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Abstract

The nonclassicality of light has been studying for many years. The definition
of those states offers no methods to decide from measurement if a state is non-
classical. This thesis searchs for new experimentally verifiable criteria that give
sufficient conditions for nonclassicality of single photon states, also tests their
power in realistic models.
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Abstract

Neklasičinost světla je studována po mnoho let. Definice ale nenab́ıźı žádný
zp̊usob, jak z měřeńı rozhodnout, zda je stav skutečně neklasický. Tato bakalářská
práce se zabývá novými kritérii, která dávaj́ı postačuj́ıćı podmı́nky neklasiňosti
a která lze verifikovat. V práci je dále testována jejich śıla na reálných modelech
jednofotonových zdroj̊u.
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Chapter 1

Introduction

Quantum optics is very fast developing discipline. And it gives large possibilities
in experiments and applications of optics, many of those experiments are based
on nonclassical states of light. Therefore we need to distinguish states of light
with very nonclassical features from those that tender weaker quantum effects.
It is long term problem, still not solved completely. The first step in this course
was done by Glauber who explained theory of coherence in the words of quantum
optics. He defined quantum states that are describable in terms of classical
optics. His definition is unfortunately limitedly provable from measurement.
The definition corresponds to infinite number of conditions for classicality of
state. It has yielded to sequence of different methods to decide if measured
data correspond to nonclassical states.

Since this time it has been many times confirmed that some sources like single
photon sources break rules or criteria that should be valid from the perspective
of classical optics. We can example it by first pioneering resonance fluorescence
measured by H. J. Kimble, M. Dagenais and L. Mandel in the year 1956 or
later, measuring the values of α-parameter quantifying anti-correlation effect of
photons at a splitter or recently, measuring negative Wigner’s function of single
photon state. Main application of single photon states is advanced quantum
key distribution with repeaters.

The first two Chapters in this Thesis contain historical introduction to non-
classicality of light. In the third Chapter criterion involving exact photon distri-
bution is discussed. This criterion was introduced by Radim Filip and Ladislav
Mǐsta, but contrary to the topic of this Thesis, it was tested for mixtures of
Gaussian states. In this chapter we suggest new interpretation of this criterion.
The next Chapter discusses criteria that are less powerful but better testable
because they involve the probabilities measured by avalanche detectors. We
extend it for basic higher-ordered criteria and in the Chap. 7 we compare all
these criteria at realistic models of one photon sources.
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Chapter 2

Light and Photons

All features of classical optics can be derived from the solution of Maxwell’s
equations [1]. These equations connect spatial and temporal evolution of the
electric intensity E and magnetic induction B. It’s interesting simplification for
optics to decompose these quantities in time independent and space independent
components. They are given by electromagnetic wave. A general solution is
a superposition of these waves. The detectors are sensitive in |E|2 mainly,
therefore we are interested in behaviour of the vector E.

We will suppose the scalar approximation of electric intensity for simplicity.
So we can write:

E =
∑
k

ckuk(r) exp(−iωkt), (2.1)

where we develop electric intensity in Fourier series, i.e. in superposition of
harmonic waves. Each plane wave defines one mode, characterized by time
independent component uk(r), angular velocity ωk and Fourier coefficient ck.
Summation index k labels different classical properties of harmonic waves. It’s
convenient to express it in two component and use a different constants:

E(+) = i
∑
k

(
1

2
h̄ωk

)1/2

akuk(r) exp(−iωkt), (2.2)

E(−) = −i
∑
k

(
1

2
h̄ωk

)1/2

a∗kuk(r) exp(iωkt)

The resulted electric intensity E is equalled to sum of both expressions. The ak
and a∗k are dimensionless amplitudes of linear harmonic oscillator (LHO).

The extension from classical to quantum optics is guaranteed by substitution
of ak and a∗k by operators [2]. The description of light as classical LHO yields to
quantum LHO. The Fourier’s coefficients ak and a∗k become the annihilation and
creation operators, which have to fulfil the canonical commutation relations:[

ak, a
†
k′

]
= δkk′ , (2.3)
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[ak, ak′ ] =
[
a†k, a

†
k′

]
= 0

One can see the operator E(+) component contains only the annihilation op-
erator and the operator E(−) only the creation operator. The total energy of
the field is given by Hamiltonian H = 1/2

∫
(ϵ0E

2 + 1/µ0B
2)dr. Inserting the

annihilation and creation operator leads to[2]:

H = 1/2
∑
k

h̄ωk(a
†
kak + aka

†
k). (2.4)

The energy of monochromatic electromagnetic modes is given by energy of set
of LHOs. One of the properties of LHO is that its energy is quantized, i. e.
eigenvalues of a†a operator can be only a discrete values. Let’s define a new
operator nk = a†kak and its eigenstate nk|nk⟩ = n′k|nk⟩. The field with given
classical properties we call a mode and one quantum of energy photon. The
eigenvalue n′k says how many photons are there in the k-mod. The state |nk⟩
we call Fock state. Further we are omitting the index k and working only with
single mode[3].

If we let act Hamiltonian H on a†|n⟩ we find the creation operator adds a
photon. Similarly the annihilation operator takes off a photon. When we use
normalization conditions we can write [2]:

a†|n⟩ =
√
n+ 1|n+ 1⟩, (2.5)

a|n⟩ =
√
n|n− 1⟩.

The prefactors
√
n and

√
n+ 1 in this relations are consequences of quantum

physics.
The field from which it’s impossible to remove some energy is called vacuum

and is defined by equation: a|0⟩ = 0. The energy of vacuum is given by (2.4)
and is equalled to Evac =

1
2 h̄ω for each mode [3].

If a state can be describe by linear combination of Fock state basis we know
maximum information about it. This state is called pure state. But we don’t
know sometimes in which pure state is light prepared. The density matrix
ρ =

∑∞
m,n=0 ρm,n|m⟩⟨n| is introduced to describe such situations. The density

matrix is semi-definite operator. Its trace is equalled to one and the probabilities
pn of n-measured photons are given by:

pn = ρn,n = ⟨n|ρ|n⟩, (2.6)

The m-th moment of operator n is yielded by:

⟨nm⟩ = Tr [nmρ] . (2.7)

The variance can be expressed so this: ⟨(∆n)2⟩ = ⟨n2⟩ − ⟨n⟩2 . It is one from
quantities of amount of photon noise presented in the state [2].

Single photon state |1⟩ is important building block in quantum optics. Let
us consider beam splitter has transitivity very near to one. The incident state
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is a single state |1⟩ that interacts with arbitrary state |ψ⟩. The unitary oper-
ator of the beam splitter is given by UBS ≈ 1 + k(ab† − a†b), where a (a†) is
annihilation (creation) operator acting on the single photon state and b (b†) is
annihilation (creation) operator acting on the state |ψ⟩. If we measure vacuum
in one out-coming mode, the state is then given by: ⟨0|aUBS |1⟩a|ψ⟩b = kb†|ψ⟩b
[4]. We see that single photon state is resource to build operator a† on any state.
Linear combination of operators a† then can be used to conditionally build any
multimode state in quantum optics, also that states are required in advanced
QKD [5]. But how one can recognise that single photon states is prepared in
experiment?

2.1 First and Second Ordered Correlation func-
tion

Historically quantum optics started from a development of quantum coherence
theory[3]. Correlation functions are main tools of coherence theory of light.
The first ordered correlation function corresponds to measuring interference in
Mach-Zehnder interferometer. It is defined thus:

g(1)(τ) =
⟨E(−)(t)E(+)(t+ τ)⟩

|⟨E(t)⟩|2
. (2.8)

Let’s quantise it by replacing amplitudes by normally ordered operators intro-
duced in (2.2). Normally ordering corresponds to particle counting experiments.
This yields to[3]:

g(1)(τ) =
⟨a†(t)a(t+ τ)⟩
⟨a†(t)a(t)⟩

. (2.9)

For τ = 0 this function gets uniting always. Therefore it gives us no information
about the fluctuations of the light. Those effects are better described by second
ordered correlation function.

