Víc než mrtví:
Analýza postoje veřejnosti k pacientům v permanentním vegetativním stavu

Vedoucí bakalářské práce: RNDr. Tomáš Fürst, PhD.
Vypracovala: Jana Dvořáková
Rok odevzdání: 2012
ME, III. ročník
Prohlášení:

Prohlašuji, že jsem tuto bakalářskou práci zpracovala samostatně pod vedením pana Tomáše Fürsta a že jsem v seznamu literatury uvedla všechny zdroje použité při jejímu zpracování.

V Olomouci dne 4.4.2012
Poděkování:

Ráda bych na tomto místě poděkovala vedoucímu mé bakalářské práce panu Tomáši Fürstovi za obětavou spolupráci i za čas, který mi věnoval při konzultacích, a také za cenné rady a připomínky, které pomohly tuto práci dovést do zdárného konce. Poděkování patří i mé rodině za podporu během celého studia.
OBSAH:

1. ÚVOD .. 5

2. POUŽITÉ METODY TESTOVÁNÍ .. 7
 2.1 Jarque-Berův test .. 7
 2.2 Cronbachovo alfa .. 8
 2.3 Kruskal-Wallisův test .. 10
 2.4 Spearmanův korelační koeficient ... 13

3. ANALÝZA PŮVODNÍCH DAT ... 14
 3.1 Experiment 1: Pohled na různé stavy .. 14
 3.2 Experiment 2: Religiozita .. 20

4. ZOPAKOVÁNÍ EXPERIMENTU V ČR .. 21
 4.1 Metodika a postup ... 21
 4.2 Texty popisující situaci ... 22
 4.3 Dotazník ... 23
 4.4 Porovnání jednotlivých stavů .. 24
 4.5 Porovnání odpovědí mužů a žen ... 29
 4.6 Vliv oboru studia na odpovědi .. 31
 4.7 Religiozita .. 33

5. ZÁVĚR .. 39

6. POUŽITÁ LITERATURA A ZDROJE .. 41
1. ÚVOD

Cílem této práce bude zopakovat první část jejich výzkumu v ČR (celý je velice obsáhlý, pracovaly na něm desítky lidí několik měsíců). Předpokladem bude myšlenka výchozí práce, že pohled na pacienty v permanentním vegetativním stavu a na mrtvé a názor na to, kdo z nich je „více mrtvý“, ovlivňuje především náboženství a víra místní společnosti. Vzhledem k tomu, že český národ je všeobecně málo nábožensky založený a většina obyvatel se řadí mezi osoby bez náboženského vyznání (viz obr.1, [2]), přičemž tento trend je ještě silnější u dotazované skupiny studentů (viz. obr.2, [2]) než u starší populace, budu předpokládat, že výsledky experimentu budou jiné než v původní práci a že dotazování budou řadit permanentní vegetativní stav vlastně naprosto logicky mezi mrtvé a živé. Toto své tvrzení se také pokusím na základě dotazníku a použití statistických metod, nastudovaných během mého bakalářského studia, ověřit a dokázat.

V úvodu práce čtenáře seznámím s metodami, které budu používat, a také nastíním, jak se jednotlivé testy dají řešit v softwarovém prostředí programu Matlab. Ve třetí kapitole znovu spočítám a provedu analýzu dat z původního výzkumu a ve čtvrté kapitole potom provedu stejné výpočty na datech získaných ze svého dotazníku. Během výpočtů také porovnám výsledky akademiků z Harvardu a Marylandu se svými a ověřím tak svůj předpoklad, že se výsledky výzkumu liší.
2. POUŽITÉ METODY TESTOVÁNÍ

2.1 Jarque-Berův test

Tento test slouží k testování nulové hypotézy, zda náhodný výběr \((X_1, \ldots, X_n)\) pochází z normálního rozdělení s neznámou střední hodnotou a rozptylem proti alternativě, že z normálního rozdělení nepochází.

[7] Testovací statistika je založena na koeficientech šikmosti a špičatosti, které charakterizují daný náhodný výběr. Pomocí vzorce ji zapíšeme jako

\[
JB = \frac{n}{6} \left(S^2 + \frac{1}{4} (K - 3)^2 \right)
\]

kde:

- \(n\) značí počet dat
- \(S\) je koeficient šikmosti
 \[
 S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^{\frac{3}{2}}
 \]
- \(K\) je koeficient špičatosti
 \[
 K = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^{2}
 \]

[3] Platí-li nulová hypotéza, že výběr pochází z normálního rozdělení, má testovací statistika \(JB\) \(\chi^2\) rozdělení se dvěma stupni volnosti a rozhodujícím kritériem je potom nerovnost

\[
JB > \chi^2_{\nu=2} (1 - \alpha)
\]

kde \(\nu\) označuje počet stupňů volnosti a \(\alpha\) označuje hladinu spolehlivosti, resp. pravděpodobnost toho, že nulovou hypotézu zamítneme i když platí (tzv. chyba prvního druhu).
Testovou statistiku můžeme spočítat buďto ručně (postupně pomocí jednotlivých výpočtů a následně samotné testovací statistiky) nebo pomocí softwaru.

Během své práce jsem nepoužívala ruční výpočty, ale software Matlab, kde se Jarque-Berův test spočítá následovně [4]:

Použijeme příkaz:
`[h,p,jbstat,critval] = jbtest(X)`

kde
- h nabývá pouze hodnot 1 (hypotézu zamítáme) nebo 0 (hypotézu nelze zamítnout)
- p označuje nejvyšší možnou hladinu α, při které ještě nezamítáme nulovou hypotézu
- jbstat nám vrátí hodnotu testové statistiky JB
- critval je kritická hodnota kvantilu potřebného pro rozhodnutí
- X označuje vektor, u kterého chceme testovat normalitu

2.2 Cronbachovo alfa

Cronbachovo alfa [5,6] je jedním ze statistických ukazatelů, který se používá především v sociologii a psychometrii, a to v případě, kdy chceme z několika otázek vytvořit souhrnnou škálu tak, aby byla tato škála smysluplná. Pomocí tohoto ukazatele zajišťujeme reliabilitu (tzn. statistickou veličinu udávající spolehlivost testu, kterou lze také vyjádřit jako relativní nepřítomnost chyby při měření), která vychází z předpokladu, že by všechny položky, které měří jednu vlastnost, měly mít mezi sebou kladné a dostatečně vysoké korelace (tzn. shodují se v tom smyslu, že jsou analogickými mírami jednoho jevu).

