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Abstrakt

Tato Ph.D prace je vénovana konstrukci reparametrizace invariantni teorie Lagrangeovy
formulace zaloZené na Finslerové a Kawaguchiho geometrii. ProtoZe chceme, aby teorie
byla aplikovatelna do fyzikdlnich problémd, budeme pouzivat méné restriktivni definici
ve srovnani se standardnimi definicemi Finslerovy geometrie. Kawaguchiho geometrii
budeme definovat jako pfirozené rozsifeni této méné restriktivni Finslerovy geometrie
takovym zptisobem, Ze k-rozmérna podmnoZina n-rozmérné variety by méla byt invari-
antni k-plocha s ohledem na reparametrizaci. Timto zptisobem ziskdme reparametrizaci
invariantniho lagrangianu a Eulerovych-Lagrangeovych rovnic. Relace s konven¢ni teorii,
které jsou parametricky invariantni, jsou diskutovany.



Preface

This thesis was submitted to Palacky university, Faculty of Science, in partial fulfillment
of the requirements for the degree of Ph.D. in Mathematics. Related publications are [9,
14-16].

The work is devoted to the constructions of Lagrangian formulation, which has repa-
rameterisation invariant property. In the basic courses of analytical mechanics, the time
is taken as the parameter, and the motion of a particle is described by a trajectory in a
n-dimensional configuration space. Therefore, position and velocity (or momentum) of
the particle is expressed as a function of time, and if the equations of motion which deter-
mines this trajectory could be derived from a Lagrangian, this Lagrangian was given as a
function of these variables; namely time, position and velocity. Such view point matches
our intuition well, and indeed covers wide range of physical phenomena we experience
in our everyday life. However, since our concept on time and space changed drastically
after the emerging of the theory of relativity, it became a major movement in theoretical
and mathematical physics to reconstruct the existing theory in such a way that does not
distinguish time as a special coordinate among the others of the same spacetime. The
theory which treats time and space equally is said to have the property of covariance. In
case of mechanics, the motion of a particle will be realised as a trajectory on a (n + 1)-
dimensional manifold M, and each point on the trajectory is the position of the particle in
M; i.e, its local coordinate expression is given by the coordinate functions on M, with-
out any preferrence to a specific one as time. In the case of relativity theory, such case
was considered with the aid of Riemannian geometry. In this thesis, we will try to con-
sider such situation with Finsler and Kawaguchi geometry, which is a generalisation of
Riemannian geometry. While Finsler is viable for first order (velocity) Lagrangian me-
chanics, Kawaguchi is considered for higher order case. These geometries have further
possibilities to express more complicated physical theories such as irreversible systems
or hysterisis, etc. However, these problems are out of the scope of this thesis, and would

be left for future research.

There are further issues similar to the case of mechanics, in the case of field the-
ory. Modern theoritical physics especially in particle physics has sought a theory, which
does not depend on the choice of k-dimensional spacetime M. Now our target is shifted
from position and velocity to field configurations and its derivative with respect to the
spacetime. If we are to consider the “covariant” version of such theory in the analogy
of mechanics, we should now consider a spacetime M lying in a greater manifold; the

total space, which is also made from the fields. This way of thinking is not possible with



Riemannian geometry, or Finsler geometry, and we have to use the Kawaguchi geometry,
which is still not well-established. In this thesis, we will treat the case only where space-
time lying in the total space is diffeomorphic to closed k-rectangle of R*. For the case of
higher order, we will also restrict ourselves to where the total space is R", n > k. Such
approach essentialy means, that we do not distinguish between the fields and spacetime.
We will call such property as generalised covariance.

We will provide the mathematical foundations for constructing such theories, and in-
troduce the Lagrange formulation in the above context. Some elementary examples are
given to make comparison to the conventional theory. Though the theory is far from com-
plete, we hope that further research will supplement the imperfection, and our foundations
will become useful in constructing more precise and viable theory for both mathematics
and physics.
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Basic symbol list (unless otherwise stated):

R : real numbers

R™: real n-dimensional Cartesian vector space with its natural topology

V' vector space over R

V*: dual vector space of V'

M: C*°-differentiable manifold

T'M: tangent bundle of M

A¥TM: all k-multivectors over M or k-multivector bundle of M

C°°(M): module of C'*°-functions

X(M): C*°(M)-module of all vector fields over M

X*(M) : C°°(M)-module of all k-multivector fields over M

X"*(M) : C°°(M)-module of all decomposable k-multivector fields over M
X (M) : C>(M)-module of all locally decomposable k-multivector fields over M
QF(M): C°°(M)-module of all differential k-forms over M

J"Y : r-th jet-prolongation of fibred manifold Y

pry : Cartesian product projection onto the k-th set of product
n!

an: Combination an = m
n — K
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Chapter 1
Introduction

In this thesis, we will discuss the parameterisation invariant theory of Lagrangian for-
mulation in terms of Finsler and Kawaguchi geometry. By setting up a clear and simple
mathematical construction, we hope the theory to be viable for considering and extending
the basic theories of physics, such as mechanics and field theory. The Finsler geometry
is the foundation we will use for the first order mechanics, while Kawaguchi geometry is
considered for the higher order mechanics and field theories. However, we would like to
emphasise that in this thesis, these geometries are not the direct objects of our research,
in contrary, we will only use their basic properties to build the structures we need for
Lagrangian formulation. For instance, no fundamental tensor or connection will be dis-
cussed. Also it must be noted that our definition of Finsler geometry is much looser than
those introduced in standard textbooks [1, 2], for the aim to make it more applicable to
the problems of physics. The only crucial condition we require for the Finsler function is
the homogeneity condition. We also consider the Hilbert form as a fundamental structure
rather than the Finsler function, which we will take as our Lagrangian.

Kawaguchi geometry, which is the generalisation of Finsler geometry, is still in its
developing state, and there are no standard definitions written in modern mathematical
language. There are two directions of generalisation of Finsler geometry, one to higher
order and another to multi-dimensional parameter space. In this thesis, we propose a
new definition of Kawaguchi geometry, especially for the second order 1-dimensional
parameter space, and first order k-dimensional parameter space, using multivector bundle
and a global differential form, which we call as Kawaguchi form. The Kawaguchi form is
constructed in a way such that it satisfies similar properties as the Hilbert form in the case
of Finsler geometry. We will take this Kawaguchi form as our Lagrangian. We will also

consider the structure of second order k-dimensional parameter space, but only locally.



10 1. Introduction

Using these structures, we will consider the Lagrange formulation, and obtain the
Euler-Lagrange equations that are reparameterisation invariant. Examples on simple case
as Newton dynamics and De Broglie field is presented, and the results are compared with
the standard formulation, which is parameter dependent.

The reason that we expect Finsler and Kawaguchi geometry (in the above context)
and the Lagrange formulation considered on these setting to be important in constructing
viable theories in physics is because of the parameterisation invariance and its extend-
ability compared to, for example, Riemannian geometry. Ootsuka, Tanaka and Yahagi
proposed concrete examples of such application in [8, 9, 16]. This thesis will provide
the mathematical background for these discussions. Especially, we intended to prepare
a foundation that can provide a classical field theory a geometrically natural extension,
which unifies the spacetime and field, in language of physics. Mathematically, this means
we will consider the spacetime as submanifold embedded in a higher dimensional space,
without any fibration over the parameter space. In this thesis, we will only consider the
case where spacetime is diffeomorphic to a closed k-dimensional rectangle in R”.

The parameter invariant theories of calculus of variations are also considered in differ-
ent mathematical settings, notably by Grigore, D. Krupka, M. Krupka, Saunders, Urban,
in terms of Jets and Grassmannian fibrations [3, 6, 11, 17].

The structure of this thesis will be as the following. In the following chapter, we
will begin with setting up the basic structures and definitions used in the theory. Ba-
sics definitions such as bundles, multivector bundles, induced charts, multi-tangent maps,
integration on a submanifold are given. In Chapter 3, we will introduce the Finsler geom-
etry and its basic properties. Some historical concepts are described briefly. Curves, arc
segment, its parameterisation and length are described. We will also discuss the reason
why the standard definition of Finsler geometry is too strict for the application to physics.
The relation between Hilbert form and Cartan form is also presented here. In Chapter 4,
we will introduce the Kawaguchi geometry and its basic properties. We propose a global
definition of Kawaguchi geometry, such that for the higher order case, the length of an
arc segment will be invariant with respect to reparameterisation. For the multi dimen-
sional case, we will also introduce k-curve, k-patches and its k-area. Similarly as in the
previous case, we propose a definition of Kawaguchi geometry, such that the k-area of a
k-patch remain unchanged by reparameterisation. We especially construct the second or-
der 1-dimensional parameter case, first order k-dimensional parameter case globally, and
finally the second order k-dimensional parameter case locally (namely, the total space is
R", with n > k).

In Chapter 5 we finally discuss on Lagrange formulation, using the structures intro-
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duced in the previous chapters. First for the Finsler case, then Kawaguchi case for second
order 1-dimensional parameter case, and first order k-dimensional case. The obtained re-
sults are compared for concrete example such as Newton dynamics and De Broglie field.

We will summarise our results in Chapter 6.

About the references:

For the basic structures as manifolds, coordinate charts, tangent vectors, vector fields,
we referred to the text by D. Krupka, ”Advanced Analysis on Manifolds (to be pub-
lished)”, Y. Matsumoto, Foundation of Manifolds(Z#£ A& £)”, B. O’Neill, ’Semi-
Riemannian Geometry With Applications to Relativity”. The book “Metrical differential
geometry(FH &% 41 %)” by M. Matsumoto is one of the basic references for Finsler
and Kawaguchi geometry, which unfortunately is not translated to English. Other refer-

ences will be stated when appeared.

About the notations:

Unless otherwise stated, the double occurrence of indices in the formula means sum-
mation, following the standard convention of Einstein. The symmetrisation of indices is

denoted by round parenthesis, for example,
1
The anti-symmetrisation of indices is denoted by square parenthesis, for example,

1

0 0
The bases of k-multivector at a point p € M is often expressed ARRRYVA ,
Oxh Oxhx

Ort1 Otk
real smooth manifold, which has Hausdorff, second-countable and connected topology.

0 0
which abbreviates (—) A+ A (—) . Throughout this thesis, we will consider a
p

About the conventions:

The differential forms (cotangent vectors) are related to the tensor product by the

following convention,

aNB=a® b —-®a. (1.0.3)
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a, 3 are 1-forms(cotangent vectors). The k-covector in the form a; AasA- - -Acy, € AFV*,
maps k vectors X1, Xo, -, X € V to a number by
ar Ao - -Aa(Xq, Xo, -+ -, Xi) := det(a;(X;)). The general k-covector maps k vectors
X1, Xa, -, X; € V to anumber by its linear extension. In coordinate basis
1 ) ) .0
o= Hail“‘ikdx“/\' SANdxt, X = Xﬂ@, (1.0.4)
(X1, Xay oy Xp) = i Xo?te X060 = g X0 X (1.0.5)



Chapter 2
Basic structures

Our aim here is to set up the space where Finsler and Kawaguchi structure will be en-
dowed, and the calculus of variation could be carried out. We begin by defining standard
vector bundle structures and the products of them, and introduce the k-multivector bundle
which is a k-fold antisymmetric tensor product bundle. This bundle will be the stage for
considering the theory of calculus of variation for first order k& parameter space, i.e., first
order field theory, where parameter space corresponds to the spacetime. For construct-
ing the stage for second order field theory, we will extend this concept to second order
k-antisymmetric tensor product space by standard manipulations on vector bundles. We
will begin by introducing the fibred manifold and fibred coordinates, trivialisation and
concept of bundles, then additionally the properties of a vector space to consider vector
bundles and its product spaces. Then we will further consider the sub-bundles of them, by
certain bundle isomorphism. The obtained final bundle will be the stage for our parame-
terisation invariant theory of calculus of variation, which we apply to the field theory. This
chapter mostly refers to the textbook by D. J. Saunders, "The Geometry of Jet Bundles”,

with slight changes in notations.

2.1 Bundles

Definition 2.1. Fibred manifold

A fibred manifold is a triple (F,m, M) where ' and M are manifolds, and 7 : £ — M
is a surjective submersion. FE is called the toral space, M the base space, and 7 is a
projection. The subset 7 (p) C E over each point p € M is called a fibre, and is usually
denoted by E,,.

We occasionally use the projection 7 to denote the total fibred manifold, instead of

13



14 2. Basic structures

writing the triple.

Definition 2.2. Adapted chart of a fibred manifold

Let (E, 7, M) be a fibred manifold such that dim M = n,dim E = n + m. The adapted
chart of an open set V' C E is a chart (V,),v = (y”),v = 1,-.,n + m, such that for
any points a,b € V, 7(a) = w(b) = p, p € M, then pri(¢(a)) = pri((b)), where
pry = R 5 R,

The existence of such adapted chart is guaranteed by the following lemma.

Lemma 23. Let f : £ — MbeaC"(1 < r < co) map, and dim M = n, dmFE =
n + m. If f is a submersion at ¢y € FE, that is, if for the neighbourhood V' of ¢, the
tangent map 1, f : T,E — Ty M at Vg € V is surjective and has constant rank, then
there exists a chart (V,1),1 = (y”) on E such that, for any a,b € V, f(a) = f(b) = p,
p € M, then pri(¢(a)) = pri(¢(b)), where prq := R*™™ — R™.

For the proof, we refer to [5], [10].

The adapted chart (V1) on the total space F induces a chart on the base space M
by 7. This induced chart can be denoted as (7(V'), ), where the coordinate function
¢ (V) — R™is given by setting p(7(a)) = pri(¢(a)),a € V. It is convenient to use
the same notation for the first n coordinate functions for both v and ¢, so that, (V,v),
= (z!, -2yt y™) and (m(V), @), o = (2, -, 2").

Definition 2.4. Local trivialisation
Let (FE,m, M) a fibred manifold and p € M. A local trivialisation of m around p is a
triple (U,, F},, t,), where U, is a neighbourhood of p, F}, is a manifold, and

t,: ' (U,) = U, x F, (2.1.1)

is a diffeomorphism satisfying the condition pri.t, = 7|;-1(y,), with pr; denoting the
Cartesian product projection onto the first set.

Definition 2.5. Bundle
A fibred manifold which has at least one local trivialisation around each point on M is
called a bundle.

We occasionally use the projection 7 to denote the bundle itself, instead of writing the
triple.
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Example 2.6. Tangent bundle
For the case £/ = T'M, a tangent space of M, the triple (7'M, 7, M) with 7 being a natural
projection which sends each tangent vector v, € T),M at point p € M to p € M becomes

a bundle, and is called the tangent bundle.

Each chart on M induces a local trivialisation of 7'M . The local trivialisation of the
tangent bundle around p € M could be introduced in the following way. Let (U,, ¢),

¢ = (z"),u = 1,.-,n, such that p € U, be a chart on the base space M. For any element

of 7~YU,) ¢ TM at p have the coordinate expression, & = &/ _8 . Then the
6 P p p a n
T
P

trivialisation (U, F},, t,) induced by the chart (U,, ) on the base space M is (U,, R", t,),
where t, is given by t,(£) = (7(£), (&%, -, €™)). Let (U, ¢) be a chart on M. In general,
the set 7~ (U), U C M of a bundle (E,m, M) cannot be covered by a single chart. H
owever, for the case of a tangent bundle this is possible. The charts on M induces such

specific charts on 7'M via local trivialisation.

Definition 2.7. Induced charts of a tangent bundle

Let (T'M, T, M) be a tangent bundle with dim M = n, and (U, ¢), ¢ = (2*) a chart on
U C M. Since for any p € M we have the local trivialisation (U,, R™, t,), t,(771(U,)) =
U, x R™, we define the induced chart of a tangent bundle on 7='(U,) C TM for any
p € Mby (17(U,), ), 9(€) = (9(r(€), (€1, -, ")), where £ € 71(U})

Especially, we may use the convenient expressions as v = (z!, 22, -, 2"y, y?, -, y"),
where y*(§) =&, p =1, n.

These induced charts define on T'M the structure of C'*°-manifold of dimension 2n.

Definition 2.8. Global trivialisation

Let (FE,m, M) be a fibred manifold. A global trivialisation of w is a triple (M, F't),
where F'is a manifold, and ¢ : & — M x F'is a diffeomorphism satisfying the condition
priot = m, with pry denoting the Cartesian product projection onto the first set. F'is
called a typical fibre of .

Definition 2.9. Trivial fibre bundle

A fibred manifold which has a global trivialisation is called a trivial fibre bundle.

We show in Figure 2.1, three diagrams of fibred manifolds : general, bundle, and

trivial.

Definition 2.10. Fibred product bundles
Let (E,m, M) and (H, p, M) be bundles over the same base manifold M. The fibred
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V, ————— 2V )xF, 7 U )——1,xF, E ——————— MxF
”1; p?i ”,T’I\['_; pl’l 4 pr]
v v v v v v
(V) —————> 7(V) v ——— U M— s

q’ id g p id p id
fibred manifold bundle trivial
(local trivialisation) (global trivialisation)

Figure 2.1: Fibre bundles

product bundle is a triple (E'x yyH, Xy p, M), where the total space E'x ,H is defined
by

Exy H:={(p,q) € Ex H:m(p) = plq)} (2.1.2)

and the projection map 7 X y;p 1s defined by

(mxamp) (P, q) = 7(p) = p(q). (2.1.3)

Bellow we will check that the triple (E'x yy H, X p;p, M) indeed has a bundle struc-
ture.

First, the total space £ 5, H is a submanifold of Ex H, since Ex y H = (7 x p) Ay,
where A, is the diagonal set

Ay ={(p,q) € M x M |p,qe M, p=q}. (2.1.4)

Suppose the adapted charts on Vi C E, Vi C H, such that 7(Vg) N p(Vy) # 0 are
given by (Vg,¥g), e = (2*,y%), (Vi,¥n), vy = (z#,2), then it induces a chart
on U = (n(Vg) N p(Vyx)) C M, namely, (U, ), ¢ = (2). Let the adapted chart
on Vixn C E x H be (Vs ), with Ve = (1 % p)"'U, Ymr(p,q) =
(¢(m(p)), y"(p), v(p(q)), 2*(q)), where (p,q) € E x H. Then by considering the co-
ordinate expressions of equations of a submanifold ¢(7(p)) = ¢(p(q)), the total space
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Ex rH has an adapted chart (Vgy ,, 1, Yrx,, 1), Where

Vexyn = (ExXyH) N Vegn,
Vpsn (P, @) = (2(m(p),y" (p), 2 () , (2.1.5)

with (p,q) € E x H,7(p) = p(q).

These charts define on E x ; H the structures of a C'°°-manifold.

Next, we will obtain the local trivialisation (U,., F, t,) on every point of r € M in the
following way.

Since (E,m, M) and (H, p, M) are both bundles, they have a local trivialisation around
each point r € M. Denote these as (U,, E,,s,), (V,, H.,u,), then s, : 771 (U,) —
U, x E, ,u,: p~Y(V;) = V, x H,. Then for any € M, we can obtain the local triviali-
sation of (E Xy H, wX prp, M) around r by t, : (7xp) Y (U, NV,) = (U, NV,) X F,,
where . = E, x H,, and t,(p.q) = (7(p),y"(p), 2" (q)) = (p(a),y"(p), 2"(q)). Ac-
cordingly, the triple (E'X 5, H, mX rp, M) becomes a bundle.

Definition 2.11. Bundle morphism

If (E,7, M) and (H,p, N) are bundles, then a bundle morphism from m to p is a pair
(f,f)where f : E — H, f: M — N and p. f = fom. The map f is called a projection
of f.

Example 2.12. Let (E, m, M) be a bundle, and (T'E, T'w, T M) its tangent bundle. There
is a bundle morphism from 7'7 to 7, which is a pair of tangent bundle projections (7, 7).

Example 2.13. Let (E, 7, M) be abundle, and (X, X) a bundle morphism to (T E, T'w, TM).
X is called a projectable vector field, and its projection X satisfies the relation, Xo7 =
Tro X.

Definition 2.14. Pull-back bundle
Let (E, 7, M) be a bundle, and f : N — M a smooth map. The pull-back of the bundle
7 by f is denoted by (f*F, f*m, N'), where the total space f*F is defined by,

fE={(u,z) € EXN|[n(u) = f(x)}, (2.1.6)
that is, f*F = EXx /N, and the projection map f*r is defined by f*m(u,z) = x. The

bundle f*7 is called a pull-back bundle of by f.

Definition 2.15. Sub-bundle
If (£, 7, M) isabundle and £’ C E is a submanifold such that the triple (£’, |, 7(£"))

is itself a bundle, then | 18 called a sub-bundle of .
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Definition 2.16. Vector bundle

A vector bundle is a quintuple (E, m, M, o, i) with the following structures,

1. (E,m, M) is a bundle

2. Denote the fibre over p € M as E,. Namely, I, = 7T_1<p). Then,

(a) 0 : ExyE — E satisfies, foreachp € M, o(E, x E,) C E,

(b) i : R x E — E satisfies, foreach p € M, u(R x E,) C E,

(©) (Ep, 0lp, «p,» g« p,) is a real vector space for each p € M

3. for each p € M, there is a local trivialization (W, R", ¢,) called a linear local trivial-
isation, satistying the condition that, for ¢ € W), the map proo t,,| B, E, — R" where
tplp,  Ep = {q} x R™ and pry : {q} x R" — R", is a linear isomorphism.

Under the linear local trivialization, the maps o and p correspond to addition of vec-

tors on R", and scalar multiplication of vectors on R", respectively.

Example 2.17. The tangent bundle (7'M, 7, M) is a vector bundle. The linear local trivi-
alisation around each point p € M is given by (U,, R",t,), for each p € M, the fibre 7,,M
has the property of vector space, therefore av, + bvy € T,M, a,b € R, vy,vo € T,M.

Definition 2.18. Vector bundle adapted charts

Let m = dim M, n = dim E, and (7= '(W),¢),¢ = (u', -, u™) the adapted coordinates
on (E,m, M) induced by the chart (W, ), = (z!,..,2™) on W C M, chosen to be
linear on 7. Such charts are called vector bundle adapted charts.

In such charts, the elements of £ can be expressed by & = £%¢,, o = 1, ..., m, where
the base e, € I'yy () is a family of local section defined by u” (e, (p)) = 62 forallp € W.
In this way, linear operations on sections could be defined pointwise.

Example 2.19. The vector bundle adapted chart of the tangent bundle (7'M, 7, M), is the
induced chart (771(U), ), (&) = (x#(7(£)),&*) given in (2.7), and the corresponding

local sections are the vector fields —.
oxH

Example 2.20. The vector bundle adapted chart of the cotangent bundle (77 M, 7%, M),
is the induced chart ((7%)~1(U), ¢¥*),¢*(a) = (2#(7*(0)), v, ), where o« € T* M, and the

corresponding local sections are the 1-forms dx*.

Definition 2.21. Tensor product

Let (E,m, M) and (F), p, M) be vector bundles with fibres E,, F, respectively. The tensor
product of m and p is the vector bundle with fibres E,, ® F}, and is denoted (£ ® F, 7 ®
p, M).
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Definition 2.22. : Antisymmetric/symmetric tensor product
Let (Ey, 7, M), -, (Ey, m, M) be vector bundles. The k-fold antisymmetric tensor prod-
uct is a vector bundle with completely antisymmetric properties denoted by (E;AEan--nEy,

TiAToA-ATk, M ). For k = 2, every fibre is defined by the antisymmetric product
FEipNEop = Fi1, @ Fay — Fopy @ Ery, (2.1.7)

forall p € M. Similarly, the k-fold symmetric product is a vector bundle with completely
symmetric properties denoted by (Ey ©® Fy ® - © Eg,m © M9 @ - @ mg, M). For k = 2,
every fibre is defined by the symmetric product

Eip O FEy,=FE ,®Ey,+ Ey), @ Eyy, (2.1.8)

forall p € M.

Any tensor product of tangent and cotangent bundles which has the same base space
M become a tensor product bundle over M.

2.1.1 Second order tangent bundle

Here we will review the definitions of 72M and its basic properties which will be used
for considering the theory of second order mechanics. Higher order theory could be
constructed by similar induction, and is introduced briefly in the following section. These
method of construction will be also used in order to create the basic structures for the

higher order field theory, which later will be introduced in this chapter.

Definition 2.23. Second order tangent bundle 72 M over T'M

Let (T'M, 1y, M) be the tangent bundle with base space M and (TT'M, 7ry, TM) the
tangent bundle with the base space T'M. The tangent map 77y, of 75, also induces the
bundle (TT'M, Ty, TM). Denote the subset of elements & € 77T M which satisfy the
equations of submanifold

e (§) = T (€) (2.1.9)

as T?>M, and a map from T?M to TM by 737 := Tras|2y,- The triple (T2M, 73}, TM)
becomes a bundle, which is a sub-bundle of (T'T'M, 77y, T'M'). We will call this a second
order tangent bundle over T'M.

To check (T2 M, T]%j, T M) is a bundle, we first introduce manifold structure on T%M,
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namely we will introduce charts, and prove that these charts define a smooth structure on
T2M. Let dim M = n, and the chart on U C M be (U, p), ¢ = (z*). The induced chart
on TM and TTM is (V,v), V = 7, (U), ¢ = (¥, &), and (V2,4?), V* = 77L(V),
1;2 = (z*, ", y*, y*) respectively. The elements of T2M have a specific form, namely
they satisfy the condition 77y (§) = T'mp(€), £ € TTM. Let the local expression of
§g€TIM,qeVCTM be

0 0
=& (%)q +& (@)q, (2.1.10)
then 77y (&,) = q and T'mp(&,) = & (%) . In coordinate expressions,
7 (q)
(@(0). () = ( (51” (5%) ) (sf( ~) )) ~ (@eman)(a).£0).
Ox T (q) O T (q)
2.1.11)

Therefore, the elements of 72U have the form

. 0 0
v, = i(q) (%)q—l—vu(@)q’ (2.1.12)

for ¢ € V. Furthermore, since every elements of 72U in chart expression are in the form,

(@ (vg), & (vg), y"(vg), 9" (vg)) = ((a*oTar(q), 3 (q), #"(q), v"), (2.1.13)

we can choose a chart (V2,¢?), 2 = (a#, & i), V2 = V>N T?M, n = 1,...,n on
T2M.

Clearly the fibres of 71?4’1 are not vector spaces, since in general the scalar multiplica-

tion of v, does not belong to the same fibre.

