
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

VISIPEDIA:
EMBEDDING-DRIVEN VISUAL FEATURE
EXTRACTION AND LEARNING

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. JAN JAKEŠ
AUTHOR

BRNO 2014

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

VISIPEDIA:
EMBEDDING-DRIVEN VISUAL FEATURE
EXTRACTION AND LEARNING

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE Be. JAN JAKEŠ
AUTHOR

VEDOUCÍ PRÁCE Prof. Dr. Ing. PAVEL ZEMČÍK
SUPERVISOR

BRNO 2014

Abstrakt
Multidimenzionální indexování je účinným nástrojem pro zachycení podobností mezi ob­
jekty bez nutnosti jejich explicitní kategorizace. V posledních letech byla tato metoda
hojně využívána pro anotaci objektů a tvořila významnou část publikací spojených s pro­
jektem Visipedia. Tato práce analyzuje možnosti strojového učení z multidimenzionálně
indexovaných obrázků na základě jejich obrazových příznaků a přestavuje metody predikce
multidimenzionálních souřadnic pro předem neznámé obrázky. Práce studuje příslušené
algoritmy pro extrakci příznaků, analyzuje relevantní metody strojového učení a popisuje
celý proces vývoje takového systému. Výsledný systém je pak otestován na dvou různých
datasetech a provedené experimenty prezentují první výsledky pro úlohu svého druhu.

Abstract
Multidimensional embedding is a powerful method of representing similarity measures
among objects without the need for their explicit categorization. It has been increasingly
used in recent years to annotate objects making an important part of the Visipedia project
and its related work. This work explores the possibilities of learning from embedding-
annotated images using their visual attributes and develops methods of predicting embed­
ding coordinates for previously unseen images. It studies the relevant feature extraction
and learning algorithms and describes the whole process of design and development of such
a system using common machine learning approaches. The system is tested and evaluated
with two different datasets and the performed experiments present the first results for a task
of its kind.

Klíčová slova
multidimenzionální indexování, obrazové příznaky, extrakce příznaků, počítačové vidění,
strojové učení, regrese, Visipedia

Keywords
multidimensional embedding, visual features, feature extraction, computer vision, machine
learning, regression, Visipedia

Citace
Jan Jakeš: Visipedia: Embedding-driven Visual Feature Extraction and Learning, diplo­
mová práce, Brno, F IT V U T v Brně, 2014

Visipedia: Embedding-driven Visual Feature Ex­
traction and Learning

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Prof. Dr.
Ing. Pavla Zemčíka. Další imformace mi poskytl Prof. Serge Belongie. Uvedl jsem všechny
literární prameny a publikace, ze kterých jsem čerpal.

Jan Jakeš
28. května 2014

Poděkování
Rád bych zde poděkoval profesoru Pavlu Zemčíkovi za vedení této práce, cenné rady a koor­
dinaci mého pobytu v USA. Speciální dík patří profesoru Sergi Belongiemu za jeho odborné
vedení a podporu při mém pobytu v San Diegu. Dále bych chtěl poděkovat členům vědecké
skupiny SO(3) a výzkumníkům z týmu projektu Visipedia. V neposlední řadě bych chtěl
poděkovat rodičům za jejich podporu při studiu.

Acknowledgments
I would like to express my sincere thanks to professor Pavel Zemcik for leading this work,
his precious advices and the coordination of my stay in the U S A . I would especially like to
thank professor Serge Belongie for his technical lead and support during my stay in San
Diego. I would also like to thank to all the members of research group SO(3) and all the
researches from the Visipedia project team. Finally, I would like to thank to my parents
for their support during my studies.

© Jan Jakeš, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 The Visipedia Project 5
2.1 The Vision 5
2.2 The System 6
2.3 Visipedia-related Work 7
2.4 This Work and Visipedia 8

3 Multidimensional Embedding 9
3.1 Motivation 9
3.2 Multidimensional Embedding 10
3.3 Non-metric Multidimensional Embedding 10
3.4 Creating Embedding from Similarity Comparisons 11

4 Visual Features 13
4.1 Color Histogram 13
4.2 Histogram of Oriented Gradients (HOG) 14
4.3 Local Binary Patterns (LBP) 15
4.4 Scale-invariant Feature Transform (SIFT) 18
4.5 Bag of Visual Words (BoVW) 20

5 Machine Learning 21
5.1 Definition 21
5.2 Generalization, Underfitting and Overfitting 22
5.3 Training and Testing 23
5.4 Cross Validation 24
5.5 Unsupervised Learning 25
5.6 Supervised Learning 25
5.7 Embedding-driven Learning 27

6 Regression Analysis 28
6.1 Regression 28
6.2 Basic Methods of Estimating Regression Problems 30
6.3 Kernel Ridge Regression 31
6.4 Support Vector Regression 32
6.5 Evaluating Regression Models 35

1

7 System Design 37
7.1 Basic Architecture 37
7.2 Feature Selection 38
7.3 Feature Concatenation 39
7.4 Feature Weighting 40
7.5 Prediction Accuracy Evaluation 41

8 Implementation 42
8.1 Choice of Programming Environment 42
8.2 Used Technologies 43
8.3 Implemented Functionality 44
8.4 Demo Application 47

9 Testing Data 48
9.1 Getting the Data 48
9.2 Chosing an Image Set 48
9.3 A Toy Dataset (Flags-196) 49
9.4 A Larger Dataset (Food-1000) 51

10 Toy Experiments 53
10.1 Parameter Tuning 53
10.2 Experiment Setting 56
10.3 Per-dimension Prediction Evaluation 56
10.4 Overall Prediction Evaluation 57
10.5 Summary 58

11 Larger Experiments 60
11.1 Parameter Tuning 60
11.2 Per-dimension Prediction Evaluation 61
11.3 Overall Prediction Evaluation 62

11.4 Summary 63

12 Conclusions 65

A C D Contents 69

B Toy Experiment Results 70

C Larger Experiment Results 71

2

Chapter 1

Introduction

In the last two decades machines have rapidly gained many new abilities of learning and
image understanding. Some tasks such as face detection have already achieved a great
performance and one can encounter these even in everyday life. Another very common and
successful task is classification. Having a sufficient amount of images divided into categories,
classification algorithms aim to learn to recognize those categories for new images. Each
category thus groups images that are similar according to some criteria.

Although such classification systems can be very powerful, in some cases the categories
may not be a convenient similarity representation. Sometimes it can be hard to decide how
detailed the categorization should be, in some cases there might be too many categories
while in others the categories may be hard to find, and sometimes they might not even
exist. One may also be interested in more information than just a category - sometimes we
want to know how much two images are similar or dissimilar according to a given criteria.

To challenge a larger understanding of image similarity without the need of their explicit
categorization a different similarity representation has been increasingly used in recent
years. Instead of assigning class labels to the images this representation "places" them in
a multidimensional space where their mutual similarities are represented by the distances
among them. More similar images thus lie closer to each other while the dissimilar ones
are further away. This method is called multidimensional embedding since it embeds the
images in a multidimensional space.

Multidimensional embedding has been widely used in a project called Visipedia that
was created to challenge fine-grained categorization and better similarity understanding.
A lot of work has been done in exploring the ways of getting multidimensional embeddings
and searching through their space. Both of the tasks can be done completely without image
processing or understanding, only by asking humans to answer simple questions. That can,
however, get very expensive and time-consuming.

This work focuses on applying computer vision and machine learning approaches on
images that are annotated with a multidimensional embedding. Its aim is to learn from
images that are already annotated with such an embedding and explore possibilities of
creating a system that would place new images to the embedding automatically. Such
a system is important not only for adding new images to the embedding but also for
searching the multidimensional space automatically using image queries. The algorithms
can also be combined with human interactivity to get better results.

This work studies the relevant methods to create such a system, describes its develop­
ment and analyses the performed experiments. It also presents new datasets and sets initial
performance on them since no comparable work has been done on embedding-annotated
images previously.

3

My choice of this topic was motivated not only by the fact I had the chance to join
the Visipedia team, but especially due to my interest in computer vision and machine
learning techniques in order to create universal learning systems. This topic was particularly
challenging since this task was not explored before.

The Visipedia project and the role of this work are introduced in Chapter 2. Chapter 3
describes the concept of multidimensional embedding, presents its types, and outlines the
possible ways of creating it. The extraction of visual features from images is studied in
Chapter 4 as well as their fundamental properties and usage. Chapter 5 then analyses
relevant machine learning approaches and places the embedding-driven learning in their
context. The relevant learning methods are then studied in Chapter 6.

Chapter 8 describes the development of a library that implements the described func­
tionality and presents a simple demo application. Chapter 9 introduces two different dataset
and explains how they were obtained. Finally, Chapter 10 and Chapter 11 describe the per­
formed experiments and analyze their results.

4

Chapter 2

The Visipedia Project

This work makes part of a large computer vision and machine learning oriented project
called Vispedia. This chapter will briefly introduce the Visipedia project, describe its current
state and its main objectives, and explain the role of this work for the project.

2.1 The Vision
The idea of Visipedia was first introduced in 2009 by professor Dr. Pietro Perona at Cali­
fornia Institute of Technology (Caltech) [19] who has developed the concept with the help
of his colleagues and a research group of professor Serge Belongie at University of Cali­
fornia, San Diego (UCSD). Dr. Perona originally described his vision of Visipedia with the
following words:

"In order to see how one could improve the web and make pictures first-class cit­
izens of the web, I explore the idea of Visipedia, a visual interface for Wikipedia
that is able to answer visual queries and enables experts to contribute and or­
ganize visual knowledge."

He claims that although images and videos make the vast majority of data on the web they
are not well indexed, hyperlinked, and organized and thus form a "digital dark matter"
that we cannot find easily. Also, experts do not contribute their Visual knowledge online
since the process of image annotation and hyperlinking is too difficult and time-consuming.

Dr. Perona presented an idea to make pictures and videos "first class citizens of the web".
He proposed a system that would understand their content and that would help organizing
the visual knowledge. Such system would let users browse the information starting with
an image and using "visual queries". This would be very useful in cases when we see an
object and we want to find out what is it, what is its name, what does it serve for, etc.
Dr. Perona demonstrated how hard is it to find such information using only textual queries
and hyperlinks and claims that the current indexing of information on the web is not perfect
and could be improved by higher understanding and indexing of the visual information.

Visipedia, as originally presented, would work as a visual layer over Wikipedia and it
would generalize it in many ways. Textual hyperlinks would be accompanied with links from
pictures to pictures, from pictures to text, and from text to pictures. Particular regions of
images would thus become clickable hyperlinks. A l l of this would not be reached by manual
image annotation but the people would collaborate with sophisticated computer vision and
machine learning algorithms to make the task as quick and easy as possible.

5

2.2 The System
As already mentioned in Section 2.1, Visipedia was meant to be developed as a layer on top
of Wikipedia that would augment the search capabilities with visual queries and generalize
hyperlinks to work on both text and images. The content would be still editable by the
users but also a high level of automation would be integrated. Dr. Perona described his
concept of the system with the following words:

"In order to make Visipedia a reality, we will need to develop software that
can 'understand' automatically what is there in pictures, and link related 'vi­
sual concepts'. Humans would, of course, need to be 'there' and provide some
guidance and information."

The idea of Visipedia went beyond a simple user-system interaction-Dr. Perona pro­
posed to incorporate humans-in-the-loop techniques where human interaction would become
a part of an algorithm []. This way he wanted to promote the system to a higher level of
quality and he suggested five groups of humans to interact with state-of-the-art computer
vision and machine learning algorithms:

1. Users would be using the system to find some information with textual and visual
queries and browse the hyperlinked text and images.

2. Experts would provide and share their detailed knowledge with everybody, similarly
as nowadays they are willing to share their knowledge in a textual form on Wikipedia.

3. Editors would be keeping the content clean, correcting errors and inconsistencies and
keeping the form of the data standardized.

4. Annotators would provide the image annotations such as part segmentation, naming
and identification. They would be likely paid to do so and they could be hired on
some already existing crowdsourcing service such as Amazon Mechanical Turk.

5. Automation providers would be computer scientist working on machine learning and
computer vision automation tools as well as on the system architecture itself.

When uploading an image to the system or making a visual query, an automatic seg­
mentation and object detection would be done. Based on this relevant hyperlinks would
be created automatically. However, since it is not yet possible to have this task completely
automatized, it would be achieved with the help of humans and the machines would take
the job over gradually.

The system would require the experts to annotate some prototype images manually and
it would facilitate their work by posing them the most relevant and informative questions.
Then the acquired knowledge would be generalized to other similar images that are already
out on the web and the whole system would thus learn from the experts. The experts would
later be asked to solve only some special and difficult cases while the easy ones would be
done automatically.

Visipedia would also try to diagnose and improve the content automatically by detecting
problems and uncertainties and choosing which questions to ask which groups of humans
and which data should be analyzed by some of the algorithms. The human answers and the
results of the algorithms would be evaluated in terms of their reliability and their certitude
would be ensured by posing same questions multiple times.

(i

In the beginning a lot of work would be done by humans using crowdsourcing services
such as Amazon Mechanical Turk and the cost of the job and their speed would probably
limit the size of the system. Later, more and more tasks would be transferred to machines
and the system would start to grow faster. The development of automating algorithms
would also be opened as the content itself and any computer scientist would be able to
participate and supply new software.

The described architecture of the Visipedia system is depicted in Figure 2.2.

Image databases

Wikipedia

Visipedia

Images, segments,
annotations, links,
GUIs, diagnostics

Automata Vision scientists

t t
1+

i
Experts Annotators

t

Users

Figure 2.1: Architecture of the Visipedia system as proposed by Dr. Perona.

2.3 Visipedia-related Work
The Visipedia project started to come alive in two computer vision groups - Dr. Perona's
group at Caltech and a group of professor Serge Belongie at U C S D . In collaboration with
experts from Cornell Lab of Ornithology at Cornell University the two research groups
started to work on Visipedia's first image taxon- bird species.

In the beginning the two research groups created a challenging image dataset of 200
bird species [31]. Unlike for other datasets where a human can achieve almost perfect
classification accuracy the categories given by distinct bird species are often visually very
similar and the visual borders among the categories are very thin. Most of the humans
would probably perform badly in classifying bird species without using a field guide.

The new dataset have challenged a task of classifying objects with fine-grained cate­
gories. Since such task is very difficult also for a machine the researchers have developed
algorithms with humans in the loop [4, 29], and used crowdsourcing techniques [30].

7

2.4 This Work and Visipedia
I first got in touch with Visipedia when I joined professor Belongie's group at UCSD and
started to work on this thesis and other Visipedia-related projects. At the time my colleague
and I arrived to San Diego, professor Belongie presented us his idea to work on a new taxon
that would differ from birds in some ways.

While the visual boundary between two different bird species might be extremely thin,
as said in Section 2.3, the species identification is still a classification problem with a limited
amount of well-defined classes. Professor Belongie proposed to work on a new taxon where
no explicit ground-truth categories would exist, such as food, fashion, furniture, faces, etc.
Although one may argue these taxa can actually be categorized, we never can get the
complete ground-truth classification of all the taxon.

The, non-existence of classes however does not mean that implicit similarities among
the objects do not exist. Instead of being categorizable the similarities are continuous and
instead of being labeled with classes their similarity can be captured with a mutlidimen-
sional embedding that maps the object to a multidimensional space where their Euclidean
distances among objects represent the similarity measure. The concept of multidimensional
embedding is described in Chapter 3.

While some researchers from professor Belongie's group work on efficient ways of getting
similarity measures with the means of crowdsourcing, the goal of this work is to explore how
we can use machine learning algorithms (see Chapter 5) to discover the underlying relation
between an embedding of images (see Chapter 3) and their visual features (see Chapter 4)
and predict embedding coordinates for images out of the original embedding.

