University of Hradec Kralové
Faculty of Informatics and Management
Department of Informatics and Quantitative Methods

Music generation using neural networks

Bachelor Thesis

Author: Aleksey Yanushko

Study Branch: Applied informatics

Thesis Supervisor: Milan Ko§t'ak

Hradec Kralové November 2022

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature, and other professional sources.

Hradec Krilové, 17" November 2022 Aleksey Yanushko

Acknowledgement:

I would like to thank Ing. Kostak Milan for relevant remarks and supervision of
this thesis.

Annotation

Title: Music generation using neural networks
This thesis focuses on the task of music production with the use of machine learning.
exploring the current trends in the field of music generation, as well as providing a

relevant practical solution to this task.

The theoretical part is focused on the principles of artificial neural networks, a
description of their operation and an explanation of the possibilities of use.
Theoretical part also gives an overview of the most prominent modern projects
aimed at providing users with the ability to produce novel music without the need

for any prior experience.

The practical part proposes a solution and subsequent implementation of an
artificial neural network capable of generating unique melodies and providing

results of the set implementation.

Key words: neural networks, artificial intelligence, music generation

Anotace
Nazev: Generovani hudby pomoci umélych neuronovych siti

Bakalarska prace se zaméruje na ulohu hudebni produkce s vyuZitim strojového
uceni pii zkoumani soucasnych trendli v oblasti tvorby hudby a poskytovani

relevantniho praktického reSeni tohoto ukolu.

Teoreticka ¢ast je zamérena na principy umélych neuronovych siti, popis jejich
fungovani a vysvétleni moZnosti vyuziti. Teoreticka Cast také podava prehled
nejvyznamneéjSich modernich projektli, jejichZ cilem je poskytnout uZivatelim

moZznost produkovat unikatni hudbu bez nutnosti predchozich zkuSenosti.

Prakticka ¢ast navrhuje reSeni a naslednou implementaci umélé neuronové sité

schopné generovat unikatni melodie a poskytuje vysledky této implementace.

Kli¢ova slova: neuronové sité, uméla inteligence, generovani hudby

Content

| (115 o1 L1 To15 1o) 1 OO USO U RPUPRPPPPO |
2 Purpose of the thesis & methodologycocoovviiiiiiniiiinin 2
2.1 Purpose Of the thesisccceeiiiiiiiiiiiiiiiii e 2
2.2 MethOdOIOZY . .eocveeeieiiiicieciie it 2

3 Artificial neural NEtWOTIKSeoiiiiiiiiiiiiiieiie e 3
3.1 BiolOiCal NEUION....ccueiuiiiiiiiiiiiiiiiiie ettt 3
3.2 Artificial NEUION.....ccuviieiieeeiie ettt 4
3.3 Artificial neural network trainingc...ccccceevvevviiiiiiiiiiiiiiie e 7
3.4 Artificial neural network architeCture...........ccocuvvviiiiiiiiiiiieiiiie e 9
3.4.1 Single-layer Neural NetWOrksccoooviiiiiiiiiiniiiiiiiiice 9
3.4.2 Feedforward Neural NetWOrKscccccevivuiiiiiiiiiiiiniiiieieeie e 10
3.4.3 Recurrent Neural NetWOrksccccccevviiiiiiiiiiiiiiiiiiie e 11
3.4.4 Long short-term memory model............ccoooiniiiiiniiiiniii 12
3.4.5 Convolutional Neural Networks.........ccccccevviiiiiiiiiiiiiiiiiiieieie s 14
3.4.6 Generative Adversarial NetWOrkscccccecvevviiiiiiiiiiiiiiniinie i 15
347 AULOCNCOALTS ...oeeeieeiiieeeeie ettt ettt sttt st st s s e s s e e ae e 17
3.4.8 Variational AUtOBNCOAETSc.ueevuiiriiiiiiiiiiiiiiiiiii e 18

4 EXIiStNG MOELS ...couveieiiieiiiiiiiciiiiii et 23
4.1 Modern MOAEIS.......ueeiiieeieieeiiie ettt 23
4.2 MAZENLA ..ottt 24
4.2.1 DrumsRNNccooiiiiiiiieieie et 25
4.2.2 MEelOdYRNNocoiiiiiiiiiiieiiieciiiie sttt 27
423 PerformanceRNNcccciiiiiiiiiiiiiiiii e 28
4.2.4 MusSiC TransfOrmErcovvuieiriieiiieiiiiie it 29
425 MUSICVAEooieee ettt s 31

431 MUSENEL .ttt ettt et 32
4.3.2 JUKEDOX c.eeiitietcet ettt e ettt 34
4.4 Independent PIOJECLScccueeruteeriteriitieeiieeesiiee st ee st ee st eestbeeesabeesssbeesssaeennnne 35
44T WAVENEL c.eeiiiieiie ettt ettt s e e 35
442 MIAINEL...ccutiitietieteece ettt sttt et et sat e sttt 37

S MOdE] PrOPOSIION ...ceeuiiieeniiie ettt ettt ettt ettt sebe e e sttt eestbeeesabeesssbeeeneee 39
5.1 ATCRITECTUTE ..ottt e es 39
5.2 Data fOrmalcooeiiiiiiieeie e 39
5.3 SHTUCTUTE ..ttt ettt ettt et et e se e b e et ee e s e e sneeesneeaaeen 40
6 IMPIEMENTALION ...eeiiiiiiiiie ettt et ettt sa e e st e e sabe e e sabeeesaae s 43
6.1 ENVITONMENT.....coiiiiiiiiiiiieie ettt et seee e e es 43
6.1.1 NUMPY oottt e 43
6.1.2 KEIAS ..eeiiiiiieiie e et e 43
6.1.3 TeNSOTFIOW ettt ettt 44
6.1.4 PYTOTCK oottt et 44
6.1.5 Pypilanorollcoooiiiiiiiiiiiiiit e 44
6.1.6 NAfS_ZELETS cooeeiiiiiiieee e 45
6.2 DALASEL ...eeuiiiiiieeiie ettt ettt e es 45
6.3 APPHCAION.....eiiiiiiiiiiiiieeiit ettt ettt e st e et e st eebaeeeaee s 46
6.3.1 Training data PreProCESSINZ......ceerterrueerrieerrieerriieeeniieeesireessireessineessieeenns 46
6.3.2 Dataloader.........oouiiiiiiiieiie e e 48
0.3.3 VAE e et st et 48
6.3.4 VAE TIaiNING ...coovuiiiiiiiiiiieieiiee ettt ettt e sttt essate e e sabeessiae e 49
6.3.5 MelodyNN and ConditionalNNccceciiimiiiiiniiinniienie e 50
6.3.6 MelodyNN and ConditionalNN Training........cccecceeevveersveennineenniveennineenns 51

6.3.7 GeNerating MUSIC......ccuevueerreriiiiiiiiiie ettt sb et 52

T RESUILS ottt ettt ettt ettt et s et a e s s s b e e aae e a e eaae e 56
7.1 RESUIS OVEIVIEW ..eeuiiieiiieiieeiieeitcee ettt st ettt e n e sn e ssae s 56
7.2 Model COMPATISONeveeeieiieieiieiiie ettt sr s e sbs s 57

7.2.1 Multitrack MUSICVAEcuoiiiiiiiiiiiiiiieeiecie e 57
T.2.2 JUKEDOX ..viieiieeieiette sttt e e 58
8 CONCIUSION. ..ttt ettt ettt ettt sa e saae s ae e b e es b e eabe e s s e s aessaeeate s 60
O REIETEICES ..uvveieveeieietie et ettt ettt et sttt et eb e e 62

TO A CEACKINIEILS. .. eeeeeeeee e eeeeee ettt e eeeeeeeeseaa e eeseseseasssnnneaeesessssssnnnnaaaesesesessnsnnnnsneees 66

List of images

Figure 1: Biological NEUION.........c..ccoiiiiiiiiiiiiiiiici i 3
Figure 2: Neuron Jayerscccocceuiiiiiiiiiiiiiiiie i 4
Figure 3: ANN performing simple logical computations.............cccoeveieeniiieieerinieneenenen. 5
Figure 4: ANN MOdElcccuoiiiiiiiiiiiiiiiiiiiicic s 6
Figure 5: Single layer neural nEtWOTrKcooiiiiiiiiiiiiiii e 10
Figure 6: Multilayer neural NEtWOrK...........ccooiiiiiiiiiiiiii e 11
Figure 7: Recurrent neural NEtWOTK..........ccooiiiiiiiiiiiiniii 12
Figure 8: LSTM single cell model............ccooiiiiiiiiiiiiiiii s 13
Figure 9: LSTM CelIS.....ooiiiiiiiiiiiiiiiiiiiie et 13
Figure 10: LSTM cell ValVe......ccooiiiiiiiiiiiiiiii e 14
Figure 11: Convolutional neural network image reCoOgnitionocceveeereneeinenennes 15
Figure 12: Generative adversarial network image genuineness.............ceeveeenieiennnne 16
Figure 13: Basic autoencoder architeCturecooeeieniieniieiiiieie e 17
Figure 14: Variational autoencoder architeCturecocueiiieniiiieniinienieeeieeeiece 19
Figure 15: Gaussian value mappingcccccoeiiiniiiiiininiiei it 19
Figure 16: Multivariate Gaussian diStribution.............ccoeeviiiiiiiiiniiineiee s 20
Figure 17: Sampling from a Gaussian diStribution............cccocooveiiiiiiininiinnienes 20
Figure 18: Magenta modelS OVEIVIEWcccccuiuiiiiiiniiiiiniiie et 25
Figure 19: DeepDrum & DeepArp using Google Magenta's DrumsRNN 26
Figure 20: PianoDuo using Google Magenta's MelodyRNN ... 27
Figure 21: MelodyRNN architeCturecccoviiuiiiiiiiiiiiieiie e 28
Figure 22: Web application using Google Magenta's PerfromanceRNN....................... 29
Figure 23: Application using Google Magenta's Music Transformercccocoeeene. 30
Figure 24: Transformer training data preprocessingccooeeveeieieniinesiesseieneenienieiens 31
Figure 25: Application using Google Magenta's MusicVAE...............ccooinniinnnne 32
Figure 26: Application using OpenAIl’s MUSENEt..........ccocoviiiiiiiiiiiininie e 33
Figure 27: OpenAI’s VAE raw audio proCesSing...........ceeueriiiueiiinieeiesiesieniesiesienesnennees 35
Figure 28: Visualization of a stack of dilated causal convolutional layers 36
Figure 29: System diagram of the proposed MidiNet model for symbolic-domain music

Lo 1S3)1 OO OO TSP O U POT O PRSPPI 38
Figure 30: Architecture of VAE-NN used to generate musiccocvvenieinenisinennnnns 41
Figure 31: Blues and rock songs subset Creation............oevueeuieeiuinieeieneeiense e 47
Figure 32: Decoding songs into instrumental tracksccooveieiiiiiiieniininincnicen, 48
Figure 33: CombinedDataloadercccooiiiiiiniiiiiiiiei i 48
Figure 34: Encoder implementationcooiouiiiiiiiiioiniiene i 49
Figure 35: Decoder implementationcccuoiiiiiiiiiieniiiieni i 49
Figure 36: VAE trailingccccueviiiiiiiiiiiiiiiieiiee ettt 49
Figure 37: MelodyNN SIIUCIUTEccoocviiiiiiiiiiiiiiiii ettt 50
Figure 38: ConditionalNN StIUCIUTIEccuovviiiiiiiiiiiiiirieieiee et 51
Figure 39: MelodyNN training........ccccevviveiiiniiiiniiiient ettt 51
Figure 40: ConditionalNNS trainingcccocovviiiiiiiiiiiniiie e 52
Figure 41: Instrumental tracks declarationccocovieiiiiiiiiiiiniiie 52
Figure 42: Conversion to 1atent SPACEc.courrurriiriiniiiieiii et 53

Figure 43: Generating nexXt Piano STEP.......coereeeieririenieinientiiee st 53

Figure 44: Generating next instrument step and adding random Noisec.coceveveueees 53
Figure 45: Decoding resulting SEQUENCEcueiuieiirieeiineeiieieieeie s 54
Figure 46: Iterative call for SeqUENCe ZENErationcoceeviieeeiinieneninieneeineeiees 54
Figure 47: Resulting MIDI song represented in BandLabs ... 55

List of abbreviations used

BNN - Biological neural network

ANN - Artificial neural network

MLP - Multilayer perceptron

RNN - Recurrent neural network
LSTM - Long Short-Term Memory
CNN - Convolutional neural network
GAN - Generative adversarial network
AE - Autoencoder

VAE - Variational autoencoder

AGI - Artificial general intelligence

KL - Kullback-Leibler

1 Introduction

One of the most complex forms of artistic endeavor is the creation of music. Contrary
to books, poems, paintings, and films, music holds no bond to the context of the
outside world and doesn't necessarily require an understanding of such ideas as, for
instance, the meaning of words or notes. And while a person's perspective on the
world unquestionably affects how he understands art, music continues to be the
most independent means of evoking strong emotions in others. Furthermore, the
primary content of music can be represented in a relatively straightforward data
format. This fact is what gave rise to notes. Musical scores can be symbolized in a
computer as a series of binary arrays, as will be demonstrated below, which makes
the algorithmic processing of music simpler. Based on this, music seems to be a
fertile field of research on creativity and its modeling in artificial intelligence.
However, there are still no reasonable scientific theories as to why some sequences
of notes are perceived as music, while others are not. It is also a philosophical
question of whether these dependencies were formed naturally, or rather were the
result of the historical process. One way or another, music contains certain patterns
that are intuitively understandable to all people, which have not yet been
mathematically formulated or modeled. But engineers and scientists are developing
new and improved ways to create music at a human-like level by using

contemporary technologies such as deep learning.