[10] Pokud chceme popsat nespolehlivost měření, vycházíme z představy, že měření veličiny Y je součtem měření náhodné hodnoty znaku A a náhodné chyby měření e (mějme tedy Y = A + e). Budeme předpokládat, že A a e jsou nezávislé náhodné veličiny. Potom se spolehlivost veličiny Y jako měření A vyjadřuje pomocí reliability

\[rel(Y) = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_e^2} \]

kde:
- \(\sigma_A^2 = \text{var}(A) \) a \(\sigma_e^2 = \text{var}(e) \)
Zabýváme se tedy tím, jakou část celkové variability vysvětluje variabilita měření znaku A, resp. porovnáváme variabilitu chybového členu s variabilitou měřené vlastnosti. Reliabilita vyjadřuje kvalitu měření relativně, na což se často zapomíná.

[10] Pokud budeme mít dvě nezávislá měření stejné hodnoty A, potom jednoduše zjistíme, že bude platit
\[\text{cor}(A + e_1, A + e_2) = \text{rel}(Y) \]
což nám dá přirozenou interpretaci pojmu reliabilita.

[5] S přihlédnutím k předchozím úsudkům je potom výhodné vyjádřit Cronbachovo alfa pomocí vzorce

\[\alpha = \frac{K}{K - 1} \left(1 - \frac{\sum_{i=1}^{K} \sigma_{Y_i}^2}{\sigma_X^2}\right) \]

kde:
- \(K\) značí počet otázek, ze kterých tvoříme škálu
- \(\sigma_{Y_i}^2\) je rozptyl odpovědi na i-tou otázku, resp. rozptyl jednotlivých položek vstupujících do škály
- \(\sigma_X^2\) je rozptyl celkové součtové škály

Teoreticky nabývá Cronbachovo alfa hodnot mezi 0 a \(\frac{K}{K - 1}\), tedy nikdy nebude rovno jedně, ale bude se k jedničce pouze limitně blížit.

Hodnoty ukazatele alfa a jejich ohodnocení jsou uvedeny v následující tabulce:

<table>
<thead>
<tr>
<th>Cronbachovo alfa</th>
<th>hodnocení</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha \geq 0,9$</td>
<td>vynikající</td>
</tr>
<tr>
<td>$0,9 > \alpha \geq 0,8$</td>
<td>dobré</td>
</tr>
<tr>
<td>$0,8 > \alpha \geq 0,7$</td>
<td>přijatelné</td>
</tr>
<tr>
<td>$0,7 > \alpha \geq 0,6$</td>
<td>sporné</td>
</tr>
<tr>
<td>$0,6 > \alpha \geq 0,5$</td>
<td>špatné</td>
</tr>
<tr>
<td>$0,5 > \alpha$</td>
<td>nepřijatelné</td>
</tr>
</tbody>
</table>

Tabulka 2.1 - Hodnoty Cronbachova alfa a jejich slovní hodnocení [5]

2.3 Kruskal-Wallisův test

Následující text jsem čerpala ze zdroje [7]:

Tento test je jedním z nепarametrických testů, které jsou obdobou analýzy rozptylu jednoduchého třídění (ANOVA) a používá se především tehdy, pokud se rozdělení výběrů, které máme k dispozici, značně liší od normálního. Pomocí Kruskal-Wallisova testu ověřujeme hypotézu, že všechny výběry pocházejí ze stejného rozdělení.

Nechť Y_{i1}, ……… , Y_{in} je výběr z nějakého neznámého rozdělení se spojitou distribuční funkcí F_i, kde $i = 1, …… , k$ a všechny tyto výběry nechť jsou na sobě nezávislé.

Potom testujeme hypotézu: H_0: $F_1(x) = ……… = F_k(x)$ pro všechna x proti alternativě H_1, že H_0 neplatí, tzn. že alespoň jedna z rovností neplatí.

Všechny veličiny Y_{ij} dohromady vytvoří sdružený náhodný výběr o rozsahu $n = n_1 + ……… + n_k$. Všechny prvky výběrů seřadíme vzestupně a každé realizaci veličiny Y_{ij} přiřadíme její pořadí R_{ij} ve sdruženém výběru. Pořadí můžeme schématicky zaznamenat do následující tabulky:
<table>
<thead>
<tr>
<th>výběr</th>
<th>Pořadí veličin ve sdruženém náhodném výběru</th>
<th>Součet pořadí</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R_{11} R_{12} R_{1n1}</td>
<td>T_1</td>
</tr>
<tr>
<td>2</td>
<td>R_{21} R_{22} R_{2n2}</td>
<td>T_2</td>
</tr>
<tr>
<td>......</td>
<td>...... R_{k2}</td>
<td>......</td>
</tr>
<tr>
<td>k</td>
<td>R_{k1} R_{k2} R_{knk}</td>
<td>T_k</td>
</tr>
</tbody>
</table>

Tabulka 2.2 - Pořadí veličin ve sdruženém náhodném výběru [7]

Součet všech pořadí je potom $\sum_{i=1}^{k} T_i = \frac{n(n+1)}{2}$

Testová statistika má potom tvar:

$$KW = \frac{12}{n(n+1)} \left(\sum_{i=1}^{k} \frac{T_i^2}{n_i} \right) - 3(n+1)$$

kde
- n je celkový počet prvků ve všech výběrech
- n_i je počet prvků v i-tém výběru
- T_i je součet pořadí prvků i-tého výběru

[7] Za předpokladu, že $n_i \to \infty$ a za platnosti H_0 má KW asymptoticky χ^2 rozdělení o $(k-1)$ stupních volnosti. Hypotézu o tom, že výběry pocházejí ze stejného rozdělení zamítáme, pokud platí:

$$KW \geq \chi^2_{\nu=(k-1)(1-\alpha)}$$

kde ν označuje počet stupňů volnosti.
I tento test lze provést jednoduchým příkazem v Matlabu, a to zadáním příkazu

\[[p, \text{table}, \text{stats}] = \text{kruskalwallis}(X, Y), \]

kde:
- \(p \) označuje nejvyšší možnou hladinu \(\alpha \), při které ještě nezamítneme \(H_0 \)
- \(\text{table} \) vrátí tabulku, ve které jsou vypsané další hodnoty testu
- \(\text{stats} \) je heslo, pod kterým zůstanou uloženy údaje o proběhlém testu
- \(X \) označuje sdružený náhodný výběr
- \(Y \) jsou indikátory skupin, podle kterých chceme sdružený náhodný výběr rozdělit
 (slouží především ke grafickému znázornění v krabicových grafech)

Společně s tabulkou vyhodnocením nám Matlab vykreslí i krabicový graf zachycující mediány (červené) a horní a dolní kvartily jednotlivých výběrů. Vousy (např. na obrázku 4.13 v krabicovém grafu u lékařského oboru) rozšiřují graf o extrémní datové body, které ještě nejsou považovány za odlehlé hodnoty. Odlehlé hodnoty (outliers) jsou vykresleny na grafu červenými křížky.