8

Chapter 3

Multidimensional Embedding

This chapter explains the concept of multidimensional embedding, presents its formal def­
inition, and briefly describes some ways of creating it using a set of similarity comparisons
among objects. Such objects can generally represent almost anything but for the purposes
of this work images will be used. This text does not intend to provide an exhaustive study
of the embedding problematic since its main concern is learning from already embedded
objects. Instead, it presents basic terms and methods relevant in context of this work.

As mentioned in Chapter 2, one of the Visipedia's main goals is to work with fine-grained
taxa that do not necessarily have a well-defined categorization. In other words, we still
want to "order" or "group" images according to some criteria but we can't label them
with classes. The thing we're looking for is a similarity measure-we're interested in the
information which objects are similar or dissimilar according to a given similarity criteria.

Such measure among a set of objects can be expressed with a multidimensional embed­
ding which places the objects in a multidimensional space in a way that distances among
them reflect the similarity measure. Figure 3.1 shows how such embeddings can look like
in two dimensions, grouping more similar images closer together and pushing the dissimilar
ones further apart.

Detailed study of multidimensional embeddings goes beyond the scope of this work
since its main objective is to learn from an already computed embedding. However, it is
necessary to define some embedding-related terms and show how the embeddings work.

Figure 3.1: Examples of multidimensional embeddings. Both (a) and (b) were projected on
the top two principal dimensions from a higher-dimensional embedding. Taken from [24].

3.1 Motivation

(a) Flags (b) Faces

9

3.2 Multidimensional Embedding

(3.1)

Given a dissimilarity (distance) matrix A and a set of objects X, a <i-dimensional embedding
is a map

/ : X -> M d ,

such that Vx j , X j G X : | | /(xj) — /(xjOlk ~ 5(xi,Xj),

where
X = { x i , x 2 , . . . , ! „ } ,

(8{xi,x{) 8{xi,x2) ••• <5(xi,x n)\
<5(x2,xi) <5(x2,x2) <5(x2,xr,

5(xn,xn)J

(3.2)

\(5(x„,xi) <5(x„,x2)

and ||• ||2 denotes the Euclidean distance. The dissimilarity matrix A is a square zero-
diagonal symmetric matrix that defines pairwise distances for all pairs of objects from X.
The distance between objects x\ and x2 is denoted by 5(xi,x2).

In other words, an embedding of objects X according to given similarity measures A is
a map of these objects to points in a multi-dimensional space, where the inner Euclidean
distances among the points reflect their similarities. For instance, given all world's capital
cities as objects and their air distance as a similarity measure their 2-dimensional embedding
would be simply a map of the world.

3.3 Non-metric Multidimensional Embedding
Multidimensional embedding as defined in Section 3.2 requires having a measure of distance
between every two objects. However, collecting such data might be a very difficult and
expensive task. In some cases, such as representing the human perception of similarity,
the collection of data with a metric of similarity might produce extremely noisy results
and thus become almost impossible. Thinking of food as the given objects and its taste as
perceived by humans as the similarity measure, it would be very hard to find a numeric
value representing the taste distance between two meals.

The difficulty of collecting similarity metrics does not necessarily imply the non-existence
of such data. There may be some ground-truth dissimilarity matrix but in this case it is
hidden to us. Going back to the example with food it would be probably easier for humans
to provide an information in form "a is more similar to b than to c" than guessing the exact
taste metric between two meals. Having such information we can generalize the embedding
definition into a non-metric embedding.

Given a set of triplets T and a set of objects X, a <i-dimensional non-metric embedding
is a map

/ : X -> Rd,

such that V(xi,Xj,xi) eT : Ufa) - f(xj)\\2 < \\f(xi) - f(xi)\\2,

where
X = {X1,X2, . . .,!„},

T = {(a, b, c) G Xs | a is more similar to b than to c, a ^ b / c},

and ||-||2 denotes the Euclidean distance.

(3.3)

(3.4)

10

In other words, an embedding of objects X according to given set of similarity triplets T
is a map of these objects to points in a multi-dimensional space, where the inner Euclidean
distances preserve the triplet inequalities. Going back to the example with World's capital
cities and supposing we have a sufficient amount of triplets in form "city A is closer to city
B than to city C " , the 2-dimensional embedding built from such triplets would be a map of
the World where the distances among the cities would be only relative - they would not have
a real metric like miles or kilometers. Although such map might be deformed by rotation,
scaling, and other transformations, a lot of important information would be preserved. We
would still be able to say whether any two cities are closer together or further apart than
any other city pair.

A n important thing to note about the non-metric variant of the multi-dimensional
embedding is that we do not need to have all the possible triplet comparisons on a given
set of objects. Even with just a small fraction of all the possible triplets we can still
build an embedding that would satisfy all the triplet inequality constraints. The number of
triplet comparisons have of course an impact on the quality of the embedding, but generally
speaking, it is not impossible to build a good-quality embedding without having all possible
triplet comparisons.

3.4 Creating Embedding from Similarity Comparisons
Once we have collected a sufficient amount of similarity comparisons of the triplet form
"a is more similar to b than to c" we can create an embedding representing the similarity
distances among objects. A n embedding that satisfies a given set of triplet inequalities
can be defined in many different ways since only the relative distance inequalities have to
be preserved and we need no exact measures. Various different methods of building such
embedding thus exist and produce different results. Each of the methods have different
properties and might be suitable for different use cases.

Generalized Non-metric Multidimensional Scaling (GNMDS) . G N M D S aims to
find an embedding where the pairwise distances between embedded objects satisfy the
similarity triplets [1]. This is achieved by solving an optimization problem where each of
the triplets becomes a constraint. G N M D S is suitable for data with low percentage of errors
and with a large the number of correct triplets it can produce very good results. However,
its performance can drop significantly while working with noisy data.

Crowd Kernel Learning (C K L) . C K L defines probabilities that measure how well
each of the triplets is modeled [24]. It was designed to learn an embedding from triplets
provided by humans and it aims to choose the triplet questions adaptively to optimize the
number of necessary answers. Therefore, it can be suitable in situations when we want to
minimize the number of necessary triplets to lower the cost of data collection.

The main problem of C K L is that it is mainly focused on correcting large constraint
violations in the embedding that can be often caused by noise and uncommon responses to
the triplet question and can thus damage the resulting embedding.

Stochastic Triplet Embedding (STE). S T E works much more locally than the previ­
ous methods to address the problem noisy and uncommon triplets in the data. It assigns
nearly a constant penalty for largely violated triplets and nearly a constant rewards to

11

triplets that are well satisfied and thus ignores the uncommon triplets that could be pro­
duced by noise. The main problem of S T E is that it is hard to fix errors that were done in
early steps of the computation.

T-Distributed Stochastic Triplet Embedding (t-STE). The problem of early made
errors during the S T E embedding creation was solved by using a Student-t kernel func­
tion to measure local similarities between data points. The resulting method is called
t-Distributed Stochastic Triplet Embedding (t-STE) []. The t -STE method not only low­
ers the sensibility to noise in the data but also improves the embedding even when a triplet
constraint is already satisfied. It thus pushes points together when there are no triplets
to keep them apart and pulls them apart when there are no triplets to keep them close.
Both these properties make t -STE particularly suitable for human provided triplets based
on their perception of similarity that can contain noise and incompatibilities.

c) STE d) t-STE

Figure 3.2: Embeddings of the MNIST digit dataset produced by four different methods
from automatically generated triplets based on the differences in pixel values among images.
The advantages of t -STE are nicely visible - pushing similar points close together and pulling
dissimilar ones further apart even when the constraints are satisfied results in a better
separation of the digit classes. Taken from [26].

Embeddings computed using all the described methods are depicted in Figure 3.2. Since
the embeddings used in the Visipidea related projects were usually based on human provided
triples according to their perception of some similarity criteria, t -STE appears to be the
most suitable method for the majority of such tasks. However, in particular cases some of
the other methods might be useful as well and the choice depends on the type of the task.

12

Chapter 4

Visual Features

Visual feature extraction is a process of getting useful information from images and thus
makes an essential part of computer vision and image-oriented machine learning systems.
Different visual features extract different information and should be selected depending on
the addressed task. In order to create a robust and universal system multiple visual features
can be used to get more information from a single image.

This chapter describes some of the most common and powerful feature extraction meth­
ods covering different image properties such as color, shape, texture and stable regions. The
aim is not to list all existing feature extraction methods but to analyze the most popular
and efficient ones for each of the named image properties.

4.1 Color Histogram
A color histogram is one of the fundamental image features used in the computer vision
field. Its role is to describe the color or intensity distribution in an image which makes
color histograms particularly useful for any visual task where color or intensity matters.

In its simplest form color histogram characterizes the amount of pixels that belong to
each of previously defined color or intensity ranges that are usually called bins. A color
histogram computed for a grayscale image will extract information about the intensity
distribution of its pixel values. For color images it is usually computed for each color
component given by the used color model.

Formally, given a set of pixel color values-an image / - a n d a set of disjoint intervals
B = {Bi, B2, ...,Bn}, where UBidB = [mini , max/] , a color histogram is a map

H : B -> N

such that H(Bi) = \{p\p€Bi,p€l}\, ^H{Bi) = \I\. (4J)

Such color histogram is a purely global feature since it extracts information about the
color range quantities in whole image. Sometimes it is desirable to extract the color distri­
bution along with its approximate position in the image. In that case we can simply divide
the image in smaller blocks and compute the histogram for each of them. Then we speak
of local histograms. The choice of the number and size of the bins have an impact on the
information that we get from the image. Lower amount of larger bins describes the general
tone of an image while big amount of smaller bins can capture the details.

Examples of global color and intensity histograms with different numbers and sizes of
bins are depicted in Figure 4.1.

13

^ 6 .

(a) Original image (b) 16 bins (c) 256 bins

Figure 4.1: Color and intensity histograms with different numbers of bins. 1

4.2 Histogram of Oriented Gradients (HOG)
Histogram of Oriented Gradients (HOG) is a feature descriptor that captures localized
shapes in an image by computing the distribution of intensity gradients in smaller image
regions [6]. H O G is a powerful descriptor especially for object detection and with cautious
parameter fine tuning and local contrast normalization it outperforms most of the previous
similarly focused descriptors.

The first step of the H O G feature extraction algorithm is normalization of color and
gamma values in the image. However, this step can usually be omitted since the normal­
izations bring only a modest improvement, probably due to later descriptor normalization.

The second step is the gradient computation which is done by applying simple 1-D
derivative masks in both horizontal (f/J and vertical (f„) directions. In particular, filters

(-1 0 !) and f„ 0

V 1/
(4.2)

are frequently used since they are known to have a very good performance. For a colored
image the filters are applied on each of the color components, whereas for a grayscale image
the intensity is used.

The oriented gradients are then represented by two values - magnitude p and orienta­
tion #-that can be obtained from the two filtered images by applying Cartesian to polar
coordinate conversion. For pixel ph from the gradient image produced by filter and its
corresponding pixel pv from the gradient image obtained by filtering with f„ the values of
p and 9 can be computed as

P Ph+Pv and 9 = arctan Pv
Ph

(4.3)

In the third step the image is divided in a uniform grid of small local regions called
cells. Based on the computed gradient values each pixel in a cell performs a weighted vote
for an edge orientation histogram that accumulates the votes for each cell in orientation
bins. The best results are achieved by simply taking the gradient magnitude as a vote and
using 9 gradient orientation bins in range from 0° to 180° while ignoring the gradient sign.
The gradients magnitudes and orientation histograms are visualized in Figure 4.2.

l rTiger image taken from http://www.desktopwallpapers4.me/, used also further in this chapter.

14

http://www.desktopwallpapers4.me/

•;»•:*:**{£- *#A.*:*A 1 s*<
• *%*^.*-* :*\

•* * * * * * * H
I (***\ *** /

<*%\ ' * i
\ t t I X \ !%***>•. *~ *
H I | \ \ * * * * *
*-ifl 1 * ! « * * * t 1 jf *
J f H H - * * * * 11 K • - * •

- * f \ \ \ i-
\ ifi I * « ^ ^ t - i \ ^ 1
+ +3M * * * • i * 4 x • * *
* * : * - V * * ^ * H ^ **-* * * *
*^%**%%-4.̂ - ' ' • -

(a) Input image (b) Gradient magnitude (c) Orientation histograms

Figure 4.2: H O G visualisation. Figure (a) shows the input grayscale image, (b) illustrates
the magnitude of the gradients (the higher the magnitude, the lighter the image), and (c)
visualizes the orientation histograms in the cells (histogram value for each bin is shown as
a light line rotated according to the bin).

The last step of H O G extraction normalizes the gradients over larger image regions called
blocks. A block is a group of several cells and adjacent blocks are partially overlapped so
that each cell contributes multiple times to the final feature vector, each time normalized
across different block. This step is crucial for the descriptor quality since local illumination
and contrast changes are frequently present in the input images.

The blocks can be either rectangular (usually square, referred to as R-HOG) or circular
(referred to as C-HOG). To improve performance the rectangular blocks can downweight
the pixels near the block edges by applying a Gaussian spatial window. Although both
block shapes perform quite similarly, the best choice depends on the particular data. The
HOG's authors state that one of the best settings is a square block containing 2 x 2 or 3 x 3
cells of 8 x 8 pixels, where the blocks overlap by 3/4.

The H O G features are particularly useful in capturing shapes of objects in images and
are therefore often used for object detection. The use of localized cells and normalization
using larger overlapped blocks makes them invariant to illumination and contrast changes
and some geometric transformations.

4.3 Local Binary Patterns (LBP)
Local Binary Patterns (LBP) is a feature descriptor designed for texture and pattern char­
acterization. The main idea of L B P is to describe the texture by its local spatial structure
in a grayscale image and compute a histogram of these local structure descriptors. This
way L B P combines structural and statistical approaches of texture characterization and
proves to be a powerful method of their description.

The L P B is computed by thresholding the neighborhood of each pixel by its value and
encoding the result as bits of a single unsigned integer. A histogram of these integers
is then used as the feature descriptor. Originally, a neighborhood of 8 pixels was used
producing histogram of 8 2 = 256 values [14, 15]. The algorithm was later extended with
rotation invariance, improved with so called uniform patterns, and generalized for any size
of the neighborhood [16, 17, 18]. Some of the typical texture patterns captured by L B P are
depicted in Figure 4.3.

15

^ L ^ j ^ " C ^ X ^ < C ^ j ^ ' C ^ j ^

Spot Spot/flat Line end Edge Comer

Figure 4.3: Some of the basic patterns that can be captured with L B P . 2

4.3.1 Generalized L B P

Given a pixel p and a set N = { n o , n i , . . . ,np_i} of its P neighboring points lying on
a radius R from p, the generalized L B P is computed as

where

LBPrr

s(x)

p-i

i=0
•p)2i

1, if x > 0
0, if x < 0

(4.4)

(4.5)

In other words, the pixel p is compared to each of its neighboring points tii and if rii > p,
number 1 is assigned to the comparison, 0 otherwise. The values of points that are not on
integer pixel positions are bilinearly interpolated. To express the results for all the points
in a neighborhood with a single number, the comparison for neighbor rij is multiplied by
2l and the values for all the points are summed. This is equivalent to expressing the sum
as a binary number of P digits and setting the value of (i + l)-th digit from right to 1 or
0, depending on the result of the comparison. This process is depicted in Figure 4.4.

Using the thresholded local differences rii—p between the central and neighboring pixels,
the L B P is by definition invariant to any monotonie transformation of the gray scale. This
means that any intensity change where the order of gray values is preserved does not affect
the feature descriptor. This makes L B P very robust to illumination changes.

(29)

57
63

52

65 %

72

-6

0

-21

©
15

13
22

O ©
o 0

© 0 ©

(a) Original pixel values (b) Differences Sj — p (c) Thresholded values

Figure 4.4: L B P visualization for P = 8 and R = 1. Figure (a) shows the original values
of pixel p and its neighbors rtj, (b) demonstrates the state after computing rij — p, and (c)
contains the results of s(rtj — p). The next step is multiplication of the thresholded values
by 2* and summing the results. In this case it would be LBP8 i = 0 • 2° + 1 • 2 1 + 1 • 2 2 +
1 • 2 3 + 1 • 2 4 + 1 • 2 5 + 0 • 2 6 + 0 • 2 7 = 62 or simply 001111102 = 62 i 0 .