The purpose of this thesis is to outline the most prominent modern methods and
deep learning models for creating music, propose and put into use an artificial
neural network that can produce new and unique melodies, and demonstrate the

results.

2 Purpose of the thesis & methodology
2.1 Purpose of the thesis

This thesis aims to explore how it is possible to teach an artificial neural network to
"compose” music. It will first be necessary to become familiar with the neural
network - its components, and structure, as well as consider one of the methods of
its training used in the developed program. Later, familiarize with modern
approaches and solutions to problems of artificial music generation. Finally, the
construction and implementation of the algorithm for generating and harmonizing

the melody.

2.2 Methodology

The theoretical and practical framework for the thesis was outlined with the use of
both printed and online sources, such as articles from Towards Data Science and
Semantic Scholar, as well as development blogs from Magenta and OpenAl. Practical

implementation required multiple sources with exemplary solutions provided on

GitHub.

3 Artificial neural networks

The chapter describes basic concepts and ideas behind neural networks, as well as
gives a brief overview of the existing architectures and types of neural networks that

are used nowadays, their specifics, and components.

3.1 Biological neuron

The fundamental feature of artificial neural networks (ANNs) is their ability to
process information in a way that is similar to that of a human's nervous system,
particularly regarding its capacity to learn from errors and make corrections. Since
it is impossible to fully describe the functioning of biological systems due to their
high organizational complexity, researchers are interested in simplifying the model

of the nervous system to its most basic unit, the neuron. (Figure 1).

Cell body
Axon Telodendria . %
= b
’ w »
/) .
Nucleus '\ = ~_ A/

Axon hillock Synaptic terminals

reticulum

Mitochondrion‘\\ﬁDendrite

/
/ \\g Dendritic branches

Figure 1: Biological neuron
Source: Géron (2017)

A neuron is a cell that is found in the cerebral cortex of animals. It consists of a cell
body that houses the nucleus and most of the cell's intricate parts. Numerous
branching extensions are called dendrites, and one extremely long extension is
called the axon. The axon's length may be only a few times or even tens of thousands
of times greater than the cell's body. The axon splits into numerous telodendria near

its extremity, and these telodendria have tiny synaptic terminals at their tips that

connect to the dendrites of other neurons. These synapses allow biological neurons
to receive brief electrical pulses from other neurons, known as signals. A neuron
fires its signals when it has received enough signals from other neurons within a

span of a few milliseconds.

While biological neurons appear to function in a simple manner, they are connected
to thousands of other neurons and collectively form a massive network of billions of
neurons. Similar to how a complex anthill can develop from the joint efforts of small
ants, complex calculations can be carried out by a large network of simple neurons.
Although research on the architecture of biological neural networks (BNN) is still
ongoing, certain brain regions have been mapped, and neurons are frequently

arranged in successive layers as seen in Figure 2 (Géron, 2017).

Figure 2: Neuron layers
Source: Géron (2017)

3.2 Artificial neuron

One or more binary (on/off) inputs and one binary output make up the very basic
model of the biological neuron described by Warren McCulloch and Walter Pitts
(Mcculloch & Pits, 1943) that eventually came to be known as an artificial neuron.
When a certain number of its inputs are active, the artificial neuron simply turns on
its output. McCulloch and Pitts demonstrated that it is possible to create an artificial
neural network that can compute every desired logical proposition, even with such

a simple model. As shown below, several ANNs can carry out a variety of logical

operations (Figure 3), presuming that a neuron is activated when at least two of its

inputs are active.

Neurons Connection

C=A C=AAB C=AVB C=AAB

Figure 3: ANN performing simple logical computations
Source: Géron (2017)

Simply explained, the first network from the left is the identity function: if neuron A
is activated, neuron C is activated as well (because it gets two input signals from

neuron A), but if neuron A is turned off, neuron C is likewise disabled.

Alogical AND is performed in the second network: only when both neurons A and B
are active, neuron C is activated, because a single input signal is not enough to

activate neuron C.

The third network performs a logical OR when either neuron A or neuron B is
activated, triggering neuron C. (or both). If either neuron A or neuron B is activated,

the third network performs a logical OR, activating neuron C (or both).

The fourth network calculates a somewhat harder logical assertion: neuron C is only
turned on if both neuron A and neuron B are off. This is because the fourth network
computes a marginally simpler logical statement assuming that an input link can
block the neuron's activity (which is the situation with biological neurons). If neuron
A is always active, then there is a logical NOT since neuron C is active while neuron

B is off and conversely (Géron, 2017).

In the study of ANNs, neurons are seen as a system of expression from the n-

dimensional space of inputs, the characteristics of which are described by signals

from other nerve cells' outputs or by signals from some external environment, into

the one-dimensional space (scalar signal) at a neuron cell's output (Figure 4).

Bias
b

Activation

Indlllt‘ ed function
Field

1.1'

Output
Vv

o ——
Input

values . . ,
5 5 Sunmlnng
. . function
|\-'rl‘ﬂ‘ -
weights

Figure 4: ANN model
Source: Gabor Mellie’s Research Knowledge Base (2022)

Despite their diversity, this configuration serves as the basis for almost all types of
networks. The weights used to multiply inputs, which correspond to the synaptic
potency of a biological neuron, are represented by the values w1, w2, and wm. Other
neurons' outputs are represented by the values x1, x2, and xm. The degree of neuron
activity is later calculated by adding up all the results. The summation block, which
resembles the body of a biological neuron structurally, creates the output netby pre-
combining the weighted inputs algebraically. The described process has the

following mathematical interpretation:

net = Z?:l w;x; + Wy - net calculation
y; = ¢@(net) - activation function

where wy, is the bias
w; is the weight of the i-th neuron
x;is the output of the i-th neuron

n is the number of impulses entering the processed neuron

¢(net) is the activation function
y; is the output signal of the neuron

The value of w reflects the so-called displacement, which later leads to an increase
in the learning speed of the network by shifting the start of the countdown of the
activation function. Unlike other weights that are connected to the outputs of other
neurons, the bias is connected to the signal "+1", but its training occurs on an equal
footing with all weights. The sum of all the results is not the final solution, for

providing the actual result the activation function is used (Foster, 2019).

The summation block's output signal is transformed into the final valid result by the
activation function. It should be noted that different types of neural networks (or
even layers) may have different activation functions. The following activation

functions are most often used in actual practice:

1. threshold
2. sigmoidal
3. linear

4. tangential

The described system (and many of its varieties) is the basis of the perceptron, the
structure of which is a layer of neurons connected by weighting factors with many

inputs. But there are systems that have a higher organization.

3.3 Artificial neural network training

Training the neural network is an interactive process, it is referred to as the
adjustment of the neuron's weights and thresholds. The capacity of neural networks
to correct their errors in accordance with predetermined rules and to gradually
improve their efficiency over time are two of its most crucial characteristics.
According to ANN theory, training is the act of configuring a neural network's free
parameters by modeling the environment built into the network. The type of
training is characterized by predefined parameters. The following phases can be

used to categorize the learning process:

1. Certain signals are given from the external environment.
2. The free parameters of the neural network are corrected, thereby changing
its internal structure.

3. As aresult, the network reacts differently to subsequent pulses.

This sequence is a learning algorithm. However, the described technique is not
considered as being universal due to the diversity of neural network architecture
types. When trainingartificial neural networks, a variety of methods may be utilized,

each having advantages and disadvantages of their own.

In the case of multilayer network training, the error backpropagation technique is
frequently utilized, which helps to get around problems with altering the weights of
hidden layers. Since the backpropagation method works far more efficiently than
earlier training techniques such as the Conjugate gradient or Levenberg-Marquardt
algorithm that took weeks of calculations with the use of early digital computers,
neural networks may now be employed to address previously unsolvable issues.
And while there are multiple modern alternatives such as Genetic algorithm and
Hilbert-Schmidt independence criterion etc.,, backpropagation has become an
industry standard, and many frameworks (Tensorflow, PyTorch) have been built on
it. Training using backpropagation involves modifying each layer's parameters so
that, on average, there is little to no discrepancy between the network signal and the
external training signal. The work of this method of training can be represented as

a sequence of certain stages (Briot, Hadjeres, Pachet, 2020).

First, setting the initial conditions for all synaptic scales by means of sufficiently
small random numbers so that the activation functions of neurons do not enter
saturation mode in the initial stages of training (protection against "paralysis” of the
network). Second, feeding the image to the network input and calculating the
outputs of all neurons and later calculation of local errors for all layers according to
the specified training vector and computational intermediate outputs. Clarification
of all synaptic scales and repeating the process by feeding the next image to the

network input (Géron, 2017).

The learning process will be carried out until the error in the output of the ANN
becomes small enough, and the weights stabilize at some level. After training, the
neural network acquires the ability to generalize, i.e., begins to correctly recognize

patterns that are not represented in the training sample.

3.4 Artificial neural network architecture

The architectures of neural networks are closely related to the used learning
algorithms. There are numerous existing architectures, ranging from the simplest
single-layer architectures to more sophisticated ones comprised of dozens of
distinct types of layers, each with a set of neurons that are designed to perform a

specific set of calculations.
3.4.1 Single-layer Neural Networks

Single-layer network of direct propagation, where neurons are arranged in layers is
one of the simplest existing architectures. In the most basic cases, such a network
has a layer of source nodes serving as the input, from which information is passed
to the layer of neurons serving as the output (computational nodes), but not the
other way around. A network like this is referred to as an acyclic or direct
distribution network. Figure 5 depicts the layout of such a network with three nodes
in each layer (input and output). Source nodes are not considered when calculating

the number of layers because they don't perform any calculations.

Input Layer Output Layer

Output
Y3 ‘| | MNeurons

Wi
npul f/ %ﬂ\\/ Wap

Meurans 7 |

Figure 5: Single layer neural network
Source: Elsaraiti & Merabet (2021)

3.4.2 Feedforward Neural Networks

Another class of neural networks - feedforward neural networks, is characterized
by the presence of one or more hidden layers or passthrough layers. The nodes of
these hidden layers are called hidden neurons, or hidden elements. The hidden
neurons' task is to serve as an intermediary between the neural network's output
and the external input signal. By adding one or more hidden layers, it is possible to
highlight high-order statistics. Such a network allows to highlight the global
properties of data usinglocal connections due to the presence of additional synaptic
connections and an increase in the level of interaction of neurons. When the size of
the input layer is large enough, hidden neurons have a particularly strong ability to
isolate high-order statistical dependencies. The source nodes of the network input
layer form the corresponding elements of the activation pattern (input vector),
which make up the input signal coming to the neurons (computational elements) of
the second layer. The output signals of the second layer are used as input signals for
the third layer, etc. Usually, the neurons of each layer of the network are used as
input signals, while the output signals of the neurons of the previous layer only. The
set of output signals of the neurons of the last layer of the network determines the
overall response of the network. The network shown in Figure 6 has six input

neurons, seven hidden neurons and one output neuron (Thakur & Konde, 2021).

10

hidden layers

output layer

input layer

Figure 6: Multilayer neural network
Source: Thakur & Konde (2021)

[t should be noted that a neural network is considered fully connected in the sense
that all nodes of each layer are connected to all nodes of adjacent layers. If some of
the synaptic connections are missing, such a network is called an incomplete
network. It would be wrong to say that the human thought process begins every
second from an empty space. A person does not discard previous experience to start
thinking from scratch. Human thoughts have a certain constancy. But traditional

neural networks are not capable of this, and this is obviously a serious flaw.

3.4.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are cyclic networks that are able to store
information, and are designed to solve the problem that feedforward networks have
presented. A recurrent neural network differs from a direct propagation network by
the presence of at least one feedback. For example, a recurrent network may consist
of a single layer of neurons, each of which directs its output signal to the inputs of
neurons in the previous layer. The architecture of such a neural network is shown

in Figure 7.