Now, let (V2,9?), ¢? = (z#, y*, 2#) and (V2,9?), ¥? = (7*, y*, Z*) be two charts on
T?M, with V2N V2 2 (). Then express the element &, € V2N V2, ¢ € TM, by these

charts,

H 0 H 0 = gt ﬂ CH i
§g=1Y (Q)<@)q+§ (8_w>q_y (q)((w)qﬂ (ayu)q’ (2.1.14)
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with z#(&,) = &*, 2#(€,) = &*. The bases of TM will transform as

o  0xv 0 n dy” 0
oz 0zH Ozv  OzH Oy’
0 oy’ 0 ox” 0

= = 2.1.15
oyr Oyt dyr Ozt Ay’ ( )
and we have the transformation rule for the new coordinate z* by
ot OuH OTH O TH
= g 2T _——re (2.1.16)

n &'L‘”Z + 8x”y N 8x”z * 8x”8xﬂy 4

These transformations are smooth, and the charts form a smooth atlas on 72M. The
natural inclusion ¢ : T>M — TT M has a coordinate expression,

o=t itor =y*, yror = y*, ytor = 2H. (2.1.17)

The it Lh.s. denotes coordinates on 7T"M while the r.h.s. denotes coordinates on T2 M.
This shows that 72M is a submanifold of TTM. Now 75" is a surjective submersion
by definition, so it remains to check the local trivialisation. The local trivialisation of
(T>M, 723", T M) around any point p € T'M is given by (V,, R t,),

ty: (1) (V;) = V, xRY, peV, (2.1.18)
where V, is an open set of 7'M, which in chart expression for any £ € (75 )~1(V},) is

to(&) = (mar (), #())- (2.1.19)

Therefore, (T2M, 73;', T M) is indeed a bundle.

Definition 2.24. Second order tangent bundle

The triple (T2M, 73, M) with 73> = 7j. 75" is also a bundle with the trivialisation
(U, R¥ t,),t, : (13)""(U,) — U, xR>*, around any p € M, which in chart expression
forany ¢ € (72,)) "1 (U,) is

tp(€) = (37 (£), i"(€), #"(€)). (2.1.20)

We will call this a second order tangent bundle over M, or simply, second order tangent
bundle.

In the theory of second order mechanics, the dynamical variables are the section of
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the second order tangent bundle.

2.1.2 Higher order tangent bundle

Now we will briefly introduce the higher order tangent bundles. This concept will be used
to define the total derivatives of the higher order (Chapter 5), when deriving the reparame-
terisation invariant Euler-Lagrange equations. We will especially give the construction of
(T3M, 137, T> M), and the r-th order (T"M, ;7 ", T" M) could be obtained iteratively.

Definition 2.25. Third order tangent bundle T3 M over T*M
Consider the bundle morphism (T'72;', 72;') from (TT?M, 72, T>M) to (TTM, 71y,
TM). We define the set T%M by,

T3M = {u € TT*M | toTpop(u) = T7i) ()}, (2.1.21)

where ¢ is the inclusion map ¢ : T>M — TT M, and its coordinate expression given by
(2.1.17). Let (V2,9?), ¥ = (z*,y*, &, ") be the induced chart on TTM and (V3,¢?),
PP = (x,yt, 2*, i* g, i) be the induced chart on TT2M. The elements of TT2M

have the local expressions

B B G,
uy = (%)q + ul (a_yu)q +ult (@)q, g €T M (2.1.22)

and the submanifold equations will give

e (Tymar (w) = 2o u(q),

Y (Tyrai (w) = yo1(q),

P (T, (w) = uf = y'ou(q),

Ty () = ub = 2o u(q), (2.1.23)

where the coordinate functions in the LhA.s. are on T"T'M, while the r.h.s represents the

coordinate functions of 7?M . Then we will have for coordinate functions on 772M,

a(u) = 2t 1(q),

y'(u) = you(q),

it(u) = uf = y*o(q),

g (u) = uy = 2" 1(q), (2.1.24)
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therefore, the elements of 7° M will have the form

0 0 0
wy = y"(q) (@) +2"(q) (a—y#) + w (@) : (2.1.25)
q q q

and we will take the induced chart on T3 M as (V3,43), ¥* = (a2, y*, 2, w"). We can
check the set (T®M, 7377, T>M) with 757" := 72|73, is a bundle in the similar way we
did for the case of (T2 M, 72;', TM). Clearly, 7.7 is a sub-bundle of (TT2M, 772, T>M).
We will call the set (T®M, 7577, T2 M) the third order tangent bundle over T> M.

We can similarly construct the r-th order tangent bundle over 7"~ M ; namely (77 M,
777!, T™='M) by induction. The bundle projection is defined by,
7_]1;/’;_1 = TT'“_IIV[‘TTM' (2126)
Consider the bundle morphism (7'7); "2 757" 7%) from (TT" M, 77r—157, T" "' M) to
(TT™=2M, 7pr—2p7, T"2M). Then we will define the total space T"M by

T"M = {u e TT"'M|T7}; " (1) = ty_10mrr1a1(u)}, (2.1.27)

where ¢,_; : T""'M — TT"=2M is the inclusion map. (T"M, 17", T"~*M) is a sub-
bundle of (TT" M, tpr—1pr, T M).

2.1.3 Multivector bundle

The completely antisymmetric tensor product bundles are the structures we need for fur-
ther discussions on calculus of variation, especially when the dimension of parameter
space is greater than one, namely for the consideration of a field theory. It is related to the

concept of multivectors and multivector fields, which is introduced below.

Definition 2.26. £-multivectors

A Ek-multivector with k£ < n is an element of exterior algebra over a vector space V'
denoted by A*(V). It is a linear combination of the multivectors of the form vy a--Avg,
vy, -, Ux € V. When the k-multivector is in the form vy A--Avy, it is called a decomposable

multivector.

This space A*(V) has a natural space of the vector space.
One geometric way to understand the vector field was to see it as a section of a tangent

bundle, (T'M, 7, M). Similarly, the multivector fields could be understood as a section of
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the k-fold antisymmetric tensor product bundle of (A*T'M, A¥7y;, M). We denote

ANTM = ] AT, M (2.1.28)

peEM

and A*1y; = Tya-ATy (k-alternating products). Below we will give the definition, and

see that this is indeed a vector bundle.

Definition 2.27. k-Multivector bundle
The triple (A*T'M, 7, M) where 7 = A¥7y, is a projection 7(v) = p for v € AFTM,
p € M, has a vector bundle structure, and is called the k-multivector bundle.

First, we will introduce a smooth structure on A¥T'M . Let the chart on the base space
M be (U,p), ¢ = (z*), and v € 7 (p),p € U. The bases of k-multivector constructed

from natural bases i R 0 on U are in the form i /ACRRVAN 6. ,
ox! » dzm ) dxr ) Oz ) |

where i, --, i; are integers taken from 1, ..., n without overlapping, and we denote this by

0 0
the abbreviation < e ARRRYAY 3 k) . The coordinate expression of v by these bases is
't 't
p

1 . .
v:yv““'z’“< O poonf ) : (2.1.29)
: p

ort U oxe

where v are real numbers with alternating superscripts. We may also use the local

expression of v using ordered bases, i.e.,

i [0 0
v= Y w <%/\../\8xik>p. (2.1.30)

11 <tg<---<ip

Define the functions y**~** on 7~ (U) by y**#*(v) = v*F* then we can obtain the
induced chart on V' C A*T'M, by (V,¢), V = 7= Y(U), v = (a",y"*#*). When
considering an exact value, we assume the superscripts are ordered.

To see the coordinate transformations, let (V, ), V = 7= Y(U), ¢ = (x#, y* ) and
(V, ),V =771 (U), ¢ = (z", y* ) be two charts on A¥T'M, with V NV # (). Then
express the element v, € VNV, p € UNU C M by these charts,

L g0 0N _ 1 D 0
UPZECU“ g (p)(&tul/\---/\axuk)p—gyu g (p)(axm/\---/\ax#k)p.

(2.1.31)
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The bases of A¥T'M will transform as

0 0 ox"  Jx"* 0 0
A = o A—— 2.1.32
oz oz QT Oz Jxr Davr’ ( )
so the transformation equation for the coordinate functions on A*T'M are
(’Z’u = i’“(l’y)’ (2.1.33)
ng‘“Vk _ 0T Ok yl“‘”'“‘k. (2.1.34)

Oxkt Oxhr

These transformations are smooth. Such induced charts define on A*T'M the structure of
C*°-manifold of dimension n + ,,C}.

Now, (A*T'M, m, M) naturally becomes a bundle by the projection, 7(v) = p for
v € A*T,M,p € M, since for any v € A*T'M, there always exist a unique p € M, such
that v € A*T, »M, and we assumed dim A and therefore dim AFT M are both constant.

This bundle structure can be also constructed by taking a k-fold alternating product
of (TM, T, M), which is denoted by (A*T'M, A¥7, M), and is a sub-bundle of the tensor
product bundle (RFTM, @%r, M).

Definition 2.28. k-multivector field
k-multivector field is a section of (AT M, , M). We denote all sections of 7 by I'(A¥T'M),
or equivalently X*(M).

Definition 2.29. Local coordinate expression of k-multivector field
Let (U, ), p = (z*) be a chart on M, the local expression of Y € I'(A*TU) is
0 0

1 . .
Y o= = i A A
n!f oxh Oxte

(2.1.35)

with fi1% € C(U) alternating in all the superscripts.

Definition 2.30. Decomposable k-multivector field

Let X be a k-multivector field. X is a decomposable k-multivector field iff there exists
X1, Xg € X(M) such that X = XA X;. We denote all decomposable k-multivector
fields by X% (M).

Definition 2.31. Locally decomposable k-multivector field

Let X be a k-multivector field. We say that X is decomposable at p € M, if there exists
a neighbourhood U, C M of p, and X1, -, X;; € X(U,), such that X = X;jr..AX}, on U,.
X 1is called locally decomposable k-multivector field iff for every p € M there exists a
neighbourhood U, C M and Xy, -, X, € X(U,) such that X = XA X}, on each U,.
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We denote all locally decomposable k-multivector fields by Z%Ak(M ). k-multivector
fields forms a C'*°( M )-module, and it is a dual concept to the k-form. We will show this
in the following lemma 2.33, and for this purpose, we introduce the theorem by Morita.

Theorem 2.32. Correspondence of alternating map and Forms (Morita)

Let M be a n-dimensional C*°-manifold, and Q2*(M) a module of all k-forms over M.
QF(M) can be naturally identified with the module of C*°(M) multi-linear, alternating
mapping X(M) x --- x X(M) — C*(M).

Proof. Suppose we have a map w which satisfies the above properties. We first prove
that the value w(X7, -, Xx)(p), is determined only by the values of X;, .., X} € X(M)
at point p € M. By multi-linearity, it is sufficient to prove that for certain X;, with

1 <1<k, w(Xy, -, Xk)(p) =0 for X;(p) = 0. Take ¢ = 1, and local coordinates around

0
p: (U;xq, -, x,). On U, the vector field X is expressed by X; = fjm, with f;(p) = 0.
_ x
Consider an open set V' which V' C U, and a function & € C*°(M ) such that,

hg) =4 . (2.1.36)

o . N
LetY; = hz=.¥; € X(M),and f; == by, then, f; € C(M).

By simple modification; X; = f;Y; + (1 — h)X;, and by the multi-linearity of the

map w,

w( X1, Xe)(p) = w(fY; + (L — 1) X1, Xo, - -+, X)) (p)
= fi(p)w(Y;, Xo, -+, Xi)(p) + (1 = h(p))w(Xy, -+, Xi)(p) = 0. (2.1.37)

Having this, we can obtain a k-form as the following. For every p € M, and tangent
vectors X, -, Xj € T,M, choose vector fields X;, (i =0, -, k), such that X;(p) = X;.
Put ij(f(l, -+, Xg) = w(X1, -, Xi)(p). By the previous discussion, this does not depend
on the choice of vector field, and it is obvious that @, is C'°. Then, @ is the differential
form identified with w. 0

We can prove a similar result regarding multivector fields in the following lemma.

Lemma 2.33. Duality of locally decomposable k-vector fields and k-form
1. Suppose we have a map w : X*(M) — C>°(M) which is C°°(M)-linear. Then there
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exists a unique k-form €2 on M such that, on each chart (U, ¢), ¢ = (z*) of M is related
to w by

1o 0 0
W(X) = X1 ((Wl . axuk) (2.1.38)

for X € Xk(M), X+ € C°(M).
2. Let {(U,,¢,)} be the set of charts covering M. The restriction w|; , : Xk (M) —
C>°(M) given by w|, ,, (X) = w(X) where X € X**(M), is related to {2 by

W(X) = Q (X1, X3 (2.1.39)
where X1, -, X;, € X(U,) are the arbitrary decomposition of X on each U,.

Proof. Suppose we have a k-form €2. Let X, .., X; be vector fields on M, and let

X; = Xl“m i = 1,...,k be the chart expression of X; in the chart (U, ), p = (z*).
x

Then by multi-linearity of a k-form,

0 0
= XM, Xk
QX -, X)) = X1 X0 (8:17“1’ , 895%)' (2.1.40)

On the other hand, the k-alternating product of X7, -, X}, forms a decomposable vector

9, 9,
fields, XiA- - -AXy = X(*- - X* ( A- ), where X", ... X;* € C®(M).

83;/1«1 A 814%

w (axm/\. . ./\837'“’“) =0 (8:5#1 e 83:!”“)' (2.1.41)

Now we extend w on X*(M) by linearity. The chart (U, ), » = (2*) induces the bases

Set

of multivectors in the form ——A---A——, and any multivector field Y € X*(M) has
axﬂl aajﬂk
a coordinate expression
1 0 0
Y = Yk ARRRYA 2.1.42
k! Oxh Oxhx ( )
with Y## e C°(U). Set
1 0 0 1 0 0
— IJ/lu . — IJlllJ/ ...
W(Y) = Yk ((%m A A&:M) = Y <axm’ : &W) . (2.1.43)

We will show that this expression is independent of charts.
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Let (U, ®), ¢ = (z") be another chart on M such that U NU # (. On U N U, we have
also

1 - 0 0
— ___VHLp ..
But since we have
1 0 0 1 or"m gzt 0 0
Y = —YH#k A+ A = Yy A A—— (2.1.45
k! oz OxHe k! ox”r  Jxve QT Ok ( )
we get
_ ajﬂl afuk
YHU e = Y L 2.1.46
oxvr  Oxvr’ ( )
and since
0 0 ox"t  Oz¥* 0 0
0 — 0 2147
(axm’ ’ 83%) oz Qi (axW ’ 89:%) ’ ( )
we have
1 0 0 1 - 0 0
Y) = —YHHeQ) e — | = YR — o —— ) (2.1.48
“V) =4 (axm’ ’ 835%) k! (03:“1’ ’ ax“k) (2148)

Therefore, this expression does not depend on the chart, and €2 is uniquely determined on
M.

Conversely, suppose we have a C°(M)-linear map w : X¥(M) — C>(M). By the
linearity of w, for any multivector field Y € X*(M) we have

Ui [0 0
w(Y) = Yy ( oA aw) (2.1.49)

on each chart (U, ¢), ¢ = (2#) of M. Set

Q(axﬂl""’axuk) _w(axul/\.../\axuk> , (2.1.50)

0
then since the multivectors are multi-linear and skew symmetric in the vector fields o

x
by the Theorem 2.32, €1 is identified as a k-form on U. Then for the general

1o 0 0
w(Y) = Y (&M,---, m#k) , (2.1.51)
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HY’“""“"Q is also a k-form on U, since Y1 #+ is a function on U. Globalisation is
carried out similarly. Thus we have proved the first part of the Lemma.

Now consider the special case where X € %Ak(M ) is locally decomposable. Without
any loss of generality, it is always possible to choose an open covering {U,},c; of M
such that for each U,, X is decomposable, namely X = X, ja-nX, p, with X, 1, -, X, €
X(U,). v € I is an index taken from countable index set I. Let A = {(U,,¢,)}.cr be
an atlas of M, then on each U, we have w(X) = w(X,1ar-1rX, ;). We will prove that
this does not depend on the decomposition of X. Suppose X has another decomposition,
X = XLJ/\-"/\XL,]C, XLJ, - Xb,k € X(U,) on U,. Let the coordinates on U, be ¢ = (z"),
then the local expression of X becomes,
0

P - - 0 0
)(_ :U‘l,,, Hi :Xﬂl.__}(#k ctt
- XL,I XL,k: 8$“1 A /\afL'“k 61 v,k 81*#1 /\axﬂk ’

(2.1.52)

implying X L[‘f - X7 ’,;] =X L[“ll X Iy ’,;}. Then by the first part of the lemma, we have

CL)(XLJ/\' . '/\XL,k)

0 0 0 0
— XML Mk — xlm, el L
e XL’l XL,]{:Q (8xﬂ1 ) I 81‘””@) — XL,I XL,k Q (83:},61 s s 8xuk)
Sl gl 9 9 - .
= XXM S| = W(X, 1A AX, 1) (2.1.53)

Therefore, this map does not depend on the choice of decomposition, and also implies
w(X, A2 X, k) = QX 1, -, X, ) oneach U,. O

Definition 2.34. Tangent mapping of multivectors

Let M, N be smooth manifolds and f : M — N a C*-map. Let (U,p),p = (a*)
be a chart on M and (V,%),7) = (y”) a chart on NN, such that f(U) C V. We extend
the bundle morphism (7'f, f) of tangent bundles T'f : TM — TN and f : M — N
to bundle morphism of multivector bundles, (A*T'M, A*ry;, M) to (A¥T'N, Af7y, N),

similarly as in the case of contravariant tensor bundles. Let v € AFT, »M, and let the

1 0 0
coordinate expression be v = —v#1Hk ( ACRRY ) . Then we define the image
k! Oxt OxH v
of this multivector by the tangent map by
1 0 0
k _ L e
A'Tf(v) = L k (Tf (axm) A---NT'f (ébnuk))f(p)' (2.1.54)

To distinguish between the usual tangent mappings, we used the notation A*T f(v) to
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state that the map is acting on a k-multivector, and occasionally call them multi-tangent

map.

2.1.4 Second order multivector bundle

In the previous sections, we have prepared the basics of multivectors and second order
tangent bundle. With these foundations, we can now construct the underlying structures
required for the second order field theory, which we call the bundle of second order mul-
tivectors, and denote by ((A*T)2M, A*72', A*T'M). The section of the bundle of second
order multivectors is called second order multivector field, which corresponds to the phys-
ical fields as we shall see later.

Before constructing the bundle of second order multivectors, we begin with some

basic observations.
Proposition 2.35. If (£, 7, M) is a vector bundle, then (T'E, T'w, T M) is a vector bundle.

Proof. Letm = dim M, n = dim E, and (7=Y (W), ¢), ¢ = (x!, .x™, ul, ., u") a vector
bundle adapted chart on E, induced by the chart (W, ), o = (z!,..,2™) on W C M. The
element of the fibre £, would then have a chart expression ¢ = gbi(e,-)p, 1 =1,..,n, where
e; are the local sections defined from the chart as in Definition 2.18. Letp € U C W,
and denote the local trivialisation of (E,w, M) at p by (U,,R",s,). The chart on M
and induces the local trivialisation on the bundles (T'M, 7y;, M) and (T'E, g, E), by
(Up, R™, tarp) and (sp(n7H(Up)) = Up x R, R™™ tp,), ¢ € E, w(q) = p, re-
spectively. We take induced charts on 7'M and T'E associated to these trivialisation as
(T Up), 1), ' = (2, y*) and (7~ (1 1(U,)), o), ! = (2, u’, &*, u'). Further-
more, these trivialisations gives rise to the local trivialisation (U, F},, £,) on (T'E, T'w, T M),
by

ty: Tn (U, x R™) = U, x R™ x R*", (2.1.55)

where we denoted U, x R™ = Up, and R*" = F,,. Here we used the isomorphism of the

trivialisation,

S:U, x R" x R™"™ — U, x R™ x R*™ (2.1.56)

Q
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equivalently, 1! (&) = (2"(¢), ¢, €#, £'). The swap map will take this to

SYl(&s) = S(at(9), ¢, €",€) = (a(9),€", 6", &), (2.1.57)

which by the local section ¢;, ¢; of T'm, defined by u'(e;(2)) = 0%, u'(é(2)) =
for all 2 € 7,71(U,), could be expressed by &, = ¢i(e;), + £(é;), € (TE),, with
q = (z"(p),&") € o Y(U,). It is easy to see that this point ¢ is consistent with the
projection Tym(&,). The swap map S(&;) = &, simply changes the base point of the
vector in T'F/. We can now see the fibres of 7'm becomes a vector space over each point of
z € Ty (U,) € TM. Considering for every p € M, these process for each trivialisation,
we can conclude that 7'7 is a vector bundle. ]

Proposition 2.35 tells that the k-multivector bundle (A*T'M, A¥7y;, M) induces a vec-
tor bundle (T (AT M), TA¥7y, TM) by the tangent map TA*7y, : T(A¥TM) — TM.
The element of T(A*T'M) is a 1-vector at a point on A¥T'M, and if we choose a vector
bundle adapted chart (V, ), V = (A*TM)~1(U,), v = (a*,y"*#*) on A¥T M, induced
by the chart (U, ¢), ¢ = (z!, .., 2™) on M, it has a coordinate expression

B 1 (D
=) e () B

with &, € T,(A*T'M), v € (A*¥T'M),,. or similarly,

PU(&) = (xh(p), i g grrin) (2.1.59)

by the induced ehart (V1,4), V1 = (ryeryy) (V). w6 = (a#, g, 45 on
T(A*TM). The swap map

SUN () = S (a(p) v €1, €1 ) = (a(p), €4, "M G4 ) (2.1.60)

will give the multivector the expression

0 Lo 0
OyHr- 1 Ja + Hfﬂ M(ayu1~~uk

&q lv‘““‘“’“( )q € (TA*TM),, (2.1.61)

TR
with ¢ = (2#(p), &) € Tar*(U,), where the local section

0 0

Cpgoy = > €y = =
H1-HE 8yl"’1/'[’k7 H1-HE ay'uluk

(2.1.62)
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of TAF7); was defined by y 15 (ev v (2)) = KISEL S8 g s (éuyony (2)) = KIGHT .. 608,
for all z € A7y, ~'(U,). The map TA*1); sends &, to Thx,, )M by

Ozt A*rypp~t 0

k _ 14
1 Ozr ARyt 0 e
MY vieve [ _Z ) — — 2.1.63
k! Oyvivk w(y)ﬁ ((%N)p ¢ (@xl‘)p’ ( )

which is indeed the base point ¢ of {,, and we see that (TAkTM) . becomes a vector space.

The k-multivector bundle (A*T'M, A*7y;, M) also induces a second order bundle
(ARTART M, A¥7pxppr, A¥T M) by iteration. We could introduce the induced charts for
AFTA*T M similarly as we did in Definition 2.27. Let (V, ), = (a*, y*1#*) be a chart
on AFTM, then the natural bases of A¥T'A*T'M on V are

0 0
(@m“’ 8yu1»~uk) ’ (2.1.64)

where iy, -, pi, = 1, -, n are alternating indices. The element of A*T'A¥T M at a point
p € A¥T M will have the form

1 0 0 1 0 0 0
_ e o I [ 9 A A
v ]f!w (8%”1/\ A8$“k>p+ (k — 1)!11} (83/1/\81#1 83;%1)10

+ 1 ltizhr b2 0 A 0 A 9 A- A 0
(k—2)12! oyl Oylz Ozt OxHr—2

1 Iilz- I 1p 9 0 0
T ayn oy o )

—w'? — . 2.1.65
+k!w 83/11/\83/12/\ A&ylk ) ( )

Here we have introduced a multi-index notation for visibility. The upper case latin index
Iy, I, -, I} is a combination of alternating % indices, such that / = p--u, and has its
own unique label, and we suppressed the factorial coefficient which we will understand
as already included in the summation over / appearing consequently. For example, in the
casen=4andk=2,1=1,2,..,,C5 =6, and

1:=(12),2:=(13),3:=(14),4:=(23),5:=(24),6 := (34), (2.1.66)
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we are able to write explicitly

1 0 0
2 oyl oy’
0 0 0 0 0 0 0 0 0 0
=wio Ao Fwl o g Ao twt oA W S A W S A
oyt dy oyt dy oyt Oy oyt Oy oyt Oy
0 0 0 0 0 0 0 19)
NI S NI ~ Sy I Ly AT iy
v oy? 0y3 oy? oyt v oy? Oyd oy? 0ys
PRI L I e )
oy oyt oy 0yd oy 0ys
0 0 0 0
45 46
_/\_ - AN —
+w Dy 8y5+w 9" B,
0 0
56
_/\_
tw oy> Oyb
0 0 0 0 0 0
(12)(13) (12)(14) (12)(23)
ST gy T g N gyan T g g
0 0 0 0 0 0
(12)(24) - (12)(34) _ 7 (13)(14) _
T gy gy T g @ N gyen T gy N g0
0 0 0 0 0
(13)(23) = (13)(24) _ 7 (13)(34) -
tw 5y (13 /\ay(zs) +w 5y (13 Aay(w tw 5y " 9y 6D
0 0 0 0 0
(14)(23) (14)(24) (14)(34)
T @ gy T g Ngyen T g0 gy
0 0 0 0 0 0
232 _~ A7 (23)(34) - (20)(3B4)_~ A~
+ w 5y A@ym) + w 5y A@y(34) + w 3y Aay(34)' (2.1.67)
Therefore in this notation, coordinate functions are labelled as
yl o= gk Tibvse v (i) i) vs v (2.1.68)

etc. The summation conventions between ordered and non-ordered indices are,

oK 0K 1 0K
[k A P -k
TS VR T A @169
k
1 aK 114.4_[”/[ Vg aK Il"'IlVl Vg
l!(k — l)! Ozli-Divigrvg o o T Z Z OzliDivig1-vg o !
I <Ip<- <Dy V41 <vpgo<--<vg

0K

— E E E E T D) Z(/’L%“‘lu“]{;)“'(/’]“ll“‘)u‘i;)yl+1“'yk7
82: lu’llLLk /"lﬂk VlJrl"‘Vk

ordered by 1 “i<'”<'ullc /“ll<“‘<l‘§g V1 <--<vg

1<I<k, (2.1.70)
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and the induced chart of the space A*TA*T'M could be introduced as (W2, 42), W2 =

(AkTAkTM)_l(V), 1;2 - (33#7 YHL R h Zlﬂl“'#kfl’211]2,“41“%%72’ - zll‘“lk)‘

Now, consider the extended tangent map A*TAFry; : A¥TA*TM — AFTM. This
map sends k-multivector at p € A*T'M to k-multivector at A"y, (p) € M, and induces
a vector bundle (A*TA*T M, A¥T Ak7y,, A¥TM). As we did in the case for constructing
the bundle (%M, 7ras| g2y, TM ), we can use the bundle isomorphism between the two
bundles, (A*TA*TM, N*1yrpps, A¥T M) and (ARTAYT M, A¥T A*ryr, A¥T' M), to con-
struct the bundle of second order multivectors. Let w € A*T'A*T'M be the k-multivector

at point p € A¥T'M. Then by the previous definition,

1 0 0 0
k k _ 1 k k k
AFTA TM(w)*kaM Nk(TA TM™ (8JJ”>/\TA TM™ (ax#)/\ ATA T™ (ax“k)>p
1 0 0 0
+ Hw[/ﬁlwuk—l (TAkTM (a [) /\TAkTM <a$ ) A~ /\TAkTM (895%—1))17
1 Iilsdpy 1 k 0 k 0 k d
++Eu) 'LL(TA TMm 8 I AR /\TA T™M W /\TA TM 6x“ ,

Lo npper k 9 k 0 i 0
+HU) ’“(TATM 5’] AT N7y @ A ANTA 1y @ .