The pioneering experiment in measuring the fluctuation of light was arranged
by R. Hanbury Brown and R. Q. Twiss (1956) [6]. The beam of thermal source
was split in semi-transparent mirror in two beams that were detected. Then one
of the outputs was time delayed and coincidence signal of the delayed and non-
delayed outputs were measured. For classical thermal light sources, there was
observed correlation between the two beams. The correlation of intensities for
short time delays were greater than the one for long times. Figure (2.1) shows
the scheme of the experiment. This effect is called bunching and is caused by
tend of photons to bunch and come in couples. For coherent light from laser the
correlation of intensities is independent on time delay. This behaviour of light
can be explained by both the classical and quantum optics. But the contrary
effect - antibunching only by quantum theory.

A classical correlation function which characterizes this experiment is defined
thus [6]:

g(2)(τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
, (2.10)
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Figure 2.1: Scheme of HBT experiment. The sourced beam is split to two in-
tensities detectors. The coincidence of intensities I1 and I2 time delayed is
measured.

where τ is the time delay. Let’s suppose the incident beam has intensity I.
If detectors have efficiency η and τr is the time of measuring, the measured
intensity is given by: K(τ) = 1/4ητr⟨I(t)I(t+ τ)⟩. We express I(t) = ⟨I⟩+ i(t),
where i(t) stands for fluctuation of intensity. Because ⟨i(t)⟩ = 0 we can write
K(0) = 1/4ητr(⟨I2⟩ + ⟨i2⟩). It guarantees the condition: g(2)(0) ≥ 1. For very
long times τ we can put ⟨i2⟩ = 0, i. e. the intensities are uncorrelated.

On the other hand quantum physics gives different look. Let’s replace the
intensity in the expression (2.10) with normal ordered annihilation and creation
operators. We get:

g(2)(τ) =
⟨a†(t)a†(t+ τ)a(t+ τ)a(t)⟩

⟨a†(t)a(t)⟩
(2.11)

The function g(2)(0) can exhibit smaller values than one. A simple example is
the state p|1⟩⟨1| + (1 − p)|0⟩⟨0|, for any p > 0 we get zero. This effect doesn’t
correspond with classical optics therefore we call such states non-classical and
this effect anti-correlation of photons. In all natural sources the photons are
bunched therefore anti-correlation cannot be observed. The g(2)(0) function
(2.11) for thermal sources is equalled to 2 [6]. The first experiment which
proved anti-correlation was arranged by Kimbel, Dagenais and Mandel in the
year 1978. They let interact sodium atoms with laser light in resonance. The
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atoms behaved like two-level system and anti-correlation was measured. They
used the same arrangement and clearly observed g(2)(0) less than one[7]. For
very long times τ , g(2)(τ) is limited to one, since photons become anti-correlated.

But anti-correlation is only sufficient condition for features of light beyond
classical optics. The necessary and sufficient condition haven’t been found yet.

2.2 Coherent state and Glauber-Sudarshan P-
representation

We can search for a state which contains uncorrelated photons and its normally
ordered normalized correlation functions get value one. This state is called
coherent and is defined as the eigenstate of annihilation operator:

a|α⟩ = α|α⟩. (2.12)

Clearly, because of this eigenstate property, a mean number of ⟨
(
a†
)m

an⟩ is
equalled to (α∗)

m
αn for any n and m.

We can derive the coherent states also by different more operational def-
inition. Coherent state is operationally a product of acting the displacement
operator D(α) on vacuum state:

|α⟩ = D(α)|0⟩. (2.13)

The displacement operator is in fact evolution operator U = exp
(
iHI

h̄ t
)
with

interaction Hamiltonian HI between classical driving harmonic oscillator and
vacuum quantum oscillator. If such oscillator interacts with the vacuum for
very short time and driving is strong, the interaction Hamiltonian approaches:

HI = h̄(β∗a+ βa†), (2.14)

where β is constant that characterizes the driving. Putting this Hamiltonian
into Schrödinger equation and using Baker-Hausdorf theorem yields to:

|α⟩ = e−|α|2/2eiαa
†
|0⟩, (2.15)

where α is β multiplied by the time of interaction. Both expressions (2.13) and
(2.12) leads to coherent state expanded in Fock state basis[3]:

|α⟩ =
∞∑

n=0

αn

n!
e−|α|2/2|n⟩. (2.16)

The photon distribution is given by Poissonian distribution:

Pn =
|α|2n

n!
e−|α|2 , (2.17)

where |α|2 stands for the mean number of photons in this state (further the
mean number of photons is signed n̄). The figure (2.2) shows such distribution
for different cases of mean number.
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Figure 2.2: Photon distribution of coherent state for different mean number of
photon n̄: the top and left figure corresponds to n̄=0.1, the top and right n̄=0.5,
the bottom and left n̄=0.5 and the bottom and right n̄=3.

For coherent light g(2)(0) = 1, the photons are independent of each other but
still they are not generated individually enough. On the other hand, thermal
light, given by Bose - Einstein statistic [2]:

Pn =
1

1 + n̄

(
n̄

1 + n̄

)n

, (2.18)

where n̄ is mean number of photons, shows bunching, g(2)(0) = 2. The figure
(2.3) shows the distribution for different n̄. Differently to the coherent states
maximum remains in origin and variance increases for larger n̄. They are more
noisy than coherent states.

General framework of classical state from point of view of coherent theory
was given by Glauber in the year 1963. Let’s define the P (α) representation of
a state [3]:

ρ =

∫
P (α)|α⟩⟨α|d2α. (2.19)

A state ρ is called classical (from the point of view of coherent theory) if the P (α)
function can be interpreted as density of probability. The other states are called
non-classical. If P (α) gets negative values or can’t be generally interpreted as
probability distribution, the state is non-classical from definition. For pure
coherent state the P (α) function is equalled to Dirac’s delta function. The
coherent states can be obtained from very good laser. All the classical states
are therefore obtainable from laser light by adding noise [3].
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Figure 2.3: Photon distribution of thermal state for different mean number of
photon n̄: the left figure corresponds to n̄=1, the right n̄=3.

For example the thermal noise is very usual natural source therefore we
would expect this state is classical. It can be proven that its P (α) is given by
function [2]:

Pth(α) =
1

πn̄
exp

(
−|α|2

n̄

)
. (2.20)

We see that thermal light has Gaussian distribution P (α), it is one way how to
obtain single mode thermal state from laser light.

Unfortunately P (α) isn’t directly measurable. Experimental data are badly
classified from this definition. Therefore sufficient criteria which would decide
directly from measurement if a state is non-classical are necessary [11]. One
of such criterion is the correlation function described previously. But such the
criterion cannot be applied for very weak photon beams, since exact photon-
number detection is still challenging problem.
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Chapter 3

Nonclassicality of single
photon

3.1 α - parameter

The correlation function g(2)(0) is function of the first and the second momen-
tum of the photon number operator n. P. Grangier et al. introduced in 1985
different method, which directly compare probabilities of detection [8].