11

Recurrent network

output layer

input layer

hidden layers

Figure 7: Recurrent neural network
Source: Maklin (2019)

The presence of feedback in the networks has a direct impact on the ability of such
networks to learn and on their performance. Moreover, feedback involves the use of
unit latency elements, which leads to nonlinear dynamic behavior, if the network

contains nonlinear neurons (Maklin, 2019).

3.4.4 Long short-term memory model

Long Short-Term Memory networks - commonly simply referred to as "LSTM" - are

a special kind of RNNs capable of learning long-term dependencies.

To better understand how LSTMs solve the long-term dependency problem it is
necessary to look at their structure. In Figure 8, each line transmits an entire vector
from the output of one node to the inputs of the others. Small circles represent point-
by-point operators, such as vector addition, while small rectangles represent
trained layers of a neural network. Merging lines indicate concatenation, while
branching lines indicate that their contents are copied, and copies are sent to

separate locations.

12

The main idea of the LSTM is its cellular state, which is like a conveyor belt (Figure
8). It moves straight along the entire chain with only a few linear interactions.

Information can simply flow through it unchanged if needed (Dorian, 2021).

Ct-1

Figure 8: LSTM single cell model
Source: Dorian (2021)

LSTM can remove or add information to the cellular state. However, this ability is
carefully regulated by structures called valves (Figure 9). Valves are a way to
selectively let information through. They are composed of a sigmoid layer and a

point-by-point multiplication operation.

~ cd s
| .
[}
>
8 ua W W3
s Ik
ci e cii
5
g el M

=

=

Figure 9: LSTM cells
Source: Lopez (2020)

13

The sigmoid layer outputs numbers between zero and one, thus describing how
much each component must be passed through the valve. Zero is "skip nothing", one
is "skip everything". The LSTM has three such valves (Figure 10) to protect and
control the cellular state (Shi, 2016).

Figure 10: LSTM cell valve
Source: Shi (2016)

3.4.5 Convolutional Neural Networks

Another subtype of neural networks is convolutional networks. There are three
processes at the heart of convolutional networks that are necessary to achieve
invariance to transfer, scaling, minor distortions, and other image transformations.

(Géron, 2017).

The firstis local feature extraction. Each neuron receives an input signal from a local
receptive field in the previous layer, thus extracting its local features. As soon as the
sign is extracted, its exact location no longer matters, since its location relative to

other signs is established.

The second is forming network layers as a set of feature maps - each computational
layer consists of many feature maps or planes on which all neurons must use the
same set of synaptic weights. This form complicates the structure of the network but

has two important advantages: invariance to displacement, which is achieved by

14

convolution with a small nucleus, and a reduction in the number of free parameters,

which is achieved by sharing synaptic weights by neurons of the same map.

The third is subsampling - each convolution layer is followed by a computational
layer that performs local averaging and subsampling. Due to this, a decrease in
resolution for feature maps is achieved. Such an operation leads to a decrease in the
sensitivity of the output signal of the sign display operator to slight displacement
and other forms of deformation. As such an operator is one of the sigmoidal
functions used in the construction of neural networks, for example, hyperbolic

tangent.

[t should be emphasized that all weights in all layers of the convolutional network
are taught by examples. Moreover, the network itself learns to extract signs
automatically. Figure 11 shows a convolutional network implementing image

recognition (Tabian, Fu, Khodaei, 2019).

/ - Healthy
' - Alarm
il L = Danger
24 :
: 1% : > s
(Y AT
Vo O [J - pamaged
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN comﬂrm SOFTMAX
\ >)\ 2 J
Aircraft Structural Condition

Feature Learning

Sensing Input Classification

Figure 11: Convolutional neural network image recognition
Source: Tabian, Fu, Khodaei (2019)

3.4.6 Generative Adversarial Networks

A generative adversarial network (GAN) is an architecture consisting of a generator
and a discriminator configured to work against each other. Hence the GAN was

called generative-creative.

15

One neural network, called a generator, creates new instances of the data, and the
other, the discriminator, evaluates them for authenticity. The discriminator decides
whether each instance of the data it is considering belongs to the training data set
or not. Meanwhile, the generator creates new images, which it transmits to the
discriminator. It does this in the hope that they will be accepted as genuine, even if
they are fake. The purpose of the generator is to generate images that will be skipped
by the discriminator. The purpose of the discriminator is to determine whether the
image is genuine. The first generator receives a random number and returns an
image, then the generated image is fed into the discriminator along with a stream of
images taken from the actual dataset. The discriminator accepts both real and fake
images and returns probabilities, numbers from 0 to 1, with 1 representing the
genuine image and O representing the fake one. A discriminator network is a
standard convolutional network that can classify images fed to it using a binomial
classifier. The generator is in a sense a reverse convolutional network: although a
standard convolutional classifier takes an image and reduces its resolution to obtain
a probability, the generator takes a random noise vector and converts it into an

image (Figure 12) (Foster, 2019).

Training set V Discriminator

/ A\S
Random / - @ E— {Fa ke
= =l

Generator . | /Fake image

Figure 12: Generative adversarial network image genuineness
Source: Nicholson (2020)

Both networks try to optimize the objective function or loss function. When the
discriminator changes its behavior, the generator changes, and vice versa

(Nicholson, 2020).

16

3.4.7 Autoencoders

Autoencoders are neural networks of direct propagation that restore the input
signal at the output. Inside, they have a hidden layer, which is the code that describes
the model. Autoencoders are designed in such a way that they are not able to
accurately copy the inputat the output. Usually, they are limited to the dimension of
the code (itis less than the dimension of the signal). The input signal is restored with
errors due to coding losses, but to minimize them, the network is forced to learn to

select the most important features.

Autoencoders consist of two parts: an encoder and a decoder. The encoder
translates the input signal into its representation (code) and the decoder recovers

the signal by its code (Figure 13) (Foster, 2019).

Input Output
—F < — 1]
A ™ . - - /|

\ TN~~~ =1 R /
— \ — b Code A — !
A A LN g2 O N S A
1 A e A] ~ -~] /1 \
\ / \ / \ /
I JA S Y N s/ /N -
\ / / \ \ /
/ \ \ / / \
— % = L X DX e D e I O
\ / / \ \ /
\
N A S e NG W S R N S iy |
/ \ / \ ;- ~A\ / \ / \
— 7 — § L — \
/ \ // - T~ "‘\4 L_/ \

y L —
- ~<_\
L ~q |
N J N J

' '

Encoder Decoder

Figure 13: Basic autoencoder architecture
Source: Dertat (2017)

The simplest form of the autoencoder is a direct communicating, non-recurrent
neural network, similar to single-layer perceptrons that participate in multilayer
perceptrons (MLPs) - having an input layer, an outputlayer, and one or more hidden
layers connecting them - where the output layer has the same number of nodes
(neurons) as the input layer, and with the goal of reconstructing its inputs

(minimizing the difference between input and output) instead of predicting the

17

target value of Y based on input X. Thus, autoencoders are unsupervised learning

models (not requiring labeled input data to enable learning).

At the same time, the families of functions of the encoder and decoder are limited.
Autoencoders are forced to reverse engineer input, keeping only the mostimportant
aspects of the data in the copy. By itself, the ability of autoencoders to compress data
is rarely used, as they usually perform worse than manually written algorithms for
specific types of data, such as sounds or images. And it is also critical for them that
the data belongs to the general population on which the network was trained. Once
an autoencoder has been trained on numbers, it cannot be used to encode something

else (for example, human faces) (Dertat, 2017).

3.4.8 Variational Autoencoders

A variational autoencoder (VAE) was introduced in 2014 by Diederik Kingma and
Max Welling. This variant of the autoencoder is capable of solving a variety of tasks,
from generating unique melodies and pictures to replacing denoising algorithms

and analyzing handwritten texts.

They are probabilistic autoencoders, meaning that their outputs are partly
determined by chance, even after training (as opposed to denoising autoencoders,
which use randomness only during training), which gives them an edge over RNNs
and CNNs since this randomness allows for the generation of unique outputs. Most
importantly, they are generative autoencoders, meaning that they can generate new

instances that look like they were sampled from the training set.

The basic structure of a variational autoencoders is similar to the basic
autoencoders, with an encoder followed by a decoder (Figure 14), but there is a
twist: instead of directly producing a coding for a given input, the encoder produces
a mean coding p and a standard deviation o. The actual coding is then sampled
randomly from a Gaussian distribution with mean p and standard deviation o. After

that the decoder just decodes the sampled coding normally (Foster, 2019).

18

Latent state
distributions

Sample from
distributions

0906666
©000
66060666

ENCODER

DECODER

\/

>

Figure 14: Variational autoencoder architecture
Source: GeeksforGeeks (2022)

Figure 15 shows how a training instance value looks after being mapped on a latent

space.

Y/l 440\
,/ﬂ‘”\\\i‘\

\
TR

Figure 15: Gaussian value mapping
Source: RInterested (2022)

After enough instances have been mapped the distribution starts to look like a

normal or Gaussian distribution (Figure 16).

19

(x)d

Figure 16: Multivariate Gaussian distribution
Source: Zitao (2020)

Once the mapping is done, the encoder produces p and o, then coding is sampled

randomly (Figure 17), and finally, this coding is decoded, and the final output
resembles the training instance.

Figure 17: Sampling from a Gaussian distribution
Source: Géron (2017)

The function that describes the random sampling of the coding from the latent space
is displayed below:

20

z=U+Ye

log(a?)
J=—e 2

where ¢ is a sampled point from standard normal distribution

As seen on the Figure 17, although the inputs may have a very convoluted
distribution, a variational autoencoder tends to produce codings that look as though
they were sampled from a simple Gaussian distribution during training, the cost
function pushes the codings to gradually migrate within the coding space (also
called the latent space) to occupy a roughly (hyper)spherical region that looks like

a cloud of Gaussian points.

The cost function for the VAE is composed of two parts. The first is the usual
reconstruction loss that pushes the autoencoder to reproduce its inputs. The second
is the latent loss that pushes the autoencoder to have codings that look as though
they were sampled from a simple Gaussian distribution, for which the Kullback-
Leibler (KL) divergence is used between the target distribution (the Gaussian

distribution) and the actual distribution of the codings (Géron, 2017).
LOSS = RMSE + KL
Where RMSE is reconstruction error,

KL is difference between normal distribution from standard normal distribution

Dyt = (N (#,0)) || N (0,1)) =5 X(1 + log(¢?) — p? — 02)
Where N (g, o) is normal distribution,
N (0,1) is standard normal distribution,
Y. is sum across all dimensions of the latent space
One great consequence is that after training a variational autoencoder, itis very easy

to generate a new instance by sampling a random coding from the Gaussian

21

distribution and decoding it. Besides that, VAE architecture ensures a quasi-

continuous latent space and makes the reconstruction loss small.

22

4 Existing models

The chapter gives a summary of the most prominent and successful existing projects

in the field of music and sound generation with the use of machine learning.

4.1 Modern Models

Although neural networks form the basis of practically all current models for music
composition, other methods, such as hidden Markov models for example, are still
viable. Although the ability of neural networks to create new combinations from
musical sequences that weren't present in the original data is their key advantage
over Markov chains. Due to a rapid advancement in the field of machine learning it
is now possible to construct a model that generates not only a melody but also an
accompaniment to it by picking a chord from a recorded list with the use of LSTM
cells, and, in part, for the first time produced a pleasing result (Briot, Hadjeres,

Pachet, 2020).

Most of the latest models use the Piano Roll representation or the so-called ABC
notation, in which a melody with harmonies is recorded in text form, thus reducing
the problem of music generation to the problem of text generation, At the same time
there are models that specialize with working with music in MIDI format, where
each note can be represented as a step, and each instrument has its own separate
track. Some models work with raw audio, either representing it as a spectrogram,
and converting the task of music generation into a task of image generation, or
simply compressing audio into discrete space, and learning the most important

features of the given melody, with the use of VAEs (Miiller, 2015).

The major differences between the models are represented in the datasets used, the
architecture of the LSTM network, the order in which the chords are generated, and
subsequently the resulting melody. It is possible to pre-generate a rhythm or, in a
more advanced version, generate a percussion component in addition to chords and
melody. These generators are commonly represented as a common network where
each layer is one generator. At the stage of generator training, pieces of the same

melody from the dataset (true samples) are fed into subsequent layers, while at the

23

generation stage the "layers” work with the output of the previous ones. A generator
that can sample works with a global structure should ideally be able to simulate

operations like editing already-created pieces and joining these fragments.