Zamítneme-li \(H_0 \), bylo by dobré určit, které dvojice výběrů se od sebe statisticky významně liší. U analýzy rozptylu bychom při normálním rozdělení použíli Tukeyho metodu, avšak zde normální rozdělení nemáme, a proto musíme postupovat následovně:

\[[7] \quad \text{Označíme} \quad t_i = \frac{T_i}{n_i} \quad \text{pro} \ i = 1, \ldots, k \ . \ Necht' \ h_{(k-1)}(\alpha) \ je \ kritická \ hodnota \]

Kruskal-Wallisova testu na hladině \(\alpha \). Použijeme aproximaci \(h_{(k-1)}(\alpha) \approx \chi^2_{(k-1)}(\alpha) \).

Potom můžeme říci, že se od sebe distribuční funkce i-tého a j-tého výběru statisticky významně liší, jestliže platí:

\[\left| t_i - t_j \right| > \sqrt{\frac{1}{12} \left(\frac{1}{n_i} + \frac{1}{n_j} \right) n(n+1) h_{(k-1)}(\alpha)} \]

kde:
- \(n_i \) je počet prvků v i-tém výběru
- \(n_j \) je počet prvků v j-tém výběru
- \(n \) je celkový počet prvků v obou výběrech
2.4 Spearmanův korelační koeficient

Následující text jsem čerpala ze zdroje [7]:

Předpokládejme, že \((X_1, Y_1), \ldots, (X_n, Y_n)\) je výběr ze spojitého dvojrozměrného rozdělení. Nechť \(R_1, \ldots, R_n\) jsou pořadí veličin \(X_1, \ldots, X_n\) a nechť \(Q_1, \ldots, Q_n\) jsou pořadí veličin \(Y_1, \ldots, Y_n\). Dvojice \((X_i, Y_i), \ldots, (X_n, Y_n)\) můžeme už předem uspořádat podle rostoucích hodnot \(X_1, \ldots, X_n\) a získáme tak hned pořadí \(R_i = i, i = 1, \ldots, n\).

Spearmanův korelační koeficient \(r_s\) vyjádříme jako:

\[
 r_s = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (R_i - Q_i)^2
\]

kde:

- \(n\) je počet všech prvků

Pokud máme více než 30 pozorování (tzn. pokud \(n > 30\)), můžeme využít asymptotickou normalitu koeficientu \(r_s\) a vypočíst hodnotu

\[
 r_s^*(\alpha) = \frac{u\left(\frac{\alpha}{\sqrt{n}}\right)}{\sqrt{n-1}}
\]

kde:

- \(u\left(\frac{\alpha}{\sqrt{n}}\right)\) je kritická hodnota normálního rozdělení
- \(n\) je počet všech prvků

Hypotézu o tom, že mezi veličinami \(X_i\) a \(Y_i\) neexistuje žádný lineární vztah (resp. závislost) zamítneme, pokud platí nerovnost \(|r_s| \geq r_s^*(\alpha)\).
3. ANALÝZA PŮVODNÍCH DAT

3.1 Experiment 1: Pohled na různé stavy

Cílem celého experimentu bylo zjistit, jak lidé vidí pacienty v permanentním vegetativním stavu a zda si myslí, že jsou více „mrtví“ než ti skutečně mrtví. Mrtvé vnímáme různě – jako duchy, jako anděly, kteří na nás dohlížejí z nebe a chrání nás, jako neviditelné přízraky stojící po našem boku. Můžeme si je představovat v pekle nebo si je uchováváme jen ve svých vzpomínkách a čas od času se nám vybaví nějaký zázrak, který jsme v jejich blízkosti prožili. Řekneme, že si téměř vždy dovedeme představit co dělají, jak se chovají, kde jsou. Oproti tomu máme problém s jakoukoliv představou člověka, který je „uvězněný“ v permanentním vegetativním stavu (PVS). Když se řekne, že člověk zůstal v komatu, lidé si ho většinou představují jako tělo bez duše ležící na posteli bez jediného pohybu, v podstatě jen jako tělesnou schránku podporovanou přístroji a postrádající jakékoli mentální kapacity.

Lidé mají často tendenci právě kvůli všem těmto příznakům vidět pacienty v PVS jako víc mrtvé než ty skutečně mrtvé, neboť jsou „uvězněni v prázdnotě“ mezi životem a smrtí. Když se ve společnosti bavíme o mrtvých, nikdy nemluvíme o těle, o popelu nebo o kostech v rakvi, které po mrtvém zbyly, ale spíše o vzpomínkách a o žijící duši. Je nám totiž velmi nepříjemné zjišťovat se zbytky fyzické schránky člověka a pro naše chápání je příjemnější a lehčí brát mrtvého tělo jako ducha. I proto se na pacienty v PVS díváme tak špatně a považujeme tento stav za horší než smrt.
Uvědomujeme si totiž díky tělu ležícímu na posteli, že je člověk před branami smrti, ale že mu nedokážeme nijak pomoci a že nevímeme, jak dlouho bude ještě uvězněný v tomto meziprostoru. Máme tendenci také vztahovat danou situaci například na naši rodinu a na blízké. V momentě, kdy by totiž měl někdo z našich blízkých nehodu, chtěla by většina z nás raději to, aby zemřel, než aby zůstal v PVS, protože i tady vidíme variantu PVS horší než smrt. Je pro nás totiž daleko jednodušší bolestně se rozloučit s milovaným člověkem na pohřbu a dál si ho uchovávat ve vzpomínkách než ho denně vidět odkázaného na přístroje a prožívat tu samou bolest den co den, někdy i dlouhé roky.

Velkou roli v chápání a hodnocení vegetativního stavu má i naše náboženské založení. Čím víc jsme věřící, resp. nábožensky či duchovně založení, tím hůře hodnotíme permanentní vegetativní stav. Pro nábožensky založené lidí je totiž smrt symbolem přechodu do nebe a setkání se s Bohem. Věřící jsou přesvědčeni o tom, že po smrti se každému člověku, který během života konal dobro, dostane spásky a odpuštění a jeho duše najde klid. Někteří věří i v převtělování duši a v posmrtný život. Klíčové je tady slovní spojení „po smrti“. Pokud totiž zůstane člověk v PVS, je jako ve vězení a jeho duše bloudí v prázdnotě a nemůže se nikam pohnout. I proto se druhá část výzkumu zaměřuje právě na religiozitu a náboženské založení, neboť právě tyto odpovědi mohou vysvětlit názor respondentů na jednotlivé stavy a jsou určitým vodítkem k pochopení těchto názorů.