The scheme of experiment is inspired by HBT experiment but very weak
beams with ⟨n⟩ ≪ 1 are measured. For this measurement we have to use very
sensitive avalanche photodetectors which, however, are not able to distinguish
the number of photons [8]. The source is two photon radiative cascade. It emits
pairs of photons with different frequencies. One of them is a trigger which open
a gate of the detectors and the other is split further in beam splitter (BS). Two
photomultiplier measure probabilities the photon is reflected or transmitted. Ps

stand for probability that one detector clicks independently the other one and
Pc both detectors click simultaneously. The Fig. (3.1) visualises the scheme of
the experiment.

The mean photocurrent is given by (in normal ordering): ⟨i⟩ = η⟨a†a⟩.
The coincidence photocurrent: ⟨i2⟩ = η2⟨

(
a†
)2
a2⟩, where η is efficiency of the

detector. The source is very weak, that means we can approximate it by the
state: ρ = ρ0|0⟩⟨0|+ ρ1|1⟩⟨1|+ ρ2|2⟩⟨2|, where ρ1 ≫ ρ2. For this approximation
we get: ⟨i⟩ = ηρ1, ⟨i2⟩ = 2η2ρ2. But the probability Ps is approximated by:
Ps = ηρ1/2 and Pc = η2ρ2/2. We see that for weak source of photons we
have g(2)(0) = ⟨i2⟩/⟨i⟩2 ≈ Pc/P

2
s . The Cauchy-Schwartz inequality guarantees:

⟨i2⟩ ≥ ⟨i⟩2. It leads to Pc ≥ P 2
s . One can arrange α parameter [8]:

α =
Pc

P 2
s

(3.1)

obeys the classical condition α ≥ 1. For very weak photon beams, α-parameter
approaches value of g(2)(0) function. Because one photon is very anti-correlated,
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Figure 3.1: Schema of experiment for measuring α parameter. The incident
beam is split in beam splitter. They are two avalanche photomultiplier detectors
(APD). They differ only two inputs: no signal (no photon) and signal (at least
one photon).

the described experiment measured by Grangier et. al broke the inequality.

3.2 Klyshko’s criterion

In the year 1996 Klyshko introduced another criterion[9]. Differently to α pa-
rameter, it involves probabilities Pk of Fock states. Klyshko found a sequence
of semi-definite expressions that fulfils the following condition for non-classical
states:

(k + 1)Pk−1Pk+1

P 2
k

> 1, (3.2)

that is satisfied for every k ≥ 1. For classification of non-classicality of one
photon sources is the most useful the case with k = 1. This criterion needs
information about exact P0, P1 and P2 probabilities. Photomultiplier detectors
or avalanche photodiods can’t precisely measure P1 or P2 probabilities. But
we can suppose such ideal detector that is capable to measure them, or use
homodyne detector and estimate them. The criterion is than very powerful and
reveals areas of non-classicality where g(2)(0) function or α - parameter fails [9].

The formula (3.2) can be proven by simple inserting the classical state prob-
abilities given by Glauber-Sadarshan P -representation. We prove it for the case
k = 1, when the classical state is obeyed to P 2

1 − 2P2P0 ≤ 0. The inserting the
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probabilities leads to:

P 2
1 − 2P2P0 =

∫
P (α)P (β)(|α|2|β|2 − |α|4) exp(−|α|2 − |β|2)dα2dβ2 (3.3)

or written equivalently with interposed α and β:

P 2
1 − 2P2P0 =

∫
P (α)P (β)(|α|2|β|2 − |β|4) exp(−|α|2 − |β|2)dα2dβ2, (3.4)

We sum both expressions and simplify by relation −|α|4 + 2|α|2|β|2 − |β|4 =
−(|α|2 − |β|2)2. Thus we get:

2(P 2
1 − 2P2P0) = −

∫
P (α)P (β)(|α|2 − |β|2)2 exp(−|α|2 − |β|2)dα2dβ2 (3.5)

If the function P (α) and P (β) are nonnegative, the expression on the right side
of (3.5) is never positive. All classical states fulfils condition P 2

1 − 2P2P0 ≤ 0.
If a state breaks it, it is certainly a nonclassical state.

The prove was derived with assumption of one mode of a classical state.
In the Chap. 6 we show the multimode classical states have photon distribu-
tion that corresponds to distribution of one mode case. Therefore no classical
multimode state can fulfils the inequality (3.2) as well.

3.3 Homodyne Detection and Tomography

We discuss different measurement technique - homodyne detection to com-
plete basic description of nonclassicality criteria. Homodyne detection measures
quadratures of generalized coordinate and momentum of the light wave. It is
convenient to define the phase space quasiprobability representation of a state.
This representation is called Wigner’s function and is define so this[8]:

W (Q,P ) =
1

2π

∫ ∞

−∞
⟨Q+

1

2
Q′|ρ|Q− 1

2
Q′⟩e−iPQ′

dQ′, (3.6)

where ρ is density matrix and |Q⟩ are eigenstates of quadrature Q = (a+a†)/
√
2.

This function can be considered as another definition of state in phase space
with Q and P variables.

The scheme of the homodyne measuring consists of signal input that inter-
feres with laser beam on a balance beam splitter. There are two detectors which
measure photon numbers of the strong out-going optical signals from the beam
splitter. This guarantees the quadrature amplitude Qθ = (ae−iθ + a†eiθ)/

√
2 is

measured[10]. The amplitude of quadrature is associated with Wigner’s function
by this expression:

⟨Qθ, θ|ρ|Qθ, θ⟩ =
∫ ∞

−∞
W (Qθ cos θ − Pθ sin θ,Qθ sin θ + Pθ cos θ)dPθ, (3.7)
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where |Qθ, θ⟩ is eigenstate of the operator Qθ. The angular θ is parameter which
is changeable. If a state is measured in all θ in interval θ ∈ (−π/2, π/2) then we
get the full information about the Wigner’s function. This procedure is called
tomography. The photon distribution is determined from the tomography [10].
It effectively inverts (3.6) and gain ρnm in Fock state basis fromW (Q,P ). From
reliable estimation of Pn probabilities, nonclassicality of the state can be proven
using either g(2)(0) function or Klyshko’s criterion.

By integration the Wigner’s function over some area in Q − P phase space
we get the probability that a state is located in this area. But the Wigner’s
function can gets even negative values. Therefore it’s called quasiprobability
density function. All states with negative Wigner’s function are non-classical
A clear example of negative Wigner function is single photon state. Wigner
function in the coordinate origin is given by: W (0, 0) = 1

πTr [ρ(−1)n]. We see
that in the origin the single photon state gets negative valueW (0, 0) = − 1

π [10].
However, for p|1⟩⟨1|+ (1− p)|0⟩⟨0| negative values vanish already for p ≤ 0.5.

Vogel introduced more sensitive criterion that classified some states with
positive Wigner’s function as nonclassical. He defined the function G(k, θ) by
Fourier transformation:

G(k, θ) =
1

2π

∫
dk⟨Qθ, θ|ρ|Qθ, θ⟩eikx (3.8)

And he derived the sufficient condition of nonclassicality: there exists such k
that [11]:

|G(k, θ)| > e−k2/2. (3.9)

Unfortunately, his criterion mixes non-classicality of single photon and very
different squeezed states. Further he attempted to find hierarchy of condition
which would guarantees a state is classical. It’s yielded by characteristic function
of Glaubner-Sudarshan P- function:

Φ(u, υ) =

∫ ∞

−∞
P (αr, αi) exp [2i(υαr − uαi)] dαrdαi (3.10)

where index r and i stands for the real and imaginary part of argument α. The
equivalent definition of classicality is given by infinite number of condition. For
arbitrary real numbers uk, υk, arbitrary complex number ξk (k = 1, ..., n), the
expression:

n∑
i,j=1

Φ(ui − uj , υi − υj)ξiξ
∗
j > 0 (3.11)

is satisfied. That’s means Φ(u, υ) is positive semi-definite. It guarantees the
P (αr, αi) is probability density [11]. It is witnessing that to conclusively decide
whether state is nonclassical needs to check infinite number of conditions.
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Chapter 4

Simplest criterion of
nonclassicality

The Klyshko’s criterion of nonclassicality is given by formula (3.2). The case
with k = 1 leads to inequality:

2P0P2

P 2
1

< 1, (4.1)

which has to be satisfied for all nonclassical states. We show simpler criterion
which only involves exactly probabilities P0 and P1.