1 0 0
ik A A e AT M. 2.1.71
k"w (8$”1 axuk)AkT I(p) AkT]M( ) ( )

On the other hand, A*7x7);(w) = p, and the equation for the isomorphism is

1 0 0
PPk A A =p, 2.1.72
k! ((9x“1 Otk > Akrar(p) b ( )

and in coordinate expression becomes,

e (p) = 2" (Norar(p)), e (p) = wh i = 21 (w). (2.1.73)

Therefore, we can take as the chart on (A¥T)2M, (W2, ¢%), W? = (A*Tyepy| (AFT)? w) ),
P2 = (ah yrape gl phbpepe-s. ohe-Ik) The coordinate z#1#* is not present

from the original chart on A*T’A*T M because of the above equation of submanifolds.

Definition 2.36. Second order k-multivector bundle (A*T)2M over A*T' M
Let (AT M, Ak7y;, M) be the k-multivector bundle with the base space M and (A*T AT M,
AETrkpar, A¥T M) the k-multivector bundle with the base space A¥T'M. Denote the sub-
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set of elements w € A*T'A*T M which satisfy the equations of submanifold
Ao Tperar (W) = AT APy (w) (2.1.74)
as (A*T)2M, and a map from (A*T)2M to A*T' M by

(2.1.75)

k.21 _ Ak
A TM = A TAkTM‘(AkT)zM.

The triple ((A*T)2M, A*72;' A¥T'M) becomes a bundle, and we call them second order
k-multi-vector bundle over A¥T'M.

Again this is not a vector bundle, i.e. the fibres of A’%’ff are not vector spaces, since
in general, the scalar multiplication of w, € (A*T')2M, p € A¥T'M does not belong to the
same fibre. As in Section 2.1.1, we can similarly check that ((A*T)2M, A*72", A*T M)
is a bundle. Namely we first introduce manifold structure on (A*T")2M, and then consider
the local trivialisation. The charts on (A*T)2M are already introduced, so let us check
the coordinate transformations.

Let (W2, ¢2), 1/]2 — (ZE‘“, y/»‘l“':uk’ ZIHI"‘/—Lk—l, 211[2“1“4#}672”" lemlk> al’ld (WQ’ 7]}2)’ 1212 —
(T, grape, gy ghlpepeez | zle-Ie) be two charts on (A*T)2M, with W2
W?2 = (). Then express the element w, € W2 N W?, g € A¥T'M, by these charts,

1 9 9 1 o 0 9
— M1k .. hpo-pr [ 7 .
Wy = @) (895“1/\ AE):E“’f)q CE (8y11/\8x“2/\ Aax“k>q

1 Lo [ O 0 0 0
* (k — 2)!2!w 8y11/\8y12/\8x“3/\ /\&cﬂk

TSN wfl“'fl“lﬂ'““k( O pondpA 9 _p.n 2 )

(k — D)l oyl oyl G D
- %gmqu) (agm a 'Aaguk)q T - T (agfl /\82‘2 e 'Aaa—ik>q
e —12)!2!‘“11[2“3'”% (agh Aagfz s 'Aa;k)q
. mwmnmﬂw (ajh i 'Aajfz Aaﬁm A .Aaf%)

4o =t A A A— |, (2.1.76)
k.' ayll ayIQ aylk .
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with
PREVERY (wq) — wlllﬂ"'llk’ PRERETE R (wq) — whbﬂi&"'ﬂk’ - SAl2 Iy (wq) — whlz---fk,
—Tipg-- . T —I1Isps-- _Tilops-- 11151 Ll I
L uk(wq) — 'tH2 #k)z 112p3 /—Lk(wq> — qp'ti2Hs #k’ e Z 112 k(wq) = 'tz Ik
(2.1.77)

Since the base of one vectors transform as

v I J 7
(? :83_; 9 +6g{ 0 | 8_ :0?{ 0 :k!ai_i, (2.1.78)
EE o0zn Oz | Ozt Oyl Oyl oyl oy’ ozl oy’

the bases of A*T'A*T M will transform as

o 0 _ <8x”1 0 N oyl 0 )/\.”/\ (0:}0"’“ 0 oy 0 )
o OTH* ozt Qzvr  Jxk Qyh OxHk Qxve — QxHe Qyle
_fa ow* o 0 | 040z Gz b 8 . 0

oxHt  Qxkk Qa1 Oxvk oxm gzrz  JzHe Qyht Jav2 Oxvk
oyl oy'2 9zvs O 0O 0 0 0
HEF ST S S e WS WAL A
Loy oyt 0 6 0
ozt gzrz  QzHe Jylt Oyl2 Oy'e
O A9 A A0
oyl Ozre OTHx
_ ‘ax‘h 0 /\(89&”2 0 +8y12 0 ) ((h”k 0 +8y1k 0 >
ozl gy \ 9zHe Oz Ok Dyl Ozrx vk ik Qylk
= k! (6$Jl 8$V2...axyk 4 A 4 /\.../\i
"\ 0zl Oxr2 Ozmk Oyt Qa2 Oxvr
ozt Oy’2 Oxv> Oz 0 0 0 0
LY I e SRR ST NURAR ST AR, w7
ox’t oy’2 oylr 0 0 0 )
AP AN A A+ A ’
oxh gzr2  Qzre Oyl Jylz Oyl

0 .0 ,)kaxh o, o0 0
oyh ogwe Y ozh Oy 0zl Oy’r
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L0z Oxle 0 0
S A Ae—r,
oxh ozl gy Oyx

= (k) (2.1.79)

and the coordinate transformations of w € A*TA*T M with base point on A*T'M will be

Lo oz*t Oz 0 0
w = _y k — Cee—— e e N\ —
k! or*M  Jxkk Qx1 Oxve

+ (iym-uukkcl ale axl@ amyk k'
k!

e 0T O Qe
e + w 1H2 -k e
oxm dzrz Jzme  (k —1)! ozl Ozrz Oz
X 0 AN 0 VACIERYAN 0
dyr Ox2 OxVe

1 _ oyt Oy’? Ox»  Oxn Kl oz Oy’ oxvs Ok
2 O tH2 Bk ()
* (k!y K2 mm gz ozrs oo (k=11 VRN gme oes T Dam
k!)? Ot 92 9xvs Oz 9 9 0 %)
+ ( ) whhﬂiﬁ"'ﬂkk_z o :EI 3_7[ g_ﬁ Q_U ¥ A g A A---
(k —2)!2! oxh ox'z gzrs Ozt | Oy/r OJylz Qxvs Oxvk

J Ji Y, 1%
+ m+<igu14.4ukkcl8y 1”.@y 1 Ox z+1“-8x k
k! Orm orm Qrti+i Otk

J J: J, 1% v
+ k‘ wflﬂ2"‘ﬂkk IOZ 16$ ' ay ’ .. ay : 8$ o . al' )
(k—1)! T 0xzh gz QM Oz OQTMk
2 Vit v,
n (k!) Gl o Ox’t 0z’ Oy’s - .asz OxVi+ . “8x k
(k —2)12! T 9z 9zl Ozt QM Oz DT

¢ J Ji v, v,
4 — (k) whmh#lﬂw#kk_lcoaw ' Ot Pt O k)

(k — D)l ozl 9zl dzme Oz
X J A /\i 0 VACRRVAN 0
oy oyt Qxvinr OxVe
T igmmuk dy’ dy” oy’ N k! - O’y o™
k! Ozt gzrt2  Jzme (kK —1)! ozl gzr2  QxM

L. (k—!)lwhmfmurwk oz N .8:&]1 Qy i+ o Oy

(k— 0! ozl ozl gzravr  Ozhw

(K g 0zt Oak ) )
To reduce the space, we made an abbreviation,
J1 J1 Jk
Ozt Oz ox 2.1.81)

ozl T 9z 9z’
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Now we will get the transformation rule for the coordinates as,

or”r  OJxvk

2. Basic structures

VLV ) H1- g
Yy ot 83;/% Yy ’
J1 Q2 Sk =J1 V9 SVE
Shwaey _ ) T 0z’ 0T B .(91: sy OU7 0T B .(91:
Oxl Oxrz Qe Oxtr OgHz  Qghr’
—J1 _JQ U3 +VE
§J1J2u3»-»uk _ (k!)2zl112#3~-uk 9z 01”2 01 e 0z
Ox!r Oxl2 Qzks  Qxte

oz oy’ 0z 0T

P e

oy 9y’ 0zvs

Oz"*

+ 2!k!211#2“‘#k

Oxlt Oxkz Oxks gk

7J1 1 YY1
_Jl"‘JlVlJrl”‘l/k: ax a.T al‘

Oxk1 Oxhz Oxhs

oz"*

z = (k'!)lzll”'ll.u«ﬂrl“‘#k

Orh Oxli Qi+

oz’ ozl oyl oz

' axﬂk
oT*

. 8x#k !

4 1Oy ()T i

Orh . ag;fz 1 O ax.“lJrl

oz

’ axﬂk
(95177‘]1*2 ale 1 6sz O

ox"*

1—=2 I1I) oy
+lCl—2(k!) i i=2=1 Bk axh”

ozt o> oyt oz Oz

’ Oxli—2 Q-1 Qi Ottt o

. 1 pl1p2 1k ..
+101(]{?)Z axh axlﬁ

ogh oyt oz oz

Ot o .axuz Oxti+1 . .8;5% ’

OxH Orti+1 Otk

gyt

1 7 Jk
k11, 0T oz’ ‘ 0T
oxh Oxlk

+ (k‘!)k_lkck_lzhmlk_l’%

oz’ oz’ 9y

zhdke = (K1)F2

) axﬂk

ozt 9zl 9y

ozl
Oyt

axlk—l 837/%

| (k—1) Iy Typggr - pig .. ..
+ -+ (R ) C z Ozl Ozl Ot

ang ayjl
' axﬂk a];,ufl .

T 0y
Orlt darz

4+ ]{;!kclzhuz'-uuk IR

' 83;!%
&y" k
axﬂk

(2.1.82)

These transformations are smooth, and the charts form a smooth atlas on (A*T)2M. The

natural embedding

o 1ok 11M2Mk 1112M3H’k IIIk
('I Y ) < )~ y TR )

)

Boog b1l g b pdipepe  Didapsepu
_>(‘T7y Y ) % ) < yTT R

shows that (A*T)2M

oz’
quently use the abbreviation such as §’ = k!—— 57 y instead of y

[lmjk>

Y S S —

(2.1.83)

is a submanifold of AkTAkTM . To save the space, we will fre-

oT"
Oxh

oxvr

81‘/%

fi1--
Yy .
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In case of k = 2,

1 0 0 0 0 1 19) 0
T M2 Iy po ~ o1l
YTV Gam /\836“2 * oyh /\8&:“2 * 2" oyh /\83/2
v v J- v J 12
:lwlmﬁxlax? 0 A 0 n gulmﬁyl&c? 2711/@81318%2 0 A 0
2 OxTM Jxk2 a1 Jav2 0T QxHe ozl 9zm2 ) Qyr - Qa2
J J J J J J
_|_1 g#lﬂz 8y ' ay ’ +4wl1u2 O™ ay ’ 4 411_)1112 Ozt Ja-= 0 A 9
2 oTH OH2 oxl Ok oxh 9z'2 ) oyt Oy’2
gl’lVQ — ajyl aiyz M1 2
Ozt Otz '
J 1% = U
Shve _ o L 0T 0 s Oy 0T
Ozt Otz OxHt Oghz’
—J1 9=J J1 9 —J1 9J
2J1J2 — 421112 Ozt Oz 11#2a ! ay ? 141 2 ay ! ay § (2 1 84)
Ozl Ox!2 Oxt Ozh2 Oxk Oxhz’ o

Now AkTi}l is a surjective submersion by definition, so it remains to check the local
trivialisation. The local trivialisation of ((A*T)2M, A¥72' A*T M) around any point p €
AFTM is given by (V,, R™, t,), t, : (A*r5)"1(V,) — V, x R, 1 = ,Cy, p € V},, where
V,, is an open set of A*T'M, which in chart expression for any & € (A*r3;')~'(V,) C
(AFT)2M is

tp(€) = (AF7as (§), 2lmarn (&), 2 Tamsmk (g oo T (g)), (2.1.85)

Therefore, ((AFT)2M, AFr3! AFT M) is indeed a bundle.

Definition 2.37. Second order k-multivector bundle

Similarly as in the case of mechanics (k = 1), the triple ((A*T)2M, A*72°, M) with
AF720 = Ak AR ARTEE = AkTAkTM|(AkT)2M is also a bundle with the triviali-
sation (U, RN™" t,), ¢, : (Ak o) "N(U,) — U, x RN, where U, is an open set of M,
and

N = (44)Cr = [+, Cp—1 X 101 + ,Cr—a X 1Cy + -+ - +,C, (2.1.86)

where [ = ,,C}, around any p € U, C M. We call this a Second order k-multivector
bundle over M or simply, Second order k-multivector bundle.

In the second order field theory, the dynamical variables are the section of the second
order k-multivector bundle, and (A*T")2M will be the space where the Lagrangian should
be defined.
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2.1.5 Higher order £-multivector bundle

Here we will briefly introduce the higher order k-multivector bundles. The construction is
the same as the Section 2.1.2, and the r-th order k-multivector bundle over (A*T)" 1 M;
namely, ((A*T)" M, A*7;7 ", (A*T)"~* M) can be constructed by induction. The projec-
tion map is defined by

k_rr—1 . Ak
ANy = A7

ATy A (2.1.87)

(ART)" M
Consider the bundle morphism ((AFT)A*ry 1" ~2 AF77 71772 from (AT ((AFT) 1 M),
AkT(AkT)T_1]V[7 (AkT)T_lM) tO (Ak‘T((AkT)T—QM)) AkT(AkT)r—2M7 (Ak‘T)T‘_2M), Then we
will define the total space (A*T")" M by

(A*TY" M = {u € A*T((A*T) M) [ (AFT)A*77 72 (1) = 110 AkT(AkT)rflM(U)},
(2.1.88)

where ¢,_1 : (AkT)T—lM — AkT((AkT)r—ZM) is the inclusion map. ((AkT)TM, AkT]T}[T_l,
(ALY M) is a sub-bundle of (AMT((AT)™ M), AT yu gyt (A7) M),

2.2 Integration of differential forms

For the calculus of variations on the Kawaguchi manifold, we need to integrate a La-
grangian which is a k-form on a k-dimensional submanifold. In this section, we will
describe how to implement such integrals, and begin by introducing the method to define
the integration of a n-form on a n-dimensional compact oriented manifold M. The inte-
gration of k-form (k < n) on a k-dimensional compact oriented submanifold would then
be given, first in the case where there is an immersion map (which is called parameterisa-
tion) from the parameter space to the total space M, and second for the case where there

is no such map. We will begin with basic definitions and theorems.

Definition 2.38. Orientation of two charts
Let (U, ), = (z*) and (U, ), ¢ = (y°) be two charts on M such that U N U # (. We

say that (U, ) and (U, ¢) has the same orientation, when

det (W) > 0. 2.2.1)

oxi
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Definition 2.39. Orientable manifold

We say that a manifold M is orientable, if there exist an atlas A = {(U,, ¢,) } < such that
for any pair of intersecting charts from A, has the same orientation. The manifold which
is given such an atlas is called an oriented manifold, and it has the orientation associated
to this atlas.

Suppose we have an oriented manifold with an atlas A, then by definition, this man-
ifold has a specific orientation associated to .A. Transfer one axis in opposite direction
for every chart in A, and denote this new atlas by A. Every chart in A still has the same
orientation, but it is opposite to the orientation of .A. In this way, orientable manifold can

always have two orientations.

Definition 2.40. Orientation preserving (reversing) map

Let Mand N be two smooth n-dimensional oriented manifolds, o : M — N a diffeomor-
phism. In particular, the tangent mapping Tp,«v : T,M — T,,(,,) N has constant rank n for
every p € M. Choose a chart (U, ¢) on M and a chart (V, 1) on N such that o(U) C V.
We define a number ¢,, equal to 1 or —1, by the chart expressions

| det Dypap™| =&, - det D™t (2.2.2)

This number is independent of the choice of charts that has the same orientation. To see
this, let (U, ¢) be a chart on M which has the same orientation as (U, ), and (V%) a

chart on N which has the same orientation as (V). Then,

£, = sgndet Do ™
= sgn(det Dy~ " - det Dypap™! - det Do ™)
= sgn(det Dyt - det Dpp ') - sgndet Dypag !
= sgndet Dpag@ . (2.2.3)

Thus, the number ¢, is independent of the charts with the same orientation. We say that

« 18 orientation preserving map (resp. orientation-reversing map), if e, = 1 (¢, = —1).

Example 2.41. The special case is when M/ = U, N = R" and a = ¢, where ¢ = (2#)
are the coordinate functions of the domain U. We assume that we always choose the map
 as to be orientation preserving with respect to the canonical coordinates on R".

Definition 2.42. support of k-form(k < n) «
The support of « is the closure of {p € M|a, # 0}. We denote it by supp(«)
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Definition 2.43. o-compact
We say that the topological space X is o-compact when X is a union of countable number

of compact subsets, X;, (i = 1,2, 3, ). Namely, X = (J X;.

i=1

Theorem 2.44. Partition of Unity

Let M be a o-compact C*°-manifold, and {U"},¢; an arbitrary open covering of M. ¢ € [
is an index taken from countable index set /. Then, there exists countable number of C°°-
functions h; : M — R, j =1,2,3, -, such that satisfies the following conditions:

1.O< h; <1, forVj=1,2,3,.

2. The family {supp(h;)},es is a locally finite open covering of A/ and also a refinement
of {U'}iex

3.) hj=1

jeI

The sum in 3. is over finite functions, since {supp(h;)};es is a locally finite set. The

proof could be found in the standard textbooks, e.g., Spivak [12].

Definition 2.45. The family {h;};c; satisfying the conditions 1., 2., 3. in Theorem 2.44

is called a partition of unity subordinate to {U"} ;.

Definition 2.46. Rectangular region

Let V' be an open subset of U. We call V' a rectangular region, when there exists a
chart (U, ), such that by appropriate shrinking of the domain, induces a chart (V, $),
o(V) = {p € R"|@(p) € (—a',a’), a* € R, i = 1,..,n}. We call (V, ) a rectangle
chart.

Now we will introduce the integral of an n-form on a n dimensional manifold M.

Definition 2.47. Integration of a top form

Let w be a n-form on M, and (U, ), = (x!,..,z") a chart on M. First, suppose that
supp(w) C V, where V' is a rectangular region of U. Let the local coordinate expression
of wbe w = fdx'r-adz™, with f € C°°(M). The integration of w is defined by,

al an
/ w:/w:/ & (fdx' A- - -Adx™) ::/ flt, - a™)ydat - da”,
M v #(V) —a1 —an
(2.2.4)

where for simplicity, we denoted the pull back of the coordinates on U to R™ also as (z*).

The right hand side is the standard multiple integral.
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Lemma 2.48. The Right hand side of (2.2.4) does not depend on the choice of the rect-
angular region which contains the support of w, provided that it has the same orientation.

Proof. Suppose there is another chart (U, ¢), = (y', -, y"), such that U N U # (), and
V C UNU. By definition, the rectangle chart of V on the first chart is

@(V) = {p S Rn|()5l(p) € (_a’ivai>a ai € Ra 1= 17 o -7’)1}.

The second chart, (1) is not a rectangle chart in general, however in R” we can always

choose a open rectangle such that contains ¢(V'). For instance, choose
L= {(=b",b") x -+ x (=", b")|b" = sup{’@i(p)‘ ,p €V} eR},

then since ¢ is a diffeomorphism, we can always choose a ¢ € Diff(R™) such that
¢op(V) = L. Let ¢’ = ¢, and the local coordinate expression of w in this chart
be w = gdy'r--ady", with g € C>(M). Since

— 1 ? in __ 1 ayzl ayZ" ] Jn
dy'A- - -Ady™ = 7150 i, Ay A Ady = Sy aﬂnd A Adx
1 Oyt Oy (9y1 oy"
= _—¢g, ,ghinZd . 1 = gltin co L _dain. - n
= 7 ineint Eres 8x3"d A Ndx™ =€ 9o B dz"A---Ndx
By’
= det ( ) dz' A - Adx", (2.2.5)
ox7

we will have

O )
f = gdet ( aij) : (2.2.6)

We suppose our manifold M is orientable, then it is always possible to choose two charts

such that det (Sy) > 0onUNU. Then,

)
/ / *(fdx'A---Adx™) / / f(zx ") dat- - -da"
oV —ai
n a n
/—a1 /_an -,y)det(ax)dx —dx
_ ayz 1 n
Lo e
by b
_ / / gty dy' - dy 2.2.7)
—by b
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Accordingly, the value does not depend on the choice of charts. U

Now, suppose M is orientable and compact. Since every point p € M 1is in some
rectangle region, M could be covered by finite number of rectangle regions {V'!, ... V*}.
Then, choose the atlas of M as A = {(V',¢!), ., (V* ¢*)}, where all charts in A have
the same orientation. Take a partition of unity {; };cs, subordinate to {V', .., V*}. Then

the integral of n-form w on M can be calculated by

/]\/[ < /]\4 ; . ; /]\4 “ ; /s‘upp(hq;) “ Z Z [/j “

J=1 i:supp(h;)CVJ

(2.2.8)

since supp(h;w) C supp(h;), and {supp(h;) }icn is a refinement of {V!, ... V*}, for any
i € N, supp(hsw) C V7 for some j, 1 < j < s. We can calculate the r.A.s. of (2.2.8) by
(2.2.7),

>y /th,w:z > /@ )@;(hifjdx}/\---/\dx?)

J=1 i:supp(h;)C VI Jj=1 i:supp(h;)CVJI P (V7

s alq aln ) i 1 awg 1
:Z Z v o o ‘ (hzogo‘]>(f]ogpj>(‘r 7...71'”) det % dx __.dxn’
J=1 i:supp(h;)C VI —aly —aln

(2.2.9)

where
fidaiA- - -Ndal! (2.2.10)

is a local expression of w on the rectangle chart (V7, 37), ¢ = (zj, -, #7), induced by the

chart (V7, 7). This expression does not depend on the choice of partition of unity. To

see this, consider just two coordinate patches V7, V5.

W= h;w 2.2.11)
/Vluv2 /VluW ZGZI

For VINV? =),

o0

/V Sho= Y [ hwr 3 [ e

1 2 7
Uv2 =1 i:supp(h;)CV1 izsupp(h; ) CV?2
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=Xt D e [ e [ D= [ o [

el
(2.2.12)

For VINV?2 £,

o

/ W= / E hiw
Vigy2 viuv?

= hzw + / hiw + hz/ w
. Z /\/1\(vlmv2) Z V2\(V1inv?2) Z Viny2

w:supp(h;)CV'1E @:supp(h;)CV? i€l

= hiw + / hiw+ hz’/ w
27 SUPRRCECD 37 SNREED 3L

icl el iel

/V Zhw+/vz\vmv22hw+/ Zhw

N(WVInv2) et icl Vinv2)

:/ w+/ w+/ w. (2.2.13)
VI\(V1NV2) V2\(V1NV2) (Vinv2)

The extension to the arbitrary number of covers is apparent.

Now we introduce two ways of defining an integration of a k-form on a k-dimensional
compact subset .S of M. The first is when S is given by an inclusion (injective immersion)
of k-dimensional manifold P into M, namely S is an immersed submanifold of M, and
the second is when S is an embedded submanifold of M. Though in the further discussion
we always consider the case when we have the inclusion map, we will also introduce the

definition for the second case as well.

Definition 2.49. Integration of k-form on n-dimensional manifold
Let S be a immersed submanifold of M, given by S = «(P) C M, where P is a compact
k-dimensional manifold and ¢ an inclusion map. Suppose we have a k-form w on M. The

integration of k-form on M is given by,

/ w:/L*w. (2.2.14)
L(P) P

Then since the rh.s. is an integration of a k-form over a k-dimensional manifold, the

previous definition could be applied to calculate the integral.

S will be diffeomorphic to P, and will inherit the topology of P by ¢. In general this
is not the same as the subset topology. In the later chapters, we will consider especially

when P a closed k-rectangle. Then P is called a parameter space and the map ¢ is called
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a parameterisation.
Now, suppose we have a submanifold S of M, we can still define the integration of
k-form on S in terms of pieces and adapted charts of a submanifold.

Definition 2.50. Submanifold and adapted charts
Let M be a n-dimensional C'*°-manifold and choose a non-empty subset S C M. S is
said to be a k-dimensional submanifold of M, if to every point py € S there exists a chart

(U, ), o = (z") on M at py such that the set S N U is given by the equation,
2 (p) = 0,2"2(p) = 0, -+, 2"(p) = 0. (2.2.15)

for Vp € SN U. Coordinate system (U, ), ¢ = (z*) with the above properties is said to
be adapted to the submanifold S at py.

Definition 2.51. Half space

Let ¢, .., " be the canonical coordinates of R", and R® = {y € R"|t!(y) > 0} and
OR" = {y € R"|t"(y) = 0}. The subset R” of R", considered with the subspace
topology, is called the half space of R", and OR" considered as the topological subspace

of R™, is canonically isomorphic with R"~!, and is called the boundary of R™.

Definition 2.52. Open sets in R™
Let U be a subset of R”. We say that U is open in R” when U = 2 N R", where (2 is

some open subset of R".

Let M be a n-dimensional C'*°-differentiable manifold, and €2 be a nonempty compact
subset of M. Let py € € be a fixed point, and (U, ¢), ¢ = (z*) a chart on M such that
po € U. We say that the chart (U, ¢) is adapted to € at pg, if (2N U) is open in R”. If
the chart (U, ¢) is adapted to (2 at py, it is adapted at every point of p € Q N U, and we
say a chart (U, @) is adapted to Q2. Clearly, since €2 is supposed to be compact, there exist
finitely many points p1, ps, -, py of © and adapted charts (U, 1), -, (Un, @), such that
p1 € Uy, ps € Uy, ,pny € Uy,and Q C |JU,.

Definition 2.53. Pieces of a manifold
) C M is called a piece of M, if it is compact and to each point p € (2 there exists a chart
at p adapted to €.

Let int {2 be the set of interior points of 2, and set 92 = Q\int Q. Let ¢y € 02,
and let (U, ), = (z") be a chart adapted to 2 at gyo. Then for every ¢ € 9Q N U,
x™(q) = 0, and the set €2 has on 92 N U the equation =" = 0. Thus by the definition 02
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is a submanifold of €2, of dimension dim 02 = n — 1. The submanifold 02 is called the
boundary of (). It is easily seen that 0f2 is compact.

Example 2.54. A ball B; = {(z,y) € R?*|2* + y* < 1} is a piece of R?. B; is compact
so it suffices to show that to each point p € B; there exists a chart at p adapted to B;. For
the points p € int By, it is apparent we can find an open chart on R? which is adapted to
B;. For the points on the boundary, p € 9By, let (U, ¢), ¢ = (r,0) be a chart on R?, with
—1<r <R, c<p <c+ mwith R some constant greater than 0, and ¢ a constant such
that p € U. Then ¢(B; NU) = (—1,0] X (c,c+7) = {(=1,R) X (c,c+m)} NR? is
open in R™. By choosing appropriate ¢, we can always find such adapted chart for any
p € 0B;.