To, že je to opravdu tak a že lidé vnímají pacienty v PVS jako víc mrtvé než ty skutečně mrtvé, se pokusil zjistit i Kurt Gray ve svém výzkumu. Tento výzkum byl prováděn na univerzitních kolejích a v čekárnách metra v oblastech New England a New York City mezi mladými lidmi (průměrný věk byl 23 let). Pro první experiment sestrojil soubor šesti otázek (viz. str. 23, dotazník je doslovně přeložen), na které jednotliví respondenti odpovídali dle svého názoru na škále od -3 (zcela nesouhlasím) do 3 (zcela souhlasím). Těchto šest číselných odpovědí na jednotlivé otázky potom sečetl, spočítal Cronbachovo alfa, aby si ověřil, zda má daná tvorba a škála smysl a poté z odpovědí udělal průměr, se kterým dále pracoval. Dotazník měl tři podoby a odpovědi tak byly posléze rozděleny do tří skupin.
Otázky byly vždy stejné, avšak text popisující situaci byl jiný – buďto David zemřel (Death), nebo se uzdravil (Life) a nebo zůstal v permanentním vegetativním stavu (PVS) (viz. přeložený popis jednotlivých stavů na str. 22). Za testové otázky byla zařazena kontrolní otázka (viz. dotazník str. 23 otázka 2), která během další analýzy sloužila k selekci odpovědí – z výzkumu byli vyloučeni všichni ti, kteří na ni špatně odpověděli a tudíž ani nevěděli, co vlastně četli a jejich odpovědi tak nebyli relevantní.

Početní část jeho výzkumu byla založena na analýze získaných dat pomocí analýzy rozptylu jednoduchého třídění, ve které zkoumal, zda se od sebe významně liší odpovědi na jednotlivé stavy a zda se od sebe liší odpovědi mužů a žen. Závěr tohoto experimentu byl takový, že se od sebe statisticky významně liší odpovědi na jednotlivé stavy, nelíší se však odpovědi mužů a žen a že PVS má nejmenší medián, tzn. že je považován za nejhorší stav. Potvrdil tak svoji hypotézu, že lidé vnímají pacienty v PVS více mrtvé než ty skutečně mrtvé, protože jim přizpůsobují méně mentálních kapacit.

Díky nesmírné ochotě pana Graye jsem měla k datům, které získal, přístup i já. Mohla jsem na nich proto provést svoji analýzu a porovnat jednotlivé výsledky. Postupovala jsem v podstatě stejně jako vědci v původním výzkumu. V následujícím textu nastíním analýzu dat z původního výzkumu.

Nejdříve jsem spočítala Cronbachovo alfa, které mi vyšlo stejně jako v původní práci 0,95. Toto číslo znamená, že jednotlivé odpovědi jsou mezi sebou hodně korelované a hodnotit průzkum podle celkového indexu má smysl.

Po provedení Jarque-Berova testu jsem zjistila, že data nepocházejí z normálního rozdělení a tudíž na ně není vhodné použít analýzu rozptylu jednoduchého třídění, jako to udělali autoři ve svém výzkumu. U všech tří skupin (PVS, Life i Death) totiž bylo \(h = 1 \), což znamená, že JB test zamítá nulovou hypotézu o normalitě dat. Tento fakt je na první pohled patrný i z histogramů odpovědí jednotlivých skupin:
Obrázek 3.1 - Histogram PVS

Obrázek 3.2 - Histogram Life
Hodnoty testu normality pro jednotlivé skupiny:

<table>
<thead>
<tr>
<th>Skupina</th>
<th>p-value</th>
<th>jbstat</th>
<th>critval</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVS</td>
<td>0,0267</td>
<td>7.4823</td>
<td>5.1569</td>
</tr>
<tr>
<td>Life</td>
<td>0,001</td>
<td>38.5703</td>
<td>5.1904</td>
</tr>
<tr>
<td>Death</td>
<td>0.0242</td>
<td>7.9604</td>
<td>5.2209</td>
</tr>
</tbody>
</table>

Zvolila jsme proto neparametrickou obdobu ANOVY, a to Kruskal-Wallisův test. Hypotézu o tom, že by všechny tři skupiny průměrů odpovědí pocházeli ze stejného rozdělení tento test zamítnul (p-value bylo menší než 0,001) a zároveň jsem příkazem v Matlabu

c = multcompare(stats,'estimate','kruskalwallis')

získala interaktivní graf, který zobrazuje, že se od sebe každé dvě skupiny významně statisticky liší.
Získala jsem tedy stejný výsledek jako v původním experimentu, neboť i zde bylo prokázáno (i když ne příliš vhodnou metodou), že se od sebe liší jednotlivé soubory průměrů odpovědí všech tří stavů a také že se statisticky významně liší každá ze skupin od ostatních.

Dále lze říci, že nejvíce mentálních schopností dotazovaní přisuzují Davidovi, který je naživu (medián odpovědí = 2), potom mrtvému (medián odpovědí = 0,5) a nejméně tomu, který zůstal ve vegetativním stavu (medián odpovědí = -2,1667). Pořadí odpovídá tomu, co ve své práci uvádějí autoři a také potvrzuje hypotézu, že lidé vidí pacienty v PVS více mrtvé než ty skutečně mrtvé.