The probability P1 = ⟨1|ρ|1⟩ of measuring exactly single photon with ideal
detector we call success probability. The probability of measuring more then
one photon P2+ =

∑∞
n=2⟨n|ρ|n⟩ we call the error probability and finally the

probability of measuring vacuum P0 = ⟨0|ρ|0⟩ we call failure probability. They
have to fulfil P0 + P1 + P2+ = 1.

First, we find the maximum value of success probability over all classical
states. According to Glauber-Sudarshan P(α)-representation (2.19) the success
probability is given by:

P1 =

∫
P (α)|αi|2 exp(−|αi|2)dα2 (4.2)

Because this functional is linear, the maximum of (4.2) has to be in some pure
coherent states. The extreme is satisfied for |α|2 = 1, all states with P1 > 1/e

.
=

0.368 [12] are certainly nonclassical. The closest coherent state to |1⟩ has the
same mean number of photons. However, for many practical sources with low
efficiency P1 > 1/e is to far to be satisfied.

The criterion becomes more powerful when we involve more information from
the density matrix. We make an analogy procedure for the expression [13]:

P1 + a(1− P0 − P1), (4.3)

14



where a is real parameter. The threshold function F (a) is define as maximum of
expression (4.3) over all classical states with fixed a. Because expression (4.3) is
linear functional of state ρ we optimize it over coherent state |α⟩. We compare
this function with measured probabilities Q1 and Q2+. If there is such a that
inequality:

Q1 + aQ2+ > F (a) (4.4)

is valid, the measured state can’t be interpreted as a mixture of coherent states.
This gives us a sufficient condition for non-classicality based only on P0 and P1

probabilities.
The threshold function F (a) is yielded by zero equalled derivative of (4.3).

It is satisfied for |α|2 = 1
1−a and then:

F (a) = (1− a) exp

(
− 1

1− a

)
+ a, (4.5)

where a ∈ (−∞, 1). The existence of a in the inequality (4.4) is equiva-
lent to condition Q1 ≥ Q(a0), where Q(a0) is minimum of function Q(a) =

F (a)− aQ2+. The a0 is satisfied for Q2+ = 1+ 2−a0

1−a0
exp

(
− 1

1−a0

)
and Q(a0) =

1
1−a0

exp
(
− 1

1−a0

)
. The condition of nonclassicality is given by:

Q1 >
1

1− a0
exp

(
− 1

1− a0

)
, (4.6)

Q2+ = 1 +
2− a0
1− a0

exp

(
− 1

1− a0

)
.

The criterion is unchanged if we multiplied expression (4.3) by any constant or
we add one. Therefore the criterion (4.3) is equivalent to this one:

P1 + aP0. (4.7)

The same optimization derivation gives threshold function F (a) = exp(a−1)
for a ∈ (−∞, 1). The minimum of function Q(a) = exp(a− 1)− aQ0 is satisfied
for a = 1+lnQ0. Substituting it in Q(a) function we get the explicit expression
of non-classical condition:

Q1 > −Q0 lnQ0. (4.8)

The equivalence of both criteria can be seen when we make substitution Q0 =

exp
(
− 1

1−a0

)
in relations (4.6):

Q1 > −Q0 lnQ0, (4.9)

Q2+ = 1−Q0 +Q0 lnQ0

We see, by changing parametrization of the problem, we can solve it more easily
and go back to original physical representation.
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Figure 4.1: The simplest criterion gives sufficient condition of non-classicality.
All states that belongs to the white area are non-classical. The dashed line
remarks the maximum of success probability of classical states.

Our linear criterion (4.3) leads to very non-linear condition of non-classicality
(4.8) or (4.10) which is full equivalent to previous method deriving same thresh-
old. The sufficient condition of nonclassicality is visualized in Fig. (4.1). One
can see the boundary of non-classicality touches the P2+ axes in two point.
They correspond to regions with low success but low or high errors.

The criterion (4.3) can be interpreted as maximizing P1 with condition
P2+ = Q2+ and Lagrangian multiplier a. Because we optimize over pure state
we have:

d

d|α|2
[
P1(|α|2) + a

[
P2+(|α|2)−Q2+

]]
= 0 (4.10)

Q2+ = P2+(|α|2).

Thus we have two equations for two variables a and |α|2. From the first we can
express |α|2 and put it in the second one. The second equation would then leads
to relation between a and Q2+. But because it has no analytical solution the a
is understood as parameter. The result corresponds to relations (4.6).

Although one can consider P2+

2P 2
1
as some function approaching g(2)(0) in limit

of P1 ≫ P2+, we skip this historical link and rather follow more complete
evaluation based on P1 − P2+ diagram.

4.1 Robustness of nonclassicality

The visualization of the criterion in 2D plot of the success and error probabilities
is useful to evaluate a quality of the state. We suggest method that enable us to
assign to a state a number, that characterise robustness of its nonclassicality. It
can be guaranteed by tolerance against an additional losses, which are typically
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Figure 4.2: Robustness of one photon mode with distinguishable thermal mode.
The state moves along the dashed lines during attenuation and crosses the bound-
ary of nonclassicality if p < n̄. Each thick line connect states with the same ro-
bustness. The transmittances of individual case are given by: t1 = 0.2, t2 = 0.5
and t3 = 0.8.

present in any application of single photon state. The non-classical state is more
robust when its nonclassicality is more tolerant against the attenuation.

Some states are always detected as nonclassical by that simplest criterion
even when they are attenuated. This case is exampled by a distinguishable
mode of Poissonian noise added to single photon or N -distinguishable modes
of single photon state. The thermal noise added to state p|1⟩⟨+(1 − p)|0⟩⟨0|
in a distinguishable mode can break the nonclassical border by attenuation if
p < n̄, where n̄ is mean number of thermal photon. The figure (4.2) shows
the situation. The dashed lines stands for the states with p = kn̄, where k is
constant fixed for each line. A state located in a line in this diagram follows the
line during attenuation. The thick line t0 stands for the case p = n̄. All states
with lower rate p/n̄ reach the boundary of nonclassicality. The others thick
lines connect states with the same robustness. The necessary transmittances to
reach the boundary are given by t1 = 0.2, t2 = 0.5 and t3 = 0.8. With respect
to this criterion, nonclassicality is more robust when it survives larger loss.

Consider two states: states A donated by probabilities P0, P1, P2+ and state
B donated by Q0, Q1 and Q2+. How can be compare? If we can prepare both
states with the same rate 1 − P0 and 1 − Q0, the greater success probability,
the better source. Otherwise we have to externally equalize failure or error
probability of both states A and B.

