 𝑦𝐷𝑉 (1)) . (3.53)
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Multiplication with integration

The basic equation for integration of multiplication is 𝑦′ = 𝑢𝑣. By performing a derivation
of the equation, the second derivative is obtained

𝑦′′ = 𝑢′𝑣 + 𝑢𝑣′

with initial conditions 𝑦(0) = 𝑦0, 𝑢(0) = 𝑢0 and 𝑣(0) = 𝑣0. The first and the second Taylor
series terms can be expressed using the following equations

𝐷𝑌 (1) = ℎ(𝑢 + 𝑣)

𝐷𝑌 (2) = ℎ2

2!

(︂
𝐷𝑈(1)

ℎ
𝑣 + 𝐷𝑉 (1)

ℎ
𝑢

)︂
.

(3.54)

After simplifying, the equation for the second Taylor series term can be obtained

𝐷𝑌 (2) = ℎ

2 (𝐷𝑈(1)𝑣 + 𝐷𝑉 (1)𝑢) . (3.55)

Further terms can be obtained similarly. The hardware representation of multiplication
with integration using MTSM is in Figure 3.27.

 

 

MPX

u0
DU1
DU2
DU3

v0
DV1
DV2
DV3

h
h/2
h/3
h/4

MUL SUM

ACC

RV
V

Y0
 

MPX

 

MPX

U

Y

Figure 3.27: MTSM integrator for operation multiplication [42].

Division with integration

Equation for integration of division is 𝑦′ = 𝑢
𝑣 , deriving it, the second derivative is obtained

𝑦′′ = 𝑢′𝑣 − 𝑢𝑣′

𝑣2

with initial conditions 𝑦(0) = 𝑦0, 𝑢(0) = 𝑢0 and 𝑣(0) = 𝑣0. Simplifying it, the equation for
the second derivative is obtained

𝑦′′ = 1
𝑣

(𝑢′ − 𝑦′𝑣′) .

The first and second Taylor series terms for division with integration can be expressed using
the following equations

𝐷𝑌 (1) = ℎ
𝑢

𝑣

𝐷𝑌 (2) = ℎ2

2!
1
𝑣

(︂
𝐷𝑈(1)

ℎ
− 𝐷𝑌 (1)

ℎ

𝐷𝑉 (1)
ℎ

)︂
.

(3.56)
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The equation for the second Taylor series term can be further simplified

𝐷𝑌 (2) = ℎ

2
1
𝑢

(𝐷𝑈(1) − 𝐷𝑌 (1)𝐷𝑉 (1)) . (3.57)

Additional terms can be obtained similarly. The hardware representation of the division
with integration is in Figure 3.28, which shows a special purpose-built integrator that
performs integration using MTSM.
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Figure 3.28: MTSM integrator for operation division [42].

3.7.2 Implementation using FPGA

Using the operations described in Subsection 3.7.1, MTSM can be implemented in hardware.
The implementation in our research group and as a part of this thesis considered the basic
FPGA5 implementation. The main portion of the method was implemented using the
VHDL6. The implementation is shown in Figure 3.29.

FPGA
SPI_ADC

SPI

REGISTERS

.

.

. 

COMMANDS

 IC1
 RESULT1

 IC2

 STEP

 RESULT2

ADDRESS 
DECODER

DATA &
CMD

 ADDR

DATA &
CMD 

 CS

IC1

IC2

RESULTS

y' y -y

z'
 

z
 
 

PARALLEL SCHEME

Figure 3.29: MTSM implementation on a FPGA.

The implementation is comprised of two parts:
5Field Programmable Gate Array
6VHSIC Hardware Description Language
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• MCU, which handles parameter set-up and presentation of results,

• FPGA, which handles the calculation itself.

When the MCU is initialized, the initial conditions are loaded into the FPGA registers,
followed by the step size. Then the integrator scheme is initialized, and initial conditions
are loaded into the integrators, which wait for the ENABLE signal, which enables the compu-
tation. When the computation ends, the integrators write the results into the appropriate
RESULTx register (x is the index of the result register). After the calculation is finished, the
results are copied into MCU using pooling.

3.7.3 Effectiveness of MTSM in hardware

The analysis of performance in hardware was performed by the members of our research
group and master students (see [62] or [44]) and published in [42]. To measure the effec-
tiveness of the implementation in hardware, the following linear system of ODEs

𝑥′ = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 𝑥(0) = 𝑥0

𝑦′ = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 𝑦(0) = 𝑦0

𝑧′ = 𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 𝑧(0) = 𝑧0 .

(3.58)

Using the mid-point formulation of the second order Runge-Kutta method (2.14), the first
derivative can be calculated

𝑥1 = 𝑥0 + 1
2(𝑘1,𝑥 + 𝑘2,𝑥)

𝑦1 = 𝑦0 + 1
2(𝑘1,𝑦 + 𝑘2,𝑦)

𝑧1 = 𝑧0 + 1
2(𝑘1,𝑧 + 𝑘2,𝑧)

(3.59)

where coefficients 𝑘1 can be expressed as

𝑘1,𝑥 = ℎ(𝑎1𝑥0 + 𝑏1𝑦0 + 𝑐1𝑧0)
𝑘1,𝑦 = ℎ(𝑎2𝑥0 + 𝑏2𝑦0 + 𝑐2𝑧0)
𝑘1,𝑧 = ℎ(𝑎3𝑥0 + 𝑏3𝑦0 + 𝑐3𝑧0)

(3.60)

and coefficients 𝑘2 can be expressed as

𝑘2,𝑥 = ℎ(𝑎1(𝑥0 + 𝑘1,𝑥) + 𝑏1(𝑦0 + 𝑘1,𝑦) + 𝑐1(𝑦0 + 𝑘1,𝑦))
𝑘2,𝑦 = ℎ(𝑎2(𝑥0 + 𝑘1,𝑥) + 𝑏2(𝑦0 + 𝑘1,𝑦) + 𝑐2(𝑦0 + 𝑘1,𝑦))
𝑘2,𝑧 = ℎ(𝑎3(𝑥0 + 𝑘1,𝑥) + 𝑏3(𝑦0 + 𝑘1,𝑦) + 𝑐3(𝑦0 + 𝑘1,𝑦)) .

(3.61)

The systems of equations above show that the mathematical operations in the equivalent
equations are equal. These equations can be performed in parallel on computational units
that support addition and multiplication. To compare the effectiveness of MTSM and the
second order Runge-Kutta method, the parallel operations for the methods are compared
in Table 3.12 [44].
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rk2 MTSM
N. CPU X CPU Y CPU Z CPU X CPU Y CPU Z
1 𝑋1 = 𝑎1𝑥0 𝑌 1 = 𝑎2𝑥0 𝑍1 = 𝑎3𝑥0 𝑋1 = 𝑎1𝑥0 𝑌 1 = 𝑎2𝑥0 𝑍1 = 𝑎3𝑥0
2 𝑋2 = 𝑏1𝑦0 𝑌 2 = 𝑏2𝑦0 𝑍2 = 𝑏3𝑦0 𝑋2 = 𝑏1𝑦0 𝑌 2 = 𝑏2𝑦0 𝑍2 = 𝑏3𝑦0
3 𝑋3 = 𝑐1𝑧0 𝑌 3 = 𝑐2𝑧0 𝑍3 = 𝑐3𝑧0 𝑋3 = 𝑐1𝑧0 𝑌 3 = 𝑐2𝑧0 𝑍3 = 𝑐3𝑧0
4 𝑋4 = 𝑋1 + 𝑋2 𝑌 4 = 𝑌 1 + 𝑌 2 𝑍4 = 𝑍1 + 𝑍2 𝑋4 = 𝑋1 + 𝑋2 𝑌 4 = 𝑌 1 + 𝑌 2 𝑍4 = 𝑍1 + 𝑍2
5 𝑋5 = 𝑋4 + 𝑋3 𝑌 5 = 𝑌 4 + 𝑌 3 𝑍5 = 𝑍4 + 𝑍3 𝑋5 = 𝑋4 + 𝑋3 𝑌 5 = 𝑌 4 + 𝑌 3 𝑍5 = 𝑍4 + 𝑍3
6 𝑋6 = ℎ𝑋5 𝑌 6 = ℎ𝑌 5 𝑍6 = ℎ𝑍5 𝑋6 = ℎ𝑋5 𝑌 6 = ℎ𝑌 5 𝑍6 = ℎ𝑍5
7 𝑋7 = 𝑥0 + 𝑋6 𝑌 7 = 𝑥0 + 𝑋6 𝑍7 = 𝑥0 + 𝑋6 𝑋7 = 𝑎1𝑋6 𝑌 7 = 𝑎2𝑋6 𝑍7 = 𝑎3𝑋6
8 𝑋8 = 𝑦0 + 𝑌 6 𝑌 8 = 𝑦0 + 𝑌 6 𝑍8 = 𝑦0 + 𝑌 6 𝑋8 = 𝑏1𝑍6 𝑌 8 = 𝑏2𝑌 6 𝑍8 = 𝑏3𝑍6
9 𝑋9 = 𝑥0 + 𝑍6 𝑌 9 = 𝑧0 + 𝑍6 𝑍9 = 𝑧0𝑍6 𝑋9 = 𝑐1𝑌 6 𝑌 9 = 𝑐2𝑌 6 𝑍9 = 𝑐3𝑍6
10 𝑋10 = 𝑎1𝑋7 𝑌 10 = 𝑎2𝑌 7 𝑍10 = 𝑎3𝑍7 𝑋10 = 𝑋7 + 𝑋8 𝑌 10 = 𝑌 7 + 𝑌 8 𝑍10 = 𝑍7 + 𝑍8
11 𝑋11 = 𝑏1𝑋8 𝑌 11 = 𝑏2𝑌 8 𝑍11 = 𝑏3𝑍8 𝑋11 = 𝑋10 + 𝑋9 𝑌 11 = 𝑌 10 + 𝑌 9 𝑍11 = 𝑍10 + 𝑍9
12 𝑋12 = 𝑐1𝑋9 𝑌 12 = 𝑐2𝑌 9 𝑍12 = 𝑐3𝑍9 𝑋12 = ℎ/2𝑋11 𝑌 12 = ℎ/2𝑌 11 𝑍12 = ℎ/2𝑍11
13 𝑋13 = 𝑋10 + 𝑋11 𝑌 13 = 𝑌 10 + 𝑌 11 𝑍13 = 𝑍10 + 𝑍11 𝑋13 = 𝑋12 + 𝑋6 𝑌 13 = 𝑌 12 + 𝑌 6 𝑍12 + 𝑍6
14 𝑋14 = 𝑋13 + 𝑋12 𝑌 14 = 𝑌 13 + 𝑌 12 𝑍14 = 𝑍13 + 𝑍12 𝑋14 = 𝑥0 + 𝑋13 𝑌 14 = 𝑦0 + 𝑌 13 𝑍14 = 𝑧0 + 𝑍13
15 𝑋15 = ℎ𝑋14 𝑌 15 = ℎ𝑌 14 𝑍15 = ℎ𝑍14
16 𝑋16 = 𝑋6 + 𝑋15 𝑌 16 = 𝑌 6 + 𝑌 15 𝑍16 = 𝑍6 + 𝑍15
17 𝑋17 = 1/2𝑋16 𝑌 17 = 1/2𝑌 16 𝑍17 = 1/2𝑍16
18 𝑋18 = 𝑥0 + 𝑋17 𝑌 18 = 𝑦0 + 𝑌 17 𝑍18 = 𝑧0 + 𝑍17

Table 3.12: Comparison of the operations performed by the second-order Runge-Kutta
method and MTSM in hardware [44].

The number of operations is lower for MTSM when calculating the same order (i.e.
the same number of the Taylor series terms). The same pattern holds for the higher-order
Runge-Kutta methods. For the fourth-order Runge-Kutta method, the CPU performs 46
operations and 28 operations for MTSM, which represents a decrease by approximately 60
percent in the number of performed operations.

To demonstrate the hardware implementation of the method [53], ODE

𝑦′ = 𝑦𝑒𝑎𝑡 , (3.62)

with the analytical solution
𝑦 = 𝑒

𝑒𝑎𝑡

𝑎 𝑒
−1
𝑎 (3.63)

that can be transformed into a system of auxiliary ODEs

𝑦′ = 𝑦𝑧 𝑦(0) = 1
𝑧′ = 𝑎𝑧 𝑧(0) = 1 𝑎 < 0 .

(3.64)

For the following experiments, the maximum number of the Taylor series terms was set
to 8. The column denoted Error represents the difference between the analytical and the
numerical solution of the chosen method |𝑦𝑚𝑒𝑡ℎ𝑜𝑑(𝑡𝑚𝑎𝑥) − 𝑦𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑡𝑚𝑎𝑥)|. Note that step
sizes ℎ for the state-of-the-art numerical methods in the following experiments are set
so that the error would be the smallest possible. The first experiment uses 𝑡𝑚𝑎𝑥 = 1 s,
𝑀𝑇𝑆𝑀ℎ = 1 s.

Solver ℎ Error # of steps # operations per step # of operations
Euler 4.4 × 10−4 2.554 × 10−5 2273 12 27 276
rk2 3.750 × 10−2 2.722 × 10−4 27 25 675
rk4 3.5000 × 10−1 4.560 × 10−5 3 41 123
MTSM 1 5.961 × 10−4 1 60 60

Table 3.13: The results of the experiment on hardware for 𝑡𝑚𝑎𝑥 = 1 s, 𝑀𝑇𝑆𝑀ℎ = 1 s.
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The smallest error was achieved by the Euler method, however the method needed a huge
amount of steps to achieve this accuracy. Therefore the time of calculation was very large.
For 𝑡𝑚𝑎𝑥 = 1 s, 𝑀𝑇𝑆𝑀ℎ = 0.5 s, the results are in Table 3.14.

Solver ℎ Error # of steps # operations per step # of operations
rk2 2.34 × 10−3 2.377 × 10−6 427 25 10 675
rk4 8.580 × 10−2 4.788 × 10−7 3 164 492
MTSM 5.000 × 10−1 1.735 × 10−6 2 60 120

Table 3.14: The results of the experiment on hardware for 𝑡𝑚𝑎𝑥 = 1 s, 𝑀𝑇𝑆𝑀ℎ = 0.5 s.

Further information about the experiments can be found in [53]. The eighth-order MTSM
performs the least amount of integration steps and is the most accurate. Due to the
hardware limitations (i.e. the limited amount of components that can fit on the FPGA),
the additional Taylor series terms could not be calculated. The hardware implementation
and optimization of the algorithms is going to be a part of future research after completion
of this thesis.

3.8 Concluding remarks
This Chapter described the method that is at the core of this thesis in detail for both
linear and non-linear systems of ODEs. The positive properties of the method were also
introduced. The analysis of the method was performed using the set of general real-world
experiments that are detailed in Chapter 4.
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Chapter 4

Practical examples with high-order
Taylor series method

This Chapter contains several published examples that show the favourable properties of
the method while solving real-world linear and non-linear problems. Note that in the tables,
columns labelled as Time of calculation and Ratio are taken as a median value from 100
runs. Ratios of computation times 𝑟𝑎𝑡𝑖𝑜 = 𝑜𝑑𝑒/𝑀𝑇𝑆𝑀 ≫ 1 indicate significantly faster
computation using MTSM. The experiments were performed using MATLAB 2021a.

4.1 Numerical solver benchmarks
As the first set of experiments, consider the benchmarks of numerical solvers published
in [27]. Some problems from this set of benchmarks (for example, the Kepler problem)
are going to be discussed in greater detail in Section 4.7. Some are just interesting to
get an idea on how MTSM behaves while solving a wide range of real-world problems.
This Section contains just numerical results and complete analysis of the most interesting
benchmarks. Additional information is in Appendix E. The maximum time of calculation
for all experiments is set to 𝑡𝑚𝑎𝑥 = 20 s, tolerances for all used solvers are set to 𝑇𝑂𝐿 =
1 × 10−12.

4.1.1 Problem A1

The definition of problem A1 is in Appendix E.1. The numerical results are in Table 4.1
and the plot of the 𝑂𝑅𝐷 function is in Figure 4.1.

Solver |𝑒𝑟𝑟𝑜𝑟| # of steps Time of calculation [s] Ratio
MTSM – 200 1.192 15 × 10−3 –

ode23 1.232 52 × 10−13 22208 1.365 03 × 10−1 114.5
ode45 1.107 93 × 10−14 2389 4.615 45 × 10−3 3.87

ode113 2.055 43 × 10−14 161 1.985 × 10−3 1.67

Table 4.1: Results for benchmark problem A1, ℎ = 0.1 s.
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Figure 4.1: 𝑂𝑅𝐷 function for benchmark problem A1, ℎ = 0.1 s.

4.1.2 Problem A2

The definition of problem A2 is in Appendix E.2. The numerical results are in Table 4.2.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.511 25 × 10−3 – – – –
MTSM opt 40 1.217 95 × 10−3 – – – –

ode23 28550 1.780 09 × 10−1 1.554 24 × 10−7 117.79 1.554 24 × 10−7 146.2
ode45 2177 4.0415 × 10−3 1.554 24 × 10−7 2.67 1.554 24 × 10−7 3.32

ode113 232 3.214 05 × 10−3 1.554 24 × 10−7 2.13 1.554 24 × 10−7 2.64

Table 4.2: Results for benchmark problem A2, ℎ = 0.5 s.

The optimization from Subsection 3.3.3 is used. The change in step size is visible in Fig-
ure 4.2.
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Figure 4.2: 𝑂𝑅𝐷 function for benchmark problem A2, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 4.
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4.1.3 Problem A3

The definition of problem A3 is in Appendix E.3. The numerical results are in Table 4.3.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.957 35 × 10−3 – – – –
MTSM opt 26 1.253 35 × 10−3 – – – –

ode23 153480 9.626 68 × 10−1 9.055 58 × 10−8 491.82 8.311 61 × 10−9 768.18
ode45 9381 1.694 15 × 10−2 9.055 93 × 10−8 8.66 8.315 17 × 10−9 13.52

ode113 570 7.4009 × 10−3 9.055 96 × 10−8 3.78 8.315 46 × 10−9 5.90

Table 4.3: Results for benchmark problem A3, ℎ = 0.5 s.

The optimization from Subsection 3.3.3 is used. The change in step size is visible in Fig-
ure 4.3.
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Figure 4.3: 𝑂𝑅𝐷 function for benchmark problem A3, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

4.1.4 Problem A4

The definition of the problem A4 is in Appendix E.4. The numerical results are in Table 4.4,
the 𝑂𝑅𝐷 function for ℎ𝑠𝑐𝑎𝑙𝑒 = 4 is in Figure 4.4.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.3478 × 10−3 – – – –
MTSM opt 25 7.377 × 10−4 – – – –

ode23 37372 2.306 14 × 10−1 1.7788 × 10−9 171.1 1.432 26 × 10−8 312.61
ode45 2921 5.319 95 × 10−3 1.427 08 × 10−9 3.95 1.397 08 × 10−8 7.21

ode113 157 2.263 45 × 10−3 1.437 35 × 10−9 1.68 1.398 11 × 10−8 3.07

Table 4.4: Results for benchmark problem A4, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.
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Figure 4.4: 𝑂𝑅𝐷 function for benchmark problem A4, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 8.

4.1.5 Problem A5

Problem A5 is interesting because operation division has to be removed, which leads to the
application of automatic transformation (see Section 3.4). It is defined as

𝑦′ = 𝑦 − 𝑡

𝑦 + 𝑡′ 𝑦(0) = 4 ,

where operation division has to be replaced

𝑦′
1 = (𝑦1 − 𝑡)(𝑦1 + 𝑡′)−1

𝑦2 = 𝑦1 − 𝑡

𝑦′
2 = 𝑦′

1 − 1 𝑦2(0) = 𝑦1(0) − 0 = 4
𝑦3 = (𝑦1 + 𝑡′)−1

𝑦′
3 = −(𝑦1 + 𝑡′)−2(𝑦′

1 + 𝑡′′) = −𝑦2
3(𝑦′

1 + 0) 𝑦3(0) = 1
𝑦1(0) + 0 .

After substituting and simplifying, the auxiliary system of ODEs representing the system
can be written as

𝑦′
1 = 𝑦2𝑦3 𝑦1(0) = 4

𝑦′
2 = 𝑦2𝑦3 − 1 𝑦2(0) = 𝑦1(0) − 0

𝑦′
3 = −𝑦2𝑦3𝑦3𝑦3 𝑦3(0) = 1

𝑦1(0) + 0

and it can be transformed into the matrix-vector representation (3.19).

𝐵1 =

⎛⎜⎝1
1
0

⎞⎟⎠ 𝑦𝑗𝑘 =
(︁
2 3

)︁
𝐵3 =

⎛⎜⎝ 0
0

−1

⎞⎟⎠ 𝑦𝑗𝑘𝑙𝑚 =
(︁
2 3 3 3

)︁

The maximum time of calculation is set to 𝑡𝑚𝑎𝑥 = 10 s for this problem. The numerical
results are in Table 4.5, the 𝑂𝑅𝐷 function for ℎ𝑠𝑐𝑎𝑙𝑒 = 4 is in Figure 4.5.
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MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 20 1.608 65 × 10−3 – – – –
MTSM opt 8 1.278 45 × 10−3 – – – –

ode23 15460 9.722 53 × 10−2 9.4959 × 10−9 60.44 4.989 74 × 10−8 76.05
ode45 893 1.8349 × 10−3 9.497 71 × 10−9 1.14 4.989 92 × 10−8 1.44

ode113 115 1.798 85 × 10−3 9.4934 × 10−9 1.12 4.989 49 × 10−8 1.41

Table 4.5: Results for benchmark problem A5, ℎ = 0.5 s.
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Figure 4.5: 𝑂𝑅𝐷 function for benchmark problem A5, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 4.

4.1.6 Problem B1

The definition of problem B1 is in Appendix E.5. The numerical results are in Table 4.6.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 67 3.707 75 × 10−3 – – – –
MTSM opt 67 2.753 85 × 10−3 – – – –

ode23 237231 1.492 23 1.139 78 × 10−6 402.46 1.139 78 × 10−6 541.87
ode45 14125 2.525 26 × 10−2 1.139 77 × 10−6 6.81 1.139 77 × 10−6 9.17

ode113 917 1.233 35 × 10−2 1.139 77 × 10−6 3.33 1.139 77 × 10−6 4.48

Table 4.6: Results for benchmark problem B1, ℎ = 0.3 s.

No step-size scaling can be performed on double arithmetic. The better performance of the
optimized solver is due to the additional improvements for two function multiplications.
The 𝑂𝑅𝐷 function is in Figure 4.6.
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Figure 4.6: 𝑂𝑅𝐷 function for benchmark problem B1, ℎ = 0.3 s.

4.1.7 Problem B2

The definition of problem B2 is in Appendix E.6. The numerical results are in Table 4.7,
the plot of the 𝑂𝑅𝐷 function is in Figure 4.7.

Solver |𝑒𝑟𝑟𝑜𝑟| # of steps Time of calculation [s] Ratio
MTSM – 200 1.654 55 × 10−3 –

ode23 1.147 97 × 10−13 28461 1.805 74 × 10−1 109.14
ode45 2.442 49 × 10−15 3161 5.979 95 × 10−3 3.61

ode113 2.176 04 × 10−14 265 3.619 45 × 10−3 2.19

Table 4.7: Results for benchmark problem B2, ℎ = 0.1 s.
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Figure 4.7: 𝑂𝑅𝐷 function for benchmark problem B2, ℎ = 0.1 s.
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4.1.8 Problem B3

The definition of problem B3 is in Appendix E.7. The numerical results are in Table 4.8.
The plot of the 𝑂𝑅𝐷 function with step size scaling factor ℎ𝑠𝑐𝑎𝑙𝑒 = 4 is in Figure 4.8.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.2294 × 10−3 – – – –
MTSM opt 19 6.2215 × 10−4 – – – –

ode23 30217 1.893 01 × 10−1 9.670 91 × 10−14 153.98 2.906 49 × 10−11 304.27
ode45 2825 5.346 95 × 10−3 9.639 48 × 10−14 4.35 2.906 46 × 10−11 8.59

ode113 219 3.1773 × 10−3 9.338 76 × 10−14 2.58 2.906 16 × 10−11 5.11

Table 4.8: Results for benchmark problem B3, ℎ = 0.5 s.
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Figure 4.8: 𝑂𝑅𝐷 function for benchmark problem B3, ℎ = 0.1 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 4.

4.1.9 Problem B4

Problem B4 interesting because it contains several non-trivial mathematical operations
that have to be replaced using the automatic transformations defined in Section 3.4. The
problem is defined as

𝑦′
1 = −𝑦2 − 𝑦1𝑦3√︁

𝑦2
1 + 𝑦2

2

𝑦1(0) = 3

𝑦′
2 = 𝑦1 − 𝑦2𝑦3√︁

𝑦2
1 + 𝑦2

2

𝑦2(0) = 0

𝑦′
3 = 𝑦1√︁

𝑦2
1 + 𝑦2

2

𝑦3(0) = 0 ,

Several transformations have to be performed on the system for it to be solvable using
MTSM. The first is the removal of division from the system using the set of auxiliary
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equations:

𝑦4 = (𝑦2
1 + 𝑦2

2)
1
2

𝑦′
4 = 1

2(𝑦2
1 + 𝑦2

2)− 1
2 (2𝑦1𝑦′

1 + 2𝑦2𝑦′
2) 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦5 = 1
𝑦4

= 𝑦−1
4

𝑦′
5 = −𝑦−2

4 𝑦′
4 = −𝑦2

5𝑦′
4 𝑦5(0) = 1

𝑦4(0)

𝑦′
4 = 𝑦5(2𝑦1𝑦′

1 + 2𝑦2𝑦′
2) 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦′
5 = −𝑦2

5𝑦′
4 𝑦5(0) = 1

𝑦5(0) .

After performing the transformations, the original system can be rewritten as
𝑦′

1 = −𝑦2 − 𝑦1𝑦3𝑦5 𝑦1(0) = 3
𝑦′

2 = 𝑦1 − 𝑦2𝑦3𝑦5 𝑦2(0) = 0
𝑦′

3 = 𝑦1𝑦5 𝑦3(0) = 0
𝑦′

4 = 𝑦5(2𝑦1𝑦′
1 + 2𝑦2𝑦′

2) = 2𝑦1𝑦5𝑦′
1 + 2𝑦2𝑦5𝑦′

2

= 2𝑦1𝑦5 (−𝑦2 − 𝑦1𝑦3𝑦5) + 2𝑦2𝑦5 (𝑦1 − 𝑦2𝑦3𝑦5)
= −2𝑦1𝑦2𝑦5 − 2𝑦1𝑦1𝑦3𝑦5𝑦5 + 2𝑦1𝑦2𝑦5 − 2𝑦2𝑦2𝑦3𝑦5𝑦5 =
= −2𝑦1𝑦1𝑦3𝑦5𝑦5 − 2𝑦2𝑦2𝑦3𝑦5𝑦5 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦′
5 = −𝑦2

5𝑦′
4 = −𝑦2

5 (−2𝑦1𝑦1𝑦3𝑦5𝑦5 − 2𝑦2𝑦2𝑦3𝑦5𝑦5)

= 2𝑦1𝑦1𝑦3𝑦5𝑦5𝑦5𝑦5 + 2𝑦2𝑦2𝑦3𝑦5𝑦5𝑦5𝑦5 𝑦5(0) = 1
𝑦5(0) .

(4.1)

The system is solvable using MTSM. The number of operations required (especially in equa-
tions 𝑦4 and 𝑦5) is too high (see Subsection 3.3.2). Therefore, the next set of optimizations
aims to decrease the number of function multiplications. First, 𝑦5𝑦5𝑦5𝑦5 has to be replaced
using the following set of ODEs:

𝑦6 = 𝑦5𝑦5𝑦5𝑦5 = 𝑦4
5

𝑦′
6 = 4𝑦3

5𝑦′
5 𝑦6(0) = 𝑦5(0)4

𝑦7 = 𝑦3
5

𝑦′
7 = 3𝑦2

5𝑦′
5 𝑦7(0) = 𝑦5(0)3

𝑦8 = 𝑦2
5

𝑦′
8 = 2𝑦5𝑦′

5 𝑦8(0) = 𝑦5(0)2 .

The set has to be simplified, and derivatives on the right-hand side substituted:
𝑦′

5 = 2𝑦1𝑦1𝑦3𝑦5𝑦5𝑦5𝑦5 + 2𝑦2𝑦2𝑦3𝑦5𝑦5𝑦5𝑦5 = 2𝑦1𝑦1𝑦3𝑦6 + 2𝑦2𝑦2𝑦3𝑦6

𝑦′
6 = 4𝑦3

5𝑦′
5 = 4𝑦7(2𝑦1𝑦1𝑦3𝑦6 + 2𝑦2𝑦2𝑦3𝑦6) = 8𝑦1𝑦1𝑦3𝑦6𝑦7 + 8𝑦2𝑦2𝑦3𝑦6𝑦7

𝑦′
7 = 3𝑦2

5𝑦′
5 = 3𝑦8(2𝑦1𝑦1𝑦3𝑦6 + 2𝑦2𝑦2𝑦3𝑦6) = 6𝑦1𝑦1𝑦3𝑦6𝑦8 + 6𝑦2𝑦2𝑦3𝑦6𝑦8

𝑦′
8 = 2𝑦5𝑦′

5 = 2𝑦5(2𝑦1𝑦1𝑦3𝑦6 + 2𝑦2𝑦2𝑦3𝑦6) = 4𝑦1𝑦1𝑦3𝑦5𝑦6 + 4𝑦2𝑦2𝑦3𝑦5𝑦6
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Using the new ODEs 𝑦6 – 𝑦8 the system (4.1) can be augmented

𝑦′
1 = −𝑦2 − 𝑦1𝑦3𝑦5 𝑦1(0) = 3

𝑦′
2 = 𝑦1 − 𝑦2𝑦3𝑦5 𝑦2(0) = 0

𝑦′
3 = 𝑦1𝑦5 𝑦3(0) = 0

𝑦′
4 = −2𝑦1𝑦1𝑦3𝑦8 − 2𝑦2𝑦2𝑦3𝑦8 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦′
5 = 2𝑦1𝑦1𝑦3𝑦6 + 2𝑦2𝑦2𝑦3𝑦6 𝑦5(0) = 1

𝑦4(0)
𝑦′

6 = 8𝑦1𝑦1𝑦3𝑦6𝑦7 + 8𝑦2𝑦2𝑦3𝑦6𝑦7 𝑦6(0) = 𝑦5(0)4

𝑦′
7 = 6𝑦1𝑦1𝑦3𝑦6𝑦8 + 6𝑦2𝑦2𝑦3𝑦6𝑦8 𝑦7(0) = 𝑦5(0)3

𝑦′
8 = 4𝑦1𝑦1𝑦3𝑦5𝑦6 + 4𝑦2𝑦2𝑦3𝑦5𝑦6 𝑦8(0) = 𝑦5(0)2 .

(4.2)

Further, the 𝑦1𝑦1 and 𝑦2𝑦2 can be simplified:

𝑦9 = 𝑦1𝑦1 = 𝑦2
1

𝑦′
9 = 2𝑦2

1𝑦′
1 = 2𝑦1𝑦1(−𝑦2 − 𝑦1𝑦3𝑦5) = −2𝑦1𝑦1𝑦2 − 2𝑦1𝑦1𝑦1𝑦3𝑦5 =

= −2𝑦9 − 2𝑦1𝑦3𝑦5𝑦9 𝑦9(0) = 𝑦1(0)2

𝑦10 = 𝑦2
2

𝑦′
10 = 2𝑦2𝑦′

2 = 2𝑦2(𝑦1 − 𝑦2𝑦3𝑦5) = 2𝑦1𝑦2 − 2𝑦2𝑦2𝑦3𝑦5 =
= 2𝑦1𝑦2 − 2𝑦3𝑦5𝑦10 𝑦10(0) = 𝑦2(0)2

and the final system of auxiliary equations is
𝑦′

1 = −𝑦2 − 𝑦1𝑦3𝑦5 𝑦1(0) = 3
𝑦′

2 = 𝑦1 − 𝑦2𝑦3𝑦5 𝑦2(0) = 0
𝑦′

3 = 𝑦1𝑦5 𝑦3(0) = 0
𝑦′

4 = −2𝑦3𝑦8𝑦9 − 2𝑦3𝑦8𝑦10 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦′
5 = 2𝑦3𝑦6𝑦9 + 2𝑦3𝑦6𝑦10 𝑦5(0) = 1

𝑦4(0)
𝑦′

6 = 8𝑦3𝑦6𝑦7𝑦9 + 8𝑦3𝑦6𝑦7𝑦10 𝑦6(0) = 𝑦5(0)4

𝑦′
7 = 6𝑦3𝑦6𝑦8𝑦9 + 6𝑦3𝑦6𝑦8𝑦10 𝑦7(0) = 𝑦5(0)3

𝑦′
8 = 4𝑦3𝑦5𝑦6𝑦9 + 4𝑦3𝑦5𝑦6𝑦10 𝑦8(0) = 𝑦5(0)2

𝑦′
9 = −2𝑦9 − 2𝑦1𝑦3𝑦5𝑦9 𝑦9(0) = 𝑦1(0)2

𝑦′
10 = 2𝑦1𝑦2 − 2𝑦3𝑦5𝑦10 𝑦10(0) = 𝑦2(0)2 .

(4.3)

Further optimizations might be performed. For example, the three-term function multipli-
cation 𝑦1𝑦3𝑦5 can be replaced by the following system of ODEs:

𝑦11 = 𝑦1𝑦3𝑦5

𝑦′
11 = 𝑦′

1𝑦3𝑦5 + 𝑦1𝑦′
3𝑦5 + 𝑦1𝑦3𝑦′

5

= 𝑦3𝑦5(−𝑦2 − 𝑦1𝑦3𝑦5) + 𝑦1𝑦5𝑦1𝑦5 + 𝑦1𝑦3(2𝑦3𝑦6𝑦9 + 2𝑦3𝑦6𝑦10)
= −𝑦2𝑦3𝑦5 − 𝑦3𝑦5𝑦11 + 𝑦8𝑦9 + 2𝑦1𝑦3𝑦3𝑦6𝑦9 + 2𝑦1𝑦3𝑦3𝑦6𝑦10 𝑦11(0) = 𝑦1(0)𝑦3(0)𝑦5(0)

𝑦12 = 𝑦2
3

𝑦′
12 = 2𝑦3𝑦′

3 = 2𝑦3(𝑦1𝑦5) = 2𝑦1𝑦3𝑦5 = 2𝑦11 𝑦12(0) = 𝑦3(0)2 .
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Adding the two new equations into the system (4.3) and substituting:

𝑦′
1 = −𝑦2 − 𝑦11 𝑦1(0) = 3

𝑦′
2 = 𝑦1 − 𝑦2𝑦3𝑦5 𝑦2(0) = 0

𝑦′
3 = 𝑦1𝑦5 𝑦3(0) = 0

𝑦′
4 = −2𝑦3𝑦8𝑦9 − 2𝑦3𝑦8𝑦10 𝑦4(0) = 𝑦1(0)2 + 𝑦2(0)2

𝑦′
5 = 2𝑦3𝑦6𝑦9 + 2𝑦3𝑦6𝑦10 𝑦5(0) = 1

𝑦4(0))
𝑦′

6 = 8𝑦3𝑦6𝑦7𝑦9 + 8𝑦3𝑦6𝑦7𝑦10 𝑦6(0) = 𝑦5(0)4

𝑦′
7 = 6𝑦3𝑦6𝑦8𝑦9 + 6𝑦3𝑦6𝑦8𝑦10 𝑦7(0) = 𝑦5(0)3

𝑦′
8 = 4𝑦3𝑦5𝑦6𝑦9 + 4𝑦3𝑦5𝑦6𝑦10 𝑦8(0) = 𝑦5(0)2

𝑦′
9 = −2𝑦9 − 2𝑦9𝑦11 𝑦9(0) = 𝑦1(0)2

𝑦′
10 = 2𝑦1𝑦2 − 2𝑦3𝑦5𝑦10 𝑦10(0) = 𝑦2(0)2

𝑦′
11 = −𝑦2𝑦3𝑦5 − 𝑦3𝑦5𝑦11 + 𝑦8𝑦9 + 2𝑦1𝑦6𝑦9𝑦12 + 2𝑦1𝑦6𝑦10𝑦12 𝑦11(0) = 𝑦1(0)𝑦3(0)𝑦5(0)

𝑦′
12 = 2𝑦11 𝑦12(0) = 𝑦3(0)2 .