Souhlasím také s tvrzením autorů, že se statisticky významně neliší odpovědi mužů a žen, neboť Kruskal-Wallisův test nezamítl hypotézu o tom, že výbory pocházejí ze stejného rozdělení (p-value = 0,1532) a na krabicových grafech je dobře vidět, že jsou mediány odpovědí mužů a žen velice blízko u sebe.
3.2 Experiment 2: Religiozita

Ve druhém experimentu se autoři zaměřili na to, jestli má religiozita a náboženský index vliv na jednotlivé odpovědi a na pohled na jednotlivé stavy. Vytvořili nové popisy stavů a ve stavu Death více upozornili na mrtvé tělo a na fyzickou stránku smrti. Změnili konec popisu stavu Death, kam vložili poznámk, že následně poté, co byl David převezen do márnice, byl pohřben na místním hřbitově, kde nyní leží v rakvi pod zemí. Pomoží otázek „Jsem věřící člověk“ („I am a religious person“), „Existuje život po smrti“ („There is life after death“) a „Duše žije i poté, co člověk zemře“ („The soul lives on even after a person has died“) ve druhé části dotazníku, který byl předložen stejným respondentům, autoři zjišťovali index religiozity stejným postupem jako při prvním experimentu, tzn. z odpovědí (opět škála od -3 do 3) vytvořili průměr, který nazvali index religiozity. Rozdělení tohoto indexu bylo skoro bimodální. Autoři proto vynechali odpovědi s mediánem kolem nuly a během dalšího testování se zabývali pouze extrémními odpovědmi na okrajích škály. Dále zjišťovali, zda má tento index religiozity vliv na odpovědi v rámci jednotlivých stavů a zda má vliv na přiznání menších mentálních kapacit Davidovi ve stavu Death poté, co se upozorní na jeho mrtvé tělo právě onou přidanou poznamkou. Zjistili, že tomu opravdu tak je a že čím je člověk víc věřící, tím hůř vidí pacienta v PVS a také dělá větší rozdíly mezi mrtvým stavem a mrtvým stavem se zaměřením na tělo a rakev.
4. ZOPAKOVÁNÍ EXPERIMENTU V ČR

4.1 Metodika a postup

Po prostudování práce pana Graye a po uvážení toho, jak náročný bude výzkum, jsem se rozhodla, že zopakuji pouze první část experimentu, ze kterého získám údaje potřebné pro analýzu postoje vůči pacientům v permanentním vegetativním stavu. Druhou část jsem se rozhodla nahradit podobným, avšak jinak zaměřeným výzkumem. Stejně jako na Harvardu jsem se i já ptala na otázky, ze kterých jsem později vytvořila index religiosity, avšak do průzkumu jsem měla místo původní otázky „Jsem věřící člověk“ („I am a religious person“) zařadila dva podobné, avšak v České republice poměrně rozdílně chápané dotazy “Jsem duchovně založený člověk” a “Jsem věřící”. V další kapitole potom otestují, jak vysoký je korelační koeficient průměrů odpovědí na tyto dvě otázky a zda je správný můj předpoklad, že se významově liší a že odpovědi na ně nejsou stejně.

Dotazník jsem vytvářela na základě podkladů od autorů původní práce a to tak, aby si byl ten původní co nejvíce podobný. Proto jsou otázky, ze kterých se později tvoří souhrnná škála pro testování pohledu na jednotlivé stavy stejně, pouze doslovně přeložené. Účastníky výzkumu jsem vybírala náhodně na ulici, v knihovnách nebo na fakultách v Olomouci. Do mého průzkumu jsem zahrnula pouze studenty, neboť tím splňuji předpoklad průměrného věku okolo 23 let (medián věku respondentů je 22 let, celkem odpovídalo 206 respondentů) stejně jako v původní práci a nad rámec původní práce budu testovat, zda se liší odpovědi v závislosti na tom, jaký obor dotazovaný studuje. Navíc jsem tím, že jsem vybrala pouze studenty, zajistila vyšší homogenitu skupiny.

Každý z dotazovaných dostal jeden náhodně vybraný text ze tří (viz popis stavů str. 22) s otázkami (viz. dotazník str. 23). Všichni respondenti odpovídali na jednotlivé otázky bez jakéhokoliv měho zásahu a anonymně. Vzhledem k tomu, že jsem chtěla nasimulovat co nejpodobnější podmínky pro testování jako v původním výzkumu, zahrnula jsem do dotazníku i kontrolní otázku (viz. dotazník str. 23 otázka 2) . Až během vyhodnocování jsem si uvědomila, že jsem tuto otázku formulovala špatně, neboť je nejednoznačná a v závislosti na stavu, o kterém každý z respondentů četl, jsou správné dvě nebo všechny odpovědi. Proto jsem nakonec během vyhodnocování neprováděla selekci odpovědí a pracovala jsem se všemi dotazníky a všemi odpovědi.
4.2 Texty popisující situaci

Živý:

Mrtvý:

David Novotný vyrůstal v malém městečku blízko Berouna. Odešel studovat do Prahy a poté se vrátil zpět domů do Hořovic, aby pracoval v místním rodinném obchodě. Krátce poté, co se přestěhoval zpět domů, si vyšel s několika přáteli ze střední školy do místní restaurace. Když se vracel z večeře domů, střetlo se jeho auto s protijedoucím nákladním vozem, který náhle vjel do protisměru. Rychlá záchranná služba, která přijela na místo nehody, nemohla už pro Davida nic udělat. S těžkými zraněními ho převezli do nemocnice, kde o dvě hodiny později zemřel. S těžkými zraněními ho převezli do nemocnice, kde o dvě hodiny později zemřel.

PVS:

4.3 Dotazník

Pohlaví: žena muž
věk:…………… obor studia: a) lékařský
b) přírodovědecký
c) humanitní
d) teologický
e) nestuduji

Text:
…. (text byl různý podle toho, který dotazník respondent obdržel, viz výše)

1) Označte křížkem možnost, která nejlépe vystihuje Váš názor

<table>
<thead>
<tr>
<th>Zcela nesouhlasím</th>
<th>Nesouhlasím</th>
<th>Mírně nesouhlasím</th>
<th>Nemám názor</th>
<th>Mírně souhlasím</th>
<th>Souhlasím</th>
<th>Zcela souhlasím</th>
</tr>
</thead>
<tbody>
<tr>
<td>David může ovlivnit vývoj události ve svém okolí</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David má pocit a emoc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David rozezná dobro od zla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David vnímá okolí</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David má osobnost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David si pamatuje události ze svého života</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Osoba, o které jsem četl(a), byla po dopravní nehodě:
 a) naživu
 b) naživu, ale s vážným poškozením mozk |
 c) mrtvá

3) Označte křížkem možnost, která nejlépe vystihuje Váš názor

<table>
<thead>
<tr>
<th>Zcela nesouhlasím</th>
<th>Nesouhlasím</th>
<th>Mírně nesouhlasím</th>
<th>Nemám názor</th>
<th>Mírně souhlasím</th>
<th>Souhlasím</th>
<th>Zcela souhlasím</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jsem duchovně založený člověk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jsem věřící</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Věřím na posmrtný život</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duše žije i poté, co člověk zemře</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.4 Porovnání jednotlivých stavů

Cílem této kapitoly je srovnat jednotlivé stavy (živý, mrtvý, PVS), určit mediány průměrů odpovědí u všech těchto stavů a určit, zda respondenti přisuzovali méně mentálních kapacit mrtvému Davidovi nebo Davidovi ve vegetativním stavu. Připomeňme, že můj původní předpoklad na začátku této práce byl, že nejmenší medián průměrů odpovědí bude mít David se stavem „mrtvý“.