2Image taken from http://what-when-how.com/face-recognition/.

16

http://what-when-how.com/face-recognition/

4.3.2 Rotational Invariance

When an image is rotated, the neighboring pixels of the central point p get different values
of i and thus are multiplied by a different value 2 \ In other words, when rotating the input
image, the bits of the L B P expressed as a binary number rotate as well. Therefore, to
achieve rotation invariance, the bits of the binary L B P are rotated to all possible locations
and the smallest of the resulting values is chosen. Formally, a rotation invariant L B P is
defined as:

LBPpR = mm{ROR(LBPpr, i) \ i = 0 , 1 , . . . , P - 1}, (4.6)

where ROR(x, i) is a circular bitwise right shift of a binary number x in amount of i bits.
The LBPpR descriptor is also smaller since for P neighbors it makes P — 1 times less
possible combinations than LBPpp.

4.3.3 Uniform Patterns

Uniform patterns is an extension improving the LBPpR operator. The idea of the uniform
patterns is based on the fact that some of all the possible rotation invariant L B P patterns
occur much more often than others. Such patterns are called uniform and sometimes form
more than 90 percent of all the patterns in a texture. The property they have in common is
a uniform circular structure that contains very few spatial transitions. They describe local
structures such as dark and bright spots, flat areas and edges.

The uniform patterns, denoted by LBPpR, are defined by the number of bitwise tran­
sitions (0 to 1 and 1 to 0) that occur in the binary L B P value when traversed circularly.
A l l the patterns that have at most 2 bitwise transitions are called uniform. For a neighbor­
hood of P pixels there is exactly P + 1 possible uniform patterns. A l l the possible rotation
invariant and uniform patterns for R = 1 and P = 8 are shown in Figure 4.5.

Since the uniform patterns form the vast majority of the texture but there is only P + 1
different shapes of them, the descriptor size is reduced by labeling all the non-uniform
patterns as a single pattern shape. This makes only P + 2 different bins in the resulting
histogram, P + 1 for the uniform patterns and one for the rest. Such histogram is not only
smaller but also discriminates the textures better avoiding very small values for each of the
non-uniform patterns that could be affected by noise.

• • • o • o 0 o o • o o • o o • 0 o • o o o o o
• 0 • • 1 • • 2 • • 3 o • 4 o • 5 o • 6 o o 7 o o 8 0
• • • • • • • • • • • • • • o • 0 o 0 0 o o 0 o o 0 o

o • o • o • 0 o • o • • o o • 0 • • o • • o •
• o • • • • • • • o • • • o • • • 0
• • • • • 0 • o • • • o • • 0 • o • • 0 • • o 0 0 • •

o 0 0 0 o • 0 o • o 0 • o • • 0 o • o • • o •
• o • • • o • o • • • o • • • o o 0
• o • • o o • o 0 0 • • o • o o • o 0 0 • o o • * o •

o o 0 o o 0 0
•

• • 0 o • 0 o • 0 o • 0 o • 0 o
• o • 0 • • • o 0 o o • o o o o o 0
o • o ° o • ° o 0 ° o o • o • • o o • 0 o o • o o o •

Figure 4.5: A l l the existing rotation invariant L B P patterns for R = 1 and P = 8. The
patterns 0 — 8 in the first row are uniform. Taken from [16].

17

4.4 Scale-invariant Feature Transform (SIFT)
Scale-invariant Feature Transform (SIFT) is a robust local feature detector and descriptor
designed especially for object recognition and related tasks [12, 13]. It extracts stable point-
based features that are invariant to scaling, translation and rotation, and partially robust to
illumination changes and afnne or 3D projection. The algorithm is inspired by the behavior
of neurons that participate in primate vision and the scale invariance, high performance
and ability to detect partially occluded objects make it very efficient.

4.4.1 S I F T K e y Point Detection

The first step of the algorithm is the identification of key locations in the image that can
be found in all image scales. The locations are found by selecting minima and maxima
of a difference of Gaussian function (DoG) computed in so called scale space [10] with a
Gaussian kernel. The scale space consists of multiple levels of blur applied on the input
image. To achieve high performance the smoothing is done incrementally and the blurred
images are stacked in octaves of a scale pyramid as shown in Figure 4.6. To proceed to the
next level of the scale pyramid, the most blurred image is resampled to a smaller size using
bilinear interpolation. SIFT does fast blurring by convolving the image in both horizontal
and vertical directions with a ID Gaussian function

9(x) = ^=^e~^> (4-7)

where a is fixed to a = V 2 and higher smoothing is done by applying the same filter on
an already blurred image. The DoG is a band-pass filter that is calculated by subtracting
a blurred version of an image from a less blurred version of the same image. For image /
the DoG is then computed as DoG = A — B, where A = I * g, B = A * g and * denotes
convolution.

Gaussian Gaussian {DOG)

Figure 4.6: DoG function in a scale space. The scale space function is computed by incre­
mental application of Gaussian blur and image resampling in octaves (on the left). The
DoG function is then applied on adjacent scale steps in each octave (on the right). 3

3Image taken from http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/.

18

http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/

The minima and maxima of the DoG are then selected by comparing pixels through the
space pyramid. Each pixel is initially compared to its surrounding pixels at the same level
of the pyramid. If it is a minima or maxima, the pixel is compared to its closest neighbor
on the next level of the pyramid. If even then the pixel remains the minima or maxima,
the process is repeated on the next pyramid level. When the chosen pixel is not a minima
or maxima of the points we are comparing with, the process is stopped, making the search
very efficient since most of the pixels are eliminated quickly.

4.4.2 S I F T K e y Point Description

When the key points are identified, it is desirable to describe them in a way that would
be invariant to geometric transformations and local changes in the image. Since the key
point location and scale are already identified, the translation and rotation robustness can
be satisfied.

To describe the image at each local region, oriented gradients are extracted from the first
smoothed image on each level of the pyramid. The oriented gradients consist of magnitude
p and orientation 9 and for an image / the gradient at pixel Iij is computed as follows:

Pi,j = \J(hi ~ fi+ij)2 + ~ h,j+i)2 ^ g .

Oi,j = atan2(/jj — h+i,j + h,j — h,j+i)

The gradients are then used to compute local histograms of gradient orientations and the
peak in each histogram is selected as a canonical orientation for every key point. Having a
canonical orientation for each key point the rotation invariance can be accomplished.

To achieve the partial invariance to illumination changes, the gradient magnitudes are
thresholded at a given level relative to their maximal value. This gives more importance to
the gradient orientations which are less likely to be influenced by an illumination change.

The robustness against distortions caused by affine and 3D projections is implemented
by so called orientation planes - multiple images created for each local region, each of them
containing only gradients corresponding to one orientation. To achieve the invariance to
local distortions, the orientation planes are then blurred and resampled.

SIFT is a powerful key point detector and descriptor that can be used for object detec­
tion, key point matching between two images, classification and regression tasks, etc. Its
matching abilities can be seen in Figure 4.7.

19

4.5 Bag of Visual Words (BoVW)
The regression learning and predicting algorithms such as S V R (see Section 6.4) require
their inputs to be feature vectors of the same length for all input images. However, some of
the feature extraction algorithms such as SIFT (see Section 4.4.2) produce feature vectors
of different sizes since the number of extracted features depends on the amount of detected
information in the image. SIFT detects and describes key points in images but different
images can have different number of them which means that we are not able to construct
feature vectors of constant length that would be ordered alike.

Some other feature extraction algorithms such as H O G (see Section 4.2) produce feature
vectors of constant length but only if all the images have the same size. One approach of
facing this problem is to resize all the images to the same dimensions but this could damage
them when their proportions vary significantly.

To solve the above mentioned problems we can use a technique called bag of visual words
(BoVW) [7]. The B o V W method is analogous to bag of words method that is widely used in
learning from written text. The main idea of BoW is to create a "bag" of different words that
appear in all the documents and then compute their occurrences in each of the documents,
i.e. for each document we compute a histogram of its words. The B o V W applies the same
principle with the difference that instead of words we have encoded features. However, the
number of different features can be very high which means that we need to define larger
bins for the histogram o visual words. B o V W usually determines these bins by clustering
the encoded features with fc-means algorithm.

4.5.1 fc-means

The £;-means clustering algorithm aims to partition data into a given number of clusters
where each sample lies in the cluster that has the nearest mean. Formally, for a set of n
data vectors X = { x i , X 2 , . . . , x „ } , the fc-means algorithm divides the data into k < n sets
C = { C i , C 2 , . . . , Cfc} called clusters by minimizing the within-cluster sum of squares. This
is done by solving minimization problem of form

k
C = a r g m i n ^ ^ | | X j - d\\l, (4.9)

C i=lxj€Ci

where Cj denotes the mean of Cj . The fc-means clustering algorithm has a very high compu­
tational complexity and some of its implementations thus use various heuristic algorithms.

20

Chapter 5

Machine Learning

Machine learning is a large field in computer science, a subdomain of artificial intelligence
that is concerned with design and development of systems capable of learning from data.
Its importance lies mainly in solving problems where an analytical solution is unknown,
extremely hard to find or unfeasible.

This chapter presents the machine learning approaches that are essential for the design
of an embedding-driven learning system, explains the fundamental related terms, and places
the task of embedding-driven learning in their context.

5.1 Definition
Probably the first definition of machine learning was given by Arthur Samuel in 1959.
Samuel was an American scientist who is considered to be the first to develop a self-learning
program. He is believed to have defined machine learning as a

"Field of study that gives computers the ability to learn without being explicitly
programmed."

Although such definition does not appear in either of the usually referred articles [20, 21], it
is without doubt that Samuel was a pioneer of the machine learning field. It worths noting
that computers usually have to be programmed in order to learn something, but-what this
definition probably intends to say-they do not have to be explicitly programmed to solve
a specific problem because the method of solving the task will be learned instead.

Tom Michel, an American computer scientist and a professor of machine learning, pro­
vided another definition in his book Machine Learning published in 1997 [25]:

"The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience."

In the same book he also defined machine learning in a more formal way:

" A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E"

Michel accompanied this definition with an example of a program that is learning to play
checkers-the performance measure P would be its ability to win, the set of tasks T would
be represented by playing games and the experience E would be the knowledge obtained
when playing games against itself.

21

5.2 Generalization, Underfitting and Overfitting
The main objective of machine learning algorithms is to learn underlying hidden patterns in
the input data and to produce accurate predictions for unseen inputs based on the gained
knowledge. This key concept of machine learning is called generalization. According to
authors of Machine Learning: A n Artificial Intelligence Approach [], generalization can be
defined as

"Extending the scope of a concept description to include more instances."

Generalization is a crucial capability of a well-operating learning system. Failure to gener­
alize means that we can have no confidence in the predictions performed on unseen data.

One type of generalization failure may occur when we do not have enough training data
or the learning algorithm does not train enough. Such phenomenon is called underfitting.
The underfitting problem may be solved by using more data or improving the learning
algorithm, often with the cost of increased computational complexity.

Another problem may occur when the system is too complex or the algorithm trains
too much. The system is then loosing the ability to generalize in favor of specializing to
a particular training set and noise in its data. The prediction accuracy might significantly
decrease. This problem is called overfitting and its elimination usually requires extending
the learning algorithm with a mechanism of overfitting prevention. Different learning meth­
ods have different sensibility to the overfitting problem and thus the way of its prevention
depends on the used learning method.

— Model
- True function

• •• Samples

— Model
- True function

• •• Samples

— Model
True function

• •• Samples

(a) Generalization (b) Underfitting (c) Overfitting

Figure 5.1: Generalization, underfitting and overfitting. The aim is to model the true
function from a limited amount of noisy samples. While (a) learned the function almost
perfectly, both (b) and (c) can produce large errors for unseen samples.1

The differences between generalization, underfitting and overfitting are visualized in
Figure 5.1. Both underfitted and overfitted systems can produce large errors and fail to
give reasonable predictions for unseen samples.

A universal and reliable way of avoiding overfitting and choosing the best learning pa­
rameters to face unnecessary underfitting is to split the input data to training and testing
sets and evaluate the errors as described in Section 5.3 together with cross validation ex­
plained in Section 5.4.

1Images taken from h t tp : / / s c ik i t - l ea rn .o rg / .

22

http://scikit-learn.org/

5.3 Training and Testing
Training (also called fitting) is a process of acquiring knowledge from a previously prepared
set of data called training set. The aim of training is to find an underlying structure or
pattern in the data and generalize the the knowledge for items out of the training set. In
other words, we are trying to find a general model of the data. The quality and size of the
training set can significantly influence the quality of the model which makes the training
set an important part of machine learning systems.

Testing (also called predicting) is a process of predicting outputs for data that were not
used during training. For evaluation and verification of the quality of the model a dataset
with known ground truth outputs is usually used and the results of the prediction are
compared to the known ground truth values. Such dataset is called testing set. However,
the term "testing" is not used only to test the model and evaluate its quality but also when
using the trained model in production on data with unknown ground truth outputs. The
"production phase" can be thus equally called "testing phase".

TRAINING

Learning
algorithm

TESTING

Figure 5.2: Training, testing, and a model. The data is first split to training and testing
sets, an algorithm then learns a model from the training data which is then used to compute
predictions for the testing data. Those can be used to evaluate the quality of the model.

While evaluating a learning method and tuning its parameters, training and testing is
usually combined with so called cross validation techniques that aim to avoid bias that
could be caused by the specificity of a single training and testing set. Cross validation is
useful also for avoiding overfitting and tuning the parameters of the learning algorithm and
its principles are described in Section 5.4.

The resulting product of the training step is a general model of the hidden function we
were looking for estimated from the training data. A well-fitted model should be able to
give reasonably good predictions for previously unseen data samples. The basic training
and testing pipeline is depicted in Figure 5.2.

Most of the current machine learning algorithms require large sets of data to be able
to produce a well-fitted model. Depending on the the task and the used method at least
hundreds or thousands of items are usually necessary. Insufficient amount of training data
may result in a bad underfitted model. This makes the data collection also and important
part of the machine learning process.

23

5.4 Cross Validation
Cross validation [11] is a method of evaluating the performance of a machine learning
system. It can be also used to tune up the parameters of a learning algorithm and avoid
the problem of overfitting (see Section 5.2).

The main idea of cross validation is to split the data in training and testing sets (see
Section 5.3) multiple times and evaluate the results on each iteration. In each of the
iterations the training and testing sets contain different samples from the original data.
The system is thus evaluated multiple times and the results are averaged. This way cross
validation avoids bias in the quality measures that would be caused by the selection of a
single training and testing data.

The most common method of cross validation used in machine learning is called k-fold
cross validation. The main idea of &;-fold cross validation is to split the original data in k
even parts and perform k training and testing iterations. For i-th iteration the i-th last
part of the data is used as a testing set while the resulting parts are used for training. A n
example of fc-fold cross validation is shown in Figure 5.3.

SPLIT
DATASET

ITERATIONS

l 0
s i — J

1 Mean j

Figure 5.3: A n example of 5-fold cross validation. The data is split to 5 parts and 5 iterations
of training and testing are performed while averaging the results. For i-th iteration the i-th
last part of data is used for testing while the rest serves for training.

When the value of k in the fc-fold cross validation equals to the number of samples in
the input data, we speak of leave-one-out cross-validation. Leave-one-out cross-validation
thus uses only a single data sample in the testing set in each iteration and the number of
iterations is equal to the number of data samples.

Another method of cross validation splits the data to training and testing sets randomly
and then performs the learning and evaluation. Such approach is called repeated random
subsampling and its main advantage is that the number of iterations is completely arbitrary
and does not depend on the number and size of data parts. On the other hand some samples
may never be selected to the validation set.

