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Abstract 
This bachelor's thesis focuses on the development and implementation of a gesture recogni
t ion system on A R M architecture, u t i l iz ing the i . M X 93 board and TensorFlow L i t e . The 
project is grounded i n the applicat ion of neural networks for the recognition of hand ges
tures, offering an alternative to t radi t ional device control methods. A n integral part of the 
work involves a comprehensive analysis of existing gesture recognition solutions, identifying 
their strengths and potential improvements. The thesis elaborates on the design, devel
opment, and opt imizat ion of a real-time gesture recognition model specifically for A R M 
chips, emphasizing efficiency and performance. Addi t ional ly , the thesis covers the creation 
of a demonstrative applicat ion that visually represents recognized gestures. User testing 
is conducted to evaluate the pract ical i ty and user experience of the gesture recognition 
system, providing valuable feedback for future enhancements. 

Abstrakt 
Cieľom tejto baka lá r ske j p r á c e je vývoj a i m p l e m e n t á c i a s y s t é m u na rozpoznávan ie gest 
s v y u ž i t í m a r c h i t e k t ú r y A R M , k o n k r é t n e s p o u ž i t í m dosky i . M X 93 a TensorFlow L i t e . Pro
jekt sa zameriava na ap l ikác iu n e u r ó n o v ý c h siet í pre rozpoznávan ie gest rúk , č ím poskytuje 
a l t e r n a t í v u k t r a d i č n ý m m e t ó d a m ov ládan ia za r i aden í . Dôlež i tou súčasťou p r á c e je rozsi
ahla a n a l ý z a exis tu júcich r iešení r o z p o z n á v a n i a gest, z a m e r a n á na ident if ikáciu ich si lných 
s t r á n o k a m o ž n ý c h vylepšení . P r á c a detailne opisuje proces navrhovania, vývoja a op
t imal izác ie modelu na rozpoznávan ie gest v r e á l n o m čase, špec iá lne p r i s p ô s o b e n é h o pre 
čipy A R M s d ô r a z o m na efektivitu a výkon . O k r e m toho p r á c a aj obsahuje vytvorenie de
m o n š t r a č n e j apl ikácie , k t o r á v izuá lne reprezentuje r o z p o z n a n é ges tá . Užívateľské testovanie 
je u s k u t o č n e n é na hodnotenie praktickosti a užívateľského záž i tku s y s t é m u rozpoznávan i a 
gest, čo poskytuje cennú s p ä t n ú v ä z b u pre b u d ú c e vylepšenia . 
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Rozšírený abstrakt 
Cieľom tejto baka lá r ske j p r á c e je vyvinúť s y s t é m na rozpoznávan ie gest využívajúci ar

c h i t e k t ú r u A R M , k o n k r é t n e s p o u ž i t í m dosky i . M X 93 a TensorFlow Li te , aby poskytol 
efekt ívnu a úč innú a l t e r n a t í v u k t r a d i č n ý m m e t ó d a m o v l á d a n i a za r i aden í . Projekt sa 
z a k l a d á na apl ikáci i h lbokého učen ia , p r e d o v š e t k ý m neu rónových sietí , na rozpoznávan ie 
a i n t e r p r e t á c i u ľudských gest r ú k v r e á l n o m čase. 

P r á c a zač ína rozsiahlou a n a l ý z o u súča sného stavu technológi í r o z p o z n á v a n i a gest. S k ú m a 
rôzne modely a p r í s tupy , k t o r é bol i v y v i n u t é , zamer iava júc sa na ich schopnosti, obmedzenia 
a v ý k o n v rôznych prostrediach. A n a l ý z a p o k r ý v a techniky op t ického r o z p o z n á v a n i a gest, 
modely za ložené na senzoroch a n e d á v n e pokroky v strojovom učení , k t o r é u m o ž ň u j ú pres
nejšiu a d y n a m i c k ú i n t e r p r e t á c i u gest. 

Po teoretickom prehľade nasleduje p o d r o b n ý popis n á v r h u a i m p l e m e n t á c i e modelov 
na rozpoznávan ie gest špec iá lne p r i s p ô s o b e n é h o pre čipy A R M . M o d e l využ íva TensorFlow 
Li t e na efekt ívne vykonávan ie operác i í s t ro jového učen ia na platforme A R M , využíva júc 
funkcie op t ima l i zác ie h a r d v é r u dosky i . M X 93. 

Proces vývoja z a h ŕ ň a p r i spôsoben ie p r e d t r é n o v a n ý c h n e u r ó n o v ý c h sietí , k o n k r é t n e M o -
bi leNetV2 a EmcientDet L i t e 2, na rozpoznávan ie sady preddef inovaných gest. Tieto 
modely bol i v y b r a n é pre ich rovnováhu medzi presnosťou a v ý k o n o m v prostrediach s n í z k y m 
v ý k o n o m . P r á c a diskutuje ú p r a v y p o t r e b n é na op t ima l i zác iu t ý c h t o modelov pre inferen-
ciu v r e á l n o m čase, v r á t a n e ú p r a v vrstiev n e u r ó n o v ý c h sietí , postupov t r é n i n g u a t echn ík 
kvant izác ie na zníženie v ý p o č t o v ý c h ná rokov pr i zachovaní vysokej presnosti. 

Kľúčovou súčasťou projektu je vývoj d e m o n š t r a č n e j apl ikácie , k t o r á graficky zobrazuje 
r o z p o z n a n é ges tá . T á t o ap l ikác ia slúži ako dôkaz konceptu aj p r a k t i c k ý n á s t r o j na p rezen tá 
c iu s chopnos t í sy s t ému . Usku točňu j e sa testovanie s použ íva teľmi na zber úda jov o výkone 
s y s t é m u a používa teľských skúsenos t i ach , s d ô r a z o m na odozvu, presnosť a p r a k t i c k ú 
použiteľnosť v reá lnych scenároch . 

Sekcia výs ledkov h o d n o t í účinnosť i m p l e m e n t o v a n é h o s y s t é m u z hľadiska presnosti, 
rýchlos t i , výpoč tove j efekt ívnost i a jednoduchosti užívateľského použ ívan ia . P r á c a končí 
diskusiou o p o t e n c i á l n o m b u d ú c o m vývoji technológi í r o z p o z n á v a n i a gest, p r i č o m zohľadňuje 
pokraču júc i pokrok v n e u r ó n o v ý c h sieťach a vy lepšen iach h a r d v é r u . 

T á t o p r á c a nie lenže d e m o n š t r u j e u s k u t e č n i t e l n o s t p o u ž i t i a a r c h i t e k t ú r y A R M a Ten
sorFlow Li t e pre vývoj s y s t é m u na rozpoznávan ie gest, ale t iež prispieva do širš ieho poľa 
interakcie človeka s p o č í t a č o m t ý m , že poskytuje pr i rodzene jš í a in tu i t ívne jš í s p ô s o b ovlá
dania za r i aden í . Zistenia n a z n a č u j ú v ý z n a m n é dôs ledky pre n á v r h používa teľských r o z h r a n í 
a vývoj a s i s t enčných technológi í , n a j m ä v prostrediach, kde sú preferované b e z k o n t a k t n é 
interakcie. 
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The demonstration applicat ion presented at the N X P booth during p e r F E K T 
J O B F A I R 2024. Vis ib le i n the center of the table is the applicat ion being 
demonstrated, w i t h myself and colleagues 



Chapter 1 

Introduction 

This bachelor thesis delves into the realm of gesture recognition and its applicat ion in mod
ern technology, par t icular ly focusing on A R M - b a s e d embedded systems. The advantage of 
machine learning has opened new avenues in how devices can be controlled, moving beyond 
t radi t ional methods like buttons and touchscreens to more intuit ive gesture-based interac
tions. The pr imary objective of this study is to analyze current hand gesture recognition 
methods and to evaluate their advantages over t radi t ional device control mechanisms. 

The thesis is structured first to analyze existing gesture recognition techniques. It 
includes exploring the various technologies employed, their effectiveness, and how they 
compare to conventional control methods i n terms of efficiency, user-friendliness, and ap
pl icabi l i ty in different scenarios. The focus then shifts to the design and implementat ion of 
a real-time gesture recognition model specifically for A R M chips provided by N X P . It in 
volves a detailed examination of the selection of suitable deep learning models and adapting 
them to op t imal performance wi th in the constraints of A R M - b a s e d embedded systems. 

A significant part of the project is the development of a demonstration applicat ion that 
can graphically display recognized gestures. This applicat ion serves as a pract ical example 
of how gesture recognition technology can be integrated into real-wo r id scenarios, providing 
a tangible interface for users to interact wi th . 

Opt imiza t ion of the model for m a x i m u m performance on A R M chips is a cr i t ica l aspect 
of this thesis. Th is includes tweaking the model to ensure that it runs efficiently and 
making the most of the l imi ted resources available on such devices. The project culminates 
wi th extensive user testing to evaluate the system's performance, gather user feedback, and 
understand user interactions w i t h gesture-controlled interfaces. 

Chapter 2 introduces the foundational concepts of artificial intelligence and machine 
learning, focusing on their applicat ion i n gesture recognition. It briefly touches on A I ' s 
various uses across sectors and emphasizes machine learning's cr i t ica l role i n deep learning 
and neural networks. 

Chapter 3 explores the hardware and software pivotal to the thesis, w i th a detailed look 
at the A R M architecture and the i . M X 93 board. The chapter examines the sui tabil i ty 
of the A R M platform for implementing machine learning models and discusses tools like 
TensorFlow Li t e and Keras that a id i n developing applications on embedded systems. 

Chapter 4 compares current gesture recognition methods, including opt ical and sensor-
based techniques, and evaluates them against conventional interfaces such as touchscreens. 
The chapter assesses their efficiency and user-friendliness in various contexts. 

Chapter 5 describes t ra ining machine learning models for opt ical gesture recognition, 
detail ing the selection of models opt imized for real-time operation on A R M devices. It 
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covers data augmentation strategies and adaptations to the M o b i l e N e t V 2 and EmcientDet 
L i t e 2 models. 

Chapter 6 describes the inference process for analyzing gesture data using machine 
learning models on x64 and A R M platforms, including setup and software requirements. 

Chapter 7 outlines the development of a demonstration applicat ion that showcases the 
recognized gestures through a user interface, integrating the gesture recognition model and 
user interaction feedback mechanisms. 

Chapter 8 presents testing and performance evaluation, including model accuracy, user 
testing methodologies, and participant feedback, to assess the application's pract ical via
bi l i ty and user acceptance. 

Chapter 9 concludes the thesis by summarizing the project challenges and future work 
opportunities, including potential enhancements i n model t raining, quantization, and the 
exploration of new model architectures and machine learning parameters for pract ical use. 

G 



Chapter 2 

Background and Theoretical 
Framework 

This chapter delves into the foundational concepts underpinning machine learning and 
artificial intelligence. 

