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Abstract

The aim of this thesis is to present the results of the research conducted during the course
of my Ph.D. studies at Palacky University in Olomouc, Czech Republic. The research tack-
les the issue of improvement and optimization of existing Gaussian Continuous-Variable
Quantum Key Distribution protocols. We approach the issue from two di�erent angles:
by altering the assumptions about the boundaries of the trusted sides, and by studying
the behavior of protocols in free space channels, in order to devise novel improvement
methods compatible with already existing ones.

Taking into account trusted device imperfections, and analyzing their in�uence on the
security, as well as, tolerance (to losses and noise) of the Gaussian protocols prompts
to enhance accessibility and applicability of respective protocols. More speci�cally, we
investigate generalized side channels [1], access to which could allow an adversary to
break the security by utilizing implementation weakness rather than the protocol itself.
We addresses two types of side channels, both of which constitute a security concern
as they impose limitations on the rate of the key generation, and e�ectively reduce the
secure distance. We continue the analysis [2], and further investigate the threat of side
channels on the trusted preparation side. Furthermore, the we also account for another
type of feasible threat on preparation - a case of non-signal modes being emitted by the
trusted sender, and accessible to an eavesdropper, and carrying partial (or full) informa-
tion about the encoded key bits. In both works we determine security boundaries, and
develop methods based on linear optics and Gaussian operations for compensation, or
even complete elimination of negative impact of respective sources of information leakage
or noise infusion.

We also approach the issue of incorporating the protocol in realistic free space un-
trusted channels with the aim of maximizing the e�ciency of use of the resources required
for growing the secret key between remote trusted parties. We study the applicability of
beam expansion as the way to stabilize the transmittance �uctuations which have been
shown to impose signi�cant restraints on the performance of the CV QKD protocols es-
tablished over turbulent atmospheric channel [3]. Suggested method is experimentally
veri�ed in collaboration with scienti�c group from Max Planck Institute for the Science
of Light. We show the requirement for the optimization of the beam width, and prove
the positive e�ect of such stabilization technique in mid-range terrestrial free space links.

Lastly, we analyze the role of squeezing in free-space CV QKD protocols [4]. We de-
termine an approach for e�cient use of squeezing and encoding alphabet size to improve
or even restore the security of the protocols. We con�rm the validity of suggested ap-
proach using numerical simulations of realistic turbulent fading channels under various
atmospheric conditions, based on novel models for transmittance probability distribu-
tions [5�7].

Throughout the research we attempt to strengthen the link between theoretical pro-
tocol design and real-life implementations. By investigating possible loopholes we pursuit
establishment of more rigid set of assumptions that underlie the security of CV QKD pro-
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tocols. Developed methods for elimination of the loopholes are crucial for advancement
towards more robust, faster and reliable QKD-based communication systems.

Key words

Quantum key distribution, continuous variables, Gaussian states, squeezed light, coherent
states, side channels, free space communication.
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1 | Introduction

Information theory theories allows to interpret the insights provided by Quantum Mechan-
ics, a fundamental theory inherently derived from a set of purely abstract mathematical
ideas and concepts, in a way that deepens our understanding of, and, most importantly,
is applicable in the real world. It was inevitable that a practical application would arise
at the intersection of these scienti�c �elds. The very �rst conceived proposal introduced
the idea of conjugate coding [8] and used it as a basis for the design of bank notes that
would employ quantum mechanics to ensure the impossibility of forging. However, it was
not until later that the idea found its use in a quantum secret key distribution protocol,
now known as BB84 [9], that promised an unprecedented level of security. More speci�-
cally, it allowed a secure delivery of classical symmetrical encryption keys of one-time pad
algorithm, the only algorithm proven to be mathematically unbreakable. The protocol
gave birth to a novel method of secure communication and spurred the creation of great
number of new more resilient, faster, reliable and a�ordable protocols and systems. It
quickly evolved into a whole new distinct area of research - Quantum Key Distribution

(QKD), that currently encompasses numerous scienti�c groups and individual researchers,
physicists and engineers around the globe, both in academic and commercial institutions.
The �eld of QKD further expanded and is now a part of major group of algorithms and
protocols that belong to Post-Quantum Cryptography �eld of research.

The work conducted during the course of my Ph.D. studies at Palacky University (Olo-
mouc, Czech Republic) concerns a family of Continuous-Variable (CV) QKD protocols
that make use of carrier states described by a �nite covariance matrix, and are operated
with accessible and e�cient existing quantum optics technologies. The research is dedi-
cated to studying the security conditions and boundaries, and is aimed at improvement
of the protocols by means of addressing the in�uence of realistic e�ects, and developing
methods for enhancing the tolerance again the negative e�ects, and consequently improv-
ing the speed and range of applicability of the protocols.

Outline of the thesis

The thesis is structured as follows. The Chapter 2 introduces the basics of continuous-
variable (CV) quantum key distribution protocol (QKD). First, we outline general steps
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CHAPTER 1

taken during each round, and further delve into the details of the structure of the protocol.
We de�ne main distinctions between CV QKD protocols, in terms of techniques used by
sending and receiving parties, as well as, based on the nature of the untrusted channel, and
attacks conceived by the adversary. We compare the performance of CV QKD protocols
with regards to the secure key rate, and excess noise tolerance. Lastly, at the end of the
chapter we introduce two puri�cation schemes, used during the research, for incorporation
of complex issues (such as source attacks or side channels) into the security analysis.

Chapter 3 constitutes an extensive review of contemporary state of research. It de-
scribes the obstacles present at each step of the protocol implementation, starting with
the generation and modulation of the Gaussian states, and ending with classical process-
ing conducted by trusted parties after the satisfactory amount of data has been amassed.
Majority of e�ects, which are present in already implemented systems, can be viewed as
either additional losses or noise (both of which can also be assumed to be trusted or un-
trusted), hence we provide a short summary of theoretical treatment of respective losses
or noise. Furthermore, we address possible existing solutions to implementation problems
that pose security concerns.

Chapters 4-6 demonstrate a short summary of the results obtained throughout the
research, including the models used for the analysis. More speci�cally, Chapter. 4 is
concerned with the side-channel e�ects and their role on the security of CV QKD pro-
tocols. We distinguish between various side channels according to their general e�ect
(information leakage or increased noise), and point of intrusions, which determines the
e�ect on speci�c part of protocol operation. We also suggest methods for partial or full
compensation of side-channel e�ects.

Chapter 5 describes the repercussions of information leakage into the auxiliary optical
modes emitted from the preparation side. We examine the e�ect on major CV QKD
protocols, and determine the in�uence of such leakage on various aspects of performance of
the respective protocols. We suggest optimization of a�ected protocols aimed at reducing
the respective negative e�ects.

Chapter 6 summarizes the results of experimental-theoretical collaboration aimed at
stabilization of transmittance �uctuations in free-space atmospheric channels by means of
beam expansion. We show the regimes where the suggested method yields positive results
for both the non-classical properties of light, and the security of the CV QKD protocols.

Chapter 7 presents the outcome of investigation of the role of the squeezed states and
their presumable advantages in free-space turbulent communication links. We develop
an optimization approach and assert it's applicability in short urban links, using numer-
ical simulations based on advanced models and available in open-access experimentally
obtained characteristics of transmittance probability distribution.

In Chapter 9 we outline main achievements of the performed research, consider both
theoretical and practical implications, as well as suggestions for future work. Finally,
we conclude with copies of published and submitted articles in Chapter 8, and with
Bibliography.
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2 | Quantum Key Distribution

The ultimate security for communication has been sought throughout human history.
The threat of interception, and consequent revelation of secrets and vital information
has been ceaselessly pushing the development of ciphers and codes. Perpetual arms race
between codemakers and codebreakers have led to evolution of codes and ciphers, and
powerful methods to attack them, bringing forth advancements and breakthroughs in
a wide spectrum of disciplines, from linguistics and mathematics to information, and
quantum theory.

Undoubtedly, the supreme goal of a codemaker has always been the creation of an
"uncrackable" encryption technique. Such technique has in fact been created and carries
the name one-time pad [10]. It descents from the Vigenère cipher, which belongs to the
same family as the famous Enigma machine - polyalphabetic ciphers. While having a
reputation of an unbreakable, or "impossible of translation" for a long time, Vigenère
cipher was fundamentally �awed due to its cyclic nature, and has been eventually broken.
However the cipher has been later improved upon and used as a foundation for Vernam-
Vigenèr cipher, where the key size has been increased to match the one of the message. The
length of the key itself is still not su�cient to con�dently withstand an arbitrary attack,
as it has been shown that reuse of (short random key, as initially suggested by Vernam), or
predictable nature (sequence of vocabulary words) of the key is an underlying weakness.
Finally, the head of cryptographic research for the US Army, Major Joseph O. Mauborgne,
suggested the use of non-repeatable truly random key. The original realization of the
cipher was done in a form of two copies of a thick pad with hundreds of pages of random
and unique keys, one for the sender and the other for the receiver. The sheets with used
key sequences were discarded never to be used again, hence the name of the cipher - the
one-time pad.

One-time pad has been proven by Claude Shannon to be "information-theoretically
secure" [11], and it satis�es the strongest possible requirements for a cipher, as long as:

� key length is equivalent to message length;

� the key is truly random;

� the key is unique and is used only once.

The matching length and randomness of the key seeds the randomness of the cipher-
text, and devoids the latter from any pattern or structure. The non-repeatability further
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CHAPTER 2
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Figure 2.1: Illustration of one-time pad encoding process. Random key and the message
of equal lengths are combined via XOR operation and result in a ciphertext. Applying
the same key to the ciphertext would result in the original message recovery, however
another key sequence may lead to completely di�erent, yet sensible message [12].

ensures the protection the encoded plaintext, and renders any further cryptoanalysis in-
e�ective. One can argue that it is still possible to guess the correct key by brute force as
the number of possible keys is still �nite, however the correct message is indistinguishable
from any kind of sensible message generated using the same ciphertext, as illustrated in
Fig.(2.1).

Despite being "the Holy Grail of cryptography" [12] the actual practical implementa-
tions have to solve the issue of generation of perfectly random keys, which is currently
achieved using hardware systems that make use of fundamental randomness of quantum
physics [13, 14]. Lastly, it is imperative for the generated keys to be reliably distributed
among trusted parties. The solution has been found, and, in fact, it stemmed a new
branch of quantum information science, namely the QKD.

In 1984 C. H. Bennett and G. Brassard have published a pioneering paper Quantum
Cryptography: Public Key Distribution and Coin Tossing [9], where they �rst introduced
a protocol (BB84) that exploits the non-cloning principle [15] in order to establish se-
cure transmission of the one-time pad keys. While conventional classical cryptographic
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Quantum Key Distribution

protocols are forced to accept ever-present possibility of a third party to reliably copy
transmitted information, BB84 relies on unavoidable alteration of the transmitted (by
means of a quantum system) key as the way to expose the attempted eavesdropping.
The brilliant idea went unnoticed until later, when A. K. Ekert have independently [16]
developed another protocol (E91), where an entangled state is shared by trusted parties,
and the security is guaranteed from the point of view of fundamental completeness of
quantum mechanics. While BB84 takes a prepare-and-measure (P&M) approach, as the
protocol commences with straightforward preparation of linearly polarized (in a random
horizontal-vertical, or 45-degree rotated basis) single photons, E91 is an entanglement-
based protocol, as it involves distribution of parts of the entangled state and nonlocal
preparation of the the state on the receiver station by conducting polarization measure-
ments on the sender side. Security of BB84 is con�rmed via inspection of an error rate
(QBER) during post-processing step of the protocol, while E91 requires veri�cation of the
Bell-inequalities violation. Nevertheless, both protocols have been shown to be equiva-
lent [17], as they e�ectively achieve the same goal and match in performance.

The spotlight brought by E91 stimulated a rapid development of QKD, starting with
creation of modi�ed versions of BB84: B92 and SARG04 protocols [18, 19], invention of
plug-and-play approach [20, 21], and �rst experimental demonstrations [22�25] including
22.7 km long quantum channel in an underwater optical �ber [26].

Initial security proofs assumed the use of ideal source that outputs single-photon Fock
states. However, in practice the signal states in conventional QKD protocols are obtained
from faint coherent laser pulses, and a non-vanishing probability of emitting a second
photon turned out to be a crucial security threat, provided a photon-number splitting
attack [27,28] is employed. This led to development of protocols with decoy states [29�31].

Initially the security of the protocols has been considered against explicit eavesdrop-
ping strategies, however rigorous security proofs were eventually derivated, �rst for col-
lective [32] and coherent [33] attacks, and ultimately extended to composable security
framework [34�37], including realistic considerations of �nite block sizes [38].

BB84 protocol and it's modi�ed versions constitute an extensive family of discrete-
variable (DV) QKD protocols. In the DV protocols a carrier photon state belongs to a
discrete set, where each state is assigned a binary value, hence allowing for a convenient
translation from and to a binary key sequence. However, such protocols require dedicated
equipment, namely for photon-counting measurement that is broadband, demands cool-
ing and is sensitive to stray light. Integration of such equipment into telecommunication
infrastructure is an expensive and arduous endeavor. Instead one can look into an alter-
native family of protocols based on multiphoton Gaussian states that can be generated
at higher rates (comparing to single-photon states), and measured by coherent homo-
dyne/heterodyne detection techniques, compatible with existing optical communication
systems, at room temperatures and high e�ciencies. Even though mapping of key bits
onto single-photon states is straightforward and intuitively clear, aforementioned tech-
nical compatibility stimulated to explore the implementation of QKD with multiphoton
states. The very �rst protocols supporting this idea adopted the strategy of discrete
modulation according to a binary key, but employed amplitude and phase quadrature
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CHAPTER 2

modulation of the coherent states, and consequent homodyne detection [39]. Later, more
e�cient and robust protocols have been suggested based on single-mode squeezed vacuum
states [40], and entangled two-mode squeezed states, where a bit value is governed by the
state at the input of nondegenerate parametric ampli�er [41], or by the choice of measured
observable at the sender side [42]. Such protocols, although still applying discrete modu-
lation of continuous amplitude and phase, belong to a family of continuous-variable (CV)
protocols. They've been successfully experimentally realized [43], including over 100 km
long channel [44], and are still the topic of an ongoing research and development [45�48]
and recently proven to be composably secure in the �nite-size regime under collective
attacks [49].

Another branch of CV QKD protocols fully embraces Gaussian states and, instead
of mere substitution for single-photon states, enforces distribution of continuous secret
keys. Such family of protocols draws the key from continuous Gaussian distribution
and translates it directly to continuous quadrature observable. The key is retrieved on
the remote side by means of homodyne (or heterodyne) measurement, and only after is
digitized and corrected for errors. The very �rst all-continuous protocol relied on displaced
single-mode squeezed vacuum states to carry the key, and it have been introduced by N.J.
Cerf, M. Lévy, and G. Van Assche in 2001 [50]. The requirement for sub-shot-noise of
the carrier state have been later alleviated by F. Grosshans and Ph. Grangier, as the
coherent-state protocol (GG02) have been shown [51] to be secure, as well.

The channels used for QKD were limited to 3 dB loss, because under higher losses
the receiver would always be in a disadvantage (information-wise), as the majority of the
state is being received by an eavesdropper. While post-selection [52] or entanglement-
puri�cation [53,54] were suggested to overcome the limit, the constraint on losses can be
dismissed entirely if trusted parties agree that the trusted party that prepares and sends
the state will adjust the data according to the measurement outcomes of receiving party.
In fact, such (reverse) reconciliation method is optimal, assuming the channel used is
noiseless [55].

One of the early challenges of CV QKD which constrained the output rate of the pro-
tocols was not the speed and e�ciency of optical equipment, but rather the speed of clas-
sical algorithms involved in error correction and privacy ampli�cation [56]. The inevitable
deviation of error correction algorithms performance from the Shannon limit [57] in real-
world applications was �rst investigated in noiseless channels [58], with post-selection
suggested for improvement of loss and detector noise tolerance of the protocol. Data
processing and acquisition speeds imposed limitations on achievable secure distance, as
experimental setups were bounded by ∼80% post-processing e�ciency, thus limiting the
channel length to 20 km in standard single-mode telecom �ber [59,60]. The coherent-state
protocol with reverse reconciliation (see Ch. 2.1.4) was soon adopted for complete imple-
mentation of QKD system, where the �ber channel was extended to 25 km, maintaining
the secure key rate of 2 kbit/s [61]. The same CV QKD protocol has been used to test
polarization-frequency-multiplexing scheme aimed at reduction of excess noise caused by
local oscillator (LO) leakage, achieving 0.3 bit/pulse secure key rate [62]. A portable CV
QKD prototype has been tested as part of a SECOQC quantum network in Vienna [43].
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Quantum Key Distribution

The system delivered an average key rate of 8 kbit/s over a 3 dB loss channel for the
duration over 3 days. Long-term robustness and reliability have been further tested and
con�rmed during 6 months on the 17.7 km long �ber link near Paris [63].

Signi�cant secure distance increment to 80 km has been achieved by implementing
e�cient high-speed error correction codes [64]. Obtained key rate of the coherent-state
protocol was secure against collective attacks (see Sec. 2.1.3), and the block sizes were
compatible with �nite-size e�ects (see Sec. 3.4.7). The range of the coherent-state protocol
has been extended even further to 100 km by adopting sensitive homodyne detectors
and accurate compensation for phase drift between signal and LO [44]. Lastly, a recent
experiment achieved a secure distance of 202.81 km by employing reconciliation with 98%
e�ciency and high precision phase compensation [65].

Tremendous achievements in experimental implementations of point-to-point QKD
protocols are just the �rst step towards QKD secured networks. The feasibility of the
latter has �rst been studied by the DARPA Quantum network project which started
operating in 2003 [66]. Between 2004 and 2008 another QKD network, that incorpo-
rated multiple types of QKD links and technologies, has been engineered and set up
in Vienna - SECOQC network [67]. Swiss Quantum Network has been operating be-
tween 2009 and 2011 connecting 3 nodes located in France and Switzerland [68]. Under
Durban�QuantumCity project a 4-node DV QKD network based on plug-and-play BB84
protocol has been set up in 2010 [69]. In the same year Tokyo QKD Network as the
result of collaboration between multiple companies and institutions has been created [70].
The network utilized six kinds of QKD systems which allowed to perform (one-time pad
encrypted) live TV conferencing between any two out of four access points of the network.

As sources and detectors evolved to be more reliable and faster, so did the QKD
networks. The steady progress gradually allowed to increase key distribution speed, and
coverage, connecting trusted parties separated by hundreds of kilometers or potentially
even globally. In 2013 US-based �rm Battelle have installed quantum network between
Columbus and Dublin (Ohio) [71], with a future plan to extend the network further
to Washington (DC) which would result in total distance to exceed 700 km. Another
prominent example of ongoing QKD network research and development is a long-distance
network connecting Cambridge, London and Bristol, as part of UK Quantum Technology
Hub [72]. Metropolitan QKD networks have been already deployed in several cities in
China, that will be connected to a 2000 km long Shanghai-Hefei-Jinan-Beijing link [73].
The network will rely on 32 trusted nodes to measure and resend quantum keys.

It is important to note that there is no single QKD protocol or even family of protocols
that would be universally suitable for a whole range of application requirements. With
respect to the secure distance, the DV protocols are commonly accepted as more suited
for long-range links [74], while CV protocols are an e�cient, high-rate [75] solution for
shorter distances [64]. However, the protocols are not contesting, but rather complement
each other, covering opposing ends of the secure range. Thus aforementioned networks
rarely rely on a single type of QKD protocols - for example SECOQC, and Shanghai-
Hefei-Jinan-Beijing networks incorporate both DV and CV QKD links. A �ber-based
sub-network of the latter, that was deployed and tested in Shanghai, operates solely on
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CV QKD protocols [46]. Development of satellite-based QKD [74,76,77] opens possibilities
for global connection of multiple, already existing, QKD networks, each making use of
best available technologies and protocols suitable and convenient for given locations and
conditions.

Crucially QKD protocols have to balance the secure key rate and a level of security.
The latter is a complex subject that incorporates the strength of assumed attack on the
system, the trust in used equipment, and other aspects of implementation and security
assumptions. For derivation of security proofs numerous obstacles, including in�nite di-
mensions, unbounded variables, discretization, etc., had to be overcome. At �rst the
security was successfully generalized from explicit attacks to optimal individual [78], and
collective attacks [79, 80], though only in asymptotic regime of in�nitely many signals.
The fact that Gaussian states minimize the entanglement, as well as distillable secret key
rate [81]1, and existence of analogous security proofs for DV QKD [33], supported the
assumption that the security would also hold for the case of the most general attacks.
The assumption had yet to be proven, but CV QKD maintained vigorous development
rate, both experimental and theoretical [43,82�84]. In 2009 extended version of de Finetti
theorem has been used to show that security of CV QKD protocols2 against the collective
attacks implies the security against the most general case of coherent attacks [87]. How-
ever, at the time, existing security bounds were not suited for practical implementations
as they were required to be adapted to �nite-size e�ects. The basis of �nite-size analysis
has been established by A. Leverrier, F. Grosshans and P. Grangier in 2010 [88], and
allowed to correct the asymptotic key rate for �nite precision of parameter estimation.

Based on the de Finetti theorem [89] and entropic uncertainty principle, the advent of
composable CV QKD security proofs started when the lower bound on the composably
secure key has been derived [90] for the DR protocol employing TMSV states and homo-
dyne detection. Later, under similar assumptions, the security for the RR scenario has
been proven too [91]. An approach based on rotational phase-space symmetries was used
to validate the security of the coherent-state protocol �rst against collective [88], then
against coherent attacks [92] (for both DR and RR). The same approach was involved
in creation of the framework for composable security proof that can integrate properly
modeled device imperfections, and it was used to con�rm security versus collective and,
using post-selection [35,93], coherent attacks [94]. The common assumption of optimality
of Gaussian attacks has been recently con�rmed using Gaussian de Finetti reduction [95].

Despite tremendous progress in security analysis [96], there are still open question
regarding both entropic uncertainty relation, and de Finetti theorem (i.e. symmetrization
requirement) techniques, as a consequence existing security proofs are applicable only to
limited range of CV QKD protocols. Furthermore, they impose strict requirements on
equipment e�ciency, demand monitoring, and do not account for possible deviations from
Gaussian modulation.

Although the search for general composable security proof applicable in realistic sce-

1This notion is also known as extremality of Gaussian states, and is explained later in the text
2The proof is applied to majority of CV QKD protocols, except Di�erential Phase Shift and the

Coherent One-Way protocols [85,86].
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narios is still ongoing, it is vital to develop operational security as well. Implementation
weakness and deviations from theoretical models used for security proofs have to be ac-
counted for, and either operational countermeasures or improvement of theoretical models
must be devised. The studies of side channels in chapter 4, leakage of modulated non-
signal modes in chapter 5 and compensation of turbulence e�ects presented in chapters
6,7 are aimed at enhancing operational security of CV QKD protocols.

2.1 CV QKD protocols

The main goal of any QKD protocol is to distribute sequence of bits between two faithful,
authenticated parties, conventionally referred to as Alice and Bob, where usually the
former plays the role of the sender and the latter of the receiver. The objective of QKD
protocols is to distribute and ensure security of the key, which can be later used to encrypt
data. The disturbances in distribution of the key are attributed to the third party, Eve.
Her sole intent is to acquire the copy of the transmitted key. Generally Eve's role is
far from passive eavesdropping, and in more pessimistic scenarios she is not con�ned
to the channel alone, as she can intervene onto the trusted side to extract additional
information, or temper with equipment via side channels. Despite the assumptions on
boundaries of Eve's invasiveness, she is not limited by current technologies, merely by the
laws of physics.

2.1.1 Outline

We consider quantum systems consisting of n bosonic modes of the electromagnetic radi-
ation. Each mode is described on an in�nite-dimensional Hilbert space, and the overall
system is the described on a tensor-product Hilbert space H⊗n = ⊗nj=1Hi [97�99]. The
description of each mode is given in terms of a pair of bosonic �eld ladder operators
{â, â†}nj=1, also referred to as the annihilation and the creation operators, respectively.
CV QKD analysis primarily deals with moments of dimensionless canonical observables
of these modes, with the observables being quadrature �eld operators de�ned3 as:

x̂ = â† + â, (2.1)

p̂ = i(â† − â). (2.2)

The overall system can be described by a vectorial operator q̂ := (x̂1, p̂1, . . . , x̂n, p̂n)T ,
where commutation relation between each pair of operators is given by the symplectic

3The de�nition of quadrature operators x̂ and p̂, and their explicit dependency on the ladder operators
can vary and depend simply on notational and/or computational convenience. In current work we employ
shot-noise units, while other often used are: natural units [100], where x̂ = 1√

2
(â† + â), p̂ = i√

2
(â† − â);

and SI-units [101], where x̂ =
√

~
2ω (â

† + â), p̂ = i
√

~
2ω (â

† − â).
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form Ωkl [97]:

[qk, ql] = 2iΩkl, Ωkl =

(
0 1

−1 0

)
. (2.3)

The quadrature �eld operators x̂, p̂ can be directly measured using homodyne detection.
Prior to the detection, the light signal is coupled on a balanced beamsplitter to a local
oscillator (LO) beam that serves as a phase reference. Photodetection of light from two
output ports and subsequent subtraction of photocurrents yields the value proportional
to an amplitude or a phase quadrature (depending on the phase of the LO [97]) of the
signal.

Operational structure of the protocol

Any CV QKD protocol is executed in four main stages:

State preparation → Channel → Measurement → Classical post-processing.

The state preparation is usually split into state generation and modulation, which
are performed on Alice's side, while measurement (in one-way prepare-and-measure QKD
protocols) is carried out on Bob's side. Conventionally, aside from equipment on respective
sides, Alice and Bob have access to two channels: quantum (a priori untrusted) channel,
and classical (a posteriori reliable) channel. The former is under full control of Eve4, while
the latter is public, but cannot be tampered with. The authentication implies the existence
of prior secret information between Alice and Bob, and in this sense QKD can also be
seen as a secret key growing. We also consider side channels, that are de�ned as auxiliary
channels with either input or output controlled by a trusted party but, respectively, output
or input is controlled by an eavesdropper. Such de�nition allows to distinguish side
channels (and their in�uence) from the main untrusted channel, where an eavesdropper
controls both input and output of the channel. In other words, Eve is free to prepare any
physical ancilla and store it after its interaction with the signal in the untrusted channel,
while she can either send an additional ancilla in a side channel, or store the state coming
out of a side channel. The side channels are the generalization of the various e�ects that
can occur in quantum domain providing an eavesdropper with additional information on
the key by means of either disruption of the trusted equipment operation or bene�ting
from leakage of the signal.

Let us now describe the operational steps of the one-way prepare-and-measure CV
QKD protocol:

0 Handshake. Alice and Bob establish and authenticate classical channel. They agree
on the type of carrier states to be used, and modulation and measurement to be per-
formed. Moreover, trusted parties settle on the reconciliation direction, and families
of codes, and hash functions required for error correction and privacy ampli�cation.

4By full control we understand Eve's ability to substitute the channel with a perfect noiseless channel,
with losses and noise imposed on the signal being the result of the interaction with Eve's ancillas. However
trusted parties cannot discern sources of losses and noise by channel tomography. In other words, Eve
can hold the puri�cation the overall signal state.
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1. State generation. Alice generates two N sets of random variables governed by two
independent Gaussian distributions with zero mean:

x = {x1, x2, . . . xN}, x ∼ N (0, V x
m);

p = {p1, p2, . . . pN}, p ∼ N (0, V p
m);

and another N set consisting of equally likely binary values (i.e., corresponding to
a balanced Bernoulli process):

h = {h1, h2, . . . hN}, h ∼ B(1, 0.5).

Alice then prepares squeezed vacuum states |0, ξn〉, where ξn = rei2θn with r ∈ [0,∞)

being the squeezing value5, while θn = hnπ/2 determines the squeezing orientation
(i.e., x̂-, or p̂-squeezed state will be used).

2. Modulation. Alice displaces the squeezed vacuum state according to a generated
random variable as

D̂([1− h]gx)nD̂(ihgp)n|0, ξn〉 = |(1− h)gx+ ihgp, ξ〉.

The value of g (negotiated during handshake step of the protocol) can be set to
either 1, corresponding to modulation in single quadrature, or 0, corresponding to
modulation in both quadratures6.

3. Transmission. Carrier states are transmitted from Alice to Bob via an untrusted
channel, where the signal is subjected to losses and noise.

4. Measurement. Bob, depending on initial arrangements, will measure either one or
both quadratures of the incoming state. In the former case he generates N set
according to balanced Bernoulli process:

u = {u1, u2, . . . uN}, u ∼ B(1, 0.5).

During each round of the protocol he will adjust the phase shift θLO(u) of the local
oscillator and measure respective quadrature.

5. Sifting. After N rounds Alice and Bob coarsely discretize the digital data on their
sides according to agreed alphabet, and compare h and u values, keeping the data
for the rounds when values match, and discard the rest. At the end of this step

5Note that in principle initial states need not be pure coherent or squeezed states as some protocols
admit the use of initially noisy or thermal states [102�104], for example if carrier states are at longer
wavelengths [105]

6Conventional protocols that employ the coherent-states (r = 0), usually require displacement of
the state in both quadratures (g = 0), however during e.g. unidimensional protocol [106, 107] single
quadrature modulation is su�cient.
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Alice and Bob share a sequence of correlated classical variables L ≤ N7.

6. Parameter estimation. Alice and Bob agree on a random subset of data m ⊂ L

to disclose the corresponding values via classical channel in order to estimate the
security. The protocol may abort at this step if estimated channel attenuation and
excess noise8 exceed a predetermined threshold.

7. Error correction. Alice and Bob try to eliminate the errors in the data sets remaining
on their sides using classical error correction algorithms, resulting in raw key lraw ≤
L−m. Due to non-negligible failure probability of the error correction [109], Alice
and Bob compare the hash values of the new sequence lraw. In case of disagreement
the protocol is aborted.

8. Privacy ampli�cation. To eliminate any correlations Eve may have with the raw
key lraw, Alice and Bob conduct privacy ampli�cation [110�112]. They choose hash
function (from predetermined family) [113] that accepts lraw at the input and out-
puts a sequence with higher entropy lfinal ≤ lraw. The �nal key now satis�es all the
prerequisites to perform a one-time pad encryption [10,11].

There are many variations of the protocol, however the overall structure remains in-
tact, though the protocol may include additional steps to improve its performance, or
implementation convenience. The steps may include state engineering and optimization
of protocol parameters (r, Vm) based on channel estimation, prevention of side channel ef-
fects, substitution of LO with reference pulses that enable Bob to generate local oscillator
at his side [114] or postselection [115]. The latter, under assumption of asymptotic regime,
is an e�cient tool, however may not be compatible with majority of security proofs.

Further we go into details regarding certain steps of the protocol that deserve ad-
ditional attention, such as conditional remote state preparation [116], and discuss the
security of the protocol along with eavesdropping strategies.

2.1.2 State preparation

During each round of the protocol Alice �rst generates Gaussian signal state using either
laser or single-mode squeezer, or by measuring one of the modes emitted by two-mode
squeezer. Remarkably, �rst and second moments are su�cient for the description of the
Gaussian states [98], with the second moment being expressed as the positive-semide�nite
symmetric covariance matrix de�ned as:

γi,j =
1

2
〈{∆x(p)i,∆x(p)j}〉, (2.4)

7The length of the sequence depends on the reconciliation direction and measurement type, e.g. for
protocols with heterodyne detection L = N .

8Depending on the nature of the channel, more parameters may be required to be estimated, e.g.
transmittance probability distribution τ(η) [108]
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Figure 2.2: Operational scheme of a CV QKD protocol. Alice generates a quantum state
(note that r can be adaptively changed based on channel parameters, in order to increase
the rate of the protocol, see for example Ch.7). using source S and prepares it according
to randomly generated (h, x, p) parameters using amplitude (AM ) and phase (PM ) mod-
ulators. Alice sends the signal along with local oscillator (LO) beam through quantum
channel to Bob. The latter conducts the homodyne (or alternatively, the heterodyne)
detection and advances to sifting, error correction and privacy ampli�cation with Alice
via classical authenticated channel.

where {.} is the anti-commutator, and ∆xi = xi − 〈xi〉. Prior to modulation, carrier
states are distributed around the origin of phase space and their overall source variance
is:

γsqueezedB =

(
1/Vs 0

0 Vs

)
, γcoherentB =

(
1 0

0 1

)
, (2.5)

for the squeezed9- and coherent-state, respectively. Note that Eqs.2.5 are valid only
for perfect sources that output pure states, which is generally not the case [117] (see
also Ch.3.1.4). The key bits are encoded10 into the states, i.e. the latter are shifted on
phase space according to the drawn variables from one (in case of squeezed states) or
two (for coherent-states protocol) independent Gaussian distributions. The protocol does
not assume strictly Gaussian modulation, as the �nal security analysis exploits Gaussian
extremality [81] (see Sec. 2.1.4). Generally variance of each distribution may di�er, but
for simplicity we assume they are both equal to Vm. After the modulation the variance
of signal state is:

9Without loss of generality we assume x̂-quadrature squeezed states
10Unlike classical cryptographic systems, QKD does not require any encoding algorithms, since the

string of data and the actual transferred message are the same. Trusted parties rely on authenticated
classical noiseless channel during the stage of post-processing to obtain identical and secure keys. In
further work by encoding we understand mapping of classical Gaussian random variable onto carrier
quantum state.
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γsqueezedB =

(
1/Vs + Vm 0

0 Vs

)
, γcoherentB =

(
1 + Vm 0

0 1 + Vm

)
. (2.6)

Overall Alice's station outputs a thermal state with zero mean and the covariance
matrix γB = V 1, where 1 is 2 × 2 unity matrix. Generally the squeezed state can be
modulated in both quadratures, and variances of both quadrature need not be equal.

Aforementioned state preparation, also known as prepare-and-measure (P&M) is a
conventional approach taken by majority of CV QKD protocols implementations, however
theoretical analysis relies on the use of equivalent entanglement-based scheme (EPR). In
the latter Alice and Bob share a bipartite state, which is however perturbed by Eve.
The overall state shared by all involved parties is a pure state that aside from modes of
Alice and Bob contains a number of additional modes attributed to Eve. The covariance
matrix describing such a state is su�cient for the evaluation of (upper bound on) accessible
information and consequently the impact of more general collective attacks (see Ch.2.1.3).
Such description of a state o�ers a more intricate analysis of noise and losses present at
trusted stations (see Ch.3.1.4 and 3.3.5).

In order to present state preparation in EPR scheme, it is �rst useful to recall the e�ect
of partial measurement on a multipartite state in terms of it's �rst and second moments.
Given a two-mode (with modes denoted as A and B) Gaussian state with mean values
dinA = (〈xA〉, 〈pA〉) and dinB = (〈xB〉, 〈pB〉) and a covariance matrix

γAB =

(
γA σAB
σAB γB

)
, (2.7)

the homodyne detection of one of the modes, e.g. A in x quadrature, will alter the
mean values of states in the remaining mode as [118,119]

doutB = σAB (XγAX)MP
(
Dout
A − dinA

)
+ dinB . (2.8)

The value of Dout
A = (〈xA〉, 0) is obtained directly from the measurement results. The

covariance matrix describing the state in the remaining mode is given by [54,98]:

γ
[xA]
B = γB − σTAB · (XγAX)MP · σAB (2.9)

where in Eqs. 2.8 and 2.9 MP stands for Moore�Penrose pseudoinverse, T for trans-
pose, and X (and superscript [xA]) corresponds to the choice of the measured quadrature.
To account for measurement of p quadrature X must respectively be substituted with P ,
where both are given as:

X =

(
1 0

0 0

)
, P =

(
0 0

0 1

)
. (2.10)

Equations 2.8 and 2.9 can be applied to the case of a multipartite state, be expanding
the subsystem B. For (N+1)-mode overall state with γA,B1,···BN

, γB would be a 2N × 2N
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Figure 2.3: State preparation in CV QKD protocol. The prepare-and-measure method
(left) involves direct displacement of the state on phase space, while the equivalent
entanglement-based method (right) uses measurement of one of the modes of an EPR
state to conditionally prepare the state in the remaining mode. Both methods are equiv-
alent and (up to factors αx and αp) and directly correspond to each other. To alternate
between the squeezed-, and the coherent- state protocol one can change the transmittance
of the TA to 1 or 1/2, respectively.

matrix, and σAB by a 2N × 2 matrix that describes the correlations of a measured state
with the states in remaining modes B1, · · · , BN .

Balanced heterodyne detection projects Bob's mode onto a coherent state, so that
respective mean values are [119]

d
[xA,pA]
B =

√
2σAB (γA + 1)−1

(
Dout
A − dinA

)
+ dinB , (2.11)

where Dout
A =

(
〈xA〉, 〈pA〉

)
are obtained directly from the measurement results. The

covariance matrix of subsystem B turns to [119]:

γ
[xA,pA]
B = γA − σAB(γinB + 1)−1σTAB. (2.12)

Now in the entanglement-based representation of CV QKD protocol, trusted parties
share a state with a zero mean values dA = dB = (0, 0) and following covariance matrix
[118]:

γAB =

(
V 1

√
V 2 − 1σz√

V 2 − 1σz V 1

)
, (2.13)

where σz is the Pauli matrix

σz =

(
1 0

0 −1

)
. (2.14)

Next, Alice keeps one mode (A) on her side and heterodynes it. Balanced heterodyne
measurement will alter dB and γB according to Eq.2.11 and 2.12, respectively.

Equivalently, the results of heterodyne measurement can be obtained by coupling,
on (generally unbalanced) beamsplitter TA, mode A to an ancillary system (mode C as
shown on the right of Fig.2.3), with an initial covariance matrix of an overall tripartite
state being γCAB = 1C ⊗ γAB. This changes γCAB as follows:
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γ′CAB =(SCA ⊗ 1B)TγCAB(SCA ⊗ 1B) =
V+1

2
1 V−1

2
1

√
V 2−1

2
σz

V−1
2
1 V+1

2
1

√
V 2−1

2
σz√

V 2−1
2
σz

√
V 2−1

2
σz V 1

 ,
(2.15)

where matrix SCA describes a coherent combination of respective modes:

SCA =

( √
TA1

√
TA1

−√TA1
√
TA1

)
. (2.16)

The results of concurrent homodyne detection of modes A and C of the tripartite state
with γ′CAB (2.15) is evaluated using Eqs.2.8, 2.9. One can �rst obtain covariance matrix
describing bipartite state conditioned by measurement of e.g. mode C in p quadrature
- γ[pC ]

AB , and then from it the covariance matrix of single mode state γ[xA,pC ]
B conditioned

by measurement of both modes C and A in conjugated quadratures, respectively. This
projects Bob's mode into a state with covariance matrix:

γ
[xA,pC ]
B =

(
δAV+1
V+δA

0

0 V+δA
δAV+1

)
, (2.17)

where δA = (1− TA)/TA. The mean values are obtained similarly

d
[xC ,pA]
B =

(
αxxA, αppA

)
=

( √
TA(V 2 − 1)

TAV + (1− TA)
xA,

√
(1− TA)(V 2 − 1)

(1− TA)V + TA
pA

)
. (2.18)

Setting TA = 1 corresponds to the homodyne detection of mode A, which yields:

d
[xA]
B =

√
1− 1/V 2

(
〈xA〉, 0

)
, (2.19)

γ
[xA]
B =

(
1/V 0

0 V

)
. (2.20)

Gaussian state with mean 2.19 and covariance matrix 2.20 is a displaced x-squeezed
state. Provided Vs + Vm = V and 1/Vs = V and accounting for αx =

√
1− 1/V 2

(the factor also becomes negligible for high V values) perfect correspondence between
prepare-and-measure and entanglement-based schemes of squeezed-state protocols can be
established.

Setting TA = 1/2 corresponds to the balanced heterodyne measurement, and conse-
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quent preparation of a coherent state γ[xA,pA]
B = 1, displaced by

d
[xA,pA]
B =

√
2
V − 1

V + 1
(xA, pA) .

This preparation via measurement, with respect to factor
√

2(V − 1)/(V + 1) is equiva-
lent to P&M scheme of a coherent-state protocol.

2.1.3 Adversary

One of the basic assumptions about the quantum channel is that it completely lies in
the domain of in�uence of Eve. She can do with channel anything quantum mechanics
allows and Alice and Bob could not detect. Ultimately, her goal is to obtain the copy
of the key avoiding the termination of the protocol. Alice and Bob always upper bound
on Eve's in�uence and accessible information, hence Eve has to devise a strategy that
would allow key acquisition regardless. Currently known optimal attack strategies are
undoubtedly challenging to implement even with state-of-the-art technologies, however
for the highest security to be future-proof one cannot rely on technological limitations.
This forces trusted parties to resort to certain assumptions about Eve's resources and
power:

� Eve has full access to the quantum channel and can perform any operation permitted
by the laws of physics.