One can also show that if € is orientable, OS2 is also orientable. Let 2 be a piece of
M, py € 0 a point. We say that a vector £ € T),, M is oriented outwards €2, if there
exists a chart (U, ¢),p = (2*) on M adapted to 2 at py, such that the chart expression

(0
E=¢ e satisfies the condition £ > (. We show that this definition is independent
x’L

Po

of the choice of adapted chart which has the same orientation. Let (U, ), = (") be
the second adapted chart which has the same orientation as (U, ), » = (z*). Then on

this second chart,

_( 0 ~ oT" ,
§=8=5) » &= -] &, (2.2.16)
oz’ ox’
po po
buton U N U N IQ, z"(zt, 22, ., 2", 0) = 0.
Hence, % =0, % =0, % = 0 at ¢(pp), and we have
_0z"

However, since both charts are adapted and has the same orientation, — > 0, and there-

_ } o™
fore £" > 0. In particular if (U, ), p = (2*) is a chart adapted to 2 at py € 052, then the

vector (W is oriented outwards 2. Now suppose €2 is oriented with the orientation
x
Ppo

S. Then by the compactness of €2, we have finitely many charts (Uy,, o1), o = (z%),

1 < k < N, adapted to € with the same orientation, and 2 C |JU,. We set V;, =
k

U, NN, by = (z},22, - 2} "), where the coordinate functions z}, -, 2~ are con-
sidered to be restricted to Vj. The pairs (Vi, ¥%), ¥ = (2}), 1 < k < N form a smooth
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ox" ox" ox"
atlas on 0f). Then by definition and from T 0, v _ 0,---, g 0, for any
- Ox? 0x? Oxn—1
pairof 1 < k,l < N, det D(pkgofl = a—xﬁ - det D¢kwl_l. But since det Dy, =t > 0
o

n

0
and a—xfl > (0, det Dz/mﬁl_l > 0. Therefore by definition, 0 is an orientable manifold.
iy

!
The orientation of 0f2 defined by the atlas (Vj, 1), 1 < k < N is said to be associated

with the given orientation of M, defined by the charts (U, ¢r), 1 < k < N.

Definition 2.55. Integration of a k-form on n-dimensional manifold (by submanifold
chart)

Consider a manifold M and an orientable submanifold S C M with dim S = k. Suppose
we have a k-form p on the neighbourhood of S. We will now introduce the integration
of this form on S by means of adapted charts of a submanifold. Let 2 C S be a com-
pact piece (compact submanifold with boundary) which is covered by the adapted chart

(U, @), = (a1, 2%, 0,..,0). In this chart, the local expression of p is
1 i i
p = yp“lkdx A Adx k. (2.2.13)

where p;,..;, is a function of x!, ..., 2*. Then we can define the integral of p on the piece

Q) by
/ p= / (™) p. (2.2.19)
Q ©(%2)

If we choose €2 and ¢ appropriately, this can be expressed as

1\* . . o Lo 1 1 k
/ p= / ((p_ ) p= / / A / Efn'”%phwiko 90_ dx*- - -dx , (2220)
Q () ai az ag .

since we assumed that the orientation are preserved by the mapping by .

To consider the integral over whole S, consider the finite family of submanifold charts
on X, {(Uy, ¢1), (Uz, v2), ..., (Un,@n)}, such that the family of open sets (in S) {U; N
S,UaNS, ..., UyNS}covers S. Let {x1, x2, - - -, xv } be a partition of unity, subordinate
to this covering. Since by definition supp x; N S is a closed subset of the compact set S,
it must be compact; on the other hand, supp x; N S is a subset of the set U; NS, the chart
neighbourhood of the induced chart by (U;, ¢;) on S. In particular, the integral

/ Xin (2.2.21)
supp x; NS
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is defined by formula (2.2.20) for each j. We set

N

/ n=> / X1 (2.2.22)
S . supp x; NS

7j=1
The real number given by the formula (2.2.22), is called the integral of the form non S.

We show that the right-hand side of (2.2.22) is independent of the choice of the fam-
ily of submanifold charts {(Uy, ¢1), (U2, ¢2),...,(Un,pn)} and the partition of unity

X1, X2, .-, xn}. Let {(Uy,@1), (U, @2),...,(Uns, @ar)} be another family of charts
and {X1, X2, - - -, Xar } the corresponding partition of unity. By (2.2.22), for each j,

/ i = Z / g (2.2.23)
supp x;NS supp X:MNsupp x;N

and similarly for each i,

N

/ Xil = Z
supp X;NS

J=1

/ XX (2.2.24)
supp x; Nsupp X:NS

Thus

N

=1 /Supp Xj 05

J

N M
Z Z/ XiXj1 = Z Z/ mm
supp X;Nsupp x;NS

Jj=1 =1 i=1 j=1 supp X;MNsupp x; M

M
> / Xl (2.2.25)

i—1 J/suppx:NS

as required.






Chapter 3

Basics of Finsler geometry and
parameterisation

In this chapter 3, we will briefly introduce the properties of Finsler geometry and some
related structures that we will use for the considerations of calculus of variations. Since
our motivation is to construct a theory applicable to concrete models of physics, there are
certain aspects that may differ from the standard approach of a geometer, whose main
interest lies on the construction or understanding of the geometrical structure itself. In
particular, some of the standard definitions that allows further inquiries into problems
of geometry may simply be unsuitable for tackling problems of physics. Therefore, in
such cases, we have to modify or loosen some conditions. For instance, if we require
strong convexity for the definition of Finsler manifold, most of the standard physical
problems would be out of the scope. Also, if we require convexity (or “regularity” in
some references), no gauge theories can be handled. We therefore propose to use only the
minimal definitions, and use the name Finsler manifold in such broad sense. Nevertheless,
for the construction of the theory of calculus of variation, the minimal definitions turn
out to be sufficient, and no additional structures such as connections and curvature are
required. We will begin with a very short historical review on how Finsler geometry was
introduced, and then give the basic structures of Finsler geometry in the more modern
terms, namely the tangent bundle and Finsler function, and introduce the Finsler length
and its parameterisation. Then we will introduce the important concept of Finsler-Hilbert
form, which is directly connected with Finsler length. These objects are the main tools

for the calculus of variation, discussed in chapter 5.

51



52 3. Basics of Finsler geometry and parameterisation

3.1 Introduction to Finsler geometry

Historically, in his inaugural lecture, Riemann already mentioned on the special case of
Finsler metric by stating, ‘- -the line element can be an arbitrary homogeneous function of
first degree in the quantities dx which remains the same when all the quantities dx change
the sign, and in which the arbitrary constants are function of the quantities x.” [12], where
he referred to dz as an “infinitesimal displacement” from the position x. This statement
can be translated to the formula

F(z' 2%, - 2™ Mda', Mda?, - - Mda™) = |\ F(2!', 2%, -+ 2", dat, da?, - - - da™),
A eR. (3.1.1)

Then in the subsequent discussion, ‘...and consequently ds equals the square root of an
everywhere positive homogeneous function of the second degree in the quantities dx, in
which the coefficients are continuous functions of the quantities x.” Therefore, by this
statement he restricted this function F' = ds to a more special case where it is given by,
F(z',dx") = \/W , which is the infinitesimal length of a curve on a Rieman-
nian manifold. After the development of tensor analysis and exterior differential calculus,
the theory was reformed in such a way that infinitesimal displacements dx was replaced
by one forms, therefore allowing the concept to be treated in the realm of linear algebra,
and the square of the structure ds was replaced by a symmetric tensor g = g;;(x)dz'©da’,
which gives an inner product of tangent vectors at each point p on M. In other words, the
concept of infinitesimal displacement was in a sense abandoned; instead of considering a
length of infinitesimal piece of a curve, the new structure g defines the length of any finite
sized vector at a point p on M. Also, since ¢ is an inner product, it will give not only the

length but also defines the angle between the two vectors.

In this modern view, the geometry is described by considering the tangent bundle, the
arena of “vectors”, not only by its base manifold M and the curve C, as in the original idea
of Riemann. The additional structure at each point of M is called a fibre in mathematics,

and in physics it is frequently called the “internal space”.

Finsler geometry also has these two perspectives, one from the study on the prop-
erties of infinitesimal length on M, that is, a view as a geometry of calculus of varia-
tions (Finsler, Carathéodory), and then another view from the study of bundles and tensor
analysis (Synge, Berwald, Cartan). Now it has become more standard to understand the
Riemann geometry in this latter perspective, and likewise can be said for Finsler geom-

etry. In this and the following chapter 4, we will also discuss on Finsler geometry and
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the further extensions of Kawaguchi geometry using this perspective. However, it is also
very useful to remember the original Riemann’s idea as well. Finsler geometry is simply
a consideration of an arc length in more general setting than Riemann geometry. It has
no inner product structure, and therefore more fundamental. The arc length of the line
element ds is a homogeneous function of degree one, homogeneous with respect to the
infinitesimal dislocation dz, where ds and dz are simply functions on M. There are re-
searches on Finsler and Kawaguchi geometry in this direction as well, especially in cases
where calculus of variations are important [8, 16], and indeed we take such works as an
inspiring reference to our later discussions in chapter 5.

The main reference used in this section is Matsumoto [7], Chern, Chen and Lam [1],

and Tamassy [13].

3.2 Basic definitions of Finsler geometry

The geometric structure that defines the Finsler manifold is a function on the total space of
a tangent bundle (7'M, 75, M ). This structure is called Finsler function or Finsler metric
in some references.

Let M be a C*-differentiable manifold, (T'M, 1y, M) its tangent bundle, T°M :=
TM\O the slit tangent bundle excluding the zero section from 7'M, and (U, ), =
(x*,y*), p = 1,-.,n an induced chart on T'M.

Definition 3.1. Finsler manifold

The n-dimensional Finsler manifold is a pair (M, F') where F is a C° function on T'M
and C* function on T°M, satisfying the following conditions.

(I) Homogeneity

F(\Ww) = F(v),v € T°M, A >0 (3.2.1)
or in coordinate expression,
F(z#, Mot) = AF (x#,0"), X > 0. (3.2.2)

This condition (I) also implies the condition of Euler’s homogeneous function theo-
rem,
OF

a—yuy“ = F (3.2.3)
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Function with such properties is called a Finsler function.

Remark 3.2. Depending on the authors, usually there are several additional properties
required for a Finsler manifold. Besides the above homogeneity condition, other require-
ments are such as,

(I’) absolute homogeneity
F(Aw) =M\ F(v),AeR (3.24)

This corresponds to the condition (3.1.1) suggested by Riemann, sometimes it is called
symmetric Finsler manifold.
(IT) non-negativity of F'

F:TM — R*. (3.2.5)
(ITT) Convexity (Regularity)
The determinant of the matrix
1 0°F
i = =, 3.2.6
i =5 Dyt Oy (3.2.6)

1 =1,..,n is non-zero.

The structure g;; € C*°(TM) is usually called a fundamental tensor, or fundamental
form. (Refer to : [1, 2,7, 13])

(IV) Strong Convexity

gij(V)v'? = = v'v! >0, (3.2.7)

Yo #0e€T,M,Vpe M. (Referto: [1, 2, 13])

Together with (II) this equation is equivalent to the triangular inequality,
F)+ F(w) > F(v+ w), (3.2.8)

forVp € M,v,w € T,M, v # w. However, the condition (II), (IIT), (IV) is too restrictive
for the application to physics. Therefore, we will only require the minimal condition (I).

This condition is sufficient for our following discussions.

The Finsler function F' is the main structure of Finsler geometry, and this definition

gives the view to Finsler geometry as geometry of tangent bundle endowed with a specific
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feature. In the following, we will define the Finsler length of a curve on M, and show that
the homogeneity condition is equivalent to the parameterisation invariant property of this
arc length. In this way the two perspectives of Finsler geometry become connected.

3.3 Parameterisation and Finsler length

Here we introduce the curves, arc segments, their parameterisations and Finsler length.
The notion of the Finsler length is naturally extended to 1-dimensional immersed sub-

manifolds.

Definition 3.3. C"-curves
Let M be a smooth manifold, and o : I — M a C"-mapping, where I is an open interval
of a real line R. We denote the image of [ by C; C' := o(I) C M, and call C, the

C"-curve on M.

Definition 3.4. Lift of C"-curves

Consider a tangent bundle (7'M, ), M) where 7, is the natural projection. By differen-
tiating the map o : I — M, we get a natural mapping 6 : I — T'M. Denote the image
of I by C := 6(I) € TM, where 7,,(C") = C, and (), t € I is a tangent vector at the

)
. (3.3.1)
t ( T 0'(1)

The map ¢ and its image C is called the lift, or the tangent lift of o (resp. ().

d(xts o)
dt

Definition 3.5. Regularity of o
The C"-map o : [ — M is called regular, if its lift 6 is nowhere 0.

Definition 3.6. Parameterisation of an immersed curve

The C"-map o : I — M is called an immersion, if its lift & is injective, and the image C' =
o([I) is called an immersed curve. The map o is called a parameterisation of immersed
curve C, and [ is called a parameter space, when o is an immersion, and preserves

orientation.

Definition 3.7. Parameterisation
Leto : I — M be a C"-map, and C' = o(I). The map o is called a parameterisation of

C, and [ is called a parameter space, when o is injective, and preserves orientation.
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Non-parameterisable Parameterisable, irregular Parameterisable immersed,
regular

Figure 3.1: Example of curves in R?

Definition 3.8. Lift of a parameterisation

We call ¢ the lift of parameterisation o, when o is a parameterisation.

Given a curve C' on M, more than one map and open interval may exist, namely for
cases such as C' = o(I) = p(J), where o, p are the maps, and [, J are the open intervals
in R. We can classify the curves by considering the properties of these maps. Some

example of the curves are shown in Figure 3.1.

Definition 3.9. Regular curve
Let C'be a C"-curve on M. C'is called a regular curve on M, if there exists a regular C”

map o and an open interval / of R such that o(1) = C.

Definition 3.10. Parameterisable immersed curve
Let C'be a C"-curve on M. C'is called a parameterisable immersed curve on M, if there
exists an immersion o and an open interval I of R such that o(/) = C.

Definition 3.11. Parameterisable curve
Let C' be a C"-curve on M. C'is called a parameterisable curve on M, if there exists an

injective C"-map o and an open interval [ of R such that (1) = C.

Example 3.12. S* embedded in R? is neither a parameterisable curve nor a pararameter-
isable immersed curve. For instance, consider a map o : R — R2, which in coordinates
are given by o (t) := (cos(t), sin(t)). The lift 6 will be & = (— sin(t), cos(t)), so nowhere
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zero, meaning it is a regular curve, but neither o nor ¢ are injective. Indeed we can con-
sider different parameterisations, but since this is a closed curve, no injective map from an
open subset of R exists. Furthermore, since it is also a smooth closed curve, no immersion
from an open subset of R exists. Nevertheless, by restricting o to finite interval (0, 27),

we can have the parameterisation of the corresponding part of the circle.

Example 3.13. A curve “o0” in R? is neither a parameterisable curve nor a pararameter-
isable immersed curve, since it is smooth and closed. Nevertheless, we may consider a
map such as o(t) := (cos(t),sin(t)), and by restricting the open interval to finite interval
(0, 27), we can have the parameterisation of the corresponding part of the circle.

Example 3.14. A curve defined by a map o : R — R?, which in coordinates are given by
o(t) := (cos(t),sin(t) — t), is a parameterisable curve, but not regular. The lift & will be

o = (—sin(t), cos(t) — 1), which becomes 0 at ¢ = 2n, for integer n.

Example 3.15. A spiral curve in R? (on the right of Fig. 3.1) is a regular, and param-
eterisable immersed curve. There exists a regular parameterisation defined by a map
o : R — R?, which in coordinates are given by o(t) := (cos(t),sin(t) — t/2). The lift &
will be ¢ = (—sin(t), cos(t) — 1/2), o is not injective since it gives the same point for ¢
such that ¢ — sin(t) = 7.

Example 3.16. In some cases, we can find a regular parameterisation of a curve that
was originally given by a map which is not a regular parameterisation. Consider a curve
defined by amap o : I — R?, I = (0,27), which in coordinates are given by o(t) :=
(sin(t), — cos(2t)). o is not regular, since its lift & becomes 0 at ¢ = 7/2. However,
there exists a regular parameterisation of this curve C' = ¢(I) by the map 5 : J — R?,
J = (=1, 1), which in coordinates are given by &(s) := (s, 2s?—1), and its lift is nowhere
0.

Occasionally, we implicitly refer to the pair (o, I) by the parameterisation o. In the
following discussion, we will only consider regular, parameterisable curves.

Now we will introduce the concept of a length of a curve by integration on the param-
eter space. For simplicity, we will restrict ourselves to curves that are parameterisable,

and consider its closed subset, which we define below.

Definition 3.17. arc segment

Let C'be a parameterisable curve on M/ with some parameterisation o : [ — M. A subset
of C given by C := o([t;,t;]) C C, where [t;,t;] C I is called the arc segment on M, o
is called the parameterisation of the arc segment and the closed interval [t;, /] is called

the parameter space of an arc segment.



58 3. Basics of Finsler geometry and parameterisation

Q®

Figure 3.2: Parameterisation of a curve

The Finsler function defines a geometrical length of an arc segment C' on M.

Definition 3.18. Finsler length
Let (M, F') be the n-dimensional Finsler manifold, and C' the arc segment on M such that
C = o([ti, ts]). We assign to C' the following integral

IF(C) = /t T PG (33.2)

%

We call this number /¥ (C) the Finsler length of C.

Let (U, ¢), ¢ = (z*,y"), p = 1,--,n be the induced chart on 7'M . By chart expres-
sion, (3.3.2) is,

ty ty drP (o (t
()= [ Fa e reand = [F (oo, g a6
ti t;
where we used the definition of &, and definition of induced coordinates of 1M,
d(xuo U)
dt

(xFod)(t) = (xto0)(t), (yY'oo)(t) = (3.3.4)

t

Let p : J — C, J C R be another parameterisation of C'. When there exists a
diffeomorphism ¢ : J — [ such that p = 0. ¢, this gives an equivalence relation o~p.
We are able to find an important property of the Finsler length, which is the following

lemma:
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Lemma 3.19. Reparameterisation invariance of Finsler length
The Finsler length does not change by the reparameterisation p = g. ¢, ¢ : J — I, where
¢ is a diffeomorphism such that preserves the orientation.

Proof. Dividing the interval [t;,¢¢] if necessary into smaller closed sub-intervals we can
suppose without loss of generality that the set C' = o ([t;, tf]) lies in the coordinate neigh-
bourhood of a chart (U, ¢), ¢ = (z*). Then the lift of p becomes,

N . d(x'uo Oo ¢) 5 . d(.flf'uo 0-) 8 . d¢
ple) = ‘( ) - o) " ds
s oo d(s) s a0 ¢(s)

ds oxH dt
. ) . . . do
for s € J, and since p is a regular parameterisation that preserves orientation, s > 0. It
s

d¢
o(s) 45

is easy to see that the length of C'is preserved by

—

ﬂmzf%umwzf%wmmw

si, sy are the pre-image of the boundary points ¢;, t; by ¢. [

In the second line of (3.3.6), we have used the homogeneity condition of F'. The ho-
mogeneity of [’ and parameterisation invariance of Finsler length is an equivalent prop-

erty.

Remark 3.20. The “Finsler length” does not have the properties of a “standard” length,
considered by Euclid or Riemannian geometry, since we require only homogeneity condi-
tion of the Finsler function. For instance, when one changes the orientation of the curve,
in general, it gives different values (not just signatures). However, in our following dis-
cussion of the calculus of variations, we can still use this concept to obtain extremals
and equations of motion, and it maybe also an interesting tool for considering differential

geometry of submanifolds, and possible generalisations of mechanics.
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3.4 Finsler-Hilbert form

Given a Finsler manifold, we can obtain a important geometrical structure which is called
a Hilbert form by some authors [1]. In this thesis, we sometimes call them Finsler-Hilbert
form, just to stress it is for the first order mechanics. In chapter 4, we will generalise this
concept to second order and higher dimensional parameter space.

Definition 3.21. Hilbert form
Let (V,4), ¢ = (z*,y"), p = 1, -, n be an induced chart on 7'M . Consider the following
1-form on T° M, which in local coordinates are expressed by

This form is invariant with respect to the coordinate transformations by

o

Ert (3.4.2)

o — B = ),y — g =

therefore, it is a globally defined form on 7°M. We will call this global form with the

local coordinate expression (3.4.1), Hilbert form.

Lemma 3.22. Let F be the Hilbert 1-form on T°M, C = o(I) the arc segment on M,
with [ = [t;, ;] a closed interval in R. Then,

/ =1"(0). (3.4.3)
¢
Proof. The simple calculation leads,
ty
/f a—yudfbu = gy};—;o % (.Z‘#oa')
t;
tf oF , . d(z*(o(t)) ¥ Or . bl
=) a_yu(a<t))Tdt_ g ayu(a(t)w (o(t))dt
ty
= / F(6(t) dt = 17(C) (3.4.4)
t;

where we used the pulled back homogeneity condition

oF
oy

o&'yuo&:Fo&. (345)
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Remark 3.23. This lemma extends the notion of Finsler length given by (3.3.2). Namely,
since the Hilbert form can be integrated over any 1-dimensional submanifold of M, the
identity (3.4.3) suggests that it is possible to extend the integration over arc segments to

arbitrary 1-dimensional submanifold of M, by considering the Hilbert form.

Remark 3.24. Now that we showed that Finsler-Hilbert 1-form gives the Finsler length
(and in a more general situation of a submanifold), we can redefine the pair (M, F) as
the Finsler manifold instead of taking (M, F’). This is a more geometrical definition of a
Finsler manifold, and also in close analogy to the case of Riemannian geometry, where
the geometric structure is given by a tensor g, and not by a function. This observation is
important also for the consideration of Kawaguchi geometry.

Remark 3.25. When given a Hilbert form, we can obtain the Cartan form, which is a
one form defined on J'Y, where Y is a n + 1-dimensional manifold, and J'Y is the
prolongation of the bundle (Y, 7, R). ( In most cases, Y = R x @ is considered, and is
called an extended configuration space. () is a configuration space of dimension n. In
such case, the bundle (Y, pri,R) becomes a trivial bundle. ) Let (U, %), ¥ = (¢,¢"),
i = 1,.-,n be the adapted chart on Y, and the induced chart on R be (7(U), t). We denote
the induced chart on J'Y by ((710)~1(U),¥'), ¥t = (t,¢%,¢"), where 710 : J'Y — YV
is the prolongation of 7. Suppose we have a Hilbert form on 7'Y". Take the induced chart
onTY as ((ty)"H(U),¢Y), ¥ = (2% 2%, 4% 9"), i = 1, .-, n. (In order to avoid confusion
we use different symbols, but clearly 2° = t. 7y, 2° = ¢'- 7y.) Since both J'Yand T'Y are
bundles over Y, around every p € Y, there exists a local trivialisation. Take p € U, and
let (U, F,,t,),t, : (7v)"H(U) — U x F,, be the local trivialisation of TY and (U, G, 1,),
t, + (71971 (U) — U x G, be the local trivialisation of J'Y where F, = R2"+D
and G, = R?"*!. Then there exists a natural inclusion ¢ : (¢,) (U x G,) — TM,
L((t,) "YU x Gp)) = (t,)"*(U x F,), which in coordinate functions are given by

o1 =t 2lor=¢' ylor =1, yor = ¢,

so that the submanifold equation is 1y° = 1. The local coordinate expression of the Hilbert

form is,

OF oF . 1 OF . OF .
= — A’ + —dit = = | F— —y' | da® + —da* 3.4.6
Tt ot yo( 8y’y) gyt (G40

where the second equality holds by using the Euler’s homogeneity condition. The pull
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back of this Hilbert form by ¢ is

. 1 oF
VF = EOL(FOL— By

oLy L> d(x% 1) + gFo L-d(x'or) (3.4.7)

yi

However, by the submanifold equation yo = 1, this becomes exactly the Cartan form,

@C = L*.F = <£ — aﬁ 1) 8£

5 dt + @—qid:ﬁ, (3.4.8)
should be regarded as the “conventional” Lagrange function ! defined on J'Y". In fact, the
inclusion map ¢ can be globalised for all J'Y’, and the relation (3.4.8) is global. In other
words, Cartan form is a restriction of a Hilbert form to a submanifold J'Y in TY. Also,
the base manifold of the bundle (Y, 7, R) is naturally considered as a parameter space,
and for Cartan form such structure was needed, while Hilbert form does not need such
fibre bundle structure of Y. In this sense, Hilbert form is a generalisation of the Cartan

form that does not depend on specific bundle structures.

In chapter 5, we will also consider the converse and discuss how to obtain the Hilbert

form when a conventional Lagrangian is given.

"We simply use the term “conventional” to distinguish the Lagrangian function over J'Y’, from our
Lagrangian which is the Hilbert 1-form over 7'Y".



Chapter 4

Basics of Kawaguchi geometry and

parameterisation

In this chapter 4, we will introduce a geometry which was originally considered by A.
Kawaguchi as a extension of Finsler geometry. In contrast to Finsler geometry, Kawaguchi
geometry still does not have a well-developed consensus yet, and it may be a bit early to
be called as “geometry”. Nevertheless, it follows the same line of thought that originates

from Riemann, and with the hope of its future establishment, we will call so in this thesis.

4.1 Introduction to Kawaguchi geometry

A. Kawaguchi considered the generalisation of Finsler geometry in two directions, one for
the case of higher order derivative, and another for the case of k-dimensional parameter
space, from the viewpoint of calculus of variations [4]. The latter was referred to as Areal
space. In either case, the theory was presented in means of local expressions. In this
thesis, we will make an original exposition of Kawaguchi geometry by using multivector
bundle and differential forms, and extend its validity to global expressions for the second
order 1-dimensional parameter space and first order k-dimensional parameter space. The
higher order k-dimensional parameter space is left for future research.

In the case of Finsler geometry, the definition for the Finsler-Hilbert form was such as
it gives an invariant length of a parameterisable 1-dimensional submanifold. Namely, the
homogeneity of the Finsler function and the parameterisation invariance of Finsler length
was equivalent. For the Kawaguchi geometry, we can also consider a similar property as

the main pillar for setting up the foundation.

63
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4.2 Second order, 1-dimensional parameter space

Here in this section we will reconstruct the first direction of generalisation of Finsler
geometry originally considered by Kawaguchi in a modern fashion, where the second
order derivatives (acceleration) are considered. Kawaguchi considered the homogeneity
condition of higher order functions by requiring the following invariance on integration
under the change of parameterisation,

t2 dz* d?at t2 det ds 2" (ds\?  dzt d%s
Ko, = " dat= | Ko =—2 2 (Z2) + 5222 )
/tl (x T dt2) /t (‘7” " ds i ds? (dt) s dt2>
2 dz*  d?xt
= K| 2!, —,— | ds. 421
[ () e @2

This requirement gives a condition that the length of a curve defined by such function K
becomes invariant, in other words it is a geometrical length. The above expression is in a
single local chart, but we can prove that the condition could be extended globally. Below
we will give a definition of the manifold with such properties.