2.1 Introduction to Artif icial Intelligence 

Art i f i c i a l intelligence (AI) , a term coined in the mid-20th century, represents the pursuit 
of developing systems that exhibit human-like intelligence. The field, deeply rooted in 
philosophy, mathematics, and early computing technology, encompasses a broad range of 
domains including problem solving, knowledge representation, learning, natural language 
processing, and robotics. Historically, A I has evolved through cycles of opt imist ic expansion 
and subsequent winters of reduced funding and interest, reflecting the technical challenges 
and societal impacts of its applications. B o t h theoretical research and pract ical applica
tions have propelled the development of artificial intelligence, affecting various sectors from 
healthcare to entertainment [6, 31, 34]. 

2.1.1 D e f i n i t i o n a n d Scope of A r t i f i c i a l Intell igence 

A I integrates theories and practices from various disciplines, w i t h the a im of developing sys
tems that perform tasks that t radi t ional ly require human intelligence. These tasks include 
interpreting complex data, solving various problems, and learning from experiences. A I 
applications span from v i r tua l domains such as data management to physical applications 
such as robotic-assisted medical procedures, demonstrating its crucial role i n the advance
ment of healthcare [49, 16]. Continuously evolving, the field adapts and solves real-world 
problems wi th increasing autonomy, guided by new definitions that emphasize A I ' s adaptive 
capabilities in scenarios characterized by l imi ted knowledge and resources [51]. 

2.1.2 A p p l i c a t i o n s of A I 

Art i f i c i a l Intelligence finds extensive applications in various industries, revolutionizing tra
di t ional practices and improving efficiency and productivi ty. In the telecommunications sec
tor, A I significantly reduces operating costs, improves network performance, and improves 
customer service through predictive maintenance and traffic management for 5 G networks 
[5]. The integration of A I i n manufacturing under Industry 4.0 has transformed produc-
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t ion lines, opt imiz ing product consistency, and incorporat ing robotics to improve human-
machine collaboration [22]. The role of A I is p ivota l in addressing complex manufacturing 
decisions throughout the product lifecycle, from design to dis t r ibut ion [13]. Moreover, A I 
applications i n business and engineering are not l imi ted to manufacturing, but extend to 
marketing, human resources, and financial services, where they facilitate decision making 
and improve operational efficiency [4]. 

2.2 Machine Learning: The Core of AI 

Machine Learning stands as a fundamental pi l lar w i th in the realm of Ar t i f i c i a l Intelligence, 
propell ing advancements that enhance computat ional models to automate analyt ical bui ld
ing and improve decision-making across various sectors. Machine learning equips systems 
wi th the abi l i ty to automate a wide array of activities, mirror ing human cognitive functions 
[7, 21]. Th is foundational technology improves the development of intelligent systems, con
t r ibut ing significantly to sectors such as healthcare, manufacturing, and education, dr iv ing 
more evidence-based decision making [24]. 

2.2.1 S u p e r v i s e d L e a r n i n g 

Supervised learning, a dominant branch of machine learning, involves t ra ining algorithms 
on a labeled dataset, providing a learning signal or feedback based on the accuracy of the 
predictions made by the model . This methodology facilitates the applicat ion of M L i n areas 
that require precise predictabil i ty of outcomes, improving tasks such as classification and 
regression [17]. 

2.3 Deep Learning and Neural Networks 

Deep learning, an advanced subset of machine learning, uses complex neural networks to 
model and process non-linear relationships i n data. The architecture of these networks 
involves layers of interconnected nodes or neurons that mimic biological neural networks, 
crucial for handling vast and intricate data sets [15, 35]. 

2.3.1 T r a i n i n g N e u r a l N e t w o r k s 

Training a neural network is a fundamental aspect of deep learning. It involves several 
steps, start ing wi th the in i t i a l setting of weights. These weights are smal l random values 
assigned to each connection between neurons in different layers. The main goal of t raining 
is to adjust these weights so that the predictions of the network match closely the actual 
results [15]. 

Forward Propagation 

The first step i n t ra ining is forward propagation, where input data is passed through the 
network from the input layer to the output layer. Each neuron in a layer receives inputs 
from the previous layer, applies a weighted sum followed by a non-linear activation function, 
and passes the result to the next layer [50]. 
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Loss Calculat ion 

Once the network produces an output, the loss function is calculated. This function mea
sures the difference between the predicted output and the actual target values [52]. 

Backpropagation and Weight Update 

The core of the t ra ining process is backpropagation. In this phase, the error of the loss 
function is propagated back through the network, al lowing the model to adjust the weights 
and minimize the error. The weights are updated using opt imizat ion algorithms such as 
Gradient Descent or its variants, which determine how much weights should be adjusted 
based on the gradient of the loss function [50]. 

M o d e l Evaluation and Iteration 

After a forward and backward pass, the model is evaluated on a val idat ion dataset to check 
for performance improvements. If the model performs better or meets a specific criterion, it 
is retained and used i n subsequent epochs. If not, adjustments may be made to the learning 
rate or model parameters, and t ra ining continues [48]. 

Regularization Techniques 

To enhance model performance and prevent overfitting, where the model learns the t raining 
data too well but performs poorly on unseen data, techniques such as dropout and regu
larizat ion are used. Dropout involves randomly ignoring neurons during training, which 
helps the model to generalize better. Regular izat ion techniques, such as L I and L 2 , add 
a penalty for larger weights to the loss function, encouraging the model to mainta in smaller 
weights [11]. 

2.3.2 C o n v o l u t i o n a l N e u r a l N e t w o r k s ( C N N s ) 

C N N s are exceptionally suited for image recognition tasks due to their architecture, which 
efficiently processes pixel data. The layers wi th in C N N s can capture hierarchical patterns 
in images, making them ideal for applications that require visual recognition [15, 35]. 

2.3.3 T r a i n i n g D e e p N e u r a l N e t w o r k s 

A cr i t ical challenge i n t ra ining deep neural networks is overfitting, where a model learns the 
details and noise in the t ra ining data to an extent that it negatively impacts the performance 
of the model on new data. Techniques such as dropout, regularization, and cross-validation 
are essential to mitigate this problem, ensuring that the models generalize well to unseen 
data [11]. 
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2.4 Architecture 

In the field of machine learning and artificial intelligence, architecture refers to the struc
tured design of the network used in models. Th is architecture outlines how input data are 
systematically transformed and analyzed to produce outputs, affecting the model's perfor
mance in terms of speed, accuracy, and abi l i ty to generalize from training data to unseen 
data. 

The model architecture is characterized by the configuration of layers i n a neural net
work, each composed of interconnected nodes or neurons. The pr imary components of 
a typ ica l model architecture include: 

1. Input Layer: Serves as the entry point for the data, designed to match the shape 
and type of the input data. 

2. H i d d e n Layers: These are the core computat ional units where data are processed, 
features are extracted, and transformations are applied. The complexity of the model is 
largely determined by the number and types of hidden layers. 

3. Output Layer: Delivers the predict ion or classifications of the model based on the 
processed data. 

Different types of neural networks, such as Convolut ional Neura l Networks ( C N N s ) and 
Recurrent Neura l Networks ( R N N s ) , have architectures tailored to specific types of data 
and tasks. C N N s are opt imized for image data, while R N N s are suited for sequential data 
such as text or t ime series. 

Choosing an effective architecture is cr i t ical , as it influences the efficiency of the model's 
t ra ining and the final performance [15]. 

2.4.1 M o b i l e N e t V 2 ' s A r c h i t e c t u r e 

M o b i l e N e t V 2 is a notable architecture designed pr imar i ly for mobile and embedded based 
vision applications, showing high performance i n various applications, from image classifica
t ion to object detection. Its architecture design principles 2.1, which focus on efficiency and 
effectiveness, make it par t icular ly suitable for use on mobile devices, where computat ional 
resources are l imi ted [39]. 

Figure 2.1: The architecture of the Mobi leNetv2 network [41]. 

A key component of M o b i l e N e t V 2 is the inverted residual structure, which is a reversal 
of the t radi t ional design where inputs and outputs are th in layers and expansion occurs 
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in the middle. Th is design allows the network to mainta in high accuracy while being 
computat ional ly efficient. Depthwise separable convolutions are used to further reduce 
model size and computat ion cost without significantly affecting performance [39]. 

One of the defining characteristics of M o b i l e N e t V 2 is its careful treatment of nonlinear-
ities w i th the introduct ion of linear bottlenecks. B y l imi t ing the use of act ivat ion functions 
such as Rectified Linear Un i t ( R e L U ) in the final layer of the bottleneck, important infor
mat ion is preserved, improving the efficiency of the network [39]. 

Addi t ional ly , M o b i l e N e t V 2 employs transfer of knowledge to adapt pre-trained weights 
to gesture-specific tasks effectively. This approach reduces the need for extensive t raining 
data while s t i l l al lowing the model to perform wi th high accuracy across different environ
ments and scenarios. The efficient layer configuration of M o b i l e N e t V 2 significantly helps in 
swiftly processing input gestures, thus support ing seamless and intuit ive user experiences 
i n real-time applications [18]. 

2.4.2 Eff ic ientDet ' s A r c h i t e c t u r e 

EfficientDet is an innovative architecture designed pr imar i ly for efficient and scalable object 
detection, accommodating various computat ional constraints. Th is architecture embodies 
the integration of a compound scaling method and a novel bidirect ional feature pyramid 
network ( B i F P N ) , which significantly enhances multiscale feature fusion capabilities [47]. 

A key innovation i n EfficientDet is the weighted B i F P N , which introduces learnable 
weights to assess the importance of different input features, enabling effective feature in
tegration across mult iple scales. Th i s advancement addresses the challenge of efficiently 
combining mult iresolution inputs, which is crucial to improving detection accuracy [47]. 

In addit ion, EfficientDet utilizes a compound scaling method that uniformly scales the 
resolution, depth, and wid th of the network, opt imiz ing performance across a spectrum of 
resource l imitat ions. Th is method allows EfficientDet to achieve superior detection accuracy 
wi th fewer parameters and reduced computat ional complexity compared to prior models 
such as Y O L O v 3 and Ret inaNet [47]. 

EfficientDet has been rigorously tested on various benchmarks and demonstrates state-
of-the-art performance, par t icular ly i n environments where computat ional resources are 
a l imi t ing factor. Its abi l i ty to scale dynamical ly wi th different computat ional budgets 
makes it a versatile choice for deployment in diverse settings, from mobile devices to high-
end servers [47]. 

2.5 Loss Functions 

Loss functions constitute a fundamental component of machine learning algorithms, guiding 
the opt imizat ion process toward models that can accurately predict or classify data. These 
functions evaluate the discrepancy between the algorithm's predictions and the actual target 
values, serving as a measure of performance for the model . In essence, a loss function 
quantifies how well the model performs, w i t h lower values indicat ing better performance 
and a closer match to the desired output. In the domain of machine learning, loss functions 
can be broadly categorized based on the type of learning task - classification, detection, or 
segmentation. For classification tasks, such as gesture recognition using M o b i l e N e t V 2 , loss 
functions such as cross-entropy measure the difference between the predicted probabil i ty 
dis tr ibut ion across classes and the actual dis t r ibut ion. In regression tasks, functions such 
as mean squared error calculate the average squared difference between predicted values 
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and actual values, providing a straightforward metric for the accuracy of the prediction. 
In addit ion, the choice of the loss function can significantly influence the behavior of the 
learning algori thm. It dictates the direction and steps the a lgori thm takes during the 
t ra ining process to minimize errors [52]. 