24

5.5 Unsupervised Learning
Unsupervised learning algorithms learn from unlabeled data [2]. This means that during
training we have pure data with no additional information. The aim of unsupervised learn­
ing algorithms is to discover hidden structures and patterns in the data itself and create a
model that describes them in a generalized way.

Learning
Model

algorithm •̂1
Model

I
I
I

(9
Z
H 10 LU
H

Model Prediction Model
M

Prediction

Figure 5.4: Unsupervised learning from images. The system learns directly from the feature
vectors with no additional data. A prediction can be for instance a cluster identifier.

Unsupervised learning methods include clustering algorithms, hidden Markov models,
blind signal separation and other approaches. Since the data samples are unlabeled we have
no error values to evaluate the quality of the predictions. Unsupervised learning is used to
discover hidden groups of similar examples in the input data.

Figure 5.4 displays a typical pipeline of training and testing phases of unsupervised
learning from images.

5.6 Supervised Learning
Supervised learning algorithms learn from data with labels []. A label represents the desired
output of the prediction for a given example. The aim of supervised learning algorithms
is to find a function that would map data to their labels and that would be able to give
correct predictions for previously unseen inputs.

Supervised learning algorithms can be easily evaluated since we know the values of the
desired outputs. A typical pipeline of training and testing phases of supervised learning
from images is displayed in Figure 5.5. Depending on the character of the labels supervised
learning can be further divided in two categories - classification and regression.

5.6.1 Classification

When the data labels have limited amount of discrete values, the task of mapping data to
labels is called classification. A l l the possible discrete values of labels are then called classes
and the algorithms to solve classification problems are often called classifiers. A classifier
is a function that predicts a class for any given data including unseen inputs. Formally,
for a set of n <i-dimensional data vectors X = { X i , X 2 , . . . ,X„} and a set of classes C ,
a classifier is a function

f:X->C. (5.1)

25

I
T

Testing
Feature vector

1
Model

Label
image ^•1 Feature vector 1 H Model prediction

Figure 5.5: Supervised learning from images. The system aims to learn the relation between
feature vectors and data labels. A prediction is an estimated label value.

A classifier with only two classes is called binary. Binary classifiers are important for
predicting whether an objects belongs to a given class or not. This is typical for detection
tasks when we want to know if some object is present in the data or not. A n example can
be a decision whether an image frame contains a human face or not.

Classification with more than two classes is called multiclass classification. This is often
used for recognition problems when we want to know which object is present in the data.
A n example could be a decision who's face is in an image frame.

5.6.2 Regression

The task of mapping data to labels with continuous values is called regression. Regression is
a statistical method that aims to find a continuous function that would capture the relation
between data and labels and that would be generalized for unseen inputs. Such function
that maps data vectors to scalar label values is usually called regressor. Formally, for a set
of n d-dimensional data vectors X = { X i , X 2 , . . . , X n } , a regressor is a function

f:X->R. (5.2)

When we expect the relation between data and labels to be linear, the task is to fit
a line in the data-label space. The line parameters are usually computed by minimizing
the square distances between the line and training data. More sophisticated line fitting
methods then add robustness to various kinds of possible errors.

However, we cannot expect the real-world computer vision data to always have a linear
relation between the data inputs and their labels. In such case of possibly nonlinear data
the objective is to fit a curve in the data-labels space that would represent their relation.
Solving nonlinear regression problems is, however, significantly harder than the linear case
and requires the use of sophisticated regression methods.

Linear and nonlinear regression problems are described in Chapter 6 as well as relevant
methods of regression learning and their evaluation.

The difference between classification and regression is depicted in Figure 5.6.

26

(a) Classification2 (b) Regression3

Figure 5.6: Classification and regression. While (a) tries to separate the data in two classes
according to their labels (red and blue), (b) aims to fit a line to the data-label space.

5.7 Embedding-driven Learning
This work is focused on learning from images that are embedded in a multidimensional
space. In other words, the input data are images, their multidimensional coordinates repre­
sent their labels and the aim is to predict the embedding coordinates for an unseen image.
Since we have labels, embedding-driven learning is a form of supervised learning.

In general, the coordinates of points in an embedding can be given by vectors of arbitrary
real values as defined in Section 3.2. Hence, learning from embedded images is a regression
problem. Regression problems and the methods of solving them and their evaluation are
analyzed in Chapter 6.

A n important thing to note is that regression, as defined in Section 5.6.2, predicts scalar
continuous values. However, the coordinates in a <i-dimensional space are represented by
vectors of d elements. The regression learning system thus requires to be extended to handle
arbitrary number of dimensions. The methods of creating such system together with the
use of multiple different visual features are proposed in Chapter 7.

2Image taken from http://ml.py. sourcef orge.net/docs/3.5/lin_class.html.
3Image taken from ht tp: / /gaelvaroquaux.gi thub. io/sciki t - learn- tutor ia l / .

27

http://ml.py
http://gaelvaroquaux.github.io/scikit-learn-tutorial/

Chapter 6

Regression Analysis

As said in Section 5.7, embedding-driven learning is a regression problem since the em­
bedding coordinates are represented by continuous values. This chapter describes the main
principles of regression learning, studies the relevant methods of estimating regression prob­
lems, and presents possibilities of their evaluation.

6.1 Regression
Regression is a statistical method for estimating the relationships among variables [8]. The
importance of regression for the machine learning field is its ability to work with continuous
variables and thus complement a common discrete classification. The difference between
classification and regression is described in Chapter 5 and visualized in Figure 5.6.

Regression is an approach of modeling the relationship between data (one or more
variables denoted by x) and observations (also labels, a scalar variable denoted by y). The
data variables are often called independent variables (also regressors) and the observation
variable is usually called dependent variable (also regressand). The relationship between
data and observations is modeled with an error term e (random variable, also called noise).

Depending on the properties of the function used for modeling the relation between data
and observations we speak of linear and nonlinear regression. The aim of linear regression
methods is to fit a line to the data while nonlinear approaches intend to fit a curve.

6.1.1 Linear Regression

Linear regression assumes that the relationship between data and observations is modeled
by a linear function. For n observations and p data variables the linear regression can be
written as

y = X |3 + e, (6.1)

where

(V\

\VT,

X

Wr, \£r

and x r, (6.2)

Vx //)/
The y, X and e are vector variants of y, x and e described in Section 6.1 for n ob­

servations. The relation between data and observations is represented by |3, a vector of
regression coefficients (also called parameter vector).

28

When solving a regression problem, the main interest is to correctly estimate the |3
vector of regression coefficients. Predicting outputs for testing data is then done by a dot
product of X and |3.

In other words the main objective of solving linear regression is to fit a line into a data-
label space by correctly estimating its parameters. Different methods of linear regression
have different capabilities of robustness to noise and other problems and some of the most
important ones are described in Section 6.2.

6.1.2 Nonlinear Regression

Nonlinear regression is used when the relationship between data and observations is not
linear, i.e. when the observations cannot be expressed as a linear combination of the data.
Instead of fitting a line to the data-label space nonlinear regression techniques intend to
represent the hidden function by an arbitrary curve.

Solving nonlinear regression problems is generally a much more difficult task than es­
timating parameters of linear functions. The techniques of learning nonlinear regression
are based on solving linear cases in a very high-dimensional space by the use of so called
kernel functions. The principles of using kernel functions are described in Section 6.3 and
a very robust method of solving both linear and nonlinear regression problems is presented
in Section 6.4.

Nonlinear regression is a very powerful way of function estimation especially while work­
ing with complex data such as human-annotated relative similarities captured by multidi­
mensional embedding. While linear classification may sometimes do a good job in separating
classes of complex shapes, linear regression on nonlinear data will always result in a loss of
prediction accuracy making the task of solving nonlinear regression problems essential for
some kinds of data.

Figure 6.1 depicts the difference between linear and nonlinear regression and shows
that for nonlinear data the linear estimation can produce large errors while the nonlinear
methods can work much better.

Data Data

(a) Linear regression (b) Nonlinear regression

Figure 6.1: Linear and nonlinear regression. The function estimations were computed using
S V R with a linear (a) and nonlinear R B F (b) kernels (see Section 6.4) using noisy data
samples as displayed in the figures.

29

6.2 Basic Methods of Estimating Regression Problems
This section presents some basic methods of solving linear regression problems and outlines
the techniques of dealing with noise and other defects in the input data. The main objective
is to describe some essential principles of solving regression problems that are necessary to
understand more complex and robust methods presented in sections 6.3 and 6.4.

6.2.1 Ordinary Least Squares Regression

Ordinary least squares (OLS) is the simplest and most straightforward method of solving
regression problems with linear relationship between data and observations. The idea is to
fit a line to the observed data that would minimize the residual sum of square distances
between itself and the observations. This is done by finding an estimate 0 of the parameter
vector |3. Mathematically, OLS solves a minimization problem of form

P = argmin ||X|3 - y|||, (6.3)
P

where ||-||2 denotes the Euclidean distance.
This method is, however, very sensible to the character of the data and under some cir­

cumstances can produce large errors. The first problem are outliers - points in the training
set that are very far from the rest of the data. The problem is that OLS tries to minimize
the sum of the squared distances from the data but such points will have a strong influence
on that sum.

The OLS also assumes that there is no multicollinearity in the input data. This means
that there must be no linear dependence between the columns of the data matrix X , oth­
erwise the method can become highly sensitive to random errors.

6.2.2 Ridge Regression

Ridge regression (also known as Tikhonov regularization) faces the multicollinearity prob­
lem by introducing a penalty on the size of the coefficients. This technique is called regu­
larization, in statistics also known as shrinkage. The penalty is defined as a square of the
Euclidean norm of the coefficients controlled by a small constant a > 0 called complexity
parameter. The minimization problem from Equation 6.3 then takes the following form:

|3 = argmin ||X|3 - y||2 + a|||3||2. (6.4)
P

The robustness to multicollinearity depends on the value of the complexity parameter a.
The higher its value the more the the parameters are shrunk, resulting in higher robustness
to multicollinearity.

6.2.3 Other Modifications of Least Squares Regression

Many other methods improve the robustness of the least squares regression by introducing
different parameters and normalizers. One of them, called L A S S O (standing for Least
Absolute Shrinkage and Selection Operator), replaces the Euclidean penalty in Equation
6.4 with a t\ norm. The main advantage is its capability of producing zero parameters and
thus generating sparse solutions making L A S S O also a parameter selection method.

Another modification, called Elastic Net, combines the penalties of Ridge and LASSO
regression using both the £\ and £2 norms [32]. This way it is capable of learning sparse
solutions like L A S S O with the regularization properties of ridge regression.

30

6.3 Kernel Ridge Regression
Ridge regression is probably the simplest algorithm that can be extended to solve nonlinear
regression problems. The idea of its nonlinear extension was first developed in 1998 []
and then was extended and named Kernel Ridge Regression (KRR) [5, 28].

K R R maps the input data to a high-dimensional feature space and performs linear
regression on those features. This results in constructing nonlinear regression function on
the original data. However, the feature space representation can result in a very large
increase of dimensionality and thus produce long feature vectors with large number of
parameters. This can cause the problem to be extremely hard or impossible to compute.

To solve the problem of a very high dimensionality of the feature vectors K R R imple­
ments kernel functions. Kernel functions represent dot products in the feature space which
allows to perform computations in that space without having to actually build it. In other
words, we do not have to compute all the feature vectors but we can still compute their dot
products by applying the kernel functions.

To construct linear regression in the feature space we need to choose a mapping $ from
the original observations space X to the high-dimensional feature space T:

^•X^fT. (6.5)

However, instead of choosing the exact $ we can choose only a kernel function K, as long
as we know that

£ (x i , x j) = $(xi) • $(xj) V x i j € X, (6.6)

where • denotes dot product. In other words, we must choose a kernel function that, taking
two observations as inputs, performs dot product of their images in the feature space. The
concept of kernel function is depicted in Figure 6.2.

(a) Input space (b) Feature space

Figure 6.2: The principle of kernel regression. The inputs are mapped to a high-dimensional
feature space where a linear regression is evaluated resulting in non-linear function estima­
tion in the input space. The figure is only schematic and does not show real data.

The kernel functions can be defined in many ways and more information on the tech­
niques of their derivation as well as further technical details of the K R R method can be
found in [22, 28]. It worths noting that K R R can be also defined as a special case of the
S V R method, that is described in Section 6.4, and ridge regression, as defined in Section
6.2.2, is a special case of K R R when choosing dot product as a kernel function. Moreover,
the OLS method, as defined in Section 6.2.1, is a special case of ridge regression (when
setting a = 0 in definition 6.4), which allows K R R to compute also a kernel version of OLS.

The main disadvantage of the K R R method is that it does not produce sparse parameter
vectors, i.e. parameter vectors with many zeros, which means all of the parameters are
always used resulting in poor computational performance.

31

6.4 Support Vector Regression
Support vector regression (SVR) is a complex and robust regression method based on the
support vector machines (SVM) algorithm that is widely used also for classification. The
S V M implement a learning algorithm for recognizing patterns in complex datasets and
generalizing the knowledge to unseen data. It was largely developed in the 1990s at A T & T
Bell Laboratories as a nonlinear generalization of so called generalized portrait algorithm
that was introduced in the 1960s [23].

Similarly to the case of K R R (see Section 6.3) the S V M algorithm maps the observed
data to a high-dimensional feature space (see Equation 6.5) and instead of costly computing
the space itself it only performs a dot product of the feature vectors by the use of kernel
functions directly on the input data (see Equation 6.6).

Depending on the used kernel function the S V M can construct a nonlinear function in
the input data by constructing a linear function in the feature space. In case of classification
a linear separation of the feature space can produce a nonlinear separation of the input data,
whereas for regression a linear function fitted to the feature space can result in a nonlinear
function fitted to the data.

6.4.1 e - S V R

The S V R algorithm was first introduced by Vapnik in 1995 []. His method is usually
denoted by e-SVR because its goal is to find a function that has at most esvr deviation
from all the training data and at the same time is as flat as possible. This means the
method does not care about errors smaller than £svr but will not accept any error that is
larger. The value of esvr thus bounds an area around the fitted curve inside which most
of the data samples should ideally lie. Such area is called e-tube.

Taking a linear case at first and going back to the Equation 6.1 that defines linear
regression as y = X|3 + e, the requirement of flat solution means that we are trying to find
small values of |3. This can be achieved by minimizing its norm and Vapnik formulated the
problem as follows:

subject to yi - x^|3 - e* < eSvr

-Vi + X-JP + Si <sSvr

In other words, we are trying to find small values of |3 that would make all the data
samples lie inside the e-tube. However, such formulation works only if the minimization
problem is feasible and the data samples are not damaged. To allow for some errors and
noise the formulation was extended with slack variables sf and s~ and their sum is also a
subject to the minimization process:

1 n

minimize + C y^Xst + s7)
1 i=i

subject to m - xj& - Ei < ESVR +sf (6.8)

-Vi + x^|3 + si < esvr + s~

sf,s->0

The constant C > 0 represents a trade-off parameter between the flatness of the estimated
function and the tolerance of errors larger than esvr-

32

The choice of values of both ESVR and C parameters can have a significant impact on
the quality of the resulting model. Higher values of ESVR produce flatter solutions and
may cause underfitting if set to very high values while very low values can become sensible
to errors and overfit. Similarly, low values of C allow for larger errors and may tend to
underfit while high values may become error-sensible and cause overfitting. The effects
different values of both of the parameters are shown in Figure 6.3.

(a) eSVR (b)C

Figure 6.3: Different values of parameters SSVR and C. Parameter SSVR controls the
flatness of the resulting function whereas C affects the sensibility to errors. Both tend to
underfit while using low values and overfit when set to high ones. In (a) the value of C was
fixed to 1.0 while in (b) the £SVR was set to 0.06.