4.2.1 Basic definitions of Finsler-Kawaguchi geometry

We will first define the geometric structure of the second order Finsler-Kawaguchi man-
ifold by a function on the total space of a second order tangent bundle (T*M, 7']%4’0, M),
such that gives a geometrical length to a curve on M. We will call this structure a second
order Finsler-Kawaguchi function.

Definition 4.1. Second order Finsler-Kawaguchi manifold (Second order 1-dimensional
parameter space)

Let (M, K) be a pair of n-dimensional C'*°-differentiable manifold M and a function
K € C>(T?*M), which for a adapted chart on T*M, (V2 ¢?),¢? = (aH,y*, z"), p =

1, -, n, satisfies the second order homogeneity condition,
K(a#, \y#, N2 2"+ pyt) = MK (2, y*, 2"), X eR'T, peR. (4.2.2)

We will call the function with such properties, a second order Finsler-Kawaguchi func-

tion, and the pair (M, K) a n-dimensional second order Finsler-Kawaguchi manifold.

Compared to the case of first order Finsler, since 7 M is not a vector space, we do not

have an expression such as \v, the vector multiplied by a constant. The condition (4.2.2)
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implies the following,

g[i + 22 gKM = K,
z (4.2.3)
WOK
y oz

which is called the Zermelo’s condition. The proofs are given by Urban and Krupka [18].
These conditions (4.2.3) are coordinate independent. Take another chart (U; @), ¢ =

(z*, y*, z") on M, and then from the coordinate transformation rules, we have,

ox*

g = A

oK _ 0K 0y +8_K8z” _ 0K OxP n 8_K 0%z 7

oyt OyP Oyt OzP dy*  Oyr Oz OzP Oz0xr” '

s o+ v ot
835” 0x*0zh Yy,
0K 0K 0z
ozt QzP OzH 424
and since
ozt Par 0 (0xOxr [\ 0" 0x°Oxf , O3t Oxf
oz 9zeozn” ~ 9ze \Oxv ozr” ) T dxedxr 0z 0zhY | 0xodxr dzn”
we obtain
8[( ('N( 8K GK
2zH = 221 =K
Gy“ + o Gy“ + Ozt ’
8K 8K
82“ = 32:“ =0 4.2.5)

4.2.2 Parameterisation invariant length of Finsler-Kawaguchi geom-
etry

In Finsler geometry, the homogeneity condition of Finsler function implied the invariance
of Finsler length and vice versa. We would similarly define the Finsler-Kawaguchi length,
and then show that the condition (4.2.2) and the parameter independence of Finsler-
Kawaguchi length is equivalent. We will begin by introducing the lift of a parameteri-
sation.

Definition 4.2. Second order lift of parameterisation
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TTM & T>M

Figure 4.1: Second order lift of parameterisation

Consider a second order tangent bundle (72M, 57, M) defined in Section 2.1.1, and the
induced chart (V2,4?), ¢? = (z*,y*, z"), u = 1,--,n, on T?M. Let o be a parameteri-
sation of C', namely C' = (/) defined in Section 3.3, and  be an open interval in R. We

call the map o2 : I — T*M, such that its local expression is given by

0 ) d*(z*s o) ( 0 )
+ , (4.2.6)
t (3:17“ 5(t) dt? ; oY+ &(t)

the second order lift of parameterisation o to T?M. The image C? = ¢2(I) is called the
second order lift of C.

d(l"uo (7)
dt

o2 (t) =

Clearly, 73,(C?) = C. The second order lift of parameterisation ¢ is constructed
by considering the subset of iterated tangent lift. Namely, construct the tangent lift
6 : 1 — TTM of the parameterisation ¢ : I — 7T'M, and then take its subset by

~
~

o? = {5’|T&(t)TM((§'(t)) = 770(6(t)),t € I}. The iterated tangent lift &(¢) has the local

coordinate expressions
( 0 ) n d(yt. o) ( 0 )
P \OTH /) 5 dt |, \Oy") 5

and the condition for 5 (t) to be in 7% M by the Definition 2.23 will give us the coordinates
of o2(t),

d(:L‘”o (5’)
dt

o(t) =

(ato0?)(t) = (o 0)(t) = (2" 0)(),
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d NO 5 d NO
ot = 52| = LD —(ea)0,
o dyreo)|  d*(zteo)
(#o0?)(t) = =2 = 4.2.7)

From above we conclude o(t) has the expression (4.2.6).

The parameterisation o where its second order lift o2 is nowhere 0 is called a reg-
ular parameterisation of order 2. In the discussions concerning second order Finsler-
Kawaguchi geometry, we will only consider the regular parameterisation of order 2.

The r-th order parametciisa\tion o" : I — T"M can be obtained by iterative process.
Namely, construct the lift (0)’”71 : I — TT " 'M of the parameterisation "' : [ —
T"~'M, and then regarding the construction on the higher-order tangent bundle (2.1.27),

take its subset by

— — —

0" = {(0) N Torrymir V2 (0) (1) = trsomrean((0) (1)), t €T}, (4.2.8)

Definition 4.3. r-th order parameterisation
Let o be a parameterisation of the curve C' on M. The map o” : I — T"M given by
(4.4.6) is called the r-th order lift of parameterisation o.

where ¢, : T""'M — TT"=2M is the inclusion map.

Definition 4.4. Finsler-Kawaguchi length (second order)
The Finsler-Kawaguchi function defines a geometrical length for an arc segment C' =
o([t:,t¢]) on M by the lifted parameterisation o of order 2 as,

5(0) = /t N K (0(t)) dt. (4.2.9)

i

By chart expression, this is,

10) = [ K (@00 0), ) b
[ K (o, D N

dt ’ dt?

where we used the definition of 02, and its coordinates expressed by the induced coordi-
nates of T2 M,

(ao0?)(t) = (2" 0)(),
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5 B d(xts o)
ety = 5
o B (xte0)
(Z”OO' )(t) = T t (4211)

We call this % (C'), the (second order) Finsler-Kawaguchi length of the curve C.

For the case of first order Finsler geometry, there was an important property of param-
eterisation independence of the Finsler length (Section 3.3). We will show that the second
order Finsler-Kawaguchi length also has the same property.

Lemma 4.5. Reparameterisation invariance of Finsler-Kawaguchi length

The second order Finsler-Kawaguchi length does not change by the reparameterisation
p=o000,¢:J — I, where ¢ is a diffeomorphism such that preserves the orientation,
and /, J are open intervals in R.

Proof. The second order lift of p becomes,

2\ d(ate00 ) 9, d*(z"o 00 @)
ps) = ds ‘ <3x ) 3(s) * ds?

(a5)
O ) 5sa(s)

_ d(zts a) ( ) d(z#s o) ( )
dt OxH ¢(S dt s ds " ) 5oas)
_d(ats a) x“o U) d¢
o dt 6(5) ds 8y“ S5H(s)
d(z"s 0) d2¢
+ 7 ds2 ( _ ¢(5 (4.2.12)

for s € J. Its coordinates in 72 M are,

(a0 p*)(s) = (z"o 0)(9(s)) = (z"o 0?)(4(s)),

(1)) = (% ¢<->%> = | o,
by [ & (z*e0) d¢ d(ztso)| d*¢
(e p")(s) = (T ¢(_)(ds) dr |y, d82> (s)
~(%]) - @eoen+ G| e @2

. . . . . d
and since p is a regular parameterisation that preserves orientation, d_¢ > 0.
S
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Let [s;,s¢] C J and [t;,tf] C I be closed intervals, where ¢(s;) = t;, ¢(sf) = ty.
Now we can see that the length of C' = o ([t;, t;]) is preserved by

K(C) = / UK (pP(s)) ds = / UK (@) (07(5), (2 (5)) ds

Si Si

-/ .SfK<xM(”2(¢(S)”% v, (] ) #etewn + 5
o7 (ty)
= [* 7 Kot s
¢~1(t:) S
:/ K () e (4.2.14)
U]

In the second line of (4.2.14), we have used the pull-back of second order homogene-
ity condition (4.2.2). We can conclude that the homogeneity of K and parameterisation

invariance of Finsler-Kawaguchi length is an equivalent property.

4.2.3 Finsler-Kawaguchi form

Given a Finsler-Kawaguchi manifold (), K'), we can obtain an important geometrical
structure, which we call a Finsler-Kawaguchi form. It is a form which is constructed in
accord to the second order homogeneity condition, and gives a conventional Lagrangian
when pulled back to the parameter space by a certain parameterisation. As such as
the Hilbert form reduced to Cartan form by choosing a specific fibration, the Finsler-
Kawaguchi form is expected to give the Higher order Cartan form similarly by fixing the

fibration.

Definition 4.6. Second order Finsler-Kawaguchi form

Let (V2 4?),¢* = (a*,y*,z"), p = 1,..,n be a chart on T?M. The second order
Finsler-Kawaguchi form K is a 1-form on T2 M, which in local coordinates are expressed
by

0K 0K
= ——dx* —duy*
K ayﬂdw + 25— dy". 4.2.15)

This corresponds to the first formula in (4.2.3).

The Finsler-Kawaguchi form is invariant with respect to the coordinate transforma-



70 4. Basics of Kawaguchi geometry and parameterisation

tions by,

ozt
N T T
Yt = yt(at, y") el
ot O+
2t — (Yt M) = T, Tyt (4.2.16)

Note that from the second formula of (4.2.2), we can similarly consider a form g—de"
which is also coordinate independent. Adding such form to (4.2.15) does not contribute
to the conventional Lagrangian or equation of motion which its only dynamical variable is
the time ¢, since it becomes 0 when pulled back to the parameter space P. Still, it changes
the Lagrangian and equation of motion before the pull-back, giving some ambiguity in
the choice of such forms. Nevertheless, for the arbitrary order of derivatives, only one
condition of Zermelo relates the derivatives of K in the formula to K, and we can always

use this condition to construct the Finsler-Kawaguchi form.

Proposition 4.7. Let K be the second order Finsler-Kawaguchi 1-form on T2M, I an
open interval in R, [t;, ;] C I, and o the second order lifted parameterisation o : I —
T?M. The integration of K along C? := o*([t;, ts]) is given by the Finsler-Kawaguchi
length [5(C).

Proof. The simple calculation leads,

oK tr OK oK
_d K 2_d (o] 2 d ll/o 2 2 (o] 2 d IJ/O 2
/C2 /02(1 T i /t oy o“d(xte0”) + Epmdd (y'o o)

7 OK d(z(o*(t))  JOK , 5, . d(y*(o*(t))
- ayu(a () yr +2 azu(a (t))—dt dt
b OF 0K

=/ @(02@))?/”( “(6) + 25 (0%() (o7 (1)) dt

-/ " Ko®) dt = 15(0), (42.17)

ti

where we used the pull-back second order homogeneity condition

0K

o o0? - ZMoo? = Koo?. (4.2.18)

00'2 ,yﬂ

OzH

]
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Remark 4.8. As we redefined the pair (M, F) as the Finsler manifold instead of the
pair (M, F'), we can redefine the pair (M, K) as the n-dimensional Finsler-Kawaguchi
manifold instead of the pair (M, K).

Remark 4.9. We saw in the previous chapter, the relation between Hilbert form and the
Cartan form (Remark 3.25). Similary, we can consider what the Finsler-Kawaguchi form
corresponds to, when specifying the fibration. Let Y be a n + 1-dimensional manifold,
and fix the bundle (Y, 7, R). The second order prolongation of Y is denoted as J2Y'.
Let (V,4), ¢ = (t,2'), i = 1,-,n be the adapted chart on Y, and the induced chart
on R be (m(V),t). We denote the induced chart on J2Y by ((7*°)~1(V),4?),¢v? =
(t,q¢%, 4", '), where 720 : J?Y — Y is the prolongation of . Suppose we have a second
order Finsler-Kawaguchi form K on T?Y C TTY. Take the induced chart on T2Y as
(7)1 (V),90?), ¥ = (a0, 2,90, 9,40, @', 2%, 2'), i = 1,..,n. Consider an inclusion
map ¢ : (72°)"1(V) < (7+°)1(V), which in coordinates are given by

L (t’ql’qz’ql) = (‘ro = t7l" = Q7y = 17y = (],I = 17-T = (1"72? = O,Zi = ql)a
so that the submanifold equations are now given by 3° = % = 1, ' = i, 20 = 0.

Expressing the Finsler-Kawaguchi form in these coordinates gives,

0K 0. 0K oK oK
= — — 2— 2— 4.2.1
K= 8yd (9yd '+ aody + 97 dy’, ( 9)

and using the homogeneity conditions:

0K _ (K 8[( 28[( 28]( )i,
Y

8_y0 8y 029 0z
0K 0K
Ok _ Ok ;1 4.2.20
020 92 0’ ( )
becomes
oK 0K oK 1 oK ., . 0K .1 oK .
K — PV 2| —da® dr’ — —— 2 —dy’ + 2——dy".
k= ( Oy’y 920" 8212> Y0 v +6yZ ’ Gzlzyo vt 921"
4.221)

The pull-back of this Finsler-Kawaguchi form by ¢ is

1 K - K K :
(Ko[,— ayiob'yloL—QgZOOL'ZOoL—ngiOL'ZZoL) d(aj’oo[,)



72 4. Basics of Kawaguchi geometry and parameterisation

0K 4 1 0K 4 )
+ ——otd'ot — —ot - ——ot-2ord(y’or) + 2

K )
. ord(y'ot). 4.2.22
oy’ y° 07! vdly'er) ( )

0zt

By the submanifold equations, this becomes

oL . oL oL . oL .
O ="K =|(L£- 26 —2=3 ) dt dq’ + 2==dg’
et ( 9q ! Wq) oG T e
= Ldt + a—‘?wi + 2(7? W', (4.2.23)
¢ g
where we set £ := Ko, and
whi=dq' — ¢'dt, W' = dq' — §'dt. (4.2.24)

The 1-forms w?, " are called contact forms, and they disappear when pulled back to the
base manifold of the bundle (Y, 7, R). O is the second order form which corresponds to

the Cartan form in our context.

4.3 First order, k-dimensional parameter space

Here in this section we will consider the second direction of generalisation of Finsler
geometry, to k-dimensional parameter space. We will begin with the first order case. For
the construction, we will utilise the structure of multivector bundles, introduced in chapter
2 Section 2.1.3.

4.3.1 Basic definitions of Kawaguchi geometry (first order 4-multivector
bundle)

We will first define the geometric structure on the total space of a k-multivector bundle
(A*T M, A*7y;, M'). We will call this structure a first order k-areal Kawaguchi function.

Definition 4.10. Kawaguchi manifold (First order k-dimensional parameter space)
Let (M, K) be a pair of n-dimensional C'*°-differentiable manifold M and a function
K € C°(A*TM) with k < n that satisfies the following homogeneity condition,

K(\w) = AK(v), A>0, forve A"TM. (4.3.1)

We will call the function with such properties, a first order k-areal Kawaguchi function,

and the pair (M, K') a n-dimensional k-areal Kawaguchi manifold, or simply Kawaguchi
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Figure 4.2: lift of parameterisation for Kawaguchi area

manifold, if the subject of discussion is clear.

Let (V,9), ¢ = (a*, y* M), pi, iy, pir, = 1,--,n be a chart on A*T'M, then the
local expression of the above condition can be written as

Kzt Ayrte)y = XK (2!, y"#*), A > 0. (4.3.2)

The condition (4.3.2) implies the following,

1 0K
Tl By

yt e = K, (4.3.3)

Which corresponds to the Euler’s homogeneous theorem.

4.3.2 Parameterisation invariant %-area of Kawaguchi geometry

In this section we will define the object k-curves, k-patchs, their parameterisations and
Kawaguchi area. Kawaguchi area is invariant with respect to the reparameterisation we
describe in the following, and the notion is naturally extended to k-dimensional immersed
submanifolds. Similarly as in the case of Finsler length and Finsler-Kawaguchi length,
the reparameterisation invariance of Kawaguchi area is due to the homogeneity of k-areal
Kawaguchi function.

Definition 4.11. C"-k-curves
Let M be a smooth manifold, and ¢ : P — M a C"-mapping, where P is an open
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rectangle of R¥. We denote the image of P by ; ¥ := o(P) C M, and call &, the
C"-k-curve on M.

Definition 4.12. Lift of C"-k-curves

Consider a k-multivector bundle (A*T'M, A*7);, M) where A*7); is the natural projec-
tion, and (V, ), 1 = (z*, y*#*), w, ji1, -, pix = 1, -, be the induced chart on A*T'M,
and (t,12, ., t*) the global chart of R¥. Let o : P — M be a C"-mapping where P is an
open rectangle of R*. Consider amap 6 : P — A*T M, such that its image is denoted by
3= o(P) C A*T'M, where AkTM(f]) = 3, and its coordinate expressions given by

0 0
S 434
t(axm/\ /\ax“k)a(t)’ @34

fort € P. The map ¢ and its image 3 is called the lift or the multi-tangent lift of o (resp.
).

8($U10 O-)
ot!

“8(1’“’%0')

olt) = otk

t

In coordinate charts, (4.3.4) is expressed as

(9(37[’“0 O')
ot!

(2o6)(t) = (2o 0)(t), (Y "o o) (1) = (4.3.5)

Definition 4.13. Regularity of o

The C"-map o is called regular, if its lift & is nowhere 0.

Definition 4.14. Parameterisation of an immersed curve

The C"-map o : P — Mis called an immersion, if its lift & is injective, and the image
) is called an immersed k-curve. The map o is called a parameterisation of immersed
k-curve C', and P is called a parameter space, when ¢ is an immersion, and preserves

orientation.

Definition 4.15. Parameterisation
Leto : P — M be a C"-map, and ¥ = o(P). The map o is called a parameterisation of

Y., and P is called a parameter space, when o is injective, and preserves orientation.

Definition 4.16. Lift of a parameterisation

We call 6 the lift of parameterisation o, when o is a parameterisation.

Given a k-curve ¥ on M, more than one map and open rectangle may exist, namely
for cases such as ¥ = o(P) = p(Q), where o, p are the maps, and P, () are the open
rectangles in R¥. We can classify the k-curves by considering the properties of these

maps.
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Definition 4.17. Regular k-curve
Let > be a C"-k-curve on M. X is called a regular k-curve on M, if there exists a regular
C" map o and an open rectangle P of R* such that o(P) = X..

Definition 4.18. Parameterisable immersed k-curve
Let X be a C"-k-curve on M. ¥ is called a parameterisable immersed k-curve on M, if
there exists an immersion o and an open rectangle P of R* such that o(P) = ¥..

Definition 4.19. Parameterisable curve
Let > be a C"-k-curve on M. ¥ is called a parameterisable k-curve on M, if there exists
an injective C"-map o and an open rectangle P of R* such that o(P) = X.

Occasionally, we implicitly refer to the pair (o, P) by the parameterisation o. In the
following discussion, we will only consider regular, parameterisable k-curves.

Now we will introduce the concept of a k-dimensional area of a k-curve by integra-
tion on the parameter space. For simplicity, we will restrict ourselves to curves that are

parameterisable, and consider its closed subset, which we define below.

Definition 4.20. k-patch

Let 3 be a parameterisable k-curve on M with some parameterisation o. A subset of 3
givenby X := o ([t}, t}] x [t7,13] x - x [tF, t§]) C X, where [t], t}] x [t £3] x .. x [tF, %] C
P is called the k-patch on M, o is called the parameterisation of the k-patch and the
closed rectangle [tf,t;] x [t7,t7] x - x [t},t}] is called the parameter space of the k-
patch.

The k-areal Kawaguchi function defines a geometrical area for a k-patch X on M.

Definition 4.21. Kawaguchi k-area
Let (M, K) be the n-dimensional k-areal Kawaguchi manifold, and ¥ the k-patch on M
such that ¥ = o ([t, t}] x [t7, 5] x - x [t}, th]). We assign to X the following integral

ty & tf
K2 = / dt! / dt*. - / dt*K (6(t)). (4.3.6)
t! t2 tk

We call this number /% (3) the Kawaguchi area or Kawaguchi k-area of 3.

Let (V,4), ¥ = (a#,y*#*), w, py, -+, i = 1, -, n be the induced chart on A*T M.
By chart expression, (4.3.6) is,

K5 = /t " /t e / WK (6 0) R 6(0)

k
t
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- ot otk

k3

:/j dt! /j dt2---/t§ dt* K <a;“(a(t)),a(x[m(a(t)))---a(xﬂk](a(t)))), 4.3.7)

where we used the definition of &, and definition of induced coordinates of A*T'M (4.3.5).

Let p : Q@ — X, @ C R be another parameterisation of ¥.. When there exists a dif-
feomorphism ¢ : () — P such that p = 0. ¢, this gives an equivalence relation o ~ p. As
in the case of 1-dimensional parameter space, in Kawaguchi geometry of k-dimensional
parameter space, the Kawaguchi area defined above has the important property of repa-

rameterisation invariance.

Lemma 4.22. Reparameterisation invariance of Kawaguchi k-area The Kawaguchi k-area
does not change by the reparameterisation p = 0. ¢, where ¢ : () — P is a diffeomor-

phism, and preserves the orientation.

Proof. Dividing the rectangle P := [t], t7] x [t7, 3] X . x [t} t%] if necessary into smaller

closed sub-rectangles, we can suppose without loss of generality that the set ¥ = o(P)
lies in the coordinate neighbourhood of a chart (U, ¢), ¢ = (2#). Then the lift of p

becomes,
N . a(.’lf'uloo—o¢) a(l'#koo_o(b) 0 0
p(S) N 881 S B aSk S axul /\. . .Aaxuk go ¢(S)
_ O@Meo)|  O(zM0) I(t"s ) ”_3(75‘“"091))‘ ( 0 An 0 >
otw 6(5) otk 6(5) gst |, sk | \ Oxm Ozt ) 6(5)
I(t™ . @) I(t™ s )| .
— €a1~~'ak 881 S- .. ask SU(¢<S))7

(4.3.8)

fors € Q, ay,-,a; = 1,2, .-, k, and since p is a regular parameterisation that preserves

orientation,
O(t™s ¢) I(t™o @)
Earear — 5 T ek > 0. (4.3.9)
The k-dimensional area of . is preserved by
1 2 k
K KR T ke (A
*[X] = ds ds”- - ds"K (p(s))
87} 812 Sivc
A(t%. @)

1 k
I A ok (" ¢)
= ll dS e /S'f dS K (8@1...ak 881 ask

i

o(0(5)

S S
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1

1 —1(gk o
:/¢ (sf).../d) (f)dsl/\---/\ds’fg ot"- )
1 —1(sk) e os!

1
S'L) 7
1 k
/tf /tf
1 k
ti ti

t t'?
_ / gl / A K (5(1)), (4.3.10)
t t

1 k
[ @

S

o) ;
dt' AN - NP K (6(1))

where s}, s}, 57, 5%, -, s}, s are the pre-image of the boundary points ¢}, t}, 7, 5, -, t}, t*
by ¢. For the third equality of (4.3.10), we have used the pulled back homogeneity con-

dition of K, and the definition of integration of k-form in accord to Section 2.2. U

We conclude that the homogeneity of K and parameterisation invariance of Kawaguchi

k-area is an equivalent property.

Remark 4.23. As similarly in the case of a curve, the “Kawaguchi area” does not have
the properties of a “standard” area, considered by Euclid or Riemannian geometry, since
we require only homogeneity condition of the Kawaguchi function. For instance, when
one changes the orientation of the k-curve, in general, it gives different values (not just
signatures). Nevertheless, in our following discussion of the calculus of variations, we can
still use this concept to obtain extremals and equations of motion. It is especially designed
to use for the applications for extensions of field theory, which unifies spacetime and
fields. Such situation appears commonly in modern theoretical physics, and Kawaguchi

area will be a good geometrical object to consider for constructing viable models.

4.3.3 Kawaguchi k-form

Given a n-dimensional k-areal Kawaguchi manifold (), K'), we can obtain an important
geometrical structure, which we will call a Kawaguchi k-form. Kawaguchi k-form is
constructed in accord with the homogeneity condition, and gives the Lagrangian of a
field theory when pulled back to the parameter space, namely the spacetime, by a certain

parameterisation.

Definition 4.24. Kawaguchi k-form (first order field theory)
Let (V 1), ¢ = (a*, y* %), w, piy, -, pi. = 1, -, be the induced chart on A*¥T'M. The

Kawaguchi k-form K is a k-form on A*T'M, which in local coordinates are expressed by

1 0K
k! Oy

dz" N - Ndxt®. (4.3.11)
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This expression corresponds to the homogeneity condition (4.3.3).

Proposition 4.25. The Kawaguchi form is invariant with respect to the coordinate trans-

formations.

Proof. Let (V, @Z_J) ) = (z*, "1 "*) be another chart on A*T'M with intersection V N
V # (). Then by the coordinate transformation

at — 7t =zH ("),

ozt Oxhk

Bl Ly i (e B RE ) — o . 43.19
Y et yt) = oy, (4.3.12)
we have
]. aK 1 8K aglllmyk ax“l 81’“”9
=7 HIA- - e = — e M1 o
a k! 8yu1--~uk dz A Ndz k! 8@V1---Vk 8y”1"'ﬂk TV OTVE dz" A - -NdxH*

1 oK o0z Ox" OxM  Oxt*
- Hay”l“"’k Azl ozl oz dve

1 0K
= Tl oy

dj.ul A- - ./\dj#k

dz' A - -Ndxh*. (4.3.13)

]

Proposition 4.26. Let K be the Kawaguchi k-form on A¥T'M, ¥ = o(P) the k-patch on
M, with P = [t], 1] x [t7, 7] x - x [t}, 1}] a closed rectangle in R. Then,

/IC =15(3). (4.3.14)
by
Proof. The simple calculation leads,

10K, e .
N e [ e et
d(ateo)|  O(z*s0) >

t

tl
- "
_/t / k'ay’“ Iz (‘” e R T
dareo)  Dakv.o) )
X T A A
/ /k k'aym o (@ (e (), y (6 (6) g (6(8) de A - Ade

x[ul o xﬂk} o
=L dt'-- /ﬁ dt’fK( (O(t))’a( 815(1 t) o (%(k (t))) _ )
| | (4.3.15)
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where we used the pull-back homogeneity condition

1 0K
H 6y#1'“ﬂk °

Gyttt G = Kob (4.3.16)

]

Remark 4.27. This lemma extends the notion of Kawaguchi area given by (4.3.6). Namely,
since the Kawaguchi form can be integrated over any k-dimensional submanifold of M,
the identity (4.3.14) suggests to extend the integration over k-patches to arbitrary k-
dimensional submanifold of M.