� Eve can freely copy and monitor the information �ow in classical channel, but
without violating the authentication.

� Eve's computational power is unbounded.

� Eve cannot control trusted stations (both from outside and inside).

The latter implies that devices are operating as intended and thus are trusted, however
such assumption can be fully or partially omitted in device-independent or measurement-
device independent protocols [120, 121]. Alleviation of the �rst two assumptions would
make the whole process of secure key distribution unfeasible, and as such they are mini-
mum necessary for the QKD protocols.

Untrusted channel

The choice of the channel used by trusted parties depends on the convenience of imple-
mentation and scale of targeted application. While �ber channels can be suitable for
majority of applications, the cost of infrastructure and in�exibility can be a signi�cant
obstacle for some networks. One can expect that wide-scale network in near future will
combine �ber channels, and atmospheric channels in a form of short links between trusted
parties in urban areas, or long-range links on global scale via intermediate trusted nodes
on satellites.
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Figure 2.4: Model of a Gaussian noisy channel. Eve can combine the signal with one
of the modes radiated by an EPR source, and store the latter (along with the second
mode radiated by the source) for a measurement based on the eavesdropped classical
communication. The respective states are characterized by the varianceW = 1+ε/(1−η),
where η is channel transmittance, and ε is the excess noise, estimated by trusted parties.

Fiber channel. In current work we assume that Eve can substitute the real link
between Alice and Bob and simulate a noisy channel between them. Generally, the channel
does not have to be Gaussian, however the extremality of Gaussian states (see Sec.2.1.4)
allows us to use Gaussian channel models to discuss basic protocol performances. More
speci�cally as an interaction of the signal with a thermal state of varianceW = 1+ε/(1−η)

on a BS η, as in Fig. (2.4), resulting in covariance matrix of the trusted state (i.e. the
state shared between the trusted parties) to become:

γ′AB =

(
V 1

√
η(V 2 − 1)σz√

η(V 2 − 1)σz
[
1 + η(V − 1) + ε

]
1

)
, (2.21)

where η is the channel transmittance, and ε is the excess noise referred to the output of
the channel11. Channel estimation is required to determine all elements the covariance
matrix, which consequently allow to assess the security of the protocol.

The model is successfully applied to the description of �ber-optics channels, however
one must be wary of e�ects (phase noise [122], crosstalk in a multimode signal [123] or
with multiplexed simultaneous classical communication [124], etc.) encountered in real
experimental �ber-based systems. Such e�ects, if overlooked, may increase attenuation
and noise, and consequently lead to security misestimation.

Aside from the overall ability to establish secure key distribution between trusted par-
ties and the pro�le of the key rate function depending on transmittance, an important
�gure of merit in such channels is the distance up to which the protocol maintains a rel-
atively high key rate (before the substantial drop, typical for the key rate dependence),
which almost coincides with the secure distance i.e. maximal length of the �ber chan-
nel that still permits key distribution. Typical telecom �ber admits 0.2 dB of loss per

11Excess noise can also be considered at the input of the channel. In such a case it is scaled by the
transmittance.
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kilometer [125], which can be translated into transmittance:

ηfiber = 10−0.02d, (2.22)

where d is the length (in km) of the �ber link between trusted parties. This results in
losses at 100 km to be η = 0.1 which will lower the variance of the state at the input from
e.g. Vinput = 20 to Voutput = 2.9 provided no excess noise is present.

Free-space channel. Eve can employ more sophisticated strategy that would demand
trusted parties to estimate more parameters. An example of such channel is channel that
exhibits transmittance �uctuations which are non-negligible over the course of generation
of a single data block. The �uctuations are described by a distribution τ(η), and the
channel can be deconstructed as a set of subchannels {ηj} [126]. A subchannel here is
understood as a channel where transmittance �uctuations are negligible, and which occurs
with probability τ(ηj), provided

∑∞
j=1 τ(ηj) = 1. The Gaussian Wigner function of a state

after a fading channel is a sum of Winger functions after all individual subchannels [108].
Therefore the trusted state γ′AB is now classically non-Gaussian being a mixture of states
with zero mean and covariance matrix γjAB after each subchannel. Thus, the covariance
matrix of the shared state γ′AB can be obtained by averaging over �uctuating transmittance
values. This signi�cantly simpli�es the analysis of the channel, as it does not require the
explicit determination of τ(η), but rather it's covariance matrix statistical properties. For
the states with zero mean values, only the mean value of transmittance 〈η〉, and mean
value of square root of transmittance 〈√η〉 are needed [108, 126], since after individual
subchannel covariance matrix (2.23) is

γjAB =

(
V 1

√
ηj(V 2 − 1)σz√

ηj(V 2 − 1)σz (1 + ηj(V − 1) + ε)1

)
, (2.23)

and after the overall channel covariance matrix averages to:

γ′AB =

(
V 1 〈√η〉

√
V 2 − 1σz

〈√η〉
√
V 2 − 1σz (1 + 〈η〉(V − 1) + ε)1

)
. (2.24)

Relevant properties of τ(η) constitute the fading variance:

V ar(
√
η) = 〈η〉 − 〈√η〉2. (2.25)

It was shown, that if parameters 〈η〉 and 〈√η〉 of the �uctuating channel are known to
Alice and Bob, the channel can be considered as the one with �xed attenuation 〈√η〉2, but
additional variance-dependent excess noise εf (τ(η), Vs, Vm) = V ar(

√
η)(Vs+Vm−1) [108].

Composite channel is a combination of channels with �xed and �uctuating trans-
mittances. While there can be numerous con�gurations of said channels, the overall
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Figure 2.5: Non-Gaussian channel with transmittance �uctuations can be decomposed
into a set of Gaussian subchannels {ηj} according to transmittance probability distribu-
tion τ(η). The signal has the probability p(ηj) to be transmitted via individual subchannel.

covariance matrix describing the state received by Bob is:

γ′AB =

(
V 1 〈√η〉

√
ηcomb(V 2 − 1)σz

〈√η〉
√
ηcomb(V 2 − 1)σz (γB − 1)〈η〉ηcomb + (1 + ε+)1

)
. (2.26)

where ηcomb =
∏N

i ηi is product of all transmittance values of all N channels with �xed
losses, 〈η〉 and 〈√η〉 are given by the overall transmittance probability distribution, and
ε+ is a total excess noise (being the sum of noises infused by each channel, and accounting
for scaling within each channel), and received by Bob. Even though Alice and Bob may
not be able to distinguish, and properly attribute losses and noise to each individual
channel, they are only required to estimate each time the overall loss ηcomb ηj, and total
excess noise ε+ imposed on the state that arrives to the Bob's side.

An example of such channel can be an urban QKD network that combines both types
of channels, utilizing an atmospheric channel to connect two distant parties without the
necessity of expensive �ber-optical infrastructure, and extending the network using �ber
links where necessary.

Attack strategy

Overall eavesdropping strategies (depicted in Fig. 2.6) can be split into 3 classes: individ-
ual and collective attacks [51,78�80], and the most general coherent attacks [90,127,128]:

1. An individual attack corresponds to class of attacks when Eve interacts with each
quantum state independently, stores her probe states in a quantum memory until
the sifting step of the protocol, and further proceeds to individually measure each
stored state in correct basis (quadrature).

20



Quantum Key Distribution

A B

Eve

A B

Eve

Joint unitary

Individual Collective Coherent

A B

Eve

Joint unitary

Joint unitary

Figure 2.6: During individual attack (left) Eve prepares a sequence of probe-states that
individually interact with the signal, then stored in quantum memory until Eve obtains
additional information from eavesdropping the classical channel, and �nally measures each
probe individually. Collective attack (middle) allows Eve to perform global measurement
over the whole ensemble of probe states, whereas coherent attack (right) additionally
allows to prepare the probe states in a global optimal entangled state, and probe all
signal states jointly.

2. During collective attack Eve interacts with each quantum state independently, stores
the probes in a quantum memory, but can perform optimal collective measurement
on the whole stored state (after post-processing has been commenced).

3. Coherent attack is the most general conceivable attack, where Eve is allowed to
explore the entanglement of the states. Similarly to collective attack she can store
the probes in a quantum memory and conduct collective measurement after post-
processing step.

Attacks, stated above, do not presume any speci�c currently achievable implementa-
tions (nor any whatsoever), but rather they de�ne the security bounds that can be in
principle saturated by potential implementation [118, 129]. In case of individual attacks
the optimal approach for Eve is a Gaussian attack, that can, in fact, be realized in nu-
merous ways. A well-known example is an optimal entangling cloner attack [118], where
Eve radiates an TMSV state of variance W in two modes E1,2:

γE1E2 =

(
W1

√
W 2 − 1σz√

W 2 − 1σz W1

)
, (2.27)

and forces one of the resulting modes E1 (as depicted on upper left scheme in Fig. 2.7) to
interact with the signal mode on BS that corresponds to channel transmittance η. This
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Figure 2.7: Examples of individual attacks: entangling cloner (top-left), feed-forward
(top-right), cloning (bottom-left), and teleportation (bottom-right) attacks.

changes the trusted state to:

γ′AB =

(
V 1

√
η(V 2 − 1)σz√

η(V 2 − 1)σz (ηV + [1− η]W )1

)
. (2.28)

Proper adjustment of the variance of Eve's stateW = 1+ε/(1−η), would make Alice and
Bob perceive the channel as the one with thermal noise ε, as in Eq.(2.23). During each
round of the protocol Eve should also make use of the QM to store states in both modes
until proper measurement basis would be disclosed via classical channel. Measurement of
E2 allows Eve to conditionally reduce the noise in the entangled mode E1 (W → 1/W ).
Such approach allows Eve to saturate the maximally achievable information for DR and
RR scenarios, for both the squeezed- and the coherent-state protocols on Bob's side.

The entangling cloner, along with other examples of individual attacks, feedforward,
cloning, and quantum teleportation attacks [130, 131], are depicted in Fig.(2.7). The
feedforward attack relies on Eve tapping the channel, performing the heterodyne detection
and based on the outcome applying adjustment to the signal mode. Cloning attack
involves the use of phase-insensitive linear ampli�cation, followed by attenuation and
heterodyne detection. The quantum teleportation attack, similarly to entangling cloner,
is based on the use of an EPR-source, one mode of which is coupled to the signal and
heterodyned, while the other is linearly ampli�ed (with gain in each quadrature governed
by the measurement results) and sent to Bob.

Overall it is considered for coherent attacks to be the most powerful, with collective
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attacks being less powerful, and individual the least e�cient ones. However it was shown
that collective attacks can be as e�ective as any coherent attack against certain QKD
protocols [79�81,87,95]. In some channels optimal attacks are further reduced to individ-
ual, e.g. noiseless Gaussian channels in CV QKD (or depolarizing channels for BB84),
however this is generally not the case.

The framework for operation of collective attacks has been successfully developed
[132], and many experimental implementations claim the security against coherent attacks,
however optimal approach for an adversary has not been identi�ed yet, not to mention
experimental implementations. Recently, based on entangling cloner, a hybrid attack, that
combines individual and collective attacks, on coherent-state with heterodyne detection
(no-switching) protocol has been devised [133]. It was shown that even without restrictions
on the volume of Eve's QM, the reasonable assumptions regarding the storage time [134,
135] can remarkably force Eve to resort to individual attacks (which do not require QM
for such protocol) thus signi�cantly improving the expected security of the protocol.

Security analysis of individual attacks, even though being seemingly the weakest, can
provide useful insights and verify that some protocols are not secure beyond complete
break of entanglement. Despite the emergence of coherent attack analysis techniques [136],
analysis of collective attacks is still crucial as it provides common ground for comparison
of performance of main QKD protocols.

2.1.4 Security

Statement that QKD protocol is secure implies ε-security, meaning there's always a non-
vanishing probability ε that the protocol does not abort during one of the steps and Eve
obtains information on a shared key [89]. The joint state of the classical key S (given
by the probability distribution PS) and quantum system of the unauthorized party ρsE
(provided the key S = s for any element s of the key space S) can be written as:

ρSE :=
∑
s∈S

PS(s)|s〉〈s| ⊗ ρsE, (2.29)

with ρS =
∑

s∈S PS(s)|s〉〈s| being the operator representation of a classical distribution
PS [32] with respect to orthonormal basis {|s〉}s∈S on Hilbert space HS [94]. One can
claim that the key S is uniformly distributed and independent of the adversary with
probability 1 − ε, if the similarity12 between a real system ρSE and an ideal one, where
(maximally mixed) key state ρU =

∑
s∈S

1
dim(S)

|s〉〈s| on Hilbert space HS is independent
from an arbitrary state of the adversary ρE on HE:

1

2
‖ρSE − ρU ⊗ ρE‖1 ≤ ε. (2.30)

The de�nition (2.30), follows the universal composability framework [137] and has

12Here the similarity is meant as the trace norm ‖ρ‖1 := tr(|ρ|) of a hermitian operator ρ. Trace norm
is a quantum equivalent of total variation distance between two probability distributions, also denoted
as L1-distance.
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been presented by R. Renner in his PhD thesis [89]. Note that such de�nition applies
to both DV and CV systems, since the keys of the latter are discretized and occupy
a �nite key space [89]. While previously used security de�nitions, based on accessible
information [138], agree with Eq. (2.30), they were not su�cient to claim security in
any arbitrary context, i.e. they were not composably secure [139]. The latter can be
understood as the ability to establish a security bound on the protocol that consists of
εi-secure subprotocols, so that the overall protocol is ε ≤∑i εi secure.

In the current work we assume ε to be su�ciently small, and view the security of QKD
protocol as the ability to extract fully secure key after all the steps of the protocol. Hence
the security is de�ned in terms of positivity of the key rate:

R ≡ lfinal
N

> 0, (2.31)

where, following previous notations, N is the amount of states sent (rounds of the pro-
tocol), and lfinal is the size of the �nal (errorless and decorelated from the third party)
secure key. Generally evaluation of ε-secure lfinal requires the knowledge of smooth-min
entropy relative to limited precision due to �nite N value, however in asymptotic regime,
where collective attacks have been shown (for majority of CV QKD protocols) to be
optimal [79�81,87], the key rate reduces to well-known [32] expression:

Rassymp
coll. = max [0, IAB − χE] , (2.32)

where IAB is the upper bound on the mutual information trusted parties can extract from
the shared state (provided reconciliation is perfect), and χE is the quantum analogue of
mutual information, Holevo bound, which upper limits the amount of information on the
key that can be contained within the state of Eve. Provided Eve implements individual
attacks, the key rate (2.32) can be further reduced to [140]:

Rassymp
ind. = max [0, IAB − IE] , (2.33)

where IE is the mutual information of Eve with respective trusted party. Proving security
against individual attacks may not be su�cient, but it is useful to estimate security
bounds and can provide valuable insights regarding the inapplicability of protocols in
various conditions.

However, the bound on the mutual information set by IAB is never reachable in prac-
tice, where error correction procedure unavoidably consumes part of the shared data, so
the limited error-correction e�ciency β (also referred to as post-processing e�ciency) has
to be introduced into the key rate bound as well, so that:

Rcoll. = max [0, βIAB − χE] . (2.34)

Here β ≤ 1 (in practice being close to 95% for Gaussian-distributed or approximately
Gaussian-distribution data [141]) and illustrates inability to extract information at exactly
the Shannon limit. Furthermore one can also account for speed αs of error correction that
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can deny real-time implementations, and the frame error rate (FER):

Rcoll. = max
[
0, αs(1− FER)(βIAB − χE)

]
.

Practically the speed factor is evaluated as ratio α = DECout/DECin
between error cor-

rection output rate DECout and data output rate of the system i.e. the input of error
correction [142]. Frame error rate is the probability of incorrect message decoding, that
leads to data discard. Error correction speed and FER are linked since the increase of
the latter enables the increase of the former [142]. However, it is commonly assumed for
αs(1−FER) = 1, as it merely reduces the key rate and doesn't alter the dependencies on
parameters of the protocol. There are other important e�ects that should be taken into
account with the most essential being the �nite-size e�ects (see Chapter 3.34).

The term βIAB can be e�ciently determined directly from data sets generated on
trusted sides, with the β = rcode/Cchannel, where rcode is the rate of the reconciliation
code [142] and Cchannel is the channel capacity that depends on SNR [143]. The main
concern is actually the second term of Eq. (2.34), i.e. the Holevo bound. However, there's
an elegant way of evaluation of the quantity that relies on the use of entanglement-based
representation. In the most conservative approach all impurities of the trusted state ρAB
are attributed to Eve, so that tr(ρABE) = 1. Utilizing the properties of the Von Neumann
entropy (de�ned as S(ρ) = −tr[ρ log2 ρ]), one can immediately claim S(ρAB) = S(ρE)

to be true, which implies that any information accessible to Eve is in fact given by the
density matrix of the trusted state ρAB. Finding the explicit value of quantum mutual
information of bipartite quantum system S(a : b) is a non trivial task. Fortunately,
making use of subadditivity of Von Neumann entropy, as well as, the fact that unitary
interactions do not alter the entropy13 one can show that quantum mutual information
cannot exceed the Holevo bound S(a : b) ≤ χ [144]. The latter is given by

χ = S(x : Y ) = S(ρY )−
∑

p(x)S(ρxY ), (2.35)

where ρxY is a state of system Y conditioned by the measurement on system x.
The assertion that optimal choice of states for an attack are, in fact, Gaussian states

stems from the inequality
f(ρ) ≥ f(ρG),

where f is a continuous, strongly superadditive and invariant under local unitaries func-
tion, while ρG is a gaussi�ed version of ρ, i.e. Gaussian state with the same �rst and
second moments as ρ. In terms of Von Neumann entropy the inequality turns to

S(ρ) ≤ S(ρG),

meaning that Guassian states maximize the entropy. This notion is also known as ex-
tremality of Gaussian states [81]. Finally, one can use Williamson theorem [145] to reduce
the problem to calculation of symplectic eigenvalues of �nite covariance matrices and ob-

13Since eigenvalues of the density matrix of the state remain the sames under unitary operations
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tain the upper bound on the knowledge Eve will have on the key shared by trusted
parties. Since in the Gaussian approximation mean values of the states are irrelevant (as
displacement is a unitary transformation), such method requires solely the reconstructed
covariance matrix γ′AB (after the interactions in the untrusted channel) for full security
analysis.

Stated formulation of the security proofs suggests that a key is secure if trusted parties
share more information between themselves than an eavesdropper can have with either of
them. Since the �ow of quantum states is from Alice to Bob, it is natural [51] for classical
information to be transferred in the same direction (steps 4-7). The protocol where Alice
is sending classical information to Bob, and the latter corrects his key elements, trying to
infer the values originally encoded by the former, is called Direct Reconciliation (DR). In
this case the lower bound on the key rate:

R→ind = max [0, βIAB − IAE] ;

R→coll = max [0, βIAB − χAE] ;
(2.36)

However leaving Alice as a reference side allows Eve to easily compromise the security
of CV QKD protocol when channel transmittance falls below η < 0.5. Since Eve gets to
keep bigger part of every transmitted beam, it is clear she will then be able to infer more
information than Bob.

A more robust approach would be to reverse the �ow of classical information, and
make Alice infer the value measured by Bob. The protocol where Bob is the reference
side, and is sending the corrections to Alice is called Reverse Reconciliation (RR) [146].
In this case lower bound on the key rate becomes:

R←ind = max [0, βIAB − IBE] ;

R←coll = max [0, βIAB − χBE] ,
(2.37)

and it can be veri�ed that CV QKD protocol can be in principle established over noiseless
channel with arbitrary amount of loss.

Taking into account aforementioned puri�cation of trusted state by Eve, and properties
of Von Neumann entropy, the Holevo bound (2.35) can be rewritten as:

χAE = S(b : A) = S(AB)− S(B|A);

χBE = S(a : B) = S(AB)− S(A|B),
(2.38)

where S(AB) is the Von Neumann entropy of the shared trusted state ρ′AB, and S(A|B),
S(B|A) are, respectively, the entropies of ρA|B and ρB|A, the states of a trusted subsystems,
conditioned by the measurement performed on another trusted subsystem. The secure key
rates in Eqs.(2.36,2.37) for collective attacks can therefore be expressed solely dependent
on the covariance matrix γ′AB of a state shared between Alice and Bob:

R→coll = max
[
0, βIAB − S(AB) + S(B|A)

]
;

R←coll = max
[
0, βIAB − S(AB) + S(A|B)

]
.

(2.39)
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The general approach to composable security estimation against coherent attacks on
an arbitrary CV QKD protocol remains an open problem. One of the approaches employs
entropic uncertainty principle to achieve composable security proof [90, 128], although it
is applicable only to the squeezed-state protocol and requires intensity monitoring of the
incoming signal [91]. Another approach, applicable to the coherent-state protocol with
heterodyne detection, �rst proves the protocol is ε-secure against Gaussian collective
attacks [94], and then employs Gaussian de Finetti reduction to prove that the same
protocol is ε̃-secure (where security parameter ε̃ is polynomially larger than ε [133]) against
general coherent attacks [95]. In the asymptotic regime the lower bound on the composable
secret key rate for Gaussian collective and coherent attacks coincide [94]. The analysis
of collective attacks continues to be a benchmark for comparison of the performance of
various CV QKD protocols.

2.2 Gaussian protocols family

The choice of signal state, measurement on receiver side, as well as reconciliation direction
spawns a family of 8 one-way Gaussian CV QKD protocols. All protocols can be described
in terms of entanglement-based scheme as depicted in Fig.(2.8). In the following section
we do not account for numerous e�ects in�uencing real protocols (e.g. limited post-
processing e�ciency, which is set to theoretical maximum β = 100%) with a sole intent
to brie�y compare each protocol in terms of secure key rate dependency on the channel
losses, and noise tolerance. We're interested not only in the maximal tolerable attenuation
or noise, but also in the slope of the key rate function that determines tolerance to losses.
Due to inherently di�erent range of tolerable attenuation we separately compare direct
and reverse reconciliation protocols.

2.2.1 Direct Reconciliation

Purely lossy untrusted channel.

Let us �rst look at the simplest case of noiseless channel ε = 0, as depicted in Fig.2.9a.
Such reconciliation imposes fundamental limitation on maximal loss since both Bob and
Eve want to reconstruct encoded key data, and the advantage is granted to a party that
collects bigger share of the signal state. Hence, if the channel attenuation reaches or
exceeds 3dB (i.e. η ≥ 1/2) no key can securely be generated between Alice and Bob.

If Alice decides to use the coherent state modulated in both quadratures during each
round of the protocol (also known as no-switching protocol [130]), Bob's original incentive
may be to measure both quadratures of the incoming state. However, the key rate of such
protocol (dashed green line on Fig.2.9a) quickly diminishes with increasing loss and, even
in such idealized conditions, no key can be generated if η > 1.3dB. This is due to
inevitable (vacuum) noise addition during heterodyne detection that hinders the ability
of the receiver side to reconstruct an encoded key data [104] (see Chap.3.3.5 for further
details regarding detection noise). By resorting to homodyne detection (dashed orange
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Figure 2.8: Entanglement-based scheme of a Gaussian CV QKD protocol. An EPR source
radiates states into modes A and B, the states in the latter are sent through untrusted
channel (where they are subjected to losses η and noise ε) to Bob. Beam-splitters on
trusted sides can typically take values TA(B) = 1 or 1/2. Unity transmittance corresponds
to the choice of homodyne detection of the incoming state. Interaction with a vacuum
state on a balanced BS on trusted side implies the use of heterodyne detection, that is
modeled as conjugate homodyne detection of both output ports of respective BS. Trusted
parties can use either the squeezed-state protocol (TA = 1), or the coherent-state protocol
(TA = 1/2), amassing the key data during each round from either single quadrature
(TB = 1), or both quadratures (TB = 1/2). Additionally, trusted parties can agree
beforehand on the reconciliation side (DR or RR), thus making 8 possible implementation
of a CV QKD protocol.

line) trusted parties lose the information from one of the quadratures, which in lossless
channel would almost halve a secure key rate. However, avoiding additional noise on the
receiver side proves to be bene�cial with increasing losses and allows to ultimately tolerate
up to the fundamental maximum of 3dB.

Alternatively, Alice can choose to send to Bob a sequence of squeezed states each
modulated in a single quadrature. In such scenario robustness to channel attenuation is
again impaired by the noise added on the receiver side. The choice of heterodyne detection
(solid green line) leads to a rapid decrease of the key rate with accumulating loss. Note
that in low loss regime, unlike the coherent-state protocol, acquisition of information
simultaneously from both quadratures of the squeezed state is not advantageous, since
the measurement of the anti-squeezed quadrature does not contribute to the overall key
rate, while the coupling to the vacuum state during heterodyne detection merely reduces
the amount of squeezing in the contributing (squeezed) quadrature. Interestingly, in low
loss regime the squeezed-state protocol yields smaller key rate than the coherent-state
protocol with heterodyne detection, however the former proves to be more robust against
losses than the latter. Lastly, the choice of squeezed states and homodyne detection (solid
orange line) extends the applicable range of losses up to the fundamental maximum, and
furthermore grants highest overall key rate and robustness against losses comparing to all
other protocols.

Noisy untrusted channel.
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Figure 2.9: Comparison of the lower bounds on the key rate of CV QKD protocols with direct

(left) and reverse (right) reconciliation in noiseless channel ε = 0 (top) and noisy channel ε = 10%
(bottom). Protocols depicted are: the squeezed-state (solid lines), the coherent-state (dashed)

protocol, with homodyne (orange lines) or heterodyne (green lines) measurement. State variance

is close to asymptotic value V = 100 shot noise units (SNU), post-processing assumed to be

perfect β = 100%. In case of RR in noiseless channel, result for the squeezed-state protocol and

heterodyne detection overlaps with the coherent-state protocol and homodyne detection.
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Figure 2.9c shows the e�ect of the large excess noise ε = 10% (at the receiver, i.e. not
scaled by the channel transmittance) on DR CV QKD protocols. Evidently, such noise
reduces tolerance to loss, and consequently the range of attenuation that permits secure
key distribution.

The coherent-state protocol with heterodyne detection may yield comparatively high
quantitative key rate in almost perfectly transmitting channel, but as transmittance di-
minishes so does the key rate (quickest than for any other protocol), ending up with the
smallest tolerable attenuation. On the other hand, the choice of homodyne detection
allows to avoid additional noise on the receiver side and hence retain tolerance (similar
to the one in a purely lossy channel) to loss, resulting in highest maximum tolerable
attenuation value among all protocols.

The heterodyne detection of squeezed states sent via noiseless channel will yield the
lowest key rate comparing to any other choice of carrier states or detection in channels
with high transmittance. The heterodyne measurement harms the mutual information
between trusted parties, but does not a�ect Eve's information on Alice data, while mea-
surement of the anti-squeezed quadrature has a negligible contribution. As the losses in
the channel accumulate the rate rapidly drops, although, not as quickly as of aforemen-
tioned coherent-state protocol with heterodyne detection. This is mainly due to amount of
mutual information trusted parties generate by measuring squeezed quadrature, variance
of which remains of sub-shot noise level regardless of heterodyne detection by Bob.

As already mentioned, the choice of measuring a single quadrature allows to avoid
additional noise (and observed squeezing reduction), and consequently maintain excess
noise tolerance and robustness to losses provided by squeezed states. Said advantages
support generation of more bits per channel use, although the rate drops quicker than
that of the homodyned coherent-state protocol. The latter can be explained by higher
noise tolerance of the coherent-state protocol as illustrated in Fig.2.10(left). The tolerance
to noise, and subsequently maximal attenuation can be in�uenced by addition of a trusted
noise on the sender side [104]. Such trusted preparation noise can improve the tolerance
to untrusted channel noise, so that the closer the latter is to maximally tolerable level
the more improvement in terms of secret key rate increase can be expected. For further
details see Ch. 3.1.4.

2.2.2 Reverse Reconciliation

Purely lossy untrusted channel.

The optimal approach for trusted parties is to let Bob be a reference side i.e. for
Alice to correct data on her side according to the measurement outcomes of the former.
Such assignment of roles allows to maintain operation after arbitrary amount of loss in a
noiseless channel, which can be seen in Fig.2.9b, where further increase of loss η would not
lead to a security break regardless of the protocol used. Two protocols with the lowest
key rate have fully equivalent loss tolerance and quantitative key generation rate: the
coherent-state protocol with homodyne detection (dashed orange line) and the squeezed-
state protocol with heterodyne detection (solid green line). The former does not utilize
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Figure 2.10: Maximal tolerable noise for CV QKD protocols with direct (left) and re-
verse (right) reconciliation. Protocols depicted are: the squeezed-state (solid lines), the
coherent-state (dashed) protocol, with homodyne (orange lines) or heterodyne (green
lines) measurement. V = 100 SNU.

simultaneous measurements of both quadratures to increase of the total bandwidth, and
is thus an inferior version of the coherent-state protocol with heterodyne measurement.
The squeezed-state protocol with heterodyne detection is a noisier version of the one with
homodyne detection, since the key bit is carried only by a single (squeezed) quadrature
and consequently only a single measurement result is used for key generation.

The no-switching protocol and the squeezed-state protocol with homodyne detection
match in performance in an ideal channel (η = 1), but with increasing loss the key rate of
the former, apparently, quickly decreases, approaches and eventually matches the rate of
the coherent-state protocol with homodyne detection and the squeezed-state protocol with
heterodyne detection. The squeezed-state protocol with homodyne detection in noiseless
channel is unmatched in terms of key rate and noise tolerance.

Noisy untrusted channel.

The introduction of noise in the channel imposes a limit on tolerable loss, and the
amount of such excess noise is detrimental to the performance of any CV QKD protocol.
The protocols based on coherent states have identical excess noise tolerance, as illustrated
in Fig.2.10(right), and display similar robustness to losses, as well as maximal tolerable
loss (as shown in Fig.2.9d), with minor quantitative advantage of the no-switching pro-
tocol that makes use of enhanced bandwidth due to measurement of both signal state
quadratures.

Employing squeezed states signi�cantly improves tolerance to losses and can signi�-
cantly improve the upper bound on maximal tolerable excess noise as shown in Fig.2.10
(right). Conducting homodyne measurement of squeezed signal states is again unmatched
in terms of the amount of bits generated with each channel use, however only up to some
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extent of channel loss, as seen in Fig.2.9d, where the key rapidly diminishes after 6 dB

of loss. Remarkably, switching to heterodyne measurements (solid green line in Fig.2.9d)
allows to extend the range of secure key generation, although it clearly yields subpar re-
sults in high transmittance links. This e�ect is explained by presence of trusted detection
noise inevitably introduced during heterodyning [117]. Such trusted noise enhances the
robustness to the excess noise, as evident from Fig. 2.10 (right), and ultimately allows
to tolerate more loss. Despite the seeming advantages of the heterodyne detection, the
measurement of the non-signal quadrature is redundant, while the amount of trusted de-
tection noise that improves the lower bound on the secure key rate depends on the excess
noise exhibited by the untrusted channel, and thus must be optimized. Additional details
regarding trusted detection noise are given in section 3.3.5 (see also [104]).

Based on the presented analysis in further work we will focus on the squeezed-, and
coherent-state protocols with homodyne detection keeping in mind that the performance
of each protocols can potentially be improved upon introduction of trusted noise to ap-
propriate trusted side.

2.3 Modi�ed puri�cation schemes

Conventional entanglement-based scheme is equivalent to a P&M scheme, however there is
an important distinction, i.e. the former does not permit independent control of both dis-
placement and squeezing because the level of squeezing Vs inherently depends on the size
of the encoding alphabet Vm. A conventional EPR-based scheme is therefore su�cient for
a basic analysis of idealized CV QKD protocols, however it may seize to be when complex
issues (side channels, source attacks, etc.) are taken into account. In the following section
we present two advanced entanglement-based schemes that allow to independently ma-
nipulate trusted resources such as squeezing and modulation, can incorporate additional
e�ects and resources, and most importantly retain equivalent performance to a general
P&M scheme.

2.3.1 Three-mode scheme

The following modi�ed entanglement-based scheme, �rst introduced in [103] to access
both displacement and squeezing independently (to study in�uence of limited reconcilia-
tion e�ciency on the squeezed-state protocol), supposes that the shared trusted state is
contained in three modes, as depicted in Fig.(2.11). Here Alice starts by preparing two
(single-mode) states squeezed in the modes A and B, and couples them on a balanced
BS. The state in the mode A further interact with the squeezed vacuum states in the
mode C on a balanced BS and both output ports are measured by Alice on homodyne
detectors D1, and D2 (conducting conjugate homodyning), while the states in the mode
B are transmitted to and, respectively, homodyned by Bob. The state in the mode C
is squeezed in the same quadrature as Alice's measurement basis, therefore states in the
mode C de�ne whether the coherent- or the squeezed-state protocol is performed and
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Figure 2.11: Modi�ed (generalized) entanglement-based CV QKD scheme [103]. On
trusted preparation side three single-mode squeezers are operating. The sources S1 and
S2 generate oppositely squeezed states (in modes A and B, respectively) that are coupled
on a balanced beamsplitter. Alice performs homodyne measurements on the output ports
(D1 and D2) of another balanced beamsplitter on which A mode and squeezed vacuum
mode C have interacted. The signal B is sent to Bob via untrusted channel. Bob conducts
homodyne measurement (D3), obtaining correlated string of data with Alice, and they
proceed to key sifting, error correction, and privacy ampli�cation.

allow for a smooth transition between the two protocols. Provided the variances of the
quadratures of the states in the modes A,B are

VA,B = Vs + V X
m ±

√
(Vs + V X

m )(V x
m + VsV

p
m[Vs + V x

m])

1 + VsV
p
m

, (2.40)

so that the signal state resulting from balanced mixing of VA and VB, is V ′B = Vs+V X
m ,

where Vs is the variance of signal quadrature in P&M, and V
X(P )
m is the modulation

variance in respective quadrature in P&M. The variance of VC is

VC =
V 2
s V

P
m (Vs + V x

m)

V x
m(1 + VsV

p
m)

. (2.41)

The system in Fig.2.11 is completely equivalent to P&M system with a single source
and a modulator. The covariance matrix describing the prepared pure state before the
untrusted channel has the form

γ′ABC =

 γ′A ς ′AB ς ′AC
ς ′AB γ′B ς ′BAC
ς ′AC ς ′BC γ′AC

 , (2.42)

where γ′A, and γ′C are the 2 × 2 matrices describing the states measured by Alice
(assuming phase shift with respect to LO is absent, hence o�-diagonal elements are zero)
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γB is the matrix of the state sent to Bob, that after applying Eqs. (2.40), and (2.41)
becomes

γ′B =

(
Vs + V x

m 0

0 1/Vs + V p
m

)
(2.44)

and the matrices ςAB, ςBC , ςAC describe correlations between respective modes:
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−
√
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ςAC =
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After the preparation, trusted parties can proceed to execute further steps of the CV
QKD protocol. Presuming V = Vs + Vm and Vs = 1/V , the mutual information between
trusted parties can be found using respective elements of the covariance matrix describing
the state after channel interaction:

IAB =
1

2
log2

[
VA
VA|B

]
=

1

2
log2

[
VA1

VA1|B

]
=

1

2
log2

[
η(V + ε) + hB

η(V hA−1 + ε) + hB

]
, (2.48)

where hA(B) depends on the choice of measurement, on the sender side or the receiver
side: h = 0 for homodyne, and h = 1 for heterodyne detection, and ε = (1 − η + ε)/η is
the overall noise added to the transmitted state, with η being channel attenuation and ε
being excess noise. The obtained mutual information exactly corresponds to the mutual
information in entanglement-based scheme of a respective Gaussian CV QKD protocol.
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Figure 2.12: Modi�ed scheme of a Gaussian CV QKD protocol. Source S radiates signal
(mode B) that, using entangled source W (mode C,D), receives amplitude and phase
modulation (via interaction on T ), and is sent to Bob, that conducts homodyne detection
H. Source S0 (mode A) generates strongly squeezed states and is kept on the preparation
side. Losses η and noise ε in untrusted channel (mode E) are attributed to Eve. Unlike
previous scheme, this one supports an analysis of imperfections present at every stage of
the preparation step of the protocol.

Bounds on Eve's accessible information under assumption of either individual IE (2.33)
or collective attacks χE (2.32), can be evaluated based on elements of full post-channel
covariance matrix γ′′ABCE. Resulting key rate corresponds to the one obtained using
conventional entanglement-based CV QKD scheme (provided aforementioned condition is
respected: Vs = 1/V , Vm = V − 1/V , where V is the variance of EPR source in the latter
scheme).

In summary the scheme allows to separate the squeezing of the initial signal state
and the modulation, just as in P&M scheme, but maintaining the completeness of the
analysis of the entanglement-based scheme. This is useful when various additional param-
eters of the protocol can impose limitations on state variance in the signal quadrature.
Consequently this scheme allows to investigate the optimization strategies upon presence
of imperfections, e.g. side channels, limited post-processing e�ciencies, phase-dependent
noise, transmittance �uctuations, etc.

2.3.2 Four-mode scheme

Another scheme, which is useful for detailed analysis of Gaussian CV QKD protocols,
�rst introduced in [1] to analyze side channels present on preparation side prior to signal
displacement (see also Ch. 3.1.5). It utilizes two single-mode squeezers and an EPR source
on trusted preparation side, as depicted in Fig.(2.12). Here, Alice operates an EPR source
W that radiates into modes C and D, source S that produces signal state in the mode B
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with variance Vs, and the source S0 that produces strongly squeezed state in the mode A
(variance denoted by VS0). States in the modes produced by EPR source have variance
W = VM/(1−T ) and are respectively coupled to modes from other two sources on strongly
unbalanced beamsplitters T , where VM > 1 is the variance of Gaussian modulation. The
signal �rst interacts on T with mode D, and is further sent to the untrusted channel
where it su�ers from losses η and noise ε. Mode A carrying in�nitely squeezed state (to
simulate the modulation on trusted side) interacts with the mode C on another strongly
unbalanced beamsplitter characterized by the same value of transmittance T .

After the preparation, the overall 4-mode state on the preparation side can be de-
scribed by the following covariance matrix:

γABCD =


γA ςAB ςAC ςAD
ςAB γB ςBC ςBD
ςAC ςBC γC ςCD
ςAD ςBD γCD γD

 . (2.49)

The respective submatrices are given as follows:

γA =

(
TVS0 + Vm 0

0 T
VS0

+ Vm

)
(2.50)

γB =

 (TVs + Vm − 1)η + 1 + ε 0

0
(
T
Vs

+ Vm − 1
)
η + 1 + ε

 (2.51)

γC =

 VS0 − TVS0 + TVm
1−T 0

0
(T−1)2+TVS0

Vm

VS0
−TVS0

 (2.52)

γD =

(
Vs − TVs + TVm

1−T 0

0 (T−1)2+TVmVs
Vs−TVs

)
, (2.53)

and correlations14 between respective states are:
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ςAC =

 T [Vm−(1−T )VS0
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(1−T )T
0

0
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 , (2.55)

ςAD =

 √
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√
V 2
m

(1−T )2
− 1 0

0 −
√

(1− T )T
√

V 2
m

(1−T )2
− 1

 , (2.56)

14All correlations are real since the modulation variance is VM > 1.
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In the limit T → 1 (and VS0 → 0) this setup corresponds to a conventional P&M scheme,
where the signal state has initially variance Vs, and after amplitude and/or phase Gaussian
modulation Vs + Vm, hence the mutual information between Alice and Bob is identical to
Eq. (2.48). After evaluating the bounds on Eve's accessible information during individual
IE or collective attacks χE (2.35), one can also readily verify that the secure key rates
(2.36, 2.37) obtained using four-mode puri�cation scheme correspond to the rates of the
conventional entanglement-based scheme (as long as Vs = 1/V , Vm = V − 1/V , where V
is the variance of EPR source in the latter scheme), provided modes C and D are under
full control of the trusted parties.

This modi�ed scheme, comparing to the three-mode scheme, while being more com-
plex, yields identical results, and provides more �exibility in analysis of possible infor-
mation leakage and/or attacks on the sender side of the protocol, e.g. presence of side
channels between generation and modulation steps of the protocol.
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3 | Issues of practical implementation

In practice, the security of all quantum key distribution protocols relies on numerous
assumptions. Even disregarding errors due to human factor and denial of service attacks,
there are numerous ways for an adversary to compromise the security of a practical QKD
system. Real-world implementations are therefore exposed to risk of �aws of design and/or
equipment. A thorough analysis of all aspects of protocols operation can nevertheless
reveal the security threats and is required to validate the assumptions, and consequently
to guarantee key security based on the laws of physics.

In the following chapter we will shortly examine each step of the protocol, start-
ing from the preparation of quantum states, transmission though a quantum channel,
detection, and lastly classical post processing. On each step we will highlight possible
implementation issues and their respective impact on the security.