While LSTM networks have demonstrated their ability to create distinctive and
generally pleasant sounds and melodies, variational autoencoder networks have
received a lot of attention as of lately due to their architecture that enables effective

work with latent space and its dimensions.

Many large corporations, including Google and their Magenta team, OpenAl, and
many others, are interested in expanding their knowledge and experience in the
field of machine learning, including the issues surrounding the creation of music and

creativity. The most notable and intriguing projects are discussed below.

4.2 Magenta

Magenta is a research project exploring the role of machine learning in the process
of creating art and music. It is one of the most known machine learning teams in the
field of music generation. Their primary goals involve developing new deep learning
and reinforcement learning algorithms for generating songs, images, drawings, and
other materials. As well as an exploration in building smart tools and interfaces that
allow artists and musicians to extend their processes using these models (Magenta,

2022).

Over the years they have developed an overwhelming variety of neural network
models and were able to connect them into one Magenta environment. Magenta
produced a variety of different recurrent neural networks (Figure 18), as well as a
variational autoencoder and a generative adversarial network model, all of them can
be used either in a command line or using Python development environment

(DuBreuil, 2020).

24

What's in Magenta?

Model Network Repr. Encoding
DrumsRNN LSTM MIDI polyphonic-ish
MelodyRNN LSTM MIDI monophonic
PolyphonyRNN LSTM MIDI polyphonic
PerformanceRNN LSTM MIDI polyphonic, groove
MusicVAE VAE MIDI multiple

NSynth Wavenet AE Audio -

GANSynth GAN Audio -

with Magenta Ale DuBreuil Eédubreuia DE\/OX.
ng in Arts alex ibre

breutl.c

Figure 18: Magenta models overview
Source: Devoxx (2019)

4.2.1 DrumsRNN

This Magenta RNN was created in 2016. The model applies language modeling to
drum track generation using an LSTM network. Unlike melodies, drum tracks are
polyphonic in the sense that multiple drums can be struck simultaneously. Despite
this, a drum track is modeled as a single sequence of events by mapping all the
different MIDI drums onto a smaller number of drum classes and representing each
event as a single value representing the set of drum classes that are struck. A

practical example, that uses DrumsRNN is shown in Figure 19 (Magenta, 2022).

25

Figure 19: DeepDrum & DeepArp using Google Magenta's DrumsRNN
Source: Magenta (2022)

To understand how an RNN and subsequently DrumsRNN handles sequential data,
such as a note sequence, itis necessary to look at the example of an RNN training on
broken chords, which are chords broken down as a series of notes. The input data
"A", "C", "E", and "G", which is encoded as a vector, for example [1, 0, 0, 0] for the
first note, [0, 1, 0, O] for the second note, and so on. During the first step, with the
first input vector, the RNN outputs, for example, a confidence of the next note being
0.5 for "A", 1.8 for "C", -2.5 for "E", and 3.1 for "G". Since the training data shows that
the correct next note is "C", it is necessary to increase the confidence score of 1.8
and decrease the other scores. Similarly, for each of the 4 steps (for the 4 input
notes), RNN has a correct note to predict. At each step, the RNN uses both the hidden
vector and the input vector to make a prediction. During backpropagation, the
parameters are nudged in the proper direction by a small amount, and by repeating
itenough times, predictions start matching the training data. During inference, if the
network first receives an input of "C", it won't necessarily predict "E" because it
hasn't seen "A" yet, which doesn't match the example chord that was used to train
the model. The RNN prediction is based on its recurrent connection, which keeps
track of the context, and doesn't rely on the input alone. To sample from a trained

RNN, a note is fed into the network, which outputs the distribution for the next note.

By sampling the distribution, a prediction of the next note is produced that can then

26

be fed back to the network. The process can be repeated until the sequence is long

enough (DuBreuil, 2020).

4.2.2 MelodyRNN

The Melody-RNN was designed by the Magenta team in 2016, the model architecture
consists of a simple dual-layer LSTM network. An example of an open-source
application based on MelodyRNN is shown in Figure 20. It is called A.l. Duet - an

interactive experiment that lets the user play a music duet with the computer.

iudhuadkudhasd wdk @ kid Eedkedkuad

Figure 20: PianoDuo using Google Magenta's MelodyRNN
Source: Magenta (2022)

Currently, there are three types of Melody-RNN models. One is a basic dual-layer
LSTM model, which uses basic one-hot encoding to represent extracted melodies as
input to the LSTM; the second is Lookback RNN, which introduces custom inputs
and labels to allow the model to easily recognize patterns that occur across 1 and 2
bars; the last one is Attention RNN, which introduces the use of attention to allow
the model to more easily access past information without having to store that
information in the RNN cell’s state. The latest update from the Magenta team
provided a DQN (Deep Q-Network) network that can also be applied in the Magenta
generating process to work as a reward function to teach the neural network to

follow certain music theories. The basicidea is represented in Figure 21 (Lou, 2016).

27

"'.’I",b.' BT g T —
p— g

Training melodes

Supples inttisl waghis

Target Q
Network Music Theory
Rules
._ . ot !
Bl iats r pia ! s) Fuer
Composition so far
S a r

Figure 21: MelodyRNN architecture
Source: Lou (2016)

4.2.3 PerformanceRNN

PerformancRNN is a powerful model with more options and pre-trained models
than the DrumsRNN and MelodyRNN. It was presented to the publicin 2017, and to
this day remains one of the more pleasant models of polyphonic music. Like the rest
of the RNN models, PerformanceRNN does not capture the global structure but is
fundamentally designed to solve this problem based on the presentation of the data
itself. The network also captures and reproduces the frequent combinations of notes
played almost simultaneously during generation, sounding like chords to the ear.
Thus, such a presentation of data partly "solves" the problem of polyphonic

sampling.

The PerformancRNN configuration supports expressive timing, where the notes
won't fall exactly on step beginning or end, giving ita more "human" feel or "groove".
To go a bit deeper into note timing it is necessary to acknowledge that unlike the
previous models, where the output was generated for every time step, and the step
size was tied to a fixed meter, in PerformanceRNN both of those conventions were
discarded: a time “step” is now a fixed absolute size of 10 milliseconds, and the
model can skip forward in time to the next note event. This fine quantization can
capture more expressiveness in note timings. And the sequence representation uses
many more events in sections with high note density, which matches human

performance. Subsequently, the use of a different approach to note tempo leads to

28

the rejection of grid sampling, leading to the transition from MIDI representation to

Piano Roll representation (DuBreuil, 2020).

The model was trained on the Yamaha e-Piano Competition dataset, which contains
MIDI captures of around 1400 performances by skilled pianists. The dataset was
found useful for learning dynamics (velocities) conditioned on notes. All the pieces
were composed for and performed on one single instrument: piano. The model was
trained on a repertoire selection from a classical piano competition (Magenta,

2022).

An example of a real-time PerformanceRNN web application implemented with the

use of TensorFlow.js is shown in Figure 22.

Performance RNN

Performance RNN

magenta

Figure 22: Web application using Google Magenta's PerfromanceRNN
Source: Magenta (2022)

4.2.4 Music Transformer

Music Transformeris yet another model developed by Magenta that uses
transformers to perform music generation. It is an open-source machine learning
model that can generate long musical performances, around 60 seconds of audio
MIDI-files outperforming the coherence that is achieved on the LSTM-based models.
Unlike the basic transformer methods, where the attention vectors infer the
relationship between tokens in an absolute way, the attention layers in this

algorithm use relative attention, which models the relationship between tokens

29

with the relative distance between them. This allows for a better modeling of
periodicity, frequency, and other characteristics of the melodies in the training

examples in the short term (DuBreuil, 2020).

Music Transformer has 3 methods it uses to generate music: generating a
performance from scratch, generating a melody continuation, generating an
accompaniment for a melody. An application using Magenta’s Music transformer is
displayed in Figure 23, it generates new music sequences and allows users to share

them.

Listen to Transformer ®

40798.mid o share

Figure 23: Application using Google Magenta's Music Transformer
Source: Magenta (2022)

The model was trained on a unique data source: piano recordings on YouTube
transcribed using Onsets and Frames. Thousands of piano recordings, with a total
length of over 10,000 hours were used during the training process. Using such
transcriptions allows training symbolic music models on arepresentation that

carries the expressive performance characteristics from the original recordings.

To preprocess the training data the Magenta team used an AudioSet-based model to
identify pieces that contained only piano music, this resulted in hundreds of
thousands of videos. To train the Transformer model, it was needed for the content
to be in a symbolic, MIDI-like form. By using Onsets and Frames the team extracted

the audio and processed it using an automatic music transcription model. This

30

resulted in over 10,000 hours of symbolic piano music that then were used to train

the models (Figure 24) (Magenta, 2022).

YouTube videos

10,000 hours

MIDI %

+ your melody {'
J}) | samples
from scratch

conditioned continuations
samples

Figure 24: Transformer training data preprocessing
Source: Magenta (2022)

4.2.5 MusicVAE

MusicVAE was created in 2017 by the Magenta team, model uses hierarchical
recurrent variational autoencoder architecture, that allows for learning latent
spaces for musical scores. Such architecture is widely used in generative models that
have yielded state-of-the-art machine learning results in image generation and
reinforcement learning. Google researchers had already applied the technique to
SketchRNN and have now brought the same infrastructure to MusicVAE. Because
musical elements are typically more complicated than sketches engineers
developed a novel hierarchical decoder for MusicVAE that can generate long-term

structure from individual latent codes.

MusicVAE lets users create palettes for blending and exploring musical scores, it
generates and morphs melodies to output multi-instrumental passages optimized
for expression, realism and smoothness which sound convincingly like human-
composed music. It is used in multiple Magenta demo applications, Figure 25 shows

one of them (Magenta, 2022).

31

EDIT CORNERS

o h Select Midi Outv ABOUT SAVE

Figure 25: Application using Google Magenta's MusicVAE
Source: Magenta (2022)

4.3 OpenAl

OpenAl is a non-profit artificial intelligence research company created in 2015. Its
goal is to advance digital intelligence in the way that is most likely to benefit
humanity, unconstrained by a need to generate a financial return. Besides working
on general artificial intelligence (AGI) OpenAl has produced a variety of complex
artificial neural network models, that work with images such as DALE-2 or music -

MuseNet and Jukebox, among the most popular (OpenAl, 2022).
4.3.1 MuseNet

MuseNet is a tool from OpenAl, first demonstrated in 2019, that uses transformers
to generate MIDI Files. It is a deep neural network that can generate 4-minute
musical compositions with 10 different instruments and can combine styles from
country to Mozart to the Beatles. MuseNet was not explicitly programmed with
human understanding of music, but instead discovered patterns of harmony,
rhythm, and style by learning to predict the next token in hundreds of thousands of
MIDI files. MuseNet uses the same general-purpose unsupervised technology
as GPT-2, a large-scale transformer model trained to predict the next token in a
sequence, whether audio or text. The melodies can also be generated from scratch

using a primer melody or as accompaniment for a given melody.

32

The model uses composer and instrumentation tokens to give more control over the
kinds of samples MuseNet generates. During training time, these composer and
instrumentation tokens were prepended to each sample, so the model would learn
to use this information in making note predictions. At generation time, the model

can then be conditioned to create samples in a chosen style by giving it a prompt.

Training data for MuseNet was collected from many different
sources. ClassicalArchives and BitMidi donated their large collections of MIDI files
for the project, as well as several online collections were used, including jazz, pop,

African, Indian, and Arabic styles.

The transformer is trained on sequential data by being given a set of notes and asked
to predict the upcoming note. Several different ways to encode the MIDI files into
tokens suitable for this task were used. First, a chordwise approach that considered
every combination of notes sounding at one time as an individual “chord” and
assigned a token to each chord. Second, condensing the musical patterns by only
focusing on the starts of notes and tried further compressing that using a byte pair

encoding scheme (OpenAl, 2022).

An application using MuseNet is presented in Figure 26.

STYLE MOZART ~
INTRO ADELE'S SOMEONE LIKE YOU ~

INSTRUMENTS STRINGS

NUMBER OF TOKENS

< > Completionlof&

Figure 26: Application using OpenAl’s MuseNet
Source: OpenAl (2022)

33

4.3.2 Jukebox

Jukebox was created in 2020, it is a variational autoencoder network that generates
music, including rudimentary singing, as raw audio in a variety of genres and artist

styles. Unlike MuseNet it works with music in its raw audio form, notin MIDI format.

The model had to learn to tackle high diversity as well as very long-range structure,
and the raw audio domain is particularly unforgiving of errors in short-, medium-,
or long-term timing. The model uses the variational autoencoder architecture with

some specific configuration.