Choosing the right values of £SVR and C and avoiding problems of overfitting and
underfitting is not an easy task. One way to approach the parameter tuning is to evaluate
the performance for different parameter values using the technique of cross validation as
described in Section 5.4

6.4.2 Support Vectors

In case of classification the S V M algorithm separates two classes of training data in the
feature space by a hyperplane with a maximum margin, i.e. in a way that the area without
data points around the hyperplane is the largest possible. However, only some of the
training points that are close to the hyperplane are necessary to define its position. In
other words, only some points will change the parameters of the hyperplane if we remove
them or change their position.

When computing regression with the e-SVR algorithm we aim to fit a line to the data
in a high-dimensional feature space. A l l data points that lie inside the e-tube of such line
are ignored (see Section 6.4.1). This means that removing points lying inside the e-tube
or changing their position in the tube does not influence the parameters of the fitted line.
Only the points that lie outside the e-tube are thus important for the computed parameters.

Such points from the training set that are important for the shape of the hyperplane
(SVC) or line (SVR) in the feature space are called support vectors and their positions in
the input data are visualized in Figure 6.4. The main advantage of support vectors is that
they produce sparse resulting parameter vector, i.e. many parameters have zero values,
and thus significantly reduce the computational complexity because it is not necessary to
compute dot products with all of the training points.

33

(a) SVC support vectors (b) SVR support vectors

Figure 6.4: Support vectors displayed in the input data for SVC and SVR. While the SVC
support vectors lie close to the border between two classes (a), the S V R support vectors
are the points outside the e-tube (b). 1

6.4.3 Kernel Functions

As stated in Equation 6.6, a kernel function can be defined in any way, as long as it
corresponds to a dot product in the feature space. Hence, various kernel functions with
different properties can be used with SVR. This section briefly lists the most common kernel
functions used with SVMs and describes their most important properties [9].

Linear kernel. Linear kernel is probably the simplest kernel function, defined as the dot
product itself:

/C(xj,Xj) = Xj • Xj, (6.9)

where • denotes dot product. Learning methods using linear kernel are usually equivalent to
their non-kernel variants and linear kernel thus does not help in solving nonlinear problems.
This makes linear kernel useful only for linear data or to compare the performance of
learning linear and nonlinear function estimations.

Polynomial kernel. Polynomial kernel represents data samples in the feature space over
polynomials of the original variables. In other words, it uses not only the input vectors to
measure their similarity but also combinations of them. For polynomials of degree d the
kernel function can be defined as:

J C f o x j) = •x J- + c) d , (6.10)

where c is a constant term that impacts the importance of higher and lower orders of the
polynomial. The polynomial kernel is often used for some tasks in S V M classification. Its
main problems are its tendency to overfit for larger values of d and a numerical instability
in some special cases.

1Image taken from http://www.di.ens.fr/-mschmidt/Software/minFunc/minFunc.html.

34

http://www.di.ens.fr/-mschmidt/Software/minFunc/minFunc.html

Radial basis function kernel (RBF). A Gaussian radial basis function is probably the
most popular kernel in S V M classification and regression. It can be defined as:

Ilxi-Xjll2
£(xi ,xj) = e (6.11)

where a is a parameter that impacts its ability of learning from the data samples. Ex­
cessively high values of a may cause underfitting and almost a linear behavior while lower
values may tend to overfit. The R B F kernel is suitable for a large range of machine learning
tasks and its versatility makes it the default kernel function in some S V M implementations.

x x

(a) y = sin x (b) y = x3

Figure 6.5: Different kernel functions used with SVR. In (a) R B F gives the best results
whereas in (b) it is outperformed by the polynomial kernel as the character of the ground
truth function is also polynomial.

Although the R B F kernel might be suitable for most of the computer vision and machine
learning tasks, other kernels may perform better in some specific cases. It is therefore pos­
sible to include the selection of the kernel function in the parameter tuning step. Examples
of using the described kernel functions are depicted in Figure 6.5.

6.5 Evaluating Regression Models
When a regression model is learned we need to evaluate its performance using some nu­
meric measures. This section focuses on error measurements that can be incorporated in
a common machine learning pipeline using training and testing data and cross validation
techniques (see sections 5.3 and 5.4).

6.5.1 Mean Absolute Error (M A E)

The M A E measure simply computes the mean of absolute difference between all predicted
values and their ground truth. For n the M A E measure is defined as:

1 n

M A E = -Y}fi-yi\, (6.12)
Tl .

where m denotes i-th predicted output and fi represents the corresponding value of the
true function.

35

M A E averages the error magnitudes with the same weights across all values of n, i.e.
each error participates to the average by its real magnitude. Such error measure is partic­
ularly meaningful when we work with continuous variable that can be affected with noise.

6.5.2 Mean Squared Error (M S E)

M S E computes the mean of squared differences between all predicted values and their
ground truth:

1 n

MSE=-J2(fi-Vi)2, (6-13)

where yi denotes i-th predicted output and fi represents the corresponding value of the
true function.

This way M S E assigns weights to the errors, accentuating the large values and reducing
the small ones. The M S E measure is thus much stricter than M A E and it is suitable in
cases where we want to completely avoid large errors.

36

Chapter 7

System Design

This chapter proposes a design and an architecture of an image-based embedding-driven
learning system. It connects the theory studied in chapters 3, 4 and 5 and analyzes a few
simple approaches of improving the prediction performance by using the information from
multiple visual features at once.

7.1 Basic Architecture
The basic architecture of the system is based on the classical supervised learning pipeline
described in Section 5.5. The training data labels are represented by an embedding (see
Chapter 3), in particular each image from the training set has its coordinates in an em­
bedding. The learning algorithm used to learn the relations among the testing images and
their embedding coordinates is Support Vector Regression (SVR, see Chapter 6).

Since the S V R algorithm outputs a single real number, the embedding is decomposed
to its single dimensions and each of them is learned separately. The S V R algorithm is thus
extended to a multi-model version that can output vectors of arbitrary length. The basic
system architecture works with a single chosen visual feature and it is shown in Figure 7.1.

D-dimensional
Embedding

z
I-(/)
HI
H

Feature vector
Embedding
coordinates
prediction

Figure 7.1: The basic system architecture. A single feature vector is extracted from each of
the training images and an S V R is used to learn a model for each of the dimensions. In the
test time one feature vector is used to predict each of the dimensions of the coordinates.

37

7.2 Feature Selection
The simplest way of using multiple visual features to improve the prediction accuracy is
choosing the best one for each of the dimensions of the embedding.

Multiple different feature vectors are extracted from each of the training images and an
S V R learning is computed for each of the visual features and each of the dimensions of the
embedding. The best performing visual feature is then chosen for each of the dimensions and
the resulting multidimensional model is then composed of multiple simple one-dimensional
models while each of them can be fitted on different visual features.

This method can significantly improve the prediction accuracy since different dimen­
sions of an embedding can represent different attributes of the objects and those can be in
some cases captured by different visual features. For instance a 2-dimensional embedding
can capture color in one of the dimensions and shape in the other one. Although more com­
plex embeddings cannot be decomposed to a simple image attributes like color and shape,
different visual features can still show significant differences in performance for estimating
the position in a particular dimension.

The design of a per-dimension feature selection pipeline is visualized in Figure 7.2.

D-dimensional
Embedding

Embedding
coordinates
prediction

Figure 7.2: Feature selection. Multiple visual features are extracted from each image in
the training step and a model is learned and evaluated for each of them. The best model
is then selected for each of the dimensions. During testing only the best features need to
be extracted and passed to the learned models.

Feature selection is relatively computationally expensive in the training phase since a
multidimensional S V R learning has to be computed for each of the extracted visual features.
This can make the learning process time-consuming, especially on a larger dataset or while
working with images of large proportions.

During the testing phase the computational complexity does not have to be significantly
worse than for the single-feature case, since one prediction per dimension has to be done in
both cases. However, using the feature selection can make the feature extraction process
d-times more complex for a <i-dimensional embedding since at most d-times more feature
vectors may be extracted.

38

7.3 Feature Concatenation
Another simple method of using the information from multiple extracted visual features
is their concatenation. The idea seems meaningful - since the extraction of every different
visual feature produces a feature vector that carries different information, all the feature
vectors can be concatenated to a single long feature vector to capture more information.

However, doing so might be risky for various reasons. Several problems may occur
depending on the used learning method. At first, different feature vectors may contain
completely different absolute values and some learning algorithms might not work well
with the resulting concatenated feature vectors. Such problems can, however, be avoided
by normalizing the values of feature vectors from the training set and then applying the
same scale to the testing features. Usually the training features are normalized to the range
from 0 to 1.

Some learning algorithms may also be sensible to the length of the feature vectors.
Depending on the number of used visual features the concatenated feature vectors may be
extremely long and some learning methods may not work well if the feature vectors are
many times longer than the size of the dataset. However, the S V R algorithm should be
robust to such situations. The resulting feature vector can also be composed of simple
features that vary a lot in length which might be another source of errors in some cases.

The principle of feature concatenation is depicted in Figure 7.3.

D-dimensional
Embedding

Embedding
coordinates
prediction

Figure 7.3: Feature concatenation. Multiple feature vectors are extracted from each of the
images and concatenated to a single high-dimensional feature vector in both training and
testing steps. Careful normalization of the feature values is necessary to avoid errors.

When dealing carefully with all the possible problems, the feature concatenation can
give good results with a low computational complexity. In both training and testing phases
all the chosen visual features are extracted, concatenated to a single vector and then used
the same way as for a single visual feature. The learning process thus runs only once for
each of the dimensions and the prediction in testing phase is done using a single feature
vector. However, the process may be much slower then using a single visual feature because
the concatenated vectors can be much longer.

39

7.4 Feature Weighting
A more complex way of using multiple visual features is assigning them some kind of weights
controlling how much each of them contributes to the result. The weights can be either
chosen statically or defined as a function that can be learned and modeled. This section
presents a solution that learns a weighting function using the S V R algorithm on top of
predictions computed from all the used visual features.

Initially, all the different visual features are extracted from each of the training images.
Then a complete multidimensional model is learned for each of the the features, similarly
as described in Section 7.2. Then, all the models are used to compute their predictions on
the whole training set. For each dimension of the embedding we thus have a set of different
predictions and we want to figure out how to combine them to get the best value.

A l l the predictions for a particular dimension are then used as an input of another S V R
learning driven by the embedding. This step thus learns a model of a function that is
capable of weighting different predictions of the same value to get the best result. Testing
phase requires extracting all the used visual features from the input image, predicting
embedding coordinates for each of them, and then estimating the best coordinates from all
of the predictions.

The described principles of feature weighting are portrayed in figure 7.4.

D-dimensional
Embedding

Embedding
coordinates
prediction

Figure 7.4: Feature weighting. Multiple visual features are extracted from each of the
images and a model is learned for each feature type. Predictions on the training set are
then computed with all of the models and their values are used to learn another model
that would be able of weighting them. During testing all the predictions are computed
and weighted afterwards. Although this method is computationally expensive it is a robust
solution that should improve the prediction accuracy.

Feature weighting using an S V R is a robust method of combining multiple different
visual features but it is also the most computationally expensive one since many models are
learned in the training phase and many predictions have to be computed during testing.
However, if the prediction accuracy is important, the described method of feature weighting
might be a suitable solution.

40

7.5 Prediction Accuracy Evaluation
Having an image-based embedding-driven learning system we need a way of evaluating its
performance. Two measures of regression accuracy were described in Section 6.5 - M A E and
M S E . Although these measures can be used to evaluate the model from the training set
itself, we are primarily interested in the ability of the regression algorithm to generalize on
unseen data samples. Therefore, all error measures will be evaluated in a common machine
learning way-i .e. on a testing set that was not used for training.

Mean absolute error (M A E) . Since the regression models are learned per-dimension
we need a measure to evaluate the performance in each of them. Such measure should
tell us how good the predictions are on average. M S E is, however, mainly concerned with
penalizing very large errors and a even a small number of large error values will significantly
impact its result. Therefore, the simple principle of M A E appears to be much more suitable
for an embedding driven learning since it gives us a better idea about the average prediction
quality. The definition of M A E is stated in Equation 6.12.

Mean Euclidean error (MEE) . The S V R algorithm is sensible to the size of the data
samples and thus requires a normalization of its inputs. Each dimension of the embedding
is therefore normalized and the predictions are scaled back to the original embedding size
in the testing phase. Once the predictions for all of the dimensions are transformed to the
original embedding we can compute the Euclidean distance between the prediction and the
original point. The mean of such distances can give us an overall prediction quality measure
that will be further denoted as mean Euclidean error (MEE) . For n embedded objects it
can be defined as

1 n -
M E E = -YJ\\f(xi)-f(xi)\\2, (7.1)

where f{xi) denotes the predicted position of object Xi and f(xi) its true coordinates.
The prediction performance of the proposed system thus can be evaluated with the

M A E measure on the per-dimension basis and using both M A E and M E E to obtain the
overall error values.

When we have no previous results to compare with, it is desirable to evaluate how well
the system performs compared to a random behavior. In classification such randomness cor­
responds to a system that for each input picks a predicted class at random. To capture such
measures in context of embedding-driven learning, two random models were introduced.

Random Value Model (RVM). R V M is a model that for each input from the testing
set predicts the embedding coordinates as random continuous values limited by the minimal
and maximal values in each dimension. R V M thus produces completely random predictions
that are limited only by the size of the embedding.

Random Neighbor Model (RNM). R N M is a model that for each input used during
testing picks a random sample from the training set and uses its embedding coordinates
as a prediction. When the training samples are embedded evenly across all the embedding
space, R N M will act similarly to R V M . However, if the original embedding contains dense
clusters where majority of points is concentrated, the R N M measure will give better results
than R V M since the chances of getting close to the true position are much higher. Therefore,
R N M depends on the embedding's inner structure while R V M is structure-independent.

41

Chapter 8

Implementation

This chapter describes a library that was developed to simplify the implementation of an
image-based embedding-driven learning system. The library wraps various existing compu­
tational tools, brings additional functionality, and provides handy programming interfaces.
A l l the experiments presented in further chapters were performed using the developed tool.

8.1 Choice of Programming Environment
Implementing a tool for image-based embedding-driven learning have vast requirements in
terms of data processing and learning algorithms. We need to work with multidimensional
embeddings (see Chapter 3), extract various visual features from images (see Chapter 4),
transform and normalize them, work with large sets of data, apply regression methods to
learn from the data (see Chapter 6) and perform experiments to evaluate the results.

A l l the mentioned tasks require an extensive use of numeric methods, matrix computa­
tions, scientific libraries with regression solvers, image processing functions, and an interface
for data visualization.

8.1.1 Matlab

Based on the requirements the first and probably most intuitive choice might be the Matlab 1

environment since it implements a part of the desired functionality out-of-the-box and
many additional libraries exist. Various numeric methods, matrix operations, and data
visualization algorithms are implemented in its core and complex toolkits for extracting
visual features and solving regression problems exist.

However, Matblab has also some disadvantages that play an important role in software
development:

• The first significant limitation of Matlab is its license. Matlab is not free and its price
and closed license may make it harder to obtain. For the same reasons Matlab may
not be an ideal choice for future development since all the developed functionality
would be dependent on its licensed environment.

• Another problem of Matlab is its programming language which might be suitable for
fast prototyping and small scripting but proves to be very inflexible for development
of a larger system. While some mathematical expressions have a convenient syntax,
classical programming constructs are heavy-footed and the more advanced ones do
not exist at all.

1http://www.mathworks.com/products/matlab/

42

http://www.mathworks.com/products/matlab/

• Third point against Matlab is that whole its environment is extremely heavyweight
requiring a few gigabytes of space to install and making the environment slow on less
powerful machines. Although some functions can be written in pure C for performance
reasons, their compilation and integration to Matlab is relatively complicated and can
make the development harder.

8.1.2 Python

Probably the only alternative environment that provides similar computation base as Mat­
lab along with advanced programming paradigms is Python 2 with a set of open-source
scientific libraries. In the last years Python has grown a lot in the scientific community,
many mathematical libraries were released and some projects try to completely replace the
Matlab environment.