3.1 State preparation

In this section, the starting point of any QKD protocol, that is the generation of courier
states, is discussed. CV QKD protocols operates with multiphoton Gaussian states: co-
herent or squeezed. The former can be reliably and e�ciently generated, however some
implementations may involve preparation noise. The generation process of the latter has
faced a tremendous progress since the very �rst generation of the squeezed state [147],
however still has limited range of accessible squeezing values and su�ers from impurities
and preparation noise. Sensitivity required by gravitational-wave detectors [148] stimu-
lated the rapid development of squeezed light generation, with currently maximal achieved
squeezing being -15 dB [149], and, separately the purest strongly squeezed states exhibit
89% purity (with -10 dB and +11 dB of squeezing and anti-squeezing respectively) [149].

The quality (preparation noise and squeezing level) of the carrier state can have various
rami�cations for the security of CV QKD protocols depending on reconciliation, untrusted
channel properties, type of attack, and even encoding alphabet size 15. For optimization,
and realistic predictions of CV QKD protocols performance it is vital to recognize feasible
squeezing rates, thus notable experimental generations of squeezed-states are listed, as
well. Further we describe the modulation stage and discuss the related loopholes, such
as encoding of information onto additional degrees of freedom or modulation in excessive

15Assuming the aim is to recreate the entanglement-based scheme where squeezing is interlinked with
displacement variance, as described in Ch.2.1.2.
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Figure 3.1: Preparation side of the CV QKD P&M protocol. The loopholes that can
provide additional additional information to an attacker can be present on each stage of
the quantum state preparation. At the very start the source may generate initially noisy
quantum states, while during the modulation step additional noise may also be present, or
the modulation can be partially or fully applied to excessive modes, causing an information
leakage and potentially leading to zero-error security break. Additionally side channels
may be present before and/or after the modulation step of the state preparation, leaking
the information about prepared state or the encoded key to an eavesdropper (indicated
by arrows pointing from the signal arrow), or add more noise to the signal(indicated by
arrows pointing to the signal arrow).

modes. Origins of main issues during preparation step are illustrated in Fig.3.2.

3.1.1 Source

Here we focus on the generation of quantum states required for execution of the CV QKD
protocols. Both coherent and squeezed (single- and two-mode) states are essential tools
and are extensively used in any Gaussian CV QKD protocol, mostly as courier states
(2.5), for constructing TMSV states, but are also involved in various optimization and
modulation techniques.

Lasers

The generation of shot-noise limited coherent states is considered to be a benchmark in
the industry. However some implementations, such as QKD system integrated into a chip,
may relax requirements on the noise of the initial state, due to e.g. manufacturing cost
limitations.

An example of noise occurring in radiated coherent states is the relative intensity
noise (RIN). This noise is caused by the laser power �uctuations, which depend on the
properties of the laser, back re�ection, cavity vibrations, �uctuations of laser gain medium,
etc. Dominant contribution is the interference between the signal mode and spontaneous
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light emission [150]. By de�nition RIN is the ratio of the variance to the average laser
intensity [151]. One of the approaches to measuring RIN is to time sample the output
current of a photo-detector and transform this data set into frequency with a fast Fourier
transform [152]. Such noise is typically independent of laser power and can a�ect the
performance of CV QKD scheme. More speci�cally, in terms of quadrature of the Gaussian
states it contributes to the noise (within bandwidth of 1Hz ) as [153]:

εRIN = 2〈n〉
√
RIN, (3.1)

where the mean number of photons 〈n〉 = VM/2 is determined by the variance of the signal
modulation VM . However, typically such noise is small (e.g. RIN = 8×10−11 Hz−1 [153]),
and therefore does not signi�cantly in�uence the security of CV QKD protocols.

Nevertheless, instead of considering individual contributions to noise, for the purpose
of security analysis it is su�cient to generalize and estimate constrains on the overall
preparation noise εprep characteristic to the source (see further details in Sec. 3.1.4).
This may, however, lead to more constrained security bound estimates. The security of
coherent-state CV QKD protocols in presence of trusted noise was considered in [102,117,
154], and the noise has been shown to be having di�erent e�ect depending on the choice
of reconciliation, and in some scenarios even helpful up to some extent. Noisy coherent
(thermal) states are also relevant in the microwave regime where generation of pure signal
states at room temperature is unattainable, due to non negligible background noise that
is inevitably present at longer wavelengths [105,155].

Squeezers

Physically the generation of the squeezed states relies on pumping of medium possessing
nonlinearity of second (or third) order. The very �rst squeezed states were generated
using a medium with third order nonlinearity via four-wave mixing process [147]. Since
then experimental endeavors kept a remarkable pace of developing new techniques for
the squeezed-state generation, and improving the existing ones. Currently, the most
prominent technique is the optical parametric oscillator (OPO), while other notable ones
include optical parametric ampli�er (OPA) and spontaneous parametric down-conversion
[156].

The main method used for state generation in CV QKD is parametric down convertion
[157]. The process employs a strong pump beam to create a non-linear polarization via
the second-order polarizability and induce an ampli�cation in the medium at a signal, as
well as at idler wavelengths [158]. Conservation of energy requires the sum of frequencies
of the signal and idler to be equal to the pump. Furthermore, conservation of momentum
(also referred to as phase mismatch) is needed to ensure signi�cant energy transfer (for
detailed theoretical description of parametric down convertion see [156,159]).

The squeezing that can be achieved after single pass of the pump laser beam through
nonlinear crystal is small, mainly due to low e�ective nonlinear susceptibility χ(2). One
solution (OPA) is to use ultrashort laser pulses with high power to increase the pump
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amplitude. The very �rst OPA system had generated squeezed states with - 0.6 dB

below shot-noise limit [160]. Later the result was surpassed, with - 2 dB [161] and - 5.8
dB [162] squeezed states. The latter result still holds the record as the highest one among
single-pass pulsed OPA systems.

Another solution is to place the nonlinear crystal inside a cavity, and proves to be more
e�cient. The cavity can be tuned to resonate the pump and/or signal beam, which allows
to enhance the pump power, and/or increase the interaction time (e�ectively improving
the nonlinearity of the medium), respectively. The very �rst experimental implementation
of an OPO had generated single mode squeezed vacuum state with - 3.5 dB of squeezing
[163]. Squeezing level was later improved to - 3.8 dB [164], and up to -7 dB [165, 166].
Gradually achievable squeezing levels were increasing, up to -12.7 dB (and +19.9 dB in
conjugated quadrature) [167], with the most recent record being -15 dB (and +21dB in
conjugated quadrature) [149], both in a continuous-wave source.

An ideal parametric down convertion system can in theory generate in�nitely squeezed
states, however real systems are always limited by phase noise, and losses that occur at
the mirrors and various optical elements inside the cavity. Phase noise can be reduced by
means of pump beam �ltering [168] and improvement of feedback systems [169]. Intra-
cavity losses are suppressed by using antire�ecting-coated crystal, and low-loss coatings
on mirrors [167]. Aside from squeezing an important �gure of merit is the noise in an
anti-squeezed quadrature, which can also in�uence the performance of the protocol (see
Ch. 3.1.4). A complete characterization of the state is required for correct estimation of
channel parameters. Furthermore thorough source description, and correct attribution of
losses and noise, allows to avoid underestimation of information accessible to the eaves-
dropper. For rigorous description of generation of squeezed states see [170�172] or recent
reviews [173,174].

3.1.2 Modulation

The goal of the modulation step is to encode key bits onto the carrier states. During
this step of the protocol, in P&M scenario, Alice draws random normal variables from
independent (close approximation) Gaussian distributions N (0, V x

m) and N (0, V p
m) for re-

spective quadrature, and displaces a signal state in one or two quadratures (depending
on the protocol) the quantum state according to the drawn variables. In EPR-based sce-
nario instead of direct encoding Alice performs homodyne or heterodyne measurement
(depending on the protocol) on one of the modes of two-mode squeezed state, therefore
conditionally preparing the signal states.

Direct preparation of the state can be performed using acousto- and electro-optical
modulators (AOM and EOM, respectively) [175]. The former allows to modify the re-
fractive index of the medium by creating a mechanical strain caused by acoustic wave,
the e�ect referred to as photoelasticity. EOM, on the other hand, utilizes the linear de-
pendency of refractive index on applied electric �eld in nonlinear mediums, also known
as Pockels e�ect. The e�ect allows to vary the voltage across the medium and modify
the phase of the transmitted light. The strength of the e�ect can be di�erent for or-
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thogonal polarization components, thus upon proper alignment of the birefringent crystal
and polarizers, polarization, amplitude and phase of the output light can be modi�ed.
Phase modulators are also used in the arms of (conventional or nested) Mach-Zehnder
interferometer which can give the trusted preparation party control over both amplitude
and phase of the state at the output.

Due to discreteness of voltage used for modulation of the signal, as well as �nite range
of accessible intensities, quadrature distributions in realistic implementation will deviate
from ideal Gaussian distribution from which random variable was drawn. However, pro-
vided discretization step is small enough comparing to the shot noise value, trace distance
between intended state and the actual modulated state will be negligible [122] 16. In prac-
tice, the security is assessed on the gaussi�ed data, and such assumption is valid since the
key rate is minimized for the Gaussian states with given statistical moments (covariance
matrix) [81]. Nonetheless, there are other numerous implementation issues connected
with the modulation stage of the protocol. First of all, the signal is subjected to losses
due to re�ection, absorption and scattering within the crystal. Secondly, parameters of
the medium are sensitive to the temperature, and to avoid phase noise one may need to
account for heating, caused by the energy of the driving �eld, by re-aligning the crystal.
Driving �eld voltage �uctuations are also an issue since they directly translate into modu-
lation noise [153]. Phase mismatch, and ripples in modulation can as well deteriorate the
expected performance of the modulator and have to be characterized by Alice. Feedback
systems can be used to control the modulation process and to maintain proper hardware
performance [61].

Realistic modulation can also be subjected to phase noise, which can lead to an increase
of the overall variance of the signal state. This noise represents the �nite certainty of
Alice of the output state and it can be modeled as noisy (homodyne for squeezed-state
protocol, and heterodyne for coherent-state protocol) detection on Alice's side in EPR-
based representation of a CV QKD protocol. Such phase noise decreases the correlations
between trusted parties and therefore can deteriorate the mutual information between
them. Furthermore, such noise in classical data can lead to an incorrect channel estimation
[122]. In a more conservative scenario even small values of phase noise is attributed to the
eavesdropper (along with other imperfections) can signi�cantly reduce achievable secure
distance [122,177].

3.1.3 Multimode structure

The QKD security analysis is usually performed presuming single-mode approximation,
however both sources and modulators have in general multimode structure. Non-signal
modes (be it in spectral, or spatial domain, or in any other degree of freedom) can carry
the information regarding the signal, it's modulation basis, etc. , hence can be exploited
by an eavesdropper. In DV QKD protocols, for example, the multimode generation can
a�ect the distinguishability of signal and decoy states [178] and thus has to be properly
accounted for.

16Howbeit, incorporation of this e�ect remains an open problem for composable security proof [122,176].
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With the advent of multimode quantum sources [179�181] eligible for use in CV QKD
protocols, and possible leakage of encoded information into non-signal modes during mod-
ulation stage (of single-mode CV QKD), it is especially necessary to analyze repercussions
of multi mode presence. Provided trusted parties are fully aware of the mode structure of
the source and perform measurement of each mode, cross-talk between modes still causes
deterioration of the entanglement of states in trusted modes and requires optimization of
the signal [123]. However if additional modes carry even partial information about the
transmitted key, and are directly accessible to Eve, this may result in zero-error security
break. Generally such leakage not only increases the sensitivity to losses and excess noise
in quantum channel, but also limits the range of applicable values of state modulation
VM and initial signal state variance VS. Rigorous analysis of preparation equipment and
subsequent optimization of encoding alphabet and squeezing are required to maintain pos-
itive key rate [2]. More detailed summary of security analysis of the CV squeezed-state
and coherent-state QKD protocols with multimode information leakage can be found in
Ch. 5, originally published in [2] (see also Ch. 8). This modulation noise is the main
reason to consider trusted preparation noise in the protocols, especially, if the modulation
has a large variance.

Information leakage due to multimode modulation can also be seen as a Trojan horse
attack, where Eve can actively send a quantum state into the preparation side and extract
additional information about the transmitted key (for the analysis of the attack on the
coherent-state protocol see [182]). In this scenario Eve is assumed to be fully controlling
the infused state and by sending the squeezed state Eve can improve the precision of the
readout of the encoded information. The attack does not in�uence the signal state and
consequently is undetectable unless Alice monitors all modes that are entering and exiting
the trusted preparation side.

3.1.4 Preparation noise

Generalizing and joining together all possible sources of imperfections on the trusted
preparation side allows one to simplify the security analysis. The noise occurring on
Alice's side can be treated as either mere consequence of trusted equipment imperfections,
or attributed directly as the in�uence of an adversary, thereby imposing stricter limitations
on security conditions. The latter corresponds to adoption of an exceedingly conservative
approach attributing all noise as the deliberate intrusion, however this can be very limiting
for a protocol implementation as well as underestimate the security of the protocol. It is
therefore more practical to estimate precisely which parts can be trusted than to be very
conservative and pessimistic.

The P&M and entanglement-based models are shown in Fig. 3.2. The source EPR :

VA allows to purify the preparation noise, and depending on assignment of the modes
analyze trusted or untrusted preparation noise. Furthermore the noise can be split into
two more categories: phase-sensitive, and phase-insensitive. The former incorporates the
noise that is relevant only for a single quadrature, while the latter is symmetrical on
phase-space and contributes to both quadratures equally.
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Figure 3.2: Preparation noise (which can be present on all the stages of modulated state
preparation) in case of P&M (top) and equivalent EPR-based (bottom) schemes. With
VA = εprep/(1 − T ), and coupling of the respective mode with the signal mode on the
unbalanced BS: T → 1, the equivalence of EPR-based scheme and the P&M scheme can
be established. The preparation noise is trusted (I) if it is puri�ed by Alice, i.e. she
controls both modes of EPR: VA source (bottom left), or is untrusted (II) if Eve holds the
puri�cation (bottom right).

Phase-insensitive noise

The preparation noise εprep does not a�ect the data that Alice encodes, nor the correlations
between Alice and Bob, but rather the state sent to Bob, which is now described, in the
context of a P&M scheme shown in Fig.3.2 (top), by the following covariance matrix:

γB =

(
VS + VM + εprep 0

0 1
VS

+ VM + εprep

)
. (3.2)

Employing the puri�cation-based scheme, as in Fig.3.2 (bottom) yields the following
description of the preparation noise source:

γCD =

(
VA1

√
V 2
A − 1σz√

V 2
A − 1σz [VA + (1− T )V ]1

)
, (3.3)

so that overall trusted state is now described by a 4-mode covariance matrix γABCD.
Adjusting the variance of VA source achieves the equivalence with P& M scheme

VA =
εprep

1− T . (3.4)

After taking into account the main channel e�ect, γABCD can be further used to calculate
both the mutual information IAB (2.48) and the Holevo bound (2.35) and estimate the se-
cure rate of the CV QKD protocol in presence of the preparation noise. If the preparation
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noise is considered trusted, then the theoretical puri�cation of the noise is given to the
trusted parties, or even to a untrusted third party - Eve [183, 184] (which anyway leads
to the same results). If both modes of the entangled source EPR : VA are controlled by
the eavesdropper (as in Fig.3.2 bottom, right), such noise is equivalent to the additional
untrusted channel noise (scaled by losses).

In the limit of in�nite encoding alphabet VM � 1, and perfect post-processing e�-
ciency β = 1, and purely lossy channel ε = 0 secure key rate of CV QKD protocol with
RR under collective attacks converges to [104]:

RRR|VM�1 =
1

2

{
log2

[
1

1− η

]
− log2

[
η(VS + εprep) + 1− η

]}
. (3.5)

Evidently the security of the RR CV QKD protocol is lost if 1/(1−η) = η(VS+εprep)+1−η,
and this leads to the following constrain on the phase-insensitive trusted preparation noise:

εprep <
2− η
1− η − VS. (3.6)

At long distances (or in the channel with strong losses), where η → 0, Eq.(3.6) shows
the upper bound on the tolerable preparation noise for the coherent-state protocol to be
εcohprep = 1, while protocol based on in�nitely squeezed states can tolerate up to εsqprep = 2.
Note that the key rate in Eq. 3.5 can be further optimized by increasing the squeezing
[103]. The evaluation of respective security bound can be performed using three-mode
puri�cation scheme, as described in Ch.2.3.1.

Surely the tolerance towards preparation noise is increased when operated in channels
with higher transmittance, however presence of excess noise ε and realistic processing
e�ciency β < 1 signi�cantly decreases the tolerance.

Aside from equipment characterization and control [185], a viable strategy to partially
negate (or in case of boundless modulation, completely eliminate) the e�ect of such noise
is to perform noise �ltering. The latter can be done by introducing attenuation of the
signal prior to the quantum channel [102,117].

Contrary to the case of RR protocol, where preparation noise contributes to the infor-
mation gain of an eavesdropper, in case of DR CVQKD protocol [105,155], the preparation
noise can lead to the decrease of the Holevo bound. Provided the excess noise and channel
attenuation level are low, the preparation noise has harmful in�uence on the secure key
rate, however as the excess noise is increased, the preparation noise allows to "�ght the
noise with noise", i.e. improve the key rate of the protocol established over noisy channel
by introducing additional noise. The preparation noise does indeed e�ectively increase
the key rate, though only provided the excess noise is close to the maximally tolerable.
If environment is also noisy and attenuation is low, such noise can even lead to positive
secure key rate recovery. Furthermore, the preparation noise can improve the robustness
to detection noise [104]. To maximize the bene�t one should optimize infused preparation
noise.

The di�erence in the in�uence of the preparation noise on RR and DR protocols can be
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intuitively understood since addition of (unknown, but trusted) noise to the reference side
can be more harmful for Eve than for the trusted parties. Mutual information between
trusted parties is reduced, while simultaneously the Holevo bound is increased in case of
RR protocol, and respectively decreased in case of DR protocol. This holds true in the
channels with transmittance �uctuations (Ch.2.1.3) as well.

Phase-sensitive noise

The state described by Eq.(3.3) is symmetrical in a sense of equal variance in both quadra-
tures, which means both quadratures of the signal state are facing the same preparation
noise. This is a valid assumption for modelling, but may not hold true in general espe-
cially if phase noise is present in the system. The squeezed state are well known to be
generated as mixed states, and while for majority of applications only the quadrature with
sub-shot-noise level is relevant, it is important to question the e�ect of increased variance
in conjugated quadrature on the security of the protocol. Furthermore, the modulation
can impose di�erent levels of preparation noise on both quadratures, which makes phase
sensitive noise relevant in the coherent-state protocol as well.

To model such noise one can substitute an EPR source (3.3) with two single-mode
squeezed states mixed on a balanced BS. Altering the squeezing in each initial mode
allows to shape the state γCD that with proper adjustment allows to control the amount
of preparation noise in each quadrature, resulting in the state received by Bob to be:

γB =

(
V + εxprep − 1 0

0 V + εpprep − 1

)
, (3.7)

The noise in non-signal quadrature surely does not a�ect the mutual information between
trusted parties IAB, however it can, actually, increase or decrease the Holevo bound χE
regardless of the protocol employed.

As one would expect, if such noise is regarded as untrusted then it, similarly to phase-
insensitive noise, can be treated as excess noise at the input of an untrusted channel, and
it e�ectively increases the information accessible to an eavesdropper. On the other hand,
provided the noise is trusted, it can improve the performance of majority of CV QKD
protocols.

The squeezed-state protocol (which is modulated in a signal quadrature only) can
always bene�t from presence of preparation noise in non-signal quadrature regardless of
the reconciliation choice. While such noise does not alter the robustness to channel noise,
it can improve the key rate leading to minor improvement of the secure distance (at the
order of hundreds of meters in standard telecom �ber upon RR). Preparation noise, if
present only in the signal quadrature, is helpful once DR is performed, and decreases the
key rate for RR, similarly to the aforementioned phase-insensitive trusted noise.

For the coherent-state protocol the e�ect of preparation noise foremost depends on
the measurement on the receiver. For homodyne-based protocol the noise has a two-sided
e�ect. In non-signal quadrature of the carrier state it is helpful, however the choice of more
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noisy quadrature is less bene�cial for trusted parties. For heterodyne-based protocol such
asymmetrical noise will always impact the security. During DR, the noise can improve
the performance of the protocol, although requires optimization over the parameters of
the channel. In the RR scenario any amount of noise regardless of the quadrature will
deteriorate the performance of the protocol.

3.1.5 Side channels

Generally a side channel in QKD can be de�ned as an auxiliary adversary channel with
either input or output controlled by a trusted party but, respectively, output or input by
an eavesdropper (see Fig. 3.3). Such de�nition allows to distinguish side channels (and
their in�uence) from the main untrusted channel, where quantum ancillas are prepared
by Eve, and simultaneously, after the interaction with the signal they are stored in her
quantum memory, i.e. Eve controls both input and output of her channel mode. The
side channels are the generalization of the various e�ects that can occur in classical or
quantum domain providing an eavesdropper with additional information advantage by
means of either disruption of the trusted party or bene�ting from information leakage. In
other words, we model side channels as Eve attacking the optical mode, yet her additional
information advantage can emerge from non-optical parts of the experiment (e.g. electric
current). From Eve's point of view side channels give way for either noninvasive (passive)
attacks, where Eve can only receive the information i.e. control only the output of the
side channel, or Eve can resort to interfering with the operation of trusted equipment
(active attack), i.e. control the input of the side channel. If more side channels are
present Eve can control input/output of them separately. We refer to the side channels
on the preparation side as to type-A side channels. On Alice's side there can be two
points of side-channel intrusion: pre-, and post-modulation.

Pre-modulation channel

The main consequence of the pre-modulation side channel presence is the corruption of
the initial cryptographic resource - signal state. Such side channel can be modeled as
an interaction of the signal with mode E1 on BS ηE1 , as in Fig.3.3 (left). The variance
of the state received by Bob will change to VB = [ηE1(VS − 1) + VM ]η + 1 + ε. The
coherent-state protocol is una�ected by such leakage, while the squeezed-state protocol
e�ectively looses squeezing Vs → 1, and also its purity, as the coupling of the side channel
to signal increases ηE1 → 1, and the state eventually is reduced to the coherent state.
Nevertheless, the performance of the squeezed-state protocol remains superior to the
coherent-state protocol.

In a scenario when Eve tries to infuse the noise onto the preparation side using pre-
modulation side channel (with state variance at the input VE1) both the coherent- and
squeezed-state protocol will face the repercussions, as the signal carrier state becomes
more noisy VB = [ηE1VS +(1−ηE1)VE1 +VM−1]η+1+ ε. The presence of pre-modulation
type-A side channel can be viewed as preparation noise 3.1.4, however an important
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Figure 3.3: Models of side channels on preparation side (type-A) of the P&M CV QKD
protocol. Eve can employ a side channel in either a passive manner (top row), which
allows her to gain bene�t from the information leakage, or actively (bottom row), where
Eve sends a state into the trusted preparation station. Additionally, the side channel can
be present directly after the source - pre-modulation (left column), or already after the
modulation - post-modulation (right column).

distinction is that the side channel is also correlated to the signal. The latter implies an
increase in the entropy of Eve's state and consequently of the Holevo bound.

Overall pre-modulation side channel does decrease the key rate (secure distance) and
robustness to the excess noise in untrusted channel ε for the squeezed-state protocol. Yet
it does not lead to a security break (assuming trusted parties con�rm the variance of the
signal is within the reasonable range i.e. no additional noise is infused), as one would
expect, since no actual information has been encoded into the states yet. The worst case
scenario for trusted parties is substitution of the initial carrier state by the coherent state
(VS = 1), hence the performance of the squeezed-state protocol is reduced to one of the
coherent-state protocol with homodyne detection.

Post-modulation channel

The side channel, present after the modulation, has completely di�erent e�ect on the
security of a CV QKD protocol than the channel before the modulation, as Eve can
already obtain additional information regarding the encoded key. While active use of such
side channel (Fig.3.3 bottom right) is equivalent to the additional noise in the untrusted
channel [186], leakage from a passive side channel ((Fig.3.3 top right)) can increase the
overall noise imposed on the signal and provide the adversary with additional insights
regarding prepared state. Both interactions limit the robustness against losses and noise,
hence limiting the security of the protocol.

Assuming the equipment cannot be shielded from post-modulation side channel, and
information leakage cannot be entirely eliminated, Alice can infuse the input of the side
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channel with properly engineered state to partially or even completely negate the e�ect of
its presence. To achieve the latter, correlated (to the signal) modulation of a single-mode
squeezed state is required. By optimizing the modulation, side channel can be fully de-
coupled from the signal and any negative repercussions completely eliminated. Therefore,
as long as Alice is aware of the type-A side channel and can properly characterize it, she
can completely counteract its in�uence.

We address side channels on receiver side (type-B) in Sec.4.2.2, and outline the mod-
eling and the e�ects of all side channels, along with compensation methods in Ch. 4.
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3.2 Untrusted channel

In the following section we discuss challenges related to transmission of the signal (and
phase reference beam unless the "local" local oscillator scheme is implemented) through
an untrusted quantum channel.

A common issue of coherent detection schemes, which is highly relevant for CV QKD
as well, is phase noise [187]. While the phase di�erence between the quantum signal and
LO initially depends only on the encoded information, the di�erence value will inevitably
drift during data accumulation process [62, 188]. To compensate the drift, the trusted
parties need to estimate its value based on a number of reference signals. However, due to
limited precision of the estimation and subsequent compensation, the residual phase noise
will accumulate in the system and will contribute to the excess noise [65]. Phase noise
was shown to be limiting maximal secure distance [177], and for highly lossy channels (i.e.
for long distances) the requirements on precision of compensation are stronger, calling for
high-precision compensation schemes [44,65].

Another major challenge of long-distance CV QKD is the need to maintain strong LO
after the channel with high amount of loss, given that increase of LO powers leads to
an increase of LO leakage into the weak quantum signal, and consequently to increase
of the excess noise [188]. The leakage can be suppressed by �ltering using combination
of polarization and frequency multiplexing [62], by employing highly sensitive homodyne
detector with lower requirement of LO power [44], or by avoiding sending LO altogether,
and generating LO at the receiver station [114,189,190].

3.2.1 Fiber channel

Aside from equipment, a signi�cant share of the cost of establishing a QKD-secured
communication is allotted to an untrusted channel. Foremost approach is to deploy a
dedicated optical �ber link. Deploying a standard telecom �ber one can expect an average
attenuation of 0.2 dB/km at 1550 nm (2.22). However, one can also employ ultra low loss
Pure Silica Core �bers [191] which exhibit - 0.15 dB/km. Deployment of the link allows to
ensure the minimization of excess noise in given environmental conditions. Nevertheless,
such approach is expensive and time consuming.

An alternative is to use an already deployed (commercial) communication network.
There are two options available to users: to rent a dark �ber (an unused �ber link), or
to co-propagate the QKD signal with classical signals. Regardless of the chosen option,
there's a number of concerns that has to be addressed. Firstly, software and hardware have
to be adjusted in order to operate within existing standards of telecomm equipment [192].
Secondly, expected transmittance in deployed commercial dark �bers is lower (than of the
optical �bers in the laboratories) due to inter-�ber coupling, splices, or sharp bends [193].
Furthermore, environmental perturbations can also contribute to loss and noise, as well
as induce �uctuations of �ber optical length [46]. Recently a continuous operation of the
coherent-state CV QKD protocol has been successfully established over two commercial
dark �ber links of 30 and 45 km (both ≈ 12 dB) in metropolitan areas for a duration of 24
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hours each, and achieved 5.91 and 5.77 kbps of secure key rate, respectively, in �nite-size
regime [193].

Co-propagation of a quantum signal and classical data transmission in the same �ber
can be achieved using wavelength-division multiplexing (WDM) [192,194]. Such architec-
ture involves several sources of noise a�ecting the quantum channel: photon leakage from
classical channels, four-wave mixing, spontaneous Raman scattering (SRS), and ampli�ed
spontaneous emission (ASE) caused by classical optical �ber ampli�ers [195]. The photon
leakage originates from limited isolation during demultiplexing, and it contributes to non-
signal modes in the quantum channel, and thus can be �ltered by LO [195]. Although, if
trusted parties conduct spatial mutiplexing of quantum signals and WDM classical signals,
a cross-talk at the same wavelengths can inhibit secure key generation, which, however,
can be circumvented by proper wavelength spacing between quantum and classical carri-
ers [124]. Noise contribution due to four-wave mixing was shown to be relevant at short
distances and at relatively high powers of the classical channel (>10mW ), however at
practical �ber lengths (>1 km) such noise diminishes [196]. Furthermore, polarization
multiplexing and increasing wavelength spacing can aid in further noise suppression [197].

Both SRS and ASE can directly contribute to the signal mode and act like thermal
excess noise [195]. Yet, the noise caused by SRS was proven to be negligible even in
presence of 100 co-propagating classical channels [198]. On the other hand, ASE limits
the performance of CV QKD protocol, and can even lead to a security break [198]. Proper
band �ltering of the noise prior to multiplexing of quantum and classical channels allows
to minimize the in�uence of ASE and restore secure QKD within the shared optical �ber
network. [198].

3.2.2 Atmospheric channel

Unlike �ber, free-space links may avoid the necessity of using existing infrastructure, as
they require only a line of sight between two trusted stations, and thus are portable,
and can be quickly established in metropolitan area or di�cult terrain. Such �exibility
opens the way for mobile QKD networks that can especially be useful in airport tra�c
control, ship-to-ship communication, or between autonomous vehicles. Most importantly,
free-space links can exhibit considerably lower amount of losses over the long links, since
attenuation on higher altitudes can be substantially lower (e.g. at 2.4 km above sea level it
can reduce to 0.07 dB/km [199], while outside Earth's atmosphere can become completely
negligible) than in standard �ber channels. However, modeling the beam propagation
through the atmosphere is more involved, as it depends on weather conditions, altitude,
location, and length of the link. The modeling is especially important for CV QKD
protocols, where both losses and noise must be carefully estimated.

Characterizing free-space QKD channel is a nontrivial task as an atmospheric tur-
bulence causes beam wandering [200], beam distortion [201], and scintillation [202], all
of which lead to spatial and temporal variations of the transmittance in the channel.
Luckily, for the evaluation of security, rather than exhaustively describing the transmit-
tance probability distribution τ(η), it is su�cient to properly estimate only the mean
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value of transmittance 〈η〉, and mean value of square root of transmittance 〈√η〉 [126]
(see Sec. 2.1.3). Nevertheless, it is crucial to predict the expected transmittance based
on the weather conditions and location of the link. We summarize three often used
models for turbulent channel characterization: log-normal, beam-wondering and ellipti-
cal [6,203,204]. The choice of the model foremost depends on the nature of channel, and
may require adjustment for speci�c weather conditions. Furthermore, some channels may
involve additional considerations, e.g. gravity e�ects for satellite-based channels [205], or
sea surface de�ection and refraction for composite satellite-to-submarine channel [206].

Log-Normal distribution

There are many approaches for description of free-space channels (e.g. negative-exponential
[207], or gamma-gamma distributions [208]), and the log-normal distribution [209]. The
latter is often used to characterize beam propagation through long, horizontal atmo-
spheric channels [203]. Validity of the distribution �t was experimentally veri�ed on
weak coherent states propagation in free-space 143 km long optical link between Canary
islands [199, 210, 211]. The log-normal probability distribution of transmittance in an
atmospheric channel can be written as [202,212]:

PLN(η) =
1

η
√

2πσ2
exp

−(ln
[
〈η〉2/

√
〈η2〉

]
− ln η)2

2σ2

 , (3.8)

where

σ2 = ln

[
〈η2〉
〈η〉2

]
. (3.9)

Both Eqs. (3.8,3.9) depend on �rst and second moments of transmittance η, which are
given by:

〈η〉 =

∫
A
d2rΓ2(r), (3.10)

〈η2〉 =

∫
A
d2r1d

2r2 Γ4(r1, r2), (3.11)

where integration is carried out in the aperture area A, r = (x y)T (while z coordinate
is given by the distance between input and output apertures) and Γ2 and Γ4 are the
�eld correlation functions. Functions Γ2 and Γ4 can be numerically evaluated using a set
of following parameters: wave number k, beam-spot radius W0, propagation distance L,
wavefront radius at the aperture, and structure constant of the refractive index of the air
C2
n.

As mentioned previously, in order to reconstruct the covariance matrix (2.24) knowl-
edge of 〈η〉 and 〈√η〉 is required. The former can be obtained directly from Eq.(3.10),
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while the latter using PLN(η) (3.8)

〈√η〉 =

∫ 1

0

dη
√
ηPLN(η). (3.12)

Despite its popularity, the log-normal distribution may predict transmittance in weakly
turbulent channels with non-negligible discrepancy from the experimental data [6]. Fur-
thermore, PLN(η) has low-probability "tails", which do not con�ne η ∈ [0, 1] within
physical values, hence some of the channel properties can be incorrectly estimated even
in conditions of strong turbulence [6]. Overestimation of transmittance values is the main
reason why log-normal has not been used in the works described in Chapters 6 and 7.

Beam-wandering model

One of the major contributions to signal losses in free-space channel is beam wandering,
which is induced by turbulence and/or source adjustment instability [200]. Beam wan-
dering is characteristic for short links with weak absorption. In such channels, signal loss
occurs mainly as a consequence of beam-spot truncation at the receiving aperture. The
repercussions of such e�ect and it's in�uence on the channel transmittance, as well as
quantum properties of light, have been studied [204] and have been formulated as the
beam-wandering model. Transmission e�ciency (being a square of transmission coe�-
cient T 2 = η) of the (normalized in XY ) Gaussian beam, emitted at aperture with area
A, and propagating along z, generally can be written as [204]:

T (k)2 =

∫
A
dxdy |U(x, y, z, k)|2, (3.13)

where k is the wave number. Assuming dominance of the carrier wave number η ≈ η(k0),
Eq.(3.13) can be simpli�ed to incomplete Weber integral and even further to the following
analytical expression [213]:

T 2 = T 2
0 exp

[
−
(
r0

R

)λ]
, (3.14)

determined using distance from the beam-spot center to aperture center r0, as well as
maximal transmittance (within the beam-spot) η0. The latter is given as:

T 2
0 = 1− exp

[
−2ζ2

]
, (3.15)

where ζ = a/W is the ratio between receiving aperture and beam-spot radii. Now,
respectively, shape and scale parameters are given by:

λ = 8ζ2 exp
[
−4ζ2

]
I1(4ζ2)

1− exp [−4ζ2] I0(4ζ2)

(
ln

[
2η0

1− exp [−aζ2] I0(aζ2)

])−1

, (3.16)
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R = a

(
ln

[
2η0

1− exp[−4ζ2]I0(4ζ2)

])−1/λ

, (3.17)

where In(x) is the modi�ed Bessel function of the respective order [214].

The probability distribution of the transmittance is determined by a beam-spot, cen-
tered around the point on distance d from the aperture center, which is normally dis-
tributed with variance σ217, and is given by log-negative generalized Rice distribution.
The generalized Rice distribution can be written as follows:

P(T )Rice =
2R2

σ2λT

(
2 ln

T0

T

)(2/λ)−1

I0

(
Rd

σ2

[
2 ln

T0

T

](1/λ)
)

× exp

− 1

2σ2

{
R2

(
2 ln

T0

T

)(2/λ)

+ d2

} (3.18)

If the beam is properly aligned and beam-spot variance is centered around the center of
the aperture d = 0, distribution (3.18) simpli�es to log-negative Weibull distribution [215].

P(T )Weibull =
2R2

σ2λT

(
2 ln

T0

T

)(2/λ)−1

× exp

[
− 1

2σ2
R2

(
2 ln

T0

T

)(2/λ)
]

(3.19)

Both transmittance moments required for the security analysis 〈η〉 = 〈T 2〉 and 〈√η〉 = 〈T 〉
can be obtained from Eqs.(3.18,3.19) in a similar way as in Eq.(3.12).

The beam wandering model has been successfully applied to assess the attenuation
in short atmospheric channels with weak turbulence [108, 216, 217] and to study beam-
broadening technique for transmittance stabilization, described in Ch. 6. Furthermore,
the model was used to estimate feasibility of CV QKD protocols in signi�cantly longer
(vertical) links where beam broadening is main factor determining the overall transmit-
tance of the link. Such long links include satellite-to-ground [218�220] and satellite-to-
submarine [206].

Elliptic-beam model

Beam-wondering model is applicable only for the links with dominant beam wandering,
however in general turbulence can cause beam broadening and deformation, as well as
beam wandering. Elliptical-beam model has been developed [6] to account for these
e�ects, and it can successfully be applied for channels with weak, or strong turbulence.

The model takes into account a turbulence induced deformation of the beam-spot
shape from circular to elliptical, described by semi-axes W1,2, and angle φ ∈ [0, π/2)

between semi-axis W1 and x-axis. The distance vector between aperture and beam-spot

17Both atmospheric turbulence (characterized by Rytov parameter) and source-de�ection variance con-
tribute to σ2.
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ellipse centers is given by (T indicates the transpose)

r0 = (x0, y0)T = (r0 cosϕ, r0 sinϕ)T .

The transmittance in the channel can be approximated as [6]:

η = η0 exp

−( r0

aR
[
2/We�(φ− ϕ0)]

])λ[2/We�(φ−ϕ0)]
 , (3.20)
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Provided W1 = W2 Eq.(3.20) reduces to Eq.(3.14). Now, the We� in Eq.(3.20) is the
e�ective circular beam-spot, calculated using a, W1, W2, φ, ϕ:

We� = 2a

W
 4a2

W1W2

exp

(
a2

W 2
1

{1 + 2 cos2[φ− ϕ0]}+
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W 2
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−1/2

,

(3.22)
and λ, R are, similarly to Eqs.(3.16,3.17), shape and scale parameters, respectively:

λ(ξ) = 2a2ξ2 e−a
2ξ2I1(a2ξ2)

1− e−a2ξ2I0(a2ξ2)

ln

(
2

1− e−a2ξ2/2
1− e−a2ξ2I0(a2ξ2)

)−1

, (3.23)

R(ξ) =

[
2

1− e−a2ξ2/2
1− e−a2ξ2I0(a2ξ2)

]−1/λ(ξ)

. (3.24)

To acquire transmittance probability distribution one needs to know the distribution
of key components: deviation of the beam-spot from the aperture center r0, rotation
angle of the deformed beam-spot φ, and radii of the beam-spot semi-axes W1,2. The
latter can also be represented through the relation to W0 - the initial beam-spot radius,
as W 2

1,2 = W 2
0 exp Θ1,2. The angle φ and ϕ0 are assumed to be distributed uniformly,

r0 according to Rayleigh distribution, and Θ1,2 normally. The set of parameters form a
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vector v, that governs η(v) in Eq.(3.20) which in turn can be used to de�ne the probability
distribution:

Pelliptical(η) =
2

π

∫
R4

d4v

∫ π/2

0

dφ ρG(v, µ,Σ)δ
[
η − η(v)

]
, (3.25)

where ρG(v, µ,Σ) is the Gaussian probability density of the vector v, mean µ and covari-
ance matrix Σ.

In the conditions where beam distortions becomes small or negligible, i.e. beam-
spot remains circular, the elliptical-beam reduces to beam-wandering model. However,
generally the elliptical-beam approximation allows to achieve more accurate predictions
of the transmittance in channels with weak and weak-to-moderate turbulence than those
based on beam wandering or log-normal distributions [6]. Furthermore, the model can
also be e�ciently adapted to incorporate additional weather e�ects such as haze and
rain [7]. We use the model to study the role of squeezing on the security of CV QKD
protocol established in short, atmospheric, urban links in Ch.7.

Improvement methods

In certain settings, transmittance of the free-space channel can indeed be lower than that
of the �ber channel of equal length, however due to constant change of weather conditions
expected attenuation and turbulence induced e�ective noise may variate signi�cantly.
The duration of uninterrupted free-space QKD link operation as well as the secure key
rate, are highly dependent on the atmospheric conditions. To enhance and stabilize
the performance of the QKD protocol over the free-space channel one can employ the
following techniques: equipment improvement (e.g. to decrease beam divergence, or to
reduce losses by increasing the size of the receiving aperture) [221], adaptive optics [222],
beam tracking [223], optimization of the signal state and applied modulation, and post-
selection [108,186].

The improvement of the quantum signal propagation quality depends on beam track-
ing method and accuracy, however there is a limit of tracking technique precision 18.
Estimation of beam displacement deviation depends foremost on a probe state (whether
it is a mixture of coherent state, or spatially and/or temporally entangled state) and
its modal structure [225]. Optimal probe also requires appropriate receiver, and both,
in fact, have already been designed in Gaussian domain (multimode squeezed state and
homodyne-type measurement) [226].