Prvním krokom bylo spočítat Cronbachovo alfa a ujistit se, že tvorba souhrnné škály má smysl a že se dají dále testovat pouze indexy vytvořené aritmetickým průměrem z jednotlivých odpovědí. Tato hodnota mi vyšla \(\alpha = 0,895 \), což je velmi dobrý výsledek, který zaručuje poměrně vysokou korelací mezi jednotlivými odpovědi (viz. tabulka 2.1 str. 10)

Dále jsem ověřila normalitu jednotlivých stavů pro určení dalších postupů. U dvou skupin jsem sice Jarque-Berovým testem nezamítla hypotézu o tom, že daný výběr pochází z normálního rozdělení, ale vzhledem k tomu, že normalita u skupiny „mrtvý“ se zamítá a že p-value u stavu „živý“ je hodně malá, použila jsem ke srovnání jednotlivých skupin jako u původních dat Kruskal-Wallisův test, neboť použití analýzy rozptylu jednoduchého třídění by nebylo vhodné vzhledem k tomu, že nemám zaručenou normalitu u všech skupin, které chci porovnávat.

Hodnoty testu normality pro jednotlivé stav:

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>p-value</th>
<th>jbstat</th>
<th>crtitval</th>
<th>počet respondentů</th>
</tr>
</thead>
<tbody>
<tr>
<td>živý</td>
<td>0</td>
<td>0,0532</td>
<td>5,0406</td>
<td>5,2305</td>
<td>70</td>
</tr>
<tr>
<td>mrtvý</td>
<td>1</td>
<td>0,0188</td>
<td>9,0957</td>
<td>5,2009</td>
<td>67</td>
</tr>
<tr>
<td>PVS</td>
<td>0</td>
<td>0,1579</td>
<td>2,6430</td>
<td>5,2209</td>
<td>69</td>
</tr>
</tbody>
</table>
Obrázek 4. 1 - Histogram PVS

Obrázek 4. 2 - Histogram živý
Kruskal-Wallisův test zamítl hypotézu o tom, že by všechny skupiny stavů pocházely z jednoho rozdělení (p-value bylo menší než 0,001). Navíc se od sebe všechny skupiny statisticky významně liší.

Obrázek 4. 4- Krabicový graf jednotlivých stavů
Jak je vidět z krabicového grafu, nepotvrdila se moje hypotéza, že respondenti v ČR budou permanentní vegetativní stav řadit mezi stav mrtvý a stav živý, ale vyšel stejný výsledek jako v původní práci, a to že člověk v permanentním vegetativním stavu má méně mentálních kapacit než člověk mrtvý a společnost tedy lidi v komatu vnímá jako více mrtvé než kdyby byli ve skutečnosti mrtví. Pro srovnání odpovědí, které jsem získala já a které mám z původního výzkumu, jsem spočítala jednotlivé mediány a porovnala je s těmi původními:

<table>
<thead>
<tr>
<th>stav</th>
<th>medián – výzkum Harvard</th>
<th>medián – výzkum ČR</th>
</tr>
</thead>
<tbody>
<tr>
<td>živý</td>
<td>2,0000</td>
<td>1,7500</td>
</tr>
<tr>
<td>mrtvý</td>
<td>0,5000</td>
<td>0,6667</td>
</tr>
<tr>
<td>PVS</td>
<td>- 2,1667</td>
<td>- 0,6667</td>
</tr>
</tbody>
</table>

Na základě tohoto porovnání můžeme říci, že pořadí stavů je sice stejné, ale lidé v České republice nevidí pacienta v permanentním vegetativním stavu „až tak moc mrtvého“ jako dotazovaní v původní práci, protože zatímco v ČR je rozdíl mezi stavem „mrtvý“ a „PVS“ přibližně jen 1,334, v původní práci byl daleko propastnější, skoro 2,7. Dá se tedy konstatovat, že Češi dělají menší rozdíl mezi těmito dvěma stavů.

Pro porovnání jsem vykreslila i krabicové grafy srovnávající vždy jeden konkrétní stav v anglosaské společnosti a v ČR.

Obrázek 4.5 - Krabicový graf porovnávající stav živý v anglosaské společnosti a v ČR
Jak je vidět na krabicových grafech, anglosaská i česká společnost hodnotí skoro stejně stav živý i mrtvý, stav PVS je však hodnocen velmi rozdílně – anglosaská společnost hodnotí tento stav daleko hůře než lidé v ČR. Pravděpodobně to bude důsledek menšího náboženského založení Čechů.
4.5 Porovnání odpovědí mužů a žen

Zajímalo mě, zda se budou lišit průměry odpovědí mužů a žen v rámci jednotlivých stavů nebo zda budou přibližně stejné jako v původním experimentu. Na dotazník odpovídalo 124 žen a 82 mužů. Stejně jako na jednotlivé stavy, i na porovnání odpovědí mužů a žen jsem použila Kruskal-Wallisův test.

Ve stavu PVS a živý se odpovědi mužů a žen statisticky významně neliší, zatímco ve stavu mrtvý ano. Pokud se podíváme na mediány průměrů odpovědí, zjistíme, že muži celkově hodnotí stav PVS i mrtvý hůře než ženy. Naopak Davidovi ve stavu živý muži přiřazoval větší mentální kapacity. Můžeme to vysvětlit například tak, že muži uvažují reálněji než ženy a že dokáží danou situaci ohodnotit přesněji než empatické a citlivé ženy.

p-value pro jednotlivé stavy:
- PVS 0,2497
- živý 0,6941
- mrtvý 0,0448

Mediány průměrů odpovědí jsou vidět na krabicových grafech:

Obrázek 4. 8 - Krabicový graf průměrů odpovědí mužů a žen v rámci stavu PVS
Obrázek 4. 9 - Krabicový graf průměrů odpovědí mužů a žen v rámci stavu živý

Obrázek 4. 10 - Krabicový graf průměrů odpovědí mužů a žen v rámci stavu mrtvý
4.6 Vliv oboru studia na odpovědi

Také bylo zajímavé sledovat, zda má na průměry odpovědí vliv obor studia. Odpovídalо 46 studentů lékařského oboru, 73 studentů přírodovědných oborů a 87 studentů humanitního oboru. Zatímco ve stavech PVS a živý se rozdíl v průměrech odpovědí nepotrdil, u stavu mrtvý ano – lišily se zde odpovědi studentů studujících přírodovědecký a humanitní obor. Studenti přírodovědeckých oborů asi uvažují více reálně, neboť přiřazovali mrtvému Davidovi menší mentální kapacitě. Je poměrně zvláštní i to, že studenti lékařského oboru přiřazovali Davidovi ve stavu mrtvý skoro stejně mentální kapacitě jako studenti humanitního oboru, i když by se dalo předpokládat, že mu budou přiřazovat mentální kapacitě daleko menší (například z důvodů znalostí anatomie a funkce lidského těla – medici by měli být ti, co uvažují nejvíce reálně).