Python is not affected with any of the main Matlab disadvantages:

• Python itself and all of the most important scientific libraries are completely open-
source and thus do not limit the area of usage in any way.

• Python itself is a very flexible and dynamic programming language that also provides
advanced programming paradigms. Its syntax is very intuitive and mathematical
expressions are defined in a similar way to Matlab.

• Python together with some scientific libraries is still a much more lightweight solution
when comparing to Matlab and its execution can be in some cases faster. Many
complex algorithms are for higher performance also implemented in C.

The Python's main disadvantage is that most of the computer vision and machine
learning algorithms were originally developed with Matlab and Python thus have a smaller
library base. However, in the last years many algorithms were ported to Python and most
of the necessary functionality for image-based embedding-driven learning can be found in
the existing libraries.

For the described reasons Python appeared to be the best choice, gaining free lightweight
solution with programming flexibility on one hand and the possibly of having to implement
some non-existing functionality on the other. The libraries and packages used for the
implementation are described in Section 8.2.

8.2 Used Technologies
Python itself does not offer any scientific computational capabilities since it is a universal
all-purpose programming language. This section describes the most important libraries and
packages that were used to cover the scientific computations and other useful functionality.

Numpy. Numpy 3 is the base of all numeric and scientific computations in Python. It
provides fast matrix operations using a convenient Matlab-like syntax, linear algebra com­
putations and other useful functions. Numpy is also the base of most of the scientific
libraries in Python.

In this work Numpy was largely used to develop dataset building tools, embedding
operations, visual feature extraction and others, including scripts for all the experiments.

2https://www.python.org/
3http://www.numpy.org/

43

https://www.python.org/
http://www.numpy.org/

Scipy. Scipy'1 is a fundamental open-source library for scientific computing in Python
built on top of the Numpy package.

Scipy itself was used for computing basic mathematical functions, KD-trees for nearest
neighbor search and served as a base for other libraries.

Scikit-learn. Scikit-learn 5 (also called sklearn) is a large set of tools for machine learning
built on top of Numpy and Scipy and offering many methods of classification, regression,
clustering, data normalization, etc.

Scikit-learn was used for data normalization, regression learning, implementation of Bag
of Visual Words with K-Means clustering and other tasks.

Scikit-image. Scikit-image 6 (also called skimage) is an image processing library built on
top of Scipy and Numpy. It implements many image processing algorithms such as trans­
formations, filtering, segmentation, restoration, and others, and also some of the feature
extraction algorithms.

Scikit-image served especially for computation of H O G and L B P features and was also
used for some data visualizations.

Matplotlib. Matplotlib 7 is a very complex Python plotting library capable of producing
a large variety of high quality figures.

Matplotlib was used for all the data visualizations.

VLFeat. VLFea t 8 is a visual feature extraction library written in C. It has official bindings
to Matlab and some of the feature extraction algorithms are released as command line tools.

VLFeat was used to extract SIFT features from the images. Although some incomplete
unofficial Python bindings exist, they are unstable on some platforms and thus the command
line version of SIFT was wrapped with Python code. VLFeat was chosen over OpenCV 9

because its SIFT implementation gives much better results.

8.3 Implemented Functionality
This section describes the main functionality that was developed in order to implement
image-based embedding-driven learning. The implemented tool is further in the text re­
ferred to as E V F L standing for Embedding-driven Visual Feature Extraction and Learning.

8.3.1 Datasets

The base of the E V F L functionality lies in a module for dataset management and operations.
Handling the dataset operations in a convenient is important for the implementation for
any larger experiments. The module offers an easy way of dataset creation from a directory
with images and its annotating with an embedding. On such dataset we can then perform
the following operations:

4http://www.scipy.org/
5 ht tp : / / s c i k i t - l e a rn .o rg /
6 ht tp : / / sc ik i t - image .org /
7 ht tp : / /matplot l ib .org/
8http://www.vlf eat.org/
9 http://opencv.org/

44

http://www.scipy.org/
http://s
http://scikit-image.org/
http://matplotlib.org/
http://www.vlf
http://opencv.org/

• The dataset can be shuffled, i.e. the images are randomly reordered preserving their
correct annotations and other information. The shuffling function also allows for usage
of an explicit seed to get the same shuffled order on its each run. Dataset shuffling is
useful for its further splitting to training and testing sets, etc.

• Another important operation is creating a subset of the original dataset. A n arbi­
trary number of subsets can be defined by specifying the ranges of items for each of
them. A l l the embedding annotation and other data are correctly preserved. A subset
operation returns another instances of dataset.

• Especially for the purposes of fc-fold cross-validation the dataset module also offers
an operation for splitting the dataset to a given number of evenly sized parts. The
operation is equal to creating k subsets but all the subset ranges are computed auto­
matically.

• When working with subsets we might want to join some of them together to form
a larger dataset. A functionality to join an arbitrary number of datasets has been
implemented as well as their joining by a common addition which was achieved by
overloading of the addition operator.

To lower the memory usage the dataset stores only the paths of the images and loads
their content dynamically when required. This functionality lies in the image handling
module which is described in the next subsection.

8.3.2 Images

Another important module of the E V F L toolkit provides an interface for working with
images. A n image can be instanced from its path and instead of being loaded immediately
the module stores just the path and loads its content when it is necessary. This way we can
avoid storing all the dataset in the memory at the same time which could cause memory
errors. The module offers the following functionality:

• A n easy access to any of the color channels of the image. The image data is loaded
lazily when it is necessary and the requested channels are returned in form of Numpy
arrays to be easily used in feature extraction algorithms.

• The image module wraps up all the feature extraction algorithms that are described in
Section 8.3.3 and allows for their automatic caching using the cache system described
in Section 8.3.6. The cache of the features automatically invalidates on any parameter
or image change to always provide the most actual results.

• The image module also provides methods for a quick plot of the image in different
color scales.

8.3.3 Feature Extraction

The feature extraction module exposes a unified programming interface for different visual
feature extraction algorithms. It also adds some of their missing functionality and imple­
ments various ways of their visualization. The module covers extraction of the following
features (see Chapter 4):

45

• Global and local color histograms that were implemented with the use of Numpy
functions and allow for setting of all the important parameters as well as histogram
normalization.

• The extraction of H O G features is built as a wrapper over the implementation from
Scickit-image. The function is extended to allow for generating non-flattened raw
H O G values that could be used in a Bag of Visual Words.

• The L B P features are also computed with the implementation from Scikit-image which
is extended to compute a histogram of the features and automatically estimate its
number of bins.

• Extraction of SIFT features is based on a command line version of the VLFeat's SIFT
implementation. As explained in Section 8.2, this way of implementation was chosen
due to the non-existence of a complete VLFeat Python wrapper and bad quality of
the SIFT implementation in OpenCV.

The feature extraction module also provides an implementation of the Bag of Visual
Words feature representation and offers various functions for visualization of the extracted
features.

8.3.4 Regression

A l l the important regression learning capabilities are provided by a regression module. The
module implements a generic regression learning wrapper that is capable of working with
multidimensional embedding and supports models with multiple dimensions. Various error
scores can be computed over all the embedding dimensions and evaluated.

The algorithms that implement the regression learning itself are all part of the Scikit-
learn package. Along with S V R other simple linear regression methods are included for
demonstration purposes. The regression module adds the possibility of storing a learned
multidimensional model in a file on a hard drive and then loading it back again.

8.3.5 Caching

The developed E V F L toolset provides also a caching module to speed up some of the
computations. The cache is implemented as a key-value storage with a universal interface
that can be extended to different caching backends. The default implemented backend uses
binary files to store the cached data on a hard drive.

To separate large sets of values in the storage the cache provides a namespace function­
ality that helps to organize the cached data. The cache keys can be represented by almost
any basic data type such as strings, numbers, dictionaries or lists and are automatically
hashed to a unique string. The module also offers a Python decorator to cache results of
whole functions using their parameters as the caching keys.

Internally the caching system is used in the feature extraction module to avoid extracting
the same visual features on every run of the algorithm.

8.3.6 Tools

The last module of the E V F L package serves as a storage for any other useful algorithms
and functions. Currently it implements an embedding scaler that normalizes the embedding
size before the training step and resizes it back after prediction.

46

8.4 Demo Application
In order to demonstrate the functionality of the developed system a simple application with
a graphical user interface was created. The application allows the user to insert an image
and using a selected method it predicts and displays five of its most similar images from a
dataset of food images described in further chapters. The interface of the application can
be seen in Figure 8.1.

7i Embedding-driven Fisual Feature Extraction and Learning

1. Choose an image and a prediction method:

Choose an image...

T CKG

f CHL

r HOG 2x2

C HUG 3x3

r LBP1Í8

C LBP2Í16

C LBP 3/24

t~ SIFT

C Afl{weighted)

2. See the nearest neighbors of the prediction:

Figure 8.1: The interface of the demo application.

Internally, the application contains a set of food images together with an embedding
representing their taste similarities and various regression models pre-trained on them using
different visual features. Each uploaded image is then resized and some of its visual features
are extracted depending on the selected prediction method. A corresponding model is then
used to predict an embedding position of the selected image and five nearest neighbors of
the predicted position are displayed to the user.

47

Chapter 9

Testing Data

A well-annotated dataset of images is an essential part of a development and testing of any
machine learning system that works with visual features. This chapter describes how the
testing data was obtained and what kind of images and annotations it contains.

9.1 Getting the Data
The easiest and cheapest way of getting the testing data is to use an already existing dataset
which has sufficient amount of images and sufficiently good quality of desired annotations.
Although nowadays there is a large number of open-source image datasets available in the
computer vision community, there was no embedding-annotated image dataset at the time
of this work. This also means that there are no previous experiments with results that
would serve to compare the achieved performance.

Another possibility of getting the data is creating a synthetic embedding automatically
based on the dataset annotations. That, however, appeared to be a difficult task since most
of the existing image datasets are classification-oriented but embedding-driven learning is
a regression problem. Most of the existing regression datasets contain no images at all
and those that do have no suitable annotations. A n extensive research of existing image
datasets thus showed that creating and embedding from the existing annotations would be
a very difficult task.

Therefore, it finally appeared that the best option to get a suitable dataset was to create
a new one from scratch and collect all the desired annotations. Both the datasets described
in this chapter were collected with the help of my colleagues since they were interested in
using them as well.

9.2 Chosing an Image Set
While developing and testing machine learning algorithms it is often convenient to use at
least two different datasets of different sizes and complexities. A small and simple dataset
is useful for algorithm testing, verification, and data visualization, while a larger dataset is
better to measure the real performance of the system.

Two different image sets with different requirements were thus chosen, collected, and
annotated. A small "toy" dataset is presented in Section 9.3 and a larger dataset is described
in Section 9.4.

18

9.3 A Toy Dataset (Flags-196)
A small "toy" dataset should serve especially for fast algorithm testing, verification of their
correct functionality and a comprehensible visualization of the results. The requirements
thus were to collect about two or three hundred of small and simple images with an em­
bedding of only two dimensions to allow for its visualization.

After a vast research and consideration these requirements appeared to be fulfilled by a
small set of simple and iconic images - the images of country flags. The idea of using flags
was inspired by [] since the authors used them to plot an embedding, however, trying to
get the data did not bring any results since the dataset turned out to be proprietary.

9.3.1 Data Collection

Images of flags of 196 countries1 were collected from Wikipedia 2 . The images were then
presented to different users who were providing answers about the relative visual similarities
among the flags. The similarities were collected in two different ways:

1. The users were presented a screen with three flags and they were supposed to choose
the two of them that were the most alike. From ten of such screens they were allowed
to skip two if the answer seemed to bee to difficult.

2. The users were presented a flag called probe and from 12 other flags they were required
to choose one that was the most similar to the probe. No answer skipping was allowed.

The answers to both of the above questions can be converted to different number of "triplet"
statements of form "Flag A is more similar to B than to C". While an answer to the first
questions produces 2 of such triplets, an answer to the second one gives us 11 triplets. The
user interfaces for the two different ways of collecting similarities are shown in Figure 9.1.

(a) Choose 2 from 3 (b) Choose 1 from 12

Figure 9.1: Two different methods used to collect relative visual similarities among the
flags. While (a) produces 2 similarity triplets, (b) generates 11 of them.

A l l the similarity annotations were collected by instructed volunteers and could be thus
considered reliable. The amount of collected data was the following:

Question Number of answers Number of triplets
Choose 1 from 12 706 7766
Choose 2 from 3 2270 4540

XA11 the United Nations members (193), Unated Nations observers (2), and Taiwan.
2http://en.wikipedia.org/wiki/List_of_sovereign_states

49

http://en.wikipedia.org/wiki/List_of_sovereign_states

9.3.2 Computed Embedding

A 2-dimensional embedding was then computed from the collected triplet comparisons using
t -STE [26]. However, the results were not satisfactory since the embedding was extremely
noisy and did not contain a reasonable structure. The bad quality embeddings computed
from the collected data are shown in Figure 9.2 (a) and (b).

b = ~?^-~mJ § - . » -V-' "

* ~ - H 1

3 8 se

(a) Choose 2 from 3 (b) Coose 1 from 12 (c) Manual

Figure 9.2: Different 2-dimensional embeddings of flag images. Embeddings (a) and (b)
were computed using t -STE from similarity triplets collected in two different ways. Neither
of them seems to have a reasonable structure. Embedding (c) was created manually.

The failure of building a good quality 2-dimensional embedding from the collected simi­
larity comparisons turned out to happen due to a high complexity of the flag dataset. Flag
visual similarity appeared to be much more complicated than only a 2-dimensional (i.e.
color and shape) property. In reality people perceive the visual similarity among the flags
based on many different attributes - different respondents use different attributes to match
the most similar flags such as color, stripes and their direction, stars, symbols and emblems,
geometric shapes, etc.

The human-perceived visual similarity among country flags thus appeared to be a very
high-dimensional, producing good embeddings in about 12 dimensions. That is, however,
too complex for a toy dataset and impossible to be visualized in only two dimensions.

9.3.3 Manual Embedding

Since the human-collected similarities among the country flags lead to excessively complex
embeddings, the problem of getting a 2-dimensional embedding had to be solved in a
different way. For the purposes of development of an embedding-driven learning system
it is not important how an embedding was produced and what it actually represents. As
long as it has an underlying structure (i.e. the embedding coordinates are not random),
the learning algorithms should be able to discover and model it.

Therefore, a much easier approach was chosen to get the embedding with two dimen­
sions-the flags were shown on a screen and manually placed in a 2-dimensional space
according to their similarity by a human. The resulting embedding can be seen in Fig­
ure 9.2 (c). While the horizontal dimension groups the flags more by color and the vertical
one is more shape-oriented, this attribute separation is not strict and the data is on purpose
noisy, sorted quickly without any additional corrections or assumptions.

50

9.4 A Larger Dataset (Food-1000)
A larger dataset should serve to test the performance of the system and show how the
algorithms would perform on more realistic data. Such dataset should contain at least
a thousand of rather realistic images with an embedding of arbitrary dimensionality. The
requirements for such dataset are thus more relaxed and since we are not limited to a specific
complexity and dimensionality of the embedding, there should be no problems similar to
those that appeared when creating the toy dataset (see Section 9.3).

Since one of the new taxa that the Visipedia project (see Chapter 2) wants to focus
on is food and cuisine, the ideal choice of images for a larger dataset was food. Images of
food have a large variability in colors, shapes, and textures so the data should be complex
enough. The property that the embedding of the food images should represent would be
its taste meaning that meals that taste more similar should lie in the embedding closer to
each other while meals of different taste should lie further away.

9.4.1 Data Collection

A set of 1000 random images of food from a recipe portal Yummly 3 was collected along with
other meaningful metadata such as ingredients that might be useful for other experiments.
The images were then annotated with relative similarity comparisons provided by payed
workers4 on Amazon Mechanical Turk 5 .