Another approach to stabilize channel transmittance �uctuations suggests decreasing
the ratio between aperture and beam radii ζ = a/W . By expanding the beam one actually
decreases the mean transmittance, but at the same time maximizes the probability of
(partial and full) incidence, thus reducing transmittance �uctuations. The technique has
been tested in 1.6 km urban free-space link in Erlangen (Germany) [3]. It was shown

18CubeSat Quantum Communication Mission was limited to 3 µrad of pointing [224], while mechanical
adjustments of the telescope position, and piezo fast steering mirrors allow to enhance pointing precision
to 0.6 µrad [77]).
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to be advantageous, but requires beam optimization and adjustment according to given
conditions.

Instead of, or in conjunction with active techniques for in�uencing the channel prop-
erties (such as by beam tracking or beam expansion), one can also disregard the data
corresponding to lower values of transmittance [108, 186]. Such post-selection allows
to decrease �uctuations of channel attenuation (or in other words the fading variance
V ar(

√
η), as in Eq. 2.25), which consequently leads to quantitative improvement of the

secure key rate (see Sec. 2.1.3). For channels exhibiting strong turbulence, i.e. high
transmittance �uctuations, post-selection can even restore the security of the CV QKD
protocol. Post-selection has been shown to be e�ective for su�ciently large blocks of data,
even if composable security is taken into account [227,228].
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3.3 Detection

CV QKD relies on the coherent detection (homodyne or heterodyne) to measure modu-
lated quadratures of the incoming light �eld. The coherent detection enables to implement
protocols using o�-the-shelf optical communication components [43,61,64]. Furthermore,
LO employed in the detection process acts as an extremely selective and e�ective �l-
ter, allowing to establish CV QKD protocols over channels with signi�cant amount of
background noise (non-signal mode) photons, e.g. free space atmospheric channels, or
simultaneously with intense classical channel in telecom �ber networks [229,230]. Strong
LO also allows to suppress the in�uence of detector electronic noise [231, 232]. Aside
from imperfections (imbalance of the optical beam splitter, imperfect detector quantum
e�ciencies, etc.), there are numerous implementation issues connected with the receiving
trusted station such as side channels, or susceptibility to attacks via tampering with LO
that is transmitted simultaneously with the signal through untrusted channel [233]. Re-
ceiving side is also exposed to additional light from the untrusted channel, allowing for
potential attacks on detectors or side channel noise infusion [234]. In current section we
described repercussions of aforementioned weaknesses and mention possible counteracting
strategies.

3.3.1 Sources of noise

High e�ciency of the detectors used in homodyne detection is one of many incentives for
adopting CV QKD. Nevertheless, the detectors are still not perfect. Realistic detectors
can be modeled by means of linear-optic interaction, i.e. by addition of an attenuator
prior to the ideal detector, described by transmittance value ηHD [119]. Another optical
component crucial for implementation homodyne detection is a balanced optical BS, used
for coupling of the signal mode and LO. Slight deviation from 50:50 transmittance -
re�ectance ratio can lead to additional noise in the measured data [232]. Such deviations
cannot be compensated by attenuating classical ampli�ed photocurrents, since CV QKD
detection requires a time resolution of individual laser pulses, and avoidance of the low
frequency noise in�uence (hence a �at ampli�cation pro�le over the whole frequency range)
which imposes limitations on the design of the electro-optical scheme (i.e. subtraction
has to be performed prior to the ampli�cation) [235, 236]. Hence, both BS imbalance
and discrepancy between detector e�ciencies are balanced by introducing variable optical
attenuator into one of the arms of a homodyne detector [232,237].

Electronic noise

Electronic components and ampli�ers involved in homodyne detection exhibit thermal
noise that contributes to the measurement outcomes. Such noise with variance Nel is
independent both from the measured signal quadratures, and from the power of LO.
The proportionality of the electronic signal to the quadrature value �uctuates due to
the electronic noise and thus such noise contributes to the measured quadrature values.
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In order to eliminate electronic noise one calibrate the measurement setup, i.e. sample
a vacuum state (by sending only the LO to the homodyne detector) and acquire the
relation between experimental data and theoretically de�ned vacuum �uctuations level -
shot-noise unit [153]. Since the relation has to be known for the whole data set and Eve
can attack the calibration procedure, repeated calibration is needed to circumvent Eve's
attacks on calibration during key generation [233]. Subsequently the values of calibration
factor are used to correct the actual signal data [233].

Electronic noise (assuming it is trusted19) can be treated as additional trusted losses
or lower detection e�ciency: η′HD = ηHD/(1 +Nel) [238]. The equivalence stems from the
calibration, which rescales the measurement outcome to cancel out the electronic noise,
similarly to rescaling due to optical loss. After the calibration, the measured value can
be treated as obtained from the detector with e�ective e�ciency η′HD, and no electronic
noise Nel = 0 [238]. Typically electronic noise does not translate into a signi�cant loss of
the detector e�ciency, e.g. electronic noise level of 13 dB below shot noise (at LO with
8.5× 108 photons per pulse) is equivalent to η′HD = 95% (assuming ηHD = 1) [232].

Electrical pulse overlap

One can expect the generated key rate to be directly proportional to the operation rate,
however in practice �nite bandwidth of the electronics in homodyne detector can introduce
limitations [239]. Repetition rate of the source should be optimized according to detector
bandwidth, to minimize the overlap between consequent electrical pulses at the output of
the detector. As the repetition rate is relatively low so is the probability of contribution
of adjacent pulses to measured value. However maintaining low repetition rate naturally
imposes limitation on the achievable secret key rate. Yet, if the repetition rate would be
relatively high the noise caused by the overlap can be signi�cant. In terms of security
analysis, the overlap translates into additional variance-dependent excess noise εoverlap =

2V eB
2/R2

, governed by the ratio between the bandwidth B and the repetition rate R [232].
Optimal approach is to tune the repetition rate according to the bandwidth so that
the noise remains negligible, while the key rate is almost proportional to the repetition
rate [240].

3.3.2 Local Oscillator attacks

It is assumed that power �uctuations of the LO are being canceled out during subtrac-
tion, but due to discrepancy between photodiodes, or ampli�er parameters (e�ciencies,
response time, etc.) residual in�uence of the �uctuations may persist [241]20. Similarly to
the signal laser, the relative intensity noise is as well exhibited by the LO, and contributes
to excess noise proportionally to the quadrature variance of the measured signal [153]. In
practical implementations LO power �uctuations are assumed to be low and hence the

19Untrusted electronic noise is attributed to the channel in�uence as additional loss or noise.
20Again, the discrepancies cannot be eliminated electronically in a time domain homodyne detection

where ampli�cation follows signal subtraction [235].
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in�uence on the resulting key is negligible. However, it is still required to monitor LO
intensity, as in principle the �uctuations can be induced by the adversary (without a�ect-
ing LO phase), and exploited for the LO intensity attack [242]. During the attack Eve
can induce LO �uctuations using a variable attenuator, and since the output of homo-
dyne detector is proportional to the power of LO, can directly in�uence the data recorded
by Bob. Alternatively, calibration attack can alter the LO pulse shape to achieve the
same result [233]. Both LO intensity and calibration attacks a�ect the estimation of the
shot-noise and consequently forces Alice and Bob to underestimate the channel excess
noise and, respectively, bound on int1ercepted information allowing Eve to acquire the
key remaining undetected. To avoid the calibration attack one can perform real-time
measurement of the shot noise [233]. Intensity attack can be prevented by stabilizing
the LO intensity [243]. Furthermore, proper tuning of the LO can e�ectively add trusted
noise to the reference side of the protocol and hence improve the key rate.

The vulnerability of the LO is a backdoor for numerous other types of attacks. Eve
can, for example, exploit wavelength dependency of the beamsplitters used on Bob's side
to disguise the channel excess noise caused by the intercept-resend attack. Such approach
is also known as wavelength attack [244�246]. Using wavelength tunable laser diodes and
intensity modulators, Eve can adjust the properties of resent signal and LO (along with
supporting auxiliary state), and consequently control the coupling ratios on Bob's side
to ensure that the outcome of the heterodyne measurement exactly corresponds to the
data on her side. The attack cannot be avoided in all-�ber system by using practical
wavelength �lters, but rather by utilizing wavelength-independent BS.

A solution to vulnerabilities of a transmitted LO has been suggested in a form local

local oscillator (LLO) [114, 189, 239]. In such con�guration, strong reference beam for
the measurement on Bob's side is generated by Bob himself. To actually generate the
key, instead of LO, Alice sends to Bob a sequence of phase reference pulses, and both
of them apply phase correction on the signal data. This implies that without involved
phase correction process, to account for relative phase drift, Bob's measurement results
are a priori decorrelated from Alice's data [190]. The main experimental challenge is
maintaining a low phase noise caused by the drift of the relative phase between two
remote lasers (on Alice and Bob's sides respectively). Nevertheless, LLO is a feasible
solution for avoiding the possibility of majority of attacks, especially considering new and
more a�ordable implementation designs [190].

3.3.3 Detector attacks

Aside from the calibration and the wavelength attacks associated with LO vulnerability,
there are other attacks that rely on a �nite range of linear response of the electronics
involved in the homodyne detection. For the security analysis only second moments of the
quadratures are relevant, while the mean values are typically not monitored by trusted
parties, thus Eve is free to displace all signal states, altering the mean value without
provoking an abortion of the protocol. The saturation attack [234] commences with a
intercept-resend attack, but the displacements of re-sent states are chosen to partially fall
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outside the linear response range of the detectors. When a quadrature value is actually
outside the region, Bob's measurement yields a saturated value. By properly adjusting
the applied displacement, Eve can therefore control the variance of the measured state
and bias the estimation of the excess noise in the channel, therefore inducing a zero-error
security break.

A more advanced blinding attack utilizing detector saturation has been recently sug-
gested [247]. While also relying on coherent displacement of the re-sent states it also
exploits a loss imbalance between two ports of the practical homodyne detector. The lat-
ter aspect signi�cantly improves the feasibility of the attack, and distinguishes it from the
saturation attack, which required phase locking to the Alice's laser. Furthermore, since
the attack targets the detector itself rather than the LO, it can be successfully applied
to the protocols based on LLO generation. A counteracting measure can be issued in a
form of additional postprocessing to ensure the data falls within precalibrated security
thresholds [247].

3.3.4 Multimode detection

A common approximation in CV QKD analysis is an assumption of single mode generation
and detection. Aforementioned information leakage into auxiliary modes was shown to
be a certain security threat (see Sec. 3.1.3). But even if the additional modes do not
carry relevant information 21, it is important not to dismiss the multimode nature of the
incoming states, as it can have negative repercussions for security of CV QKD protocols
and can even lead to a security break [248].

Multimode detection implies the preparation of corresponding number of LO modes,
i.e. distinguishable modes carrying states with strong amplitude, and all states sustaining
identical phase. Whether or not trusted parties are aware of the modal structure deter-
mines the employed measurement, as well as the ability to discern the source of resulting
noise bearing extensive security implications. If Alice and Bob do not take into account
multimodal structure then the e�ect of auxiliary modes is equivalent to additional losses
introduced in both arms of an EPR source. Now the in�uence of auxiliary modes can be
either attributed to Eve (untrusted scenario) or assumed to be unavailable to Eve (trusted
scenario). The former is security breaking even under the most optimistic conditions of
individual attacks and perfect untrusted channel (η = 1, ε = 0). The latter is equivalent
to addition of trusted preparation noise (see Sec. 3.1.4) and detection noise (see Sec.
3.3.5), which nevertheless can still lead to a security break [104].

The in�uence of multimode structure can be negated by symmetrization of the aux-
iliary modes, and partial or ideally complete knowledge of the detection structure and
consequent multimode detection [248].

21Additional modes can be unoccupied, carrying vacuum states, however generally source may emit in
some or all modes, with a thermal state variance in each independent mode [180].
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Figure 3.4: Detection noise in case of P&M (top) and equivalent EPR-based (bottom)
scheme. With VB = ε/(1 − T ), and coupling of the respective mode with the signal
mode on the unbalanced BS: T → 1, the equivalence of EPR-based scheme and the P&M
scheme can be established.

3.3.5 Detection noise

The approach taken for the analysis of the noise on Bob's side of the protocol is identical to
the previously discussed preparation noise, i.e. all sources of imperfections are generalized,
with losses and noise modeled as linear interaction (see Fig.3.4) of the signal with a thermal
noise mode (puri�ed by the source EPR : VB) on a BS with a �xed coupling ratio T .
Just as with the preparation noise one can di�erentiate by attributing the puri�cation
of the noise to either Bob or Eve between trusted and untrusted noise respectively. The
robustness to and in�uence of the detection noise on the security of coherent- or squeezed-
state protocols is determined by the type of reconciliation used.

The model of the detection noise for both P&M and equivalent EPR-based schemes is
shown in Fig.3.4. In P&M scheme (top) the noise alters the signal, so that the covariance
matrix of the state measured by Bob reads

γ′B =

(
1 + η(VS + VM − 1) + εdet 0

0 1 + η( 1
VS

+ VM − 1) + εdet

)
. (3.26)

In an EPR-based scheme (Fig.3.4, bottom) the noise is considered to be a contribution
from an EPR source that radiates states with variance VB into modes C andD. Setting the
variance VB = εdet/(1− T ) establishes full equivalence between schemes. The covariance
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matrix of the two signal modes therefore becomes:

γAB =

(
V 1

√
(V 2 − 1)ησz√

(V 2 − 1)ησz (1 + [V − 1]η + ε+ εdet)1

)
, (3.27)

where 1 is 2×2 unity matrix, and σz is the Pauli matrix (Eq. 2.14). A four-mode trusted
state is now su�ciently described by the covariance matrix γABCD. Reconstructing the
latter allows to evaluate both the mutual information IAB and the Holevo bound χ. If
Eve controls both the output modes of the source VB, the noise is e�ectively equivalent
and contributes to the channel excess noise, while the scenario, where Eve controls only
one of the modes, is treated as a type-B side channel, discussed later.

As already shown for the preparation side in Sec. 3.1.4, (optimized) trusted noise at
the reference side can be bene�cial for the security of the protocol. Hence, one can expect
that trusted detection noise would be damaging for the DR-based protocol, since it de-
creases the mutual information between trusted parties, but does not in�uence accessible
information of Eve. In optimistic conditions of in�nite alphabet size VM � 1, perfect
post-processing β = 1, and purely attenuating channel ε = 0 the key rate reads

RDR|VM�1
β=1 =

1

2

[
log2

η

1− η − log2

VSη + 1− η + εdet
VS(1− η) + η

]
. (3.28)

which bounds tolerable detection noise εdet < (2η − 1)/(1 − η). The tolerance to noise
does not depend on the parameters of the protocol that are under control of the trusted
parties, but rather on the parameters of the channel.

If properly adjusted, the noise can be advantageous for RR protocols. The reason
is that the detection noise obstructs Eve's ability to recover the data obtained at the
receiver side. However, the noise also decreases the mutual information between parties,
and therefore must be optimized in order to be advantageous. Furthermore, the utility
of the detection noise is limited to noisy channels, as it e�ectively improves the tolerance
to channel noise. Provided the excess noise is high, addition of detection noise can even
restore the security of the protocol [104].

The e�ect of such noise can also explain the advantages of CV QKD protocols with
heterodyne detection on the receiver side in the RR scenario, since added vacuum noise
acts as detection noise and consequently can enhance the robustness of the protocol.
However, the noise in this case is not optimized, and usually more noise is required to
signi�cantly a�ect the performance of the protocol. While for the RR homodyne detection
and optimized controlled detection noise is preferable for maximization of the secure key
rate, heterodyne detection also allows to avoid the sifting stage of post-processing and
doubles the key data generation speed [119].

3.3.6 Side channels

Trusted receiver side, similarly to the sender side, as discussed in Sec.(3.1.5), is susceptible
to existence of side channels. Such side channels can either e�ectively increase main
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channel losses, or infuse noise. The latter threatens the security of the protocol, as it
deteriorates the key rate and leads to security break even in purely attenuating untrusted
channel (ε = 0) [1]. If the channel noise is present ε 6= 0, the side channel noise makes
the protocol more susceptible to it, hence further limiting the range of secure conditions.
The bound on the tolerance against such noise is ultimately determined by the coupling
ratio of the side channel to the signal.

The e�ect of side channel noise can be destructive for the security of a CV QKD
protocol, but it can be partially negated, and upon proper data manipulation even fully
eliminated [1]. The method for achieving this relies on the knowledge of side channel
coupling ratio ηB and performing interferometric coupling of the signal and output of
the side channel. Performing weighed subtraction of the data after the measurement can
completely remove the negative impact of the channel. For further details of security
analysis and decoupling method see Ch.4.1.

Another approach aimed at complete elimination of side channels of the measurement
side of the protocol and closing the loopholes on the receiving end of the protocol is
achieved by the MDI QKD protocol [121]. The protocol involves the use of entangled
sources by both trusted parties and delegate the measurement to an untrusted relay, hence
allowing Alice and Bob to reliably shield their stations. The measurement results on the
relay are combined and announced via classical public channel, and allow trusted party
to decode each others initial variable. MDI QKD protocols have been successfully tested
on the CV basis [249, 250], however the applicability of the protocol is limited, mainly
due to secure distance restrictions. Despite limitations, increased security spurred active
advancements of the protocol. Currently, along with improved security proofs [136], the
protocol feasibility has been investigated for space-based QKD [251], and entanglement
distillation (via photon subtraction) has been applied to extend the secure distance [252],
although the performance of even improved protocol does not reach the fundamental limit
of repeaterless quantum communications [253].
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3.4 Classical data processing

In addition to quantum communication, CV QKD protocols require authenticated clas-
sical communication and involved classical processing [254�256] of the data amounted on
trusted sides (after satisfactory amount of protocol rounds were performed) in order to ob-
tain from partially correlated strings of data a universal composable secure key [36,37]22.
The e�ciencies of realistic classical algorithms involved vary and unavoidably some data
will have to be sacri�ced in order to generate the secure key. Consequently, in a real
implementation, Alice and Bob can expect to use only a part of initially shared infor-
mation, which is usually expressed as a fraction β ∈ [0, 1] of mutual information IAB
(see Sec. 3.4.6). Post-processing e�ciency was limiting the range of CV QKD protocols
and, despite the improvement of existing and invention of novel algorithms, still plays an
important role in determination of achievable performance of CV QKD protocols.

In the following section we will give a brief description of various techniques involved
in classical post processing, and possible contributions to the overall post-processing e�-
ciency β. Additionally, the correction to the accessible secure key rate due to operating
with data blocks of �nite size is mentioned at the end of the section.

3.4.1 Sifting

During this step, trusted parties eliminate the errors caused by inevitable mismatch in
basis selection. Alice and Bob via classical authenticated channel, without disclosing any
actual information, announce the encoding or the measurement basis used for each signal
state. Since Alice can encode the letter of the alphabet into x̂ or p̂ quadrature with
equal probability, as well as Bob who has a 50% chance to guess the correct quadrature
to measure, approximately half of the data on each side will be discarded during this
step23. The amount of discarded data can in principle be reduced or eliminated entirely,
provided Bob has access to quantum memory with su�cient capacity, quality and storage
life-time, as it would allow him to conduct measurement after Alice reveals sequence of
correct encoding bases. However, experimental implementation of quantum memories are
extremely challenging and expensive, and lack satisfactory characteristics [257,258], thus
it is currently an unfeasible solution for improvements of sifting procedure.

3.4.2 Authentication

One of the fundamental requirements for security of one-time pad encryption technique
(and secure communication in general) is the ability to exchange authenticated messages.
Generally this means that trusted party upon receiving the message can verify that is
was indeed sent by the party with con�rmed identity. In case of QKD protocols, Alice
and Bob are presumed to share an authenticated classical channel that is fully resistant

22By being universal composable, successfully generated secure key ensures a secure realization of a
larger protocol, that consists of other universal composable secure subroutines.

23CV QKD protocols that employ heterodyne detection on receiver side do not require sifting.
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to tampering [259]. The authentication ensures the protection against man-in-the-middle
attacks, and it is achieved by using e.g. message authentication code algorithms [260]
based on cryptographic hash functions, block cipher algorithms, or Universal2 hashing
[261].

The capability to establish such authenticated channel implies pre-shared secure, or
at least partially correlated secret information [262,263]. Furthermore, maintaining trust-
worthiness of a classical channel requires consumption of secret information. Usually in
each QKD generation session a part of the key is reserved for authentication of a consec-
utive one.

3.4.3 Parameter Estimation

Crucial step for security analysis of any CV QKD protocol is the quantum channel es-
timation. For correct assessment of the upper bound on the information accessible to
Eve, the trusted parties have to reconstruct full covariance matrix. However, knowing
channel transmittance η and excess noise ε (due to optimality of Gaussian collective at-
tacks) allows to evaluate the maximal information available to Eve in channel with given
parameters once collective attacks are assumed. In order to avoid external manipulation,
Alice and Bob must employ probe pulses that must be indistinguishable from the signal
states. Commonly part of the transmitted correlated data is used instead. The data is
disclosed via classical channel, and consequently must be discarded. The quality of the
estimation depends on frequency of probe pulses, or on fraction of transmitted data used
for channel estimation. In recent experimental implementations half of all signal pulses
measured have been utilized solely for estimation [64].

Following the parameter estimation procedure shown in [264], for each pulse, the values
xS, x0, and xE are unknown (hence can all be treated as noise), while Alice has access
only to xM , and Bob, respectively, to the directly measured xB. Due to this fact, the
value, obtained by Bob, can be treated as:

xB =
√
η · xM + xN , (3.29)

where the last term on the right side xN refers to the overall noise, and has variance
VN = ηVS + (1− η) + ε, where VS is the variance of the initial carrier state (in respective
quadrature), η is the channel transmittance, and ε is the excess noise. After sifting (3.4.1)
both Alice and Bob have strings of data of length n, and their covariance is CAB =

√
η·VM .

Maximum likelihood estimator of the covariance can be calculated as:

ĈAB =
1

n

n∑
i=1

(xM · xB)i, (3.30)

where (xM ·xB)i is the pair of corresponding sent and received values, and i ∈ [1, n]. Now
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using Eq.(3.30) one can calculate the estimate of η:

η̂ =
1

V 2
M

Ĉ2
AB. (3.31)

Now using maximum likelihood estimator of VN and Eq.(3.31) one can assess ε̂:

ε̂ =
1

n

n∑
i=1

(xB,i −
√
η̂ · xM,i)

2 + η̂(1− VS)− 1. (3.32)

The most pessimistic scenario is usually assumed and therefore within the con�dence
interval lower bound on transmittance η, and upper bound on ε are taken. Note that
preceding procedure has to be performed for all variables and respective elements of the
covariance matrix.

Surely, the increment of estimation e�ciency limits the maximal speed of the infor-
mation distribution for the given channel, however one can optimize the fraction needed
for estimation over the parameters of the protocol [264]. The optimization becomes even
more important taking into account �nite-size e�ects, and limitations on encoding alpha-
bet size imposed by other realistic e�ects, such as limited e�ciency of post-processing
β < 1, or transmittance �uctuations in atmospheric channels. The requirement for accu-
rate estimation is elevated even further in the latter.

However, it has been shown, that the whole raw keys can be simultaneously used for
both channel estimation, and further secure key extraction. This can be achieved by e.g.

modulating the signal states twice, with the second modulation used solely for estimation
purposes [264], or performing error correction prior to parameter estimation [94]. In
MDI CV QKD protocols the estimation can be avoided as the parameters and covariance
matrix can be directly inferred from relay measurements outcomes [250,265].

3.4.4 Error correction

At this stage, the trusted parties start with a correlated sequence of continuous (approx-
imately) Gaussian variables and their task is to end up with an errorless discrete key.
Even though it may seem more intuitive to use continuous key due to the nature of car-
rier states and encoded information, it would also imply the usage of continuous version
of one-time pad, which is feasible, but can be challenging to implement with su�cient
noise resistance [266]. The usage of noisy continuous data may also introduce additional
complications during authentication stage. Lastly, error-correction algorithms are faster
and more e�cient in case of discrete data.

As mentioned previously, there are two directions of reconciliation, depending on the
choice of the reference side - direct reconciliation, where Bob is forced to infer the values
originally encoded by Alice, and reverse reconciliation, where Alice is the one to correct
her classical data according to the measurements outcomes on the Bob's side. While the
use of RR allows trusted parties to potentially (in noiseless channels) tolerate arbitrary
amounts of losses, DR approach limits QKD protocols to η > −3dB channels. However,
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DR is still a viable option (e.g. for infrared to microwave quantum cryptography [155])
due to increased robustness against preparation noise (see Sec. 3.1.4). The choice of
reconciliation direction can also in�uence the choice of error correction algorithm.

E�cient error correction was the main limitation of early implementation of CV
QKD [58, 129]. On top of limited reconciliation e�ciency, the raw key rate is also af-
fected by error-correction output rate and frame error rate. The former is connected with
computational time of the algorithm, which can create a bottleneck for protocol output,
and the latter is connected with the probability of incorrect message decoding, which may
cause additional reduction of the generated key length.

Important codes used for reconciliation are polar [267], and low-density parity check
codes (LDPC) [268, 269]. The latter are used in sliced [59] and multidimensional [270]
reconciliation algorithms. One or multiple LDPC may be used to create a compressed
version of the reference side data. This compressed version is then sent via authenticated
classical channel and decoded. Decoding speed heavily depends on various parameters
e.g. number of iterations, or number of terms in parity-check equations. Optimization of
decoding procedure is a nontrivial task as generally the parameters of the code are highly
interdependable, i.e. higher e�ciency codes (that operate closer to Shannon limit) may
have lower number of required iterations, but at the same time bigger size of parity-check
equations [129]. In state-of-the-art CV QKD implementations, multi-edge type LDPC are
being used in channels of 120 km length with feasible physical parameters [271].

After successful decoding both parties should have identical raw keys on their sides.
To verify this, without disclosing any further information, they can use a hash function
[272] (which would act as an error ampli�er, making any discrepancies between data
sets apparent). The latter is chosen with uniform probability from the family of hash
functions, and used on both data sets. The hash value is then exchanged and compared,
if the values are di�erent, the protocol is aborted, and keys are discarded. In case the
values match, Alice and Bob are con�dent (up to some probability that depends on the
type of the hash function used) that shared keys are identical.

3.4.5 Privacy Ampli�cation

The last step of classical processing is privacy ampli�cation. The goal of this step is to
eliminate partial knowledge of an eavesdropper on the shared corrected key, and conse-
quently, to distill the secure key. Typically it is achieved using a family of universal hash
functions that receive on the input, aside from the original data string, a random seed
and output (possibly shorter) sequence with higher entropy, than the input string. The
quality of such seeded randomness extractors is determined by the collision probability
which is the probability for an eavesdropper, using di�erent input, to obtain the same
output, as the trusted parties would. The collision probability depends on the length
of the input, the output, and on the hash function itself. One of the widely used hash
functions is based on (modi�ed) Toeplitz matrix [273], which requires short seed length,
has relatively low complexity and allows for high-speed implementation [47,113].

Alternatively to employing classical processing one can reduce (and possibly elimi-
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nate completely) Eve's correlations with the signal states by performing entanglement
distillation. However, the latter require non-Gaussian operations [54, 274] and can be
experimentally challenging [275,276].

3.4.6 Limited post-processing e�ciency

Taking into account the e�ects of various algorithms with �nite e�ciencies, used in classi-
cal post-processing, it is evident, that trusted parties cannot operate in the Shannon limit
and extract exactly mutual information IAB, but merely the fraction of it. To account for
this during estimation of lower bound on the security 2.34 β is introduced:

R = βIAB − χE.

The values of β range from 0 to 1, where β = 0 means trusted parties do not extract any
information at all, while β = 1 is the theoretical limit of perfect post-processing. The
e�ciency can be de�ned as [271]:

β(s) =
RC

C(s)
, (3.33)

where s is a signal-to-noise ratio (SNR), RC is the rate of code used, and C is the channel
capacity. The codes are designed for a speci�c type of channel, but, most importantly,
depend on the signal-to-noise ratio. Typical values of expected e�ciency now range
β = [0.93, 0.98] [61, 65, 255, 271]. In practice the e�ciency β is not known prior to actual
key distribution [65], and may deviate from expected value given by Eq. 3.33. Despite
the existence of codes with high achievable e�ciency and close to the theoretical limit,
they, nevertheless, impose threshold on the variance of the modulation of the protocol.

After a certain value the modulation variance increase starts to contribute more to the
accessible information of the adversary than to the the information between trusted parties
reducing the gap between trusted mutual information IAB and the Holevo bound χE on
Eves information regarding the key on the respective reconciliation side. As illustrated in
Fig. 3.5, for lower values of β in DR scenario, the coherent-state protocol cannot generate
secure key at all, and requires either to employ algorithms with even higher e�ciencies or
resort to the squeezed-state protocol. The latter can still provide a secure key even with
moderate squeezing −3dB. In RR scenario, the coherent-state protocol is still viable,
however allows for a very limited modulation variance.

Despite the reconciliation direction or the variance of the initial carrier state, variance
of the signal modulation must be optimized. The squeezed-state protocol can additionally
be improved by increasing squeezing, which in high loss channels translates in (almost)
linear increase in tolerance towards the excess noise, and most importantly allows to
use higher range of modulation values, thus increasing the size of the encoding alphabet
(see [103] for more detailed description and treatment of limited post-processing e�ects).
Moreover, optimal modulation of squeezed states up to a shot-noise unit in principle allows
to eliminate information leakage in purely attenuating channels [277], which theoretically
allows key distillation from any non-zero mutual information upon arbitrarily low β .
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Figure 3.5: Secure key rate dependence on the modulation VM of CV QKD protocol with
direct reconciliation (left) and reverse reconciliation (right). Post-processing e�ciency
(starting from bottom) β = 80%, 90%, 100%. Solid lines correspond to the squeezed-state
protocol (VS = 1/2) in the channel with η = 0.1, and dashed lines correspond to the
coherent-state protocol (VS = 1) in the channel with η = 0.6. Excess noise ε = 0.
Limited post-processing limits encoding alphabet in both DR and RR scenarios. Fur-
thermore, low e�ciency β renders the coherent-state protocol insecure, thus requiring
squeezing applied to the carrier states.

3.4.7 Finite-size e�ects

One of the typical assumptions of security proofs of QKD systems is operation in asymp-
totic regime, in which Alice and Bob exchange in�nite amount of signals. In realistic
implementations, this assumption of course does not hold true, and one has make adjust-
ments to reachable performance of QKD protocols. The formalism used for correction of
secure key rate is based on smooth min-entropy [89], and it was successfully applied in
DV systems [278,279], and later in CV systems as well [127,267]. The CV QKD protocol
under assumption of collective attacks, taking into account �nite-size e�ects, can output
secure key rate:

RDR(RR) =
n

N
[βIAB − χεPE

AE(BE) −∆(n)], (3.34)

where χεPE

AE(BE) is the maximum of the Holevo bound obtained using the estimated param-
eters, that are correct with the probability at least 1− εPE [127,264]. Now, n is Eq.(3.34)
is the amount of signals actually used for formation of key, while N is the total amount
of signals received and measured. Parameter estimation technique, that allow to use the
data for both parameter estimation and key extraction, can potentially achieve n = N .

While in asymptotic scenario the generated keys are considered to be perfectly secure,
in realistic scenario there is always a probability of failure εF (even though it can be made
arbitrary small at the cost key length reduction):

εF = εPE + εEC + εPA + ε̄, (3.35)

where individual terms correspond failure probability on the stage of parameter estima-
tion, error correction, privacy ampli�cation respectively, while ε̄ is the smoothing param-
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eter. Upper bound on the information, obtainable by Eve is in�uenced by the precision
of parameter estimation, hence in Eq.(3.34) is denoted by χεPE

AE(BE). Lastly the term is
determined by the security of the privacy ampli�cation:

∆(n) = (2dimH + 3)

√
log2(2/ε̄)

n
+

2

n
log2

(
1

εPA

)
, (3.36)

where H is the Hilbert space of the encoded variable (for CV protocols where raw key is
encoded into bits dimH = 2 [127,280]). One can see, that the last term in Eq.(3.34) does
not contribute signi�cantly to ∆(n), given that εPA is a virtual parameter and can be
optimized in the computation. Taking this into account, the value is mainly determined
by the speed of convergence of the smooth min-entropy of the independent and identically
distributed state towards the von Neumann entropy [127]:

δ(n) ' 7

√
log2(2/ε̄)

n
. (3.37)

The correction value ∆(n) strongly depends on the block size, e.g. if the CV QKD protocol
yields the key rate R ≤ 10−3 the block size has to be at least 2 billions to maintain the
security [127].
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protocols.

The following chapter presents the main results of two articles [1,2] that explore the in�u-

ence of side channels on the security of CV QKD protocols and suggest possible methods of

compensation of negative e�ect of such channels (see Chapter 8 for copies of the published

articles).

We investigate the impact of channels that are under partial control of an adversary,
the so-called side channels on the security and robustness of the CV QKD protocols. We
de�ne a side channel as an auxiliary channel that may have either input or output con-
trolled by a trusted party and output or input, respectively, controlled by an eavesdropper.
The side channels represent means of information leakage from, or information distortion
on presumably trusted side of the protocol, and stem from device imperfections, along
with weaknesses in experimental design and/or explicit implementation of a protocol. The
sender-side leakage can take place in particular in the case of imperfect modulation, e.g.,
when the signal is mixed with a temporal, spectral,polarization, or spatial mode, which
then leaves the sender station. The receiver-side noise infusion may, e.g., be caused by
imperfect light collection from a free-space channel with a background radiation.

From Eve's point of view, the side channels give way for either passive (noninvasive)
attacks, where Eve can only receive the information i.e. control only the output of a side
channel, or Eve can resort to interfering with the operation of the QKD protocol, i.e.
control the input of a side channel.

4.1 Model

To accommodate a side channel into security analysis, and study their e�ects, we make
adjustments (based on the linear-optical mode interactions) to the standard entanglement-
based representation of a protocol on either sender or receiver side. To gain insights in
security conditions we start the analysis of each individual side channel with the individual
attacks, and then proceed to the optimal collective attacks. The side channels on the
preparation side are referred to as type-A side channels, while those on the Bob's side
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Figure 4.1: The model of a CV QKD protocol with side channels. All sides channels are
modeled as a linear interaction with an auxiliary mode on a BS, on preparation side at
ηA1 or ηA2; on receiver side at ηB. The latter is referred to as type-B side channel, while
others belong to type-A category. Generally the e�ect of Eve can be either passive (if
she controls the output of the side channel) or active (if she controls the input of the side
channel).

are referred to as type-B side channels, as depicted respectively in Fig. (4.1). We assume
various scenarios of awareness of trusted parties regarding the side channel presence from
an ignorant scenario, when side channel presence is not accounted for, to the case when
side channels are partially controlled by trusted parties, and they perform a counteraction
measure. In either scenario nor trusted parties nor the adversary can control the coupling
ratio of a side channel to the signal, ηA1,A2,B in Fig.4.1.

4.1.1 Type-A side channels

On Alice's side there can be typically two distinct points of intrusion: pre-, and post-
modulation. Both of them have di�erent e�ects on the tolerance of the protocol against
channel losses and noise. While post-modulation channel can be accounted for by minor
modi�cation of an entanglement-scheme, the pre-modulation channel requires di�erent
puri�cation-based schemes for proper incorporation.

Pre-modulation channel

For comprehensive security analysis we adopt a four-mode puri�cation scheme, as de-
scribed in details in Ch. 2.3.2. The side channel presence is modeled as a coupling
between the signal mode B (prior to its interaction with mode D on T1) and the side-
channel mode F on BS ηA1 (see Fig.4.2). We consider two scenarios: when Eve controls
the input of a side channel, injecting a thermal state of variance VF , so that γF = VF1,
while Alice controls the output; and an opposite case, when the input is attributed to
Alice (then VF = 1), and Eve (after the interaction with the signal) only receives the
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Figure 4.2: The preparation side of a CV QKD protocol in puri�cation-based representa-
tion with the pre-modulation side channel.

side-channel output. The overall pure state before the channel is therefore described by
a 5-mode covariance matrix γ′ABCDF , where the mode leaked to Eve is described by the
diagonal matrix γ′F = diag[VSηA1 + (1− ηA1)VF , 1/VSηA1 + (1− ηA1)VF ].

Post-modulation channel

Since the post-modulation side channel leaks the information regarding both the initial
signal state and applied modulation, for a comprehensive security analysis it is su�cient
to adjust the standard entanglement-based scheme by coupling the prepared signal (prior
to the untrusted channel) on ηA2 with a side channel, as shown in Fig. 4.1. If the
input of such semitrusted channel is the noise attributed to Eve, it is equivalent to the
increase of excess noise in the untrusted channel, hence we focus on the case of input
being in a vacuum state and possibly controlled by Alice. While Alice cannot modify
the ηA2 value, or block the side channel completely, she can manipulate the state at it's
input. We consider three types of states for Alice's use: a thermal state, a modulated
pure Gaussian state independent from the signal, and a modulated (proportionally to the
signal encoding) pure Gaussian state correlated with the signal.

4.1.2 Type-B side channel

As shown in Fig. 4.1, we consider Eve's intrusion at Bob's side before the balanced
BS that splits the signal mode and forwards it along with LO towards detectors. Again,
similarly to the case of type-A side channel we model the channel by interaction on BS ηB,
and assume the coupling ratio is preset, known to trusted parties and cannot be changed
by the adversary. The side-channel loss on the receiver side (symmetrical to the type-A
side-channel loss on the sender side) is equivalent to increase of the overall channel loss,
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hence we focus on the scenario of noise infusion onto the Bob's side, i.e. Eve is attributed
full control over the input of the respective side channel.

Although Eve does not gain additional insights regarding the measurement outcome
on Bob's side, she does a�ect the mutual information between the trusted parties, as the
state received and measured by Bob turns to V ′B → V ′BηB + (1− ηB)VN , where VN is the
variance of the state injected by Eve. Due to such deterioration of the measured state,
on can expect such side channel to be a security threat already in a purely lossy channel.

4.2 Main results

4.2.1 Type-A side channel

Premodulation channel

The main consequence of the pre-modulation side channel presence is worsening of the
initial cryptographic resource - a signal state. Assuming Eve takes a passive approach,
side channel e�ect reduces to the losses on the BS ηA1 (see Fig. 4.1 for P&M scheme).
Immediately apparent is the tolerance of the coherent-state protocol to such side channel,
as pure losses do not alter the relevant properties of the coherent state and do not estab-
lish correlations between the signal and the leaking mode. The squeezed-state protocol,
on the other hand, is impacted by such losses, as the signal e�ectively losses squeezing
Vs → 1, which leads to decrease of the mutual information between trusted parties, and
correlations are established between the leaking mode and the signal state. Provided
the input of the side channel is controlled by Eve, both the coherent- and squeezed-state
protocol are facing the repercussions, as the signal state becomes thermal. While the
presence of pre-modulation type-A side channel can be viewed as preparation noise 3.1.4,
an important distinction is that the side channel also provides an eavesdropper with addi-
tional correlations with the signal. The di�erence between the key rates for the protocols
with premodulation leakage RF , and for the protocols with preparation noise R∆V is the
highest for low loss main channel η → 1 and is given by

RF −R∆V =
1

2
log2

[
1 + VM + ηA2 (VS − 1)

VM + VS/ (ηA2 + VS − ηA2VS)

]
, (4.1)

where VS is the variance of the carrier signal state, and VM is the variance of the encod-
ing modulation. Even though additional correlations can e�ectively increase the Holevo
bound, the increase is minor. The main e�ect on the security is played by the increased
variance of the signal state, hence, the noise.

Overall pre-modulation side channel does decrease the key rate (secure distance) and
tolerance to the excess noise in untrusted channel ε, but it does not lead to a security
break (provided trusted parties con�rm the variance of the signal does not deviate from
predetermined value), as one would expect, since no actual information has been encoded
into the states yet. Interestingly, pre-modulation channel can be reduced to the case
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(bits per channel use)
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Figure 4.3: The key rate (in bits per channel use) versus distance d (in kilometers) in a
standard telecom �ber (with attenuation of -0.2dB/km) in the case of collective attacks
on the coherent-state protocol (orange, lower line) and the squeezed-state protocol with
VS = 1/10, 1/2 (upper dark blue and middle light blue, respectively). The premodulation
channel coupling ratio ηA2 = 0.5 (dashed lines) and 1, i.e., the absence of the side channel
(solid lines). Modulation variance is optimized for given parameters, β = 97%, ε = 5%.

of further discussed post-modulation channel, assuming an appropriate scaling of the
modulation [1].

Post-modulation channel

The side channel present after the modulation has completely di�erent e�ect on the secu-
rity of a CV QKD protocol than the channel before the modulation, as Eve can already
obtain additional information regarding the encoded information. The �rst major e�ect
of such side channel (depicted as BS ηA2 in Fig. 4.1) is an e�ective decrease of the channel
transmittance η. Even under individual attacks, idealized conditions (β = 1, ε = 0), and
in the limit of in�nite modulation V � 1, the secure key rate reduces to:

RV�1 = h log2

1

1− ηA2η
, (4.2)

which, evidently, scales down the channel transmittance (h = 1 or 1/2 for the in�nitely
squeezed-24, or the coherent-state protocol, respectively). However, the protocol remains
secure, as one would expect in a noiseless channel.