Remark 4.28. Now that we showed that Kawaguchi k-form gives the Kawaguchi k-
area (and in a more general situation of a submanifold), we redefine the pair (M, K)
as the n-dimensional k-areal Kawaguchi manifold instead of the pair (M, K). This is a
more geometrical definition of a Kawaguchi manifold, similar as in the case of Finsler

geometry.

4.4 Second order, k-dimensional parameter space

Here in this section, combining the previous two directions of generalisation, we will
consider the case of second order, k-dimensional parameter space. However, unlike the
previous discussions, we will consider only the case of M = R", and leave the global
construction for the future work. In this section, M = R" is assumed.

4.4.1 Basic definitions of Kawaguchi space (second order k-multivector
bundle)

We will first define the geometric structure on the total space of a second order k-multivector
2,0 . , 2,1 21

bundle ((A*T)2M, Ak7y7, M) with AR720 = Arryro ARy, ARy i= AR ryepy (AFTYP M

We will call this structure a second order k-areal Kawaguchi function. For visibility, the

multi-index notation (see Section 2.1.4) are used.

Definition 4.29. Kawaguchi space (Second order k-dimensional parameter space) Let
(M, K) be a pair of n-dimensional Cartesian space M = R" and a function K €
C>®((A*T)2M), k < n, which for the induced global chart p? = (z#, yH1 e hvevi

I Iav3--vg I Iz Iy, _ ) i k2 :
PR Vka ey 27172 k)’ oy o1y -y Py V25 05 Vg = 17"'7n’ IJ T lujlluj >, On (A T) M satis-
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fies the following second order homogeneity condition,

K (xu’ )\yulmﬂk’ ()\)22111/2--% + )\V2~-kaf1’ ()\)221112V3-~-Vk + /\V3-~-ka11y12’
. ()\)22;[1]2“']1@ + )\Oyhy12~ . .yfk)

_ B TLvs--v, I11svs---v I11o---1
—)\K(%”,y’“ lk’ZIQ b, plthaves e oAl k)’ (4.4.])

for A > 0, and A2~ 7k, \vs~ ¥k . \Vk )0 being arbitrary constants. We will call the func-
tion with such properties, a second order k-areal Kawaguchi function on M = R", and
the pair (M, K) a second order n-dimensional k-areal Kawaguchi space, or simply sec-

ond order Kawaguchi space, if the subject of discussion is clear.

As in the case of second order Finsler-Kawaguchi geometry, (A*T")2M is not a vector
space. Therefore, we have only second order homogeneity conditions in chart expres-

sions. This condition (4.4.1) implies the following conditions,

(

S . W
| (4.4.2)
%y“ =0,
\ %yhyl2 — = %yhyb- -yt = 0.

The last row is simply an identity, by the symmetric and anti-symmetric property of in-
dices. However, this expression is not coordinate invariant, and therefore, we cannot de-
duce the corresponding Kawaguchi k-form of the second order by just these expressions.

In this text we will only consider the case of M = R".

4.4.2 Parameterisation invariant k-area of second order
Kawaguchi geometry

In this section we will define the k-dimensional area, which we will call the Kawaguchi
area of second order. This area is invariant with respect to reparameterisation. Similarly
as in the previous cases, this is due to the homogeneity of second order k-areal Kawaguchi
function. We will begin by introducing the second order lift of parameterisation. In this
section, M = R" is assumed.
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ATAYTM e (AT M

k

Figure 4.3: lift of parameterisation for Kawaguchi area

Definition 4.30. Second order lift of parameterisation

Consider a second order k-multivector bundle ((A*T)2>M, AF73° M) defined in Sec-
tion 2.1.4, where M = R™ and the induced global chart ¢? = (z#,yr1re zhve-vi
phlavsve oI Dy Ly i, Vg e v = 1y, = ,u?---,ué’“, on (A*T)2M. Let
o be a parameterisation of ¥, namely > = ¢(P) defined in Section 4.3.2, where P is an
open k-rectangle. We call the map o2 : P — Y2 C (A*T)2M, such that its coordinate
expression is given by

d(xHs0) O(zt* s o) 0 0
2 f— DR DRI
()= ott |, otk |, \ Qxm A A(‘?x“k st
Ilo 5 /1/20 H o
L g ye0)| d(".0)| Oz o) 0 A 3} An 0
otm ot ot | \ oyt Oxrz Ot J 51,
110 ~ ]20 A w3 B
L g y"ea)| d(y2.0)| O(zH3.0) ‘ '8(33 o) 0 A 0 A 0 P 0
otm otaz otes otee | \ 0yt Oylz Owrs Oxtr 5(t)
0 Oy"e0)| Oy"e0)|  A(y"o5) ( 9 0 0 >
4+ gk A ARy, —— ,
otu ot |, otex | \ Oyl Oy’ Y™ /) s
oyli.6) 0 [0z.o) O o)
et U by =1.---
ota ota ot Otk y  @,01, 7@kab17 7bk ) 7k7

(4.4.3)

the second order lift of parameterisation o to (A*T)? M. The image Y2 = 02(P) is called
the second order lift of 3.

The above second order lift of parameterisation o is constructed similarly as in the
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case of 1-dimensional parameter space (Section 4.2.2), by considering the subset of iter-
ated tangent lift. Namely, we first construct the tangent lift & : P — A*T'AFT M of the pa-
rameterisation & : P — A*T'M, and then take its subset by o2 := {&|A* T}y A*7pr((t)) =
A*7r0,(6(t)),t € P}. The iterated tangent lift 5(¢) has the coordinate expressions,

s daneo)| o) ( 0, .20 )
ot |, ok |\ Qam 0t / 50)
+ a(gé;f) a%ﬁ:‘%) "8(gzzz&>t(ajfl/\afw/\'"Aa:f“k)am
e 2| P 20 PG (o ),
e W
et 8(?({)75;10) a%tc;a) t"'a(gtzg) t(ﬁjh/\ajb/\'“Aﬁyal’“)&(w’

(4.4.4)
and the condition for &(¢) to be in (AFT)2M will give us the coordinates of o%(t),

(ae0?)(t) = (a2 0)(t) = (2" 0)(2),

(y'ulm'uko 0'2)(t) _ a(aj‘[ulo a-) o a(INk]O é—) _ a(I[Mlo O') N .a(xuk]o O')
ot! ' Otk . ot! . otk .
= (o) (),
O(yh.6)| d(z2.0)| 02 0)

Tivg--vy, 2 — g0k ..

(Z o0 ot otaz Otak )
v 0 (OaHee) | Ac)) dotee)) | B
075“1 otk ) ot |, otax |’

( 11]2113 Vi O_ t

.. :U[”zoa x“llc}oa)
g1 ak
015“1 otk .

0 (aw?oa) a(xuiloa)> oz, )
t

a(:c”’“] o O')
Otk

X ot ot otk otas

0 [0z o) O(xme o) 0 [0z.0)  Aaml.o)
IilaeIy | 2 — f01-ag - - -
(2 N = G ( ot o) o\ o o)

(4.4.5)
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giving the formula (4.4.3).

The parameterisation o where its second order lift o2 is nowhere 0 is called a regular
parameterisation of order 2. Apparently, if o2 is nowhere 0, also the tangent lift & is
nowhere 0. In the discussions concerning second order k-dimensional parameter space
Kawaguchi geometry, we will only consider the regular parameterisation.

The r-th order parameterisatmn/ir : P — (A*T)" M can be obtained by iterative pro-
cess. Namely, construct the lift (o)~ : P — A*T((A*T )T_IM ) of the parameterisation
ot P — (AkT)T_lM , and then regarding the construction on the higher-order multi
tangent bundle (2.1.88), take its subset by

o = {(0)"" AkTgrq(t)TXk_%’]C[_Q((a)r_l(t)) = LT_IoT(AkT)qu((J)T_l(t)), t € P}.
(4.4.6)

Definition 4.31. r-th order parameterisation
Let o be a parameterisation of the k-curve ¥ on M. The map ¢ : P — (A*T)" M given
by (4.4.6) is called the r-th order lift of parameterisation o .

The second order k-areal Kawaguchi function defines a geometrical area for a k-patch
Y on M.

Definition 4.32. Kawaguchi k-area (second order)

Let (M, K), M = R" be the second order n-dimensional k-areal Kawaguchi space, and
¥ the k-patch on M such that ¥ = o(P), P = [t], t}] x [t7,17] x - x [t} t}]. We assign
to X the following integral

k

ty & tf
K = / dt! / dt?- - / dt* K (o%(t)), t€ER (4.4.7)
t! t2 th

We call this number [* () the (second order) Kawaguchi area or Kawaguchi k-area of
2.

Let 902 = (I,u’ yﬂ«l'“uk7 ZIIVQWVIC) ZIlIQVSMVk: T 211[2'“Ik)’ M7 :u17 ) :ukn V27 Ty Vk - 17 ) TL,
I; = ,uj-l-uuj-’“, be the induced global chart on (A*T)2M. Then by chart expression, this
18,
tf fi‘v’
(%) :/ - / dt* K (a#(0*(t)), y"* 1 (a?(1)), 2172 (0P (1)), - -+, 21T (0 (1))
t! th
(4.4.8)
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with the components given by (4.4.5).
Also for the second order, the Kawaguchi k-area defined above is reparameterisation

invariant.

Lemma 4.33. Reparameterisation invariance of Kawaguchi k-area
The second order Kawaguchi k-area does not change by the reparameterisation p = - ¢,

where ¢ : () — P is a diffeomorphism, and preserves the orientation.

Proof. By (4.4.3), the second order lift of p = 0 ¢ is,

Ps) = I(atoo09)|  O(at*s009) o .0
Os! Osk .\ Oz Ot ) o=

o 00 0)| B(a2e0.0)|  Aatreoeg)| (D D 0
0s™ 0592 5% N\ Oyt Owrz Oxtr

S

s

+ e
oo ¢(s)

—_

o Yo a0 D) | Dy 00 0)
0sat 0592

+e€

a(xu3oo'o(b) ...a(ajukoo'ogb)
053 05

X 0 A 0 A 0 /\'-~/\i
oyl oylz Oxws ozt ) —

o d(s)

Il Ik
oo O 000)|  Oyeoid)| (0 0 D |
D5 oyl Oyl W ) s

+--te

Os™
(4.4.9)
with ay, -, ag, by, -, by = 1, -, k. By the chain rule, we have relations such as
8(36’“0 Oo ¢> . 8(1500 ¢> 8(1’“10 U)
Osn - 9sm ote ¢(_)’
Oyleoeg) __0(t0) 0, | . 0 I s
T T RO (yYo0) + Eyo T | (yi.0), (4.4.10)
where we put
b b, 1 k|
T ey Ot d)  O(t*9) _ 4. 0(to9) O(t"0) @4.11)

Osl Osk Os™ 05k

The second relation of (4.4.10) follows from:

Osl Osk

Oyliace9) 0 (0M.oe)  d(ato.p)
Js™  Jsn
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¢(')>

_0e9) | (™) Ot ) O <a<x%o> a(x“ﬂm)

(o)
o

0 (o) O(t.g) Ozl o)
© Osm os! Osk oth

Ost ask 0set  Jte atbl T atbk
N 0 8(tb10¢)ma(tbko¢) a(x[/ﬂiog) H(‘?(x“i]oa)
dsn \  Os! ds* ot | ot
CO(t%e) D, B L
=T W0+ (50T ) Wheo). (4.4.12)

Considering each components of p?, and using the above relation, we can find the relations

between the two parameterisations p, o, in its coordinate representation:

[ (2t p%)(s) = (20 0%)((s)) = (a#07)(8(s)),
(5 o)) = T o) (6(),
(10 ko ) (5) = (TR (2100 100 02) (6(s)) + B> (5" %) (6(5))
( 2

21112,”.‘%0,0 )(S) _ (7)2(21112/@ uk002)(¢(8)) + ﬁﬂ3-4.uk(y1100_2) . (yboaz)((b(s)),

[ (0 ) (s) = (TP (1 Tho 0)(6(s)) + B2(y"0 0) - (5720 0%) -+ (470 0®) (B()),

(4.4.13)
where we set
T (afal T) a(g:;@_.,a(;j:f) a(ag;:w _'_a<:g;:a> 7
Q) . () .
P T——— (afal 7-) (af@ 7-) 3(92’; o) ¢(.)...a(fg‘;'::0) ¢(.)8%8;¢),..8%‘;‘;¢)7

0 0
0. carvap [ _ 7 ..
B i=c¢ <83‘11 / > (85% ] > ) 4.4.14)

Below we will show some intermediate calculations. For example, the second formula of
(4.4.13) is obtained by

o(zMooep)  O(xH*le oo p) Ot g)  O(t%e ) Ozl o)
( dst  Osk >(8) dst  Osk ter

a(l’“k} o U)
o(s) otex

é(s)
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=T (y" "o0)(o(s)). (4.4.15)

The third formula uses (4.4.10), namely

al---ag 8(y1j0@) a(xu2°0-°¢) a(xlukoo-o ¢) _ 2( djpa- g 2 w2k (o1 2
c 0s™ s Osm = (T)(= 00%) + 6 (yoa”),

(4.4.16)

The above follows from

ai--ag 8(:(/13'0 0/—0\¢) @(xuzo 0o ¢) L a(x'uko Oo ¢)
0sm 0522 0sak

_ _ai--ag a(t61°¢) d I; ~ 0 I =

3(15020(?) 8((1;“200) a(tcko¢) 3(.%“’“00)
05 otz 0s% Otk

3

#(-) #()
o  D0) 06) D17 0) D) Do) Do)
ot dsm 052 0s% ot $0) Otk ()
a N a(tCQOgb) 8(15”%@25) a(x“200'> a(l‘“koa)
ai--ag I, - R Sl
e (85“1 T) X TS T A e
2058 0| Ofatheo)
S P PR
aray | O O(t?2.¢)  O(t%. ) d(xH?o0) O(xt*s o) L -
e (88“1 T) ds g o |, o |,
= (T)*(z1#2 10 0?)
0 a(tCQO ¢) 8(tcko¢) 3(1’“20 O') a(m”ko U) I. A
ai--ag o . o
e (83“1 T) D5 T A T
4.4.17)

Since we assumed p is a regular parameterisation that preserves orientation, 7 > 0, and
we see that (4.4.13) are in the form of the homogeneity conditions (4.4.1), the second

order k-dimensional area of ¥ is preserved by
sy s
ZK(Z):/ ds'- - - / ds"K (p*(s))
st sk
81 Sk

:/lf dst- - / f ds* K ((x#o p2)<8), (ylo pQ)(S), (211“2"‘”’¢op2)(8), . (ZIIIQ,..[kOpz)(S))

k
i
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1 sk:

:/ il / kf ds* K (a0 0%)(6(s)), T (4" o 0?) (e(s)),

(T)? (200 0%) (0(s)) + B2 1 (y "o 0%) (0(s)), -+,
(T2 (" T 0®) (0(s)) + B(y" o 0®) - (y"2e0®) - -+ (y"o0?)((s)))

1

/ 7 st / ds* K (2*(a(4(s))), Ty' (0 (4(s))), ((T)2&"#2repl gty 1) (o2 (¢(s))),
o (T2l 4 By Ty yli) (2(g(s))))
“1(th) 1tk
:/ e / ds*Ads*A- - -NdS*TK (02(¢(3)))
¢ 1

1) “1(eh)

tl
:/f.../ dt' AdE*A- - NP K (07 (1))
t t
th th
:/ g / A K (02(t)), (4.4.18)
t! tr

k:

where s}, s}, 57, 5%, -, s}, s are the pre-image of the boundary points ¢}, t}, 7, t5, -, 7, t%

by ¢. We have used the homogeneity condition of K, and the definition of integration of

k-form in accord to Section 2.2. ]

We can conclude that in the second order case, homogeneity of K and parameter-
isation invariance of Kawaguchi k-area is an equivalent property, provided that we are
considering the case of M = R".

4.4.3 Second order Kawaguchi k-form

Now we will turn to defining a second order Kawaguchi k-form, which we construct to
have the same property as the previous cases, namely, it should be constructed by referring
to the conditions given by (4.4.2); and should be equivalent to giving a second order k-
dimensional area, when its pull back is integrated over the parameter space. However,
since the conditions (4.4.2) depend on coordinates, from these alone we cannot construct a
global form for general manifolds. For this reason we also restrict our model for M/ = R"
case, and leave the general case for future research. Nevertheless, the obtained form
could be used for the consideration of second order field theories with the restriction of
M =R"

Definition 4.34. Second order Kawaguchi k-form

2 Tivo--s I Izivs- I I
Letgp - (l‘uaym Mka’leQ Vk?'ZlQVd Vk7'“ re ) Moy o1y -5 iy V25 -5 Ve

Il
\t—‘
E
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I, = p?---y,;’“, be the induced global chart on (AkT)QM , where M = R". The second
order Kawaguchi k-form K is a k-form on (AkT)2M , which in coordinates are expressed

by

1 0K 2 oK

— U1 Il VoV
B k' ayl.l»l“‘#k dx + (k — 1)' aZIle-ul/k dy /\dl‘

2 8[( T I V3.V, 2 aK I I
Tk ) gent dy  Ady P A" et e dy A Ay

(4.4.19)

‘We used the abbreviation such as
dzht e = dg A Adat dyT Ada? T = dy AdaP2 A - NdaE

This expression (4.4.19) corresponds to the first homogeneity condition in (4.4.2).
As we already mentioned, in general the above form is not invariant with respect to
the coordinate transformations given by (2.1.4).

Proposition 4.35. Let IC be the second order Kawaguchi k-form on (AkT)QM .Y =0o(P)
the k-patch on M, with P = [t}, t}] x [t7,£5] x - x [t} #}] a closed rectangle in R¥. Then,

/ K=15(%). (4.4.20)
n2

Proof. The simple calculation leads,

2 0K
pLp n Vow
/22 /2(P k" 3y“1 B /02<P) (k — 1)1 9zlwvev dy™ Ndz™>

0K
d Il/\d IZ/\d v3---Vg

+"'—|—/02(P Emdy A -Ady*

tf 1
/ / k:'@ T oo d(z" o 0*)A- - -Ad(z"0 0?)
k Yy
0K
+ | | I1Izvs--v
UQ(P) 2(]{7—2)82’12 3Pk

2 0K 2
= a2 d(u e oA - Ad(yT e o2
ot [ gt A e Adiyeo?)

oo d(y"o o?)Ad(y2o o?)Ad(2"* %0 0?)

ti tk
:/ o [T () g (o)) e na
t

1] -+
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th th oK ) o 1 )
+/t} /t’“ 2 T (07 () 2 (6 (0)dt A - Nt
K
’ +/ 2% (02(t)) 22T (0 (8)) dt A - - At
a2(P) Ozlilz-1Ik
t} t/;
t th
) ZK(Z) 4.4.21)

where we used the pull-back homogeneity condition

aK 2 I 2 2 aK 2 Lvy--v, 2
@00’ “yltoo +(k5—1)!azhl’2'“l’koa e ve g
2 aK 2 I11hv3---vg 2 2 aK 2 I11z---1 2
+2!(k—2)!8211[2’/3""/k00- A e +.”+Eazlll2'“[koo’ 2T e
= Koo?2. (4.4.22)
L]

Remark 4.36. Similarly as in the case of Finsler manifold and second order Finsler-
Kawaguchi manifold, we can redefine the pair (M, ) as the second order n-dimensional
k-areal Kawaguchi manifold, instead of the pair (M, K'), where M = R".






Chapter 5

Lagrangian formulation of Finsler and
Kawaguchi geometry

In the preceding chapters, we have prepared the foundations for considering the parame-
terisation invariant theory of calculus of variation. Here in this chapter, we will interpret
the Finsler length as the Lagrangian, and derive the Euler-Lagrange equations and con-
servation laws by considering the calculus of variation. We interpret the Finsler manifold
as a dynamical system, and in this context we will also call the Euler-Lagrange equations
the equations of motion. We will begin with the standard first order mechanics, which will
be based on Finsler geometry (Chapter 3), and then extend it to second order mechanics,
based on Finsler-Kawaguchi geometry (Chapter 4, Section 4.2), and finally to the field
theory (first and second order), based on Kawaguchi geometry (Chapter 4, Section 4.3,
4.4). In all cases, the dynamics of the object (particle, field) is described as a motion of a

k-patch (arc segment) X of n-dimensional manifold M.

5.1 First order mechanics

Here we introduce the theory of first order mechanics, in terms of Finsler geometry. By
the term first order, we mean that the total space we are considering is the tangent bundle,
and by mechanics, we mean that we are considering the arc segment on M.

The basic structure we consider in this section is introduced in Chapter 2 and 3,
namely the n-dimensional Finsler manifold (M, F), the tangent bundle (7'M, 7y, M),
and a 1-dimensional curve (arc segment) C' on M, parameterised by . The curve (arc
segment) describes the trajectory of the object on M.

In our setting, the Hilbert 1-form is the Lagrangian, and the action will be defined

91



92 5. Lagrangian formulation of Finsler and Kawaguchi geometry

by considering the integration over the lift of the parameterisable curve (arc segment)
C. The Euler-Lagrange equations are derived by taking the variation of the action with
respect to the flow on M that deforms the arc segment C, and fixed on the boundary. We
can show that the action and consequently the Euler-Lagrange equations are independent

with respect to the parameterisation belonging to the same equivalent class.

5.1.1 Action

Suppose we have a dynamical system (differential equations expressing motions) where
the trajectory of the point particle (or any object which dynamics could be considered
as a point) is expressed by an arc segment C' of a parameterisable curve, such that C' =
o(I) C M, where [ is a closed interval I = [t;, 1] C R.

When we can express this system by Finsler geometry, namely the pair (M, F) where
F is a Finsler-Hilbert 1-form, we refer to this dynamical system as first order mechanics,
and conversely call the pair (M, F) a dynamical system.

The action of first order mechanics is defined as follows.

Definition 5.1. Action of first order mechanics
Let (M, F) be a n-dimensional Finsler manifold, (U, ¢), ¢ = («*) be a chart on M, and
(V,), V = 1y 1 (U), ¢ = (2", y*) the induced chart on T'M. The local coordinate

oF
expression of the Finsler-Hilbert form F € Q' (T M) is given by F = Wda:“, where F’
Y

is the Finsler function. Let C' be an arc segment on M, o its parameterisation, o (/) =
C C M with I = [t;,t] C R, and & the tangent lift of o, defined in Chapter 3 (Definition
). We call the functional S*(C') defined by

OF
sty =1 :/]-": ——dz", (5.1.1)
©) ©) é 5(I) oy+

the action of first order mechanics associated with F.

As we have seen in Section 3.3, Lemma 3.19,
Finsler length is invariant with respect to the reparameterisation, therefore the action

is also invariant.

5.1.2 [Extremal and equations of motion

Having defined the action, we are able to derive the equations of motion by considering the

extremal of the action. To make the discussion simple, we only consider global flows in
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......

Ty /,’ Ty o

Figure 5.1: First order mechanics

this thesis. Nevertheless, with some details added, the formulation can be set up similarly
with local flows.

Consider a C*°-flow, a : R x M — M, and its associated 1-parameter group of
transformations {c;}scg - The 1-parameter group oy : M — M induces a tangent 1-
parameter group T'as : T'M — TM on T'M. This will also deform the curve (arc
segment) C' to C" = «a,(C'), and since this is a smooth deformation, it again becomes a
parameterisable curve. By the reparameterisation independence, we can always choose
the parameterisation of this deformed C’ by anew o’ : I — M, o'(I) = C’, so that it has
the same parameter space as C'. The variation of the action will be expressed by the small

deformations made to the action by «.

Definition 5.2. Variation of the action g
Qg

ds

Let £ be a vector field on M which generates the 1-parameter group o, i.e., £ =

s=0
We call the functional

687 (C) == lim - {Sf as(0)) — S7(C)}

s—0 8

— liml{/ F - / } (5.1.2)
s—0 8§ asoo(l

the variation of the action S (C) with respect to the flow «, associated to F .

It is easy to see that the lift of this modified parameterisation ¢’ is given by, ¢’ =

—_— A A . — . . .
Qg0 0 = Tgo 6 = Tvgo Goid; ", which we show in Figure 5.1.
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We will get,
F 1 .1 ¥
057 (C) = lim - F - F o =lim- (Tas)" F — F
5708 \JTas06(1) &(I) 5208 L Js(n) &(I)
_ / LX]-“:/LX]-“, (5.1.3)
&(I) ¢
where X is a vector field on 7'M that generates the tangent 1-parameter group T'a, i.€.,
d(T o ) . o .
X = % ,and Ly is a Lie derivative with respect to X.
s s=0
Let us calculate the vector field X in local coordinates. As usual, let (U, ), ¢ = (x*)
be a chart on M, and the induced chart of TM; (V,v), V = 7, Y(U), ¥ = (z*,y").
0
Let £ be be a generator of the 1-parameter group o, and its local expression § = £/ —— pr

where £# € C°°(M). The tangent map Ta; at p € M sends the vector v € T,M to
Tas(p)M by

Do ago 1)

Tyas(v) = B

g (%) , (5.1.4)
»(p) T8/ as(p)

and since (T'a, a5) is a bundle morphism and from the definition of induced coordinates

of a tangent bundle, we have for its coordinate expressions,

xto Thos(v) = ato aso Tpr (V),
I(xto agopt)

Yo Thas(v) = v

y” (v). (5.1.5)

o(Tar(v))

By these observations, the vector field X at a point ¢ € T'M has a local expression,

o d(atsTay) 0 d(y“ Tozs) 0
Xq B ds s=0 (%) * ay“
d(x“a ) ((9 ( :c“aso<p ) (8)
= ogo T e —
ds -0 Ozt ds et (9) /) s—g Ooy* q
:(é-uoTM ( ) ( oTM Yy ) q (8y/‘> s (516)
therefore,

o&H L 0
X =¢&loTy (8:6”) + 8xV°TM'y (8_y“> . (5.1.7)
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We will call X, the induced vector field by &, on T'M.

The Lie derivative Ly in coordinate expression is

OF OF OF
InF =Ly [ Zaer) = X (25 dor + 25 ar var
xF = Iy (&y e > (&yﬁ’) et et

02 F oer 2 F OF
— Jdery CaV P2 P
{é ™ <3x“3y”) oMY <3y“3y”>}d +3y 4 (&%)

2 F OF oer 3 OF
= & p_ e — e P — LRy )
o {3$“3ypdx I (334“)} "M Y (&?ﬂayp) et d (&?ﬂ’ TM)

(5.1.8)

The result of (5.1.8) is called the infinitesimal first variation formula for the Hilbert form
F.

The variation of action becomes

6:57(0) = / LxF = / *LxF

OF OF
- (f’“‘”M o= (5)} =1 (G- -w))
F F
/‘6"107']\4{81.#‘a pdl’ d(g—y“)}—i—d(% gpoTM) (519)

which is called the integral first variation formula. We have used the homogeneity condi-

tion:

2
(85M§y9 . yp) o0 = 0. (5.1.10)

(5.3.11) is obtained by taking the derivative of (3.2.3) with respect to y*, and then taking
the pull back.
Now we can proceed to find the equations of motion to this system. We will first give

the definition of an extremal.
Definition 5.3. Extremal of an action
1. We say that an arc segment C' is stable with respect to a flow «, when it satisfies
6:87(C) =0, (5.1.11)

where £ is the generator of a.
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2. We say that an arc segment C' is an extremal of the action S*, when it satisfies
(5.1.11) for any « such that its associated 1-parameter group «; satisfies as(0C) =
0C, Vs € R, where OC' is the boundary of C.