1) If the P0 probability is not important for us, we can equalize the errors by
attenuation. We can generally say that the state A is better if Q2+ > P2+ and
Q1 < P1. Otherwise we equalize the errors by attenuation. The attenuation
make the errors smaller, therefore if Q2+ > P2+ we can attenuate the state B
to yield Q′

2+ = P2+. But the attenuation makes the errors lower and makes the
state B better therefore only if P1 > Q′

1 the state A is better. The result is
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Figure 4.3: Poissonian noise. Full lines express how is a states changed if the
noise is added. The dashed line determine the mean number of photon to get
the state to different spot. The numbers above the graph are related to case of
one photon noised and express the mean number of photon in the mode of the
noise.

inconclusive in the opposite case.
2) In some situation the failures can be an important error. If Q0 > P0 and

Q1 < P1, the state A is better. Otherwise we equalize the failures by adding
a distinguishable mode of Poissonian noise. The yielded probabilities are given
by:

P ′
0 = P0e

−n̄ (4.11)

P ′
1 = P0n̄e

−n̄ + P1e
−n̄,

where n̄ is mean number of photons. It leads the P ′
0 is always smaller. We noise

the state A until P ′
0 = Q0. We can then compare the states A and B. Only

if Q1 > P ′
1 the state B is better. In opposite case, the result is inconclusive.

Figure (4.3) show where a state is relocated in P1−P2+ diagram after adding the
Poissonian noise. The full lines are given by (4.11). No full line cross the border
of nonclassicality. The dashed lines determine the mean number of photon to
get the state to different spot and are tangential to the border of non-classicality.

4.2 Estimation of success probability

To detect weak photon streams we usually use avalanche photo-detectors, as in
case of anticorrelaction and measurement described in Sec. 3.1. They differ only
two inputs: one or more photons detected or vacuum detected. All imperfec-
tions which cannot improve nonclassical character are pessimistically consider
in following tests as part of state.
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Because the previously described criterion requires the probability of one
photon Q1 we need to reliably estimate it from measured probabilities.

In experiment from Sec. 3.1, a state of light is split by semi-transparent
mirror in two beams. Both are detected by two avalanche photo-detectors. We
define the single probabilityQs (just one detector clicks), coincidence probability
Qc (both detectors click) and POVM operators that measure those events: Πs =
(1a − |0⟩⟨0|a)⊗ |0⟩⟨0|b + (1b − |0⟩⟨0|b)⊗ |0⟩⟨0|a corresponds to just one detector
clicks and Πc = (1a − |0⟩⟨0|a)⊗ (1b − |0⟩⟨0|b) both detectors click. Let’s define
density matrix for the split beams ρa,b. The indexes a and b differ two modes
of transmitted and reflected light. The single and coincidence probabilities are
given by:

Qs = Tr(Πsρa,b) (4.12)

Qc = Tr(Πcρa,b).

If Qn is equalled to ⟨n|ρ|n⟩, where ρ is state before the beam splitter, the
single probability is given by Qs = 2

∑∞
n=1 (1/2)

n
pn and Qc = 1 − Qs − Q0,

where Q0 corresponds to measuring the vacuum. We see, two photons can
pass the splitter together and be detected by single detector only. We have to
eliminate influence of this in data.

Because the criterion (4.3) leads to extremal problem we want the condition
Qe

1 ≤ Q1 to be satisfied, where Qe
1 is estimated[14]. It ensures that all states

classified as non-classical are non-classical really. The estimation Qe
1 = Qs−Qc

yields to Qe
1 = Q1 −

∑∞
n=3(1− 1/2n−2)Qn and meets the requirement.

The estimated Qe
1 has to fulfils the statement (4.4) to be the state interpreted

as non-classical. We use an analogy sequence of calculations as previously to
get the solution. We consider equation Qs −Qc + a(1−Q0 −Qs +Qc) = F (a),
where the threshold function corresponds with function in (4.5). The expression

of Qs probability yields to function Qs(a) = (1−a) exp
(
− 1

1−a

)
+a+Qc−2aQc.

We find the minimum of the Qs(a). It is satisfied for Qc = a exp[1/(a−1)]−a+1
−2a+2 .

Putting the Qc in expression Qs(a) we get the parametrization of the boundary
of nonclassicality. It yields to this condition of nonclassicality:

Qs >
a exp [1/(a− 1)]− a+ 1

−2a+ 2
, (4.13)

Qc =
(a− 2) exp [1/(a− 1)]− a+ 1

2(a− 1)
.

From these probabilities we can easily get the estimated probabilities Qe
1 =

Qs − Qc and Qe
2+ = 2Qc. After the substitution we get the same condition of

non-classicality like in (4.6).
We can also estimate probabilities in criterion P1 + aP0. The failure prob-

ability corresponds to no detector clicks probability Q0. We need only esti-
mate the success probability: P e

1 = Qs − Qc. The threshold function is given
by F (a) = ea−1. We search for minimum value of Qs probability given by
Qs − Qc + aQ0 = F (a). It is satisfied for Qc = 1

2 (1 − 2ea−1(a − 2)) and
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Qs = 1/2(1− aea−1). We can easily convince ourselves this estimation is equiv-
alent with (4.13) by substituting it by a = b/(b − 1). It leads to the same
parametrization of the boundary of nonclassical states.
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Chapter 5

Criteria based on the
measured probabilities

Beside the correct estimation of P1 there is another way. We can include the
anti-correlation type of setup and measured probabilities in the criterion:

Ps + aPc. (5.1)

It’s beneficial to define POVM Πs so this: Πs = (1a − |0⟩⟨0|a) ⊗ 1b, i. e. we
measure clicks of one detector independently the other. The Πc = (1a−|0⟩⟨0|a)⊗
(1b − |0⟩⟨0|b) as in previous section. The pure coherent state is uncorrelated in
the beam splitter, thus its density matrix is factorizable:

ρa,b = |α/
√
2⟩⟨α/

√
2|a ⊗ |α/

√
2⟩⟨α/

√
2|b. (5.2)

It yields to Ps = 1 − e−|α|2/2 and Pc =
(
1− e−|α|2/2

)2

. The optimization

of criterion (5.1) gives function F (a) = − 1
4a , for |α|2 = −2 ln

(
2a+1
2a

)
, where

a ∈ (−∞, 0). We compare this function with measured probabilities Qs and Qc

and find the set of non-classical states. The function Qs(a) = − 1
4a − aQc gets

minimum in a = − 1

2
√

Qc

. By inserting it instead of a we get:

Qs >
√
Qc. (5.3)

If we define α = Qc/Q
2
s this result is fully equivalent to α-parameter derived

by Cauchy-Schwartz in-equality and photon detection formula introduced by
Grangier et al in Ref. [8]. However, this criterion (5.3) derived ab initio without
any approximation presents nonclassicality in 2D Ps − Pc plane which contains
more information.

We compare this result with estimation. But there are two different defini-
tion of Ps probability. Let donate P ′

s probability of single detection used in the
estimation case and Ps probability of single detection used in this Section. The
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Figure 5.1: Comparison of α-parameter and estimation of probabilities. The
dashed curve stands for the boundary for estimation and the full one stand for
α-parameter.

optimal result is given by coherent state, thus we can write:

P ′
s = 2p0(1− p0) = 2

[
1− p0 − (1− p0)

2
]
, (5.4)

where p0 is given by p0 = e−|α|2 . Using Pc = (1 − p0)
2 it leads to P ′

s =
2(
√
Pc − Pc) and condition of non-classicality:

Q′
s > 2(

√
Qc −Qc). (5.5)

This is comparable with the estimation. The figure (5.1) shows this criterion
(5.5) against estimation version of criterion (4.13), (5.5) clearly catches more
states in region of higher Pc. However, for low Pc both methods well coincide.