If the channel noise is actually present, the tolerance of the protocols to the excess
noise ε is substantially decreased.e.g. for the protocol under individual attacks, applying
strong modulation VM → ∞ and facing low channel transmittance η � 1, the value of
maximal tolerable excess noise εmax is reduced to the value proportional to ηA2 , namely

24The squeezing of the protocol under consideration is not optimized.
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εmax = ηA2 for the squeezed-state protocol. For the coherent-state protocol under same
conditions this value is halved εmax = ηA2/2 [1].

Assuming the equipment cannot be shielded from post-modulation side channel, one
can infuse the input of the side channel with properly engineered state to partially com-
pensate the e�ect of presence, or even fully restitute the secure key rate of a CV QKD
protocol. The use of a thermal state does indeed diminish Eve's information (decreasing
the Holevo bound), but also acts as preparation noise, and therefore limits the mutual
information between parties.

Alternatively, Alice can send an independent and displaced state to the input of the
side channel. This allows her to improve the correlations between trusted parties, and,
simultaneously, reduce the correlations between signal and output of side channel. Under
strong enough channel losses η < 0.8 and optimized modulation of the side-channel input
state, Eve's advantage from access to side channel lessens, leading to improvement of the
secure distance and robustness against channel noise.

Lastly, we suggest the method of (classically) correlated modulation on the input of
the side channel. Such method fully decouples and decorrelates the side channel from
the signal. Weighed displacement of the input allows to achieve destructive interference,
resulting in complete absence of any information about the signal at the output of type-A
post-modulation channel [1]. To achieve this e�ect for the squeezed-state protocol an
additional squeezing of the side-channel input is required. Therefore, as long as Alice is
aware of the type-A side channel, can properly characterize it and perform manipulations
on the side-channel input, she can completely negate it's in�uence without relying on the
channel estimation, or resorting to the use of entanglement or non-Gaussian operations.

4.2.2 Type-B side channel

Unlike type-A side channels, that contribute to Eve's knowledge about the generated
key, but allow to maintain the security in optimistic conditions, the noise infusion on the
receiver side via type-B side channel can lead to security break even in purely attenuating
untrusted channels (ε = 0). In the limit of strong attenuation and in�nite alphabet size
(and individual attacks), the bound on infused noise variance was shown to be [1]:

V max
N |V�1

η�1 =
1

1− ηB
. (4.3)

In noisy channels the tolerance to excess noise εmax is decreased as the consequence of
side channel noise infusion, considerably limiting the security region.

We suggest a method for compensation of the negative e�ects by monitoring the output
of such channel, and consequent proper manipulation of the data. More speci�cally, the
method for achieving this relies on the knowledge of side channel coupling ratio ηB and
performing interferometric coupling of the signal and output of the side channel. Bob
must conduct homodyne detection of each mode and perform weighed subtraction of the
data after the measurement. An optimal choice of weights can clear the generated key
data from the added noise, hence completely removing the negative impact of the channel,
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and restituting the performance of the protocol. For further details of security analysis
and decoupling method see [1]. Note, that optimal applied weights depend on the coupling
ratio ηB, which, according to initial assumptions, is always known to the trusted parties.

Summary

We present a concept of a side channel - a semitrusted auxiliary adversary channel that
either leaks the information regarding the transmitted key to an eavesdropper, or obstructs
the ability of trusted parties to grow a secret key. Such channel is distinct in its e�ect
on the security of CV QKD protocols from previously studied losses or noise [104] (see
also Ch.3.1.4 and 3.3.5). The e�ect of side channel on the security of CV QKD protocol
greatly depends on the trusted side it appears on (type-A or type-B), point of intrusion
(i.e. at which operation step the channel manifests itself), and attribution of the channels
input/output.

For security analysis, we model side channels using existing entanglement-based schemes
and linear-optical interactions, and investigate optimal strategies employed by Eve, as-
suming her access to a particular side channel, and show security conditions. Side channels
were shown to be negatively in�uencing CV QKD protocols, they degrade the key rate
and decrease the robustness to channel noise. Furthermore, side-channel noise infusion is
security breaking even for a trusted receiver.

Aside from showing the repercussions of a side channel presence, it is important to de-
velop counteracting strategies, aimed at negating introduced negative e�ects. The threat
of security break can be alleviated by employing suggested compensation methods for re-
spective side channel: modulating the input of post-modulation type-A side channel, and
monitoring the output of type-B side with consequent data manipulation. Moreover, sug-
gested methods can be combined with other performance improvement techniques, do not
rely on the channel estimation, or resort to the use of additional sources of entanglement
or to non-Gaussian operations.
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5 | Multimode leakage from state prepa-

ration

This chapter contains a concise summary of main results obtained during the investigation

of multimode modulation of CV QKD protocols (see [2] or Chapter 8 for a copy of a full

article).

Here we consider the protocol, that follows the standard steps, as described in Sec.
2.1.1, however a crucial di�erence is generation of N independent, non-signal leakage
modes during State generation step, and consequent modulation of the respective modes
during Modulation step. The modes of interest are those that were not blocked or �ltered
out by trusted parties, i.e. the modes that are in full access of an eavesdropper.

5.1 Model

In order to conduct security analysis we start by establishing relations between all output
modes of the preparation side. The scheme of the model is shown in Fig. 5.1. States
in signal mode are initially characterized by a pair of quadrature values QB = {X,P},
and covariance matrix γB = diag[VS, 1/VS]. N additional modes are present, with each
mode Ln ∈ {L1, · · ·LN} being described by QLn = {X,P}Ln , and covariance matrix
γLn = diag[VS,Ln , 1/VS,Ln ]. After the displacement QM the quadratures of the signal state
becomeQ′B = QS+QM with covariance matrix γ′B = diag[VS+VM , 1/VS+VM ], while states
in each additional mode Q′Ln

= QLn + knQM , with respective covariance matrices γ′Ln
=

diag[VS,Ln + k2VM , 1/VS,Lnk
2VM ], where kn = VM,Ln/VM is the ratio between variance of

the modulation applied to an additional mode VM,Ln and variance of modulation applied
to the signal VM (k ≥ 0). Now, the initial covariance matrix, being γBL1···LN

= γB⊕γL1⊕
· · · ⊕ γLN

, after the same (k1···N = k) modulation has been applied to all leakage modes
turns to
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γ′BL1···LN
=


γ′B kVM1 · · · kVM1

kVM1 γ′L1
· · · k2VM1

...
...

. . .
...

kVM1 k2VM1 · · · γ′LN

 . (5.1)

After all states have been emitted, all leakage modes are assumed to be immediately
intercepted by an adversary, while the signal proceeds to the untrusted channel where
it is scaled by transmittance (for the sake of simplicity we start the analysis with noise-
less channels), so that γ′′B = diag[η (VS + VM − 1) + 1, η

(
1/VS + VM − 1

)
+ 1], and the

covariance matrix describing the output of the preparation side and an Eve's mode γ′E
reads

γ′′BL1···LNE
=


γ′′B kVM

√
η1 · · · kVM

√
η1 −

√
(1− η)η1

kVM
√
η1 γ′L1

· · · k2VM1 −kVM
√

1− η1
...

...
. . .

...
...

kVM
√
η1 k2VM1 · · · γ′LN

−kVM
√

1− η1
−
√

(1− η)η1 −kVM
√

1− η1 · · · −kVM
√

1− η1 γ′E

 .

(5.2)
Though γ′′BL1···LNE

5.2 may be su�cient for basic analysis of some protocols, for com-
prehensive analysis, an entanglement-based scheme is required, and according to afore-
mentioned description, it should satisfy following conditions:

1. Neither states sent by Alice nor states received by Bob nor correlations between
them should be dependent on modulation (kQM , with variance k2VM) applied to
the states in leakage modes.

2. Ratio between leaking modulation and signal should be k ≥ 0 and it's values can
exceed 1, since generally the variance of the modulation applied can be greater than
that of applied to the signal mode.

3. The ratio k cannot be in�uenced by a trusted preparation party leaving only two
parameters under Alice's control: signal modulation QM and amount of squeezing
in the state QS produced by the source.

4. The optical con�guration should be scalable considering the fact that trusted source
can have an arbitrary multimodal structure.

One of the solutions that can satisfy all required conditions is provided by Bloch-Messiah
decomposition theorem, that says that multimode evolution of an optical system gov-
erned by the linear Bogoliubov transformations can be decomposed into a combination
of linear and non-linear optical components (multi-port interferometers, and single-mode
squeezers) [97].

The security analysis can be signi�cantly simpli�ed by showing that a scenario with an
arbitrary number of non-signal modes radiated from the preparation side can be reduced
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Figure 5.1: Prepare-and-measure scheme of the multimode leakage. The source S emits
independent states into a signal mode, and into N additional modes. Each additional
modes receive a separate displacement on the modulatorM , however all displacements are
correlated to the one applied to the signal state. The latter travels through the quantum
channel to Bob, who measures the state on the homodyne detector D and records the
output. All additional, un�ltered modes, are immediately intercepted by Eve. Note, that
if a part of the signal is detectable, one can apply measurement of the residual light as
in [281] in order to compensate for the negative impact of excessive modulation, taking
into account the analysis of CV QKD over amplifying channels [282].

to the scenario where the signal and only a single e�ective leakage mode, described by
the variance

VLeff
=

N∑N
n V

−1
Ln

, (5.3)

and receiving the modulation with e�ective ratio

keff = k
√
N, (5.4)

are emitted by the source. The Eqs. 5.3, 5.4 are applicable only for the protocol
under individual attacks (See Sec. 2.1.3). Reduction to a single e�ective mode can also
be numerically done in the most general case of collective attacks and independent and
dissimilar initial variances of states in all modes VS,Ln , and independent kn.

5.2 Main results

We start the initial analysis with the individual attacks in noiseless channel, as they allow
to assess essential security conditions in analytical form. Under direct reconciliation (with
security de�ned as in Eq. 2.36) leakage via multimode modulation implies direct disclosure
of the encoded key value, which quickly deteriorates the secure key. This can be illustrated
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by the following expression for the key rate

RDR|indη→1 ≈
1

2

(
(η − 1)VM
V log[2]

(2k2VM + V )2

k2VM + V
+ log2

[
VM + V

k2VM + V

])
, (5.5)

which is obtained provided the channel exhibits low loss η → 1 and variances of all states
are identical V = VS = VLeff

. Despite optimistic channel conditions, it is apparent, the
security is lost if an adversary receives an exact copy of the modulation as the signal
k = keff = 1. This situation is a CV analogue of the photon-number splitting attack
in DV QKD [28, 283]. The security break can also occur even if the leakage modes are
thermal VL ≥ 1.

The protocols utilizing reverse reconciliation (with the key rate de�ned as Eq.2.37)
are not bounded by certain k value, and depending on parameters of the protocol can
tolerate even k > 1. In the limit of strong modulation VM →∞ the key rate becomes

RVM→∞|indRR = −1

2
log2

[(
1− η +

ηk2

V (1 + k2)

)
(1 + η[V − 1])

]
, (5.6)

while the maximal tolerable leakage ratio kmax is

kmax|VM→∞ =

√
V (η − 2 + V − ηV )

(η − 1)(V − 1)2
. (5.7)

The latter shows that there are several conditions for tolerance of an arbitrary leakage:
either the untrusted channel is lossless η = 1, or the coherent-state protocol is employed.
Alternatively, if squeezing value is set to V = k2/(1+k2) the performance of the squeezed-
state protocol becomes identical to that of the coherent-state protocol. However, the
robustness against leakage can be further increased by squeezing optimization. The latter
is independent of the channel parameters and is, in fact, given as

V opt|VM→∞ =

√
k2

1 + k2
. (5.8)

With the increase of modulation ratio k � 0, the optimal squeezing V opt does reduce and
approaches shot-noise level, but generally squeezing always improves the secure key rate
of the protocol.

Evaluation of initial in�uence of signal leakage is further supported by the results
obtained from the study of collective attacks in realistic conditions, i.e. noisy channels
ε > 0, and post-processing algorithms having limited e�ciency β < 1. We therefore �x the
former at feasible ε = 1%; and optimize the modulation variance VM due to requirements
imposed by the latter condition. Fig. 5.2 depicts the comparison between the coherent-
(dotted lines), and the squeezed-state protocols for various settings of modulation leakage
k = 0, 1, 1.5 (blue, light blue, light green lines, respectively). Not only does the modulation
leakage limit the secure distance of all protocols, but it can also render (provided strong
leakage k > 1) the squeezed-state protocol (with �xed squeezing value) inferior, in terms
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Figure 5.2: Key rate (in bits per channel use) versus distance d (in kilometers) in a
standard telecom �ber (with attenuation of −0.2dB/km) under collective attacks in the
case of modulation leakage for di�erent values of ratio between additional and signal
states modulation variances k = 0 (blue, upper lines), 1 (light blue, middle lines), 1.5
(light green, lower lines) for optimized squeezed-state protocol (solid lines), squeezed-state
protocol (dashed lines) with VL = VS = 1/2 and coherent state protocol with VL = VS = 1
(dotted lines). β = 97%.

of secure key rate, comparing to more accessible coherent-state protocol. Despite this,
reasonable �xed squeezing can still outperform the coherent-state protocol in certain range
of modulation leakage k 6 1. Clearly, squeezing optimization always provides longer
secure distances and is suggested for any value of modulation leakage k25.

The protocols employing higher levels of squeezing, while being robust to noise and
losses, also exhibit elevated susceptibility to leakage, as depicted in Fig. 5.3, where we
examine the dependency of the key rate on the modulation leakage k, for a range of
squeezing values VS and di�erent setting. Introduction of noise in the channel eliminates
tolerance for arbitrary amounts of leakage. Under realistic conditions, security is lost
when the leakage mode receives an identical or almost identical copy of the encoded key
k ≈ 1, even if the leaking information is carried by vacuum or thermal modes straight to
an adversary.

Summary

All CV QKD protocols are sensitive to multimode modulation leakage, even in optimistic
scenarios. It is especially devastating for CV QKD protocols employing direct recon-
ciliation (which are important for implementations requiring tolerance to high levels of
preparation noise [105]), as the security is lost if an eavesdropper receives a copy of the
signal modulation.

25For k = 0 setting, squeezing optimization reduces to maximizing the available squeezing.
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Figure 5.3: Performance of the squeezed-state protocol with a leakage from the modulator
under collective attacks for di�erent values of squeezing (starting from top) VS=0.1, 0.3,
0.5, 0.7, 0.9 SNU (β = 95%, η = 0.1). All solid lines display key rate with symmetry
of signal and leakage variances (VL = VS). Thick (orange) line illustrates the key rate
of protocol with both modulation VM and signal squeezing VS optimized. Dashed lines
display the case when leakage mode input is �xed and independent of the signal (VL = 1).
Lowest solid and dashed lines, corresponding to VS = 0.9, overlap. Evidently, if the
leakage modes are initially independent from the signal, more modulation can be leaked
without loosing the security of the protocol. Higher levels of squeezing directly translate
into higher tolerance to the leakage and consequently to higher key rate. If the leakage
modes are initially identical to the signal, the leakage is more detrimental to the security
overall. Higher levels of squeezing do not necessarily improve the key rate and leakage
tolerance. Squeezing optimization is required to improve the performance of the protocol.
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For reverse reconciliation, the security break is observed already under an individual
attack and in a purely lossy channel. Surprisingly, coherent state protocol can tolerate
arbitrary amounts of leakage, though only in noiseless channel. On the other hand, se-
curity of squeezed-state protocol, with increase of modulation leakage, quickly becomes
compromised without the need for an untrusted party to resort to any additional ma-
nipulations onto the trusted side. We show that squeezing, however, can be optimized
in order to improve the tolerance for multimode modulation leakage and channel noise.
The optimized squeezed-state protocol then overcomes the coherent-state protocol at any
parameters.

The study of multimode modulation leakage is particularly important for multimode
quantum sources eligible for use in CV QKD protocols [179, 181]. The results are stimu-
lating for an experimental test of the macroscopically multimode protocols [180,284].

87



CHAPTER 5

88



6 | Stabilization of transmittance �uc-

tuations in a free space atmospheric

link

This chapter outlines the main results of the published article where the transmittance

�uctuations of the article that explores the applicability, and the extent of optimization of

the squeezed-, and coherent-state Gaussian CV QKD protocols that involve propagation

via free space atmospheric channels (see [3] or Chapter 8 for a copy of the article).

In this paper we focus on a 1.6 km free-space atmospheric channel where variations
of attenuation are caused predominantly by beam wandering (see Sec. 3.2.2). We experi-
mentally test the conjecture that beam wandering induced transmittance �uctuations can
be stabilized by expanding the beam size. To con�rm it, we measure transmittance in
a real free-space atmospheric channel at di�erent settings (in terms of aperture-to-beam
size ratio a/W = 0.25, 0.35, 0.39, 0.75) of beam width. Beams with a wider spot area (i.e.
lower a/W ) cover the aperture more consistently, hence encounter attenuation �uctua-
tions of lower magnitude, but simultaneously endure signi�cantly higher attenuation, as
bigger part of the signal beam is not captured by the aperture. We assess whether the
trade-o� between more stable channel at the cost of additional losses can be successfully
used to enhance the performance of the coherent-state CV QKD protocol.

6.1 Model

We study the e�ect of the beam expansion method on the entanglement (in terms of
logarithmic negativity) of a two-mode squeezed vacuum state, and on the security of the
coherent-state CV QKD protocol with homodyne detection. The analysis of the latter
assumes collective attacks, realistic post-processing β < 1, and is based on puri�cation
using an entanglement-based scheme.

During the experimental test, a grating stabilized continuous wave diode laser has been
used to emit light at 809nm. The width of the beam has been �rst adjusted with the sender
telescope and then sent through a free-space channel of 1.6 km length to the receiver. The
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a
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Figure 6.1: An example of analysis of a single frame from a CCD camera footage. Green
circle represents the aperture area with radius a. The beam spot area is approximated by
a circle with radius W . Blue circle shows the deviation of centers of all de�ected beam
spots captured by the CCD camera. Center of shown beam spot is within 1 standard
deviation σ from the aperture center (green dot).

measurement of the incoming signal on the receiver side has been alternated between a
PIN photodetector, which monitored the transmittance of the atmospheric channel, and
CCD camera that recorded the beam width and �uctuations. The latter, although ap-
proximately, provides an assessment of the parameters of probability distribution that
governs the beam-de�ection distance �uctuations (σ2 in Eq. 3.19). Estimated param-
eters are consequently used for the theoretical description of the channel transmittance
�uctuations due to beam wandering.

Assuming center of the beam is normally distributed around the point at distance d
from the aperture center with variance σ, variation of the beam-de�ection distance r is
determined according to Rice distribution PRice(d, σ). The distribution can be reduced
to log-negative Weibull distribution provided the beam is properly aligned relative to the
aperture center d = 0, which in terms of transmission coe�cient T (the transmittance, or
transmission e�ciency is given by η = T 2) is described by Eq. (3.19). Weibull distribution
is governed by the aperture size a, beam spot size W , and variance of the beam spot
center σ2. Further details regarding evaluation of the Weibull probability distribution are
provided in Sec. 3.2.2.

The footage from CCD has been analyzed to acquire an estimate value of beam spot
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variance σ2, during each setting of a/W . An example of the frame analysis is presented
in Fig. 6.1. To determine the beam spot size we initially discard pixels with low intensity
in each image. A single intensity threshold used for all frames (and all a/W settings) is
chosen empirically with the aim to maintain the normal distribution of the beam center,
maximize the distinguishability of the beam spot, and to preserve the maximum amount
of the data points. Chosen intensity threshold allowed to completely eliminate the cases
when two distinct beam spots in a single frame were recorded. Due to limited camera �eld
of view, for highly expanded beam setting, i.e. low a/W , when the beam spot covered the
aperture entirely or almost entirely, the beam spot shape could not be assessed correctly
and the beam spot center has been identi�ed as in, or close vicinity to the center of the
aperture. Uniform distribution of the intensity in the frame further con�rms the reduction
of the �uctuations and stabilization of the channel transmittance.

An improved quality of beam spot variance estimation can be achieved by extending
the recording time of CCD camera. Furthermore, more precise estimation of the trans-
mittance can be achieved by monitoring the deviation of mean beam spot center from
the aperture center (to employ Rice distribution as in Eq. 3.18). For a more general
treatment, one can also incorporate the e�ect of beam distortion, although the link used
in the experiment does not exhibit strong enough turbulence for beam distortion to be
impactful.

6.2 Main results

In Fig. 6.2 we present the dependency of the key rate on the ratio a/W between the receiv-
ing aperture a = 150mm and the beam spot size W . The experimentally obtained values
are represented by circles and squares, while theoretical predictions, based on log-negative
Weibull distribution, are represented by solid and dashed lines. The latter illustrate the
dependency for the protocol with optimized state variance, while experimental results for
the same protocol are given by blue squares. We show that small beam expansion can
indeed lead to the improvement of the secure key rate of the protocol with �xed mod-
ulation. Minor improvement of the key rate can also be observed for the protocol that
employ optimized modulation. Further expansion of the beam spot, however, signi�cantly
reduces transmittance and consequently the key rate. This con�rms the positive e�ect
of the beam expansion in the fading channel on the CV QKD, though the beam spot
size should be chosen based on given conditions. The method would certainly be more
bene�cial in an atmospheric channel that exhibits stronger turbulence, as predicted in
Fig. 6.2 (bottom). The latter estimates the key rate under di�erent values of beam-spot
�uctuations variance σ2

b . It is evident from the plot, that our method would allow to
restore the security of the optimized protocol at stronger variance σ2

b = 0.4.
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Figure 6.2: Lower bound on the key rate secure against collective attacks in the fading
channel versus aperture-to-beam size ratio a/W :
(top) obtained from the analytical fading distribution (lines) along with the experimental
results (points) versus aperture-to-beam size ratio, with state variance either 7 SNU (solid
black line, red circles) or optimized (dashed black line, blue squares);
(bottom) obtained from the analytical fading distribution at σ2

b = 0.2, 0.3, 0.4 (from top
to bottom) upon optimized modulation variance.
Both plots exhibit 1% SNU of channel excess noise, and 97% post-processing e�ciency.
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Summary

The study shows the viability of real fading channel stabilization by expanding the sig-
nal beam. The method allows to suppress the transmittance �uctuations at the cost of
increased channel loss. Within the parameters of the studied real channel the such stabi-
lization did not improve the nonclassical resource (entanglement), however it allowed to
enhance the key rate of the coherent-state protocol (upon optimal beam expansion).

The suggested method can be successfully used in links exhibiting higher turbulence,
although only up to some extent. Applicability greatly depends on the level of transmit-
tance �uctuations in the channel. For channels with very high turbulence (and high loss)
the �uctuations are small, and suggested stabilization method will not yield any positive
improvements. On the other hand, beam expansion can be bene�cial in mid-range terres-
trial free-space links with relatively high �uctuations and average transmittance levels.

Importantly, the method is autonomous and does not require adaptive control of the
source and detectors based on characterization of beam wandering. Furthermore, it can
also be combined with other methods aimed at stabilization of the �uctuations of the
free-space atmospheric channels.
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7 | Improvement of CV QKD proto-

cols in atmospheric links

This chapter summarizes the main results of the article that explores the applicability,

and the extent of optimization of the squeezed-, and coherent-state Gaussian CV QKD

protocols that involve propagation via free space atmospheric channels (see [4] or Chapter

8 for a copy of the article).

We start with the security analysis of the Gaussian squeezed-state CV QKD protocol
employing homodyne detection (see Ch. 2.2) and established over an untrusted channel
that exhibits transmittance �uctuations. Based on the obtained results we suggest an
accessible and resource-friendly optimization method of the protocol, and further assert
it's e�ectiveness for the realistic atmospheric turbulent channels simulated using a novel
theoretical model.

7.1 Model

Although the generic squeezed-state protocol has already been studied in the fading chan-
nels [108, 285], to acquire a better understanding of the advantages of the non-classical
carrier states, we require an entanglement-based model that allows trusted preparation
side to independently control the available resources. Hence, we adopt the three-mode pu-
ri�cation scheme (described in Chapter. 2.3.1) that employs three single-mode squeezers
and a homodyne detection. Furthermore, we incorporate the e�ect of the fading chan-
nel according to the formalism described in Chapter 2.1.3. The channel is characterized
by mean loss 〈η〉, strength of transmittance �uctuations (fading strength) V ar(

√
η), and

noise ε. We also consider generalized case of composite channel with additional losses η1,2

and noise ε1,2. The overall scheme is shown in Fig. 7.1.
The analysis is initially performed for the general channel with transmittance �uctu-

ations to identify possible optimization techniques. Further, we asses the applicability of
the optimization in realistic atmospheric links. The properties of the link are numerically
simulated for various distances and turbulence strengths based on the novel theoretical
elliptical-beam model of the transmittance probability distribution (see Sec. 3.2.2 for
further details regarding the model).
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Figure 7.1: An entanglement-based CV QKD scheme used for the security analysis. On
trusted preparation side the two oppositely squeezed modes S1 and S2 are coupled on
a balanced beamsplitter. Alice performs homodyne measurements on the output ports
(D1 and D2) of another balanced beamsplitter on which S1 mode and squeezed vacuum
mode S3 have interacted. The signal is sent to Bob via composite untrusted channel
that consists of two �ber channels with �xed losses (η1 and η2), and an atmospheric
channel de�ned by the properties of transmittance probability distribution τ(ηj), namely
by 〈η〉 and Var(

√
η). Bob conducts homodyne measurement (D3), obtaining correlated

string of data with Alice, and they proceed to key sifting, error correction, and privacy
ampli�cation.

7.2 Main results

To distinguish the e�ect of a fading channel on the security of the CV QKD protocols, we
focus on RR and collective attacks, but assume perfect conditions, i.e. noiseless channel
ε = 0, perfect post-processing β = 1, and absence of additional losses η1,2 = 1. We plot
(Fig. 7.2) a dependency of the key rate on the squeezing VS and modulation variance
VM for various values of transmittance �uctuations V ar(

√
η) with mean channel losses

〈η〉 = 1/2, corresponding to short range link. The color indicates the key rate, that starts
from RRR ∈ (0, 0.1) (brightest colored area) and increases by 0.1 with each color shade,
with the darkest shade representing RRR > 0.5.

In the absence of transmittance �uctuations V ar(
√
η) = 0, the addition of squeezing

Vs is always advantageous for Alice and Bob, as it improves robustness to losses and ex-
cess noise in the channel, and consequently the key rate. Apparently, introduction of even
small transmittance �uctuations to the channel immediately imposes limitations on appli-
cable squeezing and modulation, e.g. using signal states with strong squeezing Vs < 0.02

is not compatible with a secure key distribution. As the �uctuations become stronger,
the ranges of values, allowing to maintain the security of the protocol, continue to shrink.
Optimization of squeezing and modulation is required to improve or, for certain channel
parameters, restore the performance of the protocol. In realistic conditions of noisy chan-
nel ε 6= 0, limited post-processing e�ciency β < 1, stronger mean losses 〈η〉 or composite
channel η1,2 < 1 the need for squeezing and encoding alphabet size optimization is stressed
yet further. Crucially, optimal performance can be reached by a feasible squeezing for a
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Figure 7.2: Positive key rate (in bits per channel use) for squeezing Vs, modulation vari-
ance Vm and fading strength Var(

√
η), 〈η〉 = 1/2, εatm = 0. The key rate values range from

0 < R 6 0.1 (lightly shaded areas) to R > 0.5 (darkest shaded areas) with 0.1 step. In
atmospheric channel with weak turbulence once can expect to observe V ar(

√
η) ≤ 0.01,

while under strong turbulence at least V ar(
√
η) > 0.04

nonvanishing V ar(
√
η).

Optimization of the generic squeezed-state CV QKD protocol, where modulation and
squeezing are mutually �xed (and security analysis is based on conventional entanglement-
based scheme, (see Ch. 2.2) allows to reach highest key rate for given channel parameters
just as well, as the scheme used in our analysis, where the squeezing and modulation
can be optimized separately. However, our results can be directly translated to P&M
schemes, used in practical implementations, and support more adaptable use of resource.
In other words, our results show that one can achieve a key rate equivalent to the obtained
using an entanglement-based scheme, but with less squeezing, compensating by applying
modulation of higher variance.

An example of optimization advantages in realistic conditions is shown in Fig. 7.3,
where the performance of the squeezed- (with feasible maximal squeezing values V max

s =-
3, and -10 dB) and the coherent-state protocols in a short atmospheric urban link are
compared. The channel parameters have been simulated based on the monitoring data of
structure constant of refractive index of air C2

n, performed in another experiment [286].
The coherent-state protocol (triangles) can be successfully implemented only during suit-
able atmospheric conditions (around 5am and 5pm). The squeezed-state protocol with
limited squeezing V max

s = −3dB and smaller block size can on average be used during the
whole day with an exception of possible temporary signal loss around 10am. However,
increasing the block size and/or maximal squeezing V max

s , would have allowed to operate
over such short atmospheric link continuously throughout the whole monitoring period.
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Figure 7.3: Optimized secure key rate of the coherent-state protocol (green triangles), and
the squeezed-state protocol (blue circles, and blue squares) in 2.2 km long atmospheric
channel. Each point on the plot was obtained for the transmittance distribution simulated
using the averaged (over 4 months period) hourly statistics of structure constant of refrac-
tive index of air C2

n. Finite-size e�ects are considered for block sizes of n = 106 (dashed
lines) and n = 1010 (solid lines). The squeezed-state protocol has been optimized over
both modulation Vm and squeezing Vs, with the upper limit on the latter V max

s = −3dB
(circles), V max

s = −10dB (squares). Excess noise ε+ = 1%, e�ciency β = 95%, additional
losses (imposed by the composite channel) η1η2 = −2.2dB.

The squeezing is also more advantageous in better atmospheric conditions, which is illus-
trated by the fact that for the protocol, that has higher values of attainable squeezing
V max
s = −10dB, the di�erence between global maxima and minima is greater than for

any other protocol.

Our research also considers short -distance links exhibiting excess noise (Ch. 3.1.4)
in atmospheric channels with di�erent lengths and turbulence strengths. We con�rm
that both the coherent-, and the squeezed state protocols can be established over short
atmospheric links, even in presence of substantial excess noise and untrusted losses. Anti-
squeezing noise have been shown to improve the key rate, provided the fading strength
V ar(

√
η) is low, i.e. for short communication distances, but can contribute to the eaves-

dropper at longer distances, or under stronger transmittance �uctuations. The use of
feasible levels of squeezing always enhances the performance of the protocol, and sup-
ports distribution on longer distances in noisier channels comparing to the coherent-state
protocol. While modulation optimization is sensible for all channel conditions, squeezing
optimization becomes relevant only at longer distances or stronger turbulence.
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Summary

We have analyzed the e�ect of transmittance �uctuations on the squeezed- and the
coherent-state protocols, and have shown that such �uctuations limit maximal appli-
cable values of squeezing and modulation variance. Based on the analysis, we discover
an accessible and resource-friendly optimization method. We con�rm the viability of the
optimization, and show the performance improvement in terms of secure key rate increase,
reduction of the downtime of the protocol, and expanding the range of atmospheric con-
ditions, communication distances, and levels of additional losses and noise suitable for
generating secure key.

Importantly, the optimization is compatible with other methods for improvement of
CV QKD performance in free space, such as beam-tracking [223], adaptive optics [222],
post-selection [108, 186, 287], channel multiplexing [195, 198, 288], etc. Next step towards
this free-space novel quantum key distribution technique is an experimental veri�cation
of the functionality of the free-space squeezed-state protocol which will stimulate further
theoretical and experimental developments and practical implementations.
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The role of the side channels in the continuous-variable quantum key distribution is studied. It is shown how
the information leakage through a side channel from the trusted sender station increases the vulnerability of
the protocols to the eavesdropping in the main quantum communication channel. Moreover, the untrusted noise
infusion by an eavesdropper on the trusted receiving side breaks the security even for a purely attenuating main
quantum channel. As a method to compensate for the effect of the side-channel leakage on the sender side, we
suggest several types of manipulations on the side-channel input. It is shown that by applying the modulated
coherent light on the input of the side channel that is optimally correlated to the modulation on the main signal
and optionally introducing additional squeezing in the case of the squeezed-state protocol, the negative influence
of the lossy side channel on the sender side can be completely removed. For the trusted receiving side, the method
of optimal monitoring of the residual noise from the side-channel noise infusion is suggested and shown to be
able to completely eliminate the presence of the noisy side channel. We therefore prove that the side-channel
effects can be completely removed using feasible operations if the trusted parties access the respective parts of
the side channels.

DOI: 10.1103/PhysRevA.93.032309

I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is a major commu-
nication application of quantum information theory aiming at
the development of protocols for establishing secure channels
protected by the laws of quantum physics. Such channels can
then be used to share a secure key for classical symmetrical
cryptographic systems. Recently, continuous-variable (CV)
[3] protocols of QKD (see [4] for review) were developed
and implemented on the basis of squeezed [5–7] or coherent
[8–12] states. The security of CV QKD protocols in the case of
Gaussian modulation was then shown against collective attacks
in the presence of channel noise [13,14], which also implies
the security against the most general coherent attacks [15,16].

Continuous-variable QKD protocols, however, suffer from
various imperfections. The most threatening are the untrusted
(i.e., being under full control of a potential eavesdropper)
quantum channels, which are inclined to losses due to the
attenuation and can add excess noise in the link. Such noise
can also be detection noise indistinguishable from the effect
of the channel. In security analysis it is then supposed that
all the channel imperfections are due to the presence on an
eavesdropper. It was an important step in the development
of CV QKD when with the use of reverse reconciliation it
was shown possible to establish asymptotically secure key
transmission upon any pure channel loss [9], while noise
remains limiting to the security of the protocols.

However, the insecure quantum channel is not necessarily
the single source of information leakage from a QKD protocol.
A potential eavesdropper can use imperfections of the trusted
(i.e., fully controlled by the trusted parties) devices such as
sources and detectors to gain at least partial information on
the signal being sent or to control the measurement being

*ivan.derkach01@upol.cz
†usenko@optics.upol.cz
‡filip@optics.upol.cz

performed at the receiver station. The noise, which is present
on the trusted sides, can be fully controlled and calibrated by
the trusted parties. Such noise, however, can still be harmful. It
was shown in particular that the preparation noise can already
break the security in the reverse reconciliation protocol [17],
but can be suppressed [18] or tolerated in the direct reconcil-
iation scheme [19,20]. Also, the trusted detection noise limits
the key rate, but can be partially helpful to make the protocol
more robust against noise in the quantum channel [21,22].

In the less optimistic scenario the noise or loss on the
trusted sides can however be under partial control of an
eavesdropper, as depicted in Fig. 1(a). This is the case of
the side channels, which we define as auxiliary channels that
have either input or output controlled by a trusted party but
output or input, respectively, controlled by an eavesdropper.
From this point of view, the side channels differ from the
main channel between the sender and receiver. Supposedly,
any additional information can be used by an attacker to
increase the knowledge about the transmitted key. Therefore,
it is necessary to investigate the influence the side channels
can have on security. In the following study we summarize all
possible sources of side information and define them together
as the side channels on either the sender or the receiver side of
the protocol.

One possible way to overcome the negative influence of
the side channels is implementing the so-called measurement-
device-independent (MDI) QKD protocols [23], which were
recently suggested on the basis of CVs [24,25], where the
trusted detection stations become shielded from a poten-
tial eavesdropper. However, the applicability of the device-
independent CV QKD protocols is still very limited, particu-
larly in terms of distance.

In the present paper we study the effect of the side channels
in CV QKD protocols with coherent and squeezed states of
light. We define the side channels as the imperfections (signal
loss and noise) on the trusted sides, which are under partial
control of an eavesdropper. In particular, we consider (A) the
leakage from the trusted sender station and (B) measurement
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manipulation by the noise addition in the trusted receiver
station. We show the degradation of the key rate and increase
of vulnerability to the channel noise in the presence of a
side-channel leakage. We also show a security break from the
noisy side channel on the detection stage. We suggest methods
to compensate for the negative influence of the described side
channels. For (A) we consider the possibility to classically
apply an additional correlated signal on the side-channel input,
which is under control of a trusted sender party. We show
the positive effect of such additional modulation and the
possibility to optimize the modulation variance for the given
parameters of the protocol. Moreover, we show that by apply-
ing correlated information encoding and squeezing the input
of the side channel, in the case of the squeezed-state protocol,
the trusted party is able to completely decouple the side
channel from the signal. By decoupling here we mean
decorrelation (reducing or turning the correlation to zero)
and stopping the leakage of information through the side
channel, which completely removes the negative impact of
the side channel. For (B) we show the possibility to cancel
the infused detection noise by monitoring the output of
such a noise-infusing side channel. These are the alternative
ways of active compensation of the side channels in the
Gaussian CV QKD protocols with the trusted sender and
receiver stations, which keep the advantage of usability of such
protocols, including the longer channel distances, compared to
the device-independent protocols [23–25], and do not involve
entanglement or non-Gaussian operations and measurements.
If for any reason the input of the sender-side leakage or the
output of the receiver-side noise infusion are not available
for the manipulations or monitoring, respectively, then the
negative impact of the side channels shown in the current paper
has to be either taken into account in the security analysis or
compensated for by the possible use of the MDI schemes.

The paper is structured as follows. In Sec. II we define the
side channels and recapitulate the methods of CV QKD secu-
rity analysis being used. In Sec. III we demonstrate the negative
impact of the side channels on the CV QKD security. In Sec. IV
we introduce the methods aimed at compensating for the
negative effect of the side channels. We summarize in Sec. V.

II. TYPES OF SIDE CHANNELS

We study the effect of the side channels on the standard
and optimized CV QKD protocols [7,26,27] on the basis of
the Gaussian modulation of squeezed and coherent states, as
depicted in Fig. 1(a). The trusted sending side (Alice) prepares
the signal state (squeezed or coherent) with variance VS (so that
VS < 1 or VS = 1, respectively) using the source S. Alice then
applies random Gaussian quadrature displacement of variance
VM (also referred to as the modulation variance), so that the
overall variance of the modulated states becomes V , using the
modulator M. The prepared state travels through the untrusted
channel parametrized by transmittance (loss) η and excess
noise ε both being under full control of an eavesdropper (Eve).
The signal is then detected by the remote receiving party
(Bob) using the homodyne detector H. Further, with no loss
of generality, we assume that the quadrature x is measured
by Bob. Thus, in the standard Gaussian CV QKD protocol
(without the side channels) Alice applies displacement xM

C

S M H

SV V

NV

S M H

SV V

CEve
,

NV
Alice

Alice

Bob

Bob

Eve

A

(a)

B

B

(b)

A

B

S

S

A

FIG. 1. (a) Scheme of the CV QKD based on signal state
preparation in the source S and Gaussian quadrature displacement
applied in the modulator M. The untrusted channel is parametrized
by transmittance η and excess noise ε. The signal is coupled to the
lossy side channel SA with untrusted output on the sender side and
to the noisy side channel SB with untrusted input of variance VN on
the receiving side. The remote trusted party performs measurement
with the homodyne detector H. The trusted devices and channels are
within the dashed boxes. (b) Scheme of the CV QKD with sender-side
leakage modeled as coupling of the signal to a vacuum mode on a
beam splitter with transmittance ηA. The receiver-side untrusted noise
infusion is modeled as coupling to a noisy mode with variance VN

on a beam splitter with transmittance ηB . The untrusted channels are
within the dashed box.

to the signal quadrature xS and sends the state with the
quadrature xA = xS + xM to the channel so that the variances
are Var(xA) = V , Var(xS) = VS , and Var(xM ) = VM and then
VS + VM = V . In the standard Gaussian CV QKD squeezed-
state protocol [26] the signal states are modulated up to the
antisqueezing (variance of the quadrature complementary to
a squeezed one), so VM = 1/VS − VS holds, i.e., the variance
of modulation is fixed by squeezing of the signal states. We
will also consider the optimized Gaussian CV QKD protocols
[7,27], where modulation VM is independent of the variance of
the signal states and can be freely optimized for a given signal
resource and parameters of the setup. The quantum channel
transforms the modulated signal such that Bob measures the
quadrature xB = (xA + xN )

√
η + x0

√
1 − η, where x0 is the

quadrature of the vacuum input of the channel loss and xN is
the quadrature of the channel excess noise with the variances
Var(x0) = 1 and Var(xN ) = ε.