P – value pro jednotlivé stavy byly:
- PVS ……. 0,6080
- živý ……. 0,3998
- mrtvý ……. 0,0186

Obrázek 4.11 - Krabicový graf průměrů odpovědí dle oboru studia v rámci stavu PVS
Obrázek 4. 12 - Krabicový graf průměrů odpovědí dle oboru studia v rámci stavu živý

Obrázek 4. 13 - Krabicový graf průměrů odpovědí dle oboru studia v rámci stavu mrtvý
4.7 Religiozita

Respondenti odpovídali na čtyři otázky ve druhé části dotazníku, které měly sloužit ke zmapování religiozity dotazovaných. Index religiozity jsem vytvořila jako průměr odpovědí ze čtyř otázek týkajících se religiozity (viz. dotazník str. 23 otázka 3).

Nejdříve jsem opět jako v předchozích experimentech spočítala Cronbachovo alfa, abych se ujistila, že má tvorba souhrnné škály smysl. Tato hodnota mi vyšla sice o něco menší než u experimentu 1, přesto ale pořád velmi vysoká ($\alpha = 0,884$).

Bylo vhodné vykreslit si histogram indexu religiozity:

Obrázek 4. 14 - Histogram indexu religiozity

Zde je dobře vidět, že rozdělení celého indexu není v žádném případě bimodální a že je poměrně hodně odpovědí zastoupených na levém okraji škály (tak odpovídali respondenti bez náboženského založení – odpověď -3 na všechny otázky). Tento histogram tedy jen potvrzuje moji domněnku o tom, že lidé v ČR jsou méně nábožensky založení (průměrný index religiozity mezi všemi respondenty byl -0,25) a také dokazuje to, že Češi nemají vyhraněný názor na religiozitu, neboť průměr odpovědí je „rozprostřen“ po celé škále (myšleno od -3 do 3).
V dalším kroku jsem chtěla potvrdit svou hypotézu, že se od sebe liší otázky „Jsem duchovně založený člověk“ a „Jsem věřící“. K tomuto testování jsem použila Spearmanův korelační koeficient. Pokud bude malý, průměry odpovědí mezi sebou nemají vysokou korelací a jsou tudíž různé. Pokud bude vysoký, jsou si průměry odpovědí podobné a moje domněnka není správná.

Obrázek 4. 15 - Histogram odpovědí na otázku "Jsem duchovně založený člověk"

![Histogram odpovědí na otázku "Jsem duchovně založený člověk"](image)

Obrázek 4. 16 - Histogram odpovědí na otázku "Jsem věřící"

![Histogram odpovědí na otázku "Jsem věřící"](image)
Spearmanův korelační koeficient jsem spočítala v Matlabu pomocí příkazu

\[R,P] =
\text{corr}(X,Y,'type','Spearman')

kde:
- X je vektor odpovědí na otázku „Jsem duchovně založený člověk“
- Y je vektor odpovědí na otázku „Jsem věřící“
- type označuje použití parametru
- Spearman je parametr, který určuje, jaký druh korelace se má počítat (zde tedy Spearmanův korelační koeficient)

Nyní se podíváme na tabulku korelací mezi všemi čtyřmi otázkami, ze kterých tvoříme index religionizity:

Otázky:
1 …… Jsem duchovně založený člověk
2 …… Jsme věřící
3 …… Věřím na posmrtný život
4 …… Duše žije i poté, co člověk zemře

<table>
<thead>
<tr>
<th>otázka</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,0000</td>
<td>0,7406</td>
<td>0,6142</td>
<td>0,6316</td>
</tr>
<tr>
<td>2</td>
<td>0,7406</td>
<td>1,0000</td>
<td>0,5854</td>
<td>0,5996</td>
</tr>
<tr>
<td>3</td>
<td>0,6142</td>
<td>0,5854</td>
<td>1,0000</td>
<td>0,8403</td>
</tr>
<tr>
<td>4</td>
<td>0,6316</td>
<td>0,5996</td>
<td>0,8403</td>
<td>1,0000</td>
</tr>
</tbody>
</table>

Tabulka 4.1 – hodnoty Spearmanova korelačního koeficientu

V tabulce je dobře vidět, že největší korelace je mezi otázkami 3 a 4 (p-value zde bylo přibližně rovno 0,00001*10^{-36}), nejmenší naopak mezi 2. a 3. otázkou (i zde bylo ale p-value přibližně 0,00001*10^{-36}). Zda je korelace mezi 1. a 2. otázkou dostatečně vysoká je těžké určit, neboť záleží na tom, jak velkou korelaci již chápeme jako dostatečně vysokou a postačující pro určení závislosti. P-value u této korelace bylo přibližně rovno 0,6*10^{-36}. Dle mého názoru zde je tisíce s jistotou říci, že jsou otázky 1 a 2 nekorelované a že se každá ptá na něco jiného, resp. že jsou chápané rozdílně a odpovědi na ně se liší.
Avšak ani nejde s jistotou říci, že jsou stejné a že bych získala stejný výsledek, kdybych se ptala jen na jednu otázku jako v původním experimentu. P-value bylo sice dostatečně malé a korelací tedy nelze považovat pouze za náhodnou, ale hodnota korelačního koeficientu 0,7406 není dostatečně vysoká na to, aby se dal upřednostnit jeden konkrétní závěr.

A co rozdíl v indexu religiozity u mužů a žen? Dá se říct, že by byl index religiozity závislý na pohlaví a že by ženy odpovídaly statisticky významně odlišně než muži? Kruskal-Wallisův test neukázal rozdíl mezi odpověďmi (p-value tohoto testu bylo 0,5165), i mediány a střední hodnoty průměrů odpovědí jsou skoro stejné:

Tento výsledek odpovídá i tomu, co ve svém původním experimentu zjistil pan Kurt Gray. Ani v anglosaské společnosti totiž nebyl rozdíl v indexu religiozity mezi pohlavími.