Jukebox’s autoencoder model compresses audio to a discrete space, using a
quantization-based approach called VQ-VAE. Hierarchical VQ-VAEs can generate
short instrumental pieces from a few sets of instruments, however they suffer from
hierarchy collapse due to use of successive encoders coupled with autoregressive
decoders. A simplified variant called VQ-VAE-2 avoids these issues by using
feedforward encoders and decoders only, and they show impressive results at

generating high-fidelity images.

Like the VQ-VAE, VQ-VAE-2 has three levels of priors: a top-level prior that
generates the most compressed codes, and two upsampling priors that generate less

compressed codes conditioned on above.

Once all the priors are trained, codes can be generated from the top level, upsampled
using the upsamplers, and decoded back to the raw audio space using the VQ-VAE
decoder to sample novel songs (Figure 27) (OpenAl, 2022).

34

e e L e

Raw audio 44
sound at that mor

where each sample is a float that represents the amplitude of

Encode using CNNs
(convolutional
neural networks)

Compressed audio 344 samples per second, w where each sample is 1 of 2048 possible voca

Generate novel patterns
from trained transformer
conditioned on lyrics

Novel compressed audio 344 samples persecond

Upsample using
transformers and
decode using CNNs

WWWWWWMW

Novel raw audio 441k samples per second

Figure 27: OpenAI’s VAE raw audio processing
Source: OpenAl (2022)

4.4 Independent projects

Notall impressive projects are created by using funding from big corporations, a lot
of research is done by independent teams of engineers and scientists, as well as
smaller Al-oriented companies. Some of the more interesting projects by such teams

will be discussed below.
4.4.1 WaveNet

WaveNet was created by researchers at London-based artificial intelligence
firm DeepMind in 2016, and currently powers Google Assistant voices. It is a deep
generative model of raw audio waveforms. WaveNet can generate speech which
mimics any human voice, and which sounds more natural than the best existing
Text-to-Speech systems, reducing the gap with human performance by over fifty
percent. The same network can be used to synthesize other audio signals such as

music and present some striking samples of automatically generated piano pieces.

35

OO

! e

Figure 28: Visualization of a stack of dilated causal convolutional layers
Source: Lou (2016)

Figure 28 shows how a WaveNet is structured. It is a fully convolutional neural
network, where the convolutional layers have various dilation factors that allow its
receptive field to grow exponentially with depth and cover thousands of timesteps

(Lou, 2016).

At training time, the input sequences are real waveforms recorded from human
speakers. After training, the network can be sampled to generate synthetic
utterances. At each step during sampling a value is drawn from the probability
distribution computed by the network. This value is then fed back into the input and
a new prediction for the next step is made. Building up samples one step at a time
like this is computationally expensive, but it was found it essential for generating

complex, realistic-sounding audio (Oord et al., 2016).

CNN architectures, such as WaveNet, have been shown to achieve just as good if not
better performance as RNNs in sequence generation. Additionally, they are much

faster to train due to performance optimizations with convolutional operations.

Since WaveNet can be used to model any audio signal, it is also able to generate
relatively simple music compositions. Unlike the text-to-speech experiments, the
model wasn’t conditioned on an input sequence telling it what to play (such as a

musical score); instead, it simply generates whatever it wants to. After training it on

36

a dataset of classical piano music, it produced fascinating samples (DeepMind,

2022).

4.4.2 MidiNet

MidiNet is a research project created by Li-Chia Yang, Szu-Yu Chou, Yi-Hsuan Yang
in 2017, the result of this project was a CNN model capable of producing novel MIDI
tracks. While there already were many deep learning-based music generation
models, including WaveNet and MelodyRNN, most of them were using RNN and
transformer architectures, as well as their variants. WaveNet was the only other
major project that used CNN, and it showed that convolutional neural networks can
also generate realistic musical waveforms in the audio domain. One important
advantage of training CNN vs RNN is that the former is faster and more easily

parallelizable

MidiNet was created precisely with that information in mind, it would use GAN
architecture with a CNN-like generator and discriminator, that would be able to
learn the distributions of melodies. In the case of MidiNet, the generator is to
transform random noises into a 2-D score like representation, that “appears” to be
from real MIDI. Meanwhile, the discriminator takes this 2-D score like
representation and predicts whether this is real or not. Moreover, the authors of the
paper proposed a novel conditional mechanism to exploit available prior
knowledge, so that the model can generate melodies either from scratch, by
following a chord sequence, or by conditioning on the melody of previous bars (e.g.,

a priming melody), among other possibilities.

37

Conditioner CNN

.-.\\‘M comvl conwE convd comvd
2

D g
project and reshape

T project and reshape

& Conai—— -
ntigrg- =S .
-""--| -hh - -y
- = |
""-'!'!'-‘?5_81:3;}"'---- B —-...____&\\\\ or i) I~ o
project and rechape tranaposed tranaposed fransposad transposed comil conv2 fully connectad

convi Conve canya conyd
Generator CNN Discriminator CNN

Figure 29: System diagram of the proposed MidiNet model for symbolic-domain music
genertion
Source: Yang, Chou, Yang (2017)

The resulting model, named MidiNet, can be expanded to generate music with
multiple MIDI channels. A user study was conducted to compare the melody of an
eight-bar long generated by MidiNet and by Google’s MelodyRNN models, each time
using the same priming melody. The result shows that MidiNet performs
comparably with MelodyRNN models in being realistic and pleasant to listen to, yet
MidiNet's melodies are reported to be much more interesting (Yang, Chou, Yang,

2017).

38

0.1]

output

5 Model proposition

This chapter will describe the structure and specifics of the proposed model, explain
the decision behind choosing specific network architecture and training data format
and predict some problems that the author might run into while developing the set

model.

5.1 Architecture

Based on the architectures and models described above, the author has decided that
the most straightforward approach would be to use a variational autoencoder
model, based on the performance it has shown in the task of music generation, as

well as fact that the chosen architecture would be able to avoid two big issues.

First, VAE architecture would solve the problem of creating human-like sounding
melodies, since the reconstructive loss during training would penalize the network
for producing any output sounding different from the input, effectively blocking any
attempt of the network to produce anything that doesn’t follow the patterns and
musical rules present in the training data. On the other hand, that makes the choice
of the dataset a very important decision since the quality of the used data and its

preprocessing will directly impact the quality of the generated songs.

Second, unlike with RNNs and CNNs, where under specific circumstances the
resulting model can only create a batch of similarly sounding melodies when for
example network converges on outputting only a small subset of common sequences
in the training data so that it minimizes the training loss, VAE model can avoid such
problem by adding random noise to the encoded latent distribution’s mean

parameters during training, ensuring that each sample will sound novel.

5.2 Data format

Next question that needs to be addressed is what format of data VAE will work with.
There are ultimately two approaches. As presented in section 4, existing models
either work with symbolic (MIDI or note) representation of music or raw audio
(Miiller, 2015). Based on the fact, that nowadays most music production is done with

the use of such tools as BandLabs, Cakewalk, Soundtrap and many others, where

39

each song is represented as a collection of separate MIDI track, with an astonishing
number of ways to edit them, the author has decided to choose the output of the
model to be represented as a MIDI file, subsequently it makes sense to choose the

dataset accordingly, consisting from the preprocessed MIDI tracks.

5.3 Structure

Training VAE on a MIDI formatted dataset alone will not yield results that sound
anything like an artist produced music. The best that can be expected is a
monophonic melody with a single chosen instrument, such as a piano performance,
a guitar solo, etc. And while there are plenty of songs consisting only of one
instrument, the vast majority is polyphonic, combining and mixing musical
sequences of multiple instruments and voices, all of which come together into one

harmonically sounding song.

To make the model output a complex melody, involving multiple instruments, with
specific interdependencies between them requires a more complex model structure.
One solution to this issue would be to choose one instrument as a lead, and make all
other instruments depend on its output. This can be achieved by training a separate
VAE network for each instrument and linking their input with the output of one main
instrument VAE network, this task can be made simpler by using training data
represented in the MIDI format, where each instrument can be isolated as a separate
track. By using this approach, the resulting model will be able to retain most
important instrumental interdependencies and learn the existing music patterns

presented in the dataset.

A practical solution to the method described above would look similar to Figure 30,
where piano was chosen as a lead instrument, while the rest of the instruments

depend on its output.

First, a new ANN called MelodyNN will be presented to the model structure, it will
effectively predict the next step for the piano’s track. The latent parameters from
the piano previous time step will be fed to the MelodyNN, which will learn a mapping

between piano sequences in successive time steps and output the next step for the

40

piano sequence. Then the new resulting sequence will be decoded back with the use

of piano VAE, and subsequently fed further as a new input.

Secondly, multiple ConditionalNNs will be created, that take in the generated next-
period piano latent parameters from the MelodyNN output, as well as the previous-
period guitar, strings, drums, and bass latent parameters, and will learn a mapping
to the next-period instrument latent parameters. Then it will decode it by the

instrument-specific VAE's decoder to produce the next-period instrument output.

Finally, at each iteration of the described generative method, it is essential to add
some random noise to the latent space of each instrument to increase the variation
of the generated output, while maintaining the similarity between the previous
sequences, ultimately improving the uniqueness of the generated music (Tham,

2021).

Piano, Plano,,,
EF 45 {34 8
Planavag PlancViE
encoder decoder
z, I Melodyhn —-| Zin \
same for future
naiL ¥ time-steps
I # GuitarMN
W, Wi, ¢

GuitarvaE GuitarVaE
enooder decoder

Guitar, Guitar,,,

[32 5 18] (32 = 12E])

same far other
Instruments

Figure 30: Architecture of VAE-NN used to generate music
Source: Tham (2021)

41

The method described above has already been presented in practice and has shown
impressive results. The author has taken inspiration for the project model structure
and implementation from the article on Towards Data Science by Issac Tham (Tham,

2021).

42

6 Implementation

This chapter will first describe the development environment including the used
libraries to help train the VAE model and later generate new songs. The second part
of the chapter will showcase the implementation of the model, described in the
above chapter, in which the structure and the architecture of the network were
specified. Lastly, the chapter will include commentated code snippets written to

perform the set task.

6.1 Environment

When choosing a proper programming language for the set task Python seemed like
an obvious choice, due to the author’s prior experience with the language, as well as
an abundance of both available information and established tools such as libraries

and packages.

Python version 3.10 was used for the project. Implementation required a list of
specific libraries, capable of working with artificial neural network models, song
datasets, files of different formats, as well as some general-purpose packages for
calculations. The following sections will describe the tools and libraries that were

used in the work.

6.1.1 NumPy

NumPy is the fundamental package for scientific computing in Python. Itis a Python
library that provides a multidimensional array object, various derived objects (such
as masked arrays and matrices), and an assortment of routines for fast operations
on arrays, including mathematical, logical, shape manipulation, sorting, selecting,
[/0, discrete Fourier transforms, basic linear algebra, basic statistical operations,

random simulation and much more (Harris et al., 2020).
6.1.2 Keras

Keras is a deep learning API written in Python, running on top of the machine

learning platform TensorFlow. It contains fully configurable standalone modules

43

that connect to each other to form a model. As individual modules, there are types
of layers of artificial neural networks, activation functions, and others. In addition,
each module contains a significant number of parameters that can be modified as

needed (Chollet et al,, 2015).
6.1.3 TensorFlow

TensorFlow is an open-source library for numerical computation and large-scale
machine learning, acquiring data, training models, serving predictions, and refining
future results. TensorFlow bundles together Machine Learning and Deep Learning
models and algorithms. In implementation, it is mainly used as a basis for Keras,

who is responsible for low-level operations for optimized vector manipulation

(Abadi etal., 2015).

6.1.4 PyTorch

PyTorch is a fully featured framework for building deep learning models, which is a
type of machine learning that’s commonly used in applications like image
recognition and language processing. Written in Python, it's relatively easy for most
machine learning developers to learn and use. PyTorch is distinctive for its excellent
support for GPUs and its use of reverse-mode auto-differentiation, which enables
computation graphs to be modified on the fly. It is the main package used to work
with the artificial neural network model in this project. It allows a more efficient

training of the model, with the use of GPU-provided support (Paszke et al., 2019).

6.1.5 Pypianoroll

Pypianoroll isan open-source Python library for working with piano rolls. It
provides essential tools for handling multitrack piano rolls, including efficient /0
as well as manipulation, visualization, and evaluation tools. The author of this
project uses this package to decompose existing melodies and then generate new

multitrack MIDI format songs (Dong, Hsiao, Yang, 2018).

44

6.1.6 hdf5_getters

A set of get methods that work with the Million Song Dataset. Allows users to access
various metadata from the dataset records, such as song genre, artist tags, etc. In
this project, it is used to work with the HDF5 files, sort and filter them based on the

specific information required (Tbertinmahieux, 2010).