Note that the trusted parties must know the channel
parameters to assess the security of the protocols and therefore
the channel must be properly estimated. While the issue of
the channel estimation was recently studied in the finite-size
context [28], in the present paper we focus on the side-channel
effects and assume that the channel parameters are already
known to the trusted parties. The channel estimation is still
possible in the presence of the side channels because the
side-channel parameters (losses and noise) can be estimated
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independently by the local measurements on the trusted sides.
This also allows us to consider the protocols based on the
preparation and measurement of a single quadrature (e.g.,
x), while the channel estimation would require additional
modulation and measurement in the complementary one.
Moreover, since the methods of the side-channel compensation
suggested below do not change the data ensemble size (defined
by the signaling and detection rate), the finite-size effects
[28,29] would not qualitatively change the results of the paper.

Two types of side channels are considered in our study as
shown in Fig. 1(a). The first one (further also referred to as the
type-A side channel) is the sender-side side-channel leakage,
when a vacuum mode is coupled to the signal and only the
output of the coupling CA is accessible by an eavesdropper.
An eavesdropper Eve has no control of the side-channel input
and of the strength of the coupling, thus the input state of such
a side channel is initially vacuum. Eve however receives the
side-channel output similarly to noninvasive passive attacks
in classical cryptography [30]. The sender (Alice), on the
contrary, has full control of the input of such a side channel
before the coupling CA. The second type of side channel
(further also referred to as the type-B side channel) is untrusted
noise addition in the receiver station. In this case an untrusted
noise with variance VN is supposedly prepared by Eve and
coupled to the signal prior to detection with the output of
the coupling being inaccessible to the eavesdropper. The
eavesdropper is not able to change the coupling strength. On
the contrary, the receiving side (Bob) is able to control (e.g.,
measure) the output of the coupling CB . In both the cases we
assume that the trusted parties are not able to directly remove
the side channels or change the coupling strengths (CA and
CB , respectively).

These are the two main types of possible semitrusted
side channels, while the completely trusted noise is covered
by previous research [17,18,21,22] and completely untrusted
noise can be attributed to the channel. Moreover, the noise
infusion on the sender side (symmetrical to the type-B side
channel on the receiver side that is considered in the present
paper) is equivalent to the additional noise in the untrusted
channel. At the same time the side-channel loss on the receiver
side (symmetrical to the type-A side-channel loss on the sender
side that is also considered here) is equivalent to the additional
loss in the untrusted channel. Thus, our analysis covers
the main possible semitrusted side channels based on the
two-mode interaction in the prepare-and-measure CV QKD.

We do not consider any specific physical realization of the
side channels applying our analysis to the general case of
semitrusted side channels based on the linear-optical mode
interaction. However, the side channels can be expected in
any real implementation of CV QKD in either fiber [7,11]
or free-space channels [31,32], where coherent and squeezed
states were successfully transferred. The sender-side leakage
can take place in particular in the case of imperfect modulation,
e.g., when the signal is mixed with a temporal, spectral,
polarization, or spatial mode, which then leaves the sender
station. The receiver-side noise infusion may, e.g., be caused
by imperfect light collection from a free-space channel with a
background radiation.

Linear optical crosstalk is well studied in the classical
optical communications where it is present in the multiplexed

channels and receivers [33], but was also reported in the quan-
tum communications [34]. Linear coupling represented by the
beam-splitter transformation is generally used to model the
interaction of a quantum-optical system with the environment
[35]. Therefore, in our work we use the typical linear optical
interaction and model the mode coupling between the signal
and the side channels as the beam splitters [see Fig. 1(b)].
The type-A side channel is modeled as coupling to a vacuum
mode on a beam splitter with transmittance ηA. On the other
side we model the type-B side channel as coupling to a
thermal noise mode with variance VN on a beam splitter with
transmittance ηB . In the case of the sender-side leakage (type-
A) side channel the quadrature that enters the quantum channel
is then changed to x ′

A = xA
√

ηA + xSCA

√
1 − ηA, where xSCA

is the quadrature value of the vacuum state on the input of the
beam splitter Var(xSCA) = 1. In the case of the noise-infusing
(type-B) side channel the output of the quantum channel is
changed as x ′

B = xB
√

ηB + xSCB

√
1 − ηB , where xSCB is the

input noise of the type-B side channel with Var(xSCB) = VN .
In the analysis of the negative impact of the side channels

on CV QKD and the methods to compensate for such impact
we mainly study the security against collective attacks, which
in the asymptotic limit were shown to be no less effective
than the most general coherent attacks [36]. In this case Eve
performs the optimal collective measurement on the accessible
modes after the process of bases reconciliation is completed,
implying that Eve attaches a separate uncorrelated probe to
each transmitted state and keeps probes in a quantum memory
until she can gather additional information. To obtain simple
insight into the conditions for insecurity of the protocols
we also study the security against individual attacks, in which
case Eve is limited by the individual measurement on the
accessible modes. This weaker security analysis allows us to
analytically derive the regions of insecurity of the protocols
in the presence of side channels since insecurity against
individual attacks implies insecurity against the more effective
collective attacks.

Following the generalization of the Cziszár-Körner theorem
[37] on the quantum measurements performed by Devetak and
Winter [38], the protocol is secure if the mutual information
between the trusted parties exceeds the information available
to Eve on the data on the trusted receiver side (which is the case
of reverse reconciliation, which is more stable against channel
loss [9]). The security is then described by the positivity of the
lower bound on the key rate, which in the case of collective
attacks reads

K = βIAB − χBE, (1)

where β ∈ (0,1) is the postprocessing efficiency and χBE is
Holevo bound that determines Eve’s achievable information
limit in the case of collective attacks [13,14]. The efficiency
β depends on the effectiveness of the data postprocessing
algorithms that are being used in the secure key distillation
given the particularly low signal-to-noise ratio. We set β as an
independent parameter and do not consider any particular post-
processing algorithm. In the following analysis we therefore
fix the reconciliation efficiency as β = 0.95, which is realistic
taking into account the recent progress in the error-correcting
algorithms for the Gaussian-distributed data [39].
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The Holevo bound can be expressed as χBE = S(γE) −
S(γE|B) through the von Neumann entropy S(γE) of the
generally multimode state (including the side channels), which
is available to Eve for the collective measurement described
by the respective covariance matrix γE , and the von Neumann
entropy S(γE|B) of the state available to Eve conditioned on the
measurement results of the remote trusted party Bob [40] and
described by the covariance matrix γE|B . Covariance matrices
are the matrices of the second moments of quadratures of
the form γij = 〈rirj 〉 − 〈ri〉〈rj 〉, where ri = (xi,pi)T is the
quadrature vector of an ith mode. Along with the first mo-
ments, the covariance matrices explicitly describe the Gaussian
states and are sufficient for the security analysis of the Gaussian
protocols [13,14] due to the extremality of the Gaussian states
[41]. We analyze the security against the collective attacks
using the most general purification method [40], where the
equivalent entanglement-based representation of the protocols
is used and all the state imperfections corresponding to the
side channels and the main channel are attributed to Eve.

In the case of individual attacks the upper bound on the
information available to an eavesdropper is given by the
Shannon mutual information IBE instead of the Holevo bound
and the lower bound on the key rate (in the optimistic case
of perfect postprocessing efficiency) reads Kind = IAB − IBE .
Details of calculations for security analysis in the cases of both
individual and collective attacks are given in the Appendix,
while here we present the main expressions and results. In the
next section we study the negative impact of the side channels
on CV QKD.

III. NEGATIVE EFFECT OF SIDE CHANNELS

A. Side-channel loss on the trusted sender side

Let us first consider the type-A side channel. We start by
analyzing the region of insecurity of the protocol with respect
to the individual attacks and without the untrusted channel
noise. The mutual information in this case reads (see the
Appendix for details)

IAB = 1

2
log2

1

1 − ηAηVM

ηAη(V −1)+1

, (2)

while the information available to Eve reads

IBE = 1

2
log2

[ηAη(V − 1) + 1][V − ηAη(V − 1)]

V
(3)

and is independent of the signal states (squeezed or co-
herent). As can be seen, the side channel decreases the
mutual information between the trusted parties and increases
Eve’s information, therefore limiting the key rate already for
individual attacks with pure channel losses.

In the optimal (given perfect postprocessing β = 1) limit
of infinite squeezing and modulation (V → ∞) upon pure
channel loss (ε = 0) the key rate for the standard Gaussian
CV QKD protocol can be written as

KV →∞ = λ log2
1

1 − ηAη
, (4)

where λ = 1 for the squeezed-state protocol and λ = 1/2 for
the coherent-state one. The channel transmittance η is therefore
effectively decreased by the side-channel coupling ηA. Thus

FIG. 2. Maximum tolerable excess noise dependence on the
channel losses (on a dB scale) and the type-A side-channel coupling
ratio ηA for the standard squeezed-state (top) and coherent-state
(bottom) protocols. Here β = 1 and V = 103.

the presence of the type-A side channel does not break the
security, i.e., the key rate remains positive for any nonzero
value of ηA, as one would expect, because the channel remains
purely lossy.

If the channel noise is present, then the side-channel loss
increases the sensitivity of the protocol to the channel noise
already in the case of the individual attacks. In the limit of
strong modulation V → ∞ and strong channel loss η 	 1,
the maximum tolerable channel noise is εmax = ηA/2 for the
standard coherent-state protocol and εmax = ηA for the stan-
dard squeezed-state protocol with arbitrarily strong squeezing.

In the case of collective attacks (see the Appendix for
details) the side-channel leakage on the trusted sender side
also lowers the key rate and substantially reduces the tolerance
to the channel excess noise, which is clearly visible in
Fig. 2, where the maximum tolerable channel excess noise
εmax (in shot-noise units, which are the variance of vacuum
fluctuations) is plotted versus channel transmittance and side-
channel loss for the standard CV QKD protocols with strong
modulation.

B. Noise infusion on the trusted receiver side

The performance of the protocols is different in the case of
the type-B side channel. In this case the presence of additional
noise VN coupled to a signal can lead to the security break
already for the purely attenuating channel (i.e., when ε = 0).
The mutual information between the trusted parties in this case
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is reduced by the noise VN and reads

IAB = 1

2
log2

1

1 − ηηBVM

ηB (ηV +1−η)+(1−ηB )VN

. (5)

The security break can be observed already in the case
of individual attacks upon pure channel loss. Eve’s upper
bound on the leaking information depends only on the overall
variance V and reads

IBE = 1

2
log2

ηB(ηV + 1 − η) + (1 − ηB)VN

ηBV

η+(1−η)V + 1−ηB

VN

. (6)

In the limit of strong modulation V → ∞ and strong channel
loss η 	 1 the bound on the side-channel noise for either the
squeezed- or coherent-state standard CV QKD protocol reads

V max
N

∣∣V →∞
η	1 = 1

1 − ηB

. (7)

In the more general case of collective attacks the side-
channel noise VN not only undermines the tolerance of the
protocol to the channel noise ε, but also leads to the security
break contrary to the type-A side-channel leakage. This can be
seen from the profiles of the maximum tolerable channel noise
in the case of VN = 1.05, i.e., when the input of the type-B side
channel only slightly exceeds the shot-noise variance as shown
in Fig. 3. Note that the squeezed-state protocol appears to be

FIG. 3. Maximum tolerable excess noise dependence on the
channel losses (on a dB scale) and the type-B side-channel coupling
ratio ηB for the standard squeezed-state (top) and coherent-state
(bottom) protocols. Here β = 1, V = 103, and the side-channel noise
variance VN = 1.05.

more stable against the side-channel noise infusion (its security
region is larger in terms of the tolerable channel loss and
side-channel coupling at the given VN ). Thus, the presence of
the side-channel leakage or noise infusion makes the protocol
more sensitive to the channel noise and can even break the
security for the purely attenuating channel. In the next section
we suggest the methods to compensate for negative effects by
manipulations at the trusted sides and without affecting the
untrusted quantum channel.

IV. DECOUPLING OF SIDE CHANNELS

A. Side-channel loss on the trusted sender side

We suggest that the trusted sender (Alice) should look for
the input of the type-A side channel in the case it cannot
be removed completely and then apply state manipulation on
the side-channel input [see Fig. 4(a)]. Three options can be
considered depending on the accessibility of the side channel
and technical ability of Alice.

First, Alice can infuse Gaussian thermal noise to the side
channel by replacing the vacuum input of the side channel with

S M H
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NVstate
manipulation

Alice Bob

Eve H’

BA

NSV
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(b)

M2

Mx
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SCAx
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Ax Bx

NMx NMV
M2Mkx

S2

SV

1 32

data
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FIG. 4. (a) Methods aimed at compensating for the negative
impact of the side channels: state manipulation on the input of the
type-A sender-side lossy side channel and monitoring of the output
of the type-B receiver-side noise-infusing side channel using the
monitoring homodyne detector H′ and subsequent data manipulation
involving also the measurement results from the main homodyne
detector H. (b) Types of state manipulation on the input of the type-A
side channel: 1 (left), noise infusion using the source S2 producing a
thermal state with variance VNS ; 2 (middle), controllable uncorrelated
modulation on the side-channel input using the modulator M2; and
3 (right), controllable correlated modulation with displacement kxM

proportional to the modulation of the main signal using the modulator
M2. In the case of the squeezed-state protocol to achieve complete
decoupling of the side channel the side-channel input should be
replaced by the squeezed state with variances VS and 1/VS using the
source S2 prior to the modulator M2. In the case of the coherent-state
protocol such preparation is not needed and the source S2 needs not
to be used.
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FIG. 5. Key rate secure against collective attacks versus distance
in a standard telecom fiber (with an attenuation of −0.2 dB/km) for
the squeezed-state protocol with VS = 0.1 (left) and the coherent-state
protocol (right) in the presence of the type-A side channel ηA = 0.4
and no compensating methods (red dotted lines), with optimized
unknown noise on the input of the channel (green upper dotted
line for the coherent-state protocol), with optimized uncorrelated
modulation on the input of the side channel (blue dashed lines), with
optimized correlated modulation on the input of the side channel and
no additional source S2 (coincides with the blue dashed line for the
squeezed-state protocol), and in the perfect case in the absence of
the side channel, i.e., ηA = 1 (solid black lines). The latter curve
overlaps with the ones for the optimized correlated modulation for
the coherent-state protocol, for the optimized correlated modulation
and squeezing of the side-channel input, and for the optimized
uncorrelated modulation and squeezing on the input of the side
channel for the squeezed-state protocol. Here β = 0.95, ε = 5%, and
the modulation variance VM is optimized for the given parameters.

the source of noise with variance VNS [see Fig. 4(b), left]. The
efficiency of such method is however very limited. Indeed,
such noise reduces the mutual information

IAB = 1

2
log2

1

1 − ηAηVM

η[ηAV +(1−ηA)VNS ]+1−η

. (8)

However, it also, to some extent, decreases the Holevo quantity
due to a partial decoupling of the side channel from the main
channel, but at the same time acts as a preparation noise
[18]. Thus, the addition of such unknown noise is of limited
helpfulness, when the main channel has low loss, i.e., is short
distance. Moreover, for the squeezed-state protocol, where
the Holevo bound is effectively minimized by squeezing, the
reduction of the mutual information due to the presence of
additional noise appears to be more harmful, so mostly the
unknown noise on the input of the side channel has either
no or a very limited positive effect. This can be seen from
the graphs in Fig. 5, where the key rate is plotted versus
distance d = −50 log10 η in a standard telecom fiber with
attenuation of −0.2 dB/km (here and in the following we
plot the key rate in bits per measurement). The improvement
for the coherent-state protocol is small but visible [upper
(green) dotted line compared to the lower (red) dotted one],
while the improvement for the squeezed-state protocol is
negligible (the corresponding curve overlaps with the one with
no manipulation on the side-channel input performed, given
as the dotted red line).

Second, Alice can use the additional modulator M2 on
her side to control the input of the side channel. Alice’s
modulation therefore shifts the quadrature of the side-channel
input xSCA. Let us assume that the additional modulation
(displacement) on the input of the type-A side channel is
independent from the main modulation performed on the
signal, but is known to Alice and contributes to her data and

to the correlation with Bob [see Fig. 4(b), center]. We can
write the change of the input of the lossy side channel in
terms of the x quadrature (calculations for the case when the p

quadrature is modulated and measured will be equivalent) as
x̃SCA = xSCA + xNM , where xNM is the shift, known to Alice,
with variance Var(xNM ) = VNM .

The mutual information between the trusted parties in this
case is increased:

IAB = 1

2
log2

1

1 − η(
√

ηAVM+√
1−ηAVNM )2

(VM+VNM ){η[ηA(V −VNM )−ηA+ε]+1}
(9)

due to increased correlations between the trusted parties.
However, it simultaneously decorrelates (reduces the corre-
lation with the main signal mode) the output of the side
channel and increases the information leakage from the main
channel. Therefore, such additional uncorrelated modulation
on the input of the side channel VNM can play a positive
role mainly when the side channel is strong enough (typically
ηA < 0.8) because otherwise the information leakage from
the main channel prevails over the positive role of decoupling.
Moreover, the modulation variance VNM must be optimized
for the given setup parameters. However, such a method
can significantly increase the secure distance of the protocol
especially for the coherent-state protocol, as can be seen from
Fig. 5, where the corresponding key rate is given as the blue
dashed lines.

Third, we suggest the method of correlated modulation
on the input of the side channel and optionally additional
squeezing of the side-channel input in the case of the squeezed-
state protocol. Importantly, the method uses only the classical
correlation of the Gaussian quantum states; no entanglement
is required. The method as we show below allows (i) complete
decoupling of the modulation from the side channel (no
fraction of the modulation data appears on the side-channel
output) and (ii) complete decorrelation of the side-channel
output from the signal mode. These effects allow one to restore
the performance of the protocol and thus completely remove
the negative influence of the type-A side channel.

Indeed, Alice can apply the weighted correlated displace-
ment on the input of the side channel [see Fig. 4(b), right]
with the factor k so that the input of the side channel becomes
x̃SCA = xSCA + kxM . After the coupling between the signal
and the modulated side-channel input the quadratures are
x ′

A = xS
√

ηA + xSCA

√
1 − ηA + xM (

√
ηA + k

√
1 − ηA) and

x̃ ′
SCA = xSCA

√
ηA − xS

√
1 − ηA + xM (k

√
ηA − √

1 − ηA). It
is easy to see that when k = √

(1 − ηA)/ηA ≡ kopt the outputs
of the side-channel coupling become x ′

A = xS
√

ηA +
xSCA

√
1 − ηA + xM/

√
ηA and x̃ ′

SCA = xSCA
√

ηA −
xS

√
1 − ηA. Therefore, due to the destructive interference

effect, the untrusted output of the side channel contains
no information on the signal displacement xM , i.e., the
side channel is completely decoupled from the modulation.
Then, in the case of the coherent-state protocol, since
Var(xSCA) = VS = 1 the correlation between the outputs
of the side channel in the regime of optimal correlated
modulation with kopt vanishes, i.e., Cov(x ′

A,x̃ ′
SCA) = 0, and

the output of the side channel, containing already no encoded
information, becomes in addition completely decorrelated
from the signal mode. The eavesdropper therefore cannot
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FIG. 6. Equivalent scheme of the method [depicted in Fig. 4(b),
right] in the case of the optimal correlated displacement with
k = √

(1 − ηA)/ηA applied to the input of the side channel. The
side channel is effectively moved to the signal state prior to the main
modulator M and the displacement on the signal is scaled as xM/

√
ηA.

The source S2 should be present in the squeezed-state protocol to
achieve the complete decoupling of the side channel.

profit from such the side channel. Importantly, both conditions
above (decoupling the modulation and decorrelating the side
channel) are required to fully eliminate the side-channel effect.
In the case of the squeezed-state protocol the decorrelation is
achieved upon the additional manipulation on the input of the
side channel prior to the modulation so that the vacuum state
is replaced by the squeezed state with variances (VS,1/VS),
equivalent to the signal state. Using this generated squeezing
in addition to the optimal correlated modulation, the output
of the side channel is completely decorrelated from the signal
mode for the squeezed-state protocol as well.

Interestingly, in the regime of the optimal modulation with
kopt the scheme becomes equivalent to the side-channel attack
on the signal prior to modulation; the latter then becomes
scaled by 1/

√
ηA as shown in Fig. 6. In other words, the optimal

correlated displacement with kopt shifts the side-channel attack
from the modulated signal to the signal state before the
modulation. This is in fact an additional type of side-channel
attack that can also take place independently of any other
side-channel attacks. It is easy to see that in the case of the
coherent-state protocol such an attack yields no additional
information for Eve because the correlation between the output
of the side channel and the signal mode after the interaction
CASA

= √
ηA(1 − ηA)[VS − Var(xSCA)], which is proportional

to the difference of variances of the incoming modes, becomes
exactly zero [similarly to the method of decoupling Eve
from the main quantum channel (see [42])]. In the case of
the squeezed signal, however, such an attack on the signal
states leads to the nonzero correlation between the signal
state and the side-channel output and this reduces the security
of the squeezed-state protocol, which, nevertheless, remains
superior to the coherent-state one in terms of key rate, distance,
or tolerable excess noise. Therefore, e.g., for VS = 0.1 the
optimally correlated displacement appears to be less effective
than the uncorrelated one (Fig. 5). This can be overcome if
Alice is able to substitute the vacuum input of the side channel
by a squeezed state with the same squeezing as the signal state,
i.e., Var(xSCA) = VS should hold. In this case the correlations
between the squeezed signal states and the side-channel output
upon kopt vanish and the type-A side channel can be fully

decoupled for the squeezed-state protocol as well. For details
of the calculations see the Appendix.

The correlation between Alice and Bob in the regime
of optimal modulation with kopt changes to VM/

√
ηA (prior

to the main channel). Thus the key rate for the same VM

in the regime of complete decoupling of the type-A side
channel is quantitatively different from the key rate of
the protocol with the same modulation and in the absence
of the side channel. However, in the regime of imperfect
postprocessing, i.e., β < 1, the modulation variance needs to
be optimized. With this optimization performed the protocol
with the complete decoupling of the type-A side channel
becomes fully equivalent in terms of the maximum key rate,
tolerable channel loss (or, equivalently, maximum distance),
and tolerable channel excess noise to the protocol without the
type-A side channel and with optimized modulation for a given
β. This leads in particular to the overlap of the curves for the
two protocols in Fig. 5, where optimized key rates for the
methods of the noncorrelated modulation and of the unknown
noise infusion are also given for comparison. Therefore, by
optimal decoupling of the type-A side channel using only the
correlated modulation and optionally squeezing on the input
of the side channel one can completely remove its negative
influence with no entanglement between the main channel and
side channel being required.

Note that the uncorrelated modulation can be also combined
with squeezing on the input of the side channel. This
combination in the case of the squeezed-state protocol greatly
improves the method of uncorrelated modulation, making it
(provided the modulation is optimized) almost as effective
as the method of optimized correlated modulation combined
with squeezing (on the plots in Fig. 5 the corresponding line
in the plotted region of parameters overlaps with the black
solid line corresponding to the absence of the side channel
and the difference corresponding to the limited performance
of the method can only be seen for very low values of the
key rate, which are irrelevant due to unavoidable finite-size
effects [28,29]).

B. Noise infusion on the trusted receiver side

In the case when Eve couples an additional noise to the
signal prior to the detection at Bob’s side, the monitoring of
the coupling output, which is not accessible to Eve, can be
used. Then, by applying the proper manipulation on the data
from the main detector and from the monitoring detector, the
negative influence of the type-B side channel can also be fully
compensated for.

We suggest the method of weighted subtraction of data
from the main and the monitoring detector and show that
the resulting measurement is free from the influence of the
type-B side channel. Indeed, if the main homodyne detector H
(see Fig. 4) after the noise-infusing side channel measures
the quadrature x ′

B = xB
√

ηB + xSCB

√
1 − ηB , where xB is

the output of the main quantum channel and xSCB is the
noise quadrature of the type-B side channel input with
Var(xSCB) = VN , and the monitoring detector H′ measures
the quadrature x ′

SCB = −xB

√
1 − ηB + xSCB

√
ηB , then the

weighted difference �x = gx ′
B − g′x ′

SCB (and similarly for
the p quadrature) is free from the influence of the side channel
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for g = √
ηB and g′ = √

1 − ηB . Therefore, the additional
optimized monitoring on the output of the noise-infusing side
channel resulting in the detection of �x = xB can completely
remove the negative impact of such a side channel. Note that
any pair of coefficients satisfying g/g′ = √

ηB/(1 − ηB) fully
restores the performance of the protocol leading to �x ∝ xB

and the linear scaling of the latter observable does not affect
the lower bound on the secure key rate.

The complete removal of the noise-infusing side channel
is possible also with the imperfect detectors. If both the main
homodyne detector H and the monitoring detector H′ have effi-
ciency ηD and excess noise, which can be modeled by coupling
of the signal to the noise mode with the variance VD on the
coupler ηD (this is the standard model of the imperfect homo-
dyne detector used in the security analysis of CV QKD [40]),
then the settings g and g′ given above also remove xSCB

from the weighted difference �x and the variance then
reads Var(�x) = ηDVar(xB) + (1 − η)VD . That is, the optimal
monitoring of the side-channel output then becomes equivalent
to the side-channel-free detection of the signal on the same
imperfect homodyne detector (the details of the calculations
are given in the Appendix), which contains only the trusted
noise and thus does not lead to the security break in the
reverse-reconciliation scheme [21].

To calculate the security against the collective attacks we
consider the scheme using the equivalent interferometric setup,
when the residual side channel is coupled to the signal and
then detected (see the Appendix for details). This leads to the
appropriate transformations of the variances and correlations.
The results of calculations are given in Fig. 7 without the
side-channel monitoring and with optimal monitoring of the
residual side channel.

It is evident that the optimal side-channel monitoring
restores the performance of the protocol providing exactly
the same key rate as in the absence of the side channel.
The noise-infusing side channel can therefore be completely
compensated for. Simultaneously, the Gaussian entanglement
between the trusted parties is fully restored even if it was
previously broken by the effect of noise infused in the side
channel. Experimental aspects of noise cancellation by the

FIG. 7. Key rate secure against collective attacks versus distance
in a standard telecom fiber (with an attenuation of −0.2 dB/km) for
the squeezed-state protocol with VS = 0.1 (left) and the coherent-state
protocol (right) in the presence of the type-B noise-infusing side
channel on the receiver side without the side-channel monitoring
(dashed lines) and with optimal monitoring, perfectly coinciding with
the profile of the key rate without the side channel (solid black lines).
The side-channel coupling is ηB = 0.5,0.7,0.9 (from left to right, i.e.,
red, green, and blue dashed lines, respectively), β = 0.95, ε = 5%,
VN = 1.05, and the modulation variance VM is optimized for the
given parameters.

FIG. 8. Scheme of the CV QKD with the generalized interfero-
metric coupling (parametrized by the transmittance values ηB1 and
ηB2 of the couplers and by the phase shift φ) to the noisy side
channel with untrusted input of variance VN on the receiving side
and the monitoring of the side-channel output followed by the data
manipulation.

measurement have been studied in [43], which demonstrates
the feasibility of such a method for CV QKD. Note that the
result reported here is obtained under different conditions than
the previous analysis of the multimode channels [44,45], where
the auxiliary channels received by Bob contain information
encoded by Alice, i.e., are parallel to the main quantum
channel.

We also consider the side-channel noise infusion based on
the generalized interferometric interaction modeled by two
couplers with different transmittance values ηB1 and ηB2 and a
phase shift φ in one of the arms between the couplers as shown
in Fig. 8.

In this case the monitoring of the side-channel output
suggested above can fully restore the performance of the
protocol only when the phase shift is absent (i.e., φ = 0; see
the Appendix for the details) and the optimal coefficients of
the data manipulation read g = 1 and g′ = [

√
(1 − ηB2)ηB2 +√

(1 − ηB1)ηB1]/(1 − ηB1 − ηB2). The setting can be obtained
by maximizing the mutual information between the trusted
parties and therefore does not require the estimation of ηB1

and ηB2 independently. However, when the nonzero phase
shift is present and the output of the interferometric coupling
contains combinations of x and p quadratures of the signal
and the noise input, simple side-channel monitoring by the
homodyne detection in the x quadrature and the linear data
manipulation are not sufficient to completely restore the
performance of the protocol. It can can be used to partly
compensate for the negative influence of the type-B side
channel, as shown in Fig. 9, where the key rate is plotted
for the coherent- and squeezed-state protocols with respect to
the weighting g′ (assuming g = 1), which can maximize the
mutual information and, respectively, the key rate.

The optimal data manipulation setting in the general
case becomes the lengthy function on the parameters of the
protocol, including the values of the coupling and the phase
shift as well as the signal and modulation variances and the
parameters of the channel. In order to improve the decoupling
of the side channel an optimal additional phase shift can
be applied prior to the control detection (so that the mutual
information is maximized) or a more general strategy based
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FIG. 9. Key rate secure against collective attacks versus weight-
ing of the data manipulation in the monitoring of the type-B
side channel with the generalized interferometric interaction for
the squeezed-state protocol with VS = 0.1 (upper lines) and the
coherent-state protocol (lower lines) in the absence of the type-B
side channel (black horizontal dotted lines), with no phase shift
φ = 0 (dashed blue lines), with φ = 0.5 (green dot-dashed lines),
and φ = 1.5 (red solid lines). The parameters of the interaction in
the presence of the side channel are ηB1 = 0.9 and ηB2 = 0.8, the
modulation variance VM = 10, the channel transmittance is η = 0.1,
and the protocols implementation is otherwise perfect.

on the heterodyne detection and subsequent data manipulation
could be used and optimized similarly to the elimination of the
cross-talk in the channel [44].

V. CONCLUSION

We have studied the effect of the side-channel leakage and
noise infusion on the trusted sides of the continuous-variable
quantum key distribution protocols. The negative effect of the
side-channel leakage on the trusted sender side leads to the
degradation of the key rate and to the increased sensitivity
of the protocol to the channel noise. At the same time, the
side-channel noise infusion on the trusted receiver side can
completely break the security of the protocols even upon
pure channel loss. We suggested and examined the method
of additional modulation applied to the side-channel input
being under the control of a trusted sending party. We show
that if the additional modulation is properly correlated with
the main modulation on the signal and squeezing applied
on the side-channel input in the case of the squeezed-state
protocol, the negative impact of the lossy side channel can be
completely removed. Alternatively, we show the possibility to
compensate for the negative impact of the noisy side channel
on the receiver side by introducing the monitoring of the output
of the side channel. Since both methods work independently by
completely removing the side channels, they can be combined
in a single protocol. Moreover, since the optimal settings for
the methods are independent of the channel parameters, the
methods can be applied by the trusted parties using only
the parameters of their local trusted stations and do not
themselves rely on the channel estimation. Our result therefore
describes effective and feasible methods of compensating for
the quantum side channels in a continuous-variable quantum
key distribution between the trusted parties, which do not
require entanglement or non-Gaussian operations.
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APPENDIX: SECURITY ANALYSIS IN DETAIL

Here we provide detailed calculations for the security
analysis of the above-described Gaussian continuous-variable
quantum key distribution protocols with side channels.

1. Scheme and parametrization

The scheme of the protocols is given in Fig. 1. As
mentioned, the channel is parametrized by transmittance (loss)
η and excess noise ε, while side channels are parametrized by
coupling ηA (for the sender-side type-A lossy side channel) and
by coupling ηB and excess noise VN (for the receiver-side type-
B noise-infusing side channel). The protocols in the prepare-
and-measure (PM) setting are based on the preparation of a sig-
nal state (coherent or squeezed) characterized by the quadra-
ture values xS and pS , which are Gaussian distributed around
zero with variances Var(xS) = VS and Var(pS) = 1/VS ,
where VS � 1 is generally the squeezed variance, which in
the case of coherent states is saturated by VS = 1. Here and
in the following, with no loss of generality, we assume that
the states are squeezed and measured in the x quadrature. The
results for the p-quadrature squeezing and measurement are
obtained by replacing x → p and vice versa. The signal is
modulated by applying the displacement xM or pM randomly
chosen from a Gaussian distribution centered around zero
with variance Var(xM ) = Var(pM ) = VM so that the resulting
quadrature becomes xA = xS + xM . Here and in the following
the equivalent expressions apply to the p quadrature since the
main quantum channel and the side channels are assumed to be
phase insensitive (which is valid for typical optical channels
such as optical fiber or free-space links). Now if the channel
is present the quadrature values after the channel are given by
xB = (xA + xN )

√
η + x0

√
1 − η, where x0 is the quadrature

value of the vacuum state coupled to the signal to describe the
loss Var(x0) = 1 and xN is the quadrature value of the excess
noise Var(xN ) = ε.

If the side-channel loss is present at the sender side (type-A
side channel), then the signal is coupled to the vacuum input
of the side channel, which is modeled by a beam splitter
with transmittance ηA, which is the side-channel loss. As
mentioned, the quadrature that enters the quantum channel
is then changed to x ′

A = xA
√

ηA + xSCA(
√

1 − ηA), where
xSCA is the quadrature value of the vacuum state on the
input of the beam splitter Var(xSCA) = 1. If the noise-infusing
side channel is present, then, as mentioned in the main text,
the output of the quantum channel is further modified to
x ′

B = xB
√

ηB + xSCB

√
1 − ηB , where xSCB is the input noise

of the type-B side channel with Var(xSCB ) = VN . Knowing
the transformation of the quadrature values, we can obtain
the variances and correlations between the quadratures and
derive the covariance matrices describing the states shared
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between the trusted parties Alice and Bob and available to an
eavesdropper Eve, which are then used in the security analysis
below.

2. Secure key rate

As mentioned, we estimate the security of the protocols
in the presence of the side channels and upon additional
manipulations aimed to remove the side channels, as the
value and positivity of the lower bound on the key rate,
which in the case of collective attacks (when Eve is able to
collectively measure her probe states after interaction with the
signal) and reverse reconciliation [9] reads K = βIAB − χBE ,
where β ∈ (0,1) is the postprocessing efficiency that takes
into account the amount of data that trusted parties lose due
to imperfections of the error correction algorithms, IAB is the
mutual information between the trusted parties, and χBE is
the Holevo bound, giving the upper bound on the information
that is available to Eve. In the case of individual attacks, when
Eve is limited by the individual measurement on her probe
states, the Holevo bound is replaced by the classical Shannon
information between Eve and Bob IBE .

3. Mutual information and individual attacks

In order to calculate the classical (Shannon) mutual infor-
mation we use the expression for Shannon entropies in the
case of Gaussian continuous distributions [46]

IXY = 1

2
log2

VX

VX|Y
, (A1)

where X and Y are two zero-mean Gaussian random variables
with variances VX ≡ 〈X2〉 and VY ≡ 〈Y 2〉, respectively, and
VX|Y = VX − C2

XY /VY is the conditional variance with CXY ≡
〈XY 〉 the correlation (covariance) between X and Y . Note that
(A1) is symmetrical with respect to X and Y . In the case of the
Gaussian protocols considered in the paper, the variables are
the quadratures displacements being introduced by modulation
and the quadrature values measured on the remote side of
the channel and by a potential eavesdropper are all Gaussian
distributed. This allows us to calculate the mutual information
IAB and upper bound the information leakage IBE in the case
of individual attacks.

The calculation of the mutual information is straight-
forward. Following the expression (A1), we can derive
the mutual information between Alice and Bob as IAB =
1
2 log2 (VA/VA|B), where VA is the variance of the data imposed
by Alice by displacement (typically equivalent to VM ), while
conditional variance VA|B = VA − C2

AB/VB involves correla-
tion CAB = Cov(xM,xB ), i.e., the covariance between the data
kept by Alice and the data measured by Bob, and the variance
VB = Var(xB) of Bob’s measurement results (which is x ′

B if
the type-B side channel is present).

The calculation of Eve’s information IBE in the case of
individual attacks is similar. It requires knowing the variances
of the modes that are available to Eve for the individual
measurements and correlations with the measurement results
on the side of Bob; these will be derived in the particular cases
below.

4. Collective attacks

In the case of collective attacks, as mentioned, the infor-
mation, which is available to Eve, is bounded by the Holevo
quantity, which is the capacity of a bosonic channel between
Eve and Bob. It is calculated as χBE = S(γE) − S(γE|B), the
difference of the von Neumann (quantum) entropies S(γE)
of the state of the modes, which are available to Eve for a
collective measurement described by the covariance matrix γE ,
and S(γE|B) of the same state conditioned on the measurement
results of Bob.

In the general case, when the excess noise is present in
the channel and/or in the type-B side channel, we use the
purification method [40], i.e., we assume that an eavesdropper
Eve can purify the state shared by the trusted parties, so
S(γE) = S(γAB), where AB is generally a multimode initially
pure state shared between the trusted parties in which all
the impurity is assumed to be caused by Eve’s collective
attack. After Bob’s projective measurement of one of the
quadratures a similar equivalence holds for the conditioned
states: S(γE|B) = S(γA|B). Thus the Holevo bound in Eq. (1)
is expressed as χBE = S(γAB) − S(γA|B).

The entropy S(γAB) is determined from the symplectic
eigenvalues λi of the n-mode covariance matrix γAB as

S =
n∑

i=1

G

[
λi − 1

2

]
, (A2)

where G is the bosonic entropic function [26]

G(x) = (x + 1) log2(x + 1) − x log2(x). (A3)

The subtrahend in the expression for the Holevo bound is the
entropy similarly determined by the symplectic eigenvalues of
the respective conditional covariance matrix γA|B after Bob’s
projective measurement (with no loss of generality, we assume
measurement of the x quadrature)

γA|B = γA − σB|A[XγBX]MPσT
B|A, (A4)

where σB|A is the correlation matrix between mode B and
the rest of the trusted modes, X = Diag(1,0,0,0), where Diag
denotes a diagonal matrix, and MP is the Moore-Penrose
pseudoinverse of the matrix.

The purification [40] is typically based on introducing the
entangled [also referred to as Einstein-Podolsky-Rosen (EPR)]
sources, which are the two-mode vacuum states described by
the covariance matrices of the form

γEPR =
(

V I
√

V 2 − 1σz√
V 2 − 1σz V I

)
, (A5)

where V is the variance of each of the two modes, I is the 2×2
unity matrix, and σz = Diag(1,0,0,−1). It is assumed that
Alice is performing a homodyne (in the x or p quadrature) or
heterodyne (in the x and p quadratures simultaneously using
two homodyne detectors on the signal, split on a balanced beam
splitter) measurement on one of the modes, which condition-
ally prepares the squeezed state with variance 1/V or coherent
state in the other mode, respectively. The unmeasured mode is
then being sent through the channel and the side channels.
Such a scheme is then equivalent to a PM scheme based
on squeezed or coherent states with VS = 1/V or VS = 1,
respectively (depending on the homodyne or heterodyne
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measurement applied by Alice) and VM = V − VS . The mode
interactions in the side channels and the main channel based
on the liner coupling are taken into account in the covariance
matrices using the input-output relations for the quadrature
vectors ri = (xi,pi)T of interacting modes 1 and 2 in the form(

r1

r2

)
out

=
( √

T I
√

1 − T I
−√

1 − T I
√

T I

)(
r1

r2

)
in

, (A6)

where T stands for the transmittance of a coupling beam
splitter. Such transformations lead to changes of variances
and covariances that form the resulting covariance matrices.
The lower bound on the key rate secure against collective
attacks is then calculated numerically using (A2) and (A3).
In the case when modulation VM is independent of the signal
squeezing VS the more general entanglement-based scheme
[27] is used instead of the standard EPR-based purification
described above.

The purification method allows us to analyze the security of
the protocols in the conditions of untrusted noise by estimating
the lower bound on the secure key rate and in particular to
study the region of insecurity where the lower bound turns to
zero. Further, we describe the theoretical purification schemes
used to calculate the Holevo bound in the particular cases.
Note that the purification schemes give also the same mutual
information IAB as in the PM versions of the protocols. We
also cross-check our results using the entangling cloner [47]
collective attack being the particular purification of the channel
noise by an EPR source possessed by Eve, which is also widely
used in CV QKD security analysis as a typical collective attack
(see, e.g., [19,20]). The results obtained using the entangling
cloner exactly confirm our calculations based on the purifica-
tion models.

5. Side-channel loss on the sender side

In the case of the type-A side channel, the variance of
Alice’s data is unchanged and remains VM and the correlation
between Alice and Bob is scaled by the channel and the side
channel so that CAB = √

ηAηVM . The variance of the state
measured by Bob in the x quadrature after the side channel and
the main noisy and lossy channel VB = η[ηAV + ε − ηA] + 1.