(4.4)

Note that further modifications are possible. The matrix-vector notation for (4.4) is in
Appendix E.8. The numerical results are in Table 4.9. The plot of the 𝑂𝑅𝐷 function with
step size scaling factor set to ℎ𝑠𝑐𝑎𝑙𝑒 = 2.5 is in Figure 4.9.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.020 28 × 10−2 – – – –
MTSM opt 19 6.9581 × 10−3 – – – –

ode23 282708 1.835 37 7.459 31 × 10−8 179.89 8.398 71 × 10−8 263.78
ode45 11773 2.454 57 × 10−2 7.459 42 × 10−8 2.41 8.398 69 × 10−8 3.53

ode113 468 7.174 75 × 10−3 7.459 43 × 10−8 0.7 8.398 69 × 10−8 1.03

Table 4.9: Results for benchmark problem B4, ℎ = 0.5 s.
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Figure 4.9: 𝑂𝑅𝐷 function for benchmark problem B4, ℎ = 0.1 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.5.
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4.1.10 Problem B5

The definition of problem B5 is in Appendix E.9. The numerical results are in Table 4.10.
The plot of the 𝑂𝑅𝐷 function with step size scaling factor ℎ𝑠𝑐𝑎𝑙𝑒 = 2 is in Figure 4.10.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 2.3603 × 10−3 – – – –
MTSM opt 25 1.802 35 × 10−3 – – – –

ode23 126546 7.859 04 × 10−1 9.609 63 × 10−8 332.97 9.609 64 × 10−8 436.04
ode45 8157 1.475 09 × 10−2 9.609 52 × 10−8 6.25 9.609 52 × 10−8 8.18

ode113 577 7.398 95 × 10−3 9.609 48 × 10−8 3.13 9.609 48 × 10−8 4.11

Table 4.10: Results for benchmark problem B5, ℎ = 0.5 s.
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Figure 4.10: 𝑂𝑅𝐷 function for benchmark problem B5, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

4.1.11 Problem C3

The definition of problem C3 is in Appendix E.10. The numerical results are in Table 4.11
and the plot of the 𝑂𝑅𝐷 function is in Figure 4.11.

Solver |𝑒𝑟𝑟𝑜𝑟| # of steps Time of calculation [s] Ratio
MTSM – 20 3.02 × 10−4 –

ode23 3.503 22 × 10−10 27753 1.576 28 × 10−1 521.95
ode45 3.503 72 × 10−10 3085 5.532 × 10−3 18.32

ode113 3.503 72 × 10−10 279 3.863 65 × 10−3 12.79

Table 4.11: Results for benchmark problem C3, ℎ = 1 s.
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Figure 4.11: 𝑂𝑅𝐷 function for benchmark problem C3, ℎ = 1 s.

Problem E1

The definition of problem E1 is in Appendix E.11. The numerical results are in Table 4.12.
The plot of the 𝑂𝑅𝐷 function with step size scaling factor ℎ𝑠𝑐𝑎𝑙𝑒 = 3 is in Figure 4.12.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 29 3.341 85 × 10−3 – – – –
MTSM opt 15 1.9447 × 10−3 – – – –

ode23 93321 5.825 26 × 10−1 5.598 66 × 10−9 174.31 6.750 65 × 10−9 299.55
ode45 7309 1.357 69 × 10−2 5.599 61 × 10−9 4.06 6.7516 × 10−9 6.98

ode113 355 4.756 65 × 10−3 5.599 72 × 10−9 1.42 6.751 71 × 10−9 2.45

Table 4.12: Results for benchmark problem E1, ℎ = 0.7 s.
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Figure 4.12: 𝑂𝑅𝐷 function for benchmark problem E1, ℎ = 0.7 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 3.

This problem is particularly suited for step size scaling because it requires a large number
of Taylor series terms in during the first integration step, and the needed number drops
sharply afterwards.
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4.1.12 Problem E2

The definition of problem E2 is in Appendix E.12. The numerical results are in Table 4.13
and the plot of the 𝑂𝑅𝐷 function is in Figure 4.13.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 50 6.3573 × 10−3 – – – –
MTSM opt 50 5.1669 × 10−3 – – – –

ode23 288872 1.779 51 3.798 35 × 10−8 279.921 3.798 35 × 10−8 344.41
ode45 16801 2.974 05 × 10−2 3.798 35 × 10−8 4.68 3.798 35 × 10−8 5.76

ode113 1063 1.369 03 × 10−2 3.798 35 × 10−8 2.15 3.798 35 × 10−8 2.65

Table 4.13: Results for benchmark problem E2 , ℎ = 0.4 s.
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Figure 4.13: 𝑂𝑅𝐷 function for benchmark problem E2, ℎ = 0.4 s.

4.1.13 Problem E3

The definition of problem E3 is in Appendix E.13. The numerical results are in Table 4.14
and the plot of the 𝑂𝑅𝐷 function is in Figure 4.14.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 29 3.775 55 × 10−3 – – – –
MTSM opt 29 3.2215 × 10−3 – – – –

ode23 398190 2.477 89 3.107 29 × 10−7 656.3 3.107 29 × 10−7 769.17
ode45 26125 4.6268 × 10−2 3.107 31 × 10−7 12.25 3.107 31 × 10−7 14.36

ode113 786 9.832 35 × 10−3 3.107 31 × 10−7 2.60 3.107 31 × 10−7 3.05

Table 4.14: Results for benchmark problem E4, ℎ = 0.7 s.
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Figure 4.14: 𝑂𝑅𝐷 function for benchmark problem E3, ℎ = 0.7 s.

4.1.14 Problem E4

The definition of problem E4 is in Appendix E.14. The numerical results are in Table 4.15.
The plot of the 𝑂𝑅𝐷 function with step size scaling factor ℎ𝑠𝑐𝑎𝑙𝑒 = 4 is in Figure 4.15.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 1.041 05 × 10−3 – – – –
MTSM opt 13 3.757 × 10−4 – – – –

ode23 9038 5.601 32 × 10−2 5.200 11 × 10−10 53.80 3.957 12 × 10−9 149.09
ode45 877 1.8017 × 10−3 5.212 04 × 10−10 1.73 3.955 93 × 10−9 4.8

ode113 90 1.474 75 × 10−3 5.206 93 × 10−10 1.42 3.956 44 × 10−9 3.93

Table 4.15: Results for benchmark problem E4, ℎ = 0.5 s.
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Figure 4.15: 𝑂𝑅𝐷 function for benchmark problem E4, ℎ = 0.7 s.
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4.1.15 Problem E5

Problem E5 is interesting because it contains operation division and square root. These
operations have to be removed using the automatic transformation defined in Section 3.4.
The problem is defined as

𝑦′
1 = 𝑦2 𝑦1(0) = 0

𝑦′
2 =

√
1 + 𝑦2𝑦2
25 − 𝑡

𝑦2(0) = 0.
(4.5)

The system (4.5) cannot be transformed into the matrix-vector notation as is, due to the
fact that it contains operation division 1

25−𝑡 and the square root
√

1 + 𝑦2𝑦2. Both of these
have to be removed by a system of auxiliary ODEs:

𝑦3 = 1/(25 − 𝑡) = (25 − 𝑡)−1

𝑦′
3 = −(25 − 𝑡)−2(−1) = 𝑦3𝑦3 𝑦3(0) = 1

25
𝑦4 = (1 + 𝑦2 * 𝑦2)

1
2

𝑦′
4 = 1

2(1 + 𝑦2𝑦2)
1
2 (2𝑦2𝑦′

2) = 𝑦−1
4 𝑦2𝑦′

2 𝑦4(0) =
√︁

1 + 𝑦2(0)2

𝑦5 = 1
𝑦4

= 𝑦−1
4

𝑦′
5 = −𝑦−2

4 𝑦′
4 = −𝑦2

5𝑦′
4 𝑦5(0) = 1

𝑦4(0) .

After substituting and simplifying, the system without operation division and square root
is in (4.6)

𝑦′
1 = 𝑦2 𝑦1(0) = 0

𝑦′
2 = 𝑦3𝑦4 𝑦2(0) = 0

𝑦′
3 = 𝑦3𝑦3 𝑦3(0) = 1

25
𝑦′

4 = 𝑦2𝑦3𝑦4𝑦5 𝑦4(0) =
√︁

1 + 𝑦2(0)2

𝑦′
5 = −𝑦2𝑦3𝑦4𝑦5𝑦5𝑦5 𝑦5(0) = 1

𝑦4(0) .

(4.6)

The system (4.6) is solvable using MTSM. However, the number of function multiplica-
tions it contains would make the solution very slow. Therefore, further optimizations are
needed

𝑦6 = 𝑦5𝑦5𝑦5 = 𝑦3
5

𝑦′
6 = 3𝑦2

5𝑦5 𝑦6(0) = 𝑦5(0)3

𝑦7 = 𝑦2
5

𝑦′
7 = 2𝑦5𝑦′

5 𝑦7(0) = 𝑦5(0)2

𝑦8 = 𝑦2𝑦3𝑦4

𝑦8 = 𝑦′
2𝑦3𝑦4 + 𝑦2𝑦′

3𝑦4 + 𝑦2𝑦3𝑦′
4 𝑦8(0) = 𝑦2(0)𝑦3(0)𝑦4(0)

92



𝑦9 = 𝑦3𝑦4

𝑦′
9 = 𝑦′

3𝑦4 + 𝑦3𝑦′
4 𝑦9(0) = 𝑦3(0)𝑦4(0)

𝑦10 = 𝑦3𝑦3

𝑦′
10 = 2𝑦3𝑦′

3 𝑦10(0) = 𝑦3(0)𝑦3(0)

𝑦11 = 𝑦2𝑦3

𝑦′
11 = 𝑦′

2𝑦3 + 𝑦2𝑦′
3 𝑦11(0) = 𝑦2(0)𝑦3(0) .

After substituting further and simplifying the resulting equations, the system (4.7) can be
written as:

𝑦′
1 = 𝑦2 𝑦1(0) = 0

𝑦′
2 = 𝑦9 𝑦2(0) = 0

𝑦′
3 = 𝑦10 𝑦3(0) = 1

25
𝑦′

4 = 𝑦5𝑦8 𝑦4(0) =
√︁

1 + 𝑦2(0)2

𝑦′
5 = −𝑦6𝑦8 𝑦5(0) = 1

𝑦4(0)
𝑦′

6 = −3𝑦6𝑦7𝑦8 𝑦6(0) = 𝑦5(0)3

𝑦′
7 = −2𝑦5𝑦6𝑦8 𝑦7(0) = 𝑦5(0)2

𝑦′
8 = 𝑦9𝑦9 + 𝑦3𝑦8 + 𝑦5𝑦8𝑦11 𝑦8(0) = 𝑦2(0)𝑦3(0)𝑦4(0)

𝑦′
9 = 𝑦4𝑦10 + 𝑦3𝑦5𝑦8 𝑦9(0) = 𝑦3(0)𝑦4(0)

𝑦′
10 = 2𝑦3𝑦10 𝑦10(0) = 𝑦3(0)𝑦3(0)

𝑦′
11 = 𝑦3𝑦9 + 𝑦2𝑦10 𝑦11(0) = 𝑦2(0)𝑦3(0) .

(4.7)

The matrix-vector notation for (4.7) is in Appendix E.15. The numerical results are in
Table 4.16. The plot of the 𝑂𝑅𝐷 function with step size scaling factor ℎ𝑠𝑐𝑎𝑙𝑒 = 8 is in
Figure 4.16.

MTSM orig MTSM opt
Solver # of steps Time of calculation [s] |𝑒𝑟𝑟𝑜𝑟| Ratio |𝑒𝑟𝑟𝑜𝑟| Ratio

MTSM orig 40 3.1188 × 10−3 – – – –
MTSM opt 19 1.7236 × 10−3 – – – –

ode23 31883 2.569 96 × 10−1 9.515 46 × 10−9 82.40 1.8429 × 10−7 149.1
ode45 2345 6.509 45 × 10−3 9.5217 × 10−9 2.09 1.842 97 × 10−7 3.78

ode113 130 2.624 45 × 10−3 9.511 18 × 10−9 0.84 1.842 86 × 10−7 1.52

Table 4.16: Results for benchmark problem E5, ℎ = 0.5 s.
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Figure 4.16: 𝑂𝑅𝐷 function for benchmark problem E4, ℎ = 0.5 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 8.

4.2 Padé approximation of transport delay
To approximate the delay in the system, the Padé approximation is widely used. This
example shows how this approximation can be solved using the presented method using the
approaches outlined above. The general form and derivation of the Padé approximation can
be found in [14]. The modelling of time-delay using the Padé approximation is discussed
in [33, 76].

The Padé approximation that replaces exponential function 𝑒−𝑠𝑇 can be used

𝑒−𝑠𝑇 ≈ 𝐸(−𝑠)
𝐸(𝑠) = 𝑦

𝑧
=
∑︀𝑛

𝑘=0
(2𝑛−𝑘)!
𝑘!(𝑛−𝑘)!(−𝑠𝑇 )𝑘∑︀𝑛

𝑘=0
(2𝑛−𝑘)!
𝑘!(𝑛−𝑘)!(𝑠𝑇 )𝑘

,

where 𝑇 is the required delay, 𝑠 is the Laplace transform operator, 𝑦 is the output – the
delayed signal, 𝑧 is the forcing function – the input signal and 𝑛 is the required order
of the approximation. As an example, consider the equations for 𝑘 = 5 (the fifth-order
approximation):

𝑘 = 0 (2 · 5 − 0)!
0!(5 − 0)! = 10!

5! = 30240

𝑘 = 1 (2 · 5 − 1)!
1!(5 − 1)! = 9!

4! = 15120

𝑘 = 2 (2 · 5 − 2)!
2!(5 − 2)! = 8!

2!3! = 3360

𝑘 = 3 (2 · 5 − 3)!
3!(5 − 3)! = 7!

3!2! = 420

𝑘 = 4 (2 · 5 − 4)!
4!(5 − 4)! = 6!

4! = 30

𝑘 = 5 (2 · 5 − 5)!
5!(5 − 5)! = 5!

5! = 1 .

(4.8)

Using the coefficients calculated in (4.8), the polynomials for 𝐸(−𝑠) and 𝐸(𝑠) have the
following form:

𝐸(𝑠) = 30240 + 15120𝑇𝑠 + 3360(𝑇𝑠)2 + 420(𝑇𝑠)3 + 30(𝑇𝑠)4 + 1(𝑇𝑠)5

𝐸(−𝑠) = 30240 − 15120𝑇𝑠 + 3360(𝑇𝑠)2 − 420(𝑇𝑠)3 + 30(𝑇𝑠)4 − 1(𝑇𝑠)5 .
(4.9)
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The polynomial can be rewritten as

𝑦

𝑧
= 𝐸(−𝑠)

𝐸(𝑠) = 30240 − 15120𝑇𝑠 + 3360𝑇 2𝑠2 − 420𝑇 3𝑠3 + 30𝑇 4𝑠4 − 𝑇 5𝑠5

30240 + 15120𝑇𝑠 + 3360𝑇 2𝑠2 + 420𝑇 3𝑠3 + 30𝑇 4𝑠4 + 𝑇 5𝑠5 . (4.10)

The ODE (4.10) has to be transformed into the equivalent system of first-order ODEs using
the previously introduced methods:

• Method of Derivative Order Reduction with Additional Variable – MDORAV (Sub-
section 2.6.2) or

• Method of Successive Integration – MSI (Subsection 2.6.3).

In Section 2.6, it was shown that both of the methods produce equivalent results. It
might therefore seem arbitrary which method is used, but it might not be as simple, when
considering the higher-order approximations. There might be other differences for the
higher orders that are not immediately obvious. In the following examples, consider the
forcing function 𝑧 = sin(𝑡).

4.2.1 Method of Derivative Order Reduction with Additional Variable

Simplifying (4.10), we get

𝑦 = 𝑧
30240 − 15120𝑇𝑠 + 3360𝑇 2𝑠2 − 420𝑇 3𝑠3 + 30𝑇 4𝑠4 − 𝑇 5𝑠5

30240 + 15120𝑇𝑠 + 3360𝑇 2𝑠2 + 420𝑇 3𝑠3 + 30𝑇 4𝑠4 + 𝑇 5𝑠5 , (4.11)

so that the equation for the additional variable becomes

𝑣 = 𝑧

30240 + 15120𝑇𝑠 + 3360𝑇 2𝑠2 + 420𝑇 3𝑠3 + 30𝑇 4𝑠4 + 𝑇 5𝑠5

and the equation for the output 𝑦 using the additional variable 𝑣:

𝑦 = 30240𝑣 − 15120𝑇𝑠𝑣 + 3360𝑇 2𝑠2𝑣 − 420𝑇 3𝑠3𝑣 + 30𝑇 4𝑠4𝑣 − 𝑇 5𝑠5𝑣 . (4.12)

The ODE for the output of the system contains the derivatives of the additional variable 𝑣.
However, it does not contain a derivative of the forcing function. The Method of Derivative
Order Reduction (Subsection 2.6.1) can therefore be used. For 𝑧 = sin(𝑡), the resulting
system of linear ODEs can be written as

𝑠5𝑣 = 𝑧

𝑇 5 − 30𝑠4𝑣

𝑇
− 420𝑠3𝑣

𝑇 2 − 3360𝑠2𝑣

𝑇 3 − 15120𝑠𝑣

𝑇 4 − 30240𝑣

𝑇 5

𝑠4𝑣 = 1
𝑠

𝑠5𝑣 = 1
𝑠

( 𝑧

𝑇 5 − 30𝑠4𝑣

𝑇
− 420𝑠3𝑣

𝑇 2 − 3360𝑠2𝑣

𝑇 3 − 15120𝑠𝑣

𝑇 4 − 30240𝑣

𝑇 5 )

𝑠3𝑣 = 1
𝑠

𝑠4𝑣

𝑠2𝑣 = 1
𝑠

𝑠3𝑣

𝑠𝑣 = 1
𝑠

𝑠2𝑣

𝑣 = 1
𝑠

𝑠𝑣

(4.13)
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with all initial conditions equal to zero. The equation of the output is solved separately
using addition with no additional integration required. The block scheme is in Figure 4.17.

Figure 4.17: The block scheme for the delay modelled using the MDORAV method.

The forcing function 𝑧 can either

• be generated using auxiliary ODEs in the form 𝑦′ = 𝐴𝑦+𝑏, for example for 𝑧 = sin(𝑡)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−30
𝑇 −420

𝑇 2 −3360
𝑇 3 −15120

𝑇 4 −30240
𝑇 5

1
𝑇 5 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠4𝑣(0)
𝑠3𝑣(0)
𝑠2𝑣(0)
𝑠𝑣(0)
𝑣(0)
𝑧(0)
𝑎(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.14)

• be supplied to the system 𝑦′ = 𝐴𝑦 + 𝑏 from the outside

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
−30

𝑇 −420
𝑇 2 −3360

𝑇 3 −15120
𝑇 4 −30240

𝑇 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ 𝑏(𝑡) =

⎛⎜⎜⎜⎜⎜⎝
1

𝑇 5 𝑧(𝑡)
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ 𝑦0 =

⎛⎜⎜⎜⎜⎜⎝
𝑠4𝑣(0)
𝑠3𝑣(0)
𝑠2𝑣(0)
𝑠𝑣(0)
𝑣(0)

⎞⎟⎟⎟⎟⎟⎠ . (4.15)

Note that in this case, the higher derivative of the forcing function cannot be directly
calculated.

4.2.2 Method of Successive Integration

First, the (4.10) has to be simplified

𝑇 5𝑠5𝑦 + 30𝑇 4𝑠4𝑦 + 420𝑇 3𝑠3𝑦 + 3360𝑇 2𝑠2𝑦 + 15120𝑇𝑠𝑦 + 30240𝑦 =
= −𝑇 5𝑠5𝑧 + 30𝑇 4𝑠4𝑧 − 420𝑇 3𝑠3𝑧 + 3360𝑇 2𝑠2𝑧 − 15120𝑇𝑠𝑧 + 30240𝑧 .
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The highest derivative of the output function 𝑦 has to be on the left side alone, so after
further simplification

𝑇 5𝑠5𝑦 = −𝑇 5𝑠5𝑧 + 30𝑇 4𝑠4𝑧 − 30𝑇 4𝑠4𝑦 − 420𝑇 3𝑠3𝑧 − 420𝑇 3𝑠3𝑦 + 3360𝑇 2𝑠2𝑧 − 3360𝑇 2𝑠2𝑦−
− 15120𝑇𝑠𝑧 − 15120𝑇𝑠𝑦 + 30240𝑧 − 30240𝑦

𝑠5𝑦 = −𝑠5𝑧 + 30
𝑇

𝑠4𝑧 − 30
𝑇

𝑠4𝑦 − 420
𝑇 2 𝑠3𝑧 − 420

𝑇 2 𝑠3𝑦 + 3360
𝑇 3 𝑠2𝑧 − 3360

𝑇 3 𝑠2𝑦−

− 15120
𝑇 4 𝑠𝑧 − 15120

𝑇 4 𝑠𝑦 + 30240
𝑇 5 𝑧 − 30240

𝑇 5 𝑦

𝑠5𝑦 = −𝑠5𝑧 + 30
𝑇

𝑠4(𝑧 − 𝑦) + 420
𝑇 2 𝑠3(−𝑧 − 𝑦) + 3360

𝑇 3 𝑠2(𝑧 − 𝑦) + 15120
𝑇 4 𝑠(−𝑧 − 𝑦)+

+ 30240
𝑇 5 (𝑧 − 𝑦) .

Now, the derivative can be decreased by multiplying the entire equation by 1
𝑠 :

𝑠4𝑦 = −𝑠4𝑧 + 30
𝑇

𝑠3(𝑧 − 𝑦) + 420
𝑇 2 𝑠2(−𝑧 − 𝑦) + 3360

𝑇 3 𝑠(𝑧 − 𝑦) + 15120
𝑇 4 (−𝑧 − 𝑦) + 1

𝑠

(︂30240
𝑇 5 (𝑧 − 𝑦)

)︂
𝑠3𝑦 = −𝑠3𝑧 + 30

𝑇
𝑠2(𝑧 − 𝑦) + 420

𝑇 2 𝑠(−𝑧 − 𝑦) + 3360
𝑇 3 (𝑧 − 𝑦) + 1

𝑠

(︂15120
𝑇 4 (−𝑧 − 𝑦) + 𝑣1

)︂
𝑠2𝑦 = −𝑠2𝑧 + 30

𝑇
𝑠(𝑧 − 𝑦) + 420

𝑇 2 (−𝑧 − 𝑦) + 1
𝑠

(︂3360
𝑇 3 (𝑧 − 𝑦) + 𝑣2

)︂
𝑠𝑦 = −𝑠𝑧 + 30

𝑇
(𝑧 − 𝑦) + 1

𝑠

(︂420
𝑇 2 (−𝑧 − 𝑦) + 𝑣3

)︂
𝑦 = −𝑧 + 1

𝑠

(︂30
𝑇

(𝑧 − 𝑦) + 𝑣4

)︂
= −𝑧 + 𝑣5 .

(4.16)

After simplifying the system (4.16), the system of ODEs that are solved can be written as:

𝑦 = −𝑧 + 𝑣5

𝑣′
5 = 30

𝑇
(𝑧 − 𝑦) + 𝑣4

𝑣′
4 = 420

𝑇 2 (−𝑧 − 𝑦) + 𝑣3

𝑣′
3 = 3360

𝑇 3 (𝑧 − 𝑦) + 𝑣2

𝑣′
2 = 15120

𝑇 4 (−𝑧 − 𝑦) + 𝑣1

𝑣′
1 = 30240

𝑇 5 (𝑧 − 𝑦) .

(4.17)
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The block scheme is in Figure 4.18.

Figure 4.18: The block scheme for the delay modelled using the MSI method.

The system (4.17) directly represents the block scheme in Figure 4.18. It is not however
directly usable for calculation using matrix-vector approach. The output equation (𝑦) has
to be substituted into the others. The resulting system therefore depends only on the input
(forcing) function

𝑣′
5 = 30

𝑇
(𝑧 + 𝑧 − 𝑣5) + 𝑣4 = 30

𝑇
(2𝑧 − 𝑣5) + 𝑣4

𝑣′
4 = 420

𝑇 2 (−𝑧 + 𝑧 − 𝑣5) + 𝑣3 = 420
𝑇 2 (−𝑣5) + 𝑣3

𝑣′
3 = 3360

𝑇 3 (𝑧 + 𝑧 − 𝑣5) + 𝑣2 = 3360
𝑇 3 (2𝑧 − 𝑣5) + 𝑣2

𝑣′
2 = 15120

𝑇 4 (−𝑧 + 𝑧 − 𝑣5) + 𝑣1 = 15120
𝑇 4 (−𝑣5) + 𝑣1

𝑣′
1 = 30240

𝑇 5 (𝑧 + 𝑧 − 𝑣5) = 30240
𝑇 5 (2𝑧 − 𝑣5) .

(4.18)

The resulting system (4.18) is linear in the general form 𝑦′ = 𝐴𝑦 + 𝑏. The forcing function
𝑧 can either

• be generated using auxiliary ODEs, for example for 𝑧 = sin(𝑡)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−30
𝑇 1 0 0 0 230

𝑇 0
−420

𝑇 2 0 1 0 0 0 0
−3360

𝑇 3 0 0 1 0 23360
𝑇 3 0

−15120
𝑇 4 0 0 0 1 0 0

−30240
𝑇 5 0 0 0 0 30240

𝑇 5 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣5(0)
𝑣4(0)
𝑣3(0)
𝑣2(0)
𝑣1(0)
𝑧(0)
𝑎(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.19)
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• be supplied to the system from the outside

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
−30

𝑇 1 0 0 0
−420

𝑇 2 0 1 0 0
−3360

𝑇 3 0 0 1 0
−15120

𝑇 4 0 0 0 1
−30240

𝑇 5 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ 𝑏(𝑡) =

⎛⎜⎜⎜⎜⎜⎝
230

𝑇 𝑧(𝑡)
0

23360
𝑇 3 𝑧(𝑡)

0
230240

𝑇 5 𝑧(𝑡)

⎞⎟⎟⎟⎟⎟⎠ 𝑦0 =

⎛⎜⎜⎜⎜⎜⎝
𝑣5(0)
𝑣4(0)
𝑣3(0)
𝑣2(0)
𝑣1(0)

⎞⎟⎟⎟⎟⎟⎠ . (4.20)

Note that in this case, the higher derivative of the forcing function cannot be directly
calculated.

4.2.3 Numerical results

Numerically, the equations generated using both methods (MDORAV and MSI) produce
equivalent results (see Section 2.6). In all of the following experiments 𝑧 = sin(𝑡) is al-
ways going to be used as the forcing function. The required delay is going to be set to
𝑇 = 𝜋

2 s. Maximum time of calculation 𝑡𝑚𝑎𝑥 = 2𝜋 s, step size ℎ = 𝑡𝑚𝑎𝑥
100 s and accuracy of

the calculation 𝑇𝑂𝐿 = 1 × 10−9. The values in the column labelled |𝑒𝑟𝑟𝑜𝑟| are calculated
as |𝑦𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑(𝑇 ) − sin(𝑙 − 𝑇 )|, where 𝑙 is the last value of vector of integration times used
by the numerical method. The order of approximation is set to five (𝑘 = 5). The results
for additional orders of approximation are in Appendix B.

First, consider MDORAV with generated auxiliary equations (4.14). The plots of the
input and the delayed function are in Figure 4.19, plot of the 𝑂𝑅𝐷 function is in Figure 4.20.
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Figure 4.19: Delay of 𝑧 = sin(𝑡) using the MDORAV method.
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Figure 4.20: Plot of the 𝑂𝑅𝐷 function for 𝑧 = sin(𝑡) using the MDORAV method.

The results for this experiment are in Table 4.17. The MTSM beats the state-of-the-art
methods and performs the smallest number of steps.

Solver Time of calculation [s] Ratio Number of steps |𝑒𝑟𝑟𝑜𝑟|

MTSM 1.3009 × 10−3 – 100 2.305 66 × 10−8

ode23 1.1001 × 10−2 8.46 2089 1.585 61 × 10−8

ode45 1.3756 × 10−3 1.06 521 2.236 28 × 10−8

ode113 2.2932 × 10−3 1.76 115 1.700 88 × 10−8

Table 4.17: The numerical results for the Padé approximation using MDORAV method for
𝑧 = sin(𝑡).

Next, the forcing function is going to be supplied from the outside of the system (there-
fore right-hand side vector changes in every integration step), as defined by (4.15). The
plots of the input and the delayed function are in Figure 4.21, the plot of 𝑂𝑅𝐷 function is
in Figure 4.22.
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Figure 4.21: Delay of 𝑧 = sin(𝑡) being supplied from the outside of the system using the
MDORAV method.
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Figure 4.22: Plot of the 𝑂𝑅𝐷 function for 𝑧 = sin(𝑡) being supplied from the outside of
the system using the MDORAV method.

The results for this experiment are in Table 4.18. Because MTSM can only work with the
supplied value of the forcing function, which is constant for every step, higher derivatives
cannot be calculated directly. Therefore the required accuracy cannot be achieved using
the outside forcing function. The method uses just one Taylor series term.

Solver Time of calculation [s] Ratio Number of steps |𝑒𝑟𝑟𝑜𝑟|

MTSM 2.2486 × 10−3 – 100 0.0196986
ode23 9.6258 × 10−3 4.29 547 9.916 53 × 10−7

ode45 7.4261 × 10−3 3.3 805 3.388 62 × 10−8

ode113 1.683 24 × 10−2 7.49 119 5.470 37 × 10−7

Table 4.18: The numerical results for the Padé approximation using MDORAV method,
when 𝑧 is being supplied from the outside of the system.

For the MSI, the expectation is that the results would be similar. First, for the system
(4.19), plots of the input and the delayed function are in Figure 4.23, the plot of the 𝑂𝑅𝐷
function is in Figure 4.24.
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(b) Delay calculated using ode45 solver.

Figure 4.23: Delay of 𝑧 = sin(𝑡) using the MSI method.
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Figure 4.24: Plot of the 𝑂𝑅𝐷 function for 𝑧 = sin(𝑡) using the MSI method.

The results for this experiment are in Table 4.19. The mean value of the 𝑂𝑅𝐷 function is
11.49. The MTSM is again faster than the state-of-the-art methods by a wide margin.

Solver Time of calculation [s] Ratio Number of steps |𝑒𝑟𝑟𝑜𝑟|

MTSM 1.5426 × 10−3 – 100 2.305 67 × 10−8

ode23 3.4744 × 10−2 22.52 5249 2.1039 × 10−8

ode45 3.5241 × 10−3 2.28 1233 2.289 07 × 10−8

ode113 3.0408 × 10−3 1.97 202 2.295 63 × 10−8

Table 4.19: The numerical results for the Padé approximation using MSI method.

The final experiment is with system (4.20). The plots of the input and the delayed
function are in Figure 4.25 and the plot of the 𝑂𝑅𝐷 function is in Figure 4.26.
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(b) Delay calculated using ode45 solver.

Figure 4.25: Delay of 𝑧 = sin(𝑡) using the MSI method using the Padé approximation when
𝑧 is supplied from the outside of the system.
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Figure 4.26: Plot of the 𝑂𝑅𝐷 function for 𝑧 = sin(𝑡) using the MSI method using the Padé
approximation when 𝑧 is supplied from the outside of the system.

The results for this experiment are in Table 4.20. The mean value of the 𝑂𝑅𝐷 function is
between 13 and 14. The MTSM is again faster than the state-of-the-art methods by a wide
margin. Because MTSM can only work with the supplied value of the forcing function,
which is constant for every step, higher derivatives cannot be calculated, and the method
just uses one Taylor series term, as with the MDORAV example.

Solver Time of calculation [s] Ratio Number of steps Error
MTSM 2.4124 × 10−3 – 100 1.969 86 × 10−2

ode23 4.802 74 × 10−2 19.91 5325 2.457 36 × 10−8

ode45 9.6089 × 10−3 3.98 3005 2.291 49 × 10−8

ode113 3.994 × 10−3 1.66 203 2.310 85 × 10−8

Table 4.20: The numerical results for the Padé approximation using MSI method, when 𝑧
is being supplied from the outside of the system.

4.2.4 Concluding remarks

The results of experiments with Padé approximation are interesting and show the inherent
limitations of the MTSM. When the system cannot be modelled entirely and without higher
derivatives of the forcing function, the method cannot achieve the required precision. When
applying the method in a real-world setting (in the context of this thesis, control of the
systems in real-time), this shortcoming has to be taken into consideration, and it has to be
worked around or addressed.

As for the experiments with the different transformation methods, MSI method pro-
duces much simpler block scheme representation of the system (for higher orders of the
approximation, it becomes even more apparent). The number of integrators remains the
same for both methods.
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4.3 Movement of a charged particle
This experiment was published in [78]. Movement of a charged particle in an electromag-
netic and electrostatic field is given by Lorenz (electromagnetic) force [65], [45]

𝑓 = 𝑞(𝑒 + 𝑣𝑏), (4.21)

where 𝑒 = (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)𝑇 is the electric field, 𝑏 = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧)𝑇 is the magnetic field and vector
𝑣 is instantaneous velocity of the charged particle with charge 𝑞. The force vector 𝑓 can
be substituted as 𝑚𝑎,

𝑚𝑎 = 𝑞(𝑒 + 𝑣𝑏) . (4.22)
We can further suppose that acceleration 𝑥, 𝑦 and 𝑧 axis 𝑎 = (𝑥′′, 𝑦′′, 𝑧′′)𝑇 can be calculated
as

𝑥′′ = 𝑞

𝑚

(︀
𝑒𝑥 + 𝑦′𝑏𝑧 − 𝑧′𝑏𝑦

)︀
,

𝑦′′ = 𝑞

𝑚

(︀
𝑒𝑦 + 𝑧′𝑏𝑥 − 𝑥′𝑏𝑧

)︀
,

𝑧′′ = 𝑞

𝑚

(︀
𝑒𝑧 + 𝑥′𝑏𝑦 − 𝑦′𝑏𝑥

)︀
.

(4.23)

The speed of the particle can be represented by the vector 𝑣 = (𝑥′, 𝑦′, 𝑧′)𝑇 . By sub-
stituting 𝑦 = (𝑥′, 𝑦′, 𝑧′, 𝑥, 𝑦, 𝑧)𝑇 , the problem can be transformed into a system of linear
ODEs in a matrix-vector representation (3.3)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑞
𝑚𝑏𝑧 − 𝑞

𝑚𝑏𝑦 0 0 0
− 𝑞

𝑚𝑏𝑧 0 𝑞
𝑚𝑏𝑥 0 0 0

𝑞
𝑚𝑏𝑦 − 𝑞

𝑚𝑏𝑥 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.24)

where initial conditions are 𝑦0 =
(︀
−8 · 107, 0, 0, 0, 0, 0

)︀𝑇 . Constants are set to 𝑚 = 9.109 383 56×
10−31 kg, 𝑞 = −1.6 × 10−19 C, 𝑏𝑥 = 𝑏𝑦 = 0, 𝑏𝑧 = 5 × 10−1 T and 𝑒𝑥 = 𝑒𝑦 = 𝑒𝑧 = 0 T. Fur-
ther, the right-hand side 𝑏 = ( 𝑞

𝑚𝑒𝑥, 𝑞
𝑚𝑒𝑦, 𝑞

𝑚𝑒𝑧, 0, 0, 0)𝑇 = 0. The behaviour of the electron
is in Figure 4.27.
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(b) Trajectory of the charged particle.

Figure 4.27: Behaviour of the charged particle.
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Results of simulations using IVP (4.24) for the given parameters of the electromagnetic
and electrostatic fields and time of simulation 𝑡𝑚𝑎𝑥 = 1 × 10−8 s are in Table 4.21. MTSM
(with the step size ℎ = 1 × 10−10 s) calculates the problem faster than the state-of-the-art
MATLAB ode solvers. The order of the method is 𝑂𝑅𝐷 = 51 ± 1.

Solver Time of calculation [s] Ratio Number of steps
MTSM 4.772 85 × 10−3 – 100
ode23 193.097 10826.2 2235540
ode45 4.83689 2712.2 213925
ode113 7.8659 × 10−1 44.1 9446

Table 4.21: Results of calculations for movement of a charged particle.

4.4 Telegraph line
Another linear problem, analysed very thoroughly in our research group, is the travel of a
signal through a telegraph line. This problem was presented at several conferences (parallel
solution in [60] for example) and in journal publications ([81], [58] for example).

Voltage and current change along the telegraph line continuously in time, and they can
be expressed using equations

𝑢 = 𝑢(𝑥, 𝑡), (4.25)
𝑖 = 𝑖(𝑥, 𝑡), (4.26)

where 𝑥 is a distance from the beginning of the line and 𝑡 is the time. Voltage and current
in the distance 𝑥 + d𝑥 can be expressed as

𝑢(𝑥 + d𝑥) = 𝑢(𝑥, 𝑡) + 𝜕𝑢

𝜕𝑥
d𝑥, (4.27)

𝑖(𝑥 + d𝑥) = 𝑖(𝑥, 𝑡) + 𝜕𝑖

𝜕𝑥
d𝑥 . (4.28)

Basic Line Equations (4.29), (4.30) describe the change of voltage and current on the line

−𝜕𝑢

𝜕𝑥
= 𝑅𝑖 + 𝐿

𝜕𝑖

𝜕𝑡
, (4.29)

− 𝜕𝑖

𝜕𝑥
= 𝐺𝑢 + 𝐶

𝜕𝑢

𝜕𝑡
, (4.30)

where the following constants are the parameters of the line:

• 𝑅 is the resistance of the wire,

• 𝐺 is the conductance between wires,

• 𝐿 is the inductance of the wire (e.g. due to the magnetic field around the wires) and

• 𝐶 is the capacitance between two wires.

Using (4.29) and (4.30) it is possible to construct a model of the segment (Figure 4.28).
The entire line is comprised of a series of infinite number of connected segments. The line
chained using this model is lossy.
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L(x)

i(x)

R(x) i(x+ dx)

G(x)C(x)u(x) u(x+ dx)

Figure 4.28: Modelling a segment of the telegraph line – complex model.

The model in Figure 4.28 can be simplified by removing the terms 𝑅(𝑥) and 𝐺(𝑥). The
simplified model is in Figure 4.29. The line then becomes lossless.