2.5.1 M o b i l e n e t V 2 default loss func t ion - C r o s s - e n t r o p y 

Cross-entropy is a widely used loss function i n machine learning, par t icular ly in classifica
t ion tasks. It measures the difference between two probabil i ty distributions — predicted 
and actual — and is effective i n t ra ining models such as neural networks. Cross-entropy, 
often paired wi th softmax activation i n neural networks, quantifies the "distance" between 
the predicted probabil i ty dis t r ibut ion and the actual dis t r ibut ion of labels. Th is function 
is especially powerful in significantly adjusting the model weights for mispredicted labels, 
thus accelerating learning and improving the accuracy of the model [30, 29]. Furthermore, 
advances such as structured entropy and tamed cross-entropy adapt and modify t radi t ional 
cross-entropy to tackle specific challenges such as label noise and hierarchical class struc
tures, enhancing robustness and performance across various scenarios [32, 27]. A s shown 
in Figure 2.2, the cross-entropy loss function is used to measure the disparity between the 
actual class labels and the predicted probabilities, fostering effective learning by adjusting 
the model 's predictions towards the actual labels [52]. 

L(y,p(y\x)) = - log P(y\x) 

Figure 2.2: Cross-entropy loss function, where y is the actual dis t r ibut ion and p is the 
predicted probabil i ty dis t r ibut ion. Adap ted from [52]. 

2.6 Optimizers 

Optimizers are crucial i n the field of machine learning, par t icular ly in deep learning, where 
they significantly influence the efficiency and effectiveness of t ra ining models. A n optimizer 
is essentially an algori thm designed to adjust the parameters of a neural network to minimize 
the loss function. Th is process is pivotal , as it directly impacts the model's abi l i ty to 
learn from the data and perform accurately on unseen data. In deep learning, several 
optimizers have emerged, each wi th unique characteristics and mechanisms. The choice of 
an optimizer is not t r iv i a l and depends on the specific needs of the applicat ion, the nature 
of the data, and the type of neural network that is being used. Some of the widely used 
optimizers include Stochastic Gradient Descent ( S G D ) , A d a m , R M S p r o p , and A d a G r a d , 
among others. Choosing the right optimizer can significantly affect the speed of t raining 
and the final performance of deep learning models. E a c h optimizer has its strengths and 
weaknesses, making it essential to understand the underlying mechanisms and how they 
align wi th the specific requirements of the machine learning task at hand [36]. 
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Strengths and Weaknesses 

• S G D : Uti l izes a stochastic approximat ion of gradient descent, updat ing parameters 
incrementally for each t ra ining example, which can cause fluctuations i n the loss 
function due to high variance [36]. 

• Min i -batch S G D : Improves basic S G D by processing a fixed number of samples 
(a mini-batch) in each update, balancing computat ional efficiency w i t h variance re
duction [36]. 

• M o m e n t u m : Accelerates S G D by integrating a momentum term, which helps navi
gate through local opt ima by adding a fraction of the previous update vector to the 
current one, thus enhancing the convergence speed [36]. 

• Nesterov Accelerated Gradient ( N A G ) : Refines the concept of momentum by 
calculating the gradient at an approximate future posit ion of the parameters, thus 
controlling the update velocity and improving opt imizat ion precision [36]. 

• Adagrad: Adapts learning rates to parameters based on their frequency, w i th smaller 
updates for frequent features. It eliminates the need to manual ly adjust the learning 
rate, but can lead to a decrease i n updates over t ime [36]. 

• Adadelta: A n extension of Adagrad that seeks to reduce its monotonical ly decreasing 
learning rate by l imi t ing the window of accumulated gradients, thus maintaining 
a more consistent learning rate over t ime [36]. 

• R M S p r o p : R M S p r o p is an optimizer that adjusts the learning rate by d iv id ing it 
by an exponentially decaying average of squared gradients. Th is approach helps to 
overcome the rapid decrease i n the learning rate seen i n Adagrad , making it suitable 
for handling non-stationary problems and online settings [36]. 

• A d a m : A d a m , or Adapt ive Moment Es t imat ion , combines ideas from R M S p r o p and 
momentum. It calculates adaptive learning rates for each parameter by considering 
the first and second moments of the gradients, al lowing for effective handling of sparse 
gradients. Th is versatili ty makes A d a m highly favored for deep learning applications 
[36]. 
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2.6.1 V i s u a l i z a t i o n of O p t i m i z e r P e r f o r m a n c e 

A n il lustrative figure 2.3 shows the trajectory of different optimizers i n the landscape of loss 
function. T h i s visualizat ion helps to understand how different optimizers navigate toward 
the m i n i m u m of a complex loss function landscape. 

t/5 "> 
O © ' 

r i 
d 

0 20 40 60 80 100 
epochs 

Figure 2.3: P lo t of the loss function over epochs during the t ra ining of the L S T M - C N N 
model for human act ivi ty recognition. The x-axis represents the number of epochs, while 
the y-axis represents the loss [55]. 

These insights are crucial in selecting an optimizer that best fits the specific challenges 
and requirements of various deep learning tasks [36]. 
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2.6.2 S G D O p t i m i z e r 

Stochastic Gradient Descent ( S G D ) is a cornerstone of opt imizat ion i n machine learning, 
especially in the t ra ining of deep neural networks. It updates the model parameters in 
the opposite direction of the gradient of the loss function concerning those parameters, 
w i th the goal of min imiz ing the loss. A l though S G D i n its pure form is simple, it serves 
as the foundation for more complex variants such as S G D wi th momentum and Nesterov-
accelerated gradient ( N A G ) , which a im to improve convergence rates and t ra ining stability. 
S G D and its derivatives are crucial for the opt imizat ion landscape in deep learning, offering 
a balance between computat ional efficiency and the abi l i ty to navigate the complex, high-
dimensional loss surfaces typ ica l of neural networks. The i r simplicity, coupled wi th the 
nuanced understanding of their dynamics, makes them invaluable tools i n the machine 
learning practitioner's toolkit [36]. 

2.7 Quantization of a Mode l 

M o d e l quantization is a crucial opt imizat ion technique to reduce the memory footprint and 
computat ional requirements of deep learning models, making them suitable for deployment 
on various platforms. The process involves converting the data formats of weights and 
activations from floating-point to lower-precision formats, such as 8-bit integers. Th is 
transformation can be performed in two pr imary ways: post-training quantization, which 
applies quantizat ion after the model has been trained without the need for retraining; and 
quantization-aware training, which simulates low-precision ari thmetic during the t raining 
process itself, thus retaining more of the model's accuracy [20]. 
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Chapter 3 

Hardware and Software 

This chapter delves into the hardware and software aspect of running machine learning 
applications, namely the TensorFlow Li te , Keras , M o b i l n e t V 2 and the A R M architecture, 
w i th a part icular focus on the i . M X 93 platform. 

3.1 A R M Architecture 

A R M architecture is p ivota l i n the realm of embedded systems, offering a robust framework 
for the efficient operation of myr iad devices, from simple microcontrollers to complex SoCs 
(System on Chips ) . Or ig ina l ly developed as a project at A c o r n Computers , A R M has grown 
to become the most widely used architecture i n mobile devices, due to its power efficiency 
and performance opt imizat ion [1]. 

R I S C Principles: A R M is based on the R I S C (Reduced Instruction Set Comput ing) 
design, which simplifies the instruction set, al lowing for faster processing and lower power 
consumption compared to complex instruct ion set computing (CISC) designs. This sim
pl ic i ty is crucial for devices that require high performance wi th min ima l energy expenditure 
[!]• ' _ 

Modular i ty and Customization: A R M cores are highly modular, al lowing hardware 
manufacturers to implement only the components necessary for their specific applications. 
Th is modular i ty extends to the inclusion of various coprocessors and a range of peripherals 
that can be tailored to specific needs, from automotive applications to mobile phones [42]. 

Advancements in Technology: Over the years, A R M has introduced several architec
tures and technologies that enhance the capabil i ty of systems i n which they are embedded. 
Innovations such as A R M Cor tex series, D y n a m l Q technology, and b i g . L I T T L E processing 
not only provide scalable solutions but also integrate advanced processing capabilities like 
machine learning and artificial intelligence [42]. 

Impact on Embedded Systems: The applicat ion of A R M architecture extends be
yond mobile phones to include automotive systems, industr ia l controls, and Internet of 
Things (IoT) devices. Its abi l i ty to support a range of operating systems from L i n u x to 
real-time operating systems underpins its versatili ty i n handling various embedded system 
requirements [45]. 
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3.2 i . M X 93 

The i . M X 93, which uses A R M architecture, represents a significant advancement i n embed
ded systems, par t icular ly for machine learning applications. It integrates the scalable A r m 
Cortex A55 core, which is cr i t ica l for its best-in-class performance and energy efficiency. 
This core, enhanced by A r m ' s D y n a m l Q technology and the latest A r m v 8 - A architecture 
extensions, is specifically opt imized to accelerate machine learning tasks, making the i . M X 
93 an ideal choice for Linux-based edge applications [42]. Addi t ional ly , i . M X 93 is notable 
for its implementat ion of the A r m Ethos-U65 m i c r o N P U . A s the first in the industry, the 
Ethos-U65 m i c r o N P U offers a blend of performance and efficiency, while maintaining an 
optimized footprint suitable for creating cost-effective and energy-efficient M L applications 
[42]. 

Apar t from its advanced C P U and N P U capabilities, the i . M X 93 excels i n power 
management and hardware versatility. Its innovative energy flex architecture enables fine
grained power control across heterogeneous domains, such as the applicat ion domain (Cortex-
A55s), real-time domain (Cor tex-M33 peripherals) and flex domains ( N P U , D D R , etc.), 
ensuring min ima l power consumption tailored to specific use cases [42]. The platform also 
offers a comprehensive suite of high-speed interfaces and memory options, including U S B , 
Ethernet, and C A N - F D , catering to a wide range of connectivity and data transfer needs 
[42]. These features underscore the i . M X 93's potential in facil i tat ing robust and efficient 
machine learning applications i n embedded systems. 

3.3 TensorFlow Lite 

TensorFlow Li t e is an open-source software l ibrary specifically designed to run machine 
learning models on mobile and embedded devices. [2] It enables on-device machine learning 
inference wi th low latency and smal l binary size, making it ideal for embedded applications 
[44]. The version of TensorFlow L i t e opt imized for the N X P i . M X 8 and i . M X 93 platforms, 
as per the Yoc to L i n u x release, includes features like multi threaded computat ion wi th ac
celeration using A r m Neon S I M D instructions on C o r t e x - A cores and parallel computat ion 
using N P U hardware acceleration [44]. 