The similarity comparisons were collected by showing the workers an image as a probe
and 12 another random images and asking them to select 4 of them that are the most
similar to the probe. The required task was formulated as follows:

"Select 4 foods from the right that taste more similar to the food on the left."

This method is analogous to the "choose 1 from 12" used for the toy dataset (see Section 9.3)
and the user interface was similar to that one showed in Figure 9.1 (b). The main difference
compared to the method used for the toy dataset is that choosing 4 images at once produces
much more information. A single answer to this question creates 32 triplets of form " A is
more similar to B than to C " making it much more suitable for a larger dataset.

Since the similarity comparisons were provided by anonymous workers, every 2 from 20
screens were prepared in advance and had clear answers that everybody was expected to
submit. Those prepared screens are called catch trials and can serve to filter out the data
from workers who provide bad responses.

The amount of collected data is summarized in the following table:

Images
Answers
Raw triplets
Catch trials
Different workers
Cost

192 000

1000
6 000

600
65

$60

3http://www.yummly.com/
4The fundings were kindly provided by professor Serge Belongie.
5https://aws.amazon.com/mturk/

51

http://www.yummly.com/
https://aws.amazon.com/mturk/

9.4.2 Computed Embedding

Responses from workers who did not pass the catch trials were then filtered out leaving
156 617 different triplets. Those were then used to compute embeddings from 2 to 20
dimensions with t -STE [26], picking the 8-dimensional one since adding more dimension
did not show significant improvements in its quality.

The resulting 8-dimensional embedding has a good global structure separating main
groups of food, but locally remains quite noisy. Getting a better quality embedding would
require collecting more similarity comparisons which could make the dataset much more
expensive. A 2-dimensional embedding computed from the same triplet set as the resulting
embedding is shown in Figure 9.3.

Figure 9.3: A 2-dimensional embedding of the food images computed from the collected
similarity comparisons. The embedding contains two main clusters that represent sweet
and non-sweet meals. While the global structure is well captured, locally the embedding is
still quite noisy. However, the resulting 8-dimensional embedding has a better quality since
it satisfies more of the collected triplet comparisons.

52

Chapter 10

Toy Experiments

This chapters describes experiments that were done using the toy dataset of flags described
in Section 9.3. Their main purpose of these experiments was to verify the correct function­
ality of all the implemented algorithms, visualize the results in a comprehensible way and
prepare a set of tools for experiments with larger amount of data.

10.1 Parameter Tuning
A very important and uneasy part of the image-based embedding-driven learning is to
choose the best parameters for both the feature extraction algorithm and the regression
learning function. Bad choice of visual feature parameters may result in extracting useless
information and wrong S V R parameters might cause underfitting or overfiting.

The most accurate choice of parameters can be found by a cross-validation process
trying to evaluate the prediction error for every possible parameter combination and then
picking the best one. However, the number of all the possible parameter combinations may
be extremely large and make such process computationally very difficult or even impossible.
For instance trying 10 different values for only 2 parameters means computing 100 times
the whole learning pipeline.

To lower the complexity of the parameter tuning process the parameters were at first
set to only a few distant values and then evaluated more precisely around the best values.
Also, instead of computing all the possible combinations some parameters were fixed to
reasonable values and only one was evaluated in detail. This way the parameters were
gradually set to their best values and in some cases they were revalidated when another
parameters changed significantly.

This section describes the most important parameters for each of the used methods and
finally sums up the best found values.

Kernel function. As mentioned in Section 6.4.3 the S V R algorithm can work with var­
ious different kernel functions. To choose the best one a significant part of the parameter
tuning experiments was tested with three different kernel functions-linear, polynomial and
R B F .

In all the test cases the linear function performed significantly worse than the other
two kernels. The linear kernel appeared to be very unstable - while in some parameter
configurations it could give quite reasonable results, in other cases it showed a very bad
performance and it was never able to outperform the R B F and polynomial kernels.

53

As said in Section 6.4.3 while linear kernels may sometimes work to separate non-linear
data for classification, in case of regression the process of fitting a line to non-linear data
is much less likely to work.

The best and most stable results were reached with the R B F kernel. While the poly­
nomial kernel was able to produce similar results to R B F , it was always slightly worse or
comparable to R B F . Therefore, the R B F function appeared to be the most suitable and
universal kernel and there was no reason to choose any other for the experiments. A l l of
the further described experiments were thus computed using the R B F kernel.

S V R . As described in Section 6.4, the S V R algorithm is mainly driven by two param­
eters -ESVR and C. The value of ESVR controls the flatness of the estimated function by
setting the size of the e-tube whereas C affects its sensibility to noise in the data.

Both of the parameters may cause overfitting when set to excessively high values and
underfitting when their values are too low. The correct setting of these values is crucial for
success of the learning process.

Color histograms. A global color histogram (further denoted by CHG) have one impor­
tant parameter - the number of bins that specifies the amount of different shades that the
histogram will capture for each color channel of the image. Large number of bins can carry
more color details but might be more sensitive to noise while lower numbers can describe
a more general color structure. The number of bins is further denoted by rif,.

When computing local color histograms (denoted by CHL) we need to set another
important parameter - the size of blocks for which the histograms are computed. Smaller
blocks are more precisely localized and are thus useful for object that we expect to be
aligned at the same position in all images while larger blocks represent a more general color
structure. The block size parameter represents the height and width of each block in pixels
and is further denoted by bs.

H O G . The H O G descriptors were extracted in its two most typical configurations. Both
of them use square cells of 8 x 8 pixels but they differ in the number of cells in a block. The
first configuration uses blocks of 2 x 2 cells while the second one has blocks of size 3 x 3 .

Since different block sizes can extract quite a different information from the image,
both the configurations were used as two different feature vectors and are further in the
text referred to as H O G 2 x 2 and H O G 3 x 3 .

L B P . For all the experiments the uniform variant of L B P patterns was used since it is
known to perform the best and it produces smaller feature descriptors (see Section 4.3).
The most important parameters of the L B P features influence the size of the neighborhood
in which L B P values are computed and the number of such values. The first parameter is
the radius of the neighborhood R and the second one represents the number of neighboring
points P, as defined in Section 4.3.

Similarly as for H O G , the L B P descriptors have a few most common variants that
perform well and extract different kind of information. Values of R from 1 to 3 are the
most typical setting the P eight times larger. A l l the three variants of L B P were extracted
and used as three different feature vectors denoted by L B P 1/8, L B P 2/16, and L B P 3/24.

54

SIFT. The SIFT feature extraction is mostly driven by two parameters that influence the
number of detected SIFT key points. By tuning those parameters we can achieve getting
a larger number of detected key points of possibly lower stability or a smaller amount of
high quality ones.

The first parameter is called peak threshold and in this text it will be denoted by tp.
The peak threshold filters out the peaks of the DoG function that have too small absolute
values because such peaks could be caused by noise. Higher values of tp thus produce
smaller number of "better-quality" SIFT key points while lower numbers produce larger
numbers of key points that do not necessarily have to be so distinctive.

The second parameter, called edge threshold and denoted by te in this text, is used to
eliminate the peaks of the DoG function that are not sharp enough. Such peaks can be
produced by edges in places where no stable key points exist. Contrary to peak threshold,
higher values of te preserve more SIFT key points, while lower values filter them more
aggressively.

Since transferring SIFT descriptors to feature vectors for computing regression is done
by the B o V W model (see Section 4.5), another important parameter is the size of the B o V W
dictionary, i.e. the number of clusters used for the K-Means clustering. This parameter
will be denoted by nc in this text.

10.1.1 Selected Parameters

The best parameters for the visual features and the S V R algorithm selected by the described
parameter tuning process are summarized in the following table:

Feature C £ Feature parameters
C H G 20 0.02 rib = 3
C H L 4 0.01 nb = 4, bs = 10
H O G 2x2 2 0.01
H O G 3x3 2 0.01
L B P 1/8 30 0.05
L B P 2/16 2 0.1
L B P 3/24 1 0.08
SIFT 0.5 0.05 nc = 10, te = 1000, tp = 0

For feature combination methods the following values worked the best:

Method C £

Concatenation 3 0.02
Regression 0.5 0.06

As we can see, the best setting for global color histograms uses only 3 color bins for
each R G B channel resulting in 27 different color shades. Hovewer, given the fact that most
flags contain very little amount of different colors, using 27 different colors seems to be
meaningful. The 10-pixel block size used for the local color histograms means that the
images are divided into large blocks and thus only approximate color localization matters.

Since most of the country flags are a very simple geometric objects, often composed
only from a couple of stripes, there are very few key points that could be detected by SIFT.
Therefore, SIFT works the best when setting high values of the edge threshold and low
values of the peak threshold and thus increasing the number of detected key points.

55

10.2 Experiment Setting
At first an S V R model was fitted for each of the visual features used the scheme proposed
in Section 7.1 and the prediction accuracy was evaluated on a testing set. This was done on
a randomly shuffled dataset using 5-fold cross-validation as described in Section 5.4. Then
all the three multiple feature combination methods presented in sections 7.2, 7.3 and 7.4
were applied the same way.

The results were evaluated on a per-dimension basis using the M A E measure and then
an overall error evaluation was computed using both M A E and M E E . To get a better idea of
the performance of the system, all the mentioned methods were compared against the two
proposed random models R V M and R N M . For further details about these error measures
and the used random models see Section 6.5.

Finally, all predictions were visualized in context of the training set.

10.3 Per-dimension Prediction Evaluation
The per-dimension results of the prediction quality evaluation for all of the tested methods
are depicted in Figure 10.1. The exact numeric results then can be found in Table B . l .

The results show what one would probably expect. In dimension 1 of the flag embed­
ding (horizontal in later figures) which is more color-oriented the global and local color
histograms perform much better than the other more structure-based visual features. The
best predictions for dimension 2 (vertical in later figures) are then achieved with H O G and
L B P since the dimension is more structure-oriented.

0 . 3 5 -

0.30 -

0.25

J 0 . 2 0 -
C

" 0 . 1 5 -

0.10 -

1

l i l t

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

Figure 10.1: Per-dimension M A E for the Flags-196 dataset. The top figure shows the
results for each dimension in context of the R V M and R N M predictions while to bottom
one zooms in to capture the differences among the different proposed methods. The best
single-feature results for dimensions 1 and 2 are achieved with C H L and H O G 3 x 3 and
the total best values belong to feature weighting in both cases.

56

The best-performing feature in dimension 1 was C H L reaching errors 2.54 x smaller
than R V M and 2.12x smaller than R N M . In dimension 2 the best feature was H O G 3 x 3
achieving errors 2.14x smaller than R V M and 1.72x smaller than R N M .

The results show that the combination of multiple visual features has brought further
improvements in the prediction accuracy. Naturally, selecting the local color histograms
for dimension 1 and H O G 3 x 3 for dimension 2 performs better than using just a single
feature for both of the dimensions.

Concatenation of all of the extracted visual features brings further improvements in
both of the dimensions when compared with feature selection which means that the learning
algorithm was able to extract more information from the concatenated feature vectors.

The best results in each of the dimensions were achieved with feature weighting with
errors 2.77x lower than R V M and 2.30x lower than R N M in dimension 1 and 2.33x lower
than R V M and 1.88 x lower than R N M in dimension 2.

10.4 Overall Prediction Evaluation
The values of the M A E and M E E measures evaluated over the whole embedding are visu­
alized in Figure 10.2 and the numeric values can be found in Table B.2. From single visual
features color histograms performed the best while SIFT gave the worse results. A l l the
three feature combination methods outperformed all of the single-feature predictions.

0.35

0.30

0.25

u k

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

(a) M A E (b) M E E

Figure 10.2: Overall values of M A E and M E E on the Flags-196 dataset. The top row shows
both the values in context of R V M and R N M while the bottom line zooms in to highlight
the differences among the evaluated methods. The best single-feature method was C H G
while the best overall results were reached with feature weighting.

57

The best overall performance using only a single visual feature was reached with C H G
showing that color gives the best distinction of the coordinates in the embedding. Using
the overall M E E measure C H G was 2.15 x better than R V M and 1.75 x better than R N M .

The absolute best overall results were obtained with feature weighting proving that
multiple visual features can be combined to get more information. Measured with M E E
the feature weighting method produced errors 2.44x lower than R V M and 1.99x better than
R N M setting thus the best results that were achieved on the Flags-196 dataset.

The predictions for each of the visual features together with the three methods of their
combination are shown in Figure 10.3.

10.5 Summary
The toy dataset served well to implement and debug the embedding-driven learning system
and helped to verify that all the algorithms work correctly. The experiments gave expected
results-a more color-oriented dimension was predicted the best by color histograms while
a more structure oriented one was estimated the best using H O G features. Moreover,
combining visual features together have brought further improvements.

The best-performing method produced almost 2 times smaller errors than picking ran­
dom positions from the training set and on average was off by 12.25% in each dimension
relative to the distance between its extreme values. The remaining errors might be caused
by noise in the embedding, small set of training data, visual complexity of some of the
images, and imperfection of some of the used methods.

58

(a) CHG (b) CHL (c) HOG 2x2 (d) HOG 3x3

(e) LBP 1/8 (f) LBP 2/8 (g) LBP 3/24 (h) SIFT

(i) Selection (j) Concatenation (k) Regression

Figure 10.3: Visualization of the predictions on the Flags-196 dataset. Pale flags represent
the training set while the dark ones are testing flags placed on their predicted positions
and connected with their true positions with lines. Figures (a) - (h) show predictions for
single-feature methods whereas (i) - (k) depict predicted positions using feature combina­
tion. Methods (a) and (b) work well in the color-based horizontal dimensions while (c) - (h)
fail since they are more structure-oriented. The best overall result is achieved with (k).

59

Chapter 11

Larger Experiments

This chapter describes the experiments that were done using the Food-1000 dataset that
was presented in Section 9.4. The main purpose of these experiments is to evaluate the
quality of the developed system using a larger and more complex data with noise.

11.1 Parameter Tuning
The feature extraction and regression learning parameters were tuned applying the same
approach that was used for the toy dataset as described in Section 10.1. The R B F kernel
was used for all of the experiments and the values of the parameters for each of the methods
are the following:

Feature C £ Feature parameters
C H G 30 0.07 nh = 4
C H L 15 0.05 nb = 4, bs = 64
H O G 2x2 2 0.01
H O G 3x3 2 0.01
L B P 1/8 30 0.08
L B P 2/16 10 0.07
L B P 3/24 5 0.05
SIFT 5 0.05 nc = 10, te = 10, tp = 10

The S V R learning parameters for the methods combining multiple visual features worked
the best using the following values:

Method C £

Concatenation 3 0.05
Regression 0.2 0.1

A l l the images were resized to 128 x 128 pixels providing a good balance between pre­
diction speed and accuracy. Both global and local color histograms worked the best using
4 bins per color giving the resolution of 256 different color shades. For SIFT the best results
were achieved when slightly reducing the number of detected key points by increasing the
peak threshold from 0 to 10 and using only 10 clusters for the B o V W .

60

11.2 Per-dimension Prediction Evaluation
A l l the single feature based and multiple feature combining methods were initially evaluated
computing the M A E for each of the 8 dimensions using 5-fold cross-validation. The results
are visualized in Figure 11.1 and the exact values can be found in Table C . l .

n H É . i •1 É l rJTTfnrfl

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

Ü IIIÉI M M I I I

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

Figure 11.1: Per-dimension M A E for the Food-1000 dataset. The top image shows the
error values in context of the R V M and R N M predictions while the bottom one zooms to
the differences among the evaluated methods. The best single-feature methods were C H G ,
C H L and SIFT, the total best values were obtained with feature weighting while feature
concatenation failed to work.

Using single-feature methods the best results were achieved with color histograms and
SIFT in all of the dimensions. In some dimensions L B P was reaching comparable results
while in others it performed slightly worse. Both configurations of H O G gave slightly
worse results than the other methods and using different sized input images or the B o V W
approach did not bring any improvements.