5.1 Higher ordered criteria based on measure-
ment probabilities

Our optimization approach allows to extend concept of criterion (5.1) being
equivalent to α-parameter. Can we detect more states as nonclassical involving
extended scheme with three detectors as shown in Fig. (5.2)? There are two BS:
the first in propagation of the beam has transitivity t1 = 1/3 and the second
one has transitivity t2 = 1/2. We define probability of single Ps (detector A
clicks), probability of coincidence Pc (detector A and B detect simultaneously)
and triple probability Pt (all three detectors click). The operators of these
events are given by: Πs = (1 − |0⟩⟨0|)A ⊗ 1B ⊗ 1C , corresponds to A detector
clicks, Πc = (1−|0⟩⟨0|)A⊗ (1−|0⟩⟨0|)B ⊗1C , corresponds to A and B detectors
click and finally (1− |0⟩⟨0|)A ⊗ (1− |0⟩⟨0|)B ⊗ (1− |0⟩⟨0|)C corresponds to all
detectors click.
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Figure 5.2: Balanced measurement with three detectors. There are two beam
splitters (BS). The first in propagation (BS1) has transitivity 1/3 and the second
(BS2) has transitivity 1/2. All three out coming modes are detected by avalanche
detectors A, B and C.

We will derive criteria with all combination of these probabilities. We op-
timize over coherent state, which has no correlation among out coming modes.
Therefore the probabilities are given by:

Ps = 1− e−|α|2/3, Pc =
(
1− e−|α|2/3

)2

, Pt =
(
1− e−|α|2/3

)3

(5.6)

First, criterion has a form Pc + aPt. The nonclassical condition can derived
by the same methods as used previously. The threshold function is equalled:

F (a) = − 8
27a3 and the condition of nonclassicality Pc > P

2/3
t . Secondly the

criterion Ps+aPc, which yields to threshold function F (a) = − 1
4a and condition

Ps >
√
Pc. Note, although form Ps >

√
Pc is the same as for previous two

detector criterion, but now the detection setup is different. And the last case

Ps + aPt with threshold function F (a) = 2
3
√
−3a

and condition Ps > P
1/3
t . All

three threshold functions are define only for negative parameters a.

Because Ps > P
1/2
c and P

1/2
c > P

1/3
t implies Ps > P

1/3
t we have in fact only

two criteria of nonclassicality and the last one is consequence of the first two
ones.
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Chapter 6

Multi-mode classical states

We have supposed one mode of a classical state yet. But the realistic states
consist of many mode. First, we discuss two modes of a classical mixtures as an
example[3]:

ρ =

∫∫
P (α, β)|α⟩⟨α| ⊗ |β⟩⟨β|dα2dβ2 (6.1)

where the measured probabilities Pn = ⟨n|ρ|n⟩ are given by:

Pn =

n∑
k=0

qa,n−kqb,k, (6.2)

The quantities qa,n−k and qb,k stands for the measured probabilities of n − k
and k photons in the modes a and b. Inserting in (6.2) mixtures of coherent
states we gets:

Pn =

∫∫ n∑
k=0

P (α, β) exp(−|α|2 − |β|2) |α|
2(n−k)

(n− k)!

|β|2k

k!
dα2dβ2. (6.3)

We modify this expression with binomial theorem and obtain:

Pn =

∫∫
P (α, β) exp(−|α|2 − |β|2)(|α|2 + |β|2)n 1

n!
dα2dβ2. (6.4)

This is an integral over Poissonian distributed probabilities with the effective
mean number of photons n̄ = |α|2 + |β|2. If we suppose N independent modes,
the effective mean number of photons is:

n̄ =
N∑
i=1

|α|2i . (6.5)

The optimization over all these N-modes mixtures yield to optimization over
the simple Poissonian distribution with effective parameter n̄. It means the

24



previously introduced criterion is valid even for multimodes mixture of coherent
states.

Similarly we can prove that optimization of criterion Ps + aPc yields to op-
timization over one mode. We can express probability of single and coincidence
detection by this way:

Qs = 2(p0 − p00) (6.6)

Qc = 1− 2p0 + p00,

where p0 means probability a detector doesn’t click and p00 both detector don’t
click.

First, we search for the explicit form of those probabilities in case of two
modes. The probability p00 corresponds to detection vacuum in state (6.1):

p00 =

∫∫
P (α, β) exp

(
−|α|2 − |β|2

)
dα2dβ2 (6.7)

Because coherent state has no correlation at beam splitter, the state (6.1) is
split in this state:

ρ =

∫∫
P (α, β)|α/

√
2⟩⟨α/

√
2|⊗2 ⊗ |β/

√
2⟩⟨β/

√
2|⊗2dα2dβ2. (6.8)

The probability p0 is then given by:

p0 =

∫∫
P (α, β) exp

[
−1

2
(|α|2 + |β|2)

]
dα2dβ2 (6.9)

One can see that optimizing (5.1) yields to optimizing it over case where
P (α, β) = δ(α, β), It means we have effective mean number n̄ = |α|2 + |β|2 in
the case of two modes. It can be easily generalised for N - modes. The mean
number is then given by n̄ =

∑N
i=1 |α|2i in the case of N - modes.

Maximising any previous criteria over any multimode mixture of coherent
states yields to maximising it over single Poissonian distribution, therefore re-
sults derived for single mode states remain valid also for multimode case.
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Chapter 7

Physical models of single
photon sources

It’s very hard to generate exactly the Fock state |1⟩. The real single photon
sources in solid state physics have effectiveness less then one and gives some
incoherent noise to the signal. A physical model of such generated state can be
given by the following scheme. A photon state |1⟩ is divided in beam splitter
with transmittance p and a distinguishable mode of noise is added to the photon.
The outcome is given by multimode structure:

ρ = (p|1⟩⟨1|+ (1− p)|0⟩⟨0|)⊗ ρnoise, (7.1)

where ρnoise stand for the states of the noise and p is effectiveness of the source.
This simple model covers well typical multimode generation of photons to dis-
tinguishable modes appearing in modern solid state single photon sources. It’s
interesting to study influence of different types of noise and its amount.

7.1 Thermal noise

If we add distinguishable mode of thermal state ρth with mean number of pho-
tons n̄ to one photon state p|1⟩⟨1|+(1−p)|0⟩⟨0| we get very realistic one photon
source:

[p|1⟩⟨1|+ (1− p)|0⟩⟨0|]⊗ ρth. (7.2)

The relevant probabilities are given by:

P0 = (1− p)
1

1 + n̄
(7.3)

P1 = p
1

1 + n̄
+ (1− p)

n̄

(1 + n̄)2

Further we show in this state the power of previously derived criteria. Firstly
the criterion of form P1+aP2+ which leads to condition of nonclassicality (4.6).
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Because we search for boundary we can replace the inequality by equality:

P1 =
1

1− a
exp

(
− 1

1− a

)
, (7.4)

1− P0 − P1 = 1 +
2− a

1− a
exp

(
− 1

1− a

)
.

Thus we have two equation for two variables p and n̄. The solution is satisfied
for:

p = a− (a− 1) exp

(
1

a− 1

)
, (7.5)

n̄ = (1− a) exp

(
1

a− 1

)
+ a− 2

This equations give us the boundary of nonclassicality. All states with p greater
than given by these equation are certainly nonclassical.

We can compare this method to more feasible criterion for avalanche detec-
tors based on measurement described in Chap. 5. The probabilities of measuring
the state split in balanced BS are Qs (just one detector clicks) and Qc (both
detecotrs click) and are given by (see Appendix):

Qs =
2(p+ n̄)

2 + 3n̄+ n̄2
, (7.6)

Qc =
n̄(p+ n̄)

n̄2 + 3n̄+ 2
.