3.4 Keras 

Keras is a high-level neural network A P I designed for rapid development and experimenta
t ion. It operates on top of several deep learning frameworks, including TensorFlow, which 
provides the backbone for bui lding and t ra ining sophisticated machine learning models. 
Keras simplifies the process of bui ld ing models through its user-friendly 'Sequential ' and 
functional A P I methods, support ing a wide range of network architectures from simple to 
complex. It is well suited for beginners and experienced researchers alike, offering easy 
model construction, evaluation, and deployment on a wide range of platforms, thus im
proving product iv i ty and facili tating innovation [10]. 

3.4.1 E p o c h a n d B a t c h 

In the neural network t ra ining process, par t icular ly i n frameworks such as Keras , the terms 
epoch and batch are cr i t ica l to understanding how models learn from data over iterations. 
A n epoch represents one complete pass of the t ra ining dataset through the algori thm, 

17 



allowing the model to learn from each example in the dataset. E a c h epoch consists of 
several smaller subsets of the data, known as batches, which are used to perform training 
iterations. A batch refers to the number of t ra ining examples used in one i teration of model 
t raining. The size of a batch and the number of epochs are adjustable parameters that can 
significantly affect the t ra ining dynamics and performance of the model. Ba tch processing 
in neural networks helps to efficiently manage computat ional resources, as using smaller 
batches means less memory consumption and often faster processing. However, smaller 
batches can lead to a less accurate estimate of the gradient, while larger batches provide 
a more stable gradient but w i th a higher computat ional cost. Adjust ing the number of 
epochs is equally important , as it determines how many times the learning a lgor i thm w i l l 
work through the entire t ra ining dataset. Too few epochs can result i n an underfit model, 
whereas too many epochs may lead to overfitting. It is crucial to find a balance to achieve 
opt imal performance [3]. 

3.5 A I on Embedded Systems 

Implementing artif icial intelligence i n A R M - b a s e d embedded systems involves opt imiz ing A I 
models for low power, l imi ted hardware environments. TensorFlow Li t e and M o b i l e N e t V 2 
are pivotal in this context due to their tai lored design for such constraints. M o b i l e N e t V 2 , 
known for its lightweight deep neural network architecture, utilizes depthwise separable 
convolutions which significantly reduce the number of parameters and computat ional com
plexity, making it ideal for real-time applications on embedded devices [39]. 

3.5.1 O p t i m i z a t i o n s for Efficient A I o n A R M w i t h T e n s o r F l o w L i t e 

TensorFlow L i t e facilitates optimizations through techniques such as post-training quanti
zation and the use of fused operations, which streamline the computat ional graph. Further
more, TensorFlow Li te ' s integration wi th the N X P board's specific hardware accelerators 
allows for enhanced processing capabilities, leveraging features such as the N E O N S I M D 
architecture for parallel data processing [2]. 

These strategies collectively enable efficient deployment of M o b i l e N e t V 2 on A R M -
powered N X P boards, maintaining a balance between performance and power consumption, 
crucial for mobile and embedded applications. 
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Chapter 4 

Analysis of Current Gesture 
Recognition Methods 

4.1 Overview of Exist ing Gesture Recognition Techniques 

Gesture recognition technology has evolved significantly employing various methods to 
interpret human gestures as a means of interaction w i t h devices. This section explores 
various existing techniques, each wi th unique mechanisms and applications. 

4.1.1 O p t i c a l G e s t u r e R e c o g n i t i o n 

This method relies on cameras and computer vision algorithms that process visual data 
from a 2D or 3D perspective to detect and interpret gestures. Op t i ca l systems util ize 
depth-sensing technologies and computer algorithms to analyze the shape, movement, and 
depth of gestures wi th in a given space, making it possible to interpret complex hand and 
body movements without physical contact. Such capabilities are cr i t ical in environments 
where intuit ive user interfaces are necessary, such as in interactive or gaming systems [40]. 

Despite seeming like a relatively modern development, opt ical gesture recognition has 
roots going back to at least 1997. Ear l ier systems, such as the one developed by Kobayashi , 
used C C D cameras and holographic devices to create vector representations of gestures. 
These early efforts la id the foundation for modern and more sophisticated systems, demon
strating the long-standing interest and continuous evolution i n the field of gesture recogni
t ion [26]. 

4.1.2 Sensor Gloves 

Sensor-equipped gloves are another approach, where the glove is embedded wi th various 
sensors such as accelerometers, gyroscopes, and sometimes flex sensors. These gloves can 
capture the fine movements and positions of the user's fingers and hand, translating them 
into control signals. A l t h o u g h offering high accuracy, the requirement to wear a glove can 
be seen as a l imi ta t ion i n terms of convenience and scalability. Such systems have been 
effectively demonstrated to help in gesture recognition for communicat ion, especially in 
applications where precise control is necessary, such as interacting wi th v i r tua l environments 
[37]. 
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4.1.3 T o u c h - B a s e d G e s t u r e R e c o g n i t i o n 

Predominant ly found in smartphones and tablets, this method uses capacitive touchscreens 
to recognize gestures. Simple gestures such as swipes, pinches, and taps are easily recog
nized. Despite their widespread adoption, the interaction is l imi ted to the two-dimensional 
plane of the screen while requiring direct contact w i th the device, which l imits the type 
of gestures that can be recognized and may not capture more complex three-dimensional 
gestures intended for advanced computat ional interactions [33]. 

4.1.4 W e a r a b l e D e v i c e - B a s e d R e c o g n i t i o n 

Wearable devices such as smartwatches and fitness bands use embedded sensors to recognize 
gestures. These devices pr imar i ly use accelerometers and gyroscopes to understand simple 
hand movements. A l though convenient and increasingly popular, the range of recognizable 
gestures is relatively l imi ted compared to more sophisticated systems. The embedded sen
sors in these devices allow for recognition of a variety of gestures by analyzing movements 
of the wrist, which can be crucial for applications that require user-friendly and intuit ive 
interfaces [8]. 

4.1.5 Infrared a n d U l t r a s o n i c G e s t u r e R e c o g n i t i o n 

These techniques use infrared sensors or ultrasonic wave emissions to detect hand move
ments. B y measuring the t ime it takes for waves to bounce back from the hand, the system 
interprets different gestures. Such methods can be effective for short-range interactions, 
but might struggle w i t h precision and complex gesture interpretation [38]. 

4.2 Advantages of Gesture Recognition Compared to Tradi
tional Control Methods 

Gesture recognition technology offers several advantages over t radi t ional control methods 
such as physical buttons, touchscreens, and control sticks. This section highlights the key 
benefits of using gesture-based interfaces. 

4.2.1 Intui t ive a n d N a t u r a l Interact ion 

One of the pr imary advantages of gesture recognition is its abi l i ty to provide a more intuit ive 
and natural way of interaction. Unl ike pressing buttons or using a mouse, gestures are 
a fundamental form of human communicat ion, often perceived as more natural and intuit ive. 
Studies have shown that users can perform tasks more quickly and wi th fewer errors using 
gestures compared to t radi t ional interfaces [9]. 

4.2.2 E n h a n c e d Access ib i l i ty 

Gesture-based interfaces can be more inclusive, especially for people wi th disabilities. For 
those who may find it challenging to use t radi t ional interfaces due to physical l imitat ions, 
gesture recognition can offer an alternative means of interaction, as demonstrated i n re
search on accessible technology [9]. 
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4.2.3 Contact less C o n t r o l 

In scenarios where touchless control is preferable or required for hygiene reasons (like in 
medical settings or public kiosks), gesture recognition provides an effective solution. This 
contactless nature also makes it suitable for use i n environments where touchscreens or 
buttons can be prone to damage [57]. 

4.2.4 F r e e d o m of M o v e m e n t 

Gesture recognition allows for greater freedom of movement, e l iminat ing the need to be 
physically close to the device. Th is can be part icular ly beneficial in situations such as pre
sentations or interactive installations, where the user can control the system from a distance 
[53]. 

4.2.5 Space a n d C o s t Eff ic iency 

Implementing gesture control can lead to more space-efficient designs, as it reduces the need 
for physical control panels and buttons. Th is can also translate into cost savings in design 
and manufacturing [9]. 

4.2.6 Sca labi l i ty a n d Versa t i l i t y 

Gesture recognition technology can be scaled and adapted to a wide range of applications, 
from consumer electronics to industr ia l control systems. Its versatil i ty allows it to be 
implemented in diverse environments and for various purposes [23]. 

4.2.7 R e d u c e d W e a r a n d T e a r 

Since gesture-based interfaces do not require physical contact, they typical ly experience 
less wear and tear compared to t radi t ional control methods. This can lead to longer-lasting 
devices and a less frequent need for maintenance or replacement [56]. 

4.3 Current Challenges and Limitations in Gesture Recog
nition 

Despite its many advantages, gesture recognition technology also faces several challenges 
and l imitat ions that affect its broader adoption and effectiveness. 

4.3.1 E n v i r o n m e n t a l Sens i t iv i ty 

Gesture recognition systems, especially those based on opt ical or infrared technologies, can 
be highly sensitive to environmental factors. L igh t ing conditions, background clutter, and 
interference or even color of the skin of a human being from other sources can significantly 
impact the accuracy of gesture detection [9]. 

4.3.2 C o m p l e x i t y of G e s t u r e In terpre ta t ion 

Interpreting complex gestures accurately remains a challenge. Different individuals may 
perform the same gesture slightly differently, and the system must be able to account for 
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these variations. Furthermore, technology must dist inguish between intentional gestures 
and random movements [12]. 

4.3.3 H a r d w a r e L i m i t a t i o n s 

The effectiveness of gesture recognition is often l imi ted by hardware capabilities. H i g h 
resolution sensors and advanced processing capabilities are required for precise gesture 
detection, which can be costly and power consuming, especially for portable or wearable 
devices [19]. 

4.3.4 U s e r A c c e p t a n c e a n d A d a p t a b i l i t y 

User acceptance can be a significant barrier, as some may find it uncomfortable or unin
tui t ive to use gesture-based controls, especially i n public or professional settings. There is 
also a learning curve associated wi th adopting new interaction methods [46]. 

4.3.5 P r i v a c y a n d Secur i ty C o n c e r n s 

Camera-based gesture recognition systems raise privacy concerns, as continuous monitor ing 
and video recording might be perceived as intrusive. Furthermore, ensuring the security of 
gesture data is cr i t ica l to prevent unauthorized access or control [54]. 

4.3.6 L a c k of S t a n d a r d i z a t i o n 

There is a lack of standardization i n gestures and gesture recognition technologies, leading 
to inconsistencies between different systems and devices. Th is can confuse users and hinder 
the interoperabili ty between different systems and applications [28]. 
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Chapter 5 

Training a Machine Learning 
Model for Optical Gesture 
Recognition 

5.1 Used Models 

In this project, two distinct models were ut i l ized to address the challenge of gesture recog
ni t ion. M o b i l e N e t V 2 and EfncientDet L i t e 2. B o t h models are well-regarded for their 
performance in computer vision tasks and have been adapted to meet the specific require
ments of real-time gesture recognition on embedded systems. 