We first investigate the influence of the side channel for the
case of individual attacks with pure losses (ε = 0) to estimate
the security region. Taking into account the above-given
variances and correlations, the mutual information IAB can
be directly obtained as (2). In the case of individual attacks
in the purely lossy channel, Eve is able to measure the output
mode of the side channel, which we denote by SA, and the
output of the main channel, which we denote by E. Therefore,
the mutual information IBE using the symmetry of the mutual
information (A1) is to be calculated as

IBE = 1

2
log2

VB

VB|ESA

, (A7)

where VB|ESA
is the variance of Bob’s measurement condi-

tioned by measurements of Eve on the modes E and SA.
The calculations taking into account the variances of Eve’s
modes VE = (ηAV + 1 − ηA)(1 − η) + η and VSA

= ηA +
(1 − ηA)V and correlations CBE = ηA

√
η(1 − η)(1 − V ) and

CBSA
= √

ηAη(1 − ηA)(1 − V ) result in the expression

VB|ESA
= V

ηAη(1 − V ) + V
(A8)

from which the expression (3) is obtained.
In the case when the channel noise is present we model

Eve’s individual attack as an optimal entangling cloner [47],
i.e., we assume that Eve possesses the two-mode entangled
source E1E2 with the variance N = 1 + ηε

1−η
so that the mode

E1 interacts with the signal and introduces the loss η and the
excess noise ε. Eve is then able to measure three modes: the
output of the side channel SA and the modes E1 and E2 of
the entangling cloner. Therefore, the mutual information IBE

between Eve and Bob should read

IBE = 1

2
log2

VB

VB|SAE1E2

, (A9)

where VB|SAE1E2 is the variance of Bob’s measurement con-
ditioned by measurements of Eve on the modes SA, E1,
and E2. The variances of the modes after the side channel
and the main channel are VB = η[ηAV + 1 − ηA + ε] + 1
[which also changes the mutual information (3)], VSA

=
ηA + (1 − ηA)V is unchanged by the channel noise, E1 =
ηN + (1 − η)(ηAV + 1 − ηA), and E2 = N . The correlations
are CBSA

= √
ηAη(1 − ηA)(1 − V ), CBE1 = √

η(1 − η)(N −
ηAV − 1 + ηA), and CBE2 =

√
(1 − η)(N2 − 1). From this the

conditional variance

VB|SAE1E2 = 1 + ηA(V − 1)

1 + ηε + ηA(V − 1)[1 − η(1 − ε)]
(A10)

can be obtained and used to calculate the key rate secure against
the individual attacks in a noisy channel.

In the case of collective attacks in a noisy channel and no
additional manipulation on the side-channel input the security
is calculated through the 4 × 4 covariance matrix

γAB =
(

VI
√

ηAη(V 2 − 1)σz√
ηAη(V 2 − 1)σz [(V − 1)ηAη + εη + 1]I

)
,

(A11)

which describes the state shared between the trusted parties
in the EPR-based version of the protocols. The conditional
matrix after the measurement at Bob in particular contains ηA

separately from η and reads

γA|B =
(

V − ηAη(V 2−1)
1+η(ηAV −ηA+ε) 0

0 V

)
. (A12)

From these two matrices the security of the protocol can be
analyzed for the case of collective attacks. We do not provide
the explicit expressions for the multimode covariance matrices
in the further analysis since they are too lengthy; however,
they can be directly obtained using the input-output relations
(A6) and the details of the purification schemes given below.
Further, we present the purification schemes for the different
methods of the side-channel decoupling as well as the changes
of the variances and correlations of measured data upon the
additional manipulations on the side channels.

First, if the uncorrelated noise is added to the input of the
side channel, it is modeled as the coupling of one of the modes

032309-11

113



IVAN DERKACH, VLADYSLAV C. USENKO, AND RADIM FILIP PHYSICAL REVIEW A 93, 032309 (2016)

(a)

(b)

FIG. 10. (a) Theoretical purification of the equivalent PM scheme
with the side-channel loss on the sender side and thermal noise applied
on the input of the side channel. (b) Purification of the PM scheme
with the side-channel loss on the sender side and known modulation
applied on the input of the side channel. Homodyne or heterodyne
detection is applied at the side of Alice in both cases depending on
the protocol.

of the EPR source N [see Fig. 10(a)] to the side-channel input
using a strongly unbalanced beam splitter with transmittance
(for mode SA) T1 → 1. The variance of the source is set to
N = VNS/(1 − T1); this way the noise is added losslessly.

The state of the modes ABCD contains all the purified
trusted noise and the Holevo bound for the standard Gaussian
protocols is then calculated following the purification method
as χBE = S(γABCD) − S(γACD|B). If the known modulation
is applied to the side-channel input, then the purification is
based on a similar scheme but the second mode of the EPR
source N is coupled to the mode A, measured by Alice.
This way the displacement that is applied to the input of
the side channel is also added to the displacement measured
by Alice [see Fig. 10(b)]. Alice’s data in this case have the
variance VA = VM + VNM , while the correlation with Bob
after the side channel and the main channel is given by
CAB = √

η(
√

ηAVM + √
1 − ηAVNM ). Bob’s measured vari-

ance is VB = η[ηA(V − VNM ) − ηA + ε] + 1. From this ex-
pression the expression for the mutual information (9) is
directly obtained.

The calculations are then similar to the previous case. In
both cases, if the generalized scheme in which modulation
is independent from the signal states is to be used, then
the main source EPR:V is replaced with the respective
entanglement-based generalized preparation as described in
[27]. The manipulations on the side channel remain purified
as described above.

Finally, if the correlated displacement is added and the
input of the side channel is additionally squeezed to VS , then
the variance of Alice’s data remains VM , but the correlation
with Bob is changed to CAB = √

η(
√

ηA + k
√

1 − ηA)VM

and the variance of the state measured at the Bob’s side
is VB = η[2kVM

√
ηA(1 − ηA) + k2VM (1 − ηA) − ηAVM +

FIG. 11. Theoretical purification of the equivalent PM scheme
with the side-channel loss on the sender side and the optimal
correlated modulation applied on the input of the side channel
precessed by the optional squeezed-state preparation on the source S2

in the case of the squeezed-state protocol as depicted in Fig. 6. The
source S0 produces an infinitely squeezed state, the entangled source
EPR:MN provides the modulation of the signal, and the trusted
parties perform homodyne detection on their respective modes A
and B.

VS + ε − 1] + 1. From this the expression for the mutual
information can be obtained in the general case.

For the optimal k = √
(1 − ηA)/ηA and with the side-

channel input substituted by the squeezed state with variances
VS and 1/VS (in the case of the squeezed-state protocol) it is
easy to see that the main signal mode and the side-channel
output described by x ′

A = xS
√

ηA + xSCA

√
1 − ηA +

xM (
√

ηA+k
√

1−ηA) and x̃ ′
SCA =xSCA

√
ηA − xS

√
1 − ηA +

xM (k
√

ηA − √
1 − ηA), respectively become completely

uncorrelated, i.e., Cov(x ′
A,x̃ ′

SCA) = 0. Therefore, the side
channel becomes decoupled from the main signal. For the
calculations of the Holevo bound the equivalent scheme
depicted in Fig. 6 must be purified. This is done by
introducing the EPR source MN (see Fig. 11) with variance
VM/ηA(1 − T1). It is coupled to the signal state produced by
the source S in the mode B and to the infinitely squeezed
state used for simulating the detection, produced by the
source S0 in the mode A on the strongly unbalanced
beam splitters with the transmittance for modes A and B

being T1 → 1. The input of the side channel is optionally
squeezed using squeezer S2 in the case of the squeezed-state
protocol. The state that is then sent through the channel
(mode B) is defined by the single-mode covariance matrix
γB = Diag(T1VS + VM/ηA,T1/VS + VM/ηA). In the limit
T1 → 1 this is equivalent to the preparation of a signal state
VS , attacked by the side channel with input VS (prepared by
Alice in the case of the squeezed-state protocol), which leaves
the signal state unchanged, and subsequent symmetrical
(having the same variance in the both the x and p quadratures)
Gaussian modulation with variance VM/ηA. The correlation
between the measurements at Alice and at Bob in the absence
of the quantum channel is CAB = −

√
(VM/ηA)2 − (1 − T1)2,

which is equivalent to the modulation with variance VM/ηA

applied by Alice in the PM setup when T1 = 1. The
state that is measured by Alice (mode A) is defined by
γA = Diag(T1V0 + VM/ηA,T1/V0 + VM/ηA), where V0 is the
variance of the squeezed state, produced by the source S2.
The first element of matrix γA, which is measured by the
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x-quadrature homodyne measurement, in the limit of V0 → 0,
corresponds to Alice perfectly knowing the displacements of
the modulation VM/ηA in the PM setup. After the measurement
at the Alice’s side the state that is conditionally prepared on the
channel input is given by γB|A = Diag(T1VS + [ηA(T1 − 1)2 +
T1V0VM ]/(ηAT1V0 + VM ),T1/VS + VM/ηA), which in the
regime of T1 = 1 and V0 = 0 gives Diag(VS,1/VS + VM/ηA),
corresponding to the modulation of the signal state
Diag(VS,1/VS) with variance VM/ηA in both the quadratures
with only one value x being kept. Our purification scheme
(see Fig. 11) is therefore equivalent to the PM one (shown
in Fig. 6), providing (in the limits T1 → 1 and V0 → 0)
the same variances and correlations and resulting in the
same conditional states. Moreover, the developed scheme
allows purification of practically any PM scheme being
more adjustable than the standard EPR-based approach [40].
The asymmetrical modulation can be introduced by the
general preparation of the state EPR:MN using two different
orthogonally squeezed states, however, such an extension was
not needed in the tasks of the present paper.

In the purification scheme the state of the modes ABCD is
pure, while the channel noise and loss introduce impurity to
the state. The mode SA is not relevant in the scheme since it
is uncorrelated from the rest of the setup due to the equality
of the variances of modes A and SA prior to the side-channel
coupling ηA (it is shown on the scheme only for explanatory
purposes). Then the Holevo bound is calculated as χBE =
S(γABCD) − S(γACD|B).

6. Side-channel noise infusion on the receiver side

In the case of the type-B side channel the variance of
Alice’s data remains VM and the correlation between Alice
and Bob is scaled by the channel and the side channel so that
CAB = √

ηηBVM . The variance of the state measured by Bob
in the x quadrature after the main noisy and lossy channel
and the side channel is VB = ηB[η(V + ε) + 1 − η] + (1 −
ηB)VN .

Let us first consider the individual attacks in the purely
attenuating main channel, i.e., ε = 0. Taking into account the
above-given variances and correlations, the mutual informa-
tion IAB can be directly obtained as (5). In the case of individual
attacks in the purely lossy channel Eve is able to measure the
output mode of the main channel, which we denote by E.
Moreover, Eve controls the input of the noisy side channel,
which we introduce as an entangling cloner attack, which
was shown to be optimal in the case of individual attacks
[47]. Therefore, we assume that Eve possesses the two-mode
entangled source E1E2 with the variance VN and is able to
measure one of the modes E1, while the other mode E2 is
coupled to the signal on the ηB beam splitter. Therefore, the
mutual information IBE using the symmetry of the mutual
information (A1) is to be calculated as

IBE = 1

2
log2

VB

VB|EE1

, (A13)

where VB|EE1 is the variance of Bob’s measurement condi-
tioned by measurements of Eve on the modes E and E1. The
calculations taking into account the variances of Eve’s modes
VE = V (1 − η) + η and VE1 = VN (since is Eve is measuring

the mode of the cloner that did not interact with the signal)
and correlations CBE = √

ηηB(1 − η)(1 − V ) and CBE1 =√
(1 − ηB)(V 2

N − 1) (the latter provided by the correlations
within the entangling cloner) result in the expression

VB|EE1 = ηBV

V (1 − η) + η
+ 1 − ηB

VN

(A14)

from which the expression (6) is obtained.
If the main homodyne detector H and the monitoring

detector H′ (see Fig. 4) are both imperfect with loss ηD and
noise of the variance VD , which is coupled to the signal with the
ratio ηD [40], then the quadratures measured by the detectors
H and H′ will be given by

x ′
B = √

ηD(xB

√
ηB + xSCB

√
1 − ηB) + x1

√
1 − ηD (A15)

and

x ′
SCB = √

ηD(−xB

√
1 − ηB + xSCB

√
ηB) + x2

√
1 − ηD,

(A16)

respectively, where x1 and x2 are the quadrature values associ-
ated with the detector noise such that Var(x1) = Var(x2) ≡ VD .
The weighted difference �x = gx ′

B − g′x ′
SCB will then be

given by

�x = xB

√
ηD(g

√
ηB + g′√1 − ηB) + xSCB

√
ηD(g

√
1 − ηB

−g′√ηB) +
√

1 − ηD(gx1 − g′x2). (A17)

By setting the weights of the difference to g = √
ηB and

g′ = √
1 − ηB , the result of the subtraction becomes

�x = xB

√
ηD +

√
1 − ηD(x1

√
ηB − x2

√
1 − ηB), (A18)

where the noise of the side channel given by the quadrature
value xSCB is completely removed. The variance of the
weighted difference then becomes Var(�x) = ηDVB + (1 −
ηD)VD , i.e., equivalent to the measurement of the signal xB

on the imperfect homodyne detector with loss ηD and noise
VD; the scaling

√
ηD then also applies to the correlation CAB .

When the detection is purely lossy, i.e., VD = 1, the expression
then further simplifies as Var(�x) = ηDVB + 1 − ηD .

In the case of collective attacks in the noisy channel and in
the presence of the type-B side channel we use the purification
scheme based on the entangled source of modes A and B

of variance V with mode A measured on Alice’s side with
the homodyne or heterodyne detector used. In this case the
noisy mode SB is assumed to be purified by Eve (see Fig. 12).
However, it is reflected by the beam splitter with transmittance
T0 = 0 fed by the vacuum input and the fully reflected mode
C is then coupled on the unbalanced beam splitter T with
the signal mode B. Then all the impurity of the state shared
between Alice and Bob is attributed to Eve and the following
equalities hold: S(γE) = S(γABC) and S(γE|B) = S(γAC|B).

Further, we equivalently represent the type-B side-channel
output monitoring and data manipulation by an interferometric
scheme, when the outputs of the side-channel coupling ηB

(modes B and C in the purification scheme) are coupled
again on a beam splitter with transmittance T . The case when
the interferometric setup is properly balanced, i.e., T = ηB ,
corresponds to the optimized monitoring on the output of the
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FIG. 12. Theoretical purification of the equivalent PM scheme
with the side-channel noise addition on the receiver-side optimal
monitoring of the side-channel output, represented by the interfero-
metric scheme applied on the output of the side channel prior to the
trusted detection; the homodyne or heterodyne detection is applied at
the side of Alice depending on the protocol.

type-B side channel, as described in the main text. Indeed, the
quadrature measured on the signal mode B after all the inter-
actions is given by x ′

B = xB[
√

T ηB + √
(1 − T )(1 − ηB)] +

xSCB [
√

ηB(1 − T ) − √
T (1 − ηB)], where xB is the main

signal mode before the side-channel interaction and xSCB

is the side-channel input prior to interaction. It is easy to
see that upon T = ηB the resulting quadrature x ′

B = xB of
mode B contains no side-channel noise due to the destructive
interference and the negative effect of the side channel is
removed completely. Note that if the reflection of the mode SB

on the beam splitter T0 would be absent and the mode B would
be directly coupled to the mode SB on the beam splitter with
transmittance T , the equivalent measurement that removes
the type-B side channel would be on the mode SB upon
T = 1 − ηB . The described scheme allows calculations using
the purification method simply as χBE = S(γABC) − S(γAC|B)
since the side-channel output monitoring emulated by the
interferometric setup does not change the purity of the states.

The performance of the protocol thus becomes equivalent to
the one of the protocol without the type-B side channel, which
is confirmed in the case of collective attacks in a noisy channel.
In the case of the generalized preparation (when modulation
is independent of the signal state variance) we apply a similar
scheme but replace the EPV:V source with the generalized
entangled state preparation as described in [27].

In the case of the interferometric-type interaction between
the signal and the type-B side channel, as shown in Fig. 9, the
mode transformations during the interactions become more
complex and read

x ′
B = xB[

√
ηB1ηB2 − cos φ

√
(1 − ηB1)(1 − ηB2)]

+xSCB [
√

ηB2(1 − ηB1) + cos φ
√

ηB1(1 − ηB2)]

−pB sin φ
√

(1 − ηB1)(1 − ηB2)

+pSCB sin φ
√

ηB1(1 − ηB2) (A19)

and

x ′
SCB = xB[−

√
ηB1(1 − ηB2) − cos φ

√
ηB2(1 − ηB1)]

+ xSCB [cos φ
√

ηB1ηB2 −
√

(1 − ηB1)(1 − ηB2)]

−pB sin φ
√

ηB2(1 − ηB1) + pSCB sin φ
√

ηB1ηB2,

(A20)

now involving the contributions from the p quadratures pB and
pSCN of the signal and side-channel noise modes, respectively,
which is caused by the phase shift in the interaction. This
prevents the complete decoupling of the type-B side channel
by simple manipulation on the homodyne measurement results
in the form gx ′

B − g′x ′
SCB , as illustrated in Fig. 9 (plotted

based on the numerical calculations using the equivalent trans-
mittance T in the purification-based scheme). The complete
decoupling in such a case is possible only when φ = 0 and the
cross-quadrature terms are absent.
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We address side-channel leakage in a trusted preparation station of continuous-variable quantum key
distribution with coherent and squeezed states. We consider two different scenarios: multimode Gaussian
modulation, directly accessible to an eavesdropper, or side-channel loss of the signal states prior to the modulation
stage. We show the negative impact of excessive modulation on both the coherent- and squeezed-state protocols.
The impact is more pronounced for squeezed-state protocols and may require optimization of squeezing in the case
of noisy quantum channels. Further, we demonstrate that the coherent-state protocol is immune to side-channel
signal state leakage prior to modulation, while the squeezed-state protocol is vulnerable to such attacks, becoming
more sensitive to the noise in the channel. In the general case of noisy quantum channels the signal squeezing
can be optimized to provide best performance of the protocol in the presence of side-channel leakage prior
to modulation. Our results demonstrate that leakage from the trusted source in continuous-variable quantum
key distribution should not be underestimated and squeezing optimization is needed to overcome coherent state
protocols.

DOI: 10.1103/PhysRevA.96.062309

I. INTRODUCTION

Any practical realization of quantum key distribution
(QKD) (see [1] for reviews) deals with imperfections of real
physical devices, which may be unaccounted in idealized
security proofs. For example, it is well known that QKD
systems based on direct photodetection [discrete-variable
(DV) protocols] can be compromised by specific response of
photodetectors to intense light, called blinding [2]. On the other
hand, an eavesdropper can implement so-called Trojan horse
attacks in order to get information about the modulator settings
from the back-reflected light [3] or use state preparation
and encoding flaws in DV QKD protocols [4,5] as well as
benefit from information leakage, e.g., from auxiliary degrees
of freedom of carrier states [6]. Continuous-variable (CV)
QKD protocols (see [7] for reviews), based on the homodyne
detection, can be robust against blinding, but are potentially
vulnerable to other practical attacks, such as a wavelength
attack on the homodyne detector [8] or continuous-variable
counterpart of Trojan horse attacks [9].

Most of the practical attacks on the QKD devices can be
in principle ruled out using device-independent realization of
QKD [10] which, however, is very challenging (as it requires
strongly entangled states and almost perfect detectors) and
impractical, being limited to channels with high transmittance.
There were also measurement-device independent (MDI)
QKD protocols suggested and implemented, which rule out
detector attacks [11], but keep the source potentially vulner-
able, while still being limited mostly to highly transmitting
channels in the case of CV QKD [12].

Another method to make QKD more robust against practical
imperfections and, at the same time, efficient and stable
in conditions of strongly attenuating and noisy channels, is
to distinguish between trusted devices (such as source and

*ivan.derkach@upol.cz
†usenko@optics.upol.cz
‡filip@optics.upol.cz

detector) and untrusted channel (the latter being under full
control of an eavesdropper), which can be done by proper set-
up characterization. Trusted parties can then identify possible
sources of side information available to an eavesdropper, and
take them into account in security analysis. In the field of CV
QKD this included consideration of already mentioned specific
detection attacks [8,13], analysis of source imperfections
[14–17], and role of multimode structure of state preparation
and detection [18]. Trusted device imperfections may be under
partial control of an eavesdropper so that an output of internal
loss in a device may contribute to eavesdropper knowledge on
the raw key though information leakage (side-channel loss)
or so that the noise imposed by trusted device imperfections
may be controlled by an eavesdropper to corrupt the data
(side-channel noise). Such side channels, based on the basic
linear coupling to vacuum or noisy modes, were previously
considered on the detection and preparation sides of the pro-
tocol, assuming side-channel interaction after the modulation
stage [19]. However, loss occurs as well on the stage of state
preparation (e.g., it is well known that loss in the source reduces
the level of squeezing [20]). On the other hand, modulation
can be applied to many modes at once [18] and some of
the modes may be directly accessible by an eavesdropper
which may result in a zero-error security break similar to a
photon-number-splitting attack in DV QKD [21] enabled by
multiphoton generation in a signal source. Therefore, in the
current paper we analyze side-channel leakage in the trusted
station prior to modulation (side-channel attack on the signal
states) and also consider multimode modulation such that the
auxiliary modes are directly available to an eavesdropper.

In our study we assume basic linear passive coupling with
the side channels; we also assume that the trusted parties can
be aware of the side channel presence in the trusted source
(e.g., by characterizing their devices prior to and during the
protocol implementation using local measurements; otherwise
the side channel loss would be attributed to the main untrusted
channel), but are not able to remove them and stop the potential
information leakage. We consider two main classes of CV
QKD protocols, namely coherent-state and squeezed-state

2469-9926/2017/96(6)/062309(10) 062309-1 ©2017 American Physical Society
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(a) Multimode modulation (b) Premodulation channel

FIG. 1. Prepare-and-measure CV QKD schemes with lossy channels and information leakage from state preparation stations (dashed boxes
indicate trusted stations of Alice and Bob). Source V radiates Gaussian states (coherent or squeezed states) in the signal mode (green). States
receive amplitude and phase displacements on modulator MS , and are sent to Bob via quantum channel characterized by losses η. Signal states
are measured on the receiver station by a homodyne detector H . (a) In addition to signal mode, the source generates additional leakage mode
(orange line) L. States in the latter undergo displacement, correlated to the one of the main signal and characterized by modulation ratio k. An
eavesdropper Eve can directly obtain information from an additional mode as well as from the quantum channel. The mode L is present due
to the multimode structure of the source and cannot be technically eliminated. Generally an arbitrary amount of modes Ln can be modulated
and leak, however, such a case can be reduced to a single effective mode Leff . (b) A side-channel leakage (orange line) is present between state
generation and state modulation stages. The initial signal state interacts with another state of mode ES on a beam splitter with transmittance
ηE , and only after that is being encoded with information on the modulator MS . Eve can obtain information from ES and quantum channels.

Gaussian protocols. We show that both multimode modulation
and side-channel attack on the signal can undermine security
of CV QKD protocols. Moreover, such attacks appear to be
surprisingly more harmful for the squeezed-state protocol,
once the channel noise is low. For more noisy channels
and combination of side-channel imperfections the protocol
implementation should be optimized to provide security and
maximum performance.

The paper is structured as follows. In Sec. II we describe
the mechanism of multimode modulation leakage, starting
with the CV QKD model description and security analysis
(Sec. II A) following with the description of consequences for
coherent- and squeezed-state protocols under individual and
collective attacks [22–25] and distinction between direct and
reverse reconciliation (Sec. II B) [26,27]. In Sec. III we first
describe the model and methods used for security analysis
of the side-channel attack on the signal states (Sec. III A) and
further characterize the impact of such an attack on the security
of CV QKD protocols with direct and reverse reconciliation
under individual and collective attacks (Sec. III B).

II. LEAKAGE FROM MULTIMODE MODULATOR

A. Security analysis

We examine the effect of the presence and consequent
modulation of signal states in additional modes generated
by the source on the preparation side of a generic Gaussian
CV QKD protocol, illustrated in Fig. 1(a). Following the
steps of a common CV QKD protocol [26,28] the trusted
sender party prepares either coherent (using a laser source) or
squeezed (using, e.g., the optical parametric oscillator) state
characterized by the X or P quadrature (with both quadratures
being interchangeable) value QS with zero mean and variance
VS = 〈Q2

S〉 − 〈QS〉2 (for the coherent-state protocol VS =
1, while for the squeezed-state protocol signal quadrature
variance VS < 1, so that the uncertainty relation is maintained
as VXVP ≥ 1). Despite the state generated, Alice then applies
both amplitude and phase quadrature modulation according
to values QM from two independent Gaussian distributions,

with variance VM = 〈Q2
M〉 − 〈QM〉2, to the output mode of

the source so that the state entering the untrusted quantum
channel and sent to Bob is characterized by the quadrature
value QB = QS + QM and variance VB = VS + VM .

The source used by the sender can have a multimodal
structure but it is usually presumed that Alice fully controls all
the output of the source. In this work we assume that the source
in addition to the main mode, characterized by the quadrature
value QS with variance VS , can produce additional N leakage
modes [Fig. 1(a), orange line], which are characterized by
the quadrature values QLn

with respective variances VLn
, that

are not blocked or filtered by trusted parties. This results in
amplitude and phase modulation being applied to the leakage
modes as well. The signal state noise and modulation are
trusted, but the leaking output is fully available to Eve.

Generally additional mode modulation VM,Ln
may differ

from the modulation VM applied to the signal mode, therefore
we characterize the relation between them by the ratio
VM,Ln

/VM = k. If the k = 0 additional mode is not modulated
at all, this results in the state with the initial quadrature
value QLn

, while for k < 1 an additional mode receives a
fraction of the signal modulation. Alternatively, leakage mode
amplitude or phase quadrature displacements can correspond
to a Gaussian distribution that has higher variance than that
of the signal mode, corresponding to k > 1. In other words
the encoding alphabet of the secondary mode can be bigger
than that of the signal mode, however, excessive letters remain
correlated to the signal alphabet. The signal state and the
additional modulated state after the modulation are correlated
as CSLn

= kVM , while leakage modes are correlated between
each other as CLnLm

= k2VM .
After the preparation stage the signal QB travels through

the untrusted quantum channel (which is generally lossy and
noisy, but for simplicity let us first consider the case of
noiseless channel), where it is being measured by a homodyne
detector. After the untrusted channel, Bob receives the state
with quadrature values Q′

B = (QS + QM )
√

η + Q0
√

1 − η

with variance V ′
B = (VS + VM − 1)η + 1, where Q0 is a

quadrature value of the vacuum state that is coupled to the
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signal state in the channel and has variance V0 = 〈Q2
0〉 −

〈Q0〉2 = 1. An eavesdropper, after the signal passes through
the untrusted channel, is able to acquire and store mode
E with QE = −(QS + QM )

√
1 − η + Q0

√
η and variance

VE = (VS + VM )(1 − η) + η, and additional source modes Ln

(n ∈ [1,N ]) with Q′
Ln

= QLn
+ kQM with variance V ′

Ln
=

VLn
+ k2VM . After the signal state is transferred through the

untrusted channel, initial correlations with the leakage mode
are lowered by channel transmittance as C ′

SLn
= kVM

√
η.

To get analytical insights into the security of the protocol,
and to understand basic limitations, we first study the case
of individual attacks in a noiseless channel [as in Fig. 1(a)].
To purely see limitations by the leakage, we consider all data
post-processing to be fully efficient. The lower bound on the
secure key rate [29] under such attack is

R|ind
RR(DR) = IAB − IBE(AE), (1)

where IXY is the mutual information between respective
parties, and DR and RR stand for direct reconciliation
(when Alice is the reference side of error correction) and
reverse reconciliation (when Bob is the reference side [25]),
respectively. The state measured by an eavesdropper, can
consist of (N + 1) modes, including the untrusted quantum
channel. Multimode modulation does not change the mutual
information between trusted parties, and it corresponds to the
one in conventional single-mode prepare-and-measure (P&M)
CV QKD protocols (binary logarithm indicates that units of
information are bits) [17]:

IAB = 1

2
log2

⎡
⎣ VM

VM − ηV 2
M

η(VS+VM−1)+1

⎤
⎦. (2)

Eve’s mutual information with the trusted side depends on
the variance of the state of a trusted party conditioned by the
measurements of all the modes, available to Eve, VA(B)|E for
direct or reverse reconciliation, respectively. For any N leakage
modes such a state can be reduced to VA(B)|ELeff , where E is
obtained from propagation losses in the quantum channel and
Leff is the equivalent effective single-mode leakage. Second
moments of the effective leakage mode in the signal quadrature
and new effective modulation ratio can be, respectively,
written as

VLeff = N∑N
n V −1

Ln

, (3)

keff = k
√

N. (4)

In order to provide an extensive analysis of CV QKD
protocols we examine the possible collective attacks that may
be performed by Eve, resulting in the lower bound on the
secure key rate given by

R|col
RR(DR) = βIAB − χBE(AE), (5)

where β accounts for limited post-processing efficiency,
mutual information IAB remains the same as in Eq. (2),
while the information obtainable by the untrusted party is
upper limited by the Holevo bound χBE(AE) [30] in either
reverse or direct reconciliation. In the limit of an infinite block
size Eq. (5) also corresponds to the key rate under coherent

attacks [31]. Under collective attacks Eq. (3) does not apply,
however, second moments of the effective leakage mode can
be found numerically. Nevertheless, provided that all Ln have
the same initial variance VL, and multimode modulator [ML

in Fig. 1(a)] outputs N leakage modes V ′
L = VL + k2VM , the

effective mode will have VL,eff = VL with the modulation ratio
(4). We will further consider only the case with one additional
mode (L) keeping in mind that a more general situation can be
reduced to the single-mode one. The equivalent entanglement-
based CV QKD scheme, enabling purification-based security
analysis in the case of collective attacks [17] corresponding
to Fig. 1(a), due to the fact that a fraction of the correlated
modulation leaked is unknown to trusted parties, is nontrivial.
One way to find the solution is by applying the Bloch-Messiah
reduction theorem [32] (for more details on security analysis
see Appendix A).

B. Coherent- and squeezed-state protocols

Direct reconciliation. This reconciliation scheme, which
is more suitable for short distance channels, being limited
by −3dB of loss, is extremely sensitive to the information
leakage from the additional source mode. In the limit of ideal
state propagation through the quantum channel used by trusted
parties η → 1, and symmetry of the variances V = VL = VS ,
the key rate (1) reads

RDR ≈ 1

2

(
[η − 1]VM

V log[2]

(2k2VM + V )2

k2VM + V
+ log2

[
VM + V

k2VM + V

])
.

(6)

It is evident from Eq. (6) that even if the quantum channel
is perfect (η = 1) for arbitrary values of signal modulation
the security is lost if the secondary mode receives the same
modulation as the signal mode (k = 1). In the absence of
symmetry of variances VL 
= VS excessive modulation can still
lead to a security break even if input of the leaking modes are
noisy coherent states with VL � 1.

Reverse reconciliation. Again, assuming that all modes
radiated by the source have the same variance V = VL = VS

in the limit of strong modulation (VM → ∞) the key rate (1)
reads

RVM→∞|ind
RR = −1

2
log2

[(
1 − η + ηk2

V (1 + k2)

)

× (1 + η[V − 1])

]
. (7)

If the leakage mode will be completely neglected trusted
parties would underestimate Eve’s knowledge about the key
that will lead to the falsely estimated key rate:

R
(false)
VM→∞|ind

RR = − 1
2 log2{(1 − η)[1 + η(V − 1)]}. (8)

While mutual information (2) between Alice and Bob
remains the same in Eqs. (7) and (8), the cost of underes-
timation of mutual information VB|E between Bob and Eve
is −1/2 log2{(1 − η)/(1 − η + k2η/[V (k2 + 1)])}. Such cost
for fixed k is the highest for short distance η → 1 and high
squeezing V → 0, hence conditions which allow the high false
key rate (8) will in fact be security breaking and yield a negative
actual key rate (7).
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The correlated modulation kVM that leaks to the untrusted
party makes the protocol sensitive not only to losses in the
quantum channel η, but also to the initial state squeezing
V and the state modulation VM ; security is always limited
by the presence of the second source mode for η < 1.
The more the squeezed initial state V is, the smaller the
fraction of the modulation VM is needed to be revealed to an
eavesdropper to break the security of the protocol. In the limit
of infinite squeezing V → 0 for any nonzero modulation ratio
k, the secure protocol cannot be established since the term
contributing to Eve’s information k2/[V (1 + k2)] in Eq. (7)
approaches infinity, i.e., Eve is able to collect an accurate
copy of the signal modulation directly from a leakage channel,
without any attack on the main channel.

However, if the coherent-state protocol is used with V = 1,
one can see from Eq. (7) that the secure key rate remains
positive for any arbitrary amounts of correlated modulation
leakage. For a long distance with small η � 1, we get always
the positive secure key rate η/(ln 4(1 + k2)). The key rate drops
with longer distance, but never vanishes completely.

Equation (7) also allows one to assess the maximal tolerable
kmax ratio for high signal-state modulation:

kmax|VM→∞ =
√

V (η − 2 + V − ηV )

(η − 1)(V − 1)2
, (9)

and immediately see that protocols can tolerate excess mode
modulation with any ratio k as long as either η = 1 (quantum
channel is perfect) or V = 1 (coherent-state protocol is used).

Given that at V = k2/(1 + k2) the key rate (7) becomes
R = −1/2 log2[1 − η + ηk2/(1 + k2)], and it is the same as
when the coherent-state protocol is used (V = 1), therefore
the amount of squeezing needed to reach improvement over
the coherent-state protocol is independent of channel losses η

and is bounded as

k2

1 + k2
< V < 1, (10)

with squeezing that maximizes the key rate (7) being

V opt|VM→∞ =
√

k2

1 + k2
. (11)

With the increase of the modulation ratio k it is clear from
Eqs. (10) and (11) that the coherent-state protocol is optimal in
this regime, however, for low k, the optimized squeezed state
protocol can yield significantly higher secure key rates.

One has to address an important aspect of the CV QKD
system with multimode modulation—the difference between
states in signal and leakage modes. Generally if the effective
leaking state is initially more squeezed than the signal (VL <

VS) it is more beneficial for an eavesdropper. An opposite effect
is true as well—if the leaking state is initially less squeezed
(VL > VS), the tolerance of protocols to modulation leakage is
significantly improved, however, security is still limited by the
leakage. For fixed state variance VL in the secondary source
mode, optimal V

opt
S < VL, provided k < 1, but V

opt
S > VL if

k > 1.
If noise is present in the channel one has to consider an

equivalent entanglement-based CV QKD scheme for security

FIG. 2. Key rate (in bits per channel use) versus distance d

(in kilometers) in a standard telecom fiber (with attenuation of
−0.2dB/km) under collective attacks in the case of modulation
leakage for different values of ratio between additional and signal
state modulation variances k = 0 (blue, upper lines), 1 (light blue,
middle lines), 1.5 (light green, lower lines) for optimized squeezed-
state protocol (solid lines), squeezed-state protocol (dashed lines)
with VL = VS = 1/2, and coherent state protocol with VL = VS = 1
(dotted lines). Modulation variance VM is optimized for given
parameters, excess noise ε = 1%, post-processing efficiency β =
97%. Evidently the distance is shortened by modulation leakage.
Squeezing optimization allows one to achieve overall longer secure
distances. Comparing unoptimized squeezing- and coherent-state
protocols, the first one prevails under weak leakage k ≤ 1, the latter
under stronger leakage k > 1.

analysis [33]. Results obtained for the protocols in realistic
conditions (limited post-processing efficiency β and noisy
quantum channel, characterized by losses η and noise ε)
under collective attacks complement the preceding results for
individual attacks. For any nonunity β, the signal modulation
VM must be limited and optimized [34]. Leakage does have
an impact on the optimal modulation value, but if the perfect
post-processing algorithm (β = 1) is used, the key rate (5)
as a function of the modulation VM is still monotonically
increasing. Despite the states in the signal VS and leakage
VL modes the excessive modulation is security breaking.

Let us look at the case when the source generates identical
states into signal and leakage modes V = VL = VS . In terms of
secure distance (Fig. 2), the protocol with broadly accessible
squeezing [35] of signal states to −3dB below the shot-noise
unit (SNU) is able to prevail over the coherent-state protocol
given the limited modulation ratio k < 1. On the other hand the
coherent-state protocol is less sensitive to leakage and can be
used on longer distances if the modulation ratio is higher, k > 1
(lower lines in Fig. 2). In fact, in such a regime even the noisy
coherent-state protocol [15,36,37] can achieve a higher key
rate than the squeezed-state protocol, provided excess noise ε

in the channel is low enough.
However, in order to achieve best results under multi-

mode modulation leakage with an arbitrary modulation ratio
k, squeezing optimization is suggested. Optimal squeezing
[similarly as in Eq. (11)] lowers with leakage increase, and
approaches unity V opt → 1 for high k, e.g., in Fig. 2 optimal
squeezing V opt < 1/2 for k = 0,1 (upper and middle lines,
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FIG. 3. Performance of the squeezed-state protocol with and
leakage from the modulator under collective attacks. The coherent-
state protocol, due to combined effects of modulation leakage, excess
noise and limited post-processing efficiency, cannot be used for secure
key generation at given parameters. Key rate dependency on the
leaked modulation ratio k is shown for different values of squeezing
(starting from top) VS=0.1, 0.3, 0.5, 0.7, 0.9 SNU. All solid lines
display the key rate with the symmetry of signal and leakage variances
(VL = VS). The thick (orange) line illustrates the key rate of the
protocol with both modulation VM and signal squeezing VS optimized.
Dashed lines display the case when leakage mode input is fixed and
independent of the signal (VL = 1). Lowest solid and dashed lines,
corresponding to VS = 0.9, very nearly overlap. Signal modulation is
optimized for given parameters. Reconciliation efficiency β = 95%,
channel losses η = 0.1, and excess noise ε = 1%. Apparently the
squeezed-state protocol is sensitive to leakage, especially for high
squeezing. Provided that the source outputs identical states, security
is broken when leakage is larger than half of the signal modulation.
Robustness to leakage is higher if VL > VS , but leakage remains a
security threat. Squeezing optimization (thick, orange line) heightens
robustness and the key rate, but it’s not sufficient to maintain security
for arbitrary amounts of leakage.

respectively), while for k = 1.5 less squeezing is required
1 > V opt > 1/2 to achieve longer secure distance.

Squeezed-state protocol susceptibility to leakage is further
illustrated in Fig. 3. Highly squeezed states are clearly more
sensitive to leakage, but lower squeezing does not necessarily
yield higher tolerance to leakage. Contrary to the case of
purely lossy channels, where the coherent-state protocol has
a nonvanishing key rate for an arbitrary modulation leakage,
it may not always be suitable for secure key generation in
noisy channels. The squeezed-state protocol remains sensitive
even if states in the leakage mode have fixed variance VL =
const and are independent of signal VS (Fig. 3). Squeezing
optimization in such a regime can still be effective, especially
under strong leakage k � 1.

III. PREMODULATION LEAKAGE

A. Security analysis

In this section we will describe and examine another type
of threat that may occur on a trusted preparation side of a
Gaussian CV QKD system described in the beginning of the
previous section (with absence of multimode modulation).
Differently from the previous section, we now consider the

presence of a channel between the source and modulator,
modeled as linear coupling to a vacuum mode, as shown
in Fig. 1(b). The signal generated by the source, with
the quadrature value QS , prior to the modulation stage is
linearly coupled to the mode ES with the coupling ratio
ηE . Signal states have zero mean of quadratures and vari-
ances VS = 〈Q2

S〉 − 〈QS〉2, while states in the premodulation
channel ES are vacuum. During modulation (on modulator
MS) Alice applies displacement QM with 〈Q2

M〉 − 〈QM〉2 =
VM to both quadratures of the signal states, resulting in
a state QB = QS

√
ηE + QES

√
1 − ηE + QM with variance

VB = ηE(VS − 1) + VM + 1. Eve can gain information from
states Q′

ES
= QES

√
ηE − QS

√
1 − ηE and Q′

E = QE
√

η −
(QS

√
ηE + QES

√
1 − ηE + QM )

√
1 − η, obtained, respec-

tively, from quantum and premodulation channels. After the
signal passes through the purely lossy untrusted channel
and arrives at the trusted receiver side its variance before
measurement is

V ′
B = [ηE(VX(P ),S − 1) + VM ]η + 1, (12)

where η characterizes the loss rate in the transmitting channel.
General correlations between Eve’s states are described as

CES,EC
= (VS − VES

)
√

(1 − η)(1 − ηE)ηE, (13)

while correlations between the signal state and output of the
premodulation channel are scaled by the transmittance in the
quantum channel,

CB,ES
= (VES

− VS)
√

η(1 − ηE)ηE. (14)

Using the expressions above we can write the mutual informa-
tion between Alice and Bob as

IAB = 1

2
log2

VM

VM − V 2
Mη

VMη+(VS−1)ηEη+1

. (15)

Similarly we can find the mutual information between Eve
and the respective trusted reference side and apply Eq. (1) for
analysis of individual attacks. For general analysis we adopt
the recently introduced general purification scheme [19] and
proceed with an estimation of the CV QKD protocol behavior
under collective attacks Eq. (5) in noisy quantum channels.