We estimate the probabilities P e
1 = Qs−Qc and P2+ = 2Qc as shown in previous

section:

P e
1 =

(2− n̄)(p+ n̄)

2 + 3n̄+ n̄2
(7.7)

P e
2+ =

2n̄(p+ n̄)

2 + 3n̄+ n̄2

One can see the estimated P e
1 reaches even negative values for n̄ > 2. But it is

a consequence of our estimation, therefore we can’t use it for n̄ > 2. We put
these expressions in (7.4) and find the explicit form of p and n̄:

p =
1− a+ (−3 + 4a) exp

(
1

a−1

)
+ (4− 3a) exp

(
2

a−1

)
1 + a

[
exp

(
1

a−1

)
− 1

] , (7.8)

n̄ =
2
[
1− a+ (−2 + a) exp

(
1

a−1

)]
1 + a

[
exp

(
1

a−1

)
− 1

] .

These equation parametrised the boundary of nonclassicality with parameter a
for criterion with estimated success probability.
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Figure 7.1: Nonclassicality of single photon with thermal noise. The dotted
curve stands for the estimation of probabilities, the dashed one for α-parameter
and the full curve corresponds to criterion P1 + aP2+. All states above one of
these lines are certainly nonclassical from the view of the relevant criterion.

In the next we show power of α-parameter. The boundary can be explicitly
express by substituting Qs and Qc (7.7) in condition (7.6): Qs > 2(

√
Qc −Qc):

p >
n̄

1 + n̄
. (7.9)

Thus we get explicit condition of nonclassicality. Figure (7.1) compare the meth-
ods. One can see the most powerful criterion is P1+aP2+ than α-parameter and
the weakest one is the estimation. But for very low noise are all approximately
just the same. The estimation doesn’t catch no states if n̄ ≥ 2. The others
converges to p = 1 for very high log n̄ of noise.

7.2 Poissonian noise

Poissonian noise is another realistic noise. Comparing to thermal light it corre-
sponds to a stream of independent photons. It can be represent by mixture of
coherent states all with the same mean number of photons n̄, but random phase
of α. The photon distribution is given by Poissonian statistics:

pn =
n̄n

n!
e−n̄, (7.10)

where n̄ is mean number of photons. The probabilities relevant to our criterion
are

P1 = pe−n̄ + (1− p)n̄e−n̄ (7.11)

P0 = (1− p)e−n̄

Putting the probabilities in condition P1 > −P0 lnP0 we get:

pe−n̄ + (1− p)n̄e−n̄ > −(1− p)e−n̄ [ln(1− p)− n̄] . (7.12)
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Figure 7.2: Nonclassicality based on criterion with estimated probabilities P e
1 of

Poissonian noise. All state above the curve are nonclasssical.

It is correct for all n̄ > 0 and p > 0, because it leads to inequality p > −(1 −
p) ln(1 − p), that is valid for all p > 0. Any of those states are therefore
nonclassical.

The probability Ps of one detector clicks and Pc of both detectors click are
given by (see Appendix):

Qs = 2(−1 + p)e−n̄ − (p− 2)e−n̄/2 (7.13)

Qc = e−n̄
(
en̄/2 − 1

)(
−1 + p+ en̄/2

)
.

The α-parameter condition (5.5) can be modified in: (Qs/2+Qc)
2−Qc > 0. We

insert the probabilities given by (7.13) and we get: (Qs/2+Qc)
2−Qc =

1
4p

2e−n̄.
We see it is always greater than zero for p > 0, e.i. the state is nonclassical for
such p.

Contrary it, the estimation doesn’t catch all states. We estimate P e
1 =

Qs −Qc and P e
2+ = 2Qc. We put these probabilities in equations (4.6) and find

the solution. It yields to very extensive expressions, therefore we only plot the
result. The figure (7.2) displays the boundary of nonclassicality. We see that
for n̄ > 1.386 the estimation catches no states.

7.3 N-modes of single photon sources

To investigate opposite case typical for solid state sources, we discuss multiple
distinguishable single photon sources with comparable rates and focus on sen-
sitivity to number of modes. If N sources independently irradiate one photon
with probability p, the state is given by:

ρ = ΠN
i=1 ⊗ [p|1⟩⟨1|+ (1− p)|0⟩⟨0|]i (7.14)
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The success and failure probability are given by:

P1 = Np(1− p)N−1 (7.15)

P0 = (1− p)N

Inserting them in condition (4.8) we get P1 +P0 lnP0 = Np(1− p)N−1 +N(1−
p)N ln(1 − p). Because p + (1 − p) ln(1 − p) is greater then zero, the state is
nonclassical for p > 0.

The single and coincidence probabilities are guaranteed by expressions (see
Appendix):

Qs = 1− (1− p/2)N (7.16)

Qc = −(1− p)N + 2(1− p/2)N − 1

We put them in (Qs/2 +Qc)
2 −Qc and get:

1 +
1

4

[
1 + 2(1− p)N − 3(1− p/2)N

]2
+ (1− p)N − 2(1− p/2)N . (7.17)

Numerical calculation shows this expression is greater than zero for p ∈ (0, 1)
and N belongs to set of natural numbers. This type of source is nonclassical for
p > 0, irrespective to number of sources N.

The estimation doesn’t catch all states similarly as in the case of Poissonian
noise. This problem can be solved only numerically from the equation (4.8).
The Figure (7.3) shows the result. We see that only single and two modes
cases are nonclassical for all p. For very large number of modes the boundary
probability p for nonclassical state converges to zero.

7.4 Two-photon state with a distinguishable ther-
mal noise

How efficient is criterion in detection of higher Fock state when they are sub-
jected to loss and noise? Consider two photon state |2⟩. The simplest linear
criterion P1 + aP2+ doesn’t catch this state, but in the following we show the
Ps + aPc criterion with two detectors classified it as nonclassical state. Let the
state |2⟩ incidents in beam splitter with transitivity η. The out-coming state
is: η2|2⟩⟨2| + 2η(1 − η)|1⟩⟨1| + (1 − η)2|0⟩⟨0|. And the distinguishable thermal
noise ρth with mean number of photons n̄ is added.

Firstly we search how is the state split in balanced splitter. Qs (one detector
clicks independently) is given by (see Appendix):

Qs =
4η − η2 + 2n̄

4 + 2n̄
(7.18)

Qc =
(η + n̄)2

2 + 3n̄+ n̄2
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Figure 7.3: Nonclassicality of estimated probabilities of N distinguishable modes
of one photon sources. The bars reach the boundary of nonclassicality. All states
with higher p are certainly nonclassical.

We get the boundary by satisfying the equation Q2
s = Qc, where variable is η

and n̄ is parameter. It leads to four different roots, but only one corresponds to
boundary:

η = 2 +
√
2 + n̄−

√
(2 + n̄)(3 + n̄+ 2

√
2 + n̄)

1 + n̄
(7.19)

To include the higher ordered criteria we let incident the state in sequence
of two BS: the first with transitivity t1 = 1/3 and the second with transitivity
t2 = 1/2. It guarantees the state is split balancedly. The probabilities Qs means
the first detector clicks, Qc the first two click, Qt all three click. The state yields
to (see Appendix):

Qs =
6η − η2 + 3n̄

9 + 3n̄
(7.20)

Qc =
2(η + n̄)2

9 + 9n̄+ 2n̄2

Qt =
2n̄(η + n̄)2

(1 + n̄)(3 + n̄)(3 + 2n̄)

The boundary given by: Qs =
√
Qc yields to:

η = 3 +

√
3

2
(3 + n̄)− 1

2

√
6(3 + n̄)(9 + 2n̄+ 2

√
6(3 + n̄)

3 + 2n̄
. (7.21)

It is one the four solution of the equation Qs =
√
Qc again.
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Figure 7.4: Comparison three different criteria for attenuated two photon state
with thermal noise. The dotted curve corresponds to criterion Pc + aPt, the
dashed one to Ps + aPc and the full one to α-parameter.