L(x)

i(x)

i(x+ dx)

C(x)u(x) u(x+ dx)

Figure 4.29: Modelling a segment of the wire – simplified model.

Based on the simplified model in Figure 4.29, partial differential equations for voltage and
current can be derived

𝐿 · 𝐶
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2 − 𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 = 0, (4.31)

𝐿 · 𝐶
𝜕2𝑖(𝑥, 𝑡)

𝜕𝑡2 − 𝜕2𝑖(𝑥, 𝑡)
𝜕𝑥2 = 0. (4.32)

The equations (4.31) and (4.32) can be solved analytically using, for example, the method of
Separation of Variables. However, the solution of large systems of PDEs is very complicated.
It can, however, be solved numerically. By chaining the segments in Figure 4.29, the lossless
model of the line can be constructed, with the number of segments denoted as 𝑆. The model
is in Figure 4.30.

u0

R1 L1i1

C1uC1

Segment 1

i2 iS−1

CS−1uCS−1

LSiS

CSuCS

Segment S

iS+1

R2

Figure 4.30: Model of the line – chain of 𝑆 segments.
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The model can be described by a system of first-order ODEs. For the first segment

𝑢′
𝐶1 = 1

𝐶1
(𝑖1 − 𝑖2)

𝑖
′
1 = 1

𝐿1
(𝑢0 − 𝑢𝐶1 − 𝑅1 · 𝑖1) ,

(4.33)

where 𝑢0 is the input voltage of the system, 𝑢𝐶1 is the voltage on the first capacitor and 𝑖1
is the current that flows through the first inductor. Resistor 𝑅1 represents the input load of
the transmission line. Equations for the following segments are very similar to one another.
For the second segment

𝑢
′
𝐶2 = 1

𝐶2
(𝑖2 − 𝑖3)

𝑖
′
2 = 1

𝐿2
(𝑢𝐶1 − 𝑢𝐶2) ,

(4.34)

for the next segments

𝑢
′
𝐶𝑘

= 1
𝐶𝑘

(𝑖𝑘 − 𝑖𝑘+1)

𝑖
′
𝑘 = 1

𝐿𝑘
(𝑢𝐶𝑘−1 − 𝑢𝐶𝑘

),
(4.35)

where 𝑘 ∈ ⟨3, 𝑆⟩. The last segment of the line ends with an output load, simulated by the
resistor 𝑅2

𝑖𝑆+1 = 1
𝑅2

𝑢𝐶𝑆
. (4.36)

Note that all differential equations have initial conditions equal to zero. The input voltage
𝑢0 can be either a constant (DC circuit) or harmonic (AC circuit) signal. For the DC
circuit, the input voltage 𝑢0 is hidden in constant right-hand side vector 𝑏, see (4.38). For
the AC circuit, the input voltage 𝑢0 = 𝑈0 sin(𝜔𝑡) can be calculated using auxiliary system
or linear ODEs

𝑢′
0 = 𝜔𝑥 𝑢0(0) = 0

𝑥′ = −𝜔𝑢0 𝑥(0) = 𝑈0 .
(4.37)

The problem can be described using the matrix-vector representation

𝐴 =
(︃
𝐴11 𝐴12
𝐴21 𝐴22

)︃
, 𝑦 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝐶1
...

𝑢𝐶𝑆

𝑖1
...

𝑖𝑆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
𝑢0
𝐿1...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.38)
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where 𝐴11, 𝐴12, 𝐴21 and 𝐴22 are individual block matrices with size 𝑆 × 𝑆:

𝐴11 =

⎛⎜⎜⎝
0 0 · · · 0
...

...
...

...
0 0 · · · −1

𝑅2𝐶𝑆

⎞⎟⎟⎠ 𝐴12 =

⎛⎜⎜⎜⎜⎜⎝
1

𝐶1
−1
𝐶1

0 · · · · · · 0

0 1
𝐶2

−1
𝐶2

0 · · ·
...

...
...

...
...

...
...

0 · · · · · · · · · · · · 1
𝐶𝑆

⎞⎟⎟⎟⎟⎟⎠

𝐴21 =

⎛⎜⎜⎜⎜⎜⎝
−1
𝐿1

0 0 · · · · · · 0
1

𝐿2
−1
𝐿2

0 0 · · ·
...

0 1
𝐿3

−1
𝐿3

0 · · ·
...

0 · · · · · · · · · 1
𝐿𝑆

−1
𝐿𝑆

⎞⎟⎟⎟⎟⎟⎠ 𝐴22 =

⎛⎜⎜⎝
−𝑅1
𝐿1

0 · · · 0
...

...
...

...
0 0 · · · 0

⎞⎟⎟⎠ .

(4.39)

The behaviour of the transmission on the line is based on the values of the input (𝑅1)
and the output (𝑅2) loads. If the condition

𝑅1 = 𝑅2 =
√︁

𝐿/𝐶 (4.40)

holds, the line is adjusted, and a signal on the line is transmitted without change. For the
simulation experiments, the line is adjusted for 𝑅1 = 𝑅2 = 100 Ω.

The propagation constant per unit length of one segment for the used model can be
calculated as 𝑡𝐿𝐶 =

√
𝐿𝐶. The total delay of the input signal can be calculated as

𝑡𝑑𝑒𝑙𝑎𝑦 = 𝑆 · 𝑡𝐿𝐶 . The simulation time for all experiments was set 𝑡𝑚𝑎𝑥 = 2𝑡𝑑𝑒𝑙𝑎𝑦, toler-
ances for all solvers were set to 10−7. For 𝑆 = 100 and used 𝐿 and 𝐶, the output signal is
delayed by 100 ·

√
10−8 · 10−12 = 1 × 10−8 s. The behaviour of the signal for the harmonic

input and the impulse input on the line comprised of 𝑆 = 100 segments is in Figure 4.31.
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Figure 4.31: Adjusted line – output just delayed.

The next experiment was done for the not adjusted line. The cut line can be simulated
by setting the parameters 𝑅1 = 100 Ω, 𝑅2 = 1 × 1012 Ω. The behaviour of such telegraph
line with 𝑆 = 100 segments is in Figure 4.32.
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(b) Impulse input.

Figure 4.32: Not adjusted line – output delayed and amplified.

Notice that in Figure 4.32b, the input signal is amplified at the output and bounced
back to the input. This can be useful to determine where the line is cut.

For the simulation experiments, the capacitances and inductances are set to the same
values: 𝐶1 = 𝐶2 = · · · = 𝐶𝑆 = 1 pF and 𝐿1 = 𝐿2 = · · · = 𝐿𝑆 = 10 nH (homogeneous
lossless telegraph line), MTSM uses the integration step size ℎ = 5 × 10−10 s. Table 4.22
shows the numerical results for the harmonic input.

Adjusted line 𝑅1 = 𝑅2 = 100 Ω Not adjusted line 𝑅1 = 100 Ω, 𝑅2 = 1 × 1012 Ω
ode23 ode45 ode113 MTSM ode23 ode45 ode113 MTSM

𝑆 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s] 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s]
200 29.5 12.1 9.7 3.5 × 10−2 28.6 10.8 9.4 3.5 × 10−2

600 17.3 9.3 6.5 2.11 × 10−1 18.2 9.4 6.5 2.1 × 10−1

1000 10.3 5.1 2.8 8.95 × 10−1 10.3 4.7 2.8 8.92 × 10−1

Table 4.22: MATLAB time of solutions for harmonic input: MTSM with fixed integration
time step ℎ = 5 × 10−10 s.

Table 4.23 show the results for impulse input.

Adjusted line 𝑅1 = 𝑅2 = 100 Ω Not adjusted line 𝑅1 = 100 Ω, 𝑅2 = 1 × 1012 Ω
ode23 ode45 ode113 MTSM ode23 ode45 ode113 MTSM

𝑆 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s] 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s]
200 28.1 11.6 9.3 3.6 × 10−2 30.3 11.7 9.3 3.6 × 10−2

600 16.5 9.3 6.4 2.14 × 10−1 17.6 9.5 6.4 2.13 × 10−1

1000 8.7 4.5 2.9 9.07 × 10−1 9.6 4.7 3.0 9.07 × 10−1

Table 4.23: MATLAB time of solutions for impulse input: MTSM with fixed integration
time step ℎ = 5 × 10−10 s.

Both experiments show that the method is noticeably faster than the state-of-the-art
numerical methods. The method calculates the presented linear problems faster with similar
or better accuracy, which is beneficial in real-time context as discussed in Chapter 2.
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4.5 Coefficients of the Fourier series
The previous examples showed the behaviour of MTSM when solving real-world linear
problems. The following two problems are going to show its behaviour while calculating
the non-linear systems. The first non-linear example is the calculation of the coefficients of
the Fourier series. This problem was published in [78].

A Fourier series is the limit of the sequence of trigonometric polynomials that have
a cosine part and a sine part. They are mainly used in the study of phenomena with a
periodic character. The advantage of the Fourier series is that the requirements for its
convergence to the developed function are weaker than in the case of the Taylor series. For
example, the existence of derivatives of all orders of a given function at a given point is not
required. The calculation of coefficients can be (especially when using numerical methods)
easier than for the Taylor series. Any periodic function 𝑓(𝑡) can be written as a sum of
harmonics (4.41) called the Fourier series

𝑓(𝑡) = 𝑎0
2 + 𝑎1 cos(𝜔𝑡) + 𝑎2 cos(2𝜔𝑡) + · · · + 𝑏1 sin(𝜔𝑡) + 𝑏2 sin(2𝜔𝑡) + · · · . (4.41)

The coefficients can be calculated using definite integrals

𝑎0 = 2
𝑇

∫︁ 𝑇

0
𝑓(𝑡) d𝑡, (4.42)

𝑎𝑘 = 2
𝑇

∫︁ 𝑇

0
𝑓(𝑡) cos(𝑘𝜔𝑡) d𝑡, 𝑘 = 1, 2, 3, . . . , 𝑛 , (4.43)

𝑏𝑘 = 2
𝑇

∫︁ 𝑇

0
𝑓(𝑡) sin(𝑘𝜔𝑡) d𝑡, 𝑘 = 1, 2, 3, . . . , 𝑛 , (4.44)

where 𝑇 is the period of the function 𝑓(𝑡). The definite integral

𝑌 =
∫︁ 𝑇

0
𝑓(𝑥) d𝑥 (4.45)

can be transformed into the IVP

𝑦′ = 𝑓(𝑥) 𝑦(0) = 0 , (4.46)

where 𝑦(𝑇 ) = 𝑌 and 𝑇 denotes the maximum time of calculation 𝑡 ∈ (0, 𝑇 ). More details
about transformation and numerical solution of definite integrals using MTSM can be found
in [20]. For example, the analytical calculation of coefficient 𝐴2 using the definite integral

𝐴2 = 2
𝑇

∫︁ 𝑇

0
𝑓(𝑡) cos(2𝜔𝑡) d𝑡 (4.47)

can be transformed into the initial value problem

𝑎′
2 = 2

𝑇
𝑓(𝑡) cos(2𝜔𝑡), 𝑎2(0) = 0 . (4.48)

The solution of the IVP (4.48) at the maximum time 𝑇 represents the calculated value
of the definite integral (4.47) (𝐴2 ≈ 𝑎2(𝑇 )). As an example, consider a simple harmonic
function

𝑓(𝑡) = sin2(𝜔𝑡) (4.49)
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with parameters 𝜔 = 2𝜋
𝑇 rad·s−1, 𝑇 = 2 s. The coefficients of the Fourier series for (4.49)

that are given by
sin2(𝜔𝑡) = 𝑎0

2 + 𝑎2 cos(2𝜔𝑡) (4.50)

can be calculated analytically as

sin2(𝜔𝑡) = 1
2 − 1

2 cos(2𝜔𝑡) (4.51)

where 𝐴0 = 1 and 𝐴2 = −1
2 . The coefficients can be calculated numerically using the

following system of ODEs

𝑎′
0 = 𝑓(𝑡) 𝑎0(0) = 0

𝑎′
2 = 2

𝑇
𝑓(𝑡) cos(2𝜔𝑡) 𝑎2(0) = 0 .

(4.52)

The solution of the IVP in 𝑡 ∈ (0, 𝑇 ), where 𝑇 = 2 s is in Figure 4.33. The final values
of functions 𝑎0(𝑡) and 𝑎2(𝑡) show the calculated values of Fourier coefficients 𝑎0(𝑇 ) = 1,
𝑎2(𝑇 ) = −0.5.
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Figure 4.33: Fourier coefficients of 𝑓(𝑡) = sin2(𝜔𝑡).

The (4.52) can be transformed into different autonomous systems with auxiliary gener-
ating equations. The first substitution 𝑦 = (𝑎0, 𝑎2, sin(𝜔𝑡), cos(𝜔𝑡), sin(2𝜔𝑡), cos(2𝜔𝑡))𝑇

leads to the following non-linear system of ODEs

𝑦′
1 = 𝑦2

3 𝑦1(0) = 0

𝑦′
2 = 2

𝑇
𝑦2

3𝑦6 𝑦2(0) = 0

𝑦′
3 = 𝜔𝑦4 𝑦3(0) = 0

𝑦′
4 = −𝜔𝑦3 𝑦4(0) = 1

𝑦′
5 = 2𝜔𝑦6 𝑦5(0) = 0

𝑦′
6 = −2𝜔𝑦5 𝑦6(0) = 1 .

(4.53)

The more effective way of solving (4.52) is to transform it into an autonomous system
with fewer multiplications or even better to the linear system of ODEs. The next sub-
stitution 𝑦 = (𝑎0, 𝑎2, sin2(𝜔𝑡), sin(𝜔𝑡) cos(𝜔𝑡), cos2(𝜔𝑡), cos(2𝜔𝑡), sin(2𝜔𝑡))𝑇 leads to the
following non-linear system of ODEs with at most two-term multiplication
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𝑦′
1 = 𝑦3 𝑦1(0) = 0

𝑦′
2 = 2

𝑇
𝑦3𝑦6 𝑦2(0) = 0

𝑦′
3 = 2𝜔𝑦4 𝑦3(0) = 0

𝑦′
4 = 𝜔(𝑦5 − 𝑦3) 𝑦4(0) = 0

𝑦′
5 = −2𝜔𝑦4 𝑦5(0) = 1

𝑦′
6 = −2𝜔𝑦7 𝑦6(0) = 1

𝑦′
7 = 2𝜔𝑦6 𝑦7(0) = 0 .

(4.54)

The last transformation of (4.52) using substitution 𝑦 = (𝑎0, 𝑎2, sin2(𝜔𝑡), sin(𝜔𝑡) cos(𝜔𝑡),
cos2(𝜔𝑡), sin2(𝜔𝑡) cos(2𝜔𝑡), sin2(𝜔𝑡) sin(2𝜔𝑡), sin(𝜔𝑡) cos(𝜔𝑡) cos(2𝜔𝑡), sin(𝜔𝑡) cos(𝜔𝑡) sin(2𝜔𝑡),
cos2(𝜔𝑡) cos(2𝜔𝑡), cos2(𝜔𝑡) sin(2𝜔𝑡))𝑇 leads to the linear IVP

𝑦′
1 = 𝑦3 𝑦1(0) = 0

𝑦′
2 = 2

𝑇
𝑦6 𝑦2(0) = 0

𝑦′
3 = 2𝜔𝑦4 𝑦3(0) = 0

𝑦′
4 = 𝜔(𝑦5 − 𝑦3) 𝑦4(0) = 0

𝑦′
5 = −2𝜔𝑦4 𝑦5(0) = 1

𝑦′
6 = 2𝜔(𝑦8 − 𝑦7) 𝑦6(0) = 0

𝑦′
7 = 2𝜔(𝑦9 + 𝑦6) 𝑦7(0) = 0

𝑦′
8 = 𝜔(𝑦10 − 𝑦6 − 2𝑦9) 𝑦8(0) = 0

𝑦′
9 = 𝜔(𝑦11 − 𝑦7 + 2𝑦8) 𝑦9(0) = 0

𝑦′
10 = −2𝜔(𝑦8 + 𝑦11) 𝑦10(0) = 1

𝑦′
11 = −2𝜔(𝑦9 − 𝑦10) 𝑦11(0) = 0 .

(4.55)

Results of the calculation of the Fourier coefficients using IVPs (4.54) and (4.55) are in
Table 4.24 and Table 4.25, respectively. The tolerance for all solvers was set to 1 × 10−10

with fixed integration step size for the MTSM solver set at ℎ = 0.4 s in all cases. The column
labelled ||𝑒𝑟𝑟𝑜𝑟|| shows the norm of the error between analytical (𝐴0, 𝐴2) and numerical
solution (𝑎0(𝑇 ), 𝑎2(𝑇 )).

Solver Time of calculation [s] Ratio ||𝑒𝑟𝑟𝑜𝑟||

MTSM 1.352 45 × 10−3 – 2.7 × 10−15

ode23 3.921 18 × 10−1 289.9 7.2 × 10−10

ode45 2.943 24 × 10−2 21.8 8.3 × 10−11

ode113 1.229 99 × 10−2 9.1 1.4 × 10−11

Table 4.24: Results of calculations for Fourier coefficients, (4.54).
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Solver Time of calculation [s] Ratio ||𝑒𝑟𝑟𝑜𝑟||

MTSM 6.809 × 10−4 – 1.1 × 10−11

ode23 5.337 41 × 10−1 783.9 2.9 × 10−13

ode45 4.568 95 × 10−2 67.1 1.8 × 10−12

ode113 1.593 32 × 10−2 23.4 1.6 × 10−10

Table 4.25: Results of calculations for Fourier coefficients (4.55).

The results show that the MTSM is faster and more accurate than all tested state-of-the-art
solvers. The average order used by the MTSM is 𝑂𝑅𝐷 = 25 ± 1.

4.6 Lorenz system
The next example shows another non-linear system – Lorenz system. It was presented
in [58]. This system explains some of the unpredictable behaviour of the weather. The
Lorenz model supposes that a planet’s atmosphere consists of a two-dimensional fluid cell
heated from below and cooled from above [35]. The fluid motion can be described by the
three-dimensional system of ODEs (4.56)

𝑥′ = 𝜎(𝑦 − 𝑥) 𝑥(0) = 1
𝑦′ = 𝜌𝑥 − 𝑦 − 𝑥𝑧 𝑦(0) = 1
𝑧′ = 𝑥𝑦 − 𝛽𝑧 𝑧(0) = 1 ,

(4.56)

where 𝜎 is the Prandtl number, 𝜌 is the Rayleigh number, and 𝛽 is the parameter related
to the physical size of the system. The behaviour of the system depends on the values
of the parameters and initial conditions. Small changes in the initial conditions have a
significant effect on the solution (and that is generally a reason why this model cannot
be used to accurately predict the weather long-term). The (4.56) can be rewritten in the
matrix-vector representation

𝑦 =

⎛⎜⎝𝑥
𝑦
𝑧

⎞⎟⎠ 𝐴 =

⎛⎜⎝−𝜎 𝜎 0
𝜌 −1 0
0 0 −𝛽

⎞⎟⎠ 𝑏 =

⎛⎜⎝0
0
0

⎞⎟⎠ 𝐵1 =

⎛⎜⎝ 0 0
−1 0
0 1

⎞⎟⎠ 𝑦𝑗𝑗 =
(︃

1 3
1 2

)︃
. (4.57)

For the experiments, the parameters 𝜎 = 10 and 𝛽 = 8/3 were fixed. Only the parameter
𝜌 is changed to obtain different behaviour of the system (4.56). For 𝜌 = 28, the value
originally used by Lorenz [51]), the chaotic behaviour is observed. For large values of 𝜌, e.g.
𝜌 = 160, the solution is periodic [40]. For 𝜌 = 23.7, the solution is stable. Two equilibrium
points can be calculated using (4.58). Initial conditions were then calculated by adding the
constant vector 𝑣 = (0, 2, 0) to the equilibrium point 𝑄+ [35], [34]

𝑄± = (±
√︁

𝛽(𝜌 − 1), ±
√︁

𝛽(𝜌 − 1), 𝜌 − 1) . (4.58)

For the experiments with the Lorenz system, tolerances for all numerical solvers were set
to 1 × 10−10. The maximum simulation time was set to 𝑡𝑚𝑎𝑥 = 100 s for all experiments.
Figure 4.34 shows the solution of the Lorenz system for different values of parameter 𝜌 in
the yz-plane.
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(a) 𝜌 = 28 (b) 𝜌 = 160 (c) 𝜌 = 23.7

Figure 4.34: Behaviour of Lorenz system in yz-plane.

The solution in the time domain is in Figure 4.35 and the plot of the 𝑂𝑅𝐷 function is in
Figure 4.36.

(a) 𝜌 = 28 (b) 𝜌 = 160 (c) 𝜌 = 23.7

Figure 4.35: Behaviour of Lorenz system in time domain.
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(b) 𝜌 = 160
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(c) 𝜌 = 23.7

Figure 4.36: Plots of the 𝑂𝑅𝐷 function for different values of 𝜌.

Unlike linear problems, the values of ORD for non-linear problems are no longer nearly
constant but can change quite rapidly during the calculation. Results of the simulation
experiments are in Table 4.26.
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ode23 ode45 ode113 MTSM
𝜌 𝑟𝑎𝑡𝑖𝑜 # steps 𝑟𝑎𝑡𝑖𝑜 # steps 𝑟𝑎𝑡𝑖𝑜 # steps [s] # steps
28 200.8 3993135 7.3 322496 1.9 19794 9.33 × 10−1 2000
160 196.3 9907302 6.9 774340 1.9 48896 2.363 4000
23.7 15.7 1111529 7.3 147928 4.6 11029 5.38 × 10−1 500

Table 4.26: Results of simulation experiments for Lorenz system.

4.7 Kepler problem
The final example in this Chapter of more general examples of the method is the Kepler
problem. It was published in [78]. The Kepler problem describes the motion of a single
planet around a heavy sun [18]. The problem is simplified so that the planet does not
gravitationally influence the sun, and the sun is treated as stationary. The motion of the
planet is also limited to the plane (it does not move up or down).

Let 𝑦1(𝑡) and 𝑦2(𝑡) denote rectangular coordinates centred at the sun, specifying at time
𝑡 the position of the planet. Also let 𝑦3(𝑡) and 𝑦4(𝑡) denote a components of velocity in the
𝑦1 and 𝑦2 directions. If 𝑀 denotes the mass of the sun, 𝛾 the gravitational constant, and
𝑚 the mass of the planet, then the attractive force will have the magnitude

𝛾𝑀𝑚

𝑦2
1 + 𝑦2

2
.

The accelerations of the planet in 𝑦1 and 𝑦2 directions can be calculated as follows:

−𝛾𝑀𝑦1(︀
𝑦2

1 + 𝑦2
2
)︀ 3

2
,

−𝛾𝑀𝑦2(︀
𝑦2

1 + 𝑦2
2
)︀ 3

2
, (4.59)

where the negative sign denotes the inward direction of the acceleration. By adjusting the
scales of the variables, the factor 𝛾𝑀 can be removed. The motion can be represented by
the following system of ODEs

𝑦′
1 = 𝑦3 𝑦1(0) = 1 − 𝑒

𝑦′
2 = 𝑦4 𝑦2(0) = 0

𝑦′
3 = −𝑦1

𝑟3 𝑦3(0) = 0

𝑦′
4 = −𝑦2

𝑟3 𝑦4(0) =
√︃

1 + 𝑒

1 − 𝑒
,

(4.60)

where 𝑒 is an eccentricity of a rotating body and 𝑟 =
√︁

𝑦2
1 + 𝑦2

2. The analytical solution of
(4.60) is defined by

(𝑦1 + 𝑒)2 + 𝑦2
2

1 − 𝑒2 − 1 = 0 . (4.61)

The change in time for the coordinates 𝑦1 and 𝑦2 for the different values of 𝑒 is in Figure 4.37.
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Figure 4.37: Kepler problem, solution.

To solve the system (4.60) using the MTSM with the recurrent calculation of the Taylor
series’ terms (3.20), the system of ODEs has to be transformed to the new autonomous
equivalent system (3.19). The term 1

𝑟3 has to be replaced by the equivalent generating
ODEs that are added to (4.60). First, the term 𝑟3 is substituted to give

𝑦5 =
(︂√︁

𝑦2
1 + 𝑦2

2

)︂3
= (𝑦2

1 + 𝑦2
2)

3
2

𝑦′
5 = 3

2(𝑦2
1 + 𝑦2

2)
1
2 (2𝑦1𝑦′

1 + 2𝑦2𝑦′
2) = 3(𝑦2

1 + 𝑦2
2)

1
2 (𝑦1𝑦3 + 𝑦2𝑦4) .

Then the substitution of the term (𝑦2
1 + 𝑦2

2) 1
2 is introduced to give

𝑦6 = (𝑦2
1 + 𝑦2

2)
1
2

𝑦′
6 = 1

2(𝑦2
1 + 𝑦2

2)− 1
2 (2𝑦1𝑦′

1 + 2𝑦2𝑦′
2) = (𝑦2

1 + 𝑦2
2)− 1

2 (𝑦1𝑦3 + 𝑦2𝑦4)

= (𝑦1𝑦3 + 𝑦2𝑦4)
(𝑦2

1 + 𝑦2
2) 1

2
= (𝑦1𝑦3 + 𝑦2𝑦4)

𝑦6
.

After the previous substitution, the terms that contain operation division (𝑦−1
5 and 𝑦−1

6 )
can be removed from the system using the following auxiliary ODEs

𝑦7 = 1
𝑦5

= 𝑦−1
5

𝑦′
7 = −𝑦−1

5 𝑦′
5 = −𝑦2

7𝑦′
5 = −𝑦2

7(3𝑦6(𝑦1𝑦3 + 𝑦2𝑦4)) = −3𝑦6𝑦2
7(𝑦1𝑦3 + 𝑦2𝑦4)

𝑦8 = 1
𝑦6

= 𝑦−1
6

𝑦′
8 = −𝑦−2

6 𝑦′
6 = −𝑦2

8𝑦′
6 = −𝑦2

8(𝑦8(𝑦1𝑦3 + 𝑦2𝑦4)) = −𝑦3
8(𝑦1𝑦3 + 𝑦2𝑦4) .
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The new autonomous system of ODEs with the substituted equations without operation
division is obtained

𝑦′
1 = 𝑦3 𝑦1(0) = 1 − 𝑒

𝑦′
2 = 𝑦4 𝑦2(0) = 0

𝑦′
3 = −𝑦7𝑦1 𝑦3(0) = 0

𝑦′
4 = −𝑦7𝑦2 𝑦4(0) =

√︃
1 + 𝑒

1 − 𝑒

𝑦′
5 = 3𝑦6(𝑦1𝑦3 + 𝑦2𝑦4) 𝑦5(0) = (

√︁
𝑦1(0)2 + 𝑦2(0)2)3

𝑦′
6 = 𝑦8(𝑦1𝑦3 + 𝑦2𝑦4) 𝑦6(0) =

√︁
𝑦1(0)2 + 𝑦2(0)2

𝑦′
7 = −3𝑦6𝑦7𝑦7(𝑦1𝑦3 + 𝑦2𝑦4) 𝑦7(0) = 1

𝑦5(0)

𝑦′
8 = −𝑦8𝑦8𝑦8(𝑦1𝑦3 + 𝑦2𝑦4) 𝑦8(0) = 1

𝑦6(0) .

(4.62)

The new IVP (4.62) is equivalent to the original Kepler problem (4.60). Note that the
new IVP (4.62) is an autonomous system of ODEs with operation multiplication in the
form (3.19), and such system can be solved using the MTSM with recurrent calculation of
the Taylor series terms using (3.20). The matrix-vector representation (3.19) of the system
(4.62) is in Appendix F.1. The system of ODEs (4.62) can be further simplified by reducing
the number of multiplications. By substituting (𝑦1𝑦3 + 𝑦2𝑦4) another auxiliary ODE can
be obtained:

𝑦9 = 𝑦1𝑦3 + 𝑦2𝑦4

𝑦′
9 = 𝑦′

1𝑦3 + 𝑦1𝑦′
3 + 𝑦′

2𝑦4 + 𝑦2𝑦′
4 = 𝑦2

3 + 𝑦2
4 − 𝑦2

1𝑦7 − 𝑦2
2𝑦7 .

Adding the new equation into (4.62) decreases the number of multiplications to four. The
following system of ODEs is obtained:

𝑦′
1 = 𝑦3 𝑦1(0) = 1 − 𝑒

𝑦′
2 = 𝑦4 𝑦2(0) = 0

𝑦′
3 = −𝑦1𝑦7 𝑦3(0) = 0

𝑦′
4 = −𝑦2𝑦7 𝑦4(0) =

√︃
1 + 𝑒

1 − 𝑒

𝑦′
5 = 3𝑦6𝑦9 𝑦5(0) = (

√︁
𝑦1(0)2 + 𝑦2(0)2)3

𝑦′
6 = 𝑦8𝑦9 𝑦6(0) =

√︁
𝑦1(0)2 + 𝑦2(0)2

𝑦′
7 = −3𝑦6𝑦7𝑦7𝑦9 𝑦7(0) = 1

𝑦5(0)

𝑦′
8 = −𝑦8𝑦8𝑦8𝑦9 𝑦8(0) = 1

𝑦6(0)
𝑦′

9 = 𝑦3𝑦3 + 𝑦4𝑦4 − 𝑦7(𝑦1𝑦1 + 𝑦2𝑦2) 𝑦9(0) = 𝑦1(0)𝑦3(0) + 𝑦2(0)𝑦4(0) .

(4.63)

The new IVP (4.63) is again equivalent to the original Kepler problem (4.60) and with
(4.62). The matrix-vector representation of the ODEs system (4.63) using the notation of
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(3.19) is in Appendix F.2. The number of multiplications can be decreased even further by
simplifying the remaining ODEs with four multiplications. The multiplication 𝑦6𝑦9 can be
substituted by an auxiliary ODE:

𝑦10 = 𝑦6𝑦9

𝑦′
10 = 𝑦′

6𝑦9 + 𝑦6𝑦′
9 = 𝑦8𝑦9𝑦9 + 𝑦6𝑦2

3 + 𝑦6𝑦2
4 − 𝑦6𝑦7(𝑦2

1 + 𝑦2
2) .

A new multiplication (𝑦8𝑦9) in the new auxiliary ODE can also be substituted to give

𝑦11 = 𝑦8𝑦9

𝑦′
11 = 𝑦′

8𝑦9 + 𝑦8𝑦′
9 = −𝑦3

8𝑦2
9 + 𝑦8(𝑦2

3 + 𝑦2
4 − 𝑦7(𝑦2

1 + 𝑦2
2))

= −𝑦8𝑦2
11 + 𝑦8(𝑦2

3 + 𝑦2
4 − 𝑦7(𝑦2

1 + 𝑦2
2)) .

Finally, the bracket (𝑦2
1 + 𝑦2

2) can be substituted to give

𝑦12 = 𝑦2
1 + 𝑦2

2

𝑦′
12 = 2𝑦1𝑦′

1 + 2𝑦2𝑦′
2 = 2𝑦1𝑦3 + 2𝑦2𝑦4 .

Adding the three new auxiliary ODEs into (4.63) decreases the number of multiplications
to three

𝑦′
1 = 𝑦3 𝑦1(0) = 1 − 𝑒

𝑦′
2 = 𝑦4 𝑦2(0) = 0

𝑦′
3 = −𝑦1𝑦7 𝑦3(0) = 0

𝑦′
4 = −𝑦2𝑦7 𝑦4(0) =

√︃
1 + 𝑒

1 − 𝑒

𝑦′
5 = 3𝑦10 𝑦5(0) = (

√︁
𝑦1(0)2 + 𝑦2(0)2)3

𝑦′
6 = 𝑦11 𝑦6(0) =

√︁
𝑦1(0)2 + 𝑦2(0)2

𝑦′
7 = −3𝑦7𝑦7𝑦10 𝑦7(0) = 1

𝑦5(0)

𝑦′
8 = −𝑦8𝑦8𝑦11 𝑦8(0) = 1

𝑦6(0)
𝑦′

9 = 𝑦3𝑦3 + 𝑦4𝑦4 − 𝑦7𝑦12 𝑦9(0) = 𝑦1(0)𝑦3(0) + 𝑦2(0)𝑦4(0)
𝑦′

10 = 𝑦9𝑦11 + 𝑦3𝑦3𝑦6 + 𝑦4𝑦4𝑦6 − 𝑦6𝑦7𝑦12 𝑦10(0) = 𝑦6(0)𝑦9(0)
𝑦′

11 = −𝑦8𝑦11𝑦11 + 𝑦3𝑦3𝑦8 + 𝑦4𝑦4𝑦8 − 𝑦7𝑦8𝑦12 𝑦11(0) = 𝑦8(0)𝑦9(0)
𝑦′

12 = 2𝑦1𝑦3 + 2𝑦2𝑦4 𝑦12(0) = 𝑦1(0)2 + 𝑦2(0)2 .

(4.64)

The new IVP (4.64) is equivalent to all previous systems ((4.60), (4.62) and (4.63)). The
matrix-vector representation of the ODEs system (4.64) in the (3.19) notation is in Ap-
pendix F.3.

The results for (4.62), (4.63), (4.64) using MTSM with fixed integration step size
ℎ0.25 = 𝜋/25 s, ℎ0.5 = 𝜋/50 s, ℎ0.75 = 𝜋/100 s and 𝑒 = 0.25, 𝑒 = 0.5, 𝑒 = 0.75 are in
Tables 4.27, 4.28 and 4.29, respectively. The tolerances for all solvers were set to obtain
the ||𝑒𝑟𝑟𝑜𝑟|| = 10−8, where the ||𝑒𝑟𝑟𝑜𝑟|| is computed as the norm of (4.61). The maximum
time of the simulation is set to 2 cycles, 𝑡𝑚𝑎𝑥 = 4𝜋 s. The obtained ratios indicate faster
computation of the MTSM in most cases.
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ode23 ode45 ode113 MTSM
𝑒 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s]
0.25 146.4 4.7 1.3 2.93 × 10−2

0.5 122.8 4.1 1.0 5.36 × 10−2

0.75 90.4 3.0 0.7 1.158 × 10−1

Table 4.27: Results for Kepler problem (4.62).

ode23 ode45 ode113 MTSM
𝑒 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s]
0.25 213.9 6.8 1.8 2.05 × 10−2

0.5 174.4 5.7 1.5 3.77 × 10−2

0.75 145.1 4.8 1.2 7.3 × 10−2

Table 4.28: Results for Kepler problem (4.63).

ode23 ode45 ode113 MTSM
𝑒 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 [s]
0.25 312.2 12.1 2.5 1.44 × 10−2

0.5 262.5 9.1 2.1 2.63 × 10−2

0.75 221.3 7.4 1.7 5.09 × 10−2

Table 4.29: Results for Kepler problem (4.64).

The autonomous system with a low number of multiplications (4.64) is the fastest one,
see Table 4.29. The greater number of multiplications slows down the calculation consid-
erably. The ratios between the slowest system (4.62) and the systems of ODEs (4.63) and
(4.64) for different values of 𝑒 are in Table 4.30.

MTSM (4.62)/(4.63) MTSM (4.62)/(4.64)
𝑒 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜

0.25 1.43 2.03
0.5 1.42 2.04
0.75 1.59 2.28

Table 4.30: Comparison between times of calculation of autonomous system (4.62) and
systems (4.63) and (4.64).

Table 4.30 shows that the system with three-term multiplication (4.64) is approximately
two times faster than the system with five-term multiplication (4.62). The difference is
caused by the large number of multiplications of higher-order terms in the Taylor series.
Optimizations from Subsection 3.3.2 are not used in the experiments, (3.20) is used directly.
Table 4.31 shows the number of integration steps for different values of 𝑒.
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Number of steps
𝑒 ode23 ode45 ode113 MTSM
0.25 105180 8916 419 100
0.5 161323 12148 654 200
0.75 262631 19288 955 400

Table 4.31: Number of integration steps, Kepler problem (4.64).

The number of integration steps grows with increasing values of the constant 𝑒 due to
the Kepler problem becoming stiff. Explicit numerical methods have difficulties with such
systems. The stiffness indicator 𝜎 for the time normalized Kepler problem with different
values of constant 𝑒 is in Figure 4.38 [73].
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Figure 4.38: Stiffness indicator 𝜎.

MTSM automatically detects the stiffness in the system and uses larger order (more terms
of the Taylor series) in rapidly changing parts of solutions, see Figure 4.37 and Figure 4.39.
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(b) 𝑒 = 0.5
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(c) 𝑒 = 0.75

Figure 4.39: Plot of the 𝑂𝑅𝐷 function.

The last experiment shows that the solution of the Kepler problem becomes unstable
using state-of-the-art solvers. The default tolerance 𝑇𝑂𝐿 = 1 × 10−6 was set for all solvers.
Results for 𝑡𝑚𝑎𝑥 = 200 · 𝜋 s and 𝑒 = 0.75 are in Figure 4.40. Only MTSM provides a stable
solution.
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Figure 4.40: Result of the circle test 𝑦1𝑦2 plane.

The Kepler problem shows the possible problems and complexity when using the pro-
posed method for solving non-linear systems. However, it is necessary because when mod-
elling real-world problems, their models contain non-linearities. These might be removed
by linearizing the model, but it might degrade the parameters or other properties.