6.2 Dataset

The chosen dataset came from the Lakh Pianoroll Dataset (LPD), itis a collection of
174,154 multitrack pianorolls derived from the Lakh MIDI Dataset and was curated
by the Music and Al Lab at the Research Center for IT Innovation, Academia Sinica.
The multitrack pianorolls in LPD are stored in a special format for efficient [/O and

to save space.

LPD offers a choice of two different datasets: LPD-5 and LPD-17. The difference is
that in LPD-5, the tracks are merged into five common categories: Drums, Piano,
Guitar, Bass, and Strings according to the program numbers provided in the MIDI
files. While In LPD-17, the tracks are merged into drums and sixteen instrument
families according to the program numbers provided in the MIDI files and the
specification of General MIDI Level 1. The seventeen tracks are Drums, Piano,
Chromatic, Percussion, Organ, Guitar, Bass, Strings, Ensemble, Brass, Reed, Pipe,
Synth Lead, Synth Pad, Synth Effects, Ethnic, Percussive, and Sound Effects (Dong et
al,, 2018) (Colin, 2016).

LPD-5 was chosen as the more adequate dataset version, since it already provides
quite enough complexity for the chosen model, while allowing to generate complex
and rich music and to demonstrate the ability of the generative models to arrange

music across different instruments.

Besides that, a few JSON files from the Million Song Dataset containing genre and
artist metadata were used to make the process of selecting the subset of desired

training songs a little easier (Bertin-Mahieux et al,, 2011).

45

6.3 Application

Project implementation consists of solving multiple tasks one by one. First, it is
necessary to preprocess the data in the dataset, so that it is represented in the
appropriate format for the VAE model to train on. Second, it is required to create
dataset and dataloader classes, that would directly feed the training and testing data
to the VAE. The third step involves specifying the structure and creating the VAE
classes themselves and training them in the next step. Then the same process is
repeated for the MelodyNN and ConditionalNNs. And finally, once all the networks

in the model are created and trained, it is time to use them to generate new songs.
6.3.1 Training data preprocessing

The first step is to prepare the training data, the chosen Lakh Pianoroll Dataset
version consists of tens of thousands of songs, that have different genres and artists.
With the use of the hdf5_getters methods, it is possible to work with the song
metadata and retrieve important information without manually going through each

file and looking for the information.

As the author’s personal preference, it was decided to create a subset of the existing
dataset, which would include songs either in the genre of blues or rock, making the

resulting generated songs lean in the direction of such genres (Figure 31).

def get all blues rock titles(basedir, ext='.h5"):
ids _to _add = []
for root, dirs, files in os.wSalk(basedir):
files = glob.glob(os.path.join(root, '*' + ext))
for £ in files:
h5 = hdf5 getters.open h5 file read(f)
for genre in hdf5 getters.get artist terms (h5):
if genre.decode ("utf-8") == 'blues' or genre.decode ("utf-8")
== 'rock':
with open(genre ids) as f:
s = mmap.mmap (f.fileno(), 0, access=mmap.ACCESS READ)
if s.find(hdf5 getters.get track id(h5)) !=-1:
with open (training ids, ‘a’) as file object:
file object.write("\n")

file object.write (hdf5 getters.get track id(h5).decode("utf-8"))
break

46

h5.close()
return

Figure 31: Blues and rock songs subset creation
Source: Personal screenshot

The resulting subset consists of roughly 12000 songs, and once the song IDs are
written into a new file, the last remaining step is to simply choose an even smaller

subset (around 1000 songs) that will be used in each iteration (epoch) of training.

Once the random songs are chosen it is time to parse each song into a separate
instrument track, effectively representing each file as a list of notes found in the file
(Figure 32). It is then possible to create the training input sequences by taking
subsets of the list representation for each song and arranging the corresponding
training output sequences by simply taking the next note of each subset. With this
training input and output, the model will be trained to predict the next note, which

will then allow it to pass in any sequence of notes and get a prediction of the next

note.
parts = {'piano part': None, 'guitar part': None, 'bass part': None,
'strings part': None, 'drums part': None}

song length = None

empty array = None

has empty parts = False
for track in multitrack.tracks:

if track.name == 'Drums':

parts['drums part'] = track.pianoroll
if track.name == 'Piano':

parts['piano part'] = track.pianoroll
if track.name == 'Guitar':

parts['guitar part'] = track.pianoroll
if track.name == 'Bass':

parts['bass part'] = track.pianoroll
if track.name == 'Strings':

parts['strings part'] = track.pianoroll
if track.pianoroll.shape[0] > O:

empty array = np.zeros_ like(track.pianoroll)

for k, v in parts.items():
if v.shape[0] ==
parts[k] = empty array.copy()
has empty parts = True

combined pianoroll = torch.tensor(

47

[parts['piano part'], parts['guitar part'], parts['bass part'],
parts['strings part'], parts['drums part']])

Figure 32: Decoding songs into instrumental tracks
Source: Personal screenshot

6.3.2 Dataloader

Once the suitable dataset is collected it s still required to assemble data in a format
that is appropriate for model training which means creating an object called
‘Dataloaders’. The data format requires code that can read training data into
memory, convert the data to PyTorch tensors, and serve the data up in batches. Each

type of ANN requires a separate data loader.

CombinedDataloader shown in Figure 33, is used for feeding training data to
instruments VAE (piano, guitar, etc.). Additional dataloaders were created for both

ConditinalNNs and MelodyNN.

class CombinedDataloader (Dataset) :

def init (self, pianorolls, instrument id):
self.data = pianorolls
self.length = int(pianorolls.size(l) / 32)
self.instrument id = instrument id
def getitem (self, index):
sequence = self.data[self.instrument id, (index * 32): ((index + 1)
* 32), :]

return sequence

def len (self):

return self.length

Figure 33: CombinedDataloader
Source: Personal screenshot

6.3.3 VAE

As was specified above each instrument will be represented with the use of VAE
architecture. The internal structure of VAE consists of an encoder (Figure 34) and a
decoder (Figure 35), since VAE is a symmetrical architecture both parts are a mirror

image of each other.

self.e conv_1 = nn.Conv2d(in channels=1, out channels=64,

48

kernel size=(4
self.e conv 2

4), stride=(4, 4))

- nn.Conv2d(in channels=64, out channels=128,
kernel size=(4, 4), stride=(4, 4))

self.e conv 3 nn.Conv2d(in channels=128, out channels=256,
kernel size=(2, 8), stride=(2, 8))

self.e fc phi = nn.Linear (256, K + 1)

I~

I~

Figure 34: Encoder implementation
Source: Personal screenshot

Define the generative model (decoder or d) part
self.d fc upsample = nn.Linear (K, 256)

self.d deconv_1 = nn.ConvTranspose2d(in channels=256,

out channels=128, kernel size=(2, 8), stride=(2, 8))

self.d deconv_2 = nn.ConvTranspose2d(in channels=128, out channels=64,
kernel size=(4, 4), stride=(4, 4))

self.d deconv_3 = nn.ConvTranspose2d(in channels=64, out channels=1,

kernel:size=(4, 4), stride=(4, 4))

Figure 35: Decoder implementation
Source: Personal screenshot

6.3.4 VAE Training

After the VAE classes are created it is time to start training them on the dataset. Next
code snapshot snows the training loop for each of the 5 instruments. Since the music
samples are relatively sparse in music space, it was decided to train each instrument
in the 16-dimensional latent space. Then Instrument is fed a combined dataset, and

once the training is done the resulting model is saved (Figure 36).

for K in [1l6]:
instruments = ['piano', 'guitar', 'bass', 'strings', 'drums']
for 1 in range(5):
print (K, instrument)
dataset = CombinedDataset (combined pianorolls, instrument id=i)
piano loader = Dataloader (dataset, batch size=32, drop last=True)

vae = ConvVAE (K=K)

elbo vals = train vae(vae, piano loader, epochs=25)
model name = 'VAE {} {}'.format (instruments[i], K)
save path = os.path.join(root dir, model path, model name)

torch.save(vae.state dict(), save path)

Figure 36: VAE training
Source: Personal screenshot

49

6.3.5 MelodyNN and ConditionalNN

Once the training is done, the result is 5 VAEs for each instrument. At the current
moment, it only gives the ability to generate separate tracks for each instrument,
and while it is possible to run all of them in a MIDI editor at the same time, the
resulting melody sounds incoherent and random. It is because generated tracks do
not depend on each other in any way. This problem can be solved by introducing a
new batch of ANNs that will “glue” each single instrument track into one harmonious

sequence.

First is MelodyNN (Figure 37), its internal structure represents a Multi-Layer
Perceptron that learns a mapping from the previous piano sequence’s latent
distribution to the next piano sequence’s latent distribution. Its output is then

decoded by piano VAE to become generated next piano output.

class MelodyNN (nn.Module) :
def init (self, K):
super (MelodyNN, self). init ()
self.fcl nn.Linear (K, 128)
self.fc2 nn.Linear (128, 128)
self.fc3 = nn.Linear (128, K)

self.dropout = nn.Dropout(0.2)

def forward(self, x):
X F.relu(self.fcl(x))
X self.dropout (x)
X F.relu(self.fc2(x))
out = self.fc3(x)
return out

Figure 37: MelodyNN structure
Source: Personal screenshot

Second is ConditionalNN (Figure 38), another MLP that takes in the generated next-
period piano latent parameters as well as the previous-period non-piano instrument
latent parameters and learns a mapping to the next-period guitar latent parameters.
The outputis then decoded by the instrument-specific VAE’s decoder to produce the
next-period instrument output. 4 ConditionalNNs are trained, one for each non-

piano instrument, which allows the next 5-instrument sequence to be generated.

50

class ConditionalNN (nn.Module) :
def init (self, K):

super(CoHaitionalNN, self). init ()

self.fcl = nn.Linear(2 * K, 128)
self.fc2 = nn.Linear (128, K)

def forward(self, prev harmony, melody):
x = torch.cat((prev_harmony, melody), axis=1)
x = F.relu(self.fcl(x))
out = self.fc2(x)
return out

Figure 38: ConditionalNN structure
Source: Personal screenshot

6.3.6 MelodyNN and ConditionalNN Training

The use of PyTorch and its optimization tools, as well as having trained instrument
VAEs allows to start training MelodyNN and ConditionalNNs. The biggest difference
in training these ANNs is the fact thatinstead of feeding them time steps of a specific
instrument and expecting them to predict the next one, they will be fed with the
sample from the latent distribution of a given instrument VAE. In the case of

MelodyNN it will be piano VAE (Figure 39).

melody nn = MelodyNN (K=K) .to (device)
optimizer = torch.optim.Adam(melody nn.parameters(), lr=1lr)
scheduler = torch.optim.lr scheduler.LambdalR(optimizer,
lr lambda=lambda epoch: lr lambda ** epoch)
criterion = nn.MSELoss ()
train losses, test losses = training loop MelodyNN (piano_ vae,
melody nn, optimizer, scheduler, criterion,

melody train loader, melody test loader,
n_epochs=n_ epochs)

Figure 39: MelodyNN training
Source: Personal screenshot

While ConditionalNN will be trained on both the sample from the latent distribution
of the instrument-specific VAE’s and the sample from the MelodyNN output. (Figure
40).

for instrument in ['guitar', 'bass', 'strings', 'drums']:
print (instrument)

cond train dataset = ConditionalDataset (pianorolls list,
dataset length=32 * 8000, seq length=32,

51

instrument=instrument)
cond train loader = DatalLoader(cond train dataset, batch size=32,
drop last=True)
cond test dataset = ConditionalDataset(pianorolls 1ist[0:500],
dataset length=32 * 1000, seq length=32,
instrument=instrument)
cond test loader = DatalLoader (cond test dataset, batch size=32,
drop last=True)

load model ()
conditional nn = ConditionalNN (K=K) .to (device)
optimizer = torch.optim.Adam(conditional nn.parameters (), lr=lr)

scheduler = torch.optim.lr scheduler.LambdalR (optimizer,
lr lambda=lambda epoch: lr lambda ** epoch)
criterion = nn.MSELoss ()
train losses, test losses = training loop VAENN (piano vae,
harmony vae, conditional nn, optimizer, scheduler,
criterion, cond train loader,
cond test loader, n_epochs=n epochs)

Figure 40: ConditionalNNs training
Source: Personal screenshot

6.3.7 Generating music

With all the ANNs created and trained it is finally time to generate new songs. The
method for generating music is described in Figure 41. Each instrument track will
be represented as a matrix, containing information about the placement and

intensity of every note.

def generate music vae(sample, vae models, nn models, noise sd=0,
threshold=0.3, binarize=True):

piano vae, guitar vae, bass vae, strings vae, drums vae = vae models
melody nn, guitar nn, bass nn, strings nn, drums nn = nn models
piano, guitar, bass, strings, drums = sample[O, :, :], sample[l, :,