5.2 Dataset Description 

The dataset, sourced from a G i t H u b repository H a G R I D [25], comprises a diverse collection 
of images used to t ra in the machine learning model consisting of 19 different hand gestures 
5.1. It contains around 554,800 unique persons 5.2 and at least an equal number of unique 
scenes. The subjects range i n age from 18 to 65 years, offering a broad demographic 
representation. The data set was collected pr imar i ly indoors w i th considerable variat ion 
in l ight ing conditions, encompassing artificial and natural light sources. It also includes 
images taken under challenging l ighting conditions, such as w i th subjects facing or backing 
to a window. Furthermore, the dataset captures gestures performed at varying distances, 
from 0.5 to 4 meters from the camera, adding to the complexity and diversity of the data 
used for t ra ining the model . Th is variety ensures that the model is trained in a wide range 
of scenarios, enhancing its robustness and appl icabi l i ty i n real world settings. 
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call dislike fist four like mute 

ok one palm peace peace inv. rock 

stop stop inv. three three 2 two up two up inv. 

Figure 5.1: Gestures from the H a G R I D dataset 

Figure 5.2: Examples of images from the H a G R I D dataset 
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5.2.1 Datase t P r e p r o c e s s i n g 

The in i t i a l dataset sourced from a G i t H u b repository contained a wide variety of hand 
gestures. To enhance the accuracy and focus of the machine learning model and simplify 
real life usage of device control v i a gesture recognition, the dataset was curated to include 
only five gestures that are dis t inct ly different from each other. These gestures-like, dislike, 
fist, peace, and stop -were selected to provide clear and varied examples for the model to 
learn from, thereby improving its abi l i ty to accurately classify these gestures. 

F rom the repository, I extracted 140 images for each of these five gestures. Then each 
image was manual ly cropped to focus solely on the gesture, ensuring that each cropped 
image maintained a resolution of 224x224 pixels. This specific resolution was chosen to 
comply wi th the input requirements of the M o b i l e N e t V 2 model, which is opt imized for this 
image size due to its architectural constraints and operational efficiency. 

The dataset was strategically divided to enhance the t ra ining and val idat ion processes: 
100 images per gesture were designated for t raining, while 20 images per gesture were set 
aside for validation, and another 20 for testing. Th is division was aimed at providing 
a balanced approach to t ra ining the model while al lowing for comprehensive val idat ion and 
testing to assess the model performance accurately. 

For the EfncientDet L i t e 2 model, an addi t ional set of 140 images was ut i l ized for each 
gesture. However, for this model, the original annotations from the dataset were retained 
and converted from the C O C O format to the V O C format, which is compatible w i t h the 
model's t ra ining requirements. Th is approach allowed for leveraging the pre-annotated 
data effectively, reducing the preprocessing workload while maintaining high data integrity 
for t ra ining the second model . This method ensured that both models were trained under 
opt imal conditions wi th datasets tai lored to their specific needs, w i th the a im of maximiz ing 
the accuracy and effectiveness of the gesture recognition system. 

5.2.2 Datase t A u g m e n t a t i o n 

D a t a augmentation involves artif icially altering the t ra ining dataset by applying random, 
yet realistic, transformations to the t ra ining images. For the M o b i l e N e t V 2 model, a variety 
of augmentations were used to ensure that the model is not only accurate, but also robust 
to variations in real-world conditions. These alterations are being performed every epoch 
on every image randomly. 

M o b i l e N e t V 2 Augmentations The t ra ining dataset for M o b i l e N e t V 2 was augmented 
using the following transformations: 

• Rescaling: Each pixel value was rescaled by a factor of ^ 5 , converting the pixel 
values from a range of 0-255 to 0-1. Th is normalizat ion helps speed up the t raining 
by improving numerical stability. 

• Shear Transformation: A shear range of 0.2 was applied, which slants the shape 
of the image, s imulat ing a more diverse set of angles and poses in captured gestures. 

• Zoom: The images were randomly zoomed i n by up to 20%, helping the model to 
recognize gestures from various scales and distances. 

• Horizontal Fl ip: Hor izonta l F l i p was ut i l ized because it allows the model to learn 
from mirrored versions of gestures. This is par t icular ly beneficial because a gesture 
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shown on the left hand can be transformed to simulate how it would appear i f per
formed wi th the right hand, thereby doubling the diversity of hand orientation in the 
t ra ining data without needing addi t ional images. 

• Rotation: The images were randomly rotated by up to 30 degrees, al lowing the 
model to handle variations i n the w i ld where gestures might not be perfectly aligned 
wi th the camera. 

Limitations with EfficientDet Lite 2 In contrast, the augmentation capabilities of 
EfficientDet L i t e 2 were l imi ted by the tools available wi th in the TensorFlow L i t e M o d e l 
Maker environment used for t raining. A l though M o b i l e N e t V 2 t ra ining could leverage direct 
image augmentation through Keras , which provides extensive support for image augmen
tat ion through its ImageDataGenerator class, EfficientDet L i t e 2 d id not support similar 
on-the-fly augmentations directly in its t ra ining pipeline at the t ime of implementation. The 
setup for EfficientDet L i t e 2 required predefined datasets w i t h less flexibili ty i n augmen
tat ion, i l lustrat ing a trade-off between ease of use and flexibili ty i n t ra ining deep learning 
models for gesture recognition. 

5.3 Implementation Details 

5.3.1 C o d e O v e r v i e w 

The implementat ion comprises P y t h o n and Bash scripts for various stages such as train
ing, data augmentation, annotation filtering, and converting the model to TensorFlow Li te 
format [14]. The TensorFlow and Keras libraries were employed for training, u t i l iz ing 
the pre-trained layers of M o b i l e N e t V 2 and adding custom layers tai lored for the specific 
task. M o b i l e N e t V 2 was in i t ia l ly trained; however, attempts to quantize this model were 
unsuccessful. Due to difficulties encountered during the quantization process, M o b i l e N e t V 2 
could not be effectively prepared for deployment on Neura l Processing Uni t s ( N P U ) . Conse
quently, the EfficientDet L i t e 2 model was trained and subsequently quantized successfully, 
ensuring compat ibi l i ty and efficient execution on N P U platforms. 

5.3.2 Software Dependenc i e s 

The project's software dependencies are tailored to ensure compat ibi l i ty and performance 
for machine learning development, par t icular ly on x64 platforms using U b u n t u 22.04. The 
dependencies ctre cts follows: 

• P y t h o n Version: 3.10.12 - Chosen for its s tabil i ty and compat ibi l i ty w i t h other 
libraries required i n this project. 

• TensorFlow 2.15 - TensorFlow 2.15 supports legacy functionalities w i th Keras 2, 
which were used in the in i t i a l stages of this project. W h i l e TensorFlow 2.16 was 
released during the development process, it was not adopted to ensure stabil i ty and 
compatibi l i ty w i th the existing codebase, which is tai lored for TensorFlow 2.15. 

• Keras 2 - Integrated direct ly wi th in TensorFlow 2.15 to leverage specific legacy 
features not available i n later versions. 
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• O p e n C V - P y t h o n (cv2) - U t i l i zed for handling image and video data, essential for 
data preprocessing and augmentation tasks. 

The combinat ion of Py thon , TensorFlow, and O p e n C V - P y t h o n creates a powerful and 
versatile development environment. Th is setup is ideal for meeting the project's demands in 
terms of processing speed and data handling. The environment ensures compat ibi l i ty and 
high performance across x64 platforms, providing a robust foundation for the development 
and testing phases of the machine learning models. 

5.4 Training Process of Mobi leNetV2 

5.4.1 L o a d i n g the M o b i l e N e t V 2 m o d e l w i thout top layers 

A t the beginning of the t ra ining process, the pre-trained M o b i l e N e t V 2 model was loaded 
without its top classification layers 5.3. Th is approach allows for leveraging the learned 
features while adapting the model to a new classification task wi th fewer output categories. 

import tensorflow as t f 
model = tf.keras.applications.MobileNetV2(weights = )imagenet', include_top= 

^ False, input_shape=(224, 224, 3)) 

Figure 5.3: Load ing the M o b i l e N e t V 2 model without top layers 

5.4.2 Freez ing the layers of the M o b i l e N e t V 2 m o d e l 

The rest of the layers of the pre-trained M o b i l e N e t V 2 model were frozen to prevent them 
from being updated throughout the t ra ining process 5.4. Th i s strategy is used to preserve 
the intricate features that the model has learned from the comprehensive ImageNet dataset. 
B y keeping these layers fixed, only the newly added custom layers are trained, allowing 
the model to specialize on the narrower task without forgetting the valuable generalized 
features. 

for layer i n model.layers: 
layer.trainable = False 

Figure 5.4: Freezing the layers of the M o b i l e N e t V 2 model 

5.4.3 A d d i n g c u s t o m layers to the M o b i l e N e t V 2 m o d e l 

After loading and configuring the base model, custom layers were added to tai lor the model 
for our specific classification tasks 5.5. These layers include a global average pooling layer 
which computes the average output of each feature map from the previous layer followed 
by a dense layer for feature reduction and a final dense layer w i th softmax activation for 
classification. 
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from tensorflow.keras import layers, models 
x = model.output 
x = layers.GlobalAveragePooling2D()(x) 
x = layers.Dense(1024, activation='relu ))(x) 
predictions = layers.Dense(5, activation= ,softmax ))(x) 
model_final = models.Model(inputs=model.input, outputs=predictions) 

Figure 5.5: A d d i n g custom layers to the M o b i l e N e t V 2 model 

5.4.4 C o m p i l i n g the M o b i l e N e t V 2 m o d e l w i t h S G D o p t i m i z e r 

The model was then compiled w i t h a stochastic gradient descent ( S G D ) optimizer, spec
ifying the learning rate and the momentum 5.6. This sets up the model for t ra ining by 
defining how it should update its weights (via the optimizer) and how it should measure 
its accuracy (via the loss function and other metrics). The learning rate and momentum 
values were chosen as the best after numerous iterative experiments w i th different values. 

from tensorflow.keras.optimizers import SGD 
optimizer = SGD(learning_rate=0.001, momentum=0.9) 
model_final.compile(optimizer=optimizer, loss='categorical_crossentropy', 

metrics= ['accuracy']) 

Figure 5.6: Compi l i ng the M o b i l e N e t V 2 model w i th S G D optimizer 

5.4.5 Se t t ing u p d a t a a u g m e n t a t i o n w i t h I m a g e D a t a G e n e r a t o r 

Dur ing the t ra ining phase, a data augmentation strategy was implemented to enhance the 
model's abi l i ty to generalize to new unseen data 5.7. This strategy was executed using 
an instance of the ImageDataGenerator class provided by TensorFlow's Keras A P I , which 
applies various transformations to the t ra ining images. 