With this concept of an extremal, we can obtain the following theorem.

Theorem 5.4. Extremals
Let C be an arc segment. The following statements are equivalent.

1. C is an extremal.

2. The equation

ELY o5 =0,
O*°F OF
F o _ _ I
gLk, = 8x“8ypdxp d(ayu), (5.1.12)

holds for arbitrary parameterisation o.

Proof. Suppose C'is an extremal. Then, by definition, for all oy : M — M, such that
does not change the boundary of C, we have J:5(C') = 0. On the other hand, the last
term in (5.1.9) becomes 0, since it is the boundary term. Therefore, we have,

2 F OF
/é (5“"”4 {axuayﬂdxp - (8_y“) }) - oL

Since this relation must be true for all £, which is the generator of o, we have

0?F oF
dz? —d| =— ) ) o0 =0, (5.1.14)

oxroyP oy
for any parameterisation o. To prove the converse, it is sufficient to take the similar steps
backwards. ]

Definition 5.5. Symmetry of the dynamical system
Let u be a vector field over M, and Y an induced vector field by w over T'M. We say that

F is invariant with respect to u, if
Ly F =0, (5.1.15)

and u called a symmetry of the dynamical system (M, F). We also say that u generates

the invariant transformations on the Finsler manifold (M, F).
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Now we will have the following important relation between the symmetry and a con-

served quantity.

Theorem 5.6. Noether
Suppose we are given a symmetry of (M, F). Then there exists a function f on 7'M,

which along the extremal ~y of S satisfies,
/df =0, (5.1.16)
¥

for any parameterisation o which parameterise 7.

o : : 0
Proof. Let the symmetry be u, with its local coordinate expression u = u“m, and the
x
induced vector field Y. Then from (5.1.9), we have

OZ/LY‘/T
g
P OF OF
_ " p_ g g ur
/(“ TM{ax#aypd”““ d(@yﬂ)}”(ayﬂ v TM))
OF
:Ad(@.upoTM)7 (5.1.17)

The second equality comes from the fact we consider along the extremal . Therefore we

have a function on T' M,

fzg—;;'upoTM, (5118)

such that satisfies the condition. ]

We call the relation (5.1.16), the conservation law.
We can express the conservation law (5.1.16) by taking arbitrary parameterisation for
this ~. For instance, by o : [t;,t7] — M

oF oF oF
g _— po = — 'Do 2 t _ po % t . .1.1
0 . oy uPo Ty oy uPorpr(a(t;)) Oy woTp(0(ty)) (5.1.19)

Definition 5.7. Noether current

The quantity f is called the Noether current associated with .

By the coordinate transformation

ot — Tt =T (a"),
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ok
Y=gt = axyy, (5.1.20)
X

the differential 1-form L% p 1n (5.1.12) transforms as

0*F oOF or? O%F oOF
i — | = g . 1.21
oot (ay) (ax) (axvayﬂ et —d (ay)) 612D

This observation leads us to define a new coordinate invariant form.

Lemma 5.8. Euler-Lagrange form

There exist a global two form on 7'M, which in local coordinates are expressed by

O*F oF
F ._ L F L
EL" =da"'NELY |, = (0$“8ypd / +d(8y )) Adx?. (5.1.22)

From the previous coordinate transformations, this form is obviously coordinate inde-

pendent.

There is a direct relation between the exterior derivative of F and £L,

dF = ELT — —da" Ndx”. (5.1.23)

It can be also checked easily that this is also a coordinate invariant relation.

Remark 5.9. In Chapter 3, Remark 3.25, we showed that when given a Hilbert form,
we can obtain the Cartan form by taking an inclusion map from J'Y to TY. Here we
will show that given a “conventional” Lagrange function on .JJ'Y’, we can also construct
its homogeneous counterpart. However, unlike in the case of the former, in general, this
cannot be done globally. ( It is possible only when ¥ = R x (). ) As in the Remark
3.25, let (U, %), ¥ = (t,¢"), i = 1,..,n be the adapted chart on Y, and the induced
chart on R be (7(U),t). We denote the induced chart on J'Y by ((710)~1(U), ), »! =
(t,q', ") ((720)~(U),¥"), %" = (t,¢',¢"). Take the induced chart on TY as (V, "),
V = (1v) Y (U), ' = (2°,27,4°, y"), i = 1, -, n, such that y° # 0. It is always possible
to choose such coordinates for a single chart. (In order to avoid confusion we use different
symbols, but clearly 2° = t.7y,2° = ¢'-7y.) Now consider a map p : V «— J'Y,
p(V) = (719 ~Y(U), which in coordinates are defined by

top:xo,qu:I,qop:E. (5.1.24)
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Let F' be a function on V/, defined by,
Fly’ = p*L. (5.1.25)

In coordinates,
F(z#,y*) = L(top,q'o p, 4o p)y° = L(2°, 2", =)y, (5.1.26)

for p = 0,--,n,7 =1,..,n. Then on V, F' satisfies the homogeneity function. We now

have F = mdx“ on V. In this way, for a local coordinate chart, (or for the case of
Y

Y = R x @, also globally) we can construct a local Hilbert 1-form from a Lagrangian,

which also can be used as an reparameterisation invariant action provided that the arc

segment where the integration is carried out is covered by this single chart.

Remark 5.10. Locally (on a single chart), we can also construct a different Finsler func-
tion and local Hilbert form from £ by choosing an appropriate map for p. Though these
constructions are local, if the arc segment where the integration is carried out is covered

by this single chart, we can take it as a reparameterisation invariant action.

Remark 5.11. We can also check that the equation of motion given by (5.1.12) reduces
to the conventional form of Euler-Lagrange equation by considering the same inclusion

map ¢ given in Chapter 3, Remark 3.25, which in coordinate expression were given by
o1 =t 2lor=¢", Yor =1, yor = ¢, (5.1.27)

1 =1, .-,n. We will use Greek indices such as p, p = 0,1, 2, .., n, and Latin indices such
as i, j, k =1,2,-, n. Rewrite the 1-form E£F,

O*F oF O*F O*F , oF
F = dz’ — d = dz® dz' —d | —
EL oxHoyP v (ay“) Oxry° v OxHy’ . <0y“>

1 (OF PF 0’F , oF
= — — 7 ) da” dx' —d | =— 1.2
y° (83@“ Gmﬂayﬂy ) v Dzrdyt ’ (8y“> ’ (5.1.28)

the components of 4 = 0, and = 1,2, .., n are

O°F OF
F= F—d| —
T <3y0>

— == _ J 0 i_ = _ 2 g
yo( 0 0 yjy)dyc + . y.d:c d(F .y)
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1 OF .
i (y°)? (F oy )dy ’

2
ELt, = a.F dx” — d (aF.)

oxtdyr oy
1 (OF 0*F 0*F OF

= — - — —————7 ) da” ——dx' — ). 1.
y° (&B’ axlayfy ) v 0zt oy v —d (8@/1) (5.1.29)

The pull back to J'Y becomes

'EL 0—<E @—axoayjy] dz —i—axoay]dxj—y—d F——y ) )ot

1 OF \
i ((y°)2 (F_ g ]) W ) !
oF 0*F O*F . OF .
-~ A B ] (¢} -~ < .O J — F - . J (0]
(8:)&0 9090y Y ) vt Gngye e —d (( oy ” ) L)

0*L L . oL .
J __ 8
~ 0t )dt+ q,jdq d(ﬁ .-q),

1 (OF O’F . O*F - oF
J 0 J_ o
(yo <<9:C2 31“33/9 )dw " Ox'dy’ o d(W)) '
. O*F . oF
j (o) N O J - nie)
( o 8x18 -y ) Ldt—l-ax@y] Ldq d( ; L))

0
0*L . 0L oL
3 — : . .
((aq g0 )d”azaqﬂ da d(aq'z > 130

Now suppose we have amap 7! : R — J'Y such that satisfies

cELY,

o' = 6. (5.1.31)
Then,
(SEFMO L) o")/l == gﬁFuo (Lo "}/1) = gﬁFuo (3', (5132)

therefore, the equation of motion EL£" -5 = 0 where ££, is a form on T M, can be
interpreted as a equation of motion (5 Lo L) oyt = 0, where EL" o 1 is a form on J'Y.

In the special case where Y = R x (), where () is the n-dimensional configuration
space, and J'Y is the prolongation of the bundle (Y, pri, R), we can consider a section y
of (Y, pri,R), and take its prolongation J!~ as v!. In such case, the pull back equation
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(ELF 1o1) «7* = 0 becomes,

9L 20 2r N
F 1 . L. 1
EL qotoJ v = ((_t : qjq]) dt + v qjdqj d<£ —_.q3>)oJ7

oc oL 2L d or

A I . 1 7). 1 - hdad o 1
((8t 8t8qjq> ”*(at@qa‘q) il dt((’C 8cﬁq> M))dt
ac\
<§)oj’ydt

0Ly 0Ly DL PL oy PL oy DL
875 a0t T o ? " a0p? " agoat T T agragl T~ agt 7

oL 82£ » 0%L A 5L A
- — | == — Jo_ kg ki) o gt d
(aqﬂq ataq'fq oo T T agrag T ) Sod

(oL ., d[oL S -
= (—8qjojfy 0 (_83 J )) (C_ZOJ ’y) dt =0,
oL L ’PL . oL
F‘o o 1 == — 7 J — !
et = (55 - o) 4+ a0~ (57) ) 7
oL L PL oL
= — 3 o 1 N N 3 1 - o} !
<(6qi aqiaq'jq) J”(@gl@g‘ﬂq) - (8% ! ))dt
= 04 o Jly — aﬁon dt =0, (5.1.33)
oq g

therefore, giving us the well-known form of Euler-Lagrange equations. By fixing the

bundle (Y, pri,R), the parameterisation independent equation of motion reduces to the

standard notion, and the number of equations degenerates to n.

Example 5.12. Every Newtonian mechanics in the form £ = K —V with K the kinemat-
ical energy and V' a potential term could be expressed in the setting of Finsler manifold.

Let (M, F) be a Finsler manifold with dim M = n + 1, and the induced chart
(U,9),¢ = (z",y*) on TM. The conventional Lagrangian function of the particle mov-
ing in n dimension space with mass m is given on the space J'M, with M = R x R",
Let the induced chart on J'M be (U, ), ¢ = (¢, ¢, "), then the local expression of the
Lagrangian function is,

L= (@) + @)+ + @) = Vo0, (5.1.34)

— V(... ") (5.1.35)
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It is apparent that /' satisfies the homogeneity condition. In the case of M = R x R", this
construction could be done globally, and we can create a Hilbert form by F = g—zl;dxi,
which we take as our Lagrangian. The parameterisation independent equation of motion
is obtained by the equation (5 cr #) -0 = 0, for any parameterisation o, and the explicit

coordinate expression can be calculated as,

02F OF
P .
EL 000 = (8J}anpdxp —d <_8y0)> o0
oV )+ + () y* .
S e dy’ +m——dy* | o6 =
(aﬂf’“ H N v A 7D S A
02 F OF
F'o 5= " d P —d B o O
Lo (f%@y” ! <3yl)) 7
= (gt i ) o =0 139

for: = 1, -, n. We have used the relation such as,

oF _ L @)+t OF_ 4 OF oV
) (y0)? ooyt YY) Ozioy® Ozt
PF W+ + ) OF y PF 1
=m 3 , - =-m 5 = m—0",
dy0y° (3°) Y00y (¥°)2"  Oy'oy’ Y
(5.1.37)

during the calculation. There are n 4+ 1 equations; however, once a parameterisation
is chosen and the equations are pulled back, it reduces to n equations by homogeneity
condition. To see this, let us choose some convenient parameterisation o : [ — M, such
thato : t — (¢t = 2% 2,...,2™). 2° corresponds to the time variable, and now the 3°
coordinate of the tangent lift & becomes 1. Consider the pull back of these equations, and

we get

(C/‘,CF()O&: (avoé' +m’d(y00)) (yzoé')dt: 0,

oxt dt
d(vis 6
ELF 06 = — (gv,o(} +m (ydtg)> dt = 0, (5.1.38)
xl

which is the usual Newton’s equation of motion. Apparently, the first equation can be
derived from the second by multiplying by ¢ and summing up, therefore dependent, and

we only have n equations.
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The choice of ¢ is arbitrary, and it is not at all necessary to choose the one in Example
5.12. This freedom of choosing the parameterisation could be useful when one tries to
find a good variable for solving equations.

5.2 Second order mechanics

Here we will present the Lagrange formulations for the higher order case of mechanics,
in terms of Finsler-Kawaguchi geometry introduced in Section 4.2. We discuss especially
for the second order. Higher order should follow in the similar extension. By the term
second order, we mean that the total space we are considering is the second order tangent
bundle, and by mechanics, we mean that we are considering the arc segment on M.

The basic structure we consider in this section is introduced in Chapter 2 and 4 (Sec-
tion 4.2), namely the n-dimensional second order Finsler-Kawaguchi manifold (M, K),
the second order tangent bundle (T2 M, 7']%4’0, M), and a 1-dimensional curve (arc segment)
C on M, which is parameterised by o. The curve (arc segment) describes the trajectory
of the object on M.

We take the second-order Finsler-Kawaguchi form K as the Lagrangian, and the action
will be defined by considering the integration over the second order lift of the parameter-
isable curve (arc segment) C'. The Euler-Lagrange equations are derived by taking the
variation of the action with respect to the flow on M that deforms the arc segment C', and
fixed on the boundary. Similarly as in the previous first order case, we can show that the
action and consequently the Euler-Lagrange equations are independent with respect to the

parameterisation belonging to the same equivalent class.

5.2.1 Action

Suppose we have a dynamical system (differential equations expressing motions) where
the trajectory of the point particle (or any object which dynamics could be considered
as a point) is expressed by an arc segment C' of a parameterisable curve, such that C' =
o(I) C M, where I is a closed interval [ = [t;,t;] C R.

When we can express this system by second order Finsler-Kawaguchi geometry, namely
the pair (M, K) where K is a second order Finsler-Kawaguchi 1-form, we refer to this dy-
namical system as second order mechanics.

The action of second order mechanics is defined as follows.

Definition 5.13. Action of second order mechanics
Let (M, K) be a n-dimensional second order Finsler-Kawaguchi manifold, (U, ¢), ¢ =
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(z*) be acharton M, and (V2 4?), V2 = (Tﬁo)_l(U), Y = (x#, y*, z*) the induced chart
on T?M. The local coordinate expression of the Finsler-Hilbert form K € Q! (T2M) is
given by

0K 0K
= o dat 25— dy" 2.1
= g+ 2y (5.2.1)

where K is the Finsler-Kawaguchi function. Let C' be an arc segment on M, and o its
parameterisation, o(I) = C' C M with I = [t;,t;] C R. We call the functional S*(C)
defined by

OK
sk = 15(0) /C / 3y K e + 2oy, (5.2.2)

the action of second order mechanics associated with IC.

As we have seen in Section 4.2.2, Lemma 4.5, Finsler-Kawaguchi length is invariant

with respect to the reparameterisation, therefore the action is also invariant.

5.2.2 Total derivative

Here we will introduce an operator called the total derivative that is an identity map on
the total space of the bundle we consider. It becomes the derivative with respect to the
parameter on the parameter space, namely dit in this section, but later we will generalise
this concept to the case of k-dimensional parameter space.

Consider the bundle morphism (7'f, f) from (TE, g, E) to (T M, 7y, M), intro-
duced in (Example 2.12). For the case 2 = T'M, there is an identity map called the

total derivative.

Proposition 5.14. Consider the bundle morphism (7'7ys, 7ps) from (TT M, 7y, TM) to
(T'M, ar, M). Let 7y be a section of the sub-bundle 77y/|p2,, of 7/, and define a map
D :TM — TMby D = T1pov. Then D is an identity map which its local coordinate

expression is given by

0
D=y" | — . 2.
’ <axﬂ)7M(') 62

Proof. By the definition of T2M, we have Ty (v(p)) = 7rar(v(p)) for Vp € T M. Then

since Traso Y = Tra |20y = idra, We have Ty = idrpyy. This is an identity map of
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™ oy ™
D
T Trar Y
\ Tar
M ™
o G
R

Figure 5.2: Total derivative

oxH
0
D=qy" | — . O]
Y (8:1:/1)7]”(.)

Definition 5.15. Total derivative
We call the map D, the fotal derivative of first order.

0
T'M, and the coordinate expression becomes, D(p) = p = y*(p) (—) , therefore,
71 (P)

Remark 5.16. The pull-back bundle of (T'M, 7pr, M) by 7oy : TM — M is ((Tag)*T' M,
(Tar)*7ar, T M), and the total derivative D defines a unique section 0 of (7y7)*7as, which
is called a vector field along Ty, by D = (7ar)*Taso 6. By definition of the pull-back
bundle, (7a7)* 70 (p, ¢) = q, (7ar)*Tar (P, ¢) = p where p is a point of the total space of the
bundle 7, and q is the point of the base space of the bundle (75;)*7,. Suppose we have
5(q) = (p,q) € (Tm)*TM = TM x ,TM, then

D(q) = (tn)*Tare 6(q) = (7ar)" T (p5 @) = p, (5.2.4)

but since D is an identity, we must have p = ¢, for all ¢, which means § must be unique.

Indeed, consider a map o : R — M, and then its tangent map 7'c will send the total
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d
derivative vector field 7 at s € RtoT'M by

d d(LE“o 0)
dt

)
j) I ( e )
S( Z U(S)

where in induced coordinates the components are the y* coordinates. To see this in the
converse way, consider a smooth function f € C°°(M). D(p) has the coordinate expres-

sion

0
D(p) =p=y"(p) (@) . (5.2.6)
TMA\P

so we can define a new smooth function D f on T'M by

of
Df(p) == D(p)f = y"(p) (—) : (5.2.7)
8x“ Tz (D)
for Vp € T M, and therefore,
of
Df =yt ((%) oTM) ) (5.2.8)

Consider a parameterisable curve C' on M, and let the parameterisation be o : R —
M, and its lift 6 : R — T'M. Then, along this curve,

N 4} 4 . d(a".0) [ Of . d
JDf_DfOU_(yMOO).(81-#07—]\/[)00—_ dt '<ax#oTM)00' %(fog).
(5.2.9)

The total derivative can be also introduced for the higher order cases (Figure 5.3). Let
(Vry"), ¢ = (af 24, 2, ) the induced chart on 7" M. Similar to the Proposition
5.14, we have the following.

Proposition 5.17. Consider the bundle morphism (7777 ", 717 ") from (TT" M, 77ry,
T"M)to (TT" M, Tpr—1pr, T" "1 M). Let v be the section of the sub-bundle 77+ ps| 74155
and define amap D, : T"M — TT"M by D, = T'rj; '+ ~. Then D, is an inclusion map
D, =ty b : T"M — TT" M, such that its local coordinate expression is given by

e al %. (5.2.10)
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r.r—1
Tz

TT 7'M TT M.

M

Figure 5.3: r-th order total derivative

Proof. By the definition of 7"**M, we have 7717 " (v(p)) = tro Trrar(v(p)) for Vp €
T"M. Then since Tprpoy = TTTM|TT+1M07 = idpryr, We have TT]QT’loy = toidpryy.

This becomes an identity map on 7" M, and the coordinate expression becomes,

0 9, 0
Drp:x“p(—) —i—m“p(—) + -k p(—) :
w==0)g) . +H0(5g) a0 (5)

for Vp € T" M, therefore,

0 0 0
D, = (L po (2 T ‘
-IQ (ax/f>7_;/’[r—1() + :B?) (81’5)77"7‘_1(.) + + x’l‘-f—l (axﬂ),rr,r—l(.)

M M

Definition 5.18. r-th order total derivative
The identity map D), is called the r-th order total derivative.

The map D, for r > 2 cannot be expressed by a section of a vector bundle, therefore
it is not possible to understand it as a vector field as in the case of D. As in the previous
case, we consider the operation of the inclusion map D, : T"M — TT"~*M to a smooth

function g on 7"~ M, and define a new smooth function D,.g on T" M by,

dg dg
Digfw) = Dfwlg = oitw) (%) et (%)
al‘/f T}r\}rfl (’Ll)) al"u T]'I\‘/,Irfl (’LU)
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)
+o ot (w) _gu : (5.2.11)
aZL’r TK’[il(w)

for Vw € T"M, where 777 " is a projection: 77~ : T"M — T"~'M, and defined

1

iteratively by 7,/ := Trr—1p|70 - Now we get,

99 09 o 99 -
Drg:l‘g (WOTM l) +.T§ (WOTM 1) +—|—$¢+1 (WOTM ! . (5212)
1 2 r

Let us see more details, for the case of » = 2 for simplicity. We will take the induced
chart (V2,4?), ¢? = (z#,y*, 2*) on T>*M for some readability, and denote,

) %)
Dy =yt g 2 5.2.13
2 =Yg +z B ( )
0 )
Dag = - (ajuofﬁ) 4o (85M07ﬁ1> . (5.2.14)

For the case where g = D f, we will have

0 0
Dy(Df) =y - (8I,LDfO 71?4’1) +28 (8_y“Dfo TJ%/}I)

0 of 21 0 of 21
=y (@ (?JpaxpOTM> OTM) + 2F . (Q_y“ y”@xpom 0T

>*f of
= yﬂyp ' <ax—uaxpo7'§/’[0> + 2 (8Iu07ﬁ0> . (5215)

To see this becomes the total derivative with respect to the parameterisation space,
consider a parameterisable curve C' on M, and let the parameterisation be o : R — M,
its lift 6 : R — T'M, and its second order lift 0 : R — T2M. Then, along this curve,

9 )

. g . 9 dg \ .
- 'UIO * R — [¢] MO * P — (¢]
(y"o o) (8:1:“) G+ (2Fo0”) (&y“) o

= (g0 6). (5.2.16)
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In the case of g = D f, we can further use the relation (5.2.9), and get

2

(Dfed) = L (for) (5.2.17)

(%) Da(DJ) = -

d
dt
In order to see the connection to the derivatives with respect to the parameter space,
we used the pull-back. Nevertheless, the total derivative on the total space itself can
be defined by the bundle morphism only, and no consideration of curves on M or its
parameterisation is required.

For general r, similar discussions could be made. For instance, we will have

(") Du(Dyoac-Df)-) = S(Dra (D)oo
d2 o B dr—l N dr
= 2 ((Drz(---Df))e0’ ™) = o= oo (Dfed) = -2 (foo), (5.2.18)

by iteration.

5.2.3 Extremal and equations of motion

Having defined the action, we are able to derive the equations of motion by considering
the extremal of the action. As in the previous section, we only consider global flows.
Nevertheless with some details added; the formulation can be made similarly with local
flows. Consider a C'*°-flow, a : R x M — M, and its associated 1-parameter group of
transformations {a;}scr . The 1-parameter group o : M — M induces a 1-parameter
group TT o : T>M — T?M generated by the induced tangent mapping. This will also
modify the curve (arc segment) C' to C' = «a,(C'), which will be now parameterised by
o’. As in the first order case, the variation will be expressed by the small deformations
made to the action by a.

Before proceeding, we will first check that the induced 1-parameter group 77 a; :
TTM — TTM is also a 1-parameter group on T2 M.

Let (U, ), ¢ = (z") be a chart on M, (V,¢), V = 13y 1 (U), ¥ = (z#,y") the
induced chart on TM, (V,4), V = a1 (V), 1 = (z#,y*, &*, ") the induced chart on
TTM, and (V2 4?) V? = V’TQM’ P? = (z*,y*, 2*) the induced chart on T?M. The
projection maps are denoted by 75y : TM — M, 7rpr - TTM — TM, 73, := Tago Trus
7']%/}1 :T?°M — TM, Ti}o = Tfo 7']%4’1. The local expression of w, € T,T'M, q € T'M is

B 9
wy = w [ ) a2 . (5.2.19)
! (@fﬂ“)q (8y“>q
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Then, TT'ag maps w,by

8(QJVOT04301/1_1) ,u( 0 )
w —_—
Ot v N9/ 1o )

0 O(y’o Tagorhp™t 0
w” (ﬁ) + (y 804“ v ’ g (W) :
¥(q) Y7 Ta.(q) Yy ¥(q) Y/ Ta.(q)

(5.2.20)

TTos(w,) =

O(y”s Tago ™)

+
oz

Where T'a is the induced 1-parameter group on 7'M by «.

In components of coordinates of 77'M, this is

2o TTay(wy) = 7o Tas(q) = 2o o Tar(q) = 7o qvgo Tago Trar(wy) = 2o o Tay (W),

A(xHs ago o) ,
— y" | (wy),
e(3r())

Yo TTa(we) = Yo Tas(q) = < oxv

a MOT o _1 a MO o _1
0 TTay(w,) = 2 aaj ) w’ = <—(x ;‘Sﬂ ) :b”) (w,),
x P(rrar(we)) x o(2,(-))
8 uOT SO 71 a MOT SO 71
yﬂo TTOCS('U)Q> — (y aay ¢ )’ wu + (y aay 1/} ) 'lI)V
L b7 (wq)) Yy G(rrar(wg))
0 O(xHo g o 1) _ "
- 5 (( o v ) )
e(tar () (T (wq))
0 O(Ho g p1) _ i
+ 5 Yy’ | ot y" (wq)
dy P (rar())
PUTM (T (wq))
82 'LLO s© -1 a Ho s© -1
- ( (xa % N ) yPi + % y”) (w,). (5.2.21)
Lrmor e(r2,() X e(r2,()

In the case when w, € T?M, we have w* = y*(w,) = @*(w,), and the expressions
become,

2o TT oy (wy) = ' cgo o (w,),

a(l’“o Qlgo 90_1)
oxV

Yo TTas(w,) = <

O(aHe ago 1)
Ox”

ito TTag(w,) = (
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™ ", TM
' JPPEEES

Figure 5.4: Second order mechanics

0?(xHo g pt)
oz 0xP

(o ago 1)
Ox”

g TTas(w,) = ( y'”) (wg).
e(ra ()

(5.2.22)

Therefore, y. TT as(w,) = " TTas(w,), and the 1-parameter group 77T c,will take
the elements of 72M to T?M.
With the above considerations, we define the following.
Definition 5.19. Variation of the action p
A5
ds

Let & be a vector field on M which generates the 1-parameter group g, i.e., £ =
s=0
We call the functional

558(C) = lim ~ {8%(0,(C)) ~ 55(0))

1
= lim = { / K— / IC} (5.2.23)
5705 (S (as(e)2(D) o2(I)

the variation of the action S*(C') with respect to the flow «, associated to K .