Contrary to the toy experiments described in Chapter 10 concatenating all the extracted
visual features did not improve the results. In most of the dimensions the results were even
worse than using any single visual feature. Such performance drop is probably caused
by high multi-modality of the resulting feature vector where the largest part is composed
of H O G while some other feature descriptors are much shorter. Even though all of the
single feature vectors were normalized to the same range, the dominant parts of different
feature vectors can still differ significantly in value and cause other sources of errors. The
risks of using feature concatenation were already discussed in Section 7.3. Using principal
component analysis to lower the dimensionality of the resulting concatenated vector did
not bring significant improvements.

The best results for most of the dimensions were achieved with the regression-based
feature weighting as described in Section 7.4. Hence, although the feature concatenation
failed to work on the Food-1000 dataset, a more robust feature weighting was still able to
improve the results.

61

11.3 Overall Prediction Evaluation
The overall prediction accuracy was evaluated using both M A E and M E E measures (see
Section 7.5) for all of the proposed feature extraction and combination methods. The
obtained results are visualized in Figure 11.2 and all the corresponding numeric values are
to be found in Table C . l .

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

RVM
RNM
CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

(a) M A E (b) M E E

Figure 11.2: Overall values of M A E and M E E on the Food-1000 dataset. The top row
shows both values in context of R V M and R N M while the bottom one zooms in to highlight
the differences among the evaluated methods. The best single-feature methods were SIFT
and C H G while the best overall results were obtained with feature weighting.

The overall results reflect the per-dimension computed errors described in Section 11.2.
Among the single-feature based predictions color histograms and SIFT work the best while
H O G and L B P give slightly worse results. Color thus proves to be a very important property
for food image description and finding stable key points shows better distinction than using
intensity gradients or texture patterns. Hence, shapes seem to be less important for food
distinction than stable image areas.

Using per-dimension feature selection gives only a slightly better M A E value than the
color histograms and SIFT since the selected features are composed mostly from these
two. Computing the M E E measure showed that feature selection gives no improvement
over using color histograms or SIFT only. This can be caused by the fact that different
dimensions have different error variance and also a different impact on the final predicted
coordinates since for learning they have to be normalized but their original scales can vary
a lot. While mapping the normalized values for each dimension back to their original scale
some errors can be accentuated more than others.

62

As already discussed in Section 11.2 the feature concatenation failed to work on a larger
and more complex data and attempting to reduce the dimensionality of the concatenated
vector did no bring any improvements.

The best overall results were achieved using the regression-based feature weighting show­
ing significant improvements in both M A E and M E E measure values. The proposed method
of feature weighting thus proved the ability of combining information from predictions based
on different visual features even on a larger and more complex data. Measured by M E E
the feature weighting method produced errors 2.36x lower than R V M and 1.65x lower than
R N M .

In order to get a better picture of the quality of the predictions the cumulative distri­
bution function (CDF) of the Euclidean error was computed for all of the predicted values
and each of the learning methods. A n approximation of the probability density function
(PDF) was also calculated using a sparse histogram of the error values. The shape of the
C D F and P D F functions is visualized in Figure 11.3.

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

Euclidean error

(a) P D F

CHG
CHL
HOG 2x2
HOG 3x3
LBP 1/8
LBP 2/16
LBP 3/24
SIFT
Selection
Concatenation
Weighting

Euclidean error

(b) C D F

Figure 11.3: The probability density function (PDF) and cumulative distribution function
(CDF) computed for the M E E of all the predicted values. A l l the methods appear to
produce the same shapes of the functions differing only in horizontal shifts.

11.4 Summary
A l l the developed methods were evaluated using a larger dataset of complex images with a
noisy embedding computed from answers produced by humans. The experiments showed
that the system works also with such data and can give an idea of the usefulness of the
developed system in a real-world applications.

The average error values are comparable to the results of the toy experiments described
in Chapter 10. Although the Food-1000 dataset offers a larger set of objects for the learning
phase, the images are more complicated and their embedding is probably more noisy. Higher
difficulty of the task is thus compensated by a larger amount of data resulting in similar
numeric results.

The best overall results were achieved with feature weighting producing 1.65 x smaller
errors than taking positions of random items in the training set. On average the predictions
in each dimension were off by 11.88% relative to the distance between its extremes.

63

Figure 11.4: Some of the images from the testing set and 5 nearest neighbors of the predicted
position computed using feature weighting. Predictions (b), (e), (f) and (h) look particularly
good, while (g) was probably biased by non-food objects and some others like (m), (n), and
(p) were predicted incorrectly.

To give an intuition about the prediction quality and the scopes of possible usage of the
developed system, 5 nearest neighbors from the training embedding are displayed for some
of the predicted positions in Figure 11.4 using the regression based feature weighting which
gave the best overall results.

While many predictions seem to be quite accurate, others are influenced by confusing
data, noise, and background objects leaving many challenges for future improvements. The
experiments also provide the first results on the new Food-1000 dataset which can be later
compared to results achieved using different learning and feature extraction methods.

64

Chapter 12

Conclusions

The aim of this work was to study the ways of learning from embedding-annotated images
in order to develop a system for predicting embedding coordinates of previously unseen
images and evaluate its performance on adequate data. This goal was achieved.

The concept of image annotation using multidimensional embedding was analyzed to­
gether with the relevant learning methods and various different visual feature extraction
algorithms were studied to capture different visual attributes in an image. A n embedding-
driven learning system was proposed and implemented including several techniques of com­
bining multiple visual attributes and a simple application demonstrating its capabilities
was developed. The performance of the system was evaluated using two different datasets.

The performed experiments have brought promising results. Average distances of pre­
dicted embedding positions from their ground truth were, compared to choice of a random
item from the training set, 2 x smaller on Flags-196 and 1.65 x smaller on Food-1000. On av­
erage the per-dimension error relative to the distance between its extremes reached 12.25 %
on Flags-196 and 11.88% on Food-1000. Those results also represent the first achieved
measures for a task of its kind that can be challenged by future methods.

While recent research has shown that multidimensional embedding can be a very power­
ful method of capturing similarities among images, this work demonstrates that the under­
lying similarity metric may also be learned from their visual features. Embedding-driven
learning systems thus could be used to add new images to an existing embedding, speed up
visual search through the similarity space, and perform fine-grained categorization. Since
learning methods are not perfect they could be initially combined with human interaction
resulting in applications such as search by an image query accompanied with user's activity
to precise the results by clicking on a few images.

This work has approached the embedding-driven learning by using common machine
learning approaches to give an initial idea of the possible performance of such systems.
Future work could focus on adding more visual features to the learning pipeline and eval­
uating their performance. A n interesting approach would be to extract the visual features
with a deep convolutional neural network pre-trained on a large dataset since this technique
has recently shown significant improvements in various tasks. Other regression algorithms
might also be explored and instead of decomposing the embedding to single dimensions the
learning could be optimized to learn all of them at once. Since the task of embedding-driven
learning is in its early stage, wide range of opportunities of future research arise.

Although this work has brought some uneasy challenges, the results motivate to explore
the problematic more and attempt to improve the achieved performance. I would be happy
to participate in promoting the system onto its next level and continue to collaborate with
the Visipedia team.

65

Bibliography

[1] S. Agarwal, J . Wills, L . Cayton, G. Lanckriet, D . Kriegman, and S. Belongie.
Generalized Non-metric Multidimensional Scaling. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 11-18, 2007.

[2] E . Alpaydin. Introduction to Machine Learning (Adaptive Computation and Machine
Learning). The M I T Press, 2004.

[3] J . Anderson, R. Michalski, J . Carbonell, and T. Mitchell. Machine Learning: An
Artificial Intelligence Approach. Machine Learning. M . Kaufmann, 1983.

[4] S. Branson, C. Wah, F . Schroff, B . Babenko, P. Welinder, P. Perona, and S. Belongie.
Visual Recognition with Humans in the Loop. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 438-451, 2010.

[5] N . Cristianini and J . Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[6] N . Dalai and B. Triggs. Histograms of Oriented Gradients for Human Detection. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 886-893, 2005.

[7] C. Dance, J . Willamowski, L . Fan, C. Bray, and G. Csurka. Visual Categorization
With Bags of Keypoints. In ECCV International Workshop on Statistical Learning in
Computer Vision, pages 1-22, 2004.

[8] N . Draper and H . Smith. Applied Regression Analysis (3rd ed.). John Wiley & Sons,
Inc., 1998.

[9] C. W . Hsu, C. C. Chang, and C. J . L in . A Practical Guide to Support Vector
Classification, 2010.

[10] J . J . Koenderink. The Structure of Images. Biological Cybernetics, 50:363-396, 1984.

[11] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 1137-1145, 1995.

[12] D. G . Lowe. Object Recognition from Local Scale-Invariant Features. In Proceedings
of the International Conference on Computer Vision (ICCV), volume 2, pages
1150-1157, 1999.

[13] D. G . Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004.

66

[14] T. Ojala, M . Pietikäinen, and D. Harwood. Performance Evaluation of Texture
Measures Wi th Classification Based on Kullback Discrimination of Distributions. In
Proceedings of the IAPR International Conference on Pattern Recognition (ICPR),
volume 1, pages 582-585, 1994.

[15] T. Ojala, M . Pietikäinen, and D. Harwood. A Comparative Study of Texture
Measures with Classification Based on Featured Distributions. Pattern Recognition,
29:51-59, 1996.

[16] T. Ojala, M . Pietikäinen, and T. Mäenpää. Gray Scale and Rotation Invariant
Texture Classification with Local Binary Patterns. In Proceedings of the European
Conference on Computer Vision (ECCV), volume 1842, pages 404-420, 2000.

[17] T. Ojala, M . Pietikäinen, and T. Mäenpää. A Generalized Local Binary Pattern
Operator for Multiresolution Gray Scale and Rotation Invariant Texture
Classification. In Proceedings of International Conference on Advances in Pattern
Recognition (ICAPR), pages 397-406, 2001.

[18] T. Ojala, M . Pietikäinen, and T. Mäenpää. Multiresolution Gray-Scale and Rotation
Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24:971-987, 2002.

[19] P. Perona. Visions of a Visipedia. In Proceedings of the IEEE August 2010,
volume 98, pages 1526-1534, 2010.

[20] A . L . Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3:210-229, 1959.

[21] A . L . Samuel. Some Studies in Machine Learning Using the Game of Checkers II:
Recent Progress. IBM Journal of Research and Development, 11:610-617, 1967.

[22] C. Saunders, A . Gammerman, and V . Vovk. Ridge Regression Learning Algorithm in
Dual Variables. In In Proceedings of the International Conference on Machine
Learning (ICML), pages 515-521, 1998.

[23] A . J . Smola and B. Schölkopf. A Tutorial on Support Vector Regression. Statistics
and Computing, 14(3): 199-222, 2004.

[24] O. Tamuz, C. Liu , S. Belongie, O. Shamir, and A . T. Kalai . Adaptively Learning the
Crowd Kernel. In Proceedings of the International Conference on Machine Learning
(ICML), pages 11-18, 2011.

[25] Tom M . Michel. Machine Learning. McGraw-Hill Science/Engineering/Math, 1997.

[26] L . van der Maaten and K . Weinberger. Stochastic Triplet Embedding. In IEEE
International Workshop on Machine Learning for Signal Processing (MLSP), 2012.

[27] V . N . Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[28] V . Vovk. Kernel Ridge Regression, chapter 11, pages 105-116. Springer-Verlag Berlin
Heidelberg, 2013.

67

[29] C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass Recognition and Part
Localization with Humans in the Loop. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2524-2531, 2011.

[30] P. Welinder, S. Branson, S. Belongie, and P. Perona. The Multidimensional Wisdom
of Crowds. In Proceedings of the Neural Information Processing Systems Conference
(NIPS), pages 2424-2432, 2010.

[31] P. Welinder, S. Branson, T. Mita, C. Wah, F . Schroff, S. Belongie, and P. Perona.
Caltech-UCSD Birds 200. Technical Report CNS-TR-201, Caltech, 2010.

[32] H . Zou and T. Hastie. Regularization and Variable Selection via the Elastic Net.
Journal of the Royal Statistical Society: Series B, 67:301-320, 2005.

68

Appendix A

CD Contents

The attached C D contains the following directories:

• evfl-Implementation of the E V F L 1 toolkit.

• evfl-doc-Documentation for the E V F L toolkit.

• data-Datasets used for experiments.

• demo-Demo application.

• thesis-pdf - T h i s text in P D F format.

• t h e s i s - s r c - Source codes of this text in WT^K..

1Embedding-driven Visual Feature Extraction and Learning

69

Appendix B

Toy Experiment Results

Method D l D2
R V M 0.2963 0.3216
R N M 0.2467 0.2588
C H G 0.1188 0.1570
C H L 0.1166 0.1635
H O G 2x2 0.1698 0.1553
H O G 3x3 0.1714 0.1506
L B P 1/8 0.1788 0.1549
L B P 2/16 0.1787 0.1529
L B P 3/24 0.1761 0.1557
SIFT 0.1835 0.1635
Selection 0.1166 0.1506
Concat. 0.1075 0.1430
Weighting 0.1071 0.1379

Table B . l : Per-dimension evaluation results.

Method M A E M E E
R V M 0.3089 249.3
R N M 0.2528 203.4
C H G 0.1379 115.9
C H L 0.1401 118.9
H O G 2x2 0.1626 131.5
H O G 3x3 0.1610 129.1
L B P 1/8 0.1668 133.3
L B P 2/16 0.1658 132.1
L B P 3/24 0.1659 132.0
SIFT 0.1735 138.6
Selection 0.1336 113.0
Concat. 0.1253 106.6
Weighting 0.1225 102.0

Table B.2: Overall evaluation results.

70

Appendix C

Larger Experiment Results

Method D l D2 D3 D4 D5 D6 D7 D8
R V M 0.2770 0.2828 0.2785 0.2950 0.2707 0.2897 0.2719 0.3078
R N M 0.1739 0.2054 0.2026 0.2339 0.1633 0.1549 0.1751 0.2573
C H G 0.1092 0.1268 0.1314 0.1461 0.1068 0.0996 0.1240 0.1610
C H L 0.1137 0.1272 0.1301 0.1456 0.1087 0.1004 0.1238 0.1623
H O G 2x2 0.1218 0.1414 0.1371 0.1606 0.1086 0.1081 0.1227 0.1758
H O G 3x3 0.1226 0.1408 0.1380 0.1615 0.1089 0.1076 0.1227 0.1774
L B P 1/8 0.1186 0.1391 0.1398 0.1596 0.1100 0.1043 0.1237 0.1770
L B P 2/16 0.1170 0.1381 0.1365 0.1570 0.1101 0.1040 0.1215 0.1725
L B P 3/24 0.1158 0.1367 0.1355 0.1519 0.1093 0.1041 0.1210 0.1713
SIFT 0.1121 0.1301 0.1334 0.1449 0.1023 0.1021 0.1186 0.1609
Selection 0.1092 0.1268 0.1301 0.1449 0.1023 0.0996 0.1186 0.1609
Concat. 0.1228 0.1429 0.1421 0.1611 0.1108 0.1097 0.1244 0.1704
Weighting 0.1086 0.1221 0.1262 0.1308 0.1020 0.0990 0.1191 0.1427

Table C . l : Per-dimension evaluation results.

Method M A E M E E
R V M 0.2842 3.3240
R N M 0.1958 2.3128
C H G 0.1256 1.4916
C H L 0.1265 1.5064
H O G 2x2 0.1345 1.5962
H O G 3x3 0.1349 1.6010
L B P 1/8 0.1340 1.5855
L B P 2/16 0.1321 1.5654
L B P 3/24 0.1307 1.5477
SIFT 0.1255 1.4942
Selection 0.1240 1.4996
Concat. 0.1355 1.6029
Weighting 0.1188 1.4086

Table C.2: Overall evaluation results.

71