:]1, samplel2, :, :], sample[3, :, :]1, sample[4,
I

Figure 41: Instrumental tracks declaration
Source: Personal screenshot

Once every instrument has its track, each instrument VAE is called convert to all
parts from image space to latent space, allowing the MelodyNN and CoditionalNNs
to work with latent space (Figure 42).

piano latent = piano vae.infer(piano.unsqueeze(0).to(device))[:, :-
1]
guitar latent = guitar vae.infer(guitar.unsqueeze(0).to(device)) [:,

52

=11
bass latent = bass vae.infer (bass.unsqueeze (0).to(device)) [:, :-1]
strings latent =
strings vae.infer (strings.unsqueeze (0).to(device))[:, :-1]
drums latent = drums vae.infer (drums.unsqueeze(0).to(device))[:, :-
1]

Figure 42: Conversion to latent space
Source: Personal screenshot

The next time step of the piano will be produced by feeding a previous piano VAE
step to the MelodyNN and adding some random noise to it (Figure 43).

piano next latent = melody nn(piano_ latent)
random noise = torch.randn like(piano next latent) * noise sd
piano next latent = piano next latent + random noise

Figure 43: Generating next piano step
Source: Personal screenshot

Once the model produces a new piano step, ConditionalNNs will be used to predict
the next steps for each instrument, random noise will be added to each subsequent

prediction (Figure 44).

guitar next latent = guitar nn(guitar latent, piano next latent) +
torch.randn like(piano next latent) * noise sd

bass next latent = bass nn(bass latent, piano next latent) +
torch.randn like(piano next latent) * noise sd

strings next latent = strings nn(strings latent, piano next latent)
+ torch.randn like(piano next latent) * noise sd

drums next latent = drums nn(drums latent, piano next latent) +

torch.randn like(piano next latent) * noise sd

Figure 44: Generating next instrument step and adding random noise
Source: Personal screenshot

Finally, the resulting steps are decoded by the instrument-specific VAE (Figure 45).

piano next =

piano_ vae.generate (piano next latent.unsqueeze(0)).view(1l, 32, 128)
guitar next =
guitar vae.generate(guitar next latent.unsqueeze(0)).view(l, 32, 128)
bass next = bass vae.generate(bass next latent.unsqueeze(0)).view(1,
32, 128)
strings next =
strings vae.generate(strings next latent.unsqueeze(0)).view(l, 32,
128)
drums next =
drums vae.generate (drums next latent.unsqueeze(0)).view(1l, 32, 128)

53

creation = torch.cat((piano_next, guitar next, bass next,
strings next, drums next), dim=0)
creation[creation < threshold] = 0

return creation

Figure 45: Decoding resulting sequence
Source: Personal screenshot

To create a complete song the generation method is called iteratively, predicting a

new step, and gradually adding it to the result of the previous iteration (Figure 46).

The generation method allows to specify the number of prediction steps, as well as
the amount of random noise, that will be added to each newly generated latent,

making the entire song more variation filled.

for i in range(l, prediction steps + 1):

sample = generate music vae(sample, vae models, nn models,
noise sd=1, threshold=0.3, binarize=True)

generated track[:, 32 * 1:32 * (i + 1), :] = sample
generated track out = generated track * 127
piano track = pypianoroll.StandardTrack (name='Piano', program=0,

is drum=False,

pianoroll=generated track out[O, :,
:].detach () .cpu() .numpy ())
guitar track = pypianoroll.StandardTrack (name='Guitar', program=24,
is drum=False,

pianoroll=generated track out[l, :,
:].detach () .cpu() .numpy ())
bass track = pypianoroll.StandardTrack (name='Bass', program=32,
is drum=False,

pianoroll=generated track out[2, :,
:].cpu() .detach() .numpy())
strings track = pypianoroll.StandardTrack (name='Strings', program=48,
is drum=False,

pianoroll=generated track out[3, :,
:].cpu() .detach() .numpy())
drums_ track = pypianoroll.StandardTrack (name='Drums', is drum=True,

pianoroll=generated track out[4, :,
:].cpu() .detach() .numpy())
generated multitrack = pypianoroll.Multitrack (name='Generated',
resolution=2,

tracks=[piano_track, guitar track, bass track,
strings track,
drums_ track])

Figure 46: Iterative call for sequence generation
Source: Personal screenshot

54

The resulting song is represented as a MIDI format file, with 5 tracks for each

corresponding instrument. (Figure 47).

Figure 47: Resulting MIDI song represented in BandLabs
Source: Personal screenshot

55

7 Results

This chapter aims to present the results of the practical part of this project, describe
what the created model has been able to achieve, what are its biggest flaws and

advantages, and compare it to the models used today.

7.1 Results overview

The VAE-based architecture that was devised has been able to perform its main set
task, it was able to “compose” a novel piece of music, that sounds close to a human-
created melody. While not without its drawbacks, the chosen architecture and
structure of the model seem to show promise. Each song shows good variety, usually
presenting multiple changes in paste and intensity, on the other hand occasionally
certain portions of the song can sound out of place, often when the model receives
unexpected notes as a prediction input. Sometimes it tries to "use" it and make a
transition to a different instrumental key, but such moments occur at a rather
random time. Such cases might be caused by the unpredictability of random noise
that's being added for each predicted step. One more observed behavior is that the
model can retain some long-term memory of the composition parts, especially with
the drums, using the same or similar sounding batches of notes throughout the song,
almost like it is trying to recreate a musical pattern consisting of a verse and a
chorus. One of the bigger issues involves the occasional abandoning of the entire
instrument, where the model only predicts five to ten steps for a certain instrument,
most often such behavior is seen with the guitar. A possible case for it might be the
specifics of the dataset, where some songs had a minimum amount of certain

instrument notes.

The chosen output data format allows the resulting song to be easily imported into
a MIDI editing software, such as BandLabs for example, where it is possible to
manipulate and edit the existing instrument tracks by adding some post effects or
changing the instrument itself, from piano to an 8-string guitar, or from a drum kit

to a church choir.

Results are available on: https: //on.soundcloud.com /8BgCR

56

https://on.soundcloud.com/8BgCR

7.2 Model comparison

To compare the resulted model to the state-of-the-art models, the author used

Magenta’s Multitrack MusicVAE as well as OpenAl’s Jukebox pre-trained models.
7.2.1 Multitrack MusicVAE

Depending on the configuration MusicVAE can perform a variety of tasks. The model
allows users to generate new melodies, extend a given melody or a drum pattern,
“humanize” the melody by giving it human-like timing and velocity to drum parts, it
can combine features of the given inputs to create musical transitions between
phrases and finally it can turn any sequence into an accompanying drum

performance (Magenta, 2022).

For the sake of this comparison, only the generative ability of the Multirack
MuiscVAE model was looked at. In this case MusicVAE framework is applied to
single measures of multi-instrument General MIDI tracks. It is capable of encoding
and decoding single measures of up to 8 tracks, optionally conditioned on an
underlying chord. Encoding transforms a single measure into a vector in a latent
space, and decoding transforms a latent vector back into a measure. Both encoding
and decoding are performed hierarchically, with one level operating on tracks and

another operating on the notes in each track.

Multitrack MusicVAE implementation offers multiple options for controlling the
generation process of each song. First, like many other Magenta models it uses a
sampling temperature option - it determines the creativity and energy of the model.
The higher the temperature, the more chaotic and intense the result will be. One
more notable option is chord-conditioning, effectively it forces the model to build
the resulting melody around the one or multiple chords that user provides. Finally,
Magenta team worked on training Multitrack MusicVAE on dozens of different
styles, and in turn it allowed for style bending, effectively giving an option to change

the melody style in the middle of the composition.

57

Magenta’s model can generate melodies consisting of up to 8 different instruments
out of 128 available in General MIDI format, it is trillions of possible instrument
combinations. And with the addition of chords to the generation process, the

resulting melodies, subjectively, sound very impressive.

While the representation used by the Multitrack MusicVAE is intended to be quite
general, there are still a few restrictions. Each measure must contain 8 or fewer
tracks (in the case of the implemented model it is 5) and must have a 4/4-time

signature.

As was observed earlier, General MIDI allows Multitrack MusicVAE to produce an
astonishing amount of variety, but at the same time model’s most fundamental
restriction is imposed by General MIDI format itself: the limitation to 128
instrument presets plus the drums. Real music contains instrument sounds selected
from an essentially infinite set, and individual pieces of music often contain custom

sounds not used anywhere else (Magenta, 2022).

The model presented in this thesis faces similar limitations to that of Multitrack
MusicVAE. Although the created model does not contain the same variety of
instruments present in the Multitrack MusicVAE'’s training dataset, if trained on
such data the model would also be limited to 128 instrument presets, since its
implementation was built on an idea of working with the MIDI formatted files. The

author’s model also does not possess the same number of customizable options.

Multitrack MusicVAE examples available at: https://on.soundcloud.com/Z52hM

7.2.2 Jukebox

Jukebox, unlike the implemented model and MusicVAE works with audio in its raw
format, and it allows it to avoid the same MIDI-related limitations. It combines a
complex solution to the problems of both speech synthesis and music generation,
allowing it to come a little closer to a truly human-like music generation. Its

generative model can synthesize the lyrics by using text-to-speech and generate

58

https://on.soundcloud.com/Z52hM

melody around it at the same time, while able to maintain the musical consistency

throughout the entire song.

In a similar manner to the Magenta’s team, OpenAl has provided a variety of options
for manipulating the generation process, such as the ability to condition the model

on artist, genre, and lyrics.

While the generated songs show local musical coherence, follow traditional chord
patterns, and can even feature impressive solos, it is rare to hear familiar larger
musical structures such as choruses that repeat. The downsampling and upsampling
process introduce discernable noise. The models that are used by Jukebox are so
complex, that they become slow to sample from, because of the autoregressive
nature of sampling. It takes approximately 9 hours to fully render one minute of

audio through its models (OpenAl, 2022).

Comparatively, the model provided in this thesis takes approximately five to fifteen
seconds to generate a three-minute song. But it has to be said that Jukebox is a one-
of-a-kind project, capable of dealing with an impossibly complex array of problems

at the same time.

Jukebox examples available at: https://jukebox.openai.com/?song=789449191

59

https://jukebox.openai.com/?song=789449191

8 Conclusion

This thesis sought to investigate the feasibility of training an artificial neural
network to compose music. This goal was accomplished by first studying the
structure, and individual components of artificial neural networks, as well as
training techniques. Later, a study of state-of-art generative models was conducted,

complete with examples.

As part of a practical study, a polyphonic music generator, capable of working with
music represented in MIDI format was proposed. The proposed model combined
variational autoencoder and multilayer perceptron architectures. The set design
would allow the model to develop complex instrumental interdependencies and
learn musical patterns, subsequently making the generated music sound more novel

and harmonical.

Based on the proposed scheme, an artificial neural network model was built and
trained. The process of training required the preprocessing of training data, which
consisted of choosing the proper dataset, filtering out the desired subset of songs,
and converting it into the format appropriate for training. Apart from the training
subset, dataloader classes were required, they were used to feed the training data
to the networks and facilitate the training process. The design of the architecture
and subsequent definition of artificial neural networks was the next step. The final
step was training itself, it was run in multiple stages, first training the VAE networks
on separate instruments, and later unifying them through the training of conditional

neural networks as well as a lead instrument neural network.

Finally, the results of the created generator model were presented and discussed.
The implemented model was compared to existing cutting-edge projects like
Multitrack MusicVAE and Jukebox. While being inferior to the named projects, the
presented model was able to perform above the author’s expectations, it was
capable of generating unique and interesting-sounding melodies, that can later be

used as an inspiration or concept generator for the process of music production.

60

In future work, the results of this thesis and the presented artificial neural network
model can be used to further explore the field of music generation, as well as a basis
for a practical solution, that would combine both MIDI-represented melody and raw
formatted voiced lyrics, effectively creating a fully voiced song, while still retaining

the benefits of MIDI format.

61

9 References

[1] GERON, Aurélien. Hands-on machine learning with Scikit-Learn and

TensorFlow: concepts, tools, and techniques to build intelligent systems. Boston:
O'Reilly, 2017. ISBN 978-1-4920-41948.

[2] FOSTER, David. Generative deep learning: Teaching machines to paint, write,
compose, and play. Sebastopol: O'Reilly, 2019. ISBN 978-1-0981-3418-1.

[3] BRIOT, Jean-Pierre, Gaétan HADJERES and Francois-David PACHET. Deep
learning techniques for music generation. Cham: Springer, 2020. ISBN 978-3-319-
70162-2.

[4] DUBREUIL, Alexandre. Hands-On Music Generation with Magenta: Explore
the role of deep learning in music generation and assisted music composition.
Birmingham: Packt, 2020. ISBN 978-1-8388-2441-9.