The second order lift of this modified parameterisation ¢’ is given by,

(0")? = (agooid; M) = TTavgo 0% id; ™, (5.2.24)
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which we show in figure 5.4. We can also check this easily. We will get,

1
5§S’C(C’):lim—{/ IC—/ IC}
5708 \J1Tas0020id; (1) o2(I)

1
:hm—{/ TTozs*lC—/ /C} :/ LxK
5205 LJo2(1) o2(I) o2(I)

= / LxK (5.2.25)
C2

where X is a vector field on T?M that generates the tangent 1-parameter group 177 c,

e, x = HTTay)
ds

,and Ly is a Lie derivative with respect to X.
s=0

We use the same definition of extremal given by Definition 5.3. We will calculate the
vector field X and the equation of motion in local coordinates. Let & be a vector field

da : :
related to the 1-parameter group oy, & = i, and its local expression £ = & e where
s
&* € C*°(M). We have already calculated the components of the map 7T'c in (5.2.22),
which in the chart of T2 M, becomes

2o TT o (wy) = to cgo 7o) (),

8 o Qlgo -1
Yo TTa(w,) = <<T”(p)

2,0/, yy) (wq)’
‘P(TM )

O (2t igo ot
o TTas(wg) = < <8xV8xp ;

vo, ZV) (wq)-
‘P(TM )
(5.2.26)

By these observations, the vector field X on 7T2M at a point w € T2M has a local

expression,
d(xts TT o) ( 0 ) d(y*e TTay) ( 0 > d(zHe TTay) < 0
Xy = ——— — ) = — ) +— —
ds so \ O ds o \OY" ) ., ds e \OzH
d

(I‘uo Qgo 7'270)

0 v d a(x'uo Qgo SO_I)
s—0 (@) w Ty (w) ds ( Ox”

d 82 e Qgo -1 a e Qlgo -1
L (Pl datase)
ds oz OxP 2,0 ox”
‘P(TM (w))

~ ) (%) ¢ (o) ()

~ ds
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02Er oEr P
+ (axl/ga:po 7']%4:0 . yVyP + ai 07']%/[O . ZV) (w) (ﬁ) . (5227)

therefore,

9 Sy 9 P a0 9" 99 0
e v o720 P A
= (¢ )890“ " (890” Y ) dy* " (@x”axp T Y YT T )
(5.2.28)

We can make this expression shorter by using the total derivatives we defined in Definition
5.15,5.2.11 (or (5.2.13) ),

0 0 5,
X = ghor?? 5t Deto T ey Da(DE") 5 (5.2.29)

The Lie derivative L x/C in coordinate expression becomes,

0K 0K
8K aK 0K 0K

02K 02K 02K 0K
P . He ol — H p T gep
{5 i <3x“0yp) +Detemy <3y“ayp) T Da(DE )32“3@/”} D d§

PK PK PK
Ho | Ko o — I P
{é it <8x”829> + Doy <8y”8zp) + Da(De )87;“829} 4y

oK
+25—d(De")

0*K 0K PK
— ¢hy _ p_ g2 p
=¢ony {6m“8yﬂ da? —d (63/“) * 28:}6“620 @ }
PK PK 0K
By 721 p o _
+ Dglo ) <8y“8y%’ dx” + 28yﬂazp dy” — 2d (82“))

2 2
+D2(D§“)( oK dx’ + 2 oK dyp)

0zrOyP 0zr0zP
oK 01 OK
(6“0 TM . a " + 2D§uo Ty @) . (5230)

The result of (5.2.30) is called the infinitesimal first variation formula for the Finsler-

Kawaguchi form £.
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The variation of action becomes,
5:S%(C) :/ LxK = /02*LXIC
o2(I) I

L K K OK\) 3o 0K
é’l oTM [{ax#aypdxp —+ 28xﬂazpdyp — d (a—yu) } OTM + d (Dga N):|

0K _ 0K 4, 2o OK
\/;3 (SMOTM . ay/‘ +2D§Mo7'n[ . azMOTn[ —D3 (guoTM . 8 "
(5.2.31)

which is called the integral first variation formula. Ds is the total derivative defined by

Definition 5.2.11. We used the homogeneity condition:

0K 0K 0K
_ IR 9 O o
Oyt TR T
PK PK 0K
Yy A+ =,
QxPy+ QxPOzH oxP
PK ’°K
ny9 I
ay/@y“y + OyPOzH ’
0PK 0K PK 0K
" =0 H =0 5.2.32
Gypﬁz”y + OzP ’ aypz“y + oyr ’ ( )

and its pull-back relations on the parameter space.
The detailed calculations are shown in the Appendix.

Now we can obtain the following theorem.

Theorem 5.20. Extremals

Let C' be an arc segment. The following statements are equivalent.

1. C is an extremal.

2. The equation

g,CKMo 0'3 = 0,

0*K 0*K 0K 0K
K ._ p p dialell o
ELY , = {Eh#&ypdx +28x“8,zpdy d(&y#)} o +d(D38z >

(5.2.33)

holds for arbitrary parameterisation o.

Proof. Suppose C'is an extremal. Then, by definition, for all o, : M — M, such that
does not change the boundary of C, we have §:S(C) = 0. On the other hand, the last
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term in (5.2.31) becomes 0, since it is the boundary term. Therefore, we have,

*K K 0K 0K
. 3,0 . il 3,2 el _
/cs oty H &E“@ypdxp + 28$“8zpdyp d <0y“> } oTy +d <D382“)} = 0.

(5.2.34)

Since this relation must be true for all £, which is the generator of «, we have

’K PK OK is oK
da’ +2 dyf —d (o~ ) porit+d( Dy )| c0® =0, (5.2
|:{8$Nayp P+ Drhd 2P Y (8y“)} T T+ ( 382#)} o 0, (5.2.35)

for any parameterisation o. To prove the converse, take the similar steps backwards. [

Definition 5.21. Symmetry of the dynamical system
Let u be a vector field over M, and Y an induced vector field by u over T?M. We say

that /C is invariant with respect to u, if
LyK =0, (5.2.36)

and u called a symmetry of the dynamical system (M, K). We also say that u generates
the invariant transformations on the Finsler-Kawaguchi manifold (M, K).

Now we will have the following conservation law.

Theorem 5.22. Noether (second order)
Suppose we are given a symmetry of second order Finsler-Kawaguchi manifold (M, K).

Then there exists a function f on 7°M, which along the extremal v of S* satisfies,
/ df =0, (5.2.37)
,\/3

for any parameterisation o which parameterise .

0

Proof. Let the symmetry be u, with its local coordinate expression u = u“m, and the
x

induced vector field Y. Then from (5.2.31), we have

0 :/ Ly K
73

0’K 0’K oK 0K
_ i 30 o p_ g (9B VL 32 oI
/ws“ 7 Haxﬂaypdx MR d(ayu)} i *d(Di”azﬂ)]

0K 51 OK 0K
+/ d<u“073’0-a MOT;\}Q—FQDUMOT]%/’;'@ MOTJ%/}z—D?, (Uu 270'—))
7? Y z
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0K 0K 0K
_ 3,0 3,2 3,1 3,2 2,0
_/de<uMOTM 'ay“oTM +2Du“o7'M .aZ#OTM —D3 (u’uoTM '—azu)).

(5.2.38)

The second equality comes from the fact we consider along the extremal . Therefore we
have a function on 73 M,

0K 0K 0K
f:uMoT]i)}O'a oT]?iZ—FQDUuoTZ%/’[l'a uoT]:\Z’Q—Dg, ('LLHOTJ%&O'%> (5239)

yH Z
such that satisfies the condition. O]

We call the relation (5.2.37), the conservation law. We can express the conservation

law (5.2.37) by taking arbitrary parameterisation for this ~.

Definition 5.23. Noether current

The quantity f is called the Noether current associated with .

5.3 First order field theory

Here we present the Lagrange formulations for the first order field theory, in terms of
Kawaguchi geometry.

By the term first order field theory, we mean that the total space we are considering
is the first order k-multivector bundle A*T'M with k-patch in its base space. The total
space is sometimes also called the ambient space, and its coordinate functions represents
the physical fields as well as the spacetime coordinates. In this sense, the coordinate
functions of M are regarded as unified variables, and the k-dimensional submanifold of
M represents the actual spacetime.

The basic structure we consider in this section is introduced in Chapter 2 and 4
(Section 4.3), namely the n-dimensional k-areal Kawaguchi manifold (M, ), the k-
multivector bundle (A*T'M, A*7y;, M), and a k-curve (k-patch) 3 on M, parameterised
by o.

We take the Kawaguchi form K as the Lagrangian, and the action will be defined by
considering the integration over the lift of the parameterisable k-curve (k-patch). The
Euler-Lagrange equations are derived by taking the variation of the action with respect to
the flow on M that deforms the k-patch 32, and fixed on the boundary. We can show that
the action and consequently the Euler-Lagrange equations are independent with respect

to the parameterisation belonging to the same equivalent class.
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5.3.1 Action

Suppose we have a dynamical system (differential equations expressing motions) where
the configurations of the k-dimensional spacetime (or any extended object of dimension k)
is expressed as a smooth k-patch X of a parameterisable k-area, such that ¥ = o(P) C M,
where P is a closed rectangle P = [t} t}] x [t7, 5] x - x [t} t}] C RF.

When we can express this system by first order k-areal Kawaguchi geometry, namely
the pair (M, K) where K is a first order Kawaguchi k-form, we refer to this dynamical
system as first order field theory.

The action of first order field theory is defined as follows.

Definition 5.24. Action of first order fields
Let (M, K) be a n-dimensional k-areal Kawaguchi manifold. Consider a k-multivector
bundle (A*T'M, A*7yr, M) and let (U, ¢), o = (x*) be a chart on M, and (V,)), v =
(x#, y#1#+) the induced chart on A*T'M.

The local expression of the Kawaguchi form K € QF(A*T'M) is given by

1 0K
- Hayulwuk

dxt* N -ANdxh*, (5.3.1)

where K is the first order k-areal Kawaguchi function.

Let X be a k-patch on M, and o its parameterisation, o(P) = ¥ C M with P =
[t t5] x [t2,87] x -~ x [, t§] C R*, and & the lift of o, defined in chapter 4 (Definition
4.16). We call the functional S* () defined by

1 0K
Spr (e :/ IC:/ - dah (5.3.2)
7o) 5(P) s(p) K Oyra- i

the action of first order field theory associated with K.

As we have seen in Section 4.3.2, Lemma 4.22, Kawaguchi area is invariant with

respect to the reparameterisation, therefore the action is also invariant.

5.3.2 [Extremal and equations of motion

Now we will derive the Euler-Lagrange equations by considering the extremal of the
action. Again, we only consider global flows in this text. Nevertheless, with some details
added, the formulation can be set up similarly with local flows. Consider a C'*°-flow,
a: R x M — M, and its associated 1-parameter group of transformations {a}scr - The

1-parameter group o, : M — M induces a multi-tangent 1-parameter group A*Ta, :
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AT M

Figure 5.5: First order fields

A*TM — AFTM generated by the tangent mapping of multivectors. This will also
deform the k-area (k-patch) ¥ to ¥’ = a,(X), and since this is a smooth deformation,
it again becomes a parameterisable area. By the reparameterisation independence, we
can always choose the parameterisation of this deformed ¥’ by a new ¢’ : P — M,
o'(P) = ¥, so that it has the same parameter space as Y. The variation of the action will

be expressed by the small deformations made to the action by «.

Definition 5.25. Variation of the action Let £ be a vector field on M which generates the
dovg

ds

. We call the functional
s=0

1-parameter group a, i.e., £ =

5§SK( ) :=lim — {S’C as(X)) — SMZ )}

s—0 8§

= lim1 {/ K- / } (5.3.3)
s—0 8 as(0)(P) A

the variation of the action S*(X) with respect to the flow a, associated to K .

Since the lift of this modified parameterisation is given by, o/ = @00 = A*Taz0 6 =
ANTogo60idp ™, We get,

655’C(E) = hm1 {/ K —/ IC} = lim1 {/ (Tag) K —/ IC}
520 S | JAkTas05(P) &(P) 5205 | Js(P) &(P)
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[ Lk
6(P)

_ / LK (5.3.4)
by
where X is a vector field on A*T'M that generates the multi-tangent 1-parameter group
d(A*Tay . ) o .
ATay,,ie., X = % ,and Ly is a Lie derivative with respect to X.
s s=0

Now we will calculate the vector field X and the equation of motion in local coordi-
nates. As usual, let (U, ), ¢ = (x*) be a chart on M, and the induced chart of A*T'M
(V,9), V = 7y Y U), ¢ = (a#,y#r#*). Let £ be generator of the 1-parameter group

ag, £ = %, and its local coordinate expression & = 5“—M, where ¢# € C(M). The
s

Ox
multi-tangent map A*T,; at p € M sends the vector v := v, € AT, M to A*T,, ;) M
by
1 Oria,p! D! 9 9
AT () = E:Ca& ﬂ?a& e (WA‘ p. M) 7
: t e(p) . e(p) v v as(p)

(5.3.5)

and since (A*T'a, a,) is a bundle morphism and from the definition of canonical coordi-

nates of a tangent vector, we have

o AkTpOés('U> = gzt OéSoAkTM(U),

Ort gt Oxtrargp?
L g k . s o s VLU
Y o N T, 05(v) = g e y (v).

P(ArTr(v))

o(AkTpr(v))

(5.3.6)

The induced vector field X by the 1-parameter group A*T'a, at a point ¢ € A*T'M has a

0
o\ ),

) ()
o(A*7ar(q)) 0 8:1_/,“1“.#1@ q

local expression,

¥ - d(z*s A*Tay) 0 N 1 d(y* o AFTar)
- ds _o \ Oz# k! ds

q
0
s \ Ot .

d <8x“1as<p_1

d
= E(Z‘uo Qg0 AkTM)

-1
dxtragp
Oxvr

+ 1 Vl'“Vk( )
k!y q ds oz

(AR Tar(q))
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9 1 [oem _ B
= (f'uo AkTM) <q) <8x“>q + (k — 1)' <3xl’ OAkTM -y M2 ) (q) (ay‘ulm“k)q?
(5.3.7)

Therefore,

) 1 ogm d
— k k Ul
X = o APy, (8x“) R o Ny - ys <8ym,”uk> . (539

The Lie derivative L x X in coordinate expression becomes,

p1p

1 0K 1 oK
— il p1---p
=X (k! 8yﬂ1~'ﬂk) & f (k — 1)! QP Pk

1 : K o Uitz 0K
=4 {g“oA ™ <8x#8yf’l‘“ﬂk> + Or” o Nirpy - yVH2HE T AP Pr

1 0K
(k — 1)l oyr-re

1 k O*K ) oK p2-+Pk
— H{'%A ™ {—axﬂaym“ﬁk dx — kd <—8yupz-~pk) } ANdx

ok V2t K p1--p
+ B oA -y k TS dx k

1 oK L Ak ).
o (aymmpk LA TM) NP % (53.9)

delL’pl AdzxP? Pk

+ d (€70 Nryg) Adar2

The result of (5.3.9) is called the infinitesimal first variation formula for the Kawaguchi
k-form K.

The variation of action becomes,

555’%2):/ LXIC:/&*LXIC
6(P) P

! k ’K p 0K oo
= /Pa {Hg“o/\ T™ (—8:17“8yf01“'9k dxPt — kd —8yupz-~pk AdxP? Px

+ oxrv ATy ' QyH1-—Fk QyP1 Pk dz "

1 0K
+(k — 1)‘d (3yﬂ1‘“f’k : gpIOAkTM> /\dl’pQ"‘pk:|

1 k PK ) 0K
:/i |:H£HOA ™ (8xuay,ﬂl~~ﬂk dz™ — kd (ay#P?“Pk))
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1 K
Nk (ayil.A-pk ‘ fpl"AkTMﬂ AdzP 2%, (5.3.10)

which is called the integral first variation formula. We used the homogeneity condition:

82K 1 I A
((aym..,ukaym...pk) Syt ) 00 =0. (5.3.11)

(5.3.11) is obtained by taking the derivative of (4.3.3) with respect to y**~#*, and then
taking the pull back.

Now we can proceed to find the equations of motion to this system. We will begin

with the definition of an extremal.
Definition 5.26. Extremal of an action

1. We say that a k-area ¥ is stable with respect to the flow «, when it satisfies
58 =0, (5.3.12)
where ¢ is the generator of a.

2. We say that a k-area Y is an extremal of the action S*, when it satisfies (5.3.12)
for any « such that its associated 1-parameter group oy satisfies a(0%) = 0%,
Vs € R, where 9% is the boundary of 3.

Now we can obtain the following theorem.

Theorem 5.27. Extremals
Let > be an k-patch. The following statements are equivalent.

1. X is an extremal.
2. The equation

g,CKuoé' - 0,
1 K K
eck, (88—de1 — kd (88—» AdxP>Pr (5.3.13)

- E xuaym-pk YHP2 Pk
holds for arbitrary parameterisation o.

The proof is given similarly as in the case of mechanics. (see Section 5.1.2)
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Definition 5.28. Symmetry of the dynamical system
Let u be a vector field over M, and Y an induced vector field by v over A¥T'M. We say

that IC is invariant with respect to u, if
LyK =0, (5.3.14)

and u called a symmetry of the dynamical system (M, ). We also say that u generates

the invariant transformations on the Kawaguchi manifold (M, K).
Now we will have the following conservation law.

Theorem 5.29. Noether (first order field)
Suppose we are given a symmetry of (M, ). Then there exists a (k — 1)-form f on
AFT M which along the extremal ~ of S* satisfies,

/df =0, (5.3.15)
ol

for any parameterisation o which parameterise 7.

o : : 0
Proof. Let the symmetry be u, with its local coordinate expression u = u" ——, and the

induced vector field Y. Then from (5.3.10), we have ot
0= [ Lk
) K oK
— L [%uﬂo/\km (me — kd (W))
NC - oIk (a;ﬁk 'umOAkTMﬂ e
— /&d ((k _1 o 8yifpk ufto Ny, dx”'”pk) (5.3.16)

The second equality comes from the fact we consider along the extremal . Therefore we
have a (k — 1)-form on A*T'M,

1 0K

CuPlo AR p2-p,
=)y oA T d (5.3.17)

f=

such that satisfies the condition. O]

We call the relation (5.3.15), the conservation law.
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Definition 5.30. Noether current
The quantity f is called the Noether current of first order field theory, associated with u.

By the coordinate transformation

OFM  Gphn
ot B = (), e — e = af;w > '—azvk e (5.3.18)

the k-form EL£X . 1n (5.3.13) transforms as

k! (dep — kd (W)) NP2 Pk

L (0 0K 0K
R pr— - 2Pl 31
k! (aj-u) (axyaypl.”pk dx” — kd (ayymmpk)) Ndx (5.3.19)

This observation leads us to define a new coordinate invariant form.

Lemma 5.31. Euler Lagrange form

There exist a global (k + 1) form on A*T'M, which in local coordinates are expressed by

1 K
K _ K _ _
ELN = de'NELK, = o { Syl (

1Pk
aypl“'ﬂk) } Adx . (5.3.20)
From the previous coordinate transformations, this is obviously coordinate indepen-
dent.
There is a direct relation between the exterior derivative of IC and £L,
1 ’K

o K 1 Lo
A = ELK — o A (5.3.21)

It can be also checked easily that this is also a coordinate invariant relation.

Example 5.32. De Broglie field (Schrodinger field)
Here we will give a rather trivial, but instructive example for the case of M = R*, with
Kawaguchi structure corresponding to the De Broglie field on 2-dimensional spacetime
R2.

The conventional Lagrangian function of the De Broglie field is given by

L= (zﬁ-atzb—@t&-w)—ﬁ;C@E-axwe&-so-w, (5.3.22)

N | =

on J'Y = J'R%, where J'Y is the prolongation of the total space regarding the bundle
(Y, pri,R?), Y = R? x R% We take for the global fibre bundle coordinates; (¢, x) for R?,
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(t,z,%,v) for Y, and (t,x,v,, 0, 0, 0,0, 0,0) for J'Y. t, x denotes the space-
time, 1, ¥ the fields, ¢ = o(z) the external field, and m, e are constants. In an orthodox
physics notation, the pull-back of £ to R? is also called the Lagrangian, namely

L:=LoJy = 3 Pp— — —p | = — L fehp), (5.3.23)

i (-0y O 1 O O
( ot ot ) 2m Ox Ox

Y = 1hory = (L, ), 1 = 1boy = 1(t, z), where  is a section of the bundle (Y, pri, R?),
and J'+ its prolongation.

We will try to construct the Kawaguchi manifold that corresponds to such model. Let
M = R*, and the parameter space P = R2. In this case, we have global charts on M and
P. Let the canonical coordinates on P and M be (t°,¢!) and (2°, 2!, 2%, 2®) respectively,
o : P — M be a parameterisation, and & : P — A*TM its lift. The Kawaguchi form is a
2-form on AT M. Let (z*,y"'*2) be the induced global chart on A>T M = A?’TR* with
w, v, vy = 0,1,2 3. We will consider a pair of maps,

f:AFTM — J'RY (5.3.24)

and idg2 : P — R? such that, fo6 := J'7.idge2, where v is a section of the bundle
(Y, pr1,R?), and J'7 its prolongation. The identity map on the base space will imply,

t0 = toidge, t!' = zoidge. (5.3.25)

With such f, we will construct the Kawaguchi function K by K = f*L, then K gives the
same Lagrangian for the De Broglie field, when pulled back to the parameter space by &,
by

K =6 "L = Lo fod = Lo Yoidge. (5.3.26)

From this Kawaguchi function, we can construct the Kawaguchi 2-form /.

The choice of the map f is not unique, nevertheless, we can consider a map that is
convenient for calculation. One such choice is the following. For notational convenience,
now we will write the coordinates on J'Y as (£ ¢!, 29 21 28, 24, 20, 21), so that ¢t =
o x =1 =2 =2 O =20, Onb =2}, 0. =20, 0,90 = z}. We define the

map f such that its coordinate expressions are given by,

o= [P,

yulyz — f*(z([)l’lzllj?]> (5327)
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then, at point 6(p) € A*T'M, p € P, we will have,

2(6(p)) = "(foo(p)) = fwl (),
Y12 (6(p)) = 2 (Foa(p) 217 (fo o (p)) = 2 (J4(p)) 242 (T*(p))

o)) 20

g 7 (5.3.28)

p

calculating (5.3.28) explicitly, and rewriting in the original notation gives

oo = WL o@hky) 1 g o 0(#%7)0@r) _ 10(y-7)
o ot 2’ o ot 2 Oz

o — Aa7) 0(@%r) _ 10(en) 1 . Olor) O(Ey) | 10(4en)
otv ot! 2 Or ’ 10 oL 5 o1

g~ O0@Py)a(@ey)  19(¢en)

Y o0 = 8[t_0 (97? - 2 81& y i )

. O(@Pey) (@%en) 1 (o) DWer)  D(thery) D(Wey
yreo = (ato ) (8151 ):5( (8t ) (ax - (833 ) (at ))- (5.3.29)

From these relations, and 6* K = Lo J 7. idg2, we obtain our Kawaguchi function K,

03,12 2 31\ 1 y%y* 2.3 01 51330
(=" =) — g e Teela)atey (5.3.30)

and the Kawaguchi structure becomes,

1 y%y* 17,23 01 1 (y” 02 y"”? 03 L3 19 23 31
K= (%(ym)Q +ep(x )x:c)da: —%(ﬁdx —|—Fdx > —E(a: dz'? + 2*daz’") .
(5.3.31)

We will take this as the reparameterisation invariant Lagrangian of the De Broglie field
theory.

The Euler-Lagrange equations obtained from X can be calculated by the formula
(5.3.13), as

gcooa—:d<8Kd + aKd 24 ade>oa—:0,

8 01 a 02 ay03
. 0K 0K oK .\ .
g£1002d<8 10d —f—wdl’ —1—@6&)00:0,

1
ELyo G = (egpxgdxm —ida¥ — — (—(y—Qdy01 + Wdyog) /\dw0> o0 =0,
Y
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» 1 y02 1
A 2 5 01 12 01 02 0y ~ _
EL3ob = (enpx dz™ —idx™* — 5 (— (y01)2dy + i dy ) Adx ) o0 =0,

(5.3.32)

which is true for any parameterisation . To compare these equations with the conven-
tional De Broglie field equations; in other name the Schrodinger equations, choose the

parameterisation, which in coordinates are given by

(2% 0, x'0 0, 2% 0, 2% o) = (1,1, 1), ). (5.3.33)
We get,
7*ELy = 0,
*EL =0,

_ 1 _ _
&*gﬁg = — (z@tw — —818,1# — 6(,02,0) dtm = O,
2m
1

which are indeed the well-known Schrodinger equations. The first two equations becomes
identity, when the latter two are taken into account, meaning these equations are indeed

dependent.

Remark 5.33. The expressions such as (5.3.31), (5.3.32) are reparameterisation invari-
ant, and there are other possibilities to choose different parameterisations such that their
pulled back expressions on the parameter space would not look like the conventional ex-
pressions. To consider their meaning and applications would be an interesting theme for

future research.



Chapter 6
Discussion

In this thesis, we have introduced the foundations needed for the calculus of variation in
Finsler and Kawaguchi geometry. For Kawaguchi geometry, we especially constructed
the second order 1-dimensional parameter case, and first order k-dimensional case. For
the second order k-dimensional case, only local version was presented. We have used a
less restricted definition for both Finsler manifold and Kawaguchi manifold compared to
the standard definition, which is considered more applicable to the problems of physics.
We constructed a global form for the Kawaguchi geometry, which has a similar property
as the Finsler-Hilbert form in the Finsler geometry case, in the sense that they define a
reparameterisation invariant k-dimensional area on the subset of the base manifold M.
Lagrange formulation was introduced on these structures in a natural way, and we ob-
tained the reparameterisation invariant Euler-Lagrange expression. We had compared the
results with examples such as Newtonian mechanics and De Broglie field, and confirmed
that with a special choice of parameterisation, the results will reduce to the conventional
expression of these theories. Throughout the discussion, we only used basic methods in
differential geometry, and took the most straightforward path to considering Lagrangian

formulation.

There are many issues in the thesis that remains for further discussions and research.
The main reason of the difficulty in the case of higher order k-dimensional case comes
from the fact that our main pillar; the homogeneity conditions in the simplest expression is
not coordinate independent. However, we believe this difficulty can be solved soon, and
global Kawaguchi form could be constructed for this case too. Nevertheless, for many
concrete problems for physics, our local formalism should also be applicable. In this the-
sis, we only considered the case where the subset > of M is diffeomorphic to the closed

k-rectangle in R¥. For a more general case, the action of 3 associated to the Kawaguchi

127
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(Finsler) form is well-defined provided that there exists an inclusion map ¢ : P — M,
where ¥ = ((P), such that P is an oriented compact manifold. In the case where P
has no boundary, we should have to consider an extension of variational principle, such
as Cartan’s principle, which is also an interesting problem. Since Finsler and Kawaguchi
geometry is less restrictive than Riemannian geometry, we expect it should embrace wider
area of physics where it cannot be expressed by Riemannian geometry. For instance, sys-
tem that is irreversible with time, or shows hysteresis, may be a good non-trivial example
to be modelled by our approach. However, these problems are for the moment left for the

future, and would be presented another time.
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