4.8 Concluding remarks
This Chapter compares the behaviour of the method introduced in Chapter 3 with the
state-of-the-art numerical integration solvers on a set of selected real-world problems. These
problems serve as benchmarks to test the performance of the method. In additional ex-
periments in Chapter 6, I will use the background and insight gained on these benchmark
problems and I will apply the properties that seem to be favourable in the area of control
system implementation with real-time considerations.
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Chapter 5

Control theory

This Chapter briefly introduces important topics from control theory so that they can be
used in the experiments. The content of this chapter has been mainly compiled from [24],
[11], [23], [72], [16], [26], [84], and [31]. Other used sources are cited throughout where
needed.

Control theory has helped shape the modern technological and industrial landscape [16].
Some examples include cruise control in cars, position control in construction equipment,
packet routing on the Internet and PID temperature and pressure control in modern espresso
machines. In the future, control systems are going to be increasingly applied to high-
dimensional and strongly non-linear problems (for example, autonomous robots and self-
driving cars).

5.1 Control systems
In this Section, the several types of control systems that are widely used are going to
be discussed. There are several ways to categorize the control system and approaches to
their design. One particularly useful categorization is by the way these control systems use
energy and resources and how they can adapt to the change in the input and output of the
controlled system [16].

The simplest form are the passive control systems (for example a speed limit sign or
stop sign at the street intersection) that can change the traffic flow. The second very broad
category is active control that does require input energy to operate.

These can again be split into several categories based on if they use sensors to augment
or inform how the controller functions. For open-loop systems with no sensors, the pre-
programmed control sequence is carried out. The sensor based control system can either
combine open-loop control with feedback or closed-loop feedback control systems. These
measure the system directly and shapes the control response to achieve the desired goal.
These are going to be used in this thesis. The categories are visualized in Figure 5.1.
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Figure 5.1: Types of the control systems (based on [16]).

The schematic of the open-loop control system is shown in Figure 5.2.
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Figure 5.2: Schematic for the open-loop system (based on [16], [24]).

In Figure 5.2, 𝑤𝑟 represents the reference signal. Given this signal, the controller, using a
control law, constructs a control input 𝑢 to drive a system. External disturbances 𝑤𝑑 and
sensor noise 𝑤𝑛 are not accounted for and degrade performance. The open-loop control uses
a model of the system to design an actuation signal 𝑢 that produces the desired output.
However, as stated before, it can only do so based on a pre-planned strategy and cannot
account for external disturbances or any change in the system dynamics.

The general scheme of the feedback control is in Figure 5.3.
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Figure 5.3: General scheme for feedback control system (based on [16]).
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Sensor measurements 𝑦 or a system are fed back into a controller that generates the
actuation signal 𝑢. This signal can manipulate dynamics and change the behaviour of the
controlled system. It performs better than the open-loop control system and can better
handle uncertainties and disturbances.

The vector of disturbances 𝑤 can be decomposed as 𝑤 =
(︁
𝑤𝑇

𝑑 𝑤
𝑇
𝑛𝑤

𝑇
𝑟

)︁𝑇
where

• 𝑤𝑑 are the disturbances of the state of the system,

• 𝑤𝑛 is the measurement noise,

• 𝑤𝑟 is the reference that should be tracked in the closed-loop system.

The system can be generally described using the following ODE:

𝑥′ = 𝑓(𝑥,𝑢,𝑤𝑑) (5.1)

and the output measured by the sensors described by

𝑔 = 𝑓(𝑥,𝑢,𝑤𝑛) . (5.2)

The control law is then generally described using a function 𝑢

𝑢 = 𝑘(𝑥,𝑤𝑟) (5.3)

and it should (if the controller can do so) minimize the cost function 𝐽

𝐽 ≜ 𝐽(𝑥,𝑢,𝑤𝑟) . (5.4)

Note that optimizing the cost of control is not a focus of this thesis. The schematic of the
feedback control system is in Figure 5.4.
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Figure 5.4: Closed-loop feedback control system (based on [16], [24]).

Figure 5.4 shows the sensor signal 𝑦 fed back and subtracted from the reference signal
𝑤𝑟. This provides information about how the system reacts to the control input (the ac-
tuation being performed). The controller uses the resulting error 𝜖 to help determine the
correct actuation signal 𝑢 for the desired response. This kind of control system can effec-
tively stabilize unstable dynamics while rejecting disturbances 𝑤𝑑 and reducing noise 𝑤𝑛.
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5.2 Linear systems
According to [16], [24], and others, the more comprehensive theory of control systems and
their representations has been developed for linear systems.

Due to the fact that real systems are not generally linear, the non-linear representation
has to be linearized about a fixed point around which the chosen linear approximation is
valid.

A system is defined as linear in terms of the input and response [24]. Generally, a nec-
essary condition for any linear system can be determined based on excitation and response.
So when a system receives an input 𝑎1(𝑡), it responds with 𝑦1(𝑡). And for an input 𝑎2(𝑡),
it responds with 𝑦2(𝑡). For linear system , the excitation 𝑎1(𝑡) + 𝑎2(𝑡) results in response
𝑦1(𝑡) + 𝑦2(𝑡) – principle of superposition.

A linear system has to also be homogeneous, that is, when supplied with an input 𝑎(𝑡),
the result is 𝑦(𝑡). Then when multiplying the input by a constant 𝑎(𝑡) · 𝛽, the response
must be equal to the output being multiplied by the same constant 𝑦(𝑡) · 𝛽.

5.2.1 Laplace transformation

The Laplace transformation can be applied to linear systems. The method substitutes
differential equations that are difficult to solve by algebraic equations [24]. The solution of
the system is obtained by performing the following steps:

1. obtain linearized differential equations,

2. perform the Laplace transformation on the differential equations,

3. solve the resulting algebraic equations.

For function 𝑓(𝑡) to be transformable, it is sufficient for∫︁ ∞

0−
|𝑓(𝑡)|𝑒−𝜎1𝑡 d𝑡 < ∞,

for some real, positive 𝜎1. The 0− indicates that the integral includes discontinuities, such
as delta function at 𝑡 = 0. If the magnitude of 𝑓(𝑡) is

|𝑓(𝑡)| < 𝑀𝑒𝛼𝑡

for all positive 𝑡, the integral will converge for 𝜎1 > 𝛼. Real physical signals always have
Laplace transform. The Laplace transformation for a function of time 𝑓(𝑡) is

𝐹 (𝑠) =
∫︁ ∞

0−
𝑓(𝑡)𝑒−𝑠𝑡 d𝑡,

and the inverse Laplace transform is written as

𝑓(𝑡) = 1
2𝜋𝑗

∫︁ 𝜎+𝑗∞

𝜎−𝑗∞
𝐹 (𝑠)𝑒𝑠𝑡 d𝑠 .

The pairs of 𝑓(𝑡) and 𝐹 (𝑠) are in [24] and there are mathematical models that represent
linear systems using the transformed equations (transfer function modelling for example,
see [24]). However, this thesis deals with the solution of ordinary differential equations, and
the Laplace variable 𝑠 can be considered to be a differential operator [24]

𝑠 ≡ 𝑑

𝑑𝑡
. (5.5)
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5.2.2 State-space representation

The state-space representation of the system is very useful in the context of this thesis
because it uses ordinary differential equations to represent the changes between individual
states. Due to this fact, it is going to be discussed in greater detail.

The state of a system is a set of variables whose values, together with the input signals
and the equations describing the dynamics, will provide the future state and the output
of the system [24]. For the dynamic systems, the state of the system is described by a
set of variables 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)). The state variables determine the future
behaviour of the system when a present state of the system and its inputs are known.

The changes of the states can be described using state differential equations, which are
the first-order ODEs for the state variables (𝑥1, 𝑥2, . . . , 𝑥𝑛) and the inputs (𝑢1, 𝑢2, . . . , 𝑢𝑛).
These equations can be written in a form

𝑥′
1(𝑡) = 𝑎11𝑥1(𝑡) + 𝑎12𝑥2(𝑡) + · · · + 𝑎1𝑛𝑥𝑛(𝑡) + 𝑒11𝑢1(𝑡) + · · · + 𝑒1𝑚𝑢𝑚(𝑡)

𝑥′
2(𝑡) = 𝑎21𝑥1(𝑡) + 𝑎22𝑥2(𝑡) + · · · + 𝑎2𝑛𝑥𝑛(𝑡) + 𝑒21𝑢1(𝑡) + · · · + 𝑒2𝑚𝑢𝑚(𝑡)

...
𝑥′

𝑛(𝑡) = 𝑎𝑛1𝑥1(𝑡) + 𝑎𝑛2𝑥2(𝑡) + · · · + 𝑎𝑛𝑛𝑥𝑛(𝑡) + 𝑒𝑛1𝑢1(𝑡) + · · · + 𝑒𝑛𝑚𝑢𝑚(𝑡) .

(5.6)

This system of ODEs can be expressed in the matrix-vector notation⎛⎜⎜⎜⎜⎝
𝑥′

1(𝑡)
𝑥′

2(𝑡)
...

𝑥′
𝑛(𝑡)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎21 𝑎22 . . . 𝑎2𝑛
... . . . . . .

...
𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑛

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

𝑥1(𝑡)
𝑥2(𝑡)

...
𝑥𝑛(𝑡)

⎞⎟⎟⎟⎟⎠+

⎛⎜⎝𝑒11 . . . 𝑒1𝑚
...

...
𝑒𝑛1 . . . 𝑒𝑛𝑚

⎞⎟⎠
⎛⎜⎜⎜⎜⎝

𝑢1(𝑡)
𝑢2(𝑡)

...
𝑢𝑚(𝑡)

⎞⎟⎟⎟⎟⎠ (5.7)

where 𝑥(𝑡) represents the state vector and 𝑢(𝑡) represents the input function. The state
differential equation or state equation can be therefore written as

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐸𝑢(𝑡) . (5.8)

The outputs of the systems can be related to the inputs and the states by output equation,
which can be written as

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) . (5.9)

The sensor noise and disturbances can also be modelled using the state-space model. The
state equation and the output equation then become

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐸𝑢(𝑡) + 𝐺𝑤𝑑(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑤𝑛(𝑡) ,

(5.10)

where 𝐺 is the gain matrix for the disturbance 𝑤𝑑 and 𝑤𝑛 is the sensor noise that can
affect the measurements. The schematic for this representation is in Figure 5.5.
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Figure 5.5: Schematic of the state-space representation with disturbances and sensor noise.

5.2.3 Controllability and observability

The concepts of controllability and observability of the system have to be introduced to
understand if the stable eigenvalues of the system can even be obtained. Note that more
information about linear algebra, eigenvalues and eigenvectors can be obtained from [50].

Controllability

The controllability of a system can be defined as [24]

Definition 2 A system is completely controllable if there exists an unconstrained control
𝑢(𝑡) that can transfer any initial state 𝑥(𝑡0) to any other desired location 𝑥(𝑡) in a finite
time.

To determine if the linear system described by (5.8) is controllable, the controllability
matrix 𝒞 has to be constructed

𝒞 =
(︁
𝐵 𝐴𝐸 𝐴2𝐸 . . . 𝐴𝑛−1𝐸

)︁
. (5.11)

If the matrix 𝒞 has 𝑛 linearly independent columns (it spans ℛ𝑛), then (5.8) is controllable.
The span of the columns of the controllability matrix 𝒞 forms a Krylov subspace. This
subspace determines which state vector directions in ℛ𝑛 may be manipulated with control.
Therefore, if a system is controllable, it also implies that any state 𝜌 ∈ ℛ𝑛 is reachable
in finite time by some actuation signal 𝑢(𝑡). The eigenvalues might be placed arbitrarily.
However, some controllers have additional considerations.

Observability

The observability of a system can be defined as [24]

Definition 3 The system is completely observable if and only if there exists a finite time
𝑇 such that the initial state 𝑥(0) can be determined from the observation history 𝑦(𝑡) given
the control 𝑢(𝑡).

Observability does not differ from controllability much but the interpretation is different.
A system is observable if it is possible to estimate any state 𝜌 ∈ ℛ𝑛 from a history of
measurements of the system output 𝑦(𝑡). The observability is determined by the row space
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of the observability matrix 𝒪

𝒪 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐶
𝐶𝐴
𝐶𝐴2

...
𝐶𝐴𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.12)

The observability comes into play when full-state measurements of the state vector 𝑥
are not available, and it is necessary to estimate the vector from the measurements. This is
only possible when a system is observable. The estimators are not used in this thesis, but
observability is still an important property to be taken into account.

5.2.4 Linearization

This section is mainly derived from [24] and [15]. In real-world conditions, most systems
are operated around a operating point (or points), for example, the range of temperatures,
angles of attack and many others that depend on the plant or application being considered.
This means that most of the very complicated equations (some examples are going to be
shown in Chapter 6) that would be valid for all possible values are just valid for the smaller
subset of these values around the operating point. Therefore, the question of linearity and
the range of applicability must be considered for each system.

To linearize the non-linear system written as

𝑥′ = 𝑓(𝑥, 𝑢)
𝑦 = ℎ(𝑥, 𝑢) ,

(5.13)

where 𝑓 and ℎ are non-linear functions, 𝑥 is the state vector, 𝑢 is a scalar control input and
𝑦 is the scalar system output, the following procedure can be used. Given the non-linear
system specified by these functions and an equilibrium point 𝑥* = (𝑥*

1 . . . 𝑥*
𝑛)𝑇 , obtained

when 𝑢 = 𝑢*, a coordinate transformation can be defined to transform the state variables
to the equilibrium point. Denote 𝛿𝑥 = 𝑥 − 𝑥*

𝛿𝑥 =

⎛⎜⎝𝛿𝑥1
...

𝛿𝑥𝑛

⎞⎟⎠ =

⎛⎜⎝𝑥1 − 𝑥*

...
𝑥𝑛 − 𝑥*

𝑛

⎞⎟⎠ , (5.14)

𝛿𝑢 = 𝑢 − 𝑢* and 𝛿𝑦 = 𝑦 − ℎ(𝑥*, 𝑢*). The new coordinates 𝛿𝑥, 𝛿𝑢 and 𝛿𝑦 represent
the differences of 𝑥, 𝑢 and 𝑦 from their equilibrium values. They serve as the new state
variables 𝛿𝑥, new control input 𝛿𝑢 and the new output 𝛿𝑦. The linearization of (5.13) at
the equilibrium point 𝑥* is given by

𝛿𝑥′ = 𝐴𝛿𝑥 + 𝐸𝛿𝑢

𝑦 = 𝐶𝛿𝑥 + 𝐷𝛿𝑢 ,
(5.15)
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where

𝐴 =
(︂

𝜕𝑓

𝜕𝑥

)︂
𝑥*,𝑢*

=

⎛⎜⎜⎝
𝜕𝑓1
𝜕𝑥1

(𝑥*
1, . . . , 𝑥*

𝑛, 𝑢*) . . . 𝜕𝑓1
𝜕𝑥𝑛

(𝑥*
1, . . . , 𝑥*

𝑛, 𝑢*)
...

...
...

𝜕𝑓𝑛

𝜕𝑥1
(𝑥*

1, . . . , 𝑥*
𝑛, 𝑢*) . . . 𝜕𝑓𝑛

𝜕𝑥𝑛
(𝑥*

1, . . . , 𝑥*
𝑛, 𝑢*)

⎞⎟⎟⎠ ,

𝐸 =
(︂

𝜕𝑓

𝜕𝑢

)︂
𝑥*,𝑢*

=

⎛⎜⎜⎝
𝜕𝑓1
𝜕𝑢 (𝑥*

1, . . . , 𝑥*
𝑛, 𝑢*)

...
𝜕𝑓𝑛

𝜕𝑢 (𝑥*
1, . . . , 𝑥*

𝑛, 𝑢*)

⎞⎟⎟⎠ ,

𝐶 =
(︂

𝜕ℎ

𝜕𝑥

)︂
𝑥*,𝑢*

=
(︂

𝜕ℎ

𝜕𝑥1
(𝑥*

1, . . . , 𝑥*
𝑛, 𝑢*) . . .

𝜕ℎ

𝜕𝑥𝑛
(𝑥*

1, . . . , 𝑥*
𝑛, 𝑢*)

)︂
,

𝐷 =
(︂

𝜕ℎ

𝜕𝑢

)︂
𝑥*,𝑢*

.

(5.16)

5.2.5 Equilibrium points of the system

The state 𝑥* ∈ ℛ𝑛 is a equilibrium point for 𝑥′ = 𝑓(𝑥) if

𝑓(𝑥*) = 0 (5.17)

for all 𝑡 ≥ 0. Note that if the system has an initial condition 𝑥(0) equal to the equilibrium,
it will stay in that equilibrium forever (the state of the system does not change).

5.3 Non-linear systems
Most control systems in real-world applications are linear (because many systems operate
close to the set operating point and the behaviour around this point can be considered
linear). In some circumstances (for example, when the model of the system is uncertain or
when the non-linear parameters have to be taken into account [70]), to be able to develop
a non-linear controller that would be effective and comparable in speed and simplicity of
design with the linear controller. Due to the recent advances in micro-controller design
and general power of computer system, non-linear control is becoming more common in
interesting use cases. And because the method presented in this thesis shows good behaviour
for non-linear problems, it would be a shame not to try to test at least some non-linear
controllers and designs in the thesis to determine if the method can be used even in this
context.

This section is mainly compiled from existing sources ([36], [70], [11]) that deal with
non-linear control.

5.3.1 Common non-linear system behaviours

Several behaviours of non-linear systems are common and are going to be encountered in
Chapter 6 if appropriate. These include:

• multiple equilibrium points,

• limit cycles (oscillation of fixed period and amplitude without external stimuli),

• bifurcations (values of system parameters at which the system properties change),

• chaos (the system output is extremely sensitive to the initial conditions).
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5.3.2 Representation of the non-linear systems

The dynamic of the non-linear systems can be represented by the set of differential equations

𝑥′(𝑡) = 𝑓(𝑥(𝑡),𝑢(𝑡))
𝑦(𝑡) = 𝑔(𝑥(𝑡),𝑢(𝑡))

where 𝑥 is the state-vector. This representation is a generalized case of the linear system
representation, defined in Subsection 5.2.2.

5.3.3 Lyapunov function, stability

We can use the Lyapunov function to prove the stability properties of a given function.
The Lyapunov function is a generalized energy function that shows the stability around
the equilibrium points. The method shows the stability properties without finding the
trajectories of the system. The origin of the system is stable equilibrium if for each 𝜖 > 0,
there exists 𝛿 > 0 such that ||𝑥(𝑡)|| < 𝛿 → ||𝑥(𝑡)|| < 𝜖 ∀𝑡 ≥ 0. To define the stability of the
function using the Lyapunov stability theorem, several other sets and function characteristics
have to be defined.

The set 𝑆𝑟(0) contains all points 𝑥 ∈ ℛ𝑛 which are strictly inside a ball of radius 𝑟
around the origin

𝑆𝑟(0) = 𝑥 ∈ ℛ𝑛, ||𝑥|| < 𝑟 .

In a 2D space, this can be represented as a circle with radius 𝑟, with the centre around the
origin. A continuous function 𝑉 is positive definite on 𝑆𝑟(0) if

• 𝑉 (𝑥) > 0 for all 𝑥 ∈ 𝑆𝑟(0),𝑥 ̸= 0 and

• 𝑉 (0) = 0.

A continuous function 𝑉 is negative definite on 𝑆𝑟(0) if

• 𝑉 (𝑥) < 0 for all 𝑥 ∈ 𝑆𝑟(0),𝑥 ̸= 0 and

• 𝑉 (0) = 0.

A continuous function 𝑉 is positive semidefinite on 𝑆𝑟(0) if

• 𝑉 (𝑥) ≥ 0 for all 𝑥 ∈ 𝑆𝑟(0) and

• 𝑉 (0) = 0.

A continuous function 𝑉 is negative semidefinite on 𝑆𝑟(0) if

• 𝑉 (𝑥) ≤ 0 for all 𝑥 ∈ 𝑆𝑟(0) and

• 𝑉 (0) = 0.

Lyapunov Stability Theorem states that the origin is a stable equilibrium of 𝑥′ = 𝑓(𝑥)
if there exists 𝑟 > 0 and a positive definite function 𝑉 (𝑥) on 𝑆𝑟(0) such that 𝑉 ′ is negative
semidefinite on 𝑆𝑟(0). If there exists a locally positive definite function 𝑉 (𝑥), such that 𝑉 ′

is locally negative semidefinite, the origin is stable. If there exists a locally positive definite
function 𝑉 (𝑥), such that 𝑉 ′ is locally negative definite, the origin is asymptotically stable.
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5.3.4 LaSalle’s Invariance Principle

LaSalle’s Invariance Principle can be used instead of the Lyapunov stability theorem to
determine the asymptotic stability of the system when 𝑉 ′ is negative semidefinite. To
define the principle, first consider the set 𝜔 is positively invariant with respect to 𝑥′ = 𝑓(𝑥)
if 𝑥(0) ∈ 𝜔. This implies that 𝑥(𝑡) ∈ 𝜔 ∀𝑡 ≤ 0. The LaSalle’s Invariance Principle states
that

• Let 𝜔 be a compact set that is positively invariant with respect to 𝑥′ = 𝑓(𝑥) .

• Let the function 𝑉 be a continuously differentiable function on 𝜔 such that 𝑉 ′(𝑥) ≤ 0.

• Let 𝑉 ⊂ 𝜔 be the set of all points in 𝜔 such that 𝑉 ′(𝑥) = 0.

• let 𝑀 be the largest positively invariant set in 𝐸.

Then every solution starting in 𝜔 approaches 𝑀 as 𝑡 → ∞.

5.4 Types of controllers
In this Section, several types of controllers are introduced that are going to be used in
Chapter 6.

5.4.1 PID controllers

One of the most common types of controllers routinely applied in technical practice is
the PID (proportional-integral-derivative) controller. The equation for this controller can
generally be written as

𝑢(𝑡) = 𝑘𝑝𝜖(𝑡) + 𝑘𝑖

∫︁ 𝑡

0
𝜖(𝜏) d𝜏 + 𝑘𝑑𝜖(𝑡)′ , (5.18)

where 𝜖(𝑡) is the error of the closed-loop feedback, 𝑘𝑝 is the proportional gain of the con-
troller, 𝑘𝑖 is the integral gain of the controller and 𝑘𝑑 is the derivative gain of the controller.
The proportional part of the controller scales linearly with the error and the integral part
accumulates the error signal over time. The derivative part of the controller scales with the
derivative of the error. This type of controller tends towards minimizing the error 𝜖 and
thus reduces overshoot.

Note that there are several variants of the PID controllers based on what parts of the
controller are used. Most notable include:

• P (with only proportional term),

• PD (proportional-derivative terms),

• PI (proportional-integration terms) and

• PID.

The PID controller connected to the closed-loop feedback is in Figure 5.6.
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Figure 5.6: PID controller connected in the closed-loop feedback [24].

Transformation of a definite integral to the ordinary differential equation

Generally, a definite integral
𝐹 (𝑇 ) =

∫︁ 𝑇

0
𝑓(𝑡) d𝑡1 ,

can be transformed into an IVP [75]

𝐹 ′(𝑡) = 𝑓(𝑡) 𝐹 (0) = 0 ,

with the solution of the integral being obtained at 𝑡 = 𝑇 s. The definite integral 𝐹 (𝑇 ) =
∫︀ 𝑇

0 𝜖(𝜏) d𝜏
from (5.18) can therefore be transformed as

𝐹 ′(𝑡) = 𝜖(𝜏) 𝐹 (0) = 0

with 𝑡𝑚𝑎𝑥 = 𝑡 s.

5.4.2 Full-state closed-loop feedback controller

With full-state feedback available, the original state equation (5.8) (rewritten without time
and disturbances for simplicity)

𝑥′ = 𝐴𝑥 + 𝐸𝑢

the feedback signal 𝑢 can be expressed as

𝑢 = −𝑘𝑥 , (5.19)

where 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚), where 𝑚 is the number of rows of 𝐴. Therefore

𝑥′ = 𝐴𝑥 + 𝐸(−𝑘𝑥) = (𝐴 − 𝐸𝑘)𝑥 .

The new 𝐴 matrix of the system 𝐴 − 𝐸𝑘 has stable eigenvalues (and the resulting system
is therefore stable). To be able to construct the control law using this principle, the 𝐴,𝐸
are controllable. The properties of the resulting controller can be tuned by the values of
𝑘. Several approaches exist to determine the values of 𝑘. The least robust one is to place
the eigenvalues of 𝐴 in the appropriate place in the left-hand part of the complex plane, so
called pole-placement method.

To place the poles and therefore change the eigenvalues of the system, the Ackerman
function can be used [24]. Note that for this formula to be used, the system has to be
completely controllable

rank(𝐴) = rank(𝒞) .

1∫︀ 𝑏

𝑎
𝑓(𝑡) d𝑡 =

∫︀ 𝑏+0
𝑎+0 𝑓(𝑡 − 0) d𝑡
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Adding a reference value

In real-world applications, it is useful to specify the value that the system has to track –
reference value 𝑤𝑟. Note that when adding a reference value, the problems that are solved
are often called regulator problems.

To add a reference value into (5.10), two approaches can be used. One (less robust) is
to add the reference value directly to the feedback control loop

𝑢 = −𝑘𝑥 + 𝑤𝑟 ,

so that the state equation can be written as

𝑥′ = (𝐴 − 𝐸𝑘)𝑥 + 𝐸𝑤𝑟 . (5.20)

The schematic describing (5.20) is in Figure 5.7.
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Figure 5.7: Closed-loop feedback with reference value.

The system described by (5.20) is going to have a big steady state error which is very
difficult to control. To alleviate this, an additional gain 𝑘𝑟 can be added. It can be
calculated using the following process [24]. The output of the system 𝑦 → 𝑤𝑟, where 𝑤𝑟 is
the reference value. Therefore, the new state vector 𝑥 and 𝑢 has to be selected, such that
at 𝑥 = 𝑥, 𝑢 = 𝑢 and 𝑥′ = 0 and 𝑦 = 𝑤𝑟. Substituting the values into (5.8)

𝑥′ = 0 = 𝐴𝑥 + 𝐸𝑢

𝑦 = 𝑤𝑟 = 𝐶𝑥 .

Writing these equations in state-space form for 𝑥 and 𝑢(︃
𝑥
𝑢

)︃
=
(︃
𝐴 𝐸
𝐶 0

)︃−1(︃
0
1

)︃
𝑤𝑟 .

New gain 𝑘𝑟 has to be calculated, so that 𝑦 → 𝑤𝑟 is a steady state. We can rewrite the
feedback 𝑢

𝑢 = −𝑘𝑥 + 𝑘𝑟𝑤𝑟

and we can calculate the value of 𝑘𝑟 = 𝑘𝑟 from the steady state

𝑥′ = 0 = (𝐴 − 𝐸𝑘)𝑥 + 𝐸𝑘𝑟𝑤𝑟

𝑦 = 𝑤𝑟 = 𝐶𝑥 = −𝐶(𝐴 − 𝐸𝑘)−1𝐵𝑘𝑟 → 𝑘𝑟 = − 1
𝐶(𝐴 − 𝐸𝑘)−1𝐸

.
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Substituting 𝑢 into back into state equation

𝑥′ = (𝐴 − 𝐸𝑘)𝑥 + 𝐸𝑘𝑟𝑤𝑟 . (5.21)

The schematic for (5.21) is in Figure 5.8.

-

+ u x' x

A

yKr
wr

1/sE

+

+ C

K

Figure 5.8: Closed-loop feedback with the reference value and compensation.

To improve the behaviour of the system even more during tracking, integral control can be
added.

Adding an integral control

For more robust tracking, adding an integral might be useful. It can be achieved by adding
a new state variable 𝑧

𝑧 = 𝑤𝑟 − 𝑦 ,

where 𝑤𝑟 is a reference value and 𝑦 is the output of the system. The augmented state-space
representation (︃

𝑥′

𝑧′

)︃
=
(︃

𝐴 0
−𝐶 0

)︃(︃
𝑥
𝑧

)︃
+
(︃
𝐸
0

)︃
𝑢 +

(︃
0
𝑤𝑟

)︃
.

A controller with an integral part again stabilizes the system by making 𝑧′ → 0 and 𝑥′ → 0.
The control law 𝑢 can be written as

𝑢 =
(︁
𝑘 𝑘𝑖

)︁(︃𝑥
𝑧

)︃
+ 𝑘𝑟𝑤𝑟 .

Substituting 𝑢 into the augmented state-representation yields(︃
𝑥′

𝑧′

)︃
=
(︃
𝐴 − 𝐸𝑘 𝐸𝑘𝑖

−𝐶 0

)︃(︃
𝑥
𝑧

)︃
+
(︃
𝐸
1

)︃
𝑤𝑟 . (5.22)

The schematic of the state-space with integral control is in Figure 5.9.
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Figure 5.9: Closed-loop feedback with the integrator.

5.4.3 Linear-Quadratic-Regulator

Given the controllable system and either full-state measurements or an observable system
with a full state-state estimate, there are many choices for the control law

𝑢 = −𝑘𝑥 .

It is possible to make the eigenvalues of the closed-loop system (𝐴−𝐵𝑘) arbitrarily stable,
placing them as far as desired in the left-half of the complex plane (using the pole-placement
method discussed previously). However, overly stable eigenvalues might be very expansive
and might overwhelm the controller. The control system can also overreact to noise and
disturbances.

Choosing the best gain 𝑣𝑘 to stabilize the system is the goal of optimal control [16].
The cost

𝐽 =
∫︁ ∞

0
𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 𝑅𝑢2(𝑡)d𝑡

balances the cost of effective regulation of the state with the cost of control. The matrices
𝑄 and 𝑅 weight the cost of deviations of the state from zero and the actuation cost,
respectively. This cost is minimized when

𝑘 = 𝑅−1𝐸𝑇𝑃 .

The matrix 𝑃 can be determined by solving the algebraic Riccati equation
𝐴𝑇𝑃 + 𝐴𝑃 − 𝑃𝐸𝑅−1𝑏𝑇𝑃 + 𝑄 = 0. (5.23)

The schematic of the Linear Quadratic Regulator (LQR) connected to the system rep-
resented in the state-space representation is in Figure 5.10.

System

x' = Ax + Eu
y = x

u x

LQR

u = -Krx

Figure 5.10: LQR controller connected in the closed-loop feedback [24].
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5.4.4 Non-linear controllers

In this Subsection, several types of non-linear controllers will be introduced. This Subsec-
tion is compiled from [70] and [36].

Linearizing controllers

The central idea of this approach is to algebraically transform non-linear system dynamics
into a (fully or partly) linear one so that the linear control techniques can be applied.

The idea of simplifying the dynamics of the system is not entirely unfamiliar. It is well
known that the behaviour of the system depends considerably on a choice of reference frames
or coordinate systems. The feedback linearization can be viewed as a way to transform the
original model of the system into the equivalent model of a simpler form.

The feedback linearization can be simply applied to systems that can be described in
so-called controllability canonical form:

𝑥′ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 ,

where 𝑢 is the control input, 𝑥 is the state vector, 𝑓(𝑥) and 𝑔(𝑥) are non-linear state
functions. This form does not have the derivative of the output. To design the control input
𝑢 for the single-input non-linear system of the form

𝑥′ = 𝑓(𝑥,𝑢)
the following two steps have to be performed. The state transformation 𝑧 = 𝑧(𝑥) and the in-
put transformation 𝑢 = (𝑥,𝑣) so that the non-linear system dynamics are transformed into
an equivalent linear time-invariant dynamics in the state-space form (see Subsection 5.2.2):

𝑧′ = 𝐴𝑧 + 𝑏𝑣 .

The second step is using standard techniques (pole placement for example). The schematic
of the input-state linearization is in Figure 5.11.

v = -kTz
0 x

-

+

pole-placement loop

u = u(x,v) x' = f(x,u)

linearization loop

z = z(x)
z

Figure 5.11: Input state linearization.

Detailed information about the construction of linearizing controllers can be found
in [70].

Lyapunov based controller

The Lyapunov function (defined in Subsection 5.3.3) can be used as a control law (as a
stabilizing controller) for the system. The biggest drawback of this approach is the great
difficulty in obtaining the Lyapunov function for the system. The process of obtaining a
candidate function and verifying its properties is explained in more detail in [70] and used
practically in Chapter 6.
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5.5 Control system implementation using MTSM
The main goal of this thesis (as stated previously) is to determine if the method introduced
in Chapter 3 can be used in control systems with a particular focus on real-time systems
(strict requirements for time of calculation, accuracy etc. [48]) in the simulation model of
the real plant. The experiments in Chapter 4 indicate that the method can be used and
behaves correctly is stable, and in most cases, faster and more accurate than commonly
used methods in this context.

Because real hardware implementation of the method would require truly specialized
hardware with extremely precise AD/DA conversion (for example, most common Arduino
controllers have just 10-bit converters that would degrade the accuracy of the calculation
to the point where the proposed method would lose usefulness) the goal of the thesis has
shifted to approximate the real-system (so that both ”real“ and ”simulated“ plants are
independently modelled in software) with many real-world issues (quantization, delay, . . . )
being modelled as well. Because the thesis mainly considers how the method handles the
simulation of the simulated plant, this seems to be an acceptable solution.

The method could be effectively used to model the behaviour of the real-system and
use the obtained data to control the system (in the model-following control configuration),
as shown in Figure 5.12.

Figure 5.12: The general schematic of the system configuration used for testing.

Note that the experiments performed in this thesis consider that the method would
operate in the Model part of the system, and that is simulated in the experiments performed
in Chapter 6. The real system would, in operating conditions, be controlled by the simulated
outputs of the method. The positive properties established in Chapter 3 can be used in
most cases to increase the accuracy of the model, decrease the time of the calculation and
make the control system more robust.

137



Chapter 6

Experiments

In this Chapter, the performed experiments using MTSM in the area of system control with
a focus on real-time characteristics and behaviours are discussed in detail. Every experiment
is first introduced and then the ODEs that describe the behaviour of the selected problem
are defined. The solution obtained using the linear solver is compared to the solution of
the original non-linearized system. The solution is then repeated using the state-of-the-art
ODE solvers in MATLAB to show better performance and stability of the MTSM. Several
examples are also fully non-linear using the basic approaches from non-linear control.

All experiments were performed in MATLAB 2021a on Ryzen 5 3600XT CPU with
six cores equipped with 32 GB of RAM on Windows 11. Experiments were performed 100
times. Values in the column labelled Times of calculation or Time are taken as a mean
of calculation times. Solver 𝑀𝑇𝑆𝑀𝑜𝑝𝑡 (see Subsection 3.3.2) is used for the solution of
non-linear problems with the Modern Taylor Series Method.

6.1 Direct current motor
The DC (direct current) motor is a very interesting problem because it is widely used in
real-world systems. Further, it combines mechanical and electrical parts, so the modelling
and control of such a system can be challenging. The analysis of the control for the DC
motor was first performed in [79], where the system was presented, and the first controller
was implemented for it.

6.1.1 Mathematical description

The model is based on [10] and [74] and is in Figure 6.1.

𝑅

𝑖

𝐿

𝑒𝑚 shaft
𝐽

𝑣

𝜑, 𝑇𝑑, 𝑤

Figure 6.1: Scheme of the DC motor.
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In Figure 6.1 𝑣 is the input voltage of the motor armature, 𝑅 is the armature resistance,
𝐿 is the armature inductance, 𝑒𝑚 is the electromotive force, 𝐽 is the motor inertia, 𝜑 is
the angle of rotation of the shaft, 𝑇 is the torque of the rotor, 𝑤 is the disturbance torque
and 𝑑 is damping torque. For the mechanical part of the motor, the basic equation can be
written as

𝐽𝜑′′ = 𝑇 − 𝑤 − 𝑑 . (6.1)

In general, the torque 𝑇 generated by a motor is proportional to the armature current 𝑖
and the strength of the magnetic field. For the experiments in this thesis, the magnetic
field is assumed to be constant. This means that the torque of the motor is proportional
only to the armature current by a torque constant 𝐾𝑇

𝑇 = 𝐾𝑇 𝑖 . (6.2)

The damping torque 𝑑 can be expressed as

𝑑 = 𝑏𝜑′ , (6.3)

where 𝑏 is the motor viscous friction constant [82]. Equations (6.2) and (6.3) can be
substituted into (6.1)

𝐽𝜑′′ = 𝐾𝑇 𝑖 − 𝑤 − 𝑏𝜑′ ,

so the equation describing the mechanical part of the system can be written as

𝐽𝜑′′ + 𝑏𝜑′ = 𝐾𝑇 𝑖 − 𝑤 . (6.4)

The electrical part of the system (the armature) is described differently. From Figure 6.1,
using Kirchhoff’s circuit laws and Ohm’s law, the following equation can be obtained

𝐿𝑖′ + 𝑅𝑖 = 𝑣 − 𝑒𝑚 . (6.5)

The counter-electromotive force 𝑒𝑚 (back-electromotive force, back EMF) is proportional
to the angular velocity 𝜑′ of the shaft by a counter electromotive constant 𝐾𝑒

𝑒𝑚 = 𝐾𝑒𝜑′ . (6.6)

Equation (6.6) can be substituted into (6.5)

𝐿𝑖′ + 𝑅𝑖 = 𝑣 − 𝐾𝑒𝜑′ , (6.7)

with the resulting ODE representing the behaviour of the armature. Equations (6.4) and
(6.7) govern the dynamics of the DC motor, and for clarity, they can be written together:

𝐽𝜑′′ + 𝑏𝜑′ = 𝐾𝑇 𝑖 − 𝑤

𝐿𝑖′ + 𝑅𝑖 = 𝑣 − 𝐾𝑒𝜑′ .
(6.8)

Note that (6.8) is linear.
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6.1.2 State-space representation

The state-space variables can be set as follows

𝑥1 = 𝜑′

𝑥2 = 𝑖

the output of the system is set to 𝑥1, the input voltage 𝑣 is used as the control input 𝑢 = 𝑣.
Equation (6.8) can be rewritten

𝜑′′ = 𝑥′
1 = 𝐾𝑇

𝐽
𝑖 − 1

𝐽
𝑑 − 𝑏

𝐽
𝜑′ = 𝐾𝑇

𝐽
𝑥2 − 1

𝐽
𝑑 − 𝑏

𝐽
𝑥1 𝑥1(0) = 0

𝑖′ = 𝑥′
2 = 1

𝐿
𝑣 − 𝐾𝑒

𝐿
𝑥1 − 𝑅

𝐿
𝑥2 𝑥2(0) = 0

with the following state-space matrix-vector representation (see Section 5.4.2)

𝐴 =

⎛⎜⎝ − 𝑏
𝐽

𝑘𝑇
𝐽

−𝐾𝑒
𝐿 −𝑅

𝐿

⎞⎟⎠ , 𝑏 = 𝑒 =

⎛⎜⎝0
1
𝐿

⎞⎟⎠ , 𝐶 =
(︂

1 0
)︂

, 𝐺 =

⎛⎜⎝− 1
𝐽

0

⎞⎟⎠ .