train_datagen = ImageDataGenerator ( 
rescale=l./255, 
shear_range=0.2, 
zoom_range=0.2, 
horizontal_flip=True, 
rotation_range=30, 

) 

Figure 5.7: Setting up data augmentation wi th ImageDataGenerator 

5.4.6 Spec i fy ing b a t c h size a n d t r a i n i n g d imens ions 

Training was carried out w i th a batch size of 32 5.8, since this value produced the best 
t ra ining speed for both M o b i l e N e t V 2 and EfncientDet L i t e 2. The value of 20 for the 
number of epochs to be trained was chosen because the autostopper w i th default values 
for the M o b i l n e t V 2 model always stopped at 20 epochs after not being able to improve the 
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model w i th more epochs. To preserve the same value baseline for both models, this number 
was also chosen for EmcientDet L i t e 2. 

batch_size = 32 
epochs = 20 
img_height, img_width = 224, 224 

Figure 5.8: Specifying batch size and training dimensions 

5.4.7 C o n v e r t i n g the t r a i n e d m o d e l to T e n s o r F l o w L i t e format 

Following model training, the TensorFlow model was converted to TensorFlow L i t e format 
5.9, enabling its deployment on the i . M X 93 board. 

import tensorflow as t f 
converter = tf.lite.TFLiteConverter.from_keras_model(model) 

tflite_model = converter.convert() 
with open ('model, t f l i t e ' , 'wbO as f: 

f.write(tflite_model) 

Figure 5.9: Convert ing the trained model to TensorFlow L i t e format 
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5.5 Training Process of EfficientDet Lite 2 

The t ra ining process for the EfficientDet L i t e 2 model began by in i t ia l iz ing the model 
w i th pre-set specifications 5.10 tailored for lightweight and efficient performance on mobile 
devices. 

import tensorflow as t f 
from tflite_model_maker import model_spec 
spec = model_spec.get( ,efficientdet_lite2 )) 

Figure 5.10: Ini t ia l iz ing the EfficientDet L i t e 2 model 

5.5.1 L o a d i n g t r a i n i n g a n d va l idat ion d a t a for Ef f i c ientDet L i t e 2 

D a t a for t ra ining and validat ion were loaded using TensorFlow M o d e l Maker ' s DataLoader 
5.11, which organizes images and annotations from the Pascal V O C format, commonly used 
for object detection tasks. 

from tflite_model_maker import object_detector 
train_data = object_detector.DataLoader.from_pascal_voc( 

images_dir="dataset_train", annotations_dir="annotations_train", 
^ label_map={l:"dislike", 2 : " f i s t " , 3:"like", 4:"peace", 5:"stop">, 

num_shards=10 
) 
validation_data = object_detector.DataLoader.from_pascal_voc( 

images_dir="dataset_val", annotations_dir="annotations_val", label_map 
^ ={1:"dislike", 2 : " f i s t " , 3:"like", 4:"peace", 5:"stop"}, 

mim_shards=10 
) 

Figure 5.11: Load ing t ra ining and val idat ion data for EfficientDet L i t e 2 

5.5.2 C o n f i g u r i n g a n d s tar t ing t r a i n i n g for Ef f i c ientDet L i t e 2 

Training was carried out w i th a batch size of 32 wi th 20 epochs 5.12, as these values yielded 
the best ratio of t ra ining speed and mode accuracy for both models. The value of 20 for the 
number of epochs to be trained was also chosen because the autostopper w i th default values 
for the M o b i l n e t V 2 model always stopped at 20 epochs after not being able to improve the 
model w i th more epochs. To preserve the same value baseline for both models, this number 
was also chosen for EfficientDet L i t e 2. 

model = object_detector.create(train_data, 
model_spec=spec, batch_size=32, epochs=20, train_whole_model=True, 

> validation_data=validation_data) 

Figure 5.12: Configuring and start ing t ra ining for EfficientDet L i t e 2 
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5.5.3 Q u a n t i z i n g the E f R c i e n t D e t L i t e 2 m o d e l 

After t raining, the model was quantized 5.13, which optimizes it for deployment by reducing 
the size of the model and potential ly improving its speed on compatible hardware. The 
quantization settings were specified to use I N T 8 precision for inference. 

from tflite_model_maker.config import QuantizationConfig 
config = QuantizationConfig.for_int8(validation_data, inference_input_type= 

> tf.uint8, inference_output_type=tf.float32, supported_ops= [ t f . l i t e . 
^ 0psSet.TFLITE_BUILTINS_INT8]) 

Figure 5.13: Quant iz ing the EfncientDet L i t e 2 model 

5.5.4 E x p o r t i n g the E f R c i e n t D e t L i t e 2 m o d e l i n T e n s o r F l o w L i t e format 

Final ly , the model was exported i n TensorFlow Li t e format 5.14, al lowing its deployment 
on the i . M X 93 board. 

model.export(export_dir = ).', tflite_filename="model.tflite", 
> quantization_config=config) 

Figure 5.14: Expo r t i ng the EfncientDet L i t e 2 model i n TensorFlow L i t e format 

5.5.5 O p t i m i z i n g the Q u a n t i z e d E f R c i e n t D e t L i t e 2 M o d e l for N P U 

Once the EfncientDet L i t e 2 model was quantized and saved i n TensorFlow L i t e format, 
using Vela Tool , the quantized '.tflite' model undergoes further transformation that refines 
the model for op t imal execution on the N P U . This includes restructuring certain layers and 
operations to better exploit the parallel processing capabilities of N P U s . 

The command to run Ve la on the quantized model is straightforward 5.15. Suppose 
that Vela Too l is installed and configured on the system. 

vela model.tflite 

Figure 5.15: Us ing Vela Tool to optimize the TensorFlow Li t e model for N P U execution 
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Chapter 6 

Inference Process 

6.1 Code Overview 

The inference process involves loading the TensorFlow L i t e model and processing input data 
[14], typical ly from a U S B camera connected to the i . M X 93's board or from a video file. O n 
the x64 platform, the inference can be run on C P U or on supported G P U s from N V I D I A . 
O n A R M platform, the i . M X 93's C P U cores or N P U or both at the same time can handle 
the inference, demonstrating the board's capabil i ty to perform real-time machine learning 
tasks. The inference script includes preprocessing of the input data, model invocation, and 
output of the predictions. 

6.1.1 Software Dependenc i e s 

The script requires specific libraries and environments to run efficiently. The dependencies 
are outl ined as follows: 

Inference on x64 platform 

• P y t h o n Version: 3.10.12 - Chosen for its s tabil i ty and compat ibi l i ty w i t h other 
libraries required i n this project. 

• TensorFlow 2.15 - TensorFlow 2.15 is the version the models were trained i n and as 
to have continuity, this version is also required for inference even though the inference 
script has no issues wi th the newest TensorFlow version 2.16. 

• O p e n C V - P y t h o n (cv2) - U t i l i zed for handling image and video data. 

• N u m P y - U t i l i zed for numerical operations on image data. 

Inference on A R M platform 

The inference process on A R M platforms, par t icular ly using i . M X 93, is streamlined by 
the dedicated version of Embedded L i n u x customized for this device. The specific version 
E mbedded Linux for i . M X applications processors 6.1.36 2.1.0 [45], released 
on December 1, 2023, includes a l l the necessary dependencies and libraries required to 
efficiently run inference tasks directly out of the box and is tested and compatible w i th the 
project's inference code and trained models. 
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This L i n u x release is readily available for download from the N X P website following 
a simple registration process. Not only does it offer the operating system, but also it 
provides comprehensive documentation that assists developers in deploying and opt imizing 
their applications. The integration of a l l required software components wi th in this L i n u x 
version ensures that developers can quickly set up their inference environment without 
needing to manual ly instal l addi t ional packages. Th is feature is especially beneficial in 
embedded systems, where s implic i ty and efficiency are crucial . For more detailed guidance 
on setting up and using this L i n u x release, refer to the accompanying user guide [43]. 

6.2 Detailed Implementation 

6.2.1 P a r s i n g A r g u m e n t s 

The script starts by defining and parsing command-line arguments 6.1, which allow the user 
to customize the execution parameters directly from the command line. Th is flexibility is 
essential for adapting the script to different environments and input types. After parsing, 
the script loads these arguments into local variables, which are then used to configure the 
execution environment and the path setup for the model file. 

# Define and parse input arguments 
parser = argparse.ArgumentParser() 
parser.add_argument('—filename', help='Name of video or image input f i l e ' , 

default='video_device.mp4') 
parser.add_argument('—graph', help='Name of the . t f l i t e f i l e , i f different 

than model.tflite', 
default='model.tflite') 

parser.add_argument('—input_type', help='Type of input: webcam, v i d e o f i l e ' 

default='webcam') 
parser.add_argument('—platform', help='Type of platform: arm, x64', 

default='arm') 
args = parser.parse_args() 

# Load args 
inputFile = args.filename 
GRAPH_NAME = args.graph 
inputType = args.input_type 
platformType = args.platform 

# Get path to current working directory 
CWD_PATH = os.getcwdO 
# Path to . t f l i t e f i l e , which contains the model that i s used for object 

detection 
model_path = os.path.join(CWD_PATH,GRAPH_NAME) 

Figure 6.1: Pars ing command-line arguments and loading them into the script 
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In example, if we wanted to infer on the x64 platform, wi th model named "mobil -
netv2.tflit" on input from mp4 video named video_test .mp4 we would run the script w i th 
command described i n the following figure 6.2. 

python3 inference. _mobilnetv2 py 
—p l a t f o r m x64 
—input_type vi d e o f i l e 
—filename video_test mp4 
—graph mobilnetv2 t f l i t e 

Figure 6.2: Arguments example 

6.2.2 I m p o r t i n g L i b r a r i e s 

Depending on the platform (x64 6.3 or A R M 6.4), the appropriate TensorFlow Li t e l ibrary 
is imported to ensure compatibil i ty. If we want to make an inference on the N P U of i . M X 
93, we need to decide whether we also want to import a loader for a delegate 6.5. 

import tensorflow as t f 
interpreter = tf.lite.Interpreter(model_path=model_path) 

Figure 6.3: Import ing x64 l ibrary 

from tflite_runtime.interpreter import Interpreter 
interpreter = Interpreter(model_path=model_path) 

Figure 6.4: Import ing a rm l ibrary 

from tflite_runtime.interpreter import Interpreter 
from tflite_runtime.interpreter import load_delegate 
ext_delegate = [load_delegate("/usr/lib/libethosu_delegate.so")] 
interpreter = Interpreter(model_path=model_path, experimental_delegates= 

> ext_delegate) 

Figure 6.5: Import ing delegate l ibrary 

6.2.3 In i t ia l i z ing the T e n s o r F l o w L i t e Interpreter 

A t the outset, the TensorFlow L i t e interpreter is ini t ia l ized to facilitate the execution of the 
pretrained machine learning model . This step is crucial because it prepares the interpreter 
to process the input data through the model by loading the model architecture and weights 
from the compiled TensorFlow L i t e file 6.6. 
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interpreter.allocate_tensors() 
input_details = interpreter.get_input_details() 
output_details = interpreter.get_output_details() 

Figure 6.6: Ini t ia l iz ing the TensorFlow L i t e interpreter 

6.2.4 Se t t ing u p V i d e o C a p t u r e B a s e d o n the Input T y p e 

This step configures the video capture based on the input type specified: a webcam or a 
pre-recorded video file 6.7. The script checks i f the video capture device can be opened 
successfully, ensuring that the input source is ready for frame extraction and processing. 

i f input_type == 'webcam*: 
cap = cv2.VideoCapture(0) 

else: 
cap = cv2.VideoCapture(input_file) 

i f not cap. isOpenedO : 
print("Error: Could not open video or webcam.") 
e x i t ( l ) 

Figure 6.7: Sett ing up video capture based on the input type 

6.2.5 P r e p r o c e s s i n g F r a m e s 

Dur ing this stage, each frame captured from the video source undergoes a series of trans
formations to meet the specific input requirements of different models. The frame is first 
cropped to the center to ensure that the focus remains on the main subject of the image. 
It is then resized according to the required input dimensions of the model: 448 x 448 pixels 
for the Efficientdet L i t e 2 model and 224 x 224 pixels for the M o b i l e N e t V 2 model. 