B. Coherent- and squeezed-state protocols

The main aspect of the premodulation channel is that it
provides correlations (14) with the signal to the external party
and corrupts the initial carrier states (12). The influence of
such a channel can be viewed as a preparation noise [15,17],
however, it also provides an eavesdropper with additional
correlations with the signal. Furthermore, the premodulation
channel can be equivalent to side-channel leakage after the
modulation stage, provided QM is scaled by

√
ηE [19].

For VS = 1, assuming the initial state in the mode ES

is a vacuum state (VES
= 1) we can immediately conclude

that such a lossy channel would not affect the coherent-state
protocol, since correlations (13) and (14) will totally vanish,
and mutual information between trusted parties (15) will turn
to a conventional form (2). In other words, the access to the
lossy side channel would not provide the eavesdropper with
any additional advantage if the coherent-state protocol is used.
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For VS < 1 and VES
= 1 the correlation arises and this case

has to be analyzed in detail.
Direct reconciliation. The squeezed-state protocol is af-

fected by the presence of the side channel between the source
and modulator, since mutual information (15) diminishes,
while information obtained by Eve (expressed in terms of
mutual information or Holevo bound for respective attacks)
increases. The lower bound on the key rate (1) in a perfectly
transmitting channel can be expressed as

R|ind
DR|η→1 = 1

2
log2

[
1 + VM

1 + ηE(VS − 1)

]
. (16)

The presence of the premodulation channel lowers the
overall key rate, however, secure key distribution is still
possible for any side channel coupling ratio ηE .

Reverse reconciliation. Similarly the squeezed-state pro-
tocol key rate (1) will decrease due to the existence of the
premodulation channel:

R|ind
RR|VM→∞ = − 1

2 log2[(1 − η)(1 + ηE(VS − 1)η)], (17)

though the key rate will still exceed the one for the coherent-
state protocol. In the case of individual attacks and in the
limit of high modulation (VM → ∞) the advantage of the
squeezed-state over the coherent-state protocol is

(
R|sq

RR − R|coh
RR

)ind
VM→∞ = − 1

2 log2[1 + ηE(VS − 1)η]. (18)

The premodulation channel grants adversary correlations
with the signal and they provide Eve an additional advantage,
comparing to the case of preparation noise [15]. Such an
advantage diminishes for low transmittance quantum channels
and is the highest for η → 1:

RES
− R�V = 1

2
log2

[
1 + VM + ηE(VS − 1)

VM + VS/(ηE + VS − ηEVS)

]
.

(19)

The correlation advantage RES
− R�V quickly disappears

for the high modulation (VM → ∞).
Considering the noisy quantum channel and equivalent

entanglement-based system under collective attacks (see
Appendix B) premodulation channel impact is similar to
the previously described case of multimode modulation.
The squeezed-state protocol is still superior to the coherent-
state one in terms of the secure key rate (5) and tolerance to the
channel noise. Squeezing optimization is not required as the
key rate (5) linearly increases with an increase of squeezing.
While the premodulation channel does not pose a security
breaking threat, it can lower the secure distance (Fig. 4) and
tolerance to the quantum channel excess noise ε. Even though
correlations (14) help an adversary, the worst case scenario for
trusted parties is substitution of the initial squeezed state by
the coherent states (VS = 1).

IV. CONCLUSIONS

We have investigated the negative impact of leakage from
the trusted preparation side, namely, the correlated multimode

FIG. 4. The key rate (in bits per channel use) versus distance
d (in kilometers) in a standard telecom fiber (with attenuation of
−0.2dB/km) in the case of collective attacks on the coherent-state
protocol (orange, lower line) and the squeezed-state protocol with
VS = 1/10,1/2 (upper dark blue and middle light blue, respectively).
The premodulation channel coupling ratio ηE = 0.5 (dashed lines)
and 1, i.e., the absence of the channel (solid lines). Modulation
variance is optimized for given parameters, β = 97%, ε = 5%.
Evidently the premodulation channel reduces the secure distance
of the squeezed-state protocol. However, even small squeezing
allows one to achieve longer distances. Maximal influence of the
premodulation channel is set by the performance of the coherent-state
protocol.

modulation of nonsignal modes of the source and signal loss
prior to the modulation stage. We have considered CV QKD
coherent- and squeezed-state protocols with direct and reverse
reconciliation. We have analyzed prepare-and-measure and
equivalent entanglement-based models of leakage for cases of
an illustrative individual and more general collective attacks
in noisy channels.

Multimode modulation of nonsignal modes of the source
limits the performance of both protocols and can lead to a
security break even in the case of individual attacks in a
purely lossy channel. Surprisingly, the coherent-state protocol
can tolerate arbitrary amounts of leakage, though only in the
noiseless channel. On the other hand, security of the squeezed-
state protocol, with an increase of modulation leakage, quickly
becomes compromised without the need for an untrusted party
to resort to any additional manipulations onto the trusted
side. We show that squeezing, however, can be optimized
in order to improve the tolerance against multimode mod-
ulation leakage and channel noise. The optimized squeezed
protocol then overcomes the coherent state protocol for any
parameters.

The leakage from the preparation side prior to the
modulation stage introduces noise to the squeezed sig-
nal and establishes correlations with an eavesdropper.
While the coherent-state protocol is immune to such in-
fluence, the squeezed-state protocol suffers from secure
key rate deterioration and becomes more sensitive to the
excess noise in the channel. Nevertheless performance of
the squeezed-state protocol surpasses the one of the
coherent-state protocol, without the need for squeezing
optimization.
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Our results together with previous studies [14,19] describe
the effects of the main possible mechanisms of information
leakage from the trusted preparation side of continuous-
variable quantum key distribution protocols, based on the
most common linear passive coupling between optical modes.
The results are stimulating for an experimental test of the
macroscopically multimode protocols [38–41]. They may
also stimulate analysis of side channels in MDI CV QKD
protocols, where side-channel attacks on the source are, in

principle, possible and therefore relevant similarly to the case
of discrete-variable protocols [42].
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APPENDIX A: LEAKAGE FROM MULTIMODE MODULATOR

1. Multimode leakage

Using the initial values of quadrature variances of signal, leakage and untrusted channel modes (described in the main text),
and input-output relations [for arbitrary modes 1 and 2 with quadrature vectors υi = (xi,pi)T ],(

υ1

υ2

)
out

=
( √

T I
√

1 − T I
−√

1 − T I
√

T I

)(
υ1

υ2

)
in

, (A1)

one can obtain the results of linear interactions in prepare-and-measure (P&M) multimode modulation scheme. Provided the
source radiates modes with identical variance (VL = VS) and the untrusted channel is purely lossy,

σB,LE =

⎛
⎜⎜⎜⎝

√
ηkVM 0

0 −√
ηkVM

−√
(1 − η)η(VM + VS − 1) 0

0
√

(1−η)η(VS−VMVS−1)
VS

⎞
⎟⎟⎟⎠, (A2)

γLE =

⎛
⎜⎜⎜⎜⎝

VMk2 + VS 0 −k
√

1 − ηVM 0

0 VMk2 + 1
VS

0 k
√

1 − ηVM

−k
√

1 − ηVM 0 VM + VS − η(VM + VS − 1) 0

0 k
√

1 − ηVM 0 T + (1 − η)
(
VM + 1

VS

)

⎞
⎟⎟⎟⎟⎠, (A3)

where σB,LE (A2) describes correlations of Bob’s mode B with channel E and leakage L modes, γLE is a covariance matrix of
channel E and leakage mode L. The conditional covariance matrix can be obtained as

γX|Y = γX − σY,X[XγY X]MPσT
Y,X, (A4)

where X = Diag(1,0,0,0) and MP stands for Moore-Penrose pseudoinverse of the matrix [43]. Using Eq. (A4) and elements of
matrices (A2) and (A3), as well as the matrix describing states received by Bob γB = Diag([η(VS + VM − 1) + 1],0,0,[η(1/VS +
VM − 1) + 1]), one can find VB|E = VB|LE = (VM + k2VM + VS)[η(k2VMV −1

S + 1) + (1 − η)(VM + k2VM + VS)]−1. The latter
can be used to assess Eve’s mutual information with the trusted receiver side IBE = 1/2 log2[VB/VB|LE], and consequently to
find the key rate under individual attacks.

2. Purification

While P&M schemes can be used for illustration of
modus operandi of protocols and basic security analysis,
for an extensive analysis of Gaussian CV QKD protocols
one has to consider an entanglement-based scheme [44].
The latter are based on usage of entangled sources that radiate
two-mode Gaussian states described, in terms of covariance
matrices, as

γ =
(

V I
√

V 2 − 1σz√
V 2 − 1σz V I

)
, (A5)

with V being the variance of each mode, I is a two-dimensional
unity matrix, and σz is the Pauli matrix σz = Diag(1,0,0,−1).
Alice performs a homodyne or heterodyne detection (depend-
ing on the protocol intended for use) on one of the modes,

thereby conditionally squeezing the other mode, resulting
in states with quadrature variances 1/V and V or coherent
states. The unmeasured and conditioned mode is a signal
mode, that is sent through the untrusted quantum channel
(characterized by losses η and excess noise ε) to Bob. This
technique yields fully equivalent results to P&M schemes
that prepare the signal state with the quadrature variance
VS = 1/V (or VS = 1 if Alice performs the heterodyne mea-
surement), and subsequently apply Gaussian modulation of
variance VM .

The entanglement-based scheme with multimode modula-
tion leakage should satisfy following conditions.

(1) Neither states sent by Alice nor states received by Bob
nor correlations CAB between them should be dependent on
modulation (kQM , with variance k2VM ) applied to states in
the leakage mode.
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FIG. 5. Purification of modulation leakage (N = 1) on the prepa-
ration side of the Gaussian CV QKD protocol. Alice’s side contains
two EPR sources, radiating modes A, B with variance V1, and modes
D, L, with variance V2. One mode from each source is kept on the
preparation side (A,D) while the other two (B,L) interact on the
beam splitter with transmittance T1, undergo single-mode squeezing
r1 and r2, respectively, and subsequently interact on the beam splitter
with transmittance T2. Signal mode B proceeds through the untrusted
channel (η, ε) to Bob, while the L mode is accessible to Eve.

(2) The ratio between the leaking modulation and signal
should be k � 0 and its values can exceed 1, since generally
the variance of the modulation applied can be greater than that
applied to the signal mode.

(3) The ratio k cannot be influenced by a trusted prepara-
tion party leaving only two parameters under Alice’s control:
signal modulation QM and amount of squeezing in the state
QS produced by the source.

(4) The optical configuration should be scalable consid-
ering the fact that the trusted source can have an arbitrary
multimodal structure.

One of the solutions that can satisfy all required conditions
is provided by the Bloch-Messiah decomposition theorem
[32], which says that the multimode evolution of an optical
system governed by the linear Bogoliubov transformations
can be decomposed into a combination of linear and nonlinear
optical components (multiport interferometers and single-
mode squeezers).

Let us consider the purification of two-mode modulation,
i.e., the signal and leakage modes, as in Fig. 5. On the
preparation side there are two sources; each generates a pair
of entangled modes A,B and L,D, respectively. The states
QA,QB (Q represents X or P quadrature) in modes A,B

initially have a variance V1, while states QL,QD in modes
L,D have variance V2. One mode from each source, e.g., B

and L, interact on a beam splitter with transmittance T1. The
mode interaction effect on the covariance matrix γABLD is
given by input-output relations (A1).

Further, states in modes B and L are squeezed on individ-
ual single-mode squeezers (characterized by the squeezing
parameter ri), resulting in the change of state quadrature
variance by e−2ri or e2ri . Subsequently modes interact,
according to Eq. (A1), on the beam splitter with trans-
mittance T2. As a result the four-mode covariance matrix
γABLD after the interaction becomes γ ′

ABLD and depends
on six parameters: T1,T2,r1,r2,V1,V2. The elements of the
covariance matrix γ ′

ABLD can be used to form a set of
equations:

VB(X) = −2t1t2e−V− + e−2r1T2(T1V− + V2)

+ e−2r2 (1 − T2)(V1 − T1V−),

FIG. 6. Purification of the Gaussian CV QKD protocol with the
side channel between source and modulation. Source S radiates signal
(mode B) that, using entangled source V (modes C,D), receives
amplitude and phase modulation, and is sent to Bob, that conducts
homodyne detection H . Source S0 (mode A) generates infinitely
squeezed states that are kept on the preparation side. Source SE (mode
ES) establishes correlations with, and provides Eve with information
about signal (B). Losses η and noise ε in the untrusted channel (mode
E) are attributed to Eve.

VB(P ) = 2t1t2e−V− + e−2r1 (1 − T2)(T1V− + V2)

+ e−2r2T2(V1 − T1V−),

VL(X) = −2t1t2e+V− + e2r1T2(T1V− + V2)

+ e2r2 (1 − T2)(V1 − T1V−),

VL(P ) = 2t1t2e+V− + e2r1 (1 − T2)(T1V− + V2)

+ e2r2T2(V1 − T1V−),

CBL(X) = t1(1 − 2T2)e−V− + t2(e−2r2 (V1 − T1V−)

− e−2r1 (T1V− + V2)),

CBL(P ) = t1(1 − 2T2)e+V− + t2(e2r2 (V1 − T1V−)

− e2r1 (T1V− + V2)),. (A6)

where V− = V1 − V2, t1(2) = √
(1 − T1(2))T1(2), and e± =

e±(r1+r2). To find the solutions of Eq. (A6) one can sub-
stitute the left-hand side for the respective variances of
states in the signal and leakage modes, and their covari-
ances as follows: VB(X) → VS + VM , VB(P ) → 1/VS + VM ,
VL(X) → VS + k2VM , VL(P ) → 1/VS + k2VM , and CBL(X) →
kVM , CBL(P ) → −kVM . Solving Eq. (A6) for given k,VS,VM

will yield numerical values of parameters T1,T2,r1,r2,V1,V2

and subsequently a numerical covariance matrix γ ′
ABLD that

can further be used to incorporate the effect of the untrusted
quantum channel (η,ε) and analyze the security of the Gaussian
coherent- or squeezed-state CV QKD protocol. The same
approach can be used to purify cases of N mode leakage,
however, N entangled sources are required, increasing the
amount of parameters and equations in (A6) to N (1 + N ).
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APPENDIX B: PREMODULATION LEAKAGE

1. Pure losses

Let us now consider the generic CV QKD protocol (without the multimode modulator) and the presence of the channel
between the source and the modulator. Results of linear interactions (A1) in the P&M scheme in the purely lossy channel can be
described by

σB,ESE =

⎛
⎜⎜⎜⎜⎝

(1 − VS)
√

ηEη(1 − ηE) 0
0 − 1−VS

VS

√
ηEη(1 − ηE)

(ηE − VM − ηEVS)
√

(1 − η)η 0
0 (ηE − ηE+VMVS

VS
)
√

(1 − η)η

⎞
⎟⎟⎟⎟⎠, (B1)

σESE =
⎛
⎝(VS − 1)

√
(1 − η)(1 − ηE)ηE 0

0 (1−VS )
VS

√
(1 − η)(1 − ηE)ηE

⎞
⎠, (B2)

γE =
⎛
⎝η + (1 − η)(VM + ηE(VS − 1) + 1) 0

0
(
VM + ηE(V −1

S − 1) + 1
)
(1 − η) + η

⎞
⎠, (B3)

γES
=

⎛
⎝VS + (1 − VS)ηE 0

0 1+ηE (VS−1)
VS

⎞
⎠, (B4)

where σB,ESE is the matrix describing Eve’s correlations to the signal mode after premodulation leakage and losses, σESE

describes correlations between modes accessible to Eve, and the variances (in X and P quadratures) of the latter are given by
γE and γES

. One can use Eqs. (A4) and (B1)–(B4) to find the variance of Alice and Bob states conditioned by measurements of
modes accessible to Eve:

VA|E = VS[VM (1 + (1 − η)VS) + VS] + ηE(1 − VS)[η(VM − VS) + (1 − η)VMVS]

VS[1 − η + (1 − η)VM + η] + ηE(1 − VS)[(1 − η)VM + η]
, (B5)

VB|E = ηEVM + VS(VM (1 − ηE) + 1)

VS[1 + ηE(1 − VS)((1 − η)VM + η) + (1 − η)VM ]
. (B6)

Eve’s mutual information with a trusted party IAE = 1/2 log2[VA/VA|E], or IBE = 1/2 log2[VB/VB|E] can be calculated
using, respectively, Eq. (B5) or (B6) and further used to assess the key rate under individual attacks.

2. Purification

In the case of the side channel present between the source and the modulator, the purification can similarly be done using
Bloch-Messiah decomposition (as in Appendix A 2), however, we adopt a general purification scheme as in Fig. 6 [19].

Alice on the preparation side operates an EPR source (A5) that radiates into modes C and D, source S that produces the signal
state in mode B and source S0 that produces the infinitely squeezed state in mode A. Modes produced by the EPR source have
variance VM/(1 − T1) and are, respectively, coupled to modes from the other two sources on strongly unbalanced beam splitters
T1. The leakage is modeled as a signal interaction (A1) with the vacuum mode on a beam splitter with transmittance ηE . The
signal further proceeds to the unbalanced beam splitter T1 where it interacts with mode D that carries information and further
is sent to the untrusted channel where it suffers from losses η and noise ε. Mode A carrying the infinitely squeezed state (to
simulate the detection on the trusted side) interacts with first entangled mode C on another strongly unbalanced beam splitter
characterized by the same value of transmittance T1.

After the interactions, the state that is kept on the preparation side can be described by the variances as VA(X) = VS0T1 + VM ,
VA(P ) = T1/(VS0 ) + VM , and the state that is sent to Bob through the untrusted channel as VB = (VSηE + (1 − ηE)VE1 )T1 + VM ,

while these two states are correlated as CAB = −
√

(V 2
M − (1 − T1)2)η. In the limit T1 → 1 these correspond to the P&M scheme

with the premodulation channel—generation of the signal state with variance VS , the premodulation channel interaction with
output accessible to Eve, and further amplitude and/or phase Gaussian modulation of variance VM . The measurement conducted

by Alice conditions Bob’s state to VB|A(X) = T1((1 − ηE)VE1 + ηEVS) + (T1−1)2−V 2
M

T1V0+VM
+ VM , VB|A(P ) = T1((1 − ηE)VE1 + ηE

VS
) +

V0((T1−1)2−V 2
M )

T1+V0VM
+ VM . In the regime T1 = 1, V0 = 1, and VE1 = 1, ηE = 1 states reduce to VB|A(X) = VS , and VB|A(P ) = 1/VS + VM

that corresponds to modulation with variance VM applied to both quadratures of the signal state described initially by variances
in respective quadratures VS , 1/VS with only one value (x) being kept. The resulting six-mode covariance matrix (including
premodulation ES and untrusted E channels) γABCDESE allows one to further analyze the security of the Gaussian coherent- or
squeezed-state CV QKD protocol.
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Abstract: Transmittance fluctuations in turbulent atmospheric channels result in quadrature
excess noise which limits applicability of continuous-variable quantum communication. Such
fluctuations are commonly caused by beamwandering around the receiving aperture. We study the
possibility to stabilize the fluctuations by expanding the beam, and test this channel stabilization
in regard of continuous-variable entanglement sharing and quantum key distribution. We perform
transmittance measurements of a real free-space atmospheric channel for different beam widths
and show that the beam expansion reduces the fluctuations of the channel transmittance by the
cost of an increased overall loss. We also theoretically study the possibility to share an entangled
state or to establish secure quantum key distribution over the turbulent atmospheric channels with
varying beam widths. We show the positive effect of channel stabilization by beam expansion on
continuous-variable quantum communication as well as the necessity to optimize the method in
order to maximize the secret key rate or the amount of shared entanglement. Being autonomous
and not requiring adaptive control of the source and detectors based on characterization of beam
wandering, the method of beam expansion can be also combined with other methods aiming at
stabilizing the fluctuating free-space atmospheric channels.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The development of experimental quantum optics in the past decades led to the emergence and
tremendous progress in the field of quantum information, which studies the possibility to store,
transmit and process information encoded into quantum states. Quantum communication, a
particular application of quantum information processing, is very naturally suggested by the
long coherence time and relatively low coupling to the environment which is typical for optical
quantum states. This allows one to use quantum states of light for quantum communication,
particularly for sharing a quantum resource (such as entanglement) to connect quantum devices,
or for quantum key distribution (QKD), aimed at securely distributing random secret keys between
two legitimate parties. The methods of QKD are called protocols and were first suggested on the
basis of strongly nonclassical systems such as single photons or entangled photon pairs [1]. Later
the natural use of continuous-variable (CV) [2] quantum states of light was suggested [3]. This
resulted in the development of CV QKD protocols and methods to produce, characterize and
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share CV entanglement.
CV QKD protocols are typically based on the use of Gaussian quadrature-modulated coherent

[4,5] or squeezed states [6,7] of light and homodyne detection at the receiving station. Equivalently,
quadrature-entangled states and homodyne detection at both the sending and the receiving stations
can be used [8]. The security of Gaussian CV QKD protocols [9] was shown against general
attacks in the asymptotic regime [10] and against collective attacks in the finite-size regime [11,12]
based on the optimality of Gaussian attacks [13–15]. This approach allows to broadly study the
security of the protocols using covariance matrices, which explicitly characterize Gaussian states
of light [16]. Gaussian CV QKD protocols were well studied and successfully implemented in
long-distance fiber links [5, 17, 18], where the transmittance is typically stable and the added
channel excess noise is extremely low. On the other hand, atmospheric quantum channels,
which are of utmost importance for long-distance satellite communication [19] or free-space
terrestrial communication waiving the requirement of necessity of fiber-optical infrastructure, are
typically inclined to transmittance fluctuations due to turbulence effects [20–22], also affected
by weather conditions [23]. Such transmittance fluctuations (also referred to as channel fading)
were analyzed in their impact on applicability of CV quantum communication in the case of
atmospheric turbulence [24–27] and uniform transmittance fluctuations [28]. It was shown
that channel fading can be destructive to CV QKD protocols and limit the possibility to share
CV entangled states. The main reason for this is that the transmittance fluctuations lead to
additional excess noise appearing in the variances of the quadrature measurement results [24].
Such fading-related excess noise is proportional to the variance of the transmittance fluctuations
and the overall variance of the quadrature distributions in the quantum signal. Therefore in order
to allow CV QKD or quantum resource sharing over a fluctuating channel the stabilization of the
channel transmittance can be advantageous as a feasible alternative to channel post selection [24]
or entanglement distillation [29, 30]. In the case of mid-range atmospheric optical channels,
the transmittance fluctuations are typically caused by beam wandering, when the beam spot is
randomly traveling around the receiving aperture [31], in addition to such turbulence effects, as,
e.g., scintillation, phase degradation of the wave front, and beam spreading. The transmittance
fluctuations caused by beam wandering are then governed, in particular, by the ratio between the
beam size and the size of the aperture [32]. It was suggested that an increase of this ratio would
naturally stabilize the channel and make it more suitable for quantum communication tasks [24],
similarly to optimization of the beam spot size for given channel parameters in classical free-space
optical communication [33, 34].
In the present paper we discuss the method of beam expansion, aimed at compensating the

channel fluctuations caused by beam wandering, in detail for CV quantum communication tasks,
where the signal intensity is drastically limited compared to the classical free-space optical
communication. We report the experimental test of the method based on the spatial expansion of
the beam and the subsequent characterization of the channel transmittance. We show that the
fading can be indeed stabilized and the variance of transmittance fluctuations (and, subsequently,
quadrature excess noise) can be substantially reduced at the cost of increase of the overall loss
of the channel. This leads to the trade-off between channel stabilization and its applicability
to entanglement sharing or CV QKD. Therefore the suggested method of channel stabilization
should be optimized to reach maximum key rate or secure distance for CV QKD or maximum
shared entanglement in practical quantum applications.

2. Fading due to beam wandering in CV quantum communication

The most feasible CV quantum communication and QKD protocols are based on Gaussian states
and operations [16]. It is well known that Gaussian states and their properties are explicitly
described by the first and the second moments of the field quadrature operators, which can
be introduced through the mode’s quantum operators as x = a† + a and p = i(a† − a), i.e.
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by the mean values 〈x〉, 〈p〉 and by the covariance matrix γ of the elements of the form
γi, j = 〈rirj〉 − 〈ri〉〈rj〉, where ri = {xi, pi} is the quadrature vector of the i-th mode. It was
shown that channel fading leads to excess noise in the quadrature variance, which is proportional
to the variance of the channel fluctuations and the variance of the state propagating through the
channel [30] such that the variance of a quadrature on the output of a purely attenuating fading
channel becomes V

′
ri
= 1 + 〈√η〉2(Vri − 1) + ε fi . Here 〈

√
η〉 is the mean channel transmittance

and ε fi = Var(√η)(Vri − 1) is the excess noise due to fading, which depends on the variance of
the transmittance fluctuations Var(√η) = 〈η〉 − 〈√η〉2 and the ri-quadrature variance Vri of the
source. Noise due to fading is therefore generally phase-sensitive, but we further, with no loss of
generality, assume phase-space symmetry of the considered states, having variance Vri = V : ∀i
in any quadrature, and subsequent phase independence of the noise ε f = Var(√η)(V − 1). This
noise reduces and possibly destroys the entanglement of a Gaussian state shared over a fading
channel and as well decreases the secret key rate of the Gaussian CV QKD. It can lead to loss
of security in CV QKD [24], i.e., turning the key rate to zero. The effect is more pronounced
for stronger transmittance fluctuations, lower mean channel transmittance and larger initial state
variance V .

One of the main causes of transmittance fluctuations in an atmospheric channel is beam
wandering [31], when the optical beam moves around the aperture of the receiving detector
and becomes clipped. It was studied for transmission of quantum states of light for which the
transmittance distribution was shown to be governed by the log-negative Weibull distribution,
cut at a certain value of transmittance η0 [32, 35]. The distribution is then given by the scale
and shape parameters, expressed by the beam-center position variance σ2

b
and the ratio a/W

of the aperture radius a and the beam-spot radius W so that the maximum transmittance is
defined by η2

0 = 1 − exp[−2(a/W)2]. The beam-spot fluctuations variance σ2
b
is related to

the Rytov parameter [36], defining the turbulence strength, which can be obtained from the
atmospheric structure constant of refractive index Cn [37]. The latter, however, was not directly
measured in our experiment and further we describe the beam-spot fluctuations by the variance
σ2
b
. It was naturally predicted that the expansion of the beam i.e. the decrease of the ratio a/W

would result in a stabilization of the channel transmittance at the cost of a decrease of the mean
transmittance [24], a technique also used in classical optical communication [33, 34]. In our
research we verify and confirm this conjecture and study the effect of beam expansion on the
channel properties, the efficiency of sharing quantum entanglement and on the security of CV
QKD through a fading channel.

3. Experimental set-up and results

The possibility to stabilize the fading channel by expanding the beam was studied in a real-world
scenario in the city of Erlangen. The used point-to-point free-space channel of 1.6 km length
connects the building of the Max Planck Institute for the Science of Light with the building
of the computer sciences of the Friedrich-Alexander-University Erlangen-Nürnberg. We use a
grating stabilized continuous wave diode laser with a wavelength of λ = 809 nm. The mode of
this laser is cleaned using a single mode fiber before the beam is expanded using a telescope (see
Fig 1). The beam is then sent through the fading free-space channel to Bob. At Bob we use an
achromatic lens with a diameter of a = 150mm and a focal length of 800mm, which defines our
aperture. The beam width of the received beam, i.e. the aperture-to beam size ratio a/W , can be
adjusted with the sender telescope. A PIN photodiode detector (bandwidth 150 kHz) is used to
measure the fluctuating transmittance of the channel. To estimate the beam width at Bob we use a
CCD camera and a screen. No adaptive strategy has been used at Bob’s station or between Alice
and Bob. The profiles of the transmittance distributions for different beam expansion settings that
illustrate the change of the statistics of the channel fading are given in Fig. 2. The transmittance
data was analyzed to obtain the mean values of transmittance 〈η〉 and 〈√η〉, and the resulting

                                                                 Vol. 26, No. 24 | 26 Nov 2018 | OPTICS EXPRESS 31108 



Fig. 1. A schematic view of the experimental set-up. At the sender Alice we use a telescope
to expand the beam and adjust its beam width. Subsequently the beam is sent through our
1.6 km free-space link to the receiver Bob. There we use an achromatic lens with a diameter
of a = 150mm and measure the fluctuating transmission using a PIN photodiode detector
and an analogue-to-digital converter. To estimate the aperture-to-beam size ratio we use a
CCD camera and a screen.
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Fig. 2. Transmittance distribution profiles for different aperture-to-beam size ratios as
indicated at the plots.

variance Var(√η), which governs the evolution of a covariance matrix after propagating through
the fading channel. The results are given in Fig. 3 along with the values, obtained from the
analytical Weibull distribution for the beam-spot fluctuation variance of σ2

b
= 0.3, which is set so

in all the subsequent calculations except for these, resulting in the plots in Fig. 5. The results of
calculations from the experimentally obtained data demonstrate qualitatively the same tendencies
with the decrease of the aperture-to-beam size ratio as the theoretical prediction: it is clearly
visible from the plots that the expansion of the beam (i.e., decrease of the aperture-to-beam size
ratio) reduces the fluctuations of the transmittance and at the same time reduces the average
transmittance of the channel. In order to clarify the effect of the channel stabilization by the
beam expansion on the quantum communication and quantum resource sharing we apply the
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Fig. 3. Characteristics of atmospheric fading channel for larger beam expansion characterized
by decreasing aperture-to-beam size ratio a/W . (Left): mean values 〈η〉 (lower solid black
line) and 〈√η〉 (upper dashed grey line) estimated from the analytical Weibull distribution
along with the experimental results (squares and circles respectively) and (right): variance
Var(√η) of the square root of transmittance from the experimental characterization of the
channel (points) and from the analytical estimates (solid line) versus aperture-to-beam size
ratio.

obtained characteristics of the channel to these applications in the next section.

4. Effect of beam expansion on entangled resource sharing and CV QKD

Before we analyze the applicability of channel stabilization by beam expansion for CV QKD,
we first study the impact of the method on the entanglement of a typical two-mode Gaussian
entangled state, namely two-mode squeezed vacuum [16], shared over a fading channel. We
characterize the entanglement of the state using the logarithmic negativity [38], defined as

LN = max{0,− log2 ν}, (1)

where ν is the smallest symplectic eigenvalue of a covariance matrix of a partially transposed
state for a pair of modes (see [16] for review on covariance matrix formalism for Gaussian states).
We evaluate the logarithmic negativity for a state quadrature variance of V = 7 shot-noise units
(SNU, being the variance of the vacuum fluctuations), corresponding to approximately -8 dB of
conditionally prepared quadrature squeezing after a homodyne detection on one of the beams,
which is feasible with current technology [39] and is close to optimum for the given protocol
parameters, in the presence of 1% SNU of excess noise (here and further the fixed channel excess
noise is related to the channel input). The results of the calculations are given in Fig. 4 (left)
obtained from the experimental data and from the analytical fading distribution. It is clear from
the graphs that the channel for the non-expanded beam was more suitable for entanglement
distribution and that the beam expansion degraded the entanglement due to increase of the overall
loss. The reason for such behavior is that in the considered region of parameters Gaussian
entanglement is more sensitive to the channel transmittance than to the small amount of excess
noise caused by fading. The transmittance fluctuations in the studied channels were relatively
low and did not introduce significant noise, which would reduce the Gaussian entanglement
of the states, while decreasing the average transmittance due to beam expansion resulting in
entanglement degradation.
We also analyze the effect of the beam expansion on the typical CV QKD protocol with

coherent states of light and homodyne detection by theoretically estimating the lower bound
on the key rate secure against collective attacks [40] in a given channel, which, in the reverse
reconciliation scenario (being robust against channel attenuation below -3 dB [5]), is given by

KR = βIAB − χBE, (2)
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Fig. 4. Entanglement and secure key rate for larger beam expansion characterized by
decreasing aperture-to-beam size ratio a/W. (Left): Logarithmic negativity of an entangled
state shared over the fading channel and (Right) Lower bound on the key rate secure against
collective attacks in the fading channel, obtained from the analytical fading distribution
(lines) along with the experimental results (points) versus aperture-to-beam size ratio. State
variance is 7 SNU (solid black line, red circles) or optimized (dashed black line, blue
squares), channel excess noise is 1% SNU, post-processing efficiency for the Gaussian CV
QKD is 97%.

where IAB is the classical (Shannon) mutual information between the trusted parties, χBE is
the Holevo bound on an information on the shared key received by the remote party, which is
available to an eavesdropper, β ∈ (0, 1) is the post-processing efficiency, which characterizes
how close the trusted parties are able to reach the mutual information IAB. In our analysis we
follow the purification-based method (see [41] for the details of security analysis) to calculate the
Holevo bound [42] and take into account the realistic post-processing efficiency of 97% [43].
The results of the calculations are given in Fig. 4 (right) and clearly show the improvement of
the key rate due to the stabilization of the fading channel with a small beam expansion upon
fixed modulation, which, however, becomes disadvantageous upon the further increase of the
beam spot. We therefore confirm the positive effect of the beam expansion in the fading channel
on the CV QKD, which, however, can be optimized in the particular conditions. For Gaussian
entanglement distribution or for the coherent-state CV QKD protocol with optimized modulation
the method would have been useful for a stronger channel turbulence. The positive role of fading
stabilization for the optimized CV QKD upon stronger turbulence is theoretically predicted in
Fig. 5, where the lower bound on the key rate is plotted versus the beam expansion settings at
different values of beam-spot fluctuations. It is evident from the plot, that the experimentally
tested beam expansion settings would have been advantageous for the optimized protocol at
σ2
b
= 0.4 (note that in our previous study of the same channel upon stronger turbulence the

beam-spot fluctuations variance was estimated as σ2
b
= 0.36 [24]).

Despite evident differences in the effect of beam expansion on the considered quantities
(namely logarithmic negativity and key rate) as shown in Fig. 4, we theoretically observe a
similar behavior of logarithmic negativity at higher values of a/W ratio (out of the experimentally
tested and plotted region). Indeed, the logarithmic negativity also has a local maximum at certain
ratio a/W (depending on the variance V), similarly to the key rate, and would decrease for higher
values of the ratio. The difference is however that the key rate is more sensitive to channel
fluctuations due to beam wandering and we therefore observed an improvement of the channel
parameters by means of beam expansion for the application of CV QKD. Moreover, entanglement
is not vanishing completely at high a/W for moderate initial entanglement corresponding to
a variance of V < 15. To complete our study, we numerically illustrate the behavior of the
logarithmic negativity and the lower bound on the secure key rate with respect to ratio a/W in
the given channel for different initial resources in Fig. 6. We characterize the initial resource
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Fig. 5. Lower bound on the key rate secure against collective attacks in the fading channel,
obtained from the analytical fading distribution, versus aperture-to-beam size ratio at
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= 0.2 (upper, dotted line),σ2
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upon optimized modulation variance, channel excess noise is 1% SNU, post-processing
efficiency is 97%.

by the state variance V for the key rate plot or, equivalently, by the initial entanglement of the
shared state, which reads LN0 = (−1/2) ln (2V2 − 1 − 2V

√
V2 − 1) for the logarithmic negativity

plot, to verify how much of the initial entanglement survives in a fading channel. It is evident
from the plots that beam expansion in the considered channel can have positive effect on the key
rate practically for any modulation and on the entanglement once the initial entanglement and
beam-to-aperture ratio are large. In our study we considered the most feasible coherent-state

Fig. 6. Entanglement and secure key rate versus aperture-to-beam size ratio a/W at different
initial resources. (Left): Logarithmic negativity (LN) of an entangled state shared over a
fading channel versus aperture-to-beam size ratio and initial logarithmic negativity LN0 and
(Right) Lower bound on the key rate (KR) secure against collective attacks in the fading
channel versus aperture-to-beam size ratio and modulated state variance V . Channel excess
noise is 1% SNU, post-processing efficiency for the Gaussian CV QKD is 97%.

CV QKD protocol. While squeezed-state protocol is known to be typically more robust against
channel transmittance fluctuations, its performance is still degraded by fading, related to beam
wandering [44], so the beam expansion technique can be useful for the squeezed-state protocols
as well and should be optimized in the given conditions.
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5. Conclusions

We studied the possibility to stabilize a real fading channel by expanding the beam in order
to suppress the transmittance fluctuations concerned with the beam wandering in turbulent
atmosphere. We experimentally characterized the change of statistics of the channel transmittance
fluctuations and showed that they qualitatively correspond to the theoretical predictions given
by the Weibull distribution. We proved the positive effect of the channel stabilization by
beam expansion on the distribution of a nonclassical resource (entanglement) and on Gaussian
continuous-variable quantum key distribution. We have shown that for the channel used for
the experimental results presented here beam expansion could become disadvantageous for
Gaussian entanglement of the distributed state, described by the logarithmic negativity, due
to weak atmospheric turbulence. On the other hand, channel stabilization by beam expansion
can improve the secret key rate of the coherent-state protocol. The improvement requires an
optimization of the beam width setting under given conditions. Importantly, the method does
not require any adaptive control of the source and detector based on monitoring of the beam
wandering. It can be combined with other known methods for fading channel stabilization such as
fast steering [45] or concave mirrors [46], channel diversity [47, 48], multiple wavelengths [49],
adaptive optics and active tracking systems [50–54]. It should be emphasized that our technique
requires a link which allows for a certain margin in the loss tolerance. Especially for satellite
links the loss is usually already very high as the aperture-to-beam size is very low, such that
our stabilization technique will hardly have any benefit. But our proposed technique can be
beneficial in mid-range terrestrial free-space links, what would be the field of application for
this stabilization technique. Our result therefore demonstrates a promising and feasible method
to stabilize free-space atmospheric channels for the tasks of continuous-variable quantum key
distribution and quantum communication, which is best applicable in low or medium loss regime.
Future steps will include full implementation of continuous-variable quantum key distribution
and entanglement sharing over free-space atmospheric channels aided by channel stabilization
methods.
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9 | Conclusions

This thesis is based on four original publications [1�4] and presents main results of my
theoretical research conducted during the course of my PhD studies at the Department
of Optics, Palacky University (Olomouc, Czech Republic). My research was supervised
by Prof. Radim Filip and co-supervised by Dr. Vladyslav Usenko.

The main idea behind the work is to adopt the practical approach to security analysis
of a family of Gaussian CV QKD protocols, and identify possible security threats. We
attempt to reduce the gap between theoretical protocol design, and actual implementation
of the protocol. While it is unreasonable to expect to account for all possible equipment
weaknesses it is paramount to improve the design, making protocols more robust, reliable
and e�cient with each future iteration.

To identify and solve the issues we use models based on linear-optical interactions and
Gaussian formalism. We address semitrusted side channels present at both trusted sides
of the protocol, and study the e�ect of each individual channel in Chapter 4. The work
covers the main types of generalized information leakage from, and noise infusion onto
the, otherwise presumably shielded, stations of trusted parties. We successfully determine
the security bounds, and show the alterations to the protocols performance caused by the
mere presence or active usage, by the adversary, of the respective side channel. We also
suggest methods for counteracting the limitations imposed by side channels, as well as for
complete restoration of the original operation e�ciency.

In Chapter 5 we alleviate the assumptions of single-mode state modulation and em-
brace the possibility of disclosing the information regarding encoded key via auxiliary
non-signal modes. Such information leakage is analogous to photon-number splitting
attack in discrete variable protocols, and is as threatening for the security of the key
distribution based on continuous variables. We explore di�erent regimes of leakage and
their e�ect on protocols under individual and collective attacks. Presuming the auxiliary
modes cannot be �ltered out completely, we suggest an optimization of squeezing and
encoding alphabet size for maximizing the secure distance of the protocol.

In Chapters 6 and 7 we tackle the issue of optimization of CV QKD protocols im-
plementations over free space atmospheric channels. Unlike well studied �ber channels,
free space links o�er greater deployment speed and convenience, but o�er transmission
quality that is highly dependent on weather conditions, location and length of the link,
and, moreover, varies signi�cantly. We experimentally verify the applicability of beam
expansion technique for stabilization of channel transmittance �uctuations, and show the
conditions suitable for such technique in Chapter 6. Lastly, we demonstrate the bounds
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on applicable levels of squeezing imposed by the turbulence in free space channels. We
advocate individual and feasible optimization of resource available at trusted sender side,
to securely cover longer distances in atmospheric turbulent links, reduce the downtime of
the protocol or recover the ability to establish a secure key.

All developed methods can be combined and are supported by Gaussian CV QKD
protocols. Furthermore, they do not require non-Gaussian operations, use of entangled
states, unfeasible levels of squeezing, or unrealistic requirements to shielding of the trusted
stations, but rather careful analysis of parameters of the trusted equipment. Experimen-
tal veri�cation of suggested techniques will certainly stimulate further theoretical and
experimental developments of the Gaussian QKD protocol family.
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