For the definition of the matrices, see (5.10). For the numerical experiments, the following
values are going to be used:

Variable Meaning Value
𝐽 inertia of the motor 0.01 kg·m2

𝑏 viscous friction constant of the motor 0.1 N·m·s
𝐾𝑒 counter electromotive constant 0.01 V·rad−1·s−1

𝐾𝑇 torque constant 0.01 N·m·A−1

𝑅 armature resistance 1 Ω
𝐿 armature inductance 0.5 H

Table 6.1: Values for the following simulation experiments.

with the tolerances of all solvers set to be 𝑇𝑂𝐿 = 1 × 10−9, maximum simulation time
𝑡𝑚𝑎𝑥 = 10 s and step-size ℎ = 0.1 s. The behaviour of the system with constant input
voltage 𝑣 = 1 V is in Figure 6.2, the plot of the 𝑂𝑅𝐷 function is in Figure 6.3.
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Figure 6.2: DC motor without control – reaction to the input voltage 𝑣 = 1 V.
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Figure 6.3: Plot of the 𝑂𝑅𝐷 function for DC motor without control.

The results for the system without a controller are in Table 6.2.

Solver Time of calculation [s] Ratio Number of steps
MTSM 9.6335 × 10−4 – 100
ode23 4.989 45 × 10−2 51.79 10486
ode45 2.8578 × 10−3 2.97 1705
ode113 3.488 15 × 10−3 3.62 254

Table 6.2: Results of the simulation of the DC motor without a controller with a constant
input voltage 𝑣 = 1 V.

Table 6.2 shows that MTSM solves the problem faster than the selected state-of-the-art
solvers. The next step is to add a controller into the system and determine how the method
behaves.
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6.1.3 Controllability, observability

To determine if the state-space controller can be implemented, the controllability of (6.9)
has to be established. The constructed controllability matrix 𝒞

𝒞 =
(︃

0 2
2 −4

)︃

has to have rank(𝒞) = 2 equal to the number of rows of the matrix 𝐴. This is true in
this case, which means that the system is fully controllable. The observability of (6.9)
can also be verified, note that the observer based controller is not going to be used. The
observability matrix 𝒪

𝒪 =
(︃

1 0
−10 1

)︃

has to have rank(𝒪) = 2 equal to the number of rows of the matrix 𝐴 for the system to
be fully observable. Because the system is controllable, the controller can be constructed.
The observer can potentially be added because the system is observable.

6.1.4 Experiments

The feedback controller is going to be constructed according to Subsection 5.4.2, with a
reference speed that the motor has to maintain set to 𝜔𝑟 = 0.5 rad·s−1. For the selected
poles of the system

𝑝1 = 5 − 1𝑖

𝑝2 = 5 + 1𝑖
(6.9)

with parameters 𝑀𝑇𝑆𝑀ℎ = 0.2 s, 𝑘 = (12.99, −1) and 𝑘𝑟 = 13. The system stabilizes at
the reference value at approximately 𝑡 ≈ 1 s, 𝑡𝑚𝑎𝑥 = 5 s which can be seen in Figure 6.4,
the plot of the ORD function is in Figure 6.5.
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Figure 6.4: DC motor with a state-space feedback controller.
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Figure 6.5: Plot of the 𝑂𝑅𝐷 function for DC motor with state-space feedback controller.

The numerical results are in Table 6.3.

Solver Time of calculation [s] Ratio Number of steps
MTSM 3.101 × 10−4 – 25
ode23 5.925 04 × 10−2 191.07 11058
ode45 3.2057 × 10−3 10.34 1717
ode113 2.6264 × 10−3 8.47 183

Table 6.3: Results of the simulation of the DC motor with state-space full feedback con-
troller.

Additionally, the integrator can be added to state feedback to handle a potential dis-
turbance. The integral control can be added using 𝑘𝑖 = 15. The disturbance is added at
𝑡 = 4.7 s, 𝑡𝑚𝑎𝑥 = 10 s. Using the representation defined in Section 5.4.2, the behaviour of
the system is in Figure 6.6 with the plot of the 𝑂𝑅𝐷 function in Figure 6.7.
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Figure 6.6: DC motor with state-space feedback controller with added integrator and dis-
turbance.
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Figure 6.7: Plot of the 𝑂𝑅𝐷 function for for DC motor with added integrator and distur-
bance.

The numerical results are in Table 6.4.

Solver Time of calculation [s] Ratio Number of steps
MTSM 6.5875 × 10−4 – 50
ode23 8.1891 × 10−2 124.31 16248
ode45 3.972 75 × 10−3 6.03 2309
ode113 3.473 85 × 10−3 5.27 248

Table 6.4: Results of the simulation of the DC motor with state-space full feedback con-
troller with integrator and disturbance.
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The presented controllers stabilize the system and track the reference value. However,
the behaviour can be improved further by using a more optimal value of 𝑘.

Linear Quadratic Regulator

In the second experiment with a DC motor, the LQR controller is going to be used to design
the more optimal values of 𝑘. The parameters were selected as

𝑄 =
(︃

15 0
0 2

)︃
, 𝑅 = 1 , 𝑘𝑖 = 15

with 𝑘 = (0.1097, 0.7634). The behaviour of the system with the LQR controller is in
Figure 6.8, and the plot of the 𝑂𝑅𝐷 function is in Figure 6.9.
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Figure 6.8: DC motor with LQR controller.
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Figure 6.9: Plot of the 𝑂𝑅𝐷 function for DC motor with LQR controller.

The numerical results are in Table 6.5.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 6.6215 × 10−4 – 50
ode23 7.5141 × 10−2 113.48 14517
ode45 3.622 35 × 10−3 5.47 2101
ode113 3.9806 × 10−3 6.01 284

Table 6.5: Results of the simulation of the DC motor with Linear Quadratic Regulator.

Behaviour for the different values of 𝜔𝑟

The final experiment with the DC motor shows the behaviour of (6.9) for different values of
the reference value 𝜔𝑟, namely 𝜔𝑟 ∈ (1, 10, 100) rad·s−1. The full-state feedback controller
is going to be used. The results are summarized in Table 6.6.

𝜔𝑟 = 1 rad·s−1 𝜔𝑟 = 10 rad·s−1 𝜔𝑟 = 100 rad·s−1

Solver Time [s] Ratio # steps Time [s] Ratio # steps Time [s] Ratio # steps
MTSM 3.5715 × 10−4 – 25 3.751 × 10−4 – 25 3.8625 × 10−4 – 25
ode23 1.058 99 × 10−1 196.11 12592 9.371 54 × 10−2 249.8 16321 1.598 52 × 10−1 274.17 18948
ode45 3.746 × 10−3 10.49 1873 4.038 25 × 10−3 10.77 2085 4.353 15 × 10−3 11.27 2181
ode113 2.8527 × 10−3 7.99 185 3.1127 × 10−3 8.3 199 3.117 95 × 10−3 8.07 201

Table 6.6: Time of the calculation for different values of 𝜔𝑟.

The plot of the 𝑂𝑅𝐷 function for the selected reference values are in Figure 6.10.
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Figure 6.10: Plot of the 𝑂𝑅𝐷 function for 𝜔𝑟 = 1 rad·s−1 (left), 𝜔𝑟 = 10 rad·s−1 (right),
𝜔𝑟 = 100 rad·s−1 (bottom).
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Figure 6.10 shows that the values of the 𝑂𝑅𝐷 function are the highest at the beginning of
the calculation and then the function stabilizes. The higher values of 𝜔𝑟 do not influence
the 𝑂𝑅𝐷 function much.

6.1.5 Concluding remarks

The analysis of the DC motor shows the potential of the method in control systems. The
calculation of state equations using the method is several times faster than state-of-the-art
methods with different controllers and reference values. This experiment worked with the
linear variant of MTSM. The following experiments non-linear experiments are going to be
more challenging.

6.2 Pendulum
The pendulum problem is one of the most interesting problems in physics. The pendulum
has the same behaviour as an ideal oscillator (if damping is not present) and can exhibit
chaotic behaviour. For the purposes of this thesis, the problem is non-linear, which is useful
for testing the non-linear MTSM solver in the control system domain.

The control and analysis of the system with a simple pendulum was presented in [77].
This Section uses material from [5], [61] and [30].

6.2.1 Mathematical description

Let us briefly talk about the system and its physical parameters. The simple pendulum is
an idealization of the real pendulum. It consists of a point mass 𝑚, attached to the infinitely
light and rigid rod of length 𝑙, attached to the frictionless pivot point. The system is in
Figure 6.11.

l
𝜑

𝑚𝑔

Figure 6.11: Stable simple pendulum without damping.

If the pendulum is displaced from its initial position, the idealized pendulum is going
to oscillate forever with the constant amplitude (see Figure 6.12). Without damping, the
system serves as an ideal oscillator.

147



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

speed

position

Figure 6.12: Speed and position of a pendulum without any damping (initial position 𝜋
8 rad).

To derive the equation of motion for the simple pendulum, we can use Newton’s second
law

𝐹 = 𝑚𝑎 ,

where 𝐹 is the force caused by the acceleration 𝑎 on the mass 𝑚. The equation of motion
for a simple pendulum without damping is then

𝑚𝑙𝜑′′ = −𝑚𝑔 sin 𝜑, (6.10)

where 𝜑 is an angular displacement of the pendulum from the vertical position and 𝑔 is the
acceleration due to gravity. To make this problem more realistic, damping can be added to
the pendulum. The updated force diagram is in Figure 6.13.

l
𝜑

𝑑𝑙𝜑′
𝜑′

𝑚𝑔

Figure 6.13: Stable simple pendulum with damping.

With the added damping, the pendulum loses speed over time (as seen in Figure 6.14).
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Figure 6.14: Speed and position of a pendulum with damping (initial position 𝜋
8 ).

By adding an additional damping term, the equation (6.10) becomes

𝑚𝑙𝜑′′ = −𝑑𝑙𝜑′ − 𝑚𝑔 sin(𝜑) , (6.11)

where the term 𝑑𝑙𝜑′ represents damping. The term representing control for the pendulum
𝑢 can be added

𝑚𝑙𝜑′′ = −𝑑𝑙𝜑′ − 𝑚𝑔 sin(𝜑) − 𝑢 . (6.12)

The equation (6.12) can be simplified

𝜑′′ = − 𝑑

𝑚
𝜑′ − 𝑔

𝑙
sin(𝜑) − 𝑢

𝑚𝑙
. (6.13)

The resulting equation represents the angular displacement of the pendulum with damping
and possible control. Due to the fact that the numerical methods require first-order ODEs
and (6.13) does not contain a derivative of a forcing function, the Method of Derivative
Order Reduction (see Subsection 2.6.1) can be used. The resulting system

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
sin(𝜑) − 𝑢

𝑚𝑙
𝜑′ = 𝜔 ,

(6.14)

where 𝜔 represents the angular speed of the pendulum and 𝜑 represents the position of the
pendulum. To use MTSM with this system of ODEs, the term sin(𝜑) has to be replaced
with the generating equations (3.4)

𝑞 = sin(𝜑) 𝑟 = cos(𝜑)
𝑞′ = cos(𝜑)𝜔 = 𝑟𝜔 𝑟′ = − sin(𝜑)𝜔 = −𝑞𝜔
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with initial conditions 𝑞(0) = sin(𝜑0) and 𝑟(0) = cos(𝜑0). The generated auxiliary ODEs
can be added to the (6.14) so that the final representation of the problem becomes

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
𝑞 − 1

𝑚𝑙
𝑢 𝜔(0) = 𝜔0

𝜑′ = 𝜔 𝜑(0) = 𝜑0

𝑞′ = 𝑟𝜔 𝑞(0) = sin(𝜑0)
𝑟′ = −𝑞𝜔 𝑟(0) = cos(𝜑0) .

(6.15)

The parameters of the experiment are summarized in Table 6.7.

Variable Meaning Value
𝑑 damping 1
𝑚 mass of the point mass 1.5 kg
𝑔 gravitational acceleration 9.81 m·s−2

𝑙 length of the rod 1.5 m

Table 6.7: Values for the pendulum simulation experiments.

For 𝑢 = 0 (system without control), the matrix-vector representation follows

𝑦 =

⎛⎜⎜⎜⎝
𝜔
𝜑

sin(𝜑)
cos(𝜑)

⎞⎟⎟⎟⎠ 𝐴 =

⎛⎜⎜⎜⎝
− 𝑑

𝑚 0 −𝑔
𝑙 0

1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ 𝐵1 =

⎛⎜⎜⎜⎝
0 0
0 0
1 0
0 −1

⎞⎟⎟⎟⎠ 𝑦𝑗𝑘 =
(︃

4 1
3 1

)︃
. (6.16)

The system can be experimented with to determine if the non-linear implementation of
the method handles this problem at all. For initial position 𝜑0 = 𝜋

2 rad, initial speed
𝜔0 = 0 rad·s−1, step size 𝑀𝑇𝑆𝑀ℎ = 0.1 s, set tolerance 𝑇𝑂𝐿 = 1 × 10−9 (with the state-
of-the-art solvers achieving the similar precision) and 𝑡𝑚𝑎𝑥 = 5 s, the numerical results (as
a mean from 100 runs) are in Table 6.8.

Solver Time of calculation [s] Ratio
MTSM 1.293 32 × 10−3 –
ode23 1.952 18 × 10−2 15.1
ode45 1.648 12 × 10−3 1.27
ode113 2.852 88 × 10−3 2.21

Table 6.8: Results for the non-linear stable pendulum without control system.

Table 6.8 shows that the method performs the computation faster than the state-of-the-
art methods. The error in the last step for the method was approximately 1 × 10−6. The
function describing the order of the method is in Figure 6.15. It shows that the function
fluctuates (as is typical for non-linear problems).
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Figure 6.15: The 𝑂𝑅𝐷 function for the non-linear pendulum.

Linearization

To linearize (6.14), the procedure established in Subsection 5.2.4 can be used. The equilib-
rium points can be calculated using (5.17) (for 𝜑 = 0 rad or 𝜑 = 𝜋 rad)

𝑥* =
(︃

0
0

)︃
, 𝑥** =

(︃
0
𝜋

)︃
. (6.17)

The partial derivatives of 𝜔 = 𝑥1 and 𝜑 = 𝑥2 from (6.14) can be calculated as follows:

𝜕𝑥1
𝜕𝑥1

= − 𝑑

𝑚

𝜕𝑥1
𝜕𝑥2

= −𝑔

𝑙
cos(𝜑)

𝜕𝑥2
𝜕𝑥1

= 1 𝜕𝑥2
𝜕𝑥2

= 0

𝜕𝑥1
𝜕𝑢1

= − 𝑢

𝑚𝑙

𝜕𝑥2
𝜕𝑢2

= 0 .

Linearizing around 𝑥*, the linearized system can be written as

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
𝜑

𝜑′ = 𝜔
(6.18)

and in the matrix-vector notation

𝑥′ = 𝐴𝑥 + 𝑒𝑢 =
(︃

− 𝑑
𝑚 −𝑔

𝑙
1 0

)︃(︃
𝜔
𝜑

)︃
+
(︃

− 1
𝑚𝑙
0

)︃
𝑢 , (6.19)

with initial conditions 𝜔0 as the initial velocity and 𝜑0 as the initial position of the pen-
dulum being close to the 𝑥*. The behaviour of the system for initial speed 𝜔0 = 0 rad·s−1

and initial position 𝜑0 = 𝜋
7 rad, tolerances for all solvers were set to 𝑇𝑂𝐿 = 1 × 10−9 and

𝑡𝑚𝑎𝑥 = 5 s. Note that for 𝜑0 = 𝜋
2 rad the difference between linear and non-linear solution

is approximately 3.362 41 × 10−1. The numerical results are in Table 6.9.
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Solver Time of calculation [s] Ratio
MTSM 1.9693 × 10−3 –
ode23 2.588 73 × 10−2 13.15
ode45 7.0919 × 10−3 3.6
ode113 5.9395 × 10−3 3.02

Table 6.9: Results for the stable linear pendulum without a controller.

Table 6.9 shows that MTSM can solve the problem faster than the state-of-the-art methods
selected for comparison. The plot of the ORD function is in Figure 6.16.
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Figure 6.16: The 𝑂𝑅𝐷 function for the linear pendulum.

The 𝑂𝑅𝐷 function does not oscillate as much as with the non-linear solution (Fig-
ure 6.15) and is nearly constant during computation. Note that this problem is going to be
relatively easy from a control standpoint because the pendulum is not upright.

6.2.2 Experiments with linear model

The experiments using the linear model obtained by linearizing the original non-linear
equation are going to be discussed first.

PID controller

The PID controller can be used to control the linearized model of the pendulum (6.19).
The model uses the structure for the PID controller established in Subsection 5.4.1. The
matrix-vector representation is augmented

𝐴 =

⎛⎜⎝0 0 −𝑘𝑖

1 −𝑘 − 𝑘𝑑 −𝑔
𝑙 − 𝑘𝑝

0 1 0

⎞⎟⎠ , 𝑏 =

⎛⎜⎝𝜔𝑟𝑘𝑖

𝜔𝑟𝑘𝑝

0

⎞⎟⎠ ,𝑦0 =

⎛⎜⎝ 0
0
𝜋
12

⎞⎟⎠ .

The parameters of calculation are set to 𝑡𝑚𝑎𝑥 = 20 s, 𝑀𝑇𝑆𝑀ℎ = 0.1 s, and tolerances for
all solvers 𝑇𝑂𝐿 = 1 × 10−9. Parameters of the controller were set to 𝜔𝑟 = 𝜋

8 , 𝑘𝑝 = 1, 𝑘𝑖 = 5
and 𝑘𝑑 = 3. The numerical results for this experiment are in Table 6.10.
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Solver Time of calculation [s] Ratio
MTSM 6.298 16 × 10−4 –
ode23 1.437 76 × 10−2 22.83
ode45 1.453 79 × 10−3 2.31
ode113 2.245 91 × 10−3 3.57

Table 6.10: Results for the stable linear pendulum with PID controller.

The plot for the position of the pendulum is in Figure 6.17 with the plot of the 𝑂𝑅𝐷
function in Figure 6.18.

0 5 10 15 20

Simulation time [s]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
o
s
it
io

n
 [
ra

d
]

Figure 6.17: Plot of position 𝜑 for the pendulum with PID controller.
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Figure 6.18: Plot of 𝑂𝑅𝐷 function for the pendulum with PID controller.
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Full-state feedback controller

The full-state feedback controller using state-space modelling can also be constructed using
(6.14) for example. As stated above, for small angles, sin(𝜑) ≈ 𝜑, so that

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
𝜑 − 1

𝑙𝑚
𝑢

𝜑′ = 𝜔 .
(6.20)

The state variables

𝑥′
1 = 𝜔′

𝑥′
2 = 𝜑′

represent the angular speed and angular position of the pendulum. Rewriting (6.20) using
the state variables

𝑥′
1 = − 𝑑

𝑚
𝑥1 − 𝑔

𝑙
𝑥2 − 1

𝑙𝑚
𝑢

𝑥′
2 = 𝑥1 .

(6.21)

Using (6.21), the matrix-vector representation of the state equations can be expressed as

𝐴 =
(︃

− 𝑑
𝑚 −𝑔

𝑙
1 0

)︃
𝑥0 =

(︃
𝑥1(0) = 𝜔0
𝑥2(0) = 𝜑0

)︃
, 𝑏 = 𝑒 =

(︃
− 1

𝑙𝑚
0

)︃
. (6.22)

To determine if the state-space controller can be implemented, the controllability and ob-
servability of the (6.22) has to be established. The controllability matrix 𝒞

𝒞 =
(︃

0.4444 −0.2963
0 0.4444

)︃

with rank(𝒞) = 2 equal to the number of rows of the matrix 𝐴, which means that the
system is controllable. The observer is not going to be used, however, to determine the
potential viability, the observability matrix 𝒪

𝒪 =
(︃

0 1
1 0

)︃

with rank(𝒞) = 2 equal to the number of rows of the matrix 𝐴, which means that the
system is observable. Because the system is controllable, the feedback controller can be
constructed, and the observer might also be constructed, due to the fact, that the system
is observable. Using (5.20) for 𝜑𝑟 = 0.1 rad, 𝑥0 = (2, 0)𝑇 and 𝑘 = (3, 4.7849) the following
output is obtained.
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Figure 6.19: Steady state error.

The steady-state error is obvious, so (5.22) can be used to add an integrator. For 𝑘𝑖 = 7
and 𝑘𝑟 = 29.06999 the behaviour of the system is in Figure 6.20.
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Figure 6.20: Plot of angular position 𝜑 of the pendulum for 𝜑𝑟 = 0.1 rad.

This controller eliminates the steady state error. The numerical results are in Table 6.11,
and the plot of the 𝑂𝑅𝐷 function is in Figure 6.21.

Solver Time of calculation [s] Ratio
MTSM 2.9739 × 10−3 –
ode23 1.471 02 × 10−1 49.46
ode45 9.281 45 × 10−3 3.12
ode113 8.631 35 × 10−3 2.9

Table 6.11: Results for the stable linear pendulum with the state-space controller.
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Figure 6.21: Plot of 𝑂𝑅𝐷 function.

6.2.3 Experiments with non-linear model

Several experiments with non-linear model can also be performed.

Linearizing controller

When solving the pendulum using (6.16), the system can either be linearized before the
calculation starts (so that (6.18) can be used) or a linearizing controller can be implemented
that removes the non-linearity differently. The experiment with this type of controller was
published in [80]. The problem is defined by augmenting the system of equations (6.15)
by adding the forcing term 𝑢 to the highest derivative. The modified system contains the
added control term:

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
𝑎 + 𝑢 𝜔(0) = 𝜔0

𝜑′ = 𝜔 𝜑(0) = 𝜑0

𝑎′ = 𝑏𝜔 𝑎(0) = sin(𝜑0)
𝑏′ = −𝑎𝜔 𝑏(0) = cos(𝜑0)

(6.23)

where 𝑢 is the added forcing term. When using a linearizing controller, the non-linear terms
of the equation have to be removed. In this case, only non-linear term is −𝑔

𝑙 sin(𝜑). The
equation of the controller can therefore be written as

𝑢 = 𝑔

𝑙
sin(𝜑) + 𝑣 , (6.24)

where 𝑣 is the equation of the controller itself. For the experiment, PI controller was selected
with the following equation

𝑣 = 𝑠𝑝 − 𝑦 + 2(𝑠𝑝′ − 𝑦′) + 𝑠𝑝′′ , (6.25)

where 𝑠𝑝 is the chosen set-point and 𝑦 is the selected output. For the experiment, 𝑠𝑝 = cos(𝑡)
(the pendulum should move according to the cosine function) and 𝑦 = 𝜑 (the output of the
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controller is the position of the pendulum). Substituting the selected values into (6.25)
gives the following equation

𝑣 = cos(𝑡) − 𝜑 + 2(− sin(𝑡) − 𝜔) − cos(𝑡) , (6.26)

and the full control law

𝑢 = 𝑔

𝑙
sin(𝜑) + cos(𝑡) − 𝜑 + 2(− sin(𝑡) − 𝜔) − cos(𝑡) . (6.27)

To use MTSM, the equations have to be transformed into a system of autonomous ODEs
with just elementary mathematical operations. Equation (6.27) contains the sin(𝑡) and
cos(𝑡) terms that have to be removed using another set of auxiliary ODEs

𝑐 = sin(𝑡)
𝑐′ = cos(𝑡) = 𝑑 𝑐(0) = sin(0)
𝑑 = cos(𝑡)
𝑑′ = − sin(𝑡) = −𝑐 𝑑(0) = cos(0) ,

which is added to (6.23) so that the complete system becomes (6.28).

𝜔′ = − 𝑑

𝑚
𝜔 − 𝑔

𝑙
𝑎 + 𝑔

𝑙
𝑎 + 𝑑 − 𝜑 − 2𝑐 − 2𝜔 − 𝑑 𝜔(0) = 𝜔0

𝜑′ = 𝜔 𝜑(0) = 𝜑0

𝑎′ = 𝑏𝜔 𝑎(0) = sin(𝜑0)
𝑏′ = −𝑎𝜔 𝑏(0) = cos(𝜑0)
𝑐′ = 𝑑 𝑐(0) = sin(0)
𝑑′ = −𝑐 𝑑(0) = cos(0)

(6.28)

The system (6.28) can be transformed into the matrix-vector notation:

𝑦0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜔
𝜑

sin(𝜑)
cos(𝜑)
sin(𝑡0)
cos(𝑡0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

− 𝑑
𝑚 − 2 0 0 −2 0 0

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑏 = 𝑒 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 −1
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑦𝑗𝑘 =

(︃
4 1
3 1

)︃
.

(6.29)

For 𝑡𝑚𝑎𝑥 = 20 s, 𝑀𝑇𝑆𝑀ℎ = 0.1 s, 𝑑 = 1, 𝑚 = 1 kg, 𝑔 = 10 m·s−2, 𝐿 = 2 m with initial
conditions 𝜔0 = 0 rad·s−1 and 𝜑0 = 𝜋

2 rad the results are in the Table 6.12.
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Solver Time of calculation [s] Ratio
MTSM 1.321 506 × 10−2 –
ode23 3.779 570 9 × 10−1 28.6
ode45 2.819 609 × 10−2 2.1
ode113 1.349 621 × 10−2 1.1

Table 6.12: Results for the linearizing controller with 𝑀𝑇𝑆𝑀ℎ = 0.1 s.

The behaviour of the pendulum is in Figure 6.22. The pendulum follows the function set
as the set point (reference value).

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-1

-0.5

0

0.5

1

1.5

2

Figure 6.22: Plot of the speed (𝜔) and the position (𝜑) of the pendulum controlled by the
linearizing controller.

The plot of the 𝑂𝑅𝐷 function is in Figure 6.23. Due to the fact that the introduced control
𝑢 removes non-linear terms during the calculation, the system exhibits linear behaviour.
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Figure 6.23: 𝑂𝑅𝐷 function for the linearizing controller with 𝑀𝑇𝑆𝑀ℎ = 0.1 s.
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If the sampling rate was set higher (for example, the information about the current
state of the pendulum would be obtained twice per second, i.e. ℎ = 0.5 s), the results would
be even more favourable, as shown in Table 6.13.

Solver Time of calculation [s] Ratio
MTSM 5.536 432 × 10−3 –
ode23 5.113 741 86 × 10−1 92.4
ode45 2.638 108 × 10−2 4.8
ode113 9.467 839 × 10−3 1.71

Table 6.13: Results for the linearizing controller with ℎ = 0.5 s.

The accuracy and the stability of MTSM are higher than state-of-the-art methods, which
would mean more headroom during the integration step.

Lyapunov-based control system

As the final example, consider the pendulum system based on the Lyapunov function,
described in Section 5.3. This example is going to show the usefulness of non-linear models.
The controller is going to stabilize the pendulum with a range of initial conditions

𝜔0 ∈ (−10, 10)
𝜑0 ∈ (−10, 10) .

Without a controller, the pendulum stabilizes into its equilibrium as shown in Figure 6.24.

Figure 6.24: Pendulums with a range of initial speeds and positions without a controller.
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The candidate function that can be used to stabilize the pendulum can be selected as,
for example

𝑢 = −𝑔𝑥2 − 𝑔 sin(𝑥2)
𝑙

.

The function is visualized in Figure 6.25. We can check if this function satisfies the condi-
tions for the Lyapunov function. It has to be positive everywhere except the equilibrium
point of the pendulum.

Figure 6.25: Plot of the candidate function.

The derivative of the function has to be negative everywhere for the system to be stable
(see Figure 6.26).

Figure 6.26: Plot of the derivative of the candidate function.

The Figures show that the selected function can be used as a Lyapunov function. Us-
ing (6.15), the value of input 𝑢 can be substituted, and after simplifying the system, the
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augmented matrix-vector representation is obtained:

𝑦 =

⎛⎜⎜⎜⎝
𝜔
𝜑

sin(𝜑)
cos(𝜑)

⎞⎟⎟⎟⎠ 𝐴 =

⎛⎜⎜⎜⎝
− 𝑘

𝑚 −𝑔
𝑙 −2𝑔

𝑙 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ 𝐵1 =

⎛⎜⎜⎜⎝
0 0
0 0
1 0
0 −1

⎞⎟⎟⎟⎠ 𝑦𝑗𝑘 =
(︃

4 1
3 1

)︃
. (6.30)

For 𝑡𝑚𝑎𝑥 = 100 s, 𝑀𝑇𝑆𝑀ℎ = 0.2 s, tolerances for all used solvers 𝑇𝑂𝐿 = 1 × 10−9 and
ℎ𝑠𝑐𝑎𝑙𝑒 = 1 the numerical results are in Table 6.14 and the plot of the 𝑂𝑅𝐷 function is in
Figure 6.27.

Solver Time of calculation [s] Number of steps Ratio
MTSM 8.5387 × 10−3 500 –
ode23 3.795 45 × 10−1 81008 44.45
ode45 1.334 23 × 10−2 9553 1.56
ode113 1.352 26 × 10−2 1072 1.58

Table 6.14: Results for the Lyapunov based control system for ℎ = 0.2 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 1.
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Figure 6.27: The plot of the 𝑂𝑅𝐷 function for ℎ𝑠𝑐𝑎𝑙𝑒 = 1.

When using additional optimizations implemented for non-linear MTSM, the perfor-
mance can be improved substantially. Using ℎ𝑠𝑐𝑎𝑙𝑒 = 2, the numerical results are in Ta-
ble 6.15 and 𝑂𝑅𝐷 function for ℎ𝑠𝑐𝑎𝑙𝑒 = 2 is in Figure 6.28.

Solver Time of calculation [s] Number of steps Ratio
MTSM 4.5361 × 10−3 153 –
ode23 3.816 95 × 10−1 81008 84.15
ode45 1.456 22 × 10−2 9553 3.21
ode113 1.432 16 × 10−2 1072 3.16

Table 6.15: Results for the Lyapunov based control system for ℎ = 0.2 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.
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Figure 6.28: The plot of the 𝑂𝑅𝐷 function for ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

The phase plot of the controlled system is in Figure 6.29, which shows that all pendulums
stabilized in the original equilibrium point (0, 0).

Figure 6.29: The phase plot of the experiment.

6.2.4 Concluding remarks

The pendulum problem showed the potential of MTSM with linear and non-linear control
systems. The method performs better than state-of-the-art solvers in all tested examples
and for all examined controllers by a wide margin. The implemented optimizations for the
non-linear solver, detailed in Subsection 3.3.2, are beneficial.
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6.3 Inverted pendulum on a cart
The experiments with just a simple pendulum may seem relatively simple. For a more
demanding system, the inverted pendulum on a moving cart was chosen. It presents another
set of challenges for designing a working controller, and the resulting system of ODEs is
more complicated. The inverted pendulum on a cart problem is one of the most commonly
analysed problems in modern control theory, and it represents a benchmark problem [13]
due to its challenging nature. The problem is underactuated and has fewer control inputs
then degrees of freedom [63], [24] and [29]. It is also highly non-linear, and the pendulum
can behave chaotically.

6.3.1 Mathematical description

The problem can be visualized in Figure 6.30, where 𝑥(𝑡) represents the position of the cart
and 𝜑(𝑡) is the angle referenced to the vertically upright position.

𝑥0

𝑦

M

P

l

𝜑

𝑚𝑔𝑙 cos(𝜑)

𝑙 sin(𝜑)𝑥

𝑢

Figure 6.30: Inverted pendulum on the cart.

Assume that the rod of the pendulum and the hinge is massless and frictionless. The
mass of the cart is denoted as 𝑀 [kg], the mass of the point of the top of the pendulum as
𝑚 [kg]. The external force 𝑢 [N] is directed at the system in the 𝑥-axis direction.

The forces acting on the system have to be analysed. First, the forces acting on the
cart and the pendulum in the 𝑥-axis direction. The sum of forces acting on the ball and
the cart has to be equal to the external force 𝑢:

𝑀𝑥′′ + 𝑚𝑥′′
𝐺 = 𝑢 , (6.31)

where 𝑥𝐺 is the time-dependent centre of gravity given by the set of coordinates (𝑥𝐺, 𝑦𝐺).
According to Figure 6.30, the coordinates can be calculated as

𝑥𝐺 = 𝑥 + 𝑙 sin(𝜑)
𝑦𝐺 = 𝑙 cos(𝜑)

(6.32)

where 𝑙 is the length of the rod of the pendulum. After substituting 𝑥𝐺 into (6.31) (Ap-
pendix H.1) the final equation for the force in the x-axis direction can be written as

(𝑀 + 𝑚) 𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢 . (6.33)
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The torque balance of the system for the pendulum can be obtained using a similar principle.
The torque created by acceleration force is balanced by the torque created by gravity. The
resulting torque balance can therefore be written as

(𝐹𝑥 cos(𝜑)) 𝑙 − (𝐹𝑦 sin(𝜑)) 𝑙 = (𝑚𝑔 sin(𝜑)) 𝑙 , (6.34)

where 𝐹𝑥 and 𝐹𝑦 are the forces in the 𝑥 and 𝑦 direction respectively. After calculating the
forces (Appendix H.2) the following system of non-linear ODEs is obtained:

(𝑀 + 𝑚) 𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢 (6.35)
cos(𝜑)𝑥′′ + 𝑙𝜑′′ = 𝑔 sin(𝜑) . (6.36)

This system defines the pendulum on the cart system from Figure 6.30. The equations
(6.35) and (6.36) have to be substituted into one another to obtain the final ODEs for the
position of the cart and the angle of the pendulum.

For the position of the cart (Appendix H.3) the final ODE can be written as

𝑥′′ = 𝑢 + 𝑚𝑙 sin(𝜑)𝜑′2 − 𝑚𝑔 sin(𝜑) cos(𝜑)
𝑀 + 𝑚 sin2(𝜑) , (6.37)

and for the angle of the pendulum (Appendix H.4), the final ODE can be written as

𝜑′′ = −𝑢 cos(𝜑) + (𝑀𝑔 + 𝑚𝑔) sin(𝜑) − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝑀𝑙 + 𝑚𝑙 sin2(𝜑) . (6.38)

6.3.2 Used constants

For the following simulation experiments, the parameters of the systems were set according
to Table 6.16.

Variable Meaning Value
𝑚 mass of the point mass 1.5 kg
𝑀 mass of the cart 10 kg
𝑔 gravitational acceleration 9.81 m·s−2

𝑙 length of the rod 1.5 m

Table 6.16: Values for the inverted pendulum on the cart simulation experiments.

6.3.3 Non-linear model control

Equations (6.38) and (6.37) cannot be solved as they are. They have to be transformed
into a system of the first-order ODEs (see Section 3.4), and the states of the system have
to be established for further analysis.
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Transformation into state-space equations

For this example, the state variables are going to be denoted as 𝑦, because 𝑥 was chosen to
represent the position of the cart. The states of the system are going to represent:

• angular position of the pendulum 𝜑 [rad],

• angular speed of the pendulum 𝜑′ [rad·s−1],

• position of the cart 𝑥 [m],

• speed of the cart 𝑥′ [m·s−1].

The state variables for the states can be written as follows

𝑦1 = 𝜑′ 𝑦′
1 = 𝜑′′

𝑦2 = 𝜑 𝑦′
2 = 𝜑′

𝑦3 = 𝑥′ 𝑦′
3 = 𝑥′′

𝑦4 = 𝑥 𝑦′
4 = 𝑥′

therefore equations (6.38) and (6.37) can be substituted into state definitions, so the state
equations can be rewritten as

𝑦′
1 = −𝑢 cos(𝑦2) + (𝑀𝑔 + 𝑚𝑔) sin(𝑦2) − 𝑚𝑙 sin(𝑦2) cos(𝑦2)𝑦1𝑦1

𝑀𝑙 + 𝑚𝑙 sin2(𝑦2) 𝑦1(0) = 𝜑′
0

𝑦′
2 = 𝑦1 𝑦2(0) = 𝜑0

𝑦′
3 = 𝑢 + 𝑚𝑙 sin(𝑦2)𝑦1𝑦1 − 𝑚𝑔 sin(𝑦2) cos(𝑦2)

𝑀 + 𝑚 sin2(𝑦2) 𝑦3(0) = 𝑥′
0

𝑦′
4 = 𝑦3 𝑦4(0) = 𝑥0 .