The last case is criterion Pc + aPt. The boundary is Q3
c = Q2

t . It is satisfied
for:

η =
−2n̄(1 + n̄) + n̄

√
2(3 + n̄)(3 + 2n̄)

2(1 + n̄)
. (7.22)

All states with η parameter greater than given be equations (7.19), (7.21) or
(7.22) are nonclassical because of the relevant criterion.

We compare all three criteria in one figure (7.4). We can see the Ps +
aPc criterion using two detectors is surprisingly in this case the most powerful
criterion, but for low energy of noise it is approximately as power as the criterion
Ps + aPc using three detectors. The case with η = 1 and n̄ = 0 corresponds
to two photon state |2⟩. We see all three criteria classify it as nonclassical
state. The nonclassicality here comes from two-photon states |2⟩, however by
loss and detection technique, it is transferred to effect which looks similar as for
single photon state. This comparison is stimulating for further investigation of
different criteria.
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Chapter 8

Summary

In this bachelor Thesis I have tried to show the linear criteria are good tool
to detect nonclassicality. They can involve both the probabilities measured by
avalanche detectors or probabilities of exact number of photons like in Klyshko’s
criterion. We have discussed the simplest linear criterion, which is expression
only of vacuum probability and one photon probability. Although this criterion
is weaker then Klyshko’s criterion, the relevant probabilities are more easily
estimated then in the Klyshko case, where it would be necessary to estimate the
two photons probability from measurement.

We use this criterion to define the robustness of nonclassical states. All
states preserves or losses their nonclassical feature after the attenuation. Even
the one photon with thermal noise (where the mean number of photons in the
thermal noise mode is greater then the mean number of photons the second
mode) can loose it completely and such the loss can mark the robustness of
nonclassicality. We define comparison of two different sources as well. In future
we would like extend this methods in measurable probabilities and compare it
with robustness given by α parameter.

The simple criterion Ps + aPc, presented in Sec. 3.3 is equivalent to α-
parameter criterion. Our result was derived directly from definition given by
Glauber. On the other hand α-parameter was yielded by approximation, that
can be used only for weak sources.

We suggest higher ordered criteria that include a setup with more detectors.
Probabilities given by events of three avalanche detectors yield to new criteria. It
surprisingly appears in the concrete model of source all are weaker then criterion
Ps + aPc with two detectors, but we believe that some linear combination of
those criteria can detect new areas of nonclassicality.

All linear criteria were derived for single mode states. But we proved the
optimization over Poissonian statistic include optimization over all N -modes
classical states. Thus these criteria become more powerful for multimode solid
state single photon sources.

We have demonstrated each criterion on realistic physical models. It appears
that some states like single photon with Poissonian noise or N -modes of one
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photon sources are nonclassical always from the point of view criteria Ps + aPc

(the two detectors case) and P1 + aP2+. Contrary the one photon with thermal
noise is nonclassical only for some cases. We showed the most powerful criterion
is P1 + aP2+. But the success probability P1 is very badly measured. After
the estimation we can see the second type of criteria based on the measurable
probabilities is more powerful.

In future we would like to extend the analysis to higher-order criteria and
also include other sources of noise in an indistinguishable mode.
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Appendix A

Beam splitter

Beams splitter is basic optical device, which is used extensively in the thesis. It
is use in such experiments as measuring g(2)(0) function [6], α- parameter [8].
Two incident modes a and b interact in the beam splitter and two output modes
c, d come out of the splitter. In all our calculation we are interested in the case
when the incident mode interacts only with vacuum. The creation operators of
the four modes are bind in these equations:

a†a = ta†c + ra†d, (A.1)

a†b = −ra†c + ta†d.

The coefficients r and t are obeyed by condition: t2+r2 = 1. The same relations
are valid for annihilation operators of corresponding modes. We can express all
states |ψ⟩ by this way:

|ψ⟩ =
∞∑

n=0

1√
n!

(
a†
)n |0⟩. (A.2)

A state after interaction with vacuum is yielded in form[2]:

|ϕ⟩ =
∞∑

n=0

1√
n!
(ta†c + ra†a)

n|00⟩ac. (A.3)

The equation (A.3) guarantees an out coming state ρc,d is given by:

ρc,d =

∞∑
n=0

n∑
k=0

(
n

k

)
tkrn−kρ′n|k⟩c⟨k| ⊗ |n− k⟩d⟨n− k|, (A.4)

where ρ′n stands for probability of n photons in the incident state: ρ′n = ⟨n|ρa|n⟩.
We see that photons are split as particles, i. e. there is no interference between
them. The probability ρk,n−k (in one mode is found k photons, in the other
n− k photons) is given by binomial distribution:

ρk,n−k =

(
n

k

)
tkrn−kρ′n. (A.5)

35



The problem of getting probability of single click Ps and coincidence prob-
ability Pc is then given by these equations:

Ps = 2(p0 − p00) (A.6)

Pc = 1− Ps − p00,

where p0 stands for probability that one of the detector doesn’t click (inde-
pendently the other) and p00 no detectors click. Probability p00 corresponds
to probability of vacuum ρ0 of the incident state, p0 is given by summation of
(A.5) over all cases, where k = 0:

p0 =
∞∑

n=0

1

2n
ρn. (A.7)

For state with Poissonian statistics we get: p0 = e−n̄/2. For thermal state
with Bose-Einstein statistics we get p0 = 2

2+n̄ . If we have two distinguishable
modes a and b, the probabilities are independent, therefore : p0 = p0,ap0,b,
p00 = p00,ap00,b, where indexes stand for the different modes a and b. Combined
this expressions together we get:

p0 = (1− p/2)e−n̄/2 (A.8)

p00 = (1− p)e−n̄

for one photon added to Poissonian noise,

p0 = (1− p/2)
2

2 + n̄
(A.9)

p00 = (1− p)
1

1 + n̄

for one photon added to thermal noise and

p0 = (1− p/2)n (A.10)

p00 = (1− p)n

for N-distinguishable N-modes one photon sources as was mentioned previously.
Criteria of form Pc + aPt etc. involve probability measured in an extended

setup with three detectors. The scheme consists of two beam splitter, the first
in propagation of the beam is unbalanced with transitivity 2/3. The second
one is balanced. It guarantees the beam is consequently split balanced in three
modes.

To solve the splitting problem we use the formula (A.5) twice:

ρm,n,k =
(m+ n+ k)!

m!n!k!

(
1

3

)m+n+k

ρ′m+n+k. (A.11)

Because any permutation of indexes m,n, k doesn’t change the right side of the
expression, the setup is really balanced.
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Let’s define probabilities p0 (detector A doesn’t clicks), p00 (detector A and
B doesn’t click) and p000 (no detector click). The probability the detector A
clicks is 1 − p0, the probability the detectors A and B click simultaneously is
1− 2p0 + p00, the probability all three detectors click is 1− 3p0 + 3p00 − p000.

For coherent state we have: p0 = e−n̄/3, p00 = e−2n̄/3 and p000 = e−n̄.
Thermal noise yields to: p0 = 3

3+n̄ , p00 = 3
3+2n̄ and p000 = 1

1+n̄ . The two-

photon state ρ0|0⟩⟨0| + ρ1|1⟩⟨1| + ρ2|2⟩⟨2| yields to: p0 = ρ0 + 2
3ρ1 + 4

9ρ2,
p00 = ρ0 + 1

3ρ1 + 1
9ρ2 and p000 = ρ0. If we have two distinguishable modes,

these probabilities are factorizable in the two modes as well.
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