[5] MCCULLOCH, Warren and Walter PITS. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics 5. 1943, (5), 115—
133. Available at: doi:https://doi.org/10.1007/BF02478259

[7] THAKUR, Amey and Archit KONDE. Fundamentals of neural
networks. International Journal for Research in Applied Science and Engineering
Technology. 2021, 407-426.

[8] MAKLIN, Cory. LSTM recurrent neural network Keras example. Towards Data
Science [online]. Towards Data Science, 2019, 14 June 2019 [cit. 2022-10-09].
Available at: https://towardsdatascience.com/machine-learning-recurrent-neural-
networks-and-long-short-term-memory-lstm-python-keras-example-86001ceaaebc

[9] ELSARAITI, Meftah and Adel MERABET. A Comparative Analysis of the
ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind
Speed. Energies [online]. 2021, 14(20), 6782. ISSN 1996-1073. Available

at: doi:10.3390/en14206782[10] Dorian, J. (2021, July 20). Character-level deep
language model with GRU/LSTM units using tensorflow. Nabla Squared. Retrieved
November 9, 2022, Available at: https://www.nablasquared.com/character-level-deep-
language-model-with-gru-Istm-units-using-tensorflow/

[11] LOPEZ, Fernando. From a LSTM cell to a multilayer LSTM network with
pytorch. Towards Data Science [online]. Towards Data Science, 2020, July 27 2020
[cit. 2022-10-09]. Available at: https://towardsdatascience.com/from-a-Istm-cell-to-a-
multilayer-Istm-network-with-pytorch-2899eb5696£3

[12] SHI, Yan. Understanding LSTM and its diagrams. ML Review [online]. ML
Review, 2016, March 17 2016 [cit. 2022-10-09]. Available at:
https://blog.mlreview.com/understanding-Istm-and-its-diagrams-37e2{46f1714

62

https://doi.org/10.1007/BF02478259
https://towardsdatascience.com/machine-learning-recurrent-neural-
https://www.nablasquared.com/character-level-deep-
https://towardsdatascience.com/from-a-lstm-cell-to-a-
https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46fl714

[13] NICHOLSON, Chris. A beginner's guide to generative adversarial networks
(gans). Pathmind [online]. Pathmind, 2020, April 15 2020 [cit. 2022-10-09]. Available
at: https://wiki.pathmind.com/generative-adversarial-network-gan

[14] TABIAN, Iuliana, Hailing FU and Zahra Sharif KHODAEI. A Convolutional
Neural Network for Impact Detection and Characterization of Complex Composite
Structures. Sensors [online]. 2019, 2019 (22), 4933. ISSN 1424-8220. Available

at: https://doi.org/10.48550/arXiv.1703.10847

[15] DERTAT, Arden. Applied deep learning - part 3: Autoencoders. Towards Data
Science [online]. Towards Data Science, 2017, 3 October 2017 [cit. 2022-10-09].
Available at: https://towardsdatascience.com/applied-deep-learning-part-3-
autoencoders-1c083af4d798

[16] Anon. Role of KL-divergence in variational

autoencoders. GeeksforGeeks [online]. GeeksforGeeks, 2022, 27 January 2022 [cit.
2022-10-09]. Available at: https://www.geeksforgeeks.org/role-of-kl-divergence-in-
variational-autoencoders/

[17] RINTERESTED. Multivariate Gaussian distribution. Multivariate

gaussian. NOTES ON STATISTICS, PROBABILITY and MATHEMATICS [online].
NOTES ON STATISTICS, PROBABILITY and MATHEMATICS, 2022, 20 January
2022 [cit. 2022-10-24]. Available at:
https://rinterested.github.io/statistics/multivariate _gaussian.html

[18] ZITAO, Shen. 3 mins of machine learning: Multivariate Gaussian

Classifer. Zitao's Web [online]. Zitao's Web, 2022, 14 March 2020 [cit. 2022-10-24].
Available at: https://zitaoshen.rbind.io/project/machine learning/3-mins-of-machine-
learning-multivariate-gaussian-classifer/

[20] DEVOXX. Music Generation with Magenta: Using Machine Learning in by
Arts Alexandre Dubreuil. YouTube [video]. YouTube, 2022, 7 November 2019 [cit.
2022-10-28]. Available at: https://www.youtube.com/watch?v=04uBa0KMeNY

[21] Magenta [online]. Google, 2022 [cit. 2022-11-01]. Available at:
https://magenta.tensorflow.org/

[21] LOU. Music Generation Using Neural Networks [online]. 2016 [cit. 2022-11-
16]. Available at: https://www.semanticscholar.org/paper/Music-Generation-Using-
Neural-Networks-Lou/af3¢69967cc6756c3d74ffae5d3ad39fe0637755. Academic
research. Stanford.

[22] OpenAl [online]. Google, 2022 [cit. 2022-11-01]. Available at:
https://openai.com/

[23] YANG, Li-Chia, Szu-Yu CHOU and Yi-Hsuan YANG. MidiNet: A
Convolutional Generative Adversarial Network for Symbolic-domain Music
Generation. Preprint arXiv:1703.10847 [online]. ArXiv, 2017, 31 March

2017, 2017 [cit. 2022-11-04]. Available at: https://doi.org/10.48550/arXiv.1703.10847

63

https://wiki.pathmind.com/generative-adversarial-network-gan
https://doi.org/10.48550/arXiv.1703.10847
https://towardsdatascience.com/applied-deep-learning-part-3-
https://www.geeksforgeeks.org/role-of-kl-divergence-in-
https://rinterested.github.io/statistics/multivariate
https://zitaoshen.rbind.io/project/machine
https://www.voutube.com/watch?v=04uBaOKMeNY
https://www.semanticscholar.org/paper/Music-Generation-Using-
https://doi.org/10.48550/arXiv

[24] THAM, Issac. Generating music using Deep Learning. Towards Data
Science [online]. Towards Data Science, 2021, 9 November 2021 [cit. 2022-11-04].
Available at: https://towardsdatascience.com/generating-music-using-deep-learning-
cb5843a9d55e

[25] MULLER, Meinard. Fundamentals of Music Processing: Audio, Analysis,
Algorithms, Applications [online]. Springer, 2015 [cit. 2022-11-04]. ISBN 978-3-3192-
1944-8. Available at: https://link.springer.com/book/10.1007/978-3-319-21945-5

[26] DeepMind [online]. Google, 2022 [cit. 2022-11-04]. Available at:
https://www.deepmind.com/

[27] Gabor Melli’s Research Knowledge Base [online]. Google, 2022 [cit. 2022-11-
04]. Available at: https://www.gabormelli.com/RKB

[28] OORD, Aaron van den, Sander DIELEMAN, Heiga ZEN, Karen SIMONY AN,
Oriol VINYALS, Nal KALCHBRENNER, Andrew SENIOR and Koray
KAVUKCUOGLU. WaveNet: A Generative Model for Raw Audio. Preprint
arXiv:1609.03499. [online]. ArXiv, 2016, 12 September 2016, 2016 [cit. 2022-11-04].
Available at: https://doi.org/10.48550/arXiv.1609.03499

[30] HARRIS, Charles, Jarrod MILLMAN, Stéfan VAN DER WALT, Ralf
GOMMERS, Pauli VIRTANEN et al. Array programming with

NumPy. Nature [online]. 2020, 16 September 2020, 2020(585), 357-362 [cit. 2022-11-
04]. Available at: https://doi.org/10.1038/s41586-020-2649-2

[31] CHOLLET, Francgois. Keras. GitHub [online]. GitHub, 2015, 4 November 2015
[cit. 2022-11-04]. Available at: https://github.com/keras-team/keras

[32] ABADI, Martin, Ashish AGARWAL, Paul BARHAM, Eugene BREVDO
Zhifeng CHEN, Craig CITRO, Greg S. CORRADO et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems. ArXiv [online]. 2016, 14 Mar
2016, 2016 [cit. 2022-11-04]. Available at: https://doi.org/10.48550/arXiv.1603.04467

[33] PASZKE, Adam, Sam GROSS, Francisco MASSA, Adam LERER and Gregory
CHANAN. An Imperative Style, High-Performance Deep Learning Library. Advances
in Neural Information Processing Systems 32 [online]. Curran Associates, 2019, 2019
(32), 8024-8035 [cit. 2022-11-04]. Available at:
https://doi.org/10.48550/arXiv.1603.04467

[34] DONG, Hao-Wen, Wen-Yi HSTAO and Yi-Hsuan YANG. Pypianoroll: Open
Source Python Package for Handling Multitrack Pianorolls [online]. Taipei, 2018 [cit.
2022-11-04]. Available at: https://salul33445.github.io/pypianoroll/pdf/pypianoroll-
1smir2018-1bd-paper.pdf. Academic Research. Academia Sinica.

[35] TBERTINMAHIEUX. MSongsDB/hdf5_getters.py. GitHub [online]. GitHub,
2010, 12 December 2010 [cit. 2022-11-04]. Available at:
https://github.com/tbertinmahieux/MSongsDB/blob/master/PythonSrc/hdf5 getters.py

64

https://towardsdatascience.com/generating-music-using-deep-learning-
https://link.springer.com/book/10.1007/978-3-319-21945-5
http://www.deepmind.com/
https://www.gabormelli.com/RKB
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://salu
https://github.com/tbertinmahieux/MSongsDB/blob/master/PythonSrc/hdf5

[36] DONG, Hao-Wen, Wen-Yi1 HSIAO, Li-Chia YANG and Yi-Hsuan YANG.
MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic
Music Generation and Accompaniment. Proceedings of the AAAI Conference on
Artificial Intelligence [online]. 2018, 2018, 2018(32) [cit. 2022-11-04]. Available at:
https://doi.org/10.1609/aaai.v32i1.11312

[37] COLIN, Raffel. Learning-Based Methods for Comparing Sequences, with
Applications to Audio-to-MIDI Alignment and Matching [online]. Taipei, 2016 [cit.
2022-11-16]. Available at:
https://academiccommons.columbia.edu/doi/10.7916/DSNSSMHYV. PhD Thesis.
Columbia University.

[38] BERTIN-MAHIEUX, Thierry, Daniel P.W. ELLIS, Brian WHITMAN and Paul
LAMERE. The Million Song Dataset. Proceedings of the 12th International Society for
Music Information Retrieval Conference [online]. 2011, 2011, [cit. 2022-11-04].
Available at:

https://www.researchgate.net/publication/220723656_The Million_Song_Dataset

65

https://academiccommons.columbia.edu/doi/10.7916/D8N58MHV
https://www.researchgate.net/publication/220723656

10 Attachments

Project folder structure:

vae-music-generator

— data

| |—— generated-midi......ccoceeeeeiiiiiiiiiniiii generated MIDI songs

| |—— lakh-datasetcooeveeveierieiieceeeee e dataset used for the project
| |—— processed-pianoroll ..., preprocessed training data
| L saved-nn-modelsccooverrmrreereerereereeerereninen. saved trained NNs

L— implementation

|—— data-PrePrOCESS.eeerreerieeereiiieitieiie et data preprocessing methods
|—— NELWOTKS ...vvieiiiieciieeeeccee e declared NN classes

I—— ELAINING .eeveeieieeie et eaaeeaae e ns training methods

L— music_generation.pyccccoeveeurverureueverenseneeneennn. music generation methods

66

e B Univerzita Hradec Kralove
W= & Fakulta informatiky a managementu

Zadani bakalaiské prace

Autor: Aleksey Yanushko
Studium: 11900276

Studijni program: B1802 Aplikovana informatika
Studijni obor: Aplikovana informatika

Nazev bakalarské prace: Generovani hudby pomoci umélych neuronovych siti

Nazev bakalafské prace A]: Music generation using artificial neural networks
Cil, metody, literatura, predpoklady:

Thesis goal: Explore and test artificial neural network approaches and techniques in music
generation

1. Introduction

2. Exploring current possibilities for generating music and melodies using artificial neural
networks

3. Application proposition for music generation

4. Implementation and testing of the proposed application

5. Conclusion and evaluation of achieved results

Foster, 2019 - Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play.
O'Reilly Media. ISBEN:978-1492041948

DuBreuil, 2020 - Hands-On Music Generation with Magenta: Explore the role of deep learning in
music generation and assisted music composition. Packt Publishing Ltd. ISBN:9781838824419
Briot, 2020 - Deep Learning Techniques for Music Generation [Computational Synthesis and
Creative Systems). Springer. ISBN:9783319701622

Zadavajici pracovisté: Katedra informatiky a kvantitativnich metod,
Fakulta informatiky a managementu

Vedouci prace: Ing. Milan Kost'dk

Datum zadani zavéreéné prace: 15.10.2021

67