(6.39)

Transformation for MTSM

System (6.39) contains operation division and sine and cosine functions. Therefore it cannot
be solved using MTSM. Transformations defined in Section 3.4 have to be performed to
remove these operations from the system. Note that the additional equations are going to
be represented as additional states of the system. First, the transformations for the sine
and cosine functions can be performed

𝑦5 = sin(𝑦2)
𝑦′

5 = cos(𝑦2)𝑦′
2 = cos(𝑦2)𝑦1

𝑦6 = cos(𝑦2)
𝑦′

6 = − sin(𝑦2)𝑦′
2 = − sin(𝑦2)𝑦1

𝑦′
5 = 𝑦6𝑦1 𝑦5(0) = sin(𝑦2(0)) = sin(𝜑0)

𝑦′
6 = −𝑦5𝑦1 𝑦6(0) = cos(𝑦2(0)) = cos(𝜑0)

𝑦7 = sin2(𝑦2) = 𝑦2
5

𝑦′
7 = 2𝑦5𝑦′

5 = 2𝑦5𝑦6𝑦1 𝑦7(0) = 𝑦5(0)2 .
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The denominator 1
𝑀𝑙+𝑚𝑙 sin2(𝑦2) can be replaced using the following system

𝑦8 = 𝑀𝑙 + 𝑚𝑙𝑦7

𝑦′
8 = 𝑚𝑙𝑦′

7 = 𝑚𝑙(2𝑦5𝑦6𝑦1) = 2𝑚𝑙𝑦5𝑦6𝑦1 𝑦8(0) = 𝑀𝑙 + 𝑚𝑙𝑦7(0)

𝑦9 = 1
𝑦8

= 𝑦−1
8

𝑦′
9 = −𝑦−2

8 𝑦′
8 = −𝑦2

9𝑦′
8 = −𝑦2

9(2𝑚𝑙𝑦5𝑦6𝑦1)

= −2𝑚𝑙𝑦9𝑦9𝑦5𝑦6𝑦1 𝑦9(0) = 1
𝑦8(0) .

The denominator 1
𝑀+𝑚 sin2(𝑦2) can be replaced using the following system

𝑦10 = 𝑀 + 𝑚𝑦7

𝑦′
10 = 𝑚𝑦′

7 = 𝑚(2𝑦5𝑦6𝑦1) = 2𝑚𝑦5𝑦6𝑦1 𝑦10(0) = 𝑀 + 𝑚𝑦7(0)

𝑦11 = 1
𝑦10

= 𝑦−1
10

𝑦′
11 = −𝑦10−2𝑦′

10 = −𝑦2
11𝑦′

10 = −𝑦2
11(2𝑚𝑦5𝑦6𝑦1)

= −2𝑚𝑦11𝑦11𝑦5𝑦6𝑦1 𝑦11(0) = 1
𝑦10(0) .

Additionally, the sin(𝑦1) cos(𝑦1) can be also replaced:

𝑦12 = sin(𝑦2) cos(𝑦2) = 𝑦5𝑦6

𝑦′
12 = 𝑦′

5𝑦6 + 𝑦5𝑦′
6 = 𝑦6𝑦1𝑦6 − 𝑦5𝑦5𝑦1 𝑦12(0) = 𝑦5(0)𝑦6(0) .

Substituting the obtained ODEs into (6.39) and simplifying

𝑦′
1 = −𝑢𝑦6𝑦9 + (𝑀𝑔 + 𝑚𝑔)𝑦5𝑦9 − 𝑚𝑙𝑦12𝑦1𝑦1𝑦9 𝑦1(0) = 𝜑′

0

𝑦′
2 = 𝑦1 𝑦2(0) = 𝜑0

𝑦′
3 = 𝑢𝑦11 + 𝑚𝑙𝑦5𝑦1𝑦1𝑦11 − 𝑚𝑔𝑦12𝑦11 𝑦3(0) = 𝑥′

0

𝑦′
4 = 𝑦3 𝑦4(0) = 𝑥0

𝑦′
5 = 𝑦6𝑦1 𝑦5(0) = sin(𝑦2(0)) = sin(𝜑0)

𝑦′
6 = −𝑦5𝑦1 𝑦6(0) = cos(𝑦2(0)) = cos(𝜑0)

𝑦′
7 = 2𝑦12𝑦1 𝑦7(0) = 𝑦5(0)2

𝑦′
8 = 2𝑚𝑙𝑦12𝑦1 𝑦8(0) = 𝑀𝑙 + 𝑚𝑙𝑦7(0)

𝑦′
9 = −2𝑚𝑙𝑦9𝑦9𝑦12𝑦1 𝑦9(0) = 1

𝑦8(0)
𝑦′

10 = 2𝑚𝑦12𝑦1 𝑦10(0) = 𝑀 + 𝑚𝑦7(0)

𝑦′
11 = −2𝑚𝑦11𝑦11𝑦12𝑦1 𝑦11(0) = 1

𝑦10(0)
𝑦′

12 = 𝑦6𝑦1𝑦6 − 𝑦5𝑦5𝑦1 𝑦12(0) = 𝑦5(0)𝑦6(0) .

(6.40)

The matrix-vector representation of (6.40) is in Appendix G.1. For 𝑢 = 0 and initial
conditions 𝑦1(0) = 0 rad·s−1, 𝑦2(0) = 𝜋 + 0.1 rad, 𝑦3(3) = 0 m·s−1 and 𝑦4(0) = −1 m,
𝑀𝑇𝑆𝑀ℎ = 0.5 s the results are visualized in Figure 6.31.
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Figure 6.31: The behaviour of the pendulum on the cart without a controller.

The plot of the 𝑂𝑅𝐷 function is in Figure 6.32 with the numerical results in Table 6.17.
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Figure 6.32: Plot of the 𝑂𝑅𝐷 function with pendulum on the cart without a controller.

Solver Time of calculation [s] Number of steps Ratio
MTSM 4.623 61 × 10−3 20 –
ode23 2.747 23 × 10−1 45288 59.42
ode45 1.0621 × 10−2 5077 2.3
ode113 5.384 83 × 10−3 387 1.16

Table 6.17: Numerical results for (6.40), 𝑀𝑇𝑆𝑀ℎ = 0.5 s.
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6.3.4 Linear representation of the system

The linearization of the non-linear system (6.39) can again be performed. For the equilib-
rium point 𝑦*

𝑦* =
(︃

𝜑 = 𝜋
𝑥 = 0

)︃
the linearization can be calculated using the method outlined in Subsection 5.2.4:

𝜕𝑦1
𝜕𝑦1

= 0 𝜕𝑦1
𝜕𝑦2

= −(𝑀 + 𝑚)𝑔
𝑀𝑙

𝜕𝑦1
𝜕𝑦3

= 0 𝜕𝑦1
𝜕𝑦4

= 0

𝜕𝑦2
𝜕𝑦1

= 1 𝜕𝑦2
𝜕𝑦2

= 0 𝜕𝑦2
𝜕𝑦3

= 0 𝜕𝑦2
𝜕𝑦4

= 0

𝜕𝑦3
𝜕𝑦1

= 0 𝜕𝑦3
𝜕𝑦2

= 𝑚𝑔

𝑀

𝜕𝑦3
𝜕𝑦3

= 0 𝜕𝑦3
𝜕𝑦4

= 0

𝜕𝑦4
𝜕𝑦1

= 0 𝜕𝑦4
𝜕𝑦2

= 0 𝜕𝑦4
𝜕𝑦3

= 1 𝜕𝑦4
𝜕𝑦4

= 0

𝜕𝑦1
𝜕𝑢

= 1
𝑀𝑙

𝜕𝑦2
𝜕𝑢

= 0 𝜕𝑦3
𝜕𝑢

= 1
𝑀

𝜕𝑦4
𝜕𝑢

= 0 .

(6.41)

The performed linearization can be written in a matrix-vector notation

𝑥′ = 𝐴𝑥 + 𝑒𝑢 =

⎛⎜⎜⎜⎝
0 − (𝑀+𝑚)𝑔

𝑀𝑙 0 0
1 0 0 0
0 𝑚𝑔

𝑀 0 0
0 0 1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝜔
𝜑
𝑣
𝑥

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
− 1

𝑀𝑙
0
1

𝑀
0

⎞⎟⎟⎟⎠𝑢 . (6.42)

6.3.5 Non-linear model experiment

As a controller, the full state feedback controller is going to be implemented, as discussed
in Subsection 5.4.2. For this experiment, the linear system (6.42) is going to be used to
calculate 𝑘 using the pole-placement method. Note that the eigenvalues of the (6.42) are
0 + 2.4261𝑖, 0 − 2.4261𝑖, 0, 0, therefore the system is unstable. To successfully apply the
full state controller, the system (6.42) has to be controllable. The controllability matrix

𝒞 =

⎛⎜⎜⎜⎝
0.1 0 −0.5886 0
0 0.1000 0 −0.5886

0.2 0 0.1962 0
0 0.2 0 0.1962

⎞⎟⎟⎟⎠
has the rank equal to the number of rows of 𝐴, which means that the system is fully
controllable and the controllers can be designed. For the new values of poles set by vector 𝑝

𝑝 =

⎛⎜⎜⎜⎝
−1.8
−1.7
−1.6
−1.5

⎞⎟⎟⎟⎠ .

The vector 𝑘 can be calculated by using the Ackerman function. The obtained value is

𝑘 =
(︁
67.4439 118.8780 21.0374 8.6380

)︁
.
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The newly calculated vector 𝑘 can be used to control the non-linear system (6.40) to achieve
the reference value 𝑤𝑟

𝑤𝑟 =

⎛⎜⎜⎜⎝
𝜑′

𝑟 = 0
𝜑𝑟 = 𝜋
𝑣𝑟 = 0
𝑥𝑟 = 1

⎞⎟⎟⎟⎠ .

The (5.20) can be used:

𝑢 = −𝑘1(𝑦1 − 𝑟1) − 𝑘2(𝑦2 − 𝑟2) − 𝑘3(𝑦3 − 𝑟3) − 𝑘4(𝑦4 − 𝑟4) + 𝑘𝑤𝑟 =
= −𝑘1𝑦1 − 𝑘2𝑦2 − 𝑘3𝑦3 − 𝑘4𝑦4 + 𝑘𝑤𝑟 .

(6.43)

The control input 𝑢 can be substituted into (6.40)

𝑦′
1 = 𝑘1𝑦1𝑦6𝑦9 + 𝑘2𝑦2𝑦6𝑦9 + 𝑘3𝑦3𝑦6𝑦9 + 𝑘4𝑦4𝑦6𝑦9 − 𝑘𝑟𝑦6𝑦9+

+ (𝑀𝑔 + 𝑚𝑔)𝑦5𝑦9 − 𝑚𝑙𝑦12𝑦1𝑦1𝑦9 𝑦1(0) = 𝜑′
0

𝑦′
2 = 𝑦1 𝑦2(0) = 𝜑0

𝑦′
3 = −𝑘1𝑦1𝑦11 − 𝑘2𝑦2𝑦11 − 𝑘3𝑦3𝑦11 − 𝑘4𝑦4𝑦11 + 𝑘𝑟𝑦11+

+ 𝑚𝑙𝑦5𝑦1𝑦1𝑦11 − 𝑚𝑔𝑦12𝑦11 𝑦3(0) = 𝑥′
0

𝑦′
4 = 𝑦3 𝑦4(0) = 𝑥0

𝑦′
5 = 𝑦6𝑦1 𝑦5(0) = sin(𝑦2(0))

𝑦′
6 = −𝑦5𝑦1 𝑦6(0) = cos(𝑦2(0))

𝑦′
7 = 2𝑦12𝑦1 𝑦7(0) = 𝑦5(0)2

𝑦′
8 = 2𝑚𝑙𝑦12𝑦1 𝑦8(0) = 𝑀𝑙 + 𝑚𝑙𝑦7(0)

𝑦′
9 = −2𝑚𝑙𝑦9𝑦9𝑦12𝑦1 𝑦9(0) = 1

𝑦8(0)
𝑦′

10 = 2𝑚𝑦12𝑦1 𝑦10(0) = 𝑀 + 𝑚𝑦7(0)

𝑦′
11 = −2𝑚𝑦11𝑦11𝑦12𝑦1 𝑦11(0) = 1

𝑦10(0)
𝑦′

12 = 𝑦6𝑦1𝑦6 − 𝑦5𝑦5𝑦1 𝑦12(0) = 𝑦5(0)𝑦6(0) .

(6.44)

The matrix-vector representation of (6.44) is in Appendix G.2. The behaviour of the system
using 𝑡𝑚𝑎𝑥 = 12 s, 𝑀𝑇𝑆𝑀ℎ = 0.25 s with 𝑇𝑂𝐿 = 1 × 10−9 for all solvers is in Figure 6.33.
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Figure 6.33: The behaviour of the pendulum on the cart with a full state feedback regulator.
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The plot of the 𝑂𝑅𝐷 function is in Figure 6.34, the numerical results are in Table 6.18.

0 2 4 6 8 10 12

Simulation time [s]

0

2

4

6

8

10

12

O
R

D
 f
u
n
c
ti
o
n

Figure 6.34: The plot of the 𝑂𝑅𝐷 function.

Solver Time of calculation [s] Number of steps Ratio
MTSM 5.447 98 × 10−3 48 –
ode23 1.539 07 × 10−1 23200 28.25
ode45 6.351 39 × 10−3 2837 1.17
ode113 3.681 49 × 10−3 239 0.68

Table 6.18: Results for the full state feedback controller ℎ = 0.25 s.

The performance can be improved substantially by employing the step-size scaling de-
fined in Subsection 3.3.3. When setting ℎ𝑠𝑐𝑎𝑙𝑒 = 4, the results are in Table 6.19 with a plot
of the 𝑂𝑅𝐷 function in Figure 6.35.

Solver Time of calculation [s] Number of steps Ratio
MTSM 3.277 06 × 10−3 18 –
ode23 1.612 59 × 10−1 23200 49.21
ode45 6.351 39 × 10−3 2837 2.24
ode113 3.906 14 × 10−3 239 1.19

Table 6.19: Results for the full state feedback controller ℎ = 0.25 s.
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Figure 6.35: The plot of the 𝑂𝑅𝐷 function with ℎ𝑠𝑐𝑎𝑙𝑒 = 4.

6.3.6 Concluding remarks

This experiment shows the behaviour of MTSM when applied to a more complicated prob-
lem – the regulation of the inverted pendulum on a moving cart. The experiments show
that the method performs the calculation faster than the state-of-the-art methods and that
the performed optimizations have a significant positive impact on the performance of the
method.

6.4 Magnetic levitation
In real-world industrial applications, magnetic levitation is used in many areas (for example,
high-speed rail, vibration isolation systems, magnetic bearings, rocket guidance) [39]. It
is heavily non-linear and therefore interesting in the context of this thesis as a control
problem. The model of the system was derived, and experiments are mostly based on [2],
[55], [1], [38], [11], [68], [22] and [39].

The magnetic levitation system is also interesting because, similarly to the DC motor
discussed in Section 6.1, it combines mechanical and electromagnetic part that has to be
modelled.

6.4.1 Mathematical description

The overall schematic of the magnetic levitation system is in Figure 6.36.
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Figure 6.36: Schematic of the magnetic levitation system [1].

The electromagnet serves as an actuator while the sensor determines the position of the
ferromagnetic ball. By regulating the electric current, the force generated by the electro-
magnet can be adjusted so that it is equal to the force of gravity that acts on the ball. The
ball is going to levitate in the equilibrium state at the set distance from the electromagnet.

The electromagnetic part of the system can be modelled using the 2nd Kirchhoff´s law

𝑢 = 𝑈𝑅 + 𝑈𝐿 = 𝑖𝑅 + (𝐿(𝑥)𝑖)′ = 𝑖𝑅 + 𝐿(𝑥)′𝑖 + 𝐿(𝑥)𝑖′ , (6.45)

where 𝑢 is the applied voltage [V], 𝑖 is the current in the coil of the electromagnet [A],
𝑅 is the resistance of the coil [Ω] and 𝐿(𝑥) is a function describing the inductance of
the electromagnet depending on the distance from the ball [H]. ODE for current can be
obtained from (6.45) so that

𝑢 = 𝑖𝑅 + 𝐿(𝑥)′𝑖 + 𝐿𝑖′

𝐿𝑖′ = 𝑢 − 𝑖𝑅 − 𝐿(𝑥)′𝑖

𝑖′ = 𝑢

𝐿
− 𝑅

𝐿
𝑖 − 1

𝐿
𝐿(𝑥)′𝑖 .

(6.46)

The function of inductance 𝐿(𝑥) can be approximated using several different approximations
[38]. The most common one assumes that the inductance changes with the inverse of the
position of the ball, that is

𝐿(𝑥) = 𝐿∞ + 𝐿0𝑥0
𝑥

where 𝐿∞ represents the inductance of the coil when the ball is removed (𝑥 = ∞), and
𝐿∞ +𝐿0 indicates the inductance when the ball is in contact with the electromagnet 𝑥 = 0.
The term 𝐿0𝑥0 represents a constant in the system that can be written as

𝑐1 = 𝐿0𝑥0
2 .

The approximation for inductance 𝐿(𝑥) can therefore be written as

𝐿(𝑥) = 𝐿∞ + 2𝑐1
𝑥

. (6.47)
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Substituting (6.47) into (6.46) gives

𝑖′ = 𝑢

𝐿
− 𝑅

𝐿
𝑖 − 1

𝐿

(︂
𝐿∞ + 2𝑐1

𝑥

)︂′
𝑖 = 𝑢

𝐿
− 𝑅

𝐿
𝑖 − 1

𝐿

(︂
−2𝑐1

𝑥2 𝑥′
)︂

𝑖 = 𝑢

𝐿
− 𝑅

𝐿
𝑖 + 2𝑐1

𝐿

𝑖

𝑥2 𝑥′ , (6.48)

with the initial condition 𝑖(0) = 𝑖0. The mechanical part of the system can be modelled
using the force diagram in Figure 6.37.

Ball

Electromagnet

xfe

mg

iControl 
input

Figure 6.37: Force diagram of the mechanical part of the magnetic levitation system [38].

The dynamics of the levitated ball shown in Figure 6.37 can be written as [38]
𝑚𝑥′′ = 𝑚𝑔 − 𝑓𝑒 (6.49)

where 𝑚 denotes the mass of the ball [kg], 𝑥′′ denotes the acceleration of the ball [m·s−2]
and 𝑔 denotes the gravitational acceleration [m·s−2]. The electromagnetic force 𝑓𝑒 can be
derived as follows [38, 11, 85]. Consider the energy stored in inductance 𝑊𝑒

𝑊𝑒 = 1
2𝐿(𝑥)𝑖2 = 1

2

(︂
𝐿∞ + 2𝑐1

𝑥

)︂
𝑖2 (6.50)

where 𝐿(𝑥) again represents the inductance of the electromagnet [H] and 𝑖 represents the
current flowing through it [A]. The electromagnetic force is the partial derivative of 𝑊𝑒.
With (6.47) substituted, the equation for the strength of the electromagnet can be written
as

𝑓𝑒 = −𝜕𝑊𝑒

𝜕𝑥
= −

𝜕
[︁

1
2

(︁
𝐿∞ + 2𝑐1

𝑥

)︁
𝑖2
]︁

𝜕𝑥
= 𝑖2

2
2𝑐1
𝑥2 = 𝑐1

𝑖2

𝑥2 . (6.51)

Equation (6.51) can be substituted into (6.49) so that the final equation for the force in the
system becomes

𝑚𝑥′′ = 𝑚𝑔 − 𝑓𝑒 = 𝑚𝑔 − 𝑐1
𝑖2

𝑥2 . (6.52)

Equation (6.52) is the second-order ODE, and it can be transformed into the system of
first-order ODEs using MDOR (see Subsection 2.6.1):

𝑚𝑥′′ = 𝑚𝑔 − 𝑐1
𝑖2

𝑥2

𝑥′′ = 𝑔 − 𝑐1
𝑚

𝑖2

𝑥2

𝑣′ = 𝑔 − 𝑐1
𝑚

𝑖2

𝑥2 𝑣(0) = 𝑣0

𝑥′ = 𝑣 𝑥(0) = 𝑥0 ,

(6.53)
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where 𝑣 is the velocity of the ball [m·s−1] and 𝑥 is the position of the ball [m]. To create
a system representation, the state variable 𝑦 = (𝑣′, 𝑥′, 𝑖′)𝑇 is constructed, and a non-linear
model of the magnetic levitation system can therefore be written in the notation for non-
linear systems (Section 5.3):

𝑓(𝑦) =

⎛⎜⎜⎝
𝑔 − 𝑐1

𝑚
𝑦2

3
𝑦2

2
𝑦1

−𝑅
𝐿 𝑦3 + 2𝑐1

𝐿
𝑦3
𝑦2

2
𝑦1

⎞⎟⎟⎠ , 𝑔(𝑦) =

⎛⎜⎝0
0
1
𝐿

⎞⎟⎠ , 𝑦 =

⎛⎜⎝𝑦1
𝑦2
𝑦3

⎞⎟⎠ =

⎛⎜⎝0
1
0

⎞⎟⎠ , (6.54)

which means that the output of the system is the position of the ball.
For the experiments with the magnetic levitation system, the following values of con-

stants are going to be used.

Parameter Description Value
m mass of the ball 0.02 kg
g gravitational acceleration 9.81 m·s−2

R resistance of the electromagnet 0.95 Ω
𝑐1 electromagnetic force constant 2.483 156 32 N·m2·A−2

L inductance of the electromagnet 0.277 H

Table 6.20: Used constants [38].

The behaviour of the system without any control input is in Figure 6.38. The ball is not
kept at the set distance from the electromagnet and keeps moving away due to gravitational
acceleration.
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Figure 6.38: Behaviour of the magnetic levitation system without a controller.

To simulate the system using MTSM, the transformations have once again be performed.

6.4.2 Transformations for MTSM

To solve (6.54) using MTSM, the system has to be transformed into an appropriate form
(Section 3.4). Only the functions 𝑓(𝑦) and 𝑔(𝑦) are transformed (not equations for output).
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Therefore, the system (6.54) can be rewritten:

𝑦′
1 = 𝑔 − 𝑐1

𝑚

𝑦3𝑦3
𝑦2𝑦2

𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿

𝑦1𝑦3
𝑦2𝑦2

+ 1
𝐿

𝑢 𝑦3(0) = 𝑖(0) .

(6.55)

First, the division ( 1
𝑦2𝑦2

) has to be removed. The auxiliary equation to remove it has the
following form

𝑦4 = 1
𝑦2

= 𝑦−1
2

𝑦′
4 = −𝑦−2

2 𝑦′
2 = −𝑦1𝑦4𝑦4 𝑦4(0) = 1

𝑦2(0) ,

so that the new system with the equation substituted is without division can be written as

𝑦′
1 = 𝑔 − 𝑐1

𝑚
(𝑦3𝑦3𝑦4𝑦4) 𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿
(𝑦1𝑦3𝑦4𝑦4) + 1

𝐿
𝑢 𝑦3(0) = 𝑖0

𝑦′
4 = −𝑦1𝑦4𝑦4 𝑦4(0) = 1

𝑦2(0) .

(6.56)

The system (6.56) has four-function multiplications that can be removed to optimize the
calculation. First, the multiplication 𝑦4𝑦4 can be replaced. The auxiliary equation

𝑦5 = 𝑦4𝑦4 = 𝑦2
4

𝑦′
5 = 2𝑦4𝑦′

4 = 2𝑦4 (−𝑦4𝑦4𝑦1) = −2𝑦4𝑦4𝑦4𝑦1 = −2𝑦1𝑦4𝑦5 𝑥5(0) = 𝑦4(0)𝑦4(0) ,

and the new system with the equation 𝑦5 substituted

𝑦′
1 = 𝑔 − 𝑐1

𝑚
(𝑦3𝑦3𝑦5) 𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿
(𝑦1𝑦3𝑦5) + 1

𝐿
𝑢 𝑦3(0) = 𝑖0

𝑦′
4 = −𝑦1𝑦5 𝑦4(0) = 1

𝑦2(0)
𝑦′

5 = −2𝑦1𝑦4𝑦5 𝑥5(0) = 𝑦4(0)𝑦4(0) .

(6.57)

The same process can be repeated for the multiplication 𝑦3𝑦3. The auxiliary equation

𝑦6 = 𝑦3𝑦3 = 𝑦2
3

𝑥′
6 = 2𝑦3𝑦′

3 = 2𝑦3

(︂
−𝑅

𝐿
𝑦3 + 2𝑘1

𝐿
(𝑦1𝑦3𝑦5) + 1

𝐿
𝑢

)︂
= −2𝑅

𝐿
𝑦3𝑦3 + 22𝑘1

𝐿
(𝑦1𝑦3𝑦3𝑦5) + 2 1

𝐿
𝑢𝑦3

= −2𝑅

𝐿
𝑦6 + 4𝑘1

𝐿
(𝑦1𝑦6𝑦5) + 2

𝐿
𝑢𝑦3 𝑦6(0) = 𝑦3(0)𝑦3(0) ,
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and the substituted system can be written as

𝑦′
1 = 𝑔 − 𝑐1

𝑚
(𝑦5𝑦6) 𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿
(𝑦1𝑦3𝑦5) + 1

𝐿
𝑢 𝑦3(0) = 𝑖0

𝑦′
4 = −𝑦1𝑦5 𝑦4(0) = 1

𝑦2(0)
𝑦′

5 = −2𝑦1𝑦4𝑦5 𝑥5(0) = 𝑦4(0)𝑦4(0)

𝑦′
6 = −2𝑅

𝐿
𝑦6 + 4𝑐1

𝐿
(𝑦1𝑦5𝑦6) + 2

𝐿
𝑢𝑦3 𝑦6(0) = 𝑦3(0)𝑦3(0) .

(6.58)

The final variant of the original system can be obtained by substituting the multiplication
𝑦1𝑦5, which is repeated often. The auxiliary equation

𝑦7 = 𝑦1𝑦5

𝑦′
7 = 𝑦′

1𝑦5 + 𝑦1𝑦′
5 =

[︂
𝑔 − 𝑐1

𝑚
(𝑦5𝑦6)

]︂
𝑦5 + 𝑦1 (−2𝑦1𝑦4𝑦5) = 𝑔𝑦5 − 𝑘1

𝑚
(𝑦5𝑦5𝑦6) − 2𝑦1𝑦1𝑦4𝑦5 =

= 𝑔𝑦5 − 𝑘1
𝑚

(𝑦5𝑦5𝑦6) − 2𝑦1𝑦4𝑦7 𝑦7(0) = 𝑦1(0)𝑦5(5)

and the substituted system

𝑦′
1 = 𝑔 − 𝑐1

𝑚
(𝑦5𝑦6) 𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿
(𝑦3𝑦7) + 1

𝐿
𝑢 𝑦3(0) = 𝑖0

𝑦′
4 = −𝑦7 𝑦4(0) = 1

𝑦2(0)
𝑦′

5 = −2𝑦4𝑦7 𝑥5(0) = 𝑦4(0)𝑦4(0)

𝑦′
6 = −2𝑅

𝐿
𝑦6 + 4𝑐1

𝐿
(𝑦6𝑦7) + 2

𝐿
𝑢𝑦3 𝑦6(0) = 𝑦3(0)𝑦3(0)

𝑦′
7 = 𝑔𝑦5 − 𝑐1

𝑚
(𝑦5𝑦5𝑦6) − 2𝑦1𝑦4𝑦7 𝑦7(0) = 𝑦1(0)𝑦5(5) .

(6.59)

With 𝑡𝑚𝑎𝑥 = 2 s and 𝑇𝑂𝐿 = 1 × 10−8, the behaviour of MTSM and state-of-the-
art solvers for the generated auxiliary systems is depicted in the following set of tables.
The numerical results using (6.56) are in Table 6.21, the plot of the 𝑂𝑅𝐷 function is in
Figure 6.39.

Solver Time of calculation [s] Number of steps Ratio
MTSM 5.435 35 × 10−3 26 –
ode23 1.440 22 × 10−1 24025 26.04
ode45 4.987 55 × 10−3 2533 0.9
ode113 3.4645 × 10−3 235 0.62

Table 6.21: Numerical results for (6.56), 𝑀𝑇𝑆𝑀ℎ = 0.08 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 1.
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Figure 6.39: Plot of 𝑂𝑅𝐷 function for for (6.56), 𝑀𝑇𝑆𝑀ℎ = 0.08 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 1.

For ℎ𝑠𝑐𝑎𝑙𝑒 = 3, the results for (6.56) are in Table 6.22 and the plot of the 𝑂𝑅𝐷 function
is in Figure 6.40.

Solver Time of calculation [s] Number of steps Ratio
MTSM 3.2744 × 10−3 17 –
ode23 1.467 92 × 10−1 24025 44.83
ode45 4.9825 × 10−3 2533 1.52
ode113 3.631 35 × 10−3 235 1.1

Table 6.22: Numerical results for (6.56), 𝑀𝑇𝑆𝑀ℎ = 0.08 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 3.
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Figure 6.40: Plot of 𝑂𝑅𝐷 function for for (6.56), 𝑀𝑇𝑆𝑀ℎ = 0.08 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 3.

The step size scaling can be used for all auxiliary systems. The numerical results using
(6.57) with ℎ𝑠𝑐𝑎𝑙𝑒 = 5 are in Table 6.23, the plot of the 𝑂𝑅𝐷 function is in Figure 6.41.
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Solver Time of calculation [s] Number of steps Ratio
MTSM 2.592 × 10−3 24 –
ode23 2.273 49 × 10−1 36248 87.71
ode45 7.369 55 × 10−3 3653 2.84
ode113 4.619 × 10−3 299 1.78

Table 6.23: Numerical results for (6.57), 𝑀𝑇𝑆𝑀ℎ = 0.065 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 5.
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Figure 6.41: Plot of 𝑂𝑅𝐷 function for for (6.57), 𝑀𝑇𝑆𝑀ℎ = 0.065 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 5.

The numerical results using (6.58) with ℎ𝑠𝑐𝑎𝑙𝑒 = 5 are in Table 6.24, the plot of the
𝑂𝑅𝐷 function is in Figure 6.42.

Solver Time of calculation [s] Number of steps Ratio
MTSM 3.1588 × 10−3 20 –
ode23 3.939 14 × 10−1 47571 124.7
ode45 1.288 41 × 10−2 4641 4.08
ode113 5.792 75 × 10−3 343 1.83

Table 6.24: Numerical results for (6.58), 𝑀𝑇𝑆𝑀ℎ = 0.065 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 5.
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Figure 6.42: Plot of 𝑂𝑅𝐷 function for (6.58), 𝑀𝑇𝑆𝑀ℎ = 0.065 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 5.

The numerical results using (6.59) with ℎ𝑠𝑐𝑎𝑙𝑒 = 3 are in Table 6.25, the plot of the
𝑂𝑅𝐷 function is in Figure 6.43.

Solver Time of calculation [s] Number of steps Ratio
MTSM 4.9234 × 10−3 22 –
ode23 4.851 73 × 10−1 53805 98.54
ode45 1.387 96 × 10−2 4457 2.82
ode113 6.153 85 × 10−3 354 1.25

Table 6.25: Numerical results for (6.59).
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Figure 6.43: Plot of 𝑂𝑅𝐷 function for for (6.59), 𝑀𝑇𝑆𝑀ℎ = 0.065 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 3.

The results show that MTSM is measurably faster for all systems with auxiliary equa-
tions when optimizations from Subsection 3.3.2 are used. System (6.56) was chosen for the
experiment with a controller.
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6.4.3 Control system design

Without an appropriate controller, the ball would fall due to gravity and would not maintain
its position (Figure 6.38 and Figure 6.44).
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Figure 6.44: Plot the position of the ball.

The full-state feedback controller with an integrator is going to be implemented (Sub-
section 5.4.2). The reference vector 𝑤𝑟 sets the control objective for the controller

𝑤𝑟 =

⎛⎜⎜⎜⎜⎜⎝
0

0.009
0.8
0
0

⎞⎟⎟⎟⎟⎟⎠ ,

where 𝑤𝑟1 is the required final speed of the ball, 𝑤𝑟2 is the required final position of the
ball, 𝑤𝑟3 is the required final current and 𝑤𝑟5 is the required final value of the integral part
of the controller. The integral part of the controller is represented using the following ODE

𝑦′
5 = 𝑦2 − 𝑤𝑟2 𝑦5(0) = 0 . (6.60)

The final system of ODEs with the controller added follows

𝑦′
1 = 𝑔 − 𝑐1

𝑚
(𝑦3𝑦3𝑦4𝑦4) 𝑦1(0) = 𝑣(0)

𝑦′
2 = 𝑦1 𝑦2(0) = 𝑥(0)

𝑦′
3 = −𝑅

𝐿
𝑦3 + 2𝑐1

𝐿
(𝑦1𝑦3𝑦4𝑦4) + 1

𝐿
𝑢 𝑦3(0) = 𝑖0

𝑦′
4 = −𝑦1𝑦4𝑦4 𝑦4(0) = 1

𝑦2(0)
𝑦′

5 = 𝑦2 − 𝑤𝑟2 𝑦5(0) = 0 .

(6.61)

The full state feedback (see Subsection 5.4.2) is given by following equation

𝑢 = −𝑘(𝑦 − 𝑤𝑟) ,
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where 𝑘 = (−57.7, −2762.6, 25.8, 0, −2000) [38]. Control law 𝑢 can be rewritten part-wise

𝑢 = 𝑘1(𝑤𝑟1 − 𝑦1) + 𝑘2(𝑤𝑟2 − 𝑦2) + 𝑘3(𝑤𝑟3 − 𝑦3) + 𝑘4(𝑤𝑟4 − 𝑦4) + 𝑘5(𝑤𝑟5 − 𝑦5)
𝑢 = 𝑘1𝑤𝑟1 − 𝑘1𝑦1 + 𝑘2𝑤𝑟2 − 𝑘2𝑦2 + 𝑘3𝑤𝑟3 − 𝑘3𝑦3 + 𝑘4𝑤𝑟4 − 𝑘4𝑦4 + 𝑘5𝑤𝑟5 − 𝑘5𝑦5 .

After substituting 𝑢 into 𝑦3, the final matrix-vector form for the (6.61) and (6.60) the
matrix-vector representation that is going to be solved can be written as

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
1 0 0 0 0

−𝑘1
𝐿 −𝑘2

𝐿 −𝑘3
𝐿 − 𝑅

𝐿 0 −𝑘5
𝐿

0 0 0 0 0
0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠ 𝐵2 =
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(6.62)

The plot of the 𝑂𝑅𝐷 function is in Figure 6.45.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Simulation time [s]

0

5

10

15

20

25

30

35

40

45

50

O
R

D
 f
u
n
c
ti
o
n

Figure 6.45: Plot of 𝑂𝑅𝐷 function for for (6.62), 𝑀𝑇𝑆𝑀ℎ = 0.06 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 1.

Note that Figure 6.45 shows that step-size scaling can again be used. For ℎ𝑠𝑐𝑎𝑙𝑒 = 2,
𝑀𝑇𝑆𝑀ℎ = 0.06 s the numerical results for (6.62) are in Table 6.26 and the plot of the
𝑂𝑅𝐷 function is in Figure 6.46.

Solver Time of calculation [s] Number of steps Ratio
MTSM 4.2185 × 10−3 27 –
ode23 9.358 46 × 10−2 11890 22.18
ode45 6.9611 × 10−3 2533 1.65
ode113 5.2627 × 10−3 308 1.25

Table 6.26: Numerical results for (6.62), ℎ𝑠𝑐𝑎𝑙𝑒 = 2, 𝑀𝑇𝑆𝑀ℎ = 0.06 s.
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Figure 6.46: Plot of 𝑂𝑅𝐷 function for for (6.62), 𝑀𝑇𝑆𝑀ℎ = 0.06 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

The implemented controller successfully stabilizes the ball at the required position, as
shown in Figure 6.47.
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Figure 6.47: Position of the ball for (6.62), 𝑀𝑇𝑆𝑀ℎ = 0.06 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

Controller for (6.57)

The final experiment is going to show how the better performance of the auxiliary system
makes the controller. The construction is going to be performed similarly to the previous
example.
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The system being solved can be represented in the matrix-vector notation as

𝐴 =
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(6.63)

with 𝑘 = (−57.7, −2762.6, 25.8, 0, 0, −2000) and the reference vector 𝑤𝑟

𝑤𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0.009
0.8
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The numerical results for (6.63) are in Table 6.27 and the plot of the 𝑂𝑅𝐷 function is in
Figure 6.48.

Solver Time of calculation [s] Number of steps Ratio
MTSM 2.900 05 × 10−3 30 –
ode23 1.186 52 × 10−1 13855 40.91
ode45 9.092 45 × 10−3 2753 3.13
ode113 5.5814 × 10−3 334 1.92

Table 6.27: Numerical results for (6.63), ℎ𝑠𝑐𝑎𝑙𝑒 = 2, 𝑀𝑇𝑆𝑀ℎ = 0.06 s.
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Figure 6.48: Plot of 𝑂𝑅𝐷 function for for (6.63), 𝑀𝑇𝑆𝑀ℎ = 0.06 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.
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The implemented controller again successfully stabilizes the ball at the required position as
can be seen in Figure 6.49.
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Figure 6.49: Position of the ball for (6.63), 𝑀𝑇𝑆𝑀ℎ = 0.06 s, ℎ𝑠𝑐𝑎𝑙𝑒 = 2.