For the Efficientdet L i t e 2 model, frames are resized to larger dimensions and kept 
i n an 8-bit unsigned integer format (uint8) which aligns w i th the model's architectural 
requirements for handling color depth and intensity directly, as shown in the first code 
snippet 6.8. 

For the M o b i l e N e t V 2 model, the resized frames are addi t ional ly normalized to have pixel 
values between 0 and 1, converting the data type to a 32-bit floating point (float32). Th is 
normalizat ion is crucial , as it scales down the p ixe l values, facil i tat ing the model's learning 
and prediction processes by maintaining numerical s tabil i ty and speeding up computat ion, 
as demonstrated i n the second code snippet 6.9. 

35 



def preprocess_frame(frame): 
min_dim = min(frame.shape[:2]) 
start_x = (frame.shape[1] - min_dim) // 2 
start_y = (frame.shape [0] - min_dim) // 2 
cropped_frame = frame [start_y:start_y+min_dim, start_x:start_x+min_dim] 
resized_frame = cv2.resize(cropped_frame, (448, 448)) 
return np.expand_dims(resized_frame, axis=0).astype(np.uint8), 

<̂->- resized frame 

Figure 6.8: Preprocessing frames for EfncientDet L i t e 2 model 

def preprocess_frame(frame): 
min_dim = min(frame.shape[:2]) 
start_x = (frame.shape[1] - min_dim) // 2 
start_y = (frame.shape [0] - min_dim) // 2 
cropped_frame = frame [start_y:start_y+min_dim, start_x:start_x+min_dim] 
resized_frame = cv2.resize(cropped_frame, (224, 224)) 
normalized_frame = resized_frame / 255.0 
return np.expand_dims(normalized_frame, axis=0).astype(np.float32), 

<̂->- resized frame 

Figure 6.9: Preprocessing frames for M o b i l e N e t V 2 model 

These preprocessing steps ensure that the input to each model is consistent and opti
mized for the best inference performance, taking into account the architectural nuances of 
each model. 

6.2.6 P e r f o r m i n g Inference 

Once the frame is pre-processed, it is fed into the TensorFlow L i t e model to perform in
ference. The method of extracting the predict ion results varies slightly depending on the 
model used. 

M o b i l e N e t V 2 Inference 

For the M o b i l e N e t V 2 model, the processed frame tensor is set as input to the model 6.10. 
The model then runs inference and outputs the predict ion probabilities for each class. 

interpreter.set_tensor(input_details[0]['index'], processed_frame) 
interpreter.invoke() 
predictions = interpreter.get_tensor(output_details[0]['index']) 

Figure 6.10: Inference processing for M o b i l e N e t V 2 
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EfficientDet Lite 2 Inference 

For the EfficientDet L i t e 2 model, the inference process is similar i n setting the tensor and 
invoking the model 6.10. However, this model provides detailed outputs, such as the class 
indices of the detected objects that were set dur ing t ra ining and their respective confidence 
scores 6.11. 

interpreter.set_tensor(input_details[0]['index'], processed_frame) 
interpreter.invoke() 
classes = interpreter.get_tensor(output_details[3]['index'])[0] % Class 

index 
proba b i l i t i e s = interpreter.get_tensor(output_details[0] ['index'])[0] % 

> Confidence 

Figure 6.11: Inference processing for EfficientDet L i t e 2 
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Chapter 7 

Development of the Demonstration 
Application 

7.1 User Experience Design 

The design of the user interface for the demonstration applicat ion focuses on providing 
clear vis ibi l i ty and control to developers and users. The interface is crafted to ensure 
that a l l elements are informative and enhance the interaction wi th the applicat ion. The 
demonstration applicat ion ends by reaching the end of an input video file or, if running 
inference from video camera, by pressing the key "q". 

7.2 Implementation 

The demonstration applicat ion is implemented to achieve mult iple objectives to help both 
the development process and the end user experience. 

7.2.1 D e v e l o p m e n t Conso le 

A console is integrated into the user interface, showing real-time developer logs. This 
console helps to monitor the performance and outputs of inference processes, showing v i t a l 
information such as processing times and potential errors. This feature is essential for 
developers to understand the application's behavior under different conditions and to fine-
tune performance. 

7.2.2 C a m e r a V i e w W i n d o w 

The applicat ion includes a dedicated window that displays the live camera feed. This setup 
allows users to adjust the angle and posit ioning of the camera to avoid unwanted l ighting 
conditions or obstructions. Such adjustments are crucial for setting up ideal conditions 
for accurate gesture recognition, ensuring that the camera's input is opt imal ly captured 
without interference from external light sources. 

7.2.3 P r e p r o c e s s e d I n p u t D i s p l a y 

Another window wi th in the applicat ion shows the pre-processed frame that helps users and 
developers see what modifications (such as cropping and resizing) have been applied to the 
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original camera feed before it is input ted to the model . The vis ibi l i ty of these adjustments 
provides transparency i n preprocessing, helping to verify that the input data to the model 
is as expected and that the model sees the whole gesture, as without this window it would 
be difficult to guess from where exactly is the preprocessed image taken from the input 
feed. 

7.2.4 P r e d i c t e d G e s t u r e D i s p l a y 

This window displays the predicted gesture. To improve the accuracy and stabil i ty of the 
gesture displayed, the applicat ion calculates an average of the last 20 predicted gestures 
before showing the result. Th is averaging helps smooth out any anomalies in ind iv idua l 
predictions and provides a more reliable output. 

7.2.5 G e s t u r e R e c o g n i t i o n O v e r v i e w 

Final ly , a comprehensive display presents a l l possible gestures recognized by the model. 
Th is feature provides a complete overview of the model's capabilities, enabling users to see 
the full range of interactions available. 

7.3 Graphical Display of Recognized Gestures 

Graphica l user interface of the demonstration applicat ion 7.1 showing different components, 
including the development console, camera view, pre-processed input, predicted gestures, 
and the gesture recognition overview. 

Figure 7.1: Graph ica l user interface of the demonstration application. 
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Chapter 8 

Testing 

8.1 Performance of Training Process 

Training was performed on a 5600x A M D C P U wi th 3 2 G B of R A M . The dataset consisted 
of 100 images per gesture for t raining across five different gestures, w i th a val idat ion set of 
20 images per gesture. The batch size was set to 32. 

For M o b i l e N e t V 2 , t ra ining one epoch took approximately 30 seconds. Th is efficiency 
can be at t r ibuted to the fact that only the top layers of the model were being trained, 
while the rest of the pre-trained layers were frozen. This approach reduces the number of 
trainable parameters, significantly speeding up the t raining process without compromising 
the model's abi l i ty to generalize well from the learned ImageNet features. 

In contrast, t ra ining one epoch for EfficientDet L i t e 2 took about 15 minutes. This 
longer durat ion is due to the model's architecture and the need to t ra in more layers from 
scratch compared to M o b i l e N e t V 2 . 

8.2 Performance of Inference Process 

Dur ing inference, various performance metrics were continuously recorded to monitor and 
optimize the efficiency of the system 8.1. The pr imary metrics included cycle times, pre-
process times, inference times, memory usage, and model accuracy. 

8.2.1 R e a l - T i m e P e r f o r m a n c e D a t a C o l l e c t i o n 

To gather precise data on the performance of the application, specific global variables were 
ini t ia l ized to store times and usage statistics: 

• Cycle Times: T ime taken for each complete loop of processing, including capturing, 
preprocessing, inference, and logging. 

• Preprocess Times: T i m e required to preprocess each frame before feeding it to the 
model. 

• Inference Times: Dura t ion of the model inference per frame. 

• M e m o r y Usages: Memory consumption measured after each inference cycle. 

• M o d e l Accuracies: Accuracy of the model's predictions collected after each infer
ence execution. 
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After completing each cycle, these times and statistics were measured using the P y t h o n 
' t ime' l ibrary for t ime measurements and 'subprocess' for memory usage as shown i n the 
following script segment. 

import time 
import subprocess 

# Example of logging a cycle time 
start_cycle_time = time.time() 
# Operations... 
cycle_time = time.time() - start_cycle_time 
cycle_times.append(cycle_time) 

# Memory usage example 
memory_usage = get_memory_usage() 
memory_usages.append(memory_usage) 

def get_memory_usage(): 
try: 

mem_usage = subprocess.check_output(['free', '-m']).decode('utf-8'). 
^ split('\n') 

used_memory = mem_usage[1].split()[2] 
return int(used_memory) 

except: 
return -1 

# Model certainty example 
# Confidence of detected objects 
proba b i l i t i e s = interpreter.get_tensor(output_details[0]['index'])[0] 
prob a b i l i t i e s = pr o b a b i l i t i e s * 100 
probability = probabilities[0] 
model_accuracies.append(probability) 

Figure 8.1: D a t a collection 

8.2.2 L o g g i n g D a t a 

After the script was finished inferring, either by reaching the end of an input video file or, 
if inference is running from a video camera, by pressing the key "q" , the performance data 
was logged in the log file, providing a historical record for later analysis 8.2. 
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import datetime 
def log_performance_metrics(): 

current_time = datetime .datetime .now() .strftime ("yoY-y om -yod_yoH-yoM-yoS") 
log_filename = f"logs/{GRAPH_NAME>_{current_time}.log" 

average_cycle_time = sum(cycle_times) / len(cycle_times) 
average_preprocess_time = sum(preprocess_times) / len(preprocess_times) 
average_inference_time = sum(inference_times) / len(inference_times) 
average_memory_usage = sum(memory_usages) / len(memory_usages) 
average_accuracy = sum(model_accuracies) / len(model_accuracies) 

with open(log_filename, 'w') as l o g _ f i l e : 
log_entry = f'Time: {current_time]-\n" + 

f'Avg. Cycle Time: {average_cycle_time:.8f}s\n" + 
f'Avg. Preprocess Time: {average_preprocess_time:.8f}s\n" 

^ + 
f'Avg. Inference Time: {average_inference_time:.8f}s\n" + 
f'Avg. Memory Usage: {average_memory_usage} MB\n" + 
f'Avg. Accuracy: {average_accuracy: . 2f}°/o\n" 

log_file.write(log_entry) 

Figure 8.2: D a t a logging 

This comprehensive logging strategy ensures that a l l relevant performance data are 
captured, enabling ongoing monitor ing and opt imizat ion of the application's performance. 