Obrázek 4. 17 - krabicový graf indexu religiozity dle pohlaví
Otázkou může být i to, zda se index religiozity liší u jednotlivých skupin respondentů v závislosti na oboru, který studují. Zde se již statisticky významný rozdíl potvrdil (p-value = 0,0013). Liší se od sebe průměry odpovědí studentů lékařského a přírodovědeckého oboru a také se liší odpovědi přírodovědeckého a humanitního oboru. Statisticky významný rozdíl mezi průměry odpovědí studentů lékařského a humanitního oboru se nepotvrdil.

<table>
<thead>
<tr>
<th>Obor</th>
<th>Medíán</th>
<th>Sřední hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>lékařský</td>
<td>0,7500</td>
<td>0,3967</td>
</tr>
<tr>
<td>přírodovědecký</td>
<td>-1,0000</td>
<td>-0,8194</td>
</tr>
<tr>
<td>humanitní</td>
<td>0,0000</td>
<td>-0,1322</td>
</tr>
</tbody>
</table>

Za zvláštní a překvapivé považuji i to, že největší index religiozity mají studenti lékařského oboru. Předpokládala bych totiž, že nejvíce nábožensky založení budou studenti humanitních oborů.

Obrázek 4. 18 - Krabicový graf indexu religiozity dle oboru studia
Jedním z předpokladů bylo i to, že index religiozity ovlivňuje průměry odpovědí na jednotlivé stavy. Není však vhodné počítat korelační koeficienty mezi průměry odpovědí v rámci jednotlivých stavů a indexem religiozity. K tomu, abych mohla říci, že index religiozity ovlivňuje průměry odpovědí, bych potřebovala vzorek dat, kde by jeden respondent odpovídal na všechny tři stavy. Má smysl zhodnotit pouze korelační koeficient ve stavu mrtvý, neboť lidé s větším indexem religiozity věří na posmrtný život a souhlasí s tím, že duše žije i poté, co člověk zemře. Bylo by tedy logické, aby byl v tomto případě korelační koeficient velký, neboť tito respondenti by měli přisuzovat Davidovi ve stavu mrtvý větší mentální kapacity než respondenti s nízkým indexem religiozity.

<table>
<thead>
<tr>
<th>korelační koeficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrtvý</td>
<td>0,2545</td>
</tr>
</tbody>
</table>

Korelace je však malá, což znamená, že nemohu potvrdit svoji hypotézu o tom, že by index religiozity ovlivňoval průměr odpovědí ve stavu mrtvý. V původním výzkumu autoři došli k jinému výsledku, a to že index religiozity ovlivňuje průměry odpovědí na jednotlivé stavy. Měli však navíc k prvnímu dotazníku ještě odpovědi na otázky týkající se stavu, ve kterém upozorňovali na rakev a na tělo pod zemí a další dodatečné odpovědi.. Všechny průměry odpovědí potom porovnávali dohromady. Vzhledem k tomu, že nemám k dispozici další odpovědi od stejných respondentů a že můj dotazník nebyl dále nijak zaměřený, nebylo by správné na tomto místě výsledky obou prací porovnávat.
5. ZÁVĚR

Ve své práci jsem zopakovala výzkum z marylandské a harvardské univerzity, který se zabýval pohledem na pacienty v permanentním vegetativním stavu. Provedla jsem analýzu původních dat, při které jsem zjistila, že autoři výzkumu nepoužili vhodné statistické metody. Zopakovala jsem tedy analýzu jinými, dle mého názoru vhodnějšími, metodami, ale došla jsem ke stejným výsledkům.

Ve druhé části práce jsem přeložila původní dotazník a předložila jsem ho respondentům – studentům v Olomouci. Získala jsem tři skupiny odpovědí (neboť každý z respondentů obdržel jeden ze tří dotazníků rozdělených podle popisu stavu – buď se David po nehodě uzdravil (živý), nebo zemřel (mrtvý) a nebo zůstal v permanentním vegetativním stavu (PVS)). Tyto odpovědi jsem opět podrobila analýze, při které jsem použila znalosti získané během bakalářského studia. Nejdříve jsem srovnala jednotlivé stavy (PVS, živý, mrtvý) a zjistila, že lidé v ČR přisuzují nejmenší mentální kapacity Davidovi v PVS stejně jako lidé v USA. To znamená, že tedy vidí pacienty v PVS více mrtvé než ty skutečně mrtvé. Poté jsem srovnala svoje a původní odpovědi v rámci jednotlivých stavů. Zatímco průměry odpovědí v rámci stavů mrtvý a živý byly téměř stejné, Davidovi v PVS přiřazovali Češi větší mentální kapacity než anglosaská společnost. Může to být způsobeno tím, že jsme celkově méně nábožensky založení a také možná méně empatičtí, uvažujeme reálněji a rozdíl mezi mrtvým a pacientem v PVS nevidíme až tak propastně velký.

Otestovala jsem také případný rozdíl mezi průměry odpovědí mužů a žen a vliv oboru studia na průměry odpovědí. Rozdíl mezi průměry v rámci pohlaví byl pouze ve stavu mrtvý, rozdíl mezi průměry odpovědí v rámci oboru studia se prokázal statisticky významný opět ve stavu mrtvý.

V rámci religiozity jsem vykreslila histogram indexu religiozity a zjistila jsem, že rozdělení náboženského založení Čechů rozhodně není bimodální. Hodně průměrů odpovědí se nacházelo na záporné části číselné osy, což jen potvrzuje moji domněnku, že Češi jsou málo nábožensky založení a že jejich index religiozity je malý (průměr indexu religiozity mezi všemi respondenty byl -0,25).
Pomocí Spearmanova korelačního koeficientu jsem potom porovnala korelace mezi průměry odpovědí na jednotlivé otázky zjišťující index religiozity respondenta. Opět jsem otestovala i to, zda se liší index religiozity mezi pohlavími a mezi jednotlivými obory studia. Zjistila jsem, že pohlaví nemá na index religiozity vliv, avšak u jednotlivých oborů se index religiozity liší statisticky významně. Překvapivé bylo to, že největší index religiozity vyšel u studentů lékařského oboru.

Tato práce mi pomohla pochopit hodně teoretických poznatků, které jsem získala během svého bakalářského studia na Univerzitě Palackého a aplikovat je na praktický a reálný problém. Myslím si, že jsem cíl práce splnila a že jsem dostatečně porovnala pohled na pacienty v permanentním vegetativním stavu v ČR s pohledem na tyto pacienty v anglosaské kultuře.
6. POUŽITÁ LITERATURA A ZDROJE