6.4.4 Concluding remarks

The experiments with magnetic levitation again showed the usability of MTSM to solve
non-linear technical problems and apply different control approaches to them. The method
was again faster than the state-of-the-art in all experiments.

6.5 Conclusions
The experiments presented in this Chapter showed that the method is usable when designing
the control systems of different types. MTSM is universally faster than the state-of-the-art
numerical integration methods selected for comparison.
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Chapter 7

Conclusion

This thesis presented the variable-order variable-step numerical integration method based
on the Taylor series – MTSM. The method was first introduced in linear and newly de-
veloped non-linear form, and its positive properties were discussed. Then, it was used to
solve a wide range of real-world technical problems and benchmarks to show that it can
deal with them better than state-of-the-art methods. In the final Chapter of the thesis, a
set of experiments with different types of controllers and systems was performed.

The research objectives stated in Section 1.1 were completed. Namely:

• discuss the currently existing numerical integration methods, particularly in the con-
text of control systems
Chapter 2 discussed various numerical integration methods, their advantages and dis-
advantages, and discussed what methods would be appropriate to use in a control
system.

• analyse the properties of a high-order integration method based on the Taylor series
and evaluate the applicability of this method on a set of technical problems
The analysis was performed in Chapter 3, including the discussion on stability, error
accumulation, automatic order settings and more. The evaluation of the method on
a wide range of technical problems was performed in Chapter 4.

• extend the capabilities of high-order Taylor series method to solve non-linear problems,
propose and discuss possible optimizations
The newly developed non-linear version of MTSM was introduced in Chapter 3 and
extensively tested in Chapter 4.

• show the suitability of the high-order method to be used as a part of the control system
using a set of examples (with strict considerations of time of calculation)
The experiments with several different control systems were performed in Chapter 6.

• show the potential for further research and additional improvements of the method for
both linear and non-linear problems
The potential for future research is established in Section 7.1. The non-linear solver,
while improved considerably by introduced optimizations, could be improved further
to extend its abilities. Additional support for variable precision arithmetic can also
increase the method’s potential due to the ability to use higher order.
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7.1 Future work
As stated in the body of the thesis, the discussed topics cover a huge area of applied mathe-
matics and control engineering. More work would have to be done to use the method in the
real-world control system, including the possibility of designing custom-made specialised
hardware for the method (the cooperation with the industrial partner did not work out for
this thesis).

Some areas (like the calculation of non-linear systems) were not on the table, and
the usefulness of having the plant model with non-linearities that could better handle
boundary conditions seems obvious. The non-linear implementation of the method can still
be considerably improved, even beyond what has already been done for this thesis and other
projects. That will be the first topic of my research after the defence of this thesis (different
implementation for operation division that would save one multiplication, for example).

Additionally, the thesis shows that the method is very useful in solving a wide range
of technical problems. The application domain has thus far been experimental. The goal
is to find a proper application for the method that would see it gain more recognition and
adoption among the community.
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Appendix A

Block algebra

In this Appendix, the block algebra used in the thesis is presented. The figures use the
notation used in SIMULINK1.

A.1 Addition
To represent addition, the block in Figure A.1 is used.

Figure A.1: Adder.

The block represents the operation

𝑟 = 𝑥 + 𝑦 .

A.2 Multiplication
When representing multiplication, generally, there are two cases:

• multiplication by a constant,

• multiplication of two or more functions.

These two cases are going to be discussed separately.

A.2.1 Multiplication by a constant

When multiplying a function value by a constant value, the block in Figure A.2 is used.
1https://www.mathworks.com/products/simulink.html
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Figure A.2: Multiplication by a constant.

The block represents the operation

𝑟 = 𝑐 · 𝑥

and in the thesis, this is often simply abbreviated as

𝑟 = 𝑐𝑥 .

A.2.2 Multiplication of functions

When representing multiplications of two (or more) functions, the block in Figure A.3 is
used.

Figure A.3: Multiplication of two functions.

The block represents the operation

𝑟 = 𝑥 · 𝑦

where 𝑥 and 𝑦 can be arbitrary functions. In the thesis, this can again be abbreviated as

𝑟 = 𝑥𝑦 .

A.3 Integration
When representing integration, the block in Figure A.4 is used.

Figure A.4: Integration.

For the purposes of this thesis, the block represents the operation

𝑦′ = 𝑦 𝑦(0) = 𝑐

where 𝑐 represents the initial condition of the integrator.
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Appendix B

Padé approximations

In this Appendix, the complete results of the Padé approximation experiments for approx-
imation orders 𝑛 = 1, 𝑛 = 2, 𝑛 = 7, 𝑛 = 10 and 𝑛 = 15 are presented. More information
about the approximations and the detailed analysis for 𝑛 = 5 is presented in Section 4.2.
All results are a median from 100 runs.

B.1 Approximation order 1
For 𝑛 = 1, the error in the last step of the calculation is approximately 1 × 10−2 for all
solvers, which does not favour the MTSM (mean order of the method is approximately 9)
for all configurations.

Solver Time of calculation [s] Ratio Number of steps
MTSM 9.636 × 10−4 – 101
ode23 5.5041 × 10−3 5.71 2087
ode45 8.6605 × 10−4 0.90 473
ode113 7.835 × 10−4 0.81 71

Table B.1: Results using MDORAV with complete system for 𝑛 = 1.

Solver Time of calculation [s] Ratio Number of steps
mtsm 6.0455 × 10−4 – 101
ode23 2.987 85 × 10−3 5.94 1375
ode45 6.1225 × 10−4 1.01 397
ode113 5.84 × 10−4 0.96 66

Table B.2: Results using MDORAV with constant input for 𝑛 = 1.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 9.7255 × 10−4 – 101
ode23 6.317 95 × 10−3 6.49 2345
ode45 8.7495 × 10−4 0.90 485
ode113 8.3125 × 10−4 0.85 75

Table B.3: Results using MSI for 𝑛 = 1.

Solver Time of calculation [s] Ratio Number of steps
MTSM 5.722 × 10−4 – 101
ode23 3.9807 × 10−3 6.96 2080
ode45 7.136 × 10−4 1.25 505
ode113 7.36 × 10−4 1.29 74

Table B.4: Results using MSI with constant input for 𝑛 = 1.

The results are in Figure B.1 for MDORAV and Figure B.2 for MSI.
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Figure B.1: MDORAV results for 𝑛 = 1 with complete system (first row) and with constant
input (second row).
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Figure B.2: MSI results for 𝑛 = 1 with complete system (first row) and with constant input
(second row).

B.2 Approximation order 2
For 𝑛 = 2, the error in the last step of the calculation is approximately 1 × 10−5 for
MDORAV (1 × 10−2 for constant input MTSM) and 0.2 for MSI for all state-of-the-art
solvers. The mean order of the method is approximately 8.5 for all configurations.

Solver Time of calculation [s] Ratio Number of steps
MTSM 9.732 × 10−4 – 101
ode23 5.845 45 × 10−3 6.01 2092
ode45 9.2855 × 10−4 0.95 493
ode113 8.6985 × 10−4 0.89 78

Table B.5: Results using MDORAV with complete system for 𝑛 = 2.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.0817 × 10−3 – 101
ode23 3.650 15 × 10−3 3.37 1020
ode45 1.2356 × 10−3 1.14 557
ode113 1.038 25 × 10−3 0.96 85

Table B.6: Results using MDORAV with constant input for 𝑛 = 2.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 1.3263 × 10−3 – 101
ode23 9.6718 × 10−3 7.29 2778
ode45 1.610 35 × 10−3 1.21 613
ode113 1.3137 × 10−3 0.99 89

Table B.7: Results using MSI for 𝑛 = 2.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.0134 × 10−3 – 101
ode23 9.3557 × 10−3 9.23 3007
ode45 1.8704 × 10−3 1.84 1033
ode113 7.36 × 10−4 1.08 107

Table B.8: Results using MSI with constant input for 𝑛 = 2.

The results are in Figure B.3 for MDORAV and Figure B.4 for MSI.
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Figure B.3: MDORAV results for 𝑛 = 2 with complete system (first row) and with constant
input (second row).
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Figure B.4: MSI results for 𝑛 = 2 with complete system (first row) and with constant input
(second row).

B.3 Approximation order 7
For 𝑛 = 7, the error in last step of the calculation is approximately 1 × 10−8 for MDORAV
and MSI and 1 × 10−3 for configurations with constant inputs.

Solver Time of calculation [s] Ratio Number of steps
MTSM 9.7515 × 10−4 – 101
ode23 5.9051 × 10−3 6.05 2087
ode45 9.644 × 10−4 0.99 521
ode113 1.3509 × 10−3 1.39 143

Table B.9: Results using MDORAV with complete system for 𝑛 = 7.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.0891 × 10−3 – 101
ode23 1.909 85 × 10−3 1.75 490
ode45 1.7602 × 10−3 1.61 865
ode113 1.4258 × 10−3 1.31 145

Table B.10: Results using MDORAV with constant input for 𝑛 = 7.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 1.2829 × 10−3 – 101
ode23 1.842 25 × 10−2 14.36 6616
ode45 2.5723 × 10−3 2.01 1541
ode113 3.2247 × 10−3 2.51 260

Table B.11: Results using MSI for 𝑛 = 7.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.5656 × 10−3 – 101
ode23 2.9708 × 10−2 18.98 6857
ode45 9.9732 × 10−3 6.38 4389
ode113 2.814 × 10−3 1.80 263

Table B.12: Results using MSI with constant input for 𝑛 = 7.

The results are in Figure B.5 for MDORAV and Figure B.6 for MSI.
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Figure B.5: MDORAV results for 𝑛 = 7 with complete system (first row) and with constant
input (second row).
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Figure B.6: MSI results for 𝑛 = 7 with complete system (first row) and with constant input
(second row).

B.4 Approximation order 10
For 𝑛 = 10, the error in last step of the calculation is approximately 1 × 10−8 for complete
systems. For constant inputs, the error for MDORAV is 1 × 10−3 and 1 × 10−2 for MSI.

Solver Time of calculation [s] Ratio Number of steps
MTSM 9.672 × 10−4 – 101
ode23 6.0839 × 10−3 6.30 2087
ode45 9.4695 × 10−4 0.98 513
ode113 1.6513 × 10−3 1.71 177

Table B.13: Results using MDORAV with complete system for 𝑛 = 10.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.173 15 × 10−3 – 101
ode23 1.6178 × 10−3 1.38 406
ode45 1.8356 × 10−3 1.56 877
ode113 1.7684 × 10−3 1.51 188

Table B.14: Results using MDORAV with constant input for 𝑛 = 10.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 1.630 95 × 10−3 – 101
ode23 3.511 46 × 10−2 21.53 11980
ode45 3.9805 × 10−3 2.44 2325
ode113 4.7675 × 10−3 2.92 364

Table B.15: Results using MSI for 𝑛 = 10.

Solver Time of calculation [s] Ratio Number of steps
MTSM 2.236 × 10−3 – 101
ode23 4.3402 × 10−2 19.41 9217
ode45 1.661 58 × 10−2 7.43 6529
ode113 4.022 × 10−3 1.80 376

Table B.16: Results using MSI with constant input for 𝑛 = 10.

The results are in Figure B.7 for MDORAV and Figure B.8 for MSI.
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Figure B.7: MDORAV results for 𝑛 = 10 with complete system (first row) and with constant
input (second row).
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Figure B.8: MSI results for 𝑛 = 10 with complete system (first row) and with constant
input (second row).

B.5 Approximation order 15
For 𝑛 = 15, the error in last step of the calculation is approximately 1 × 10−8 for complete
systems. For constant inputs, the error for MDORAV is 1 × 10−3 and 1 × 10−2 for MSI.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.119 05 × 10−3 – 101
ode23 7.376 45 × 10−3 6.59 2087
ode45 1.017 05 × 10−3 0.91 497
ode113 2.383 85 × 10−3 2.13 214

Table B.17: Results using MDORAV with complete system for 𝑛 = 15.

Solver Time of calculation [s] Ratio Number of steps
MTSM 1.4849 × 10−3 – 101
ode23 1.4106 × 10−3 0.95 293
ode45 1.901 × 10−3 1.28 809
ode113 2.3736 × 10−3 1.60 183

Table B.18: Results using MDORAV with constant input for 𝑛 = 15.
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Solver Time of calculation [s] Ratio Number of steps
MTSM 2.524 35 × 10−3 – 101
ode23 4.647 29 × 10−2 18.41 13141
ode45 4.658 × 10−3 1.85 2441
ode113 6.3988 × 10−3 2.53 489

Table B.19: Results using MSI for 𝑛 = 15.

Solver Time of calculation [s] Ratio Number of steps
MTSM 3.0888 × 10−3 – 101
ode23 9.652 62 × 10−2 31.25 14961
ode45 3.481 65 × 10−2 11.27 10377
ode113 6.8476 × 10−3 2.22 561

Table B.20: Results using MSI with constant input for 𝑛 = 15.

The results are in Figure B.9 for MDORAV and Figure B.10 for MSI.

0 1 2 3 4 5 6 7

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
a
lu

e
s

Delay for n = 15

delayed

input

(a) MDORAV (complete sys-
tem).

0 1 2 3 4 5 6 7

Time [s]

0

2

4

6

8

10

12

14

O
R

D
 f
u
n
c
ti
o
n

Value of ORD function for n = 15

(b) ORD for MDORAV.

0 1 2 3 4 5 6 7

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

o
r 

fu
n
c
ti
o
n

Plot of the error function for n = 15

(c) Error for MDORAV.

0 1 2 3 4 5 6 7

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
a
lu

e
s

Delay for n = 15

delayed

input

(d) MDORAV (constant input).

0 1 2 3 4 5 6 7

Time [s]

0

2

4

6

8

10

12

14

O
R

D
 f
u
n
c
ti
o
n

Value of ORD function for n = 15

(e) ORD for MDORAV CI.

0 1 2 3 4 5 6 7

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
rr

o
r 

fu
n
c
ti
o
n

Plot of the error function for n = 15

(f) Error for MDORAV CI.

Figure B.9: MDORAV results for 𝑛 = 15 with complete system (first row) and with constant
input (second row).
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Figure B.10: MSI results for 𝑛 = 15 with complete system (first row) and with constant
input (second row).

B.6 Discussion, concluding remarks
The results of the experiments with the different approximation orders and the ODE system
derivation methods show some interesting observations. First, it is not surprising that
when using the constant input (which means that the delay component would receive just
a constant input signal), the accuracy of the method is much lower. This behaviour is due
to the fact that the constant vector 𝑏 is used in just the first term of the Taylor series and
nowhere else.

Another interesting aspect, and one worth pointing out, is how the accuracy while
using MTSM is otherwise very high even though the method is always much faster than
state-of-the-art (which is a pattern similar to other experiments presented in this thesis).

Furthermore, the better performance of the MSI derived systems has to be pointed out.
These systems are simpler and contain fewer terms so they can be constructed in hardware
using a smaller number of components.
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Appendix C

Derivation of the four and five
function multiplications

In this Appendix, the higher order derivatives for four and five-function multiplications are
derived in a similar way as in the Subsection 3.3.2.

C.1 Four function multiplication and higher derivatives
For four-function multiplication, the elementary IVP can be written as

𝑦′ = 𝑞𝑟𝑠𝑢 𝑦(0) = 𝑦0 , (C.1)

where 𝑞, 𝑟, 𝑠 and 𝑢 are arbitrary functions. To numerically solve the IVP using the MTSM,
the Taylor series for all functions have to be constructed

𝑦𝑖+1 = 𝑦𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + 𝐷𝑌 (3)𝑖 + 𝐷𝑌 (4)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖

𝑞𝑖+1 = 𝑞𝑖 + 𝐷𝑄(1)𝑖 + 𝐷𝑄(2)𝑖 + 𝐷𝑄(3)𝑖 + 𝐷𝑄(4)𝑖 + · · · + 𝐷𝑄(𝑁)𝑖

𝑟𝑖+1 = 𝑟𝑖 + 𝐷𝑅(1)𝑖 + 𝐷𝑅(2)𝑖 + 𝐷𝑅(3)𝑖 + 𝐷𝑅(4)𝑖 + · · · + 𝐷𝑅(𝑁)𝑖

𝑠𝑖+1 = 𝑠𝑖 + 𝐷𝑆(1)𝑖 + 𝐷𝑆(2)𝑖 + 𝐷𝑆(3)𝑖 + 𝐷𝑆(4)𝑖 + · · · + 𝐷𝑆(𝑁)𝑖

𝑢𝑖+1 = 𝑢𝑖 + 𝐷𝑈(1)𝑖 + 𝐷𝑈(2)𝑖 + 𝐷𝑈(3)𝑖 + 𝐷𝑈(4)𝑖 + · · · + 𝐷𝑈(𝑁)𝑖.

(C.2)

210



The higher derivatives for the (C.1) can be constructed:

𝑦′ = 𝑞𝑟𝑠𝑢

𝑦′′ = 𝑞′𝑟𝑠𝑢 + 𝑞𝑟′𝑠𝑢 + 𝑞𝑟𝑠′𝑢 + 𝑞𝑟𝑠𝑢′

𝑦′′′ = 𝑞′′𝑟𝑠𝑢 + 𝑞′𝑟′𝑠𝑢 + 𝑞′𝑟𝑠′𝑢 + 𝑞′𝑟𝑠𝑢′ + 𝑞′𝑟′𝑠𝑢 + 𝑞𝑟′′𝑠𝑢+
+ 𝑞𝑟′𝑠′𝑢 + 𝑞𝑟′𝑠𝑢′ + 𝑞′𝑟𝑠′𝑢 + 𝑞𝑟′𝑠′𝑢 + 𝑞𝑟𝑠′′𝑢 + 𝑞𝑟𝑠′𝑢′ + 𝑞′𝑟𝑠𝑢′

+ 𝑞𝑟′𝑠𝑢′ + 𝑞𝑟𝑠′𝑢′ + 𝑞𝑟𝑠𝑢′′ = 𝑞′′𝑟𝑠𝑢 + 𝑞𝑟′′𝑠𝑢 + 𝑞𝑟𝑠′′𝑢 + 𝑞𝑟𝑠𝑢′′+
+ 2𝑞′𝑟′𝑠𝑢 + 2𝑞′𝑟𝑠′𝑢 + 2𝑞𝑟′𝑠′𝑢 + 2𝑞𝑟′𝑠𝑢′ + 2𝑞𝑟𝑠′𝑢′ + 2𝑞′𝑟𝑠𝑢′

𝑦[4] = 𝑞′′′𝑟𝑠𝑢 + 𝑞′′𝑟′𝑠𝑢 + 𝑞′′𝑟𝑠′𝑢 + 𝑞′′𝑟𝑠𝑢′+
+ 𝑞′𝑟′′𝑠𝑢 + 𝑞𝑟′′′𝑠𝑢 + 𝑞𝑟′′𝑠′𝑢 + 𝑞𝑟′′𝑠𝑢′+
+ 𝑞′𝑟𝑠′′𝑢 + 𝑞𝑟′𝑠′′𝑢 + 𝑞𝑟𝑠′′′𝑢 + 𝑞𝑟𝑠′′𝑢′+
+ 𝑞′𝑟𝑠𝑢′′ + 𝑞𝑟′𝑠𝑢′′ + 𝑞𝑟𝑠′𝑢′′ + 𝑞𝑟𝑠𝑢′′′+
+ 2𝑞′′𝑟′𝑠𝑢 + 2𝑞′𝑟′′𝑠𝑢 + 2𝑞′𝑟′𝑠′𝑢 + 2𝑞′𝑟′𝑠𝑢′+
+ 2𝑞′′𝑟𝑠′𝑢 + 2𝑞′𝑟′𝑠′𝑢 + 2𝑞′𝑟𝑠′′𝑢 + 2𝑞′𝑟𝑠′𝑢′+
+ 2𝑞′𝑟′𝑠′𝑢 + 2𝑞𝑟′′𝑠′𝑢 + 2𝑞𝑟′𝑠′′𝑢 + 2𝑞𝑟′𝑠′𝑢′+
+ 2𝑞′𝑟′𝑠𝑢′ + 2𝑞𝑟′′𝑠𝑢′ + 2𝑞𝑟′𝑠′𝑢′ + 2𝑞𝑟′𝑠𝑢′′+
+ 2𝑞′𝑟𝑠′𝑢′ + 2𝑞𝑟′𝑠′𝑢′ + 2𝑞𝑟𝑠′′𝑢′ + 2𝑞𝑟𝑠′𝑢′′+
+ 2𝑞′′𝑟𝑠𝑢′ + 2𝑞′𝑟′𝑠𝑢′ + 2𝑞′𝑟𝑠′𝑢′ + 2𝑞′𝑟𝑠𝑢′′ =
= 𝑞′′′𝑟𝑠𝑢 + 𝑞𝑟′′′𝑠𝑢 + 𝑞𝑟𝑠′′′𝑢 + 𝑞𝑟𝑠𝑢′′′ + 3𝑞′′𝑟𝑠′𝑢+
+ 3𝑞′′𝑟𝑠𝑢′ + 3𝑞′𝑟′′𝑠𝑢 + 3𝑞𝑟′′𝑠′𝑢 + 3𝑞𝑟′′𝑠𝑢′ + 3𝑞′𝑟𝑠′′𝑢+
+ 3𝑞𝑟′𝑠′′𝑢 + 3𝑞𝑟𝑠′′𝑢′ + 3𝑞′𝑟𝑠𝑢′′ + 3𝑞𝑟′𝑠𝑢′′ + 3𝑞𝑟𝑠′𝑢′′+
+ 3𝑞′′𝑟′𝑠𝑢 + 6𝑞′𝑟′𝑠′𝑢 + 6𝑞′𝑟′𝑠𝑢′ + 6𝑞′𝑟𝑠′𝑢′ + 6𝑞𝑟′𝑠′𝑢′

...

(C.3)
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From (C.3) and (3.1), equations for the Taylor series terms can be expressed

𝐷𝑌 (1)𝑖

ℎ
= 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖

𝐷𝑌 (2)𝑖

ℎ2

2!
= 𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖
𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
𝐷𝑌 (3)𝑖

ℎ3

3!
= 𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖
𝐷𝑆(2)𝑖

ℎ2

2!
𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(2)𝑖

ℎ2

2!

+ 2𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 2𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖+

+ 2𝐷𝑄(0)𝑖
𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖 + 2𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
+

+ 2𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖
𝐷𝑆(1)𝑖

ℎ

𝐷𝑈(1)𝑖

ℎ
+ 2𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
𝐷𝑌 (4)𝑖

ℎ4

4!
= 𝐷𝑄(3)𝑖

ℎ3

3!
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖

𝐷𝑅(3)𝑖

ℎ3

3!
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖
𝐷𝑆(3)𝑖

ℎ3

3!
𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(3)𝑖

ℎ3

3!

+ 3𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖 + 3𝐷𝑄(2)𝑖

ℎ2

2!
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
+

+ 3𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 3𝐷𝑄(0)𝑖

𝐷𝑅(2)𝑖

ℎ2

2!

𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖+

+ 3𝐷𝑄(0)𝑖
𝐷𝑅(2)𝑖

ℎ2

2!
𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
+ 3𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖

𝐷𝑆(2)𝑖

ℎ2

2!
𝐷𝑈(0)𝑖+

+ 3𝐷𝑄(0)𝑖
𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(2)𝑖

ℎ2

2!
𝐷𝑈(0)𝑖 + 3𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖

𝐷𝑆(2)𝑖

ℎ2

2!

𝐷𝑈(1)𝑖

ℎ
+

+ 3𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖

𝐷𝑈(2)𝑖

ℎ2

2!
+ 3𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖

𝐷𝑈(2)𝑖

ℎ2

2!
+

+ 3𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖
𝐷𝑆(1)𝑖

ℎ

𝐷𝑈(2)𝑖

ℎ2

2!
+ 3𝐷𝑄(2)𝑖

ℎ2

2!

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖

+ 6𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(1)𝑖

ℎ
𝐷𝑈(0)𝑖 + 6𝐷𝑄(1)𝑖

ℎ

𝐷𝑅(1)𝑖

ℎ
𝐷𝑆(0)𝑖

𝐷𝑈(1)𝑖

ℎ
+

+ 6𝐷𝑄(1)𝑖

ℎ
𝐷𝑅(0)𝑖

𝐷𝑆(1)𝑖

ℎ

𝐷𝑈(1)𝑖

ℎ
+ 6𝐷𝑄(0)𝑖

𝐷𝑅(1)𝑖

ℎ

𝐷𝑆(1)𝑖

ℎ

𝐷𝑈(1)𝑖

ℎ
...
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Simplifying the (C.4), the equations for the individual Taylor series terms for four function
multiplications can finally be derived:

𝐷𝑌 (1)𝑖 = ℎ𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖

𝐷𝑌 (2)𝑖 = ℎ

2 (𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖)

𝐷𝑌 (3)𝑖 = ℎ

3 (𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖

+ 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖)

𝐷𝑌 (4)𝑖 = ℎ

4 (𝐷𝑄(3)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(3)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(3)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(3)𝑖+
+ 𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(1)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(2)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖)

...

(C.5)

Generally, the higher derivatives for four function multiplication can be calculated using
the following formula

𝐷𝑌 (𝑛)𝑖 = ℎ

𝑛

𝑛−1∑︁
𝑎=0

𝐷𝑄(𝑎)𝑖

𝑛−𝑎−1∑︁
𝑏=0

𝐷𝑅(𝑏)𝑖

𝑛−𝑎−𝑏∑︁
𝑐=1

𝐷𝑆(𝑛 − 𝑎 − 𝑏 − 𝑐)𝑖𝐷𝑈(𝑐 − 1)𝑖 , (C.6)

where 𝑛 = 1, . . . , 𝑁 .

C.2 Five function multiplication and higher derivatives
The elementary IVP for the five-function multiplication can be written as

𝑦′ = 𝑞𝑟𝑠𝑢𝑣 𝑦(0) = 𝑦0 , (C.7)
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where 𝑞, 𝑟, 𝑠, 𝑢 and 𝑣 are arbitrary functions. To numerically solve the IVP using MTSM,
the Taylor series for all functions have to be constructed

𝑦𝑖+1 = 𝑦𝑖 + 𝐷𝑌 (1)𝑖 + 𝐷𝑌 (2)𝑖 + 𝐷𝑌 (3)𝑖 + 𝐷𝑌 (4)𝑖 + · · · + 𝐷𝑌 (𝑁)𝑖

𝑞𝑖+1 = 𝑞𝑖 + 𝐷𝑄(1)𝑖 + 𝐷𝑄(2)𝑖 + 𝐷𝑄(3)𝑖 + 𝐷𝑄(4)𝑖 + · · · + 𝐷𝑄(𝑁)𝑖

𝑟𝑖+1 = 𝑟𝑖 + 𝐷𝑅(1)𝑖 + 𝐷𝑅(2)𝑖 + 𝐷𝑅(3)𝑖 + 𝐷𝑅(4)𝑖 + · · · + 𝐷𝑅(𝑁)𝑖

𝑠𝑖+1 = 𝑠𝑖 + 𝐷𝑆(1)𝑖 + 𝐷𝑆(2)𝑖 + 𝐷𝑆(3)𝑖 + 𝐷𝑆(4)𝑖 + · · · + 𝐷𝑆(𝑁)𝑖

𝑢𝑖+1 = 𝑢𝑖 + 𝐷𝑈(1)𝑖 + 𝐷𝑈(2)𝑖 + 𝐷𝑈(3)𝑖 + 𝐷𝑈(4)𝑖 + · · · + 𝐷𝑈(𝑁)𝑖

𝑣𝑖+1 = 𝑣𝑖 + 𝐷𝑉 (1)𝑖 + 𝐷𝑉 (2)𝑖 + 𝐷𝑉 (3)𝑖 + 𝐷𝑉 (4)𝑖 + · · · + 𝐷𝑉 (𝑁)𝑖 .

(C.8)
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The higher derivatives for the (C.7) can be constructed:

𝑦′ = 𝑞𝑟𝑠𝑢𝑣

𝑦′′ = 𝑞′𝑟𝑠𝑢𝑣 + 𝑞𝑟′𝑠𝑢𝑣 + 𝑞𝑟𝑠′𝑢𝑣 + 𝑞𝑟𝑠𝑢′𝑣 + 𝑞𝑟𝑠𝑢𝑣′

𝑦′′′ = 𝑞′′𝑟𝑠𝑢𝑣 + 𝑞′𝑟′𝑠𝑢𝑣 + 𝑞′𝑟𝑠′𝑢𝑣 + 𝑞′𝑟𝑠𝑢′𝑣 + 𝑞′𝑟𝑠𝑢𝑣′+
+ 𝑞′𝑟′𝑠𝑢𝑣 + 𝑞𝑟′′𝑠𝑢𝑣 + 𝑞𝑟′𝑠′𝑢𝑣 + 𝑞𝑟′𝑠𝑢′𝑣 + 𝑞𝑟′𝑠𝑢𝑣′+
+ 𝑞′𝑟𝑠′𝑢𝑣 + 𝑞𝑟′𝑠′𝑢𝑣 + 𝑞𝑟𝑠′′𝑢𝑣 + 𝑞𝑟𝑠′𝑢′𝑣 + 𝑞𝑟𝑠′𝑢𝑣′+
+ 𝑞′𝑟𝑠𝑢′𝑣 + 𝑞𝑟′𝑠𝑢′𝑣 + 𝑞𝑟𝑠′𝑢′𝑣 + 𝑞𝑟𝑠𝑢′′𝑣 + 𝑞𝑟𝑠𝑢′𝑣′+
+ 𝑞′𝑟𝑠𝑢𝑣′ + 𝑞𝑟′𝑠𝑢𝑣′ + 𝑞𝑟𝑠′𝑢𝑣′ + 𝑞𝑟𝑠𝑢′𝑣′ + 𝑞𝑟𝑠𝑢𝑣′′ =
= 𝑞′′𝑟𝑠𝑢𝑣 + 𝑞𝑟′′𝑠𝑢𝑣 + 𝑞𝑟𝑠′′𝑢𝑣 + 𝑞𝑟𝑠𝑢′′𝑣 + 𝑞𝑟𝑠𝑢𝑣′′+
+ 2𝑞′𝑟′𝑠𝑢𝑣 + 2𝑞′𝑟𝑠′𝑢𝑣 + 2𝑞′𝑟𝑠𝑢′𝑣 + 2𝑞′𝑟𝑠𝑢𝑣′ + 2𝑞𝑟′𝑠′𝑢𝑣+
+ 2𝑞𝑟′𝑠𝑢′𝑣 + 2𝑞𝑟′𝑠𝑢𝑣′ + 2𝑞𝑟𝑠′𝑢′𝑣 + 2𝑞𝑟𝑠𝑢′𝑣′ + 2𝑞𝑟𝑠′𝑢𝑣′

𝑦[4] = 𝑞′′′𝑟𝑠𝑢𝑣 + 𝑞′′𝑟′𝑠𝑢𝑣 + 𝑞′′𝑟𝑠′𝑢𝑣 + 𝑞′′𝑟𝑠𝑢′𝑣 + 𝑞′′𝑟𝑠𝑢𝑣′

+ 𝑞′𝑟′′𝑠𝑢𝑣 + 𝑞𝑟′′′𝑠𝑢𝑣 + 𝑞𝑟′′𝑠′𝑢𝑣 + 𝑞𝑟′′𝑠𝑢′𝑣 + 𝑞𝑟′′𝑠𝑢𝑣′

+ 𝑞′𝑟𝑠′′𝑢𝑣 + 𝑞𝑟′𝑠′′𝑢𝑣 + 𝑞𝑟𝑠′′′𝑢𝑣 + 𝑞𝑟𝑠′′𝑢′𝑣 + 𝑞𝑟𝑠′′𝑢𝑣′

+ 𝑞′𝑟𝑠𝑢′′𝑣 + 𝑞𝑟′𝑠𝑢′′𝑣 + 𝑞𝑟𝑠′𝑢′′𝑣 + 𝑞𝑟𝑠𝑢′′′𝑣 + 𝑞𝑟𝑠𝑢′′𝑣′

+ 𝑞′𝑟𝑠𝑢𝑣′′ + 𝑞𝑟′𝑠𝑢𝑣′′ + 𝑞𝑟𝑠′𝑢𝑣′′ + 𝑞𝑟𝑠𝑢′𝑣′′ + 𝑞𝑟𝑠𝑢𝑣′′′

+ 2𝑞′′𝑟′𝑠𝑢𝑣 + 2𝑞′𝑟′′𝑠𝑢𝑣 + 2𝑞′𝑟′𝑠′𝑢𝑣 + 2𝑞′𝑟′𝑠𝑢′𝑣 + 2𝑞′𝑟′𝑠𝑢𝑣′+
+ 2𝑞′′𝑟𝑠′𝑢𝑣 + 2𝑞′𝑟′𝑠′𝑢𝑣 + 2𝑞′𝑟𝑠′′𝑢𝑣 + 2𝑞′𝑟𝑠′𝑢′𝑣 + 2𝑞′𝑟𝑠′𝑢𝑣′+
+ 2𝑞′′𝑟𝑠𝑢′𝑣 + 2𝑞′𝑟′𝑠𝑢′𝑣 + 2𝑞′𝑟𝑠′𝑢′𝑣 + 2𝑞′𝑟𝑠𝑢′′𝑣 + 2𝑞′𝑟𝑠𝑢′𝑣′+
+ 2𝑞′′𝑟𝑠𝑢𝑣′ + 2𝑞′𝑟′𝑠𝑢𝑣′ + 2𝑞′𝑟𝑠′𝑢𝑣′ + 2𝑞′𝑟𝑠𝑢′𝑣′ + 2𝑞′𝑟𝑠𝑢𝑣′′+
+ 2𝑞′𝑟′𝑠′𝑢𝑣 + 2𝑞𝑟′′𝑠′𝑢𝑣 + 2𝑞𝑟′𝑠′′𝑢𝑣 + 2𝑞𝑟′𝑠′𝑢′𝑣 + 2𝑞𝑟′𝑠′𝑢𝑣′+
+ 2𝑞′𝑟′𝑠𝑢′𝑣 + 2𝑞𝑟′′𝑠𝑢′𝑣 + 2𝑞𝑟′𝑠′𝑢′𝑣 + 2𝑞𝑟′𝑠𝑢′′𝑣 + 2𝑞𝑟′𝑠𝑢′𝑣′+
+ 2𝑞′𝑟′𝑠𝑢𝑣′ + 2𝑞𝑟′′𝑠𝑢𝑣′ + 2𝑞𝑟′𝑠′𝑢𝑣′ + 2𝑞𝑟′𝑠𝑢′𝑣′ + 2𝑞𝑟′𝑠𝑢𝑣′′+
+ 2𝑞′𝑟𝑠′𝑢′𝑣 + 2𝑞𝑟′𝑠′𝑢′𝑣 + 2𝑞𝑟𝑠′′𝑢′𝑣 + 2𝑞𝑟𝑠′𝑢′′𝑣 + 2𝑞𝑟𝑠′𝑢′𝑣′+
+ 2𝑞′𝑟𝑠𝑢′𝑣′ + 2𝑞𝑟′𝑠𝑢′𝑣′ + 2𝑞𝑟𝑠′𝑢′𝑣′ + 2𝑞𝑟𝑠𝑢′′𝑣′ + 2𝑞𝑟𝑠𝑢′𝑣′′+
+ 2𝑞′𝑟𝑠′𝑢𝑣′ + 2𝑞𝑟′𝑠′𝑢𝑣′ + 2𝑞𝑟𝑠′′𝑢𝑣′ + 2𝑞𝑟𝑠′𝑢′𝑣′ + 2𝑞𝑟𝑠′𝑢𝑣′′ =
= 𝑞′′′𝑟𝑠𝑢𝑣 + 𝑞𝑟′′′𝑠𝑢𝑣 + 𝑞𝑟𝑠′′′𝑢𝑣 + 𝑞𝑟𝑠𝑢′′′𝑣 + 𝑞𝑟𝑠𝑢𝑣′′′+
+ 3𝑞′′𝑟′𝑠𝑢𝑣 + 3𝑞′′𝑟𝑠′𝑢𝑣 + 3𝑞′′𝑟𝑠𝑢′𝑣 + 3𝑞′′𝑟𝑠𝑢𝑣′ + 3𝑞′𝑟′′𝑠𝑢𝑣+
+ 3𝑞𝑟′′𝑠′𝑢𝑣 + 3𝑞𝑟′′𝑠𝑢′𝑣 + 3𝑞𝑟′′𝑠𝑢𝑣′ + 3𝑞′𝑟𝑠′′𝑢𝑣 + 3𝑞𝑟′𝑠′′𝑢𝑣+
+ 3𝑞𝑟𝑠′′𝑢′𝑣 + 3𝑞𝑟𝑠′′𝑢𝑣′ + 3𝑞′𝑟𝑠𝑢′′𝑣 + 3𝑞𝑟′𝑠𝑢′′𝑣 + 3𝑞𝑟𝑠′𝑢′′𝑣+
+ 3𝑞𝑟𝑠𝑢′′𝑣′ + 3𝑞′𝑟𝑠𝑢𝑣′′ + 3𝑞𝑟′𝑠𝑢𝑣′′ + 3𝑞𝑟𝑠′𝑢𝑣′′ + 3𝑞𝑟𝑠𝑢′𝑣′′+
+ 6𝑞′𝑟′𝑠′𝑢𝑣 + 6𝑞′𝑟′𝑠𝑢′𝑣 + 6𝑞′𝑟′𝑠𝑢𝑣′ + 6𝑞′𝑟𝑠′𝑢′𝑣 + 6𝑞′𝑟𝑠′𝑢𝑣′+
+ 6𝑞′𝑟𝑠𝑢′𝑣′ + 6𝑞𝑟′𝑠′𝑢′𝑣 + 6𝑞𝑟′𝑠′𝑢𝑣′ + 6𝑞𝑟′𝑠𝑢′𝑣′ + 6𝑞𝑟𝑠′𝑢′𝑣′+

...