8.2.3 A n a l y z i n g D a t a 

To ensure consistency i n the evaluation of model performance, a single video, available in 
the 'src' folder on the G i t H u b repository [14] w i t h the name 'video_test .mp4' , was used 
for testing a l l models. Th is approach guarantees that a l l models are tested under identical 
conditions, enabling a fair comparison of their inference performance. 

Testing Setup 

The models tested include the non-quantized M o b i l e N e t V 2 , the natively quantized Effi-
cientDet L i t e 2, and the EfficientDet L i t e 2 opt imized for N P U using Vela Tool . The video 
capture setup was standardized using a script that ensures that the gesture is correctly dis
played for a l l models by preprocessing the frames to the required dimensions. The relevant 
preprocessing steps were referenced in a previous section (see 6.9). The hardware used in 
the tests includes the N X P i . M X 93 board [42] and the personal computer w i th 32 G B of 
ram and 5600x A M D C P U . 

Inference Performance Results 

The performance data collected during the tests are summarized as follows 8.1: 
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Table 8.1: Performance Metr ics of Different Models on Various Platforms on average 

Model 
Accuracy (%) t 

Quantization Platform Epochs Cycle Time (ms) | Preprocess Time (ms) I Inference Time (s) | Memory Usage (MB) { 

MobilcNctV2 No x64 20 15 0.4 11 2228 
73.01 
EffiricntDet Lite 2 No x64 (ill 131 1.6 128 2051 
74.08 
EffiricntDet Lite 2 Yes x64 2(1 133 0.51 131 729 
69.71 
EffiricntDet Lite 2 Yes x64 135 0.57 133 G:s(i 
30.41 
MobilcNctV2 No i.MX93 2(1 22(1 13 157 367 
76.61 
EfficientDet Lite 2 Yes i.MX93 2(1 754 18 679 :i(i4 
71.73 
EfficientDet Lite 2 XPU i.MX93 2(1 2IS9 15 169 369 
64.28 

Analysis and Conclusion 

The por t ing of EfficientDet L i t e 2 to an N P U v ia Vela Too l significantly improved the 
cycle time, showing a marked decrease compared to the non-optimized quantized model. 
A l though there is a slight decrease in accuracy, the benefits of reduced cycle t ime and 
lower latency are evident, highlighting the advantage of using N P U opt imizat ion for real
t ime applications. This improvement demonstrates the potential for N P U s to improve 
performance i n scenarios where rapid processing is crucial . 

Moreover, despite not being quantized or N P U - o p t i m i z e d , M o b i l e N e t V 2 exhibited the 
best cycle t ime and the highest accuracy among the tested models. Th is outcome suggests 
that M o b i l e N e t V 2 is inherently well designed for efficient processing and accuracy. A l l 
models were trained wi th the same amount of data, which underscores the inherent efficiency 
of Mob i l eNe tV2 ' s architecture. 

Addi t ional ly , it is important to note that the M o b i l e N e t V 2 model was also run on a high-
performance desktop P C , used as a baseline to understand the upper l imits of processing 
efficiency under op t imal conditions. Inference on an i . M X or other A R M - b a s e d platform 
is expected to be slower due to the less powerful hardware, al though the accuracy of the 
model's predictions should not significantly differ. 

These results i l lustrate the effectiveness of hardware-specific optimizations and the im
pact of quantization and N P U deployment on the performance metrics of deep learning 
models. They also highlight the inherent strengths of Mob i l eNe tV2 ' s design, which seems 
to excel even without specialized hardware optimizations. 

8.3 Methodology and Preparation for User Testing 

User testing of the demonstration applicat ion was carried out in two main settings to eval
uate its usabil i ty and effectiveness. The demonstration applicat ion employed M o b i l N e t V 2 
as this model had the best ratio of accuracy wi th inference t ime. The first setting in
volved internal tests among colleagues at the N X P branch i n Brno , who are well-educated 
individuals from technical faculties such as Facul ty of Information Technology, Facul ty of 
Elec t r ica l Engineering and Communica t ion and Facul ty of Mechanica l Engineering from 
Brno Univers i ty of Technology. The second phase of testing occurred during a presentation 
at " p e r F E K T JobFai r 2024" 8.3 wi th N X P on A p r i l 24, 2024, where the applicat ion was 
demonstrated to students pr imar i ly from the Facul ty of Elec t r ica l Engineering and C o m 
municat ion of Brno Universi ty of Technology, as well as various visitors and competitors 
from the I T industry. 
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8.3.1 Interna l D e v e l o p e r T e s t i n g 

The purpose of this phase was to provide insight and constructive feedback on user interface 
design and overall user experience from the developer's point of view. Colleagues were asked 
to interact w i th the applicat ion and suggest enhancements that could make it more intuit ive 
and effective for end users. Feedback from this phase was instrumental i n identifying 
features that could enhance user satisfaction, such as the inclusion of confidence scores to 
provide transparency about the model's certainty i n its predictions. Th is internal review 
was crucial to refining the user interface and usabil i ty of the appl icat ion before it was 
introduced to a wider audience. 

8.3.2 P u b l i c U s e r T e s t i n g at p e r F E K T J O B F A I R 2024 

The second phase took place during the " p e r F E K T JobFair 2024" 1 8.3 wi th N X P on A p r i l 
24, 2024. Here, the appl icat ion was presented to a diverse group of attendees. This public 
demonstration served as a platform to assess the usabil i ty and effectiveness of the applica
t ion from an end-user point of view. Feedback was pr imar i ly focused on user experience, 
interface design, and overall user satisfaction. This event provided valuable information on 
how potential users interact w i th the appl icat ion i n a real-world scenario. 

l rThis image has been included with the consent of the individuals depicted. 
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Figure 8.3: The demonstration applicat ion presented at the N X P booth during p e r F E K T 
J O B F A I R 2024. Vis ib le i n the center of the table is the applicat ion being demonstrated, 
w i t h myself and colleagues. 

8.4 Evaluation of User Reactions and Feedback 

Feedback from users highlighted several areas for improvement. K e y points included the 
need for enhancing the model's accuracy, as the model struggled i n a new untested scenario 
wi th various light sources which i n combination of displaying currently predicted gesture 
resulted in rapid switching between various gestures as the model struggled to be confident 
i n only one gesture and oscilated between 2 to 3 different ones. Also , users were in i t ia l ly 
confused by the dual-camera displays, not realizing that the smaller window was where 
the model expects gestures to be directed for accurate recognition. In addit ion, there was 
strong interest i n how confident the model was i n its predictions. 

8.4.1 E n h a n c e m e n t s to G r a p h i c a l D i s p l a y 

In the latest version of the demonstration applicat ion [14], significant enhancements have 
been made to improve the user interface and functionality. One major improvement is 
the consolidation of the camera display windows. The applicat ion has been redesigned to 
show only one window, the one that the model uses to view and analyze gestures. Th is 
window has been enlarged to provide a clearer view of the gestures being demonstrated, 
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making it easier for users to interact accurately w i t h the inference applicat ion. In addit ion, 
confidence scores have been included i n the predicted gesture display and along w i t h each 
gesture in the gesture recognition overview. This feature significantly aids both users and 
developers by providing a quantitative measure of the model's certainty i n its predictions. 
The enhancement of the display setup helps mitigate previous user confusion and improves 
the overall usabili ty of the applicat ion. 
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Chapter 9 

Conclusion 

9.1 Project Challenges 

One of the main challenges faced in the project was the in i t i a l inefficiency in the t raining 
process. Improving the t ra ining required iterative adjustments, fine-tuning the model, and 
opt imizing the script for better performance. The quali ty of t ra ining was highly dependent 
on the learning rate, the loss function used, and, particularly, on factors such as batch size 
and dataset size. 

Another significant challenge was the unsuccessful attempt to quantify the M o b i l e N e t V 2 
model. Despite various efforts, the quantization of M o b i l e N e t V 2 was not successful, which 
prevented the testing and evaluation of the model's performance and accuracy after quan
t izat ion. T h i s issue necessitated the use of an alternative model, the EfficientDet Li te 
2, which was successfully quantized and used for further experiments. The inabi l i ty to 
quantize M o b i l e N e t V 2 highlighted the need to select appropriate models for specific hard
ware optimizations and the potential l imitat ions of certain architectures when it comes to 
deploying them on resources-constrained devices. 

9.2 Future Work 

The development and testing of the gesture recognition system have shown promising results 
i n terms of performance and accuracy. However, several opportunities for enhancement 
remain that could further improve the system's effectiveness and broaden its pract ical 
applications. 

• Uti l izat ion of Docker Containers: To address the challenges associated w i t h 
package installations and dependencies, par t icular ly for the EfficientDet L i t e 2 model, 
future iterations could leverage Docker containers. This approach would standardize 
the development environment, reducing setup times and el iminat ing inconsistencies 
across different platforms. 

• Enhanced D a t a Augmentation: Increasing the diversity and volume of t raining 
data through more sophisticated data augmentation techniques could significantly 
improve model robustness and accuracy. Preprocessing the input to simplify the data 
for the model could also enhance its abi l i ty to generalize from the t ra ining data to 
real-world scenarios. 

47 



• Advanced Image Preprocessing: Currently, the input from the camera is used 
as captured without addi t ional preprocessing modifications. To further enhance the 
model's performance and robustness, implementing advanced image preprocessing 
techniques could be beneficial. Techniques such as converting images to grayscale, 
adjusting contrast, or applying filters to emphasize specific features could significantly 
simplify the visual data. This simplification can help the model focus on essential 
gestures by reducing background noise and variations in l ighting conditions. 

• Appl icat ion Contro l Integration: W h i l e the current applicat ion pr imar i ly serves 
as a demonstration tool , integrating control functionalities to manipulate real-world 
objects or software systems could vastly increase its uti l i ty. Th is would transform the 
system from a proof-of-concept into a pract ical tool for interactive technology. 

• Explor ing Alternative M o d e l Architectures: Future research should also ex
plore and compare various deep learning architectures. Exper iment ing wi th different 
hyperparameters, t ra ining strategies, and datasets could provide insights into opt imal 
configurations for speed and accuracy. Th is comparative analysis would help identify 
the most effective models for gesture recognition. 
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