(C.9)
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After expressing the Taylor series terms from (C.9) and (3.1) and simplifying the result,
the equations for the Taylor series terms for five function multiplications have the following
form:
𝐷𝑌 (1)𝑖 = ℎ𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑌 (2)𝑖 = ℎ

2 (𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖)

𝐷𝑌 (3)𝑖 = ℎ

3 (𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖+

+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(3)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖𝐷𝑉 (0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (2)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖+
+ 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (1)𝑖+
+ 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖)

𝐷𝑌 (4)𝑖 = ℎ

4 (𝐷𝑄(3)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(3)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(3)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(3)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (3)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(2)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(2)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(2)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(2)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(2)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (2)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (2)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (2)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (2)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖

𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖 + 𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖

𝐷𝑄(1)𝑖𝐷𝑅(0)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (0)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(1)𝑖𝐷𝑈(0)𝑖𝐷𝑉 (1)𝑖 + 𝐷𝑄(0)𝑖𝐷𝑅(1)𝑖𝐷𝑆(0)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (1)𝑖

𝐷𝑄(0)𝑖𝐷𝑅(0)𝑖𝐷𝑆(1)𝑖𝐷𝑈(1)𝑖𝐷𝑉 (1)𝑖)
...

(C.10)

Generally, the higher derivatives for five-function multiplication can be calculated using
the following formula

𝐷𝑌 (𝑛)𝑖 = ℎ

𝑛

𝑛−1∑︁
𝑎=0

𝐷𝑄(𝑎)𝑖

𝑛−𝑎−1∑︁
𝑏=0

𝐷𝑅(𝑏)𝑖

𝑛−𝑎−𝑏−1∑︁
𝑐=0

𝐷𝑆(𝑐)𝑖

𝑛−𝑎−𝑏−𝑐∑︁
𝑑=1

𝐷𝑈(𝑛 − 𝑎 − 𝑏 − 𝑐 − 𝑑)𝑖𝐷𝑉 (𝑑 − 1)𝑖 , (C.11)
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where 𝑛 = 1, . . . , 𝑁 . Note that more than five multiplications would be derived similarly.
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Appendix D

Optimization of the non-linear
Modern Taylor Series Method
solver for more multiplications

This Appendix shows the optimizations of the MTSM for non-linear problems when using
four and five-function multiplications. More information is in Subsection 3.3.2.

D.1 Four function multiplications
Four function multiplications can be seen Table D.1.

n Indexes of Taylor series terms
1 0

0
0
0

2 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3 2 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 2 1 0
0 0 1 0 0 1 0 0 1 2
0 0 0 1 2 1 1 0 0 0

4 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0 0 0 1 2 1 0 3 2 1 0
0 0 1 0 0 1 0 2 1 0 0 1 0 0 1 2 0 1 2 3
0 0 0 1 0 0 1 0 1 2 3 2 2 1 1 1 0 0 0 0

Table D.1: Four term multiplications.
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It is possible to optimize the calculation even further. This optimization is visualised
in Table D.2. Note that there are now two types of matrices that can be precalculated and
then used during the calculation:

• results from the previous term (as seen in Tables 3.1, 3.2 and D.1) and

• partial results from the previous step. Notice the brighter areas in Table D.2. The
results from multiplying the sub-matrices can again be used and they speed up the
calculation of the current step by approximately 30 to 40 percent. Note that the
number of calculations reduces more with the higher value of 𝑛.

n Indexes of Taylor series terms
1 0

0
0
0

2 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3 2 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 2 1 0
0 0 1 0 0 1 0 0 1 2
0 0 0 1 2 1 1 0 0 0

4 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0 0 0 1 2 1 0 3 2 1 0
0 0 1 0 0 1 0 2 1 0 0 1 0 0 1 2 0 1 2 3
0 0 0 1 0 0 1 0 1 2 3 2 2 1 1 1 0 0 0 0

Table D.2: Four term multiplications – partial results.

D.2 Five function multiplications
For five multiplications, the effectiveness is even more pronounced. The operations are
again shown in the tabular form in Table D.3.
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n Indexes of Taylor series terms
1 0

0
0
0
0

2 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0 1 2
0 0 0 0 1 2 1 1 1 0 0 0 0 0 0

4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 2 1 1 1 0 0 0 0 0 0 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0 2 1 1 0 0 0 0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0
0 0 0 1 0 0 0 1 0 0 1 0 2 1 0 0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3
0 0 0 0 1 0 0 0 1 0 0 1 0 1 2 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Table D.3: Five term multiplications.

It is again possible to optimize the calculation even further. This optimization is visu-
alised in Table D.4. Note that there are now two types of matrices that can be precalculated
and then used during the calculation:

• results from the previous term (as seen in Tables 3.1, 3.2, D.1 and D.3) and

• partial results from the previous step. Notice the brighter areas in Table D.4. The
results from multiplying the sub-matrices can again be used, and they speed up the
calculation of the current step by approximately 30 to 40 percent. Note that the
number of calculations reduces more with the higher value of 𝑛.

n Indexes of Taylor series terms
1 0

0
0
0
0

2 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 0 0 1 0 0 1 0 1 2
0 0 0 0 1 2 1 1 1 0 0 0 0 0 0

4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 2 1 1 1 0 0 0 0 0 0 0 1 0 0 2 1 1 0 0 0 3 2 2 1 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0 2 1 1 0 0 0 0 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0 3 2 1 0
0 0 0 1 0 0 0 1 0 0 1 0 2 1 0 0 0 0 1 0 0 1 0 1 2 0 0 1 0 1 2 0 1 2 3
0 0 0 0 1 0 0 0 1 0 0 1 0 1 2 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Table D.4: Five term multiplications – partial results.
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Appendix E

Complete results for numerical
benchmarks

This Appendix discusses the solutions and derivations of the benchmarks from Section 4.1.

E.1 Problem A1
Problem A1 is defined as

𝑦′ = −𝑦 𝑦0 = (1) .

The problem is linear. To solve it using MTSM, the equation can be directly transformed
into matrix-vector representation

𝐴 =
(︁
−1
)︁

𝑏 =
(︁
0
)︁

.

E.2 Problem A2
Problem A2 is defined as

𝑦′ = −𝑦3

2 = −0.5𝑦3 𝑦(0) = 1 .

To solve this non-linear system using MTSM, the 𝑦3 term has to be replaced by a set of
auxiliary ODEs

𝑦′
1 = −0.5𝑦3 𝑦(0) = 1

𝑦2 = 𝑦3
1

𝑦′
2 = 3𝑦2

1𝑦′
1 = 3𝑦2

1(−0.5𝑦3) = −1.5𝑦2
1𝑦2 𝑦2(0) = 𝑦1(0)3

𝑦3 = 𝑦2
1

𝑦′
3 = 2𝑦1𝑦′

1 = 2𝑦1(−0.5𝑦3) = −𝑦1𝑦2 𝑦3(0) = 𝑦1(0)2 ,

so the final system becomes

𝑦′
1 = −0.5𝑦2 𝑦1(0) = 1

𝑦′
2 = −1.5𝑦2𝑦3 𝑦2(0) = 1

𝑦′
3 = −𝑦1𝑦2 𝑦3(0) = 1
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which can be transformed into a matrix-vector representation (3.19)

𝐴 =

⎛⎜⎝0 −1.5 0
0 0 0
0 0 0

⎞⎟⎠ 𝐵1 =

⎛⎜⎝ 0 0
−1.5 0

0 1

⎞⎟⎠ 𝑦𝑗𝑘 =
(︃

3 2
1 2

)︃
.

E.3 Problem A3
Problem A3 is defined as

𝑦′ = 𝑦 cos(𝑡) 𝑦(0) = 1 ,

the auxiliary system of ODEs representing the system can be written as

𝑦′
1 = 𝑦1𝑦2 𝑦1(0) = 1

𝑦′
2 = −𝑦3 𝑦2(0) = cos(0) = 1

𝑦′
3 = 𝑦2 𝑦3(0) = sin(0) = 0 ,

and it can be transformed into the matrix-vector representation (3.19)

𝐴 =

⎛⎜⎝0 0 0
0 0 −1
0 1 0

⎞⎟⎠ 𝐵1 =

⎛⎜⎝1
0
0

⎞⎟⎠ 𝑦𝑗𝑘 =
(︁
1 2

)︁
.

E.4 Problem A4
Problem A4 is defined as

𝑦′ = 𝑦

4 − 𝑦

20 𝑦(0) = 1 ,

the auxiliary system of ODEs representing the system can be written as

𝑦′
1 = 0.25𝑦1 − (1/80)𝑦2 𝑦1(0) = 1

𝑦′
2 = 0.5𝑦2 − (1/40)𝑦1𝑦2 𝑦2(0) = 𝑦1(0)𝑦1(0)

and it can be transformed into the matrix-vector representation (3.19)

𝐴 =
(︃

0.25 − 1
80

0 0.5

)︃
𝐵1 =

(︃
0

− 1
40

)︃
𝑦𝑗𝑘 =

(︁
1 2

)︁
.

E.5 Problem B1
Problem B1 is defined as

𝑦′
1 = 2𝑦1 − 2𝑦1𝑦2 𝑦1(0) = 1

𝑦′
2 = −𝑦2 + 𝑦1𝑦2 𝑦2(0) = 3

with the auxiliary system not being necessary, the system can be transformed into the
matrix-vector representation (3.19)

𝐴 =
(︃

0.25 − 1
80

0 0.5

)︃
𝐵1 =

⎛⎜⎜⎜⎝
1 0
1 0
1 0
0 −1

⎞⎟⎟⎟⎠ 𝑦𝑗𝑘 =
(︃

2 4
4 4

)︃
𝐵3 =

⎛⎜⎜⎜⎝
0
0
0

−1

⎞⎟⎟⎟⎠ 𝑦𝑗𝑘𝑙𝑚 =
(︁
4 4 4 2

)︁
.
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E.6 Problem B2
Problem B2 is defined as

𝑦′
1 = −𝑦1 + 𝑦2 𝑦1(0) = 2 (E.1)

𝑦′
2 = −𝑦1 − 2𝑦2 + 𝑦3 𝑦2(0) = 0 (E.2)

𝑦′
3 = 𝑦2 − 𝑦3 𝑦3(0) = 1 . (E.3)

The problem is linear. To solve it using MTSM, the equation can be directly transformed
into matrix-vector representation

𝐴 =

⎛⎜⎝−1 1 0
1 −2 1
0 1 −1

⎞⎟⎠ 𝑏 =

⎛⎜⎝0
0
0

⎞⎟⎠ .

E.7 Problem B3
Problem B3 is defined as

𝑦′
1 = −𝑦1 𝑦1(0) = 1

𝑦′
2 = 𝑦1 − 𝑦2𝑦2 𝑦2(0) = 0

𝑦′
3 = 𝑦2𝑦2 𝑦3(0) = 0

with the auxiliary system not being necessary, the system can be directly transformed into
the matrix-vector representation (3.19)

𝐴 =

⎛⎜⎝−1 0 0
1 0 0
0 0 0

⎞⎟⎠ 𝐵1 =

⎛⎜⎝ 0 0
−1 0
1 0

⎞⎟⎠ 𝑦𝑗𝑘 =
(︁
2 2

)︁
.

E.8 Problem B4
This section contains the matrix-vector representation for the benchmark problem B4, which
is detailed in Section 4.1.9. The matrix-vector representation for the linear part of (4.4):

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and for the non-linear part of (4.4):

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎝
1 5
9 11
1 2
8 9

⎞⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −2 −2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘𝑙 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 5
3 8 9
3 8 10
3 6 9
3 6 10
3 5 10
2 3 5
3 5 11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 8 0 0 0 0 0 0
0 0 6 6 0 0 0 0
0 0 0 0 4 4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘𝑙𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 6 7 9
3 6 7 10
3 6 8 9
3 6 8 10
3 5 6 9
3 5 6 10
1 6 9 12
1 6 10 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

E.9 Problem B5
Problem B5 is defined as

𝑦′
1 = 𝑦2𝑦3 𝑦1(0) = 0,

𝑦′
2 = −𝑦1𝑦3 𝑦2(0) = 1,

𝑦′
3 = −0.51𝑦1𝑦2 𝑦3(0) = 1.
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With the auxiliary system not being necessary, the matrix vector representation can be
obtained directly

𝐵1 =

⎛⎜⎝1 0 0
0 −1 0
0 0 −0.51

⎞⎟⎠ 𝑦𝑗𝑘 =

⎛⎜⎝2 3
1 3
1 2

⎞⎟⎠ .

E.10 Problem C3
Problem C3 is defined directly in the matrix-vector representation

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0
0 0 1 −2 1 0 0 0 0 0
0 0 0 1 −2 1 0 0 0 0
0 0 0 0 1 −2 1 0 0 0
0 0 0 0 0 1 −2 1 0 0
0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑏 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

E.11 Problem E1
Problem E1 is defined as

𝑦′
1 = 𝑦2 𝑦1(0) = 0.6713967071418030

𝑦′
2 = − 𝑦2

𝑡 + 1 − 𝑦1 + 0.25 𝑦1
(𝑡 + 1)2 𝑦2(0) = 0.09540051444747446.

The operation division has to be removed from the original system:

𝑦3 = 𝑡 + 1
𝑦′

3 = 1 𝑦3(0) = 𝑡0 + 1 = 1

𝑦4 = 1
𝑡 + 1 = 1

𝑦3
= 𝑦−1

3

𝑦′
4 = −𝑦−2

3 𝑦′
3 = −𝑦2

4 𝑦4(0) = 1
𝑡0 + 1 = 1

𝑦5 = 𝑦2
4

𝑦′
5 = 2𝑦4𝑦′

4 = −2𝑦4𝑦4𝑦4 = −2𝑦4𝑦5 𝑦5(0) = 1
(𝑡0 + 1)2 = 1

where 𝑡0 is the initial time of calculation, which is zero in this case. Augmented system of
ODEs becomes

𝑦′
1 = 𝑦2 𝑦1(0) = 0.6713967071418030

𝑦′
2 = −𝑦2𝑦4 − 𝑦1 − 0.5𝑦1𝑦4𝑦5 𝑦2(0) = 0.09540051444747446

𝑦′
3 = 1 𝑦3(0) = 1

𝑦′
4 = −𝑦4𝑦4 𝑦4(0) = 1

𝑦′
5 = −2𝑦4𝑦5 𝑦5(0) = 1.

(E.4)
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The system (E.4) can be rewritten into matrix-vector notation

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ 𝑏 =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0

−1 0 0
0 0 0
0 −1 0
0 0 −2

⎞⎟⎟⎟⎟⎟⎠ 𝐵2 =

⎛⎜⎜⎜⎜⎜⎝
0

−0.5
0
0
0

⎞⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘 =

⎛⎜⎝2 4
4 4
4 5

⎞⎟⎠ 𝑦𝑗𝑘𝑙 =
(︁
1 4 5

)︁
.

E.12 Problem E2
Problem E2 is defined as:

𝑦′
1 = 𝑦2 𝑦1(0) = 2

𝑦′
2 = 𝑦2 − 𝑦1𝑦1𝑦2 − 𝑦1 𝑦2(0) = 0.

(E.5)

The system (E.5) can be transformed into the matrix-vector notation as is. However, it
can be further optimized by removing the three term multiplication 𝑦1𝑦1𝑦2:

𝑦3 = 𝑦1𝑦1 = 𝑦2
1

𝑦′
3 = 2𝑦1𝑦′

1 = 2𝑦1𝑦2 𝑦3(0) = 𝑦1(0)𝑦1(0) = 4

and adding this equation into (E.5) and substituting

𝑦′
1 = 𝑦2 𝑦1(0) = 2

𝑦′
2 = 𝑦2 − 𝑦2𝑦3 − 𝑦1 𝑦2(0) = 0

𝑦′
3 = 2𝑦1𝑦2 𝑦3(0) = 4.

(E.6)

The system (E.6) can be rewritten into a matrix-vector notation

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ 𝑏 =

⎛⎜⎜⎜⎜⎜⎝
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0

−1 0 0
0 0 0
0 −1 0
0 0 −2

⎞⎟⎟⎟⎟⎟⎠ 𝐵2 =

⎛⎜⎜⎜⎜⎜⎝
0

−0.5
0
0
0

⎞⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘 =

⎛⎜⎝2 4
4 4
4 5

⎞⎟⎠ 𝑦𝑗𝑘𝑙 =
(︁
1 4 5

)︁
.
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E.13 Problem E3
Problem E3 is defined as

𝑦′
1 = 𝑦2 𝑦1(0) = 0

𝑦′
2 = 𝑦3

1
6 − 𝑦1 + 2 sin(2.78535𝑡) 𝑦2(0) = 0.

(E.7)

The system (E.7) cannot be transformed into the matrix-vector notation as is, because the
term sin(2.78535𝑡) has to be replaced by the system of auxiliary ODEs:

𝑦3 = sin(2.78535𝑡)
𝑦′

3 = 2.78535 cos(2.78535𝑡) 𝑦3(0) = sin(2.78535𝑡0) = sin(2.78535)
𝑦4 = cos(2.78535𝑡)
𝑦′

4 = −2.78535 sin(2.78535𝑡) 𝑦4(0) = cos(2.78535𝑡0) = cos(2.78535)

where 𝑡0 is the initial time of computation. Further the three function multiplication 𝑦3
1

can also be removed

𝑦5 = 𝑦3
1

𝑦′
5 = 3𝑦2

1𝑦1′ = 3𝑦2
1𝑦2 𝑦5(0) = 𝑦1(0)𝑦1(0)𝑦1(0) = 0

𝑦6 = 𝑦2
1

𝑦′
6 = 2𝑦1𝑦′

1 = 2𝑦1𝑦2 𝑦6(0) = 𝑦1(0)𝑦1(0) = 0.

Adding the three ODEs above into the E.7 and substituting

𝑦′
1 = 𝑦2 𝑦1(0) = 0

𝑦′
2 = 1

6𝑦5 − 𝑦1 + 2𝑦3 𝑦2(0) = 0

𝑦′
3 = 2.78535𝑦4 𝑦3(0) = sin(2.78535)

𝑦′
4 = −2.78535𝑦3 𝑦4(0) = cos(2.78535)

𝑦′
5 = 3𝑦2𝑦6 𝑦5(0) = 0

𝑦′
6 = 2𝑦1𝑦2 𝑦6(0) = 0.

(E.8)

The system (E.8) can be rewritten into a matrix-vector notation

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 2 0 1

6 0
0 0 0 2.78535 0 0
0 0 2.78535 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
3 0
0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝐵2 =

⎛⎜⎜⎜⎜⎜⎝
0

−0.5
0
0
0

⎞⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘 =
(︃

2 6
1 2

)︃
.
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E.14 Problem E4
Problem E4 is defined as

𝑦′
1 = 𝑦2 𝑦1(0) = 30

𝑦′
2 = 0.032 − 0.4𝑦2𝑦2 𝑦2(0) = 0.

(E.9)

The system (E.9) can be transformed into the matrix-vector notation as is:

𝐴 =
(︃

0 1
0 0

)︃
𝑏 =

(︃
0

0.032

)︃
𝐵1 =

(︃
0 0

0.4 0

)︃
𝑦𝑗𝑘 =

(︁
2 2

)︁
.

E.15 Problem E5
This section contains the matrix-vector representation for the benchmark problem E5, de-
fined in Subsection 4.1.15. The matrix-vector representation for (4.7) follows:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−3 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 8
6 8
9 9
3 8
4 10
3 10
3 9
2 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘𝑙 =

⎛⎜⎜⎜⎝
6 7 8
5 6 8
5 8 11
3 5 8

⎞⎟⎟⎟⎠ .
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Appendix F

Matrix-vector representation of
Kepler problem

This Appendix contains the matrix-vector representations for Kepler problem, discussed in
Section 4.7.

F.1 Matrix-vector representation for (4.62)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0

−1 0
0 −1
0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
3 3 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−3 −3 0 0
0 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(F.1)

The vectors on the right hand side of (3.19) are defined as follows:

𝑦𝑗𝑘 =
(︃

𝑦1 𝑦7
𝑦2 𝑦7

)︃
𝑦𝑗𝑘𝑙 =

⎛⎜⎜⎜⎝
𝑦6 𝑦1 𝑦3
𝑦6 𝑦2 𝑦4
𝑦1 𝑦3 𝑦8
𝑦2 𝑦4 𝑦8

⎞⎟⎟⎟⎠𝑦𝑗𝑘𝑙𝑚𝑛 =

⎛⎜⎜⎜⎝
𝑦6 𝑦1 𝑦3 𝑦7 𝑦7
𝑦6 𝑦2 𝑦4 𝑦7 𝑦7
𝑦1 𝑦3 𝑦8 𝑦8 𝑦8
𝑦2 𝑦4 𝑦8 𝑦8 𝑦8

⎞⎟⎟⎟⎠ .
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F.2 Matrix-vector representation for (4.63)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐵3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0
0 0

−3 0
0 −1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(F.2)

The vectors on the right hand side of (3.19) are defined as follows:

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 𝑦7
𝑦2 𝑦7
𝑦6 𝑦9
𝑦8 𝑦9
𝑦3 𝑦3
𝑦4 𝑦4
𝑦1 𝑦7
𝑦2 𝑦7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦𝑗𝑘𝑙 =
(︃

𝑦7 𝑦1 𝑦1
𝑦7 𝑦2 𝑦2

)︃

𝑦𝑗𝑘𝑙𝑚 =
(︃

𝑦6 𝑦7 𝑦7 𝑦9
𝑦8 𝑦8 𝑦8 𝑦9

)︃
.
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F.3 Matrix-vector representation for (4.64)

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−3 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 −1 0 0 0 0
0 0 0 0 0 −1 1 1 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(F.3)

The vectors on the right hand side of (3.19) are defined as follows:

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 𝑦7
𝑦2 𝑦7
𝑦3 𝑦3
𝑦4 𝑦4
𝑦7 𝑦12
𝑦7 𝑦11
𝑦1 𝑦3
𝑦2 𝑦4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘𝑙 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7 𝑦7 𝑦10
𝑦8 𝑦8 𝑦11
𝑦6 𝑦3 𝑦3
𝑦6 𝑦4 𝑦4
𝑦6 𝑦7 𝑦12
𝑦8 𝑦11 𝑦11
𝑦8 𝑦3 𝑦3
𝑦8 𝑦4 𝑦4
𝑦8 𝑦7 𝑦12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Appendix G

Matrix-vector representation of
the pendulum on the cart

This Appendix contains the matrix-vector representations of systems used in Chapter 6.3.

G.1 Representation for (6.40)
The matrix-vector representation for (6.40) can be written as

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 𝑢 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑢 𝑀𝑔 + 𝑚𝑔 0 0 0 0
0 0 0 0 0 0
0 0 −𝑚𝑔 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 2
0 0 0 0 0 2𝑚𝑙
0 0 0 0 0 0
0 0 0 0 0 2𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑚𝑙 0 0 0
0 0 0 0
0 𝑚𝑙 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −2𝑚𝑙 0
0 0 0 0
0 0 0 −2𝑚
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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with 𝑏 = 0𝑇 . The vectors on the right hand side of (3.19) are defined as follows:

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑦6 𝑦9
𝑦5 𝑦9
𝑦12 𝑦11
𝑦6 𝑦1
𝑦5 𝑦1
𝑦12 𝑦1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘𝑙 =

(︃
𝑦6 𝑦1 𝑦6
𝑦5 𝑦5 𝑦1

)︃
, 𝑦𝑗𝑘𝑙𝑚 =

⎛⎜⎜⎜⎝
𝑦12 𝑦1 𝑦1 𝑦9
𝑦5 𝑦1 𝑦1 𝑦11
𝑦9 𝑦9 𝑦12 𝑦1
𝑦11 𝑦11 𝑦12 𝑦1

⎞⎟⎟⎟⎠ .

G.2 Representation for (6.44)
The matrix-vector representation for (6.44) can be written as

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 𝑘𝑟 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑟 𝑀𝑔 + 𝑚𝑔 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −𝑘1 −𝑘2 −𝑘3 −𝑘4 −𝑚𝑔 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 2𝑚𝑙
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘1 𝑘2 𝑘3 𝑘4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑚𝑙 0 0 0
0 0 0 0
0 𝑚𝑙 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −2𝑚𝑙 0
0 0 0 0
0 0 0 −2𝑚
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with 𝑏 = 0𝑇 . The vectors on the right hand side of (3.19) are defined as follows:

𝑦𝑗𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦6 𝑦9
𝑦5 𝑦9
𝑦1 𝑦11
𝑦2 𝑦11
𝑦3 𝑦11
𝑦4 𝑦11
𝑦12 𝑦11
𝑦6 𝑦1
𝑦5 𝑦1
𝑦12 𝑦1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑦𝑗𝑘𝑙 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1 𝑦6 𝑦9
𝑦2 𝑦6 𝑦9
𝑦3 𝑦6 𝑦9
𝑦4 𝑦6 𝑦9
𝑦6 𝑦1 𝑦6
𝑦5 𝑦5 𝑦1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑦𝑗𝑘𝑙𝑚 =

⎛⎜⎜⎜⎝
𝑦12 𝑦1 𝑦1 𝑦9
𝑦5 𝑦1 𝑦1 𝑦11
𝑦9 𝑦9 𝑦12 𝑦1
𝑦11 𝑦11 𝑦12 𝑦1

⎞⎟⎟⎟⎠ .
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Appendix H

Derivation of the equations for
pendulum on the cart

This Appendix contains derivations for (6.37) and (6.38) in Section 6.3.

H.1 Coordinate substitution
The 𝑥𝐺 coordinate can be substituted into (6.31) and the resulting equation simplified

𝑀𝑥′′ + 𝑚 (𝑥 + 𝑙 sin(𝜑))′′ = 𝑢

𝑀𝑥′′ + 𝑚
(︀
𝑥′ + 𝑙 cos(𝜑)𝜑′)︀′ = 𝑢

𝑀𝑥′′ + 𝑚
(︀
𝑥′′ − 𝑙 sin(𝜑)𝜑′𝜑′ + 𝑙 cos(𝜑)𝜑′′)︀ = 𝑢

𝑀𝑥′′ + 𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢

H.2 Forces on the pendulum
The forces 𝐹𝑥 can be calculated as

𝐹𝑥 = 𝑚𝑥′′
𝐺 = 𝑚 (𝑥 + 𝑙 sin(𝜑))′′ = 𝑚

(︀
𝑥′ + 𝑙 cos(𝜑)𝜑′)︀′

= 𝑚
(︀
𝑥′′ − 𝑙 sin(𝜑)𝜑′𝜑′ + 𝑙 cos(𝜑)𝜑′′)︀ = 𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′

𝐹𝑦 = 𝑚𝑦′′
𝐺 = 𝑚 (𝑙 cos(𝜑))′′ = 𝑚

(︀
−𝑙 sin(𝜑)𝜑′)︀′ =

= 𝑚
(︀
−𝑙 cos(𝜑)𝜑′𝜑′ − 𝑙 sin(𝜑)𝜑′′)︀ = −𝑚𝑙 cos(𝜑)𝜑′2 − 𝑚𝑙 sin(𝜑)𝜑′′ .

(H.1)

Forces derived from (H.1) can be substituted into (6.34)

𝐹𝑥 cos(𝜑) − 𝐹𝑦 sin(𝜑) = 𝑚𝑔 sin(𝜑)(︁
𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′

)︁
cos(𝜑) −

(︁
−𝑚𝑙 cos(𝜑)𝜑′2 − 𝑚𝑙 sin(𝜑)𝜑′′

)︁
sin(𝜑) = 𝑚𝑔 sin(𝜑)

𝑚 cos(𝜑)𝑥′′ − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2 + 𝑚𝑙 cos2(𝜑)𝜑′′ + 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2 + 𝑚𝑙 sin2(𝜑)𝜑′′ = 𝑚𝑔 sin(𝜑)
𝑚 cos(𝜑)𝑥′′ + 𝑚𝑙 cos2(𝜑)𝜑′′ + 𝑚𝑙 sin2(𝜑)𝜑′′ = 𝑚𝑔 sin(𝜑)

𝑚 cos(𝜑)𝑥′′ + 𝑚𝑙𝜑′′
(︁
cos2(𝜑) + sin2(𝜑)

)︁
= 𝑚𝑔 sin(𝜑)

𝑚 cos(𝜑)𝑥′′ + 𝑚𝑙𝜑′′ = 𝑚𝑔 sin(𝜑) → cos(𝜑)𝑥′′ + 𝑙𝜑′′ = 𝑔 sin(𝜑) .
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H.3 Position of the cart
Rearranging (6.36) to solve 𝜑′′

𝜑′′ = 𝑔 sin(𝜑)
𝑙

− cos(𝜑)𝑥′′

𝑙

and substituting the obtained equation into (6.35)

𝑀𝑥′′ + 𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝑔 sin(𝜑)
𝑙

− 𝑚𝑙 cos(𝜑)cos(𝜑)𝑥′′

𝑙
= 𝑢

𝑀𝑥′′ + 𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚 cos(𝜑)𝑔 sin(𝜑) − 𝑚 cos(𝜑) cos(𝜑)𝑥′′ = 𝑢

𝑀𝑥′′ + 𝑚𝑥′′ − 𝑚 cos(𝜑) cos(𝜑)𝑥′′ = 𝑢 + 𝑚𝑙 sin(𝜑)𝜑′2 − 𝑚𝑔 cos(𝜑) sin(𝜑)
𝑥′′ (𝑀 + 𝑚 − 𝑚 cos(𝜑) cos(𝜑)) = 𝑢 + 𝑚𝑙 sin(𝜑)𝜑′2 − 𝑚𝑔 cos(𝜑) sin(𝜑)

𝑥′′ = 𝑢 + 𝑚𝑙 sin(𝜑)𝜑′2 − 𝑚𝑔 cos(𝜑) sin(𝜑)
𝑀 + 𝑚(1 − cos2(𝜑))

and using trigonometric identity sin2(𝜑) + cos2(𝜑) = 1 [9] the final second order ODE for
the position of the cart (representing its acceleration in m·s−2) can be written as

𝑥′′ = 𝑢 + 𝑚𝑙 sin(𝜑)𝜑′2 − 𝑚𝑔 sin(𝜑) cos(𝜑)
𝑀 + 𝑚 sin2(𝜑) .

H.4 Angle of the pendulum
Rearranging (6.36) to solve 𝑥′′

𝑥′′ = 𝑔 sin(𝜑)
cos(𝜑) − 𝑙𝜑′′

cos(𝜑)
and substituting the obtained equation into (6.35)

(𝑀 + 𝑚) 𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢

𝑀𝑥′′ + 𝑚𝑥′′ − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢

𝑀(𝑔 sin(𝜑)
cos(𝜑) − 𝑙𝜑′′

cos(𝜑)) + 𝑚(𝑔 sin(𝜑)
cos(𝜑) − 𝑙𝜑′′

cos(𝜑)) − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢

𝑀𝑔 sin(𝜑)
cos(𝜑) − 𝑀𝑙𝜑′′

cos(𝜑) + 𝑚𝑔 sin(𝜑)
cos(𝜑) − 𝑚𝑙𝜑′′

cos(𝜑) − 𝑚𝑙 sin(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)𝜑′′ = 𝑢

𝑀𝑔 sin(𝜑) − 𝑀𝑙𝜑′′ + 𝑚𝑔 sin(𝜑) − 𝑚𝑙𝜑′′ − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2 + 𝑚𝑙 cos(𝜑)2𝜑′′ = 𝑢 cos(𝜑)
− 𝑀𝑙𝜑′′ − 𝑚𝑙𝜑′′ + 𝑚𝑙 cos(𝜑)2𝜑′′ = 𝑢 cos(𝜑) − 𝑀𝑔 sin(𝜑) − 𝑚𝑔 sin(𝜑) + 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝑀𝑙𝜑′′ + 𝑚𝑙𝜑′′ − 𝑚𝑙 cos(𝜑)2𝜑′′ = −𝑢 cos(𝜑) + 𝑀𝑔 sin(𝜑) + 𝑚𝑔 sin(𝜑) − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝜑′′
(︁
𝑀𝑙 + 𝑚𝑙(1 − cos(𝜑)2)

)︁
= −𝑢 cos(𝜑) + 𝑀𝑔 sin(𝜑) + 𝑚𝑔 sin(𝜑) − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝜑′′ = −𝑢 cos(𝜑) + 𝑀𝑔 sin(𝜑) + 𝑚𝑔 sin(𝜑) − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝑀𝑙 + 𝑚𝑙(1 − cos(𝜑)2

and using trigonometric identity sin2(𝜑) + cos2(𝜑) = 1 [9] the final second order ODE for
the angle of the pendulum (representing its acceleration in rad·s−2) can be written as

𝜑′′ = −𝑢 cos(𝜑) + (𝑀𝑔 + 𝑚𝑔) sin(𝜑) − 𝑚𝑙 sin(𝜑) cos(𝜑)𝜑′2

𝑀𝑙 + 𝑚𝑙 sin2(𝜑) .

235


	Introduction
	Research objectives
	Structure of the thesis

	Numerical solution of differential equations
	Numerical differentiation
	Ordinary differential equations
	Existence and uniqueness of solutions

	Numerical integration
	Euler method
	Runge-Kutta methods
	Multi-step methods

	Implementation of integration methods in MATLAB
	Errors of the numerical integration methods
	Transformation of higher-order ODEs into the system of first-order ODEs
	Method of Derivative Order Reduction
	Method of Derivation Order Reduction with an Additional Variable
	Method of Successive Integration
	Comparison of the methods

	Real-time considerations

	High order Taylor series method
	Modern Taylor Series Method for linear systems
	Modern Taylor Series Method for non-linear systems
	Two-function multiplication and higher derivatives
	Three-function multiplication and higher derivatives
	Matrix-vector representation

	Performance of the Modern Taylor Series Method and its optimizations
	Linear problems
	Non-linear problems
	Step size control for non-linear systems
	Further optimizations and improvements

	Automatic transformation
	Elementary operations
	Elementary functions
	Transformation example

	Positive properties
	Automatic order setting
	Accuracy, error propagation
	Variable-step-size control
	Stability, convergence

	Variable-precision arithmetic
	Hardware implementation
	Operations
	Implementation using FPGA
	Effectiveness of MTSM in hardware

	Concluding remarks

	Practical examples with high-order Taylor series method
	Numerical solver benchmarks
	Problem A1
	Problem A2
	Problem A3
	Problem A4
	Problem A5
	Problem B1
	Problem B2
	Problem B3
	Problem B4
	Problem B5
	Problem C3
	Problem E2
	Problem E3
	Problem E4
	Problem E5

	Padé approximation of transport delay
	Method of Derivative Order Reduction with Additional Variable
	Method of Successive Integration
	Numerical results
	Concluding remarks

	Movement of a charged particle
	Telegraph line
	Coefficients of the Fourier series
	Lorenz system
	Kepler problem
	Concluding remarks

	Control theory
	Control systems
	Linear systems
	Laplace transformation
	State-space representation
	Controllability and observability
	Linearization
	Equilibrium points of the system

	Non-linear systems
	Common non-linear system behaviours
	Representation of the non-linear systems
	Lyapunov function, stability
	LaSalle's Invariance Principle

	Types of controllers
	PID controllers
	Full-state closed-loop feedback controller
	Linear-Quadratic-Regulator
	Non-linear controllers

	Control system implementation using MTSM

	Experiments
	Direct current motor
	Mathematical description
	State-space representation
	Controllability, observability
	Experiments
	Concluding remarks

	Pendulum
	Mathematical description
	Experiments with linear model
	Experiments with non-linear model
	Concluding remarks

	Inverted pendulum on a cart
	Mathematical description
	Used constants
	Non-linear model control
	Linear representation of the system
	Non-linear model experiment
	Concluding remarks

	Magnetic levitation
	Mathematical description
	Transformations for MTSM
	Control system design
	Concluding remarks

	Conclusions

	Conclusion
	Future work

	Bibliography
	Appendices
	List of Appendices

	Block algebra
	Addition
	Multiplication
	Multiplication by a constant
	Multiplication of functions

	Integration

	Padé approximations
	Approximation order 1
	Approximation order 2
	Approximation order 7
	Approximation order 10
	Approximation order 15
	Discussion, concluding remarks

	Derivation of the four and five function multiplications
	Four function multiplication and higher derivatives
	Five function multiplication and higher derivatives

	Optimization of the non-linear Modern Taylor Series Method solver for more multiplications
	Four function multiplications
	Five function multiplications

	Complete results for numerical benchmarks
	Problem A1
	Problem A2
	Problem A3
	Problem A4
	Problem B1
	Problem B2
	Problem B3
	Problem B4
	Problem B5
	Problem C3
	Problem E1
	Problem E2
	Problem E3
	Problem E4
	Problem E5

	Matrix-vector representation of Kepler problem
	Matrix-vector representation for (4.62)
	Matrix-vector representation for (4.63)
	Matrix-vector representation for (4.64)

	Matrix-vector representation of the pendulum on the cart
	Representation for (6.40)
	Representation for (6.44)

	Derivation of the equations for pendulum on the cart
	Coordinate substitution
	Forces on the pendulum
	Position of the cart
	Angle of the pendulum


