




Abstrakt (CZ)
Disertační práce se zabývá numerickým modelováním 3D nestlačitelného proudění
vzduchu při lidské fonaci pěti kardinálních samohlásek /u, i, A, o, æ/. Vědecký přínos
této práce je v popisu souvislosti mezi výpočtem turbulentního proudění při použití
konvenčního subgrid modelu (jednorovnicový, WALE), či nově implementovaného
anizotropního minimálně disipačního (AMD) subgrid modelu a jeho vlivu na
aeroakustický výpočet fonace. Vzhledem k velké škále měřítek v turbulentním proudění
a v akustice je simulace rozdělena tak, že výpočet nestlačitelného proudění v hrtanu je
realizován metodou konečných objemů na jemné síti a zdroje zvuku včetně šíření
zvukových vln od hrtanu až do vyzařovaného prostoru okolo úst metodou konečných
prvků na hrubé akustické síti.

Abstract
This dissertation deals with numerical modeling of 3D incompressible laryngeal flow
during human phonation of five cardinal vowels /u, i, A, o, æ/. This work aims to
describe the correlation between turbulent flow simulations with a conventional
(One-equation, WALE) or newly implemented anisotropic minimum dissipation (AMD)
subgrid-scale model and its impact on the aeroacoustic spectrum in human phonation.
Given the large variety of scales in the flow and acoustics, the simulation is separated in
two steps: computing the flow in the larynx using the finite volume method on a fine
grid followed by computing the sound sources and wave propagation from the larynx to
the radiation space around the mouth using the finite element method on a coarse
acoustic grid.
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List of symbols

Symbol Dimension Description

Latin alphabet
av m2.s−1 vector potential
A1, A2 m amplitude of oscillation
c0 m.s−1 speed of sound
CA - modified Poincaré constant (AMD model)
CS - Smagorinsky coefficient
Ck, CE, C∆, Cm - model contants
Cν , Cϵ, Cw - model contants
D s−1 filtered stress tensor (OpenFOAM)
F1 − F3 Hz formant frequencies (formants)
f, f , f ′ - flow variable, filtered, fluctuating
fo Hz fundamental frequency
f2, f3 Hz second and third harmonic frequency
fF1,F2,F3 Hz frequencies of the first three formants
fj N.m−3 force density
g m glottal gap
Gij s−1 velocity gradient tensor
Gf - kernel (shape of the filter)
G, Ĝ - Green’s function (time and freq. domain)
I□, II□, III□, IV□ first, second, third and fourth invariant of □
kw rad.m−1 wave number
kSGS, k

W
SGS m2.s−2 subgrid kinetic energy

K Pa bulk modulus
h m height of the hill/channel
LLH
ij m2.s−2 Lighthill tensor

L dB sound pressure level
Lfo dB sound pressure levels

at fundamental frequency
LF1,F2,F3 dB sound pressure level at first three formants
p Pa static pressure
p′ Pa fluctuating pressure
p Pa filtered pressure
p0 Pa temporal mean pressure
pa, parms, p

a
ref Pa acoustic pressure (root mean square, average)

pic Pa incompressible pressure
p(0) Pa ’pseudosound’ pressure (near-field)
p(1) Pa ’acoustic’ pressure (far-field)
Pk m2.s−2 kinematic pressure
qma,qmo kg/(m3.s), kg/(m2.s2) source terms
qvel, qvor m.s−2 velocity and vortical source terms
Q, q m3.s−1 volumetric flow rate
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r m spatial scale
r m distance between the probe and sound generator
Re - Reynolds number

periodic hill
Reτ - Reynolds number based on friction velocity
Sij s−1 symmetric part of the

velocity-gradient tensor
or resolved rate-of-strain tensor

sdij s−1 symmetric part of a square of the
velocity-gradient tensor

Sij s−1 filtered stress tensor Sij

St - Strouhal number
t s time
ta s time of activating sound
tO s time at the maximum glottal opening
tC s time at the convergent position of vocal folds
tN s time at the divergent position of vocal folds
u m.s−1 velocity vector
ua m.s−1 acoustic (particle) velocity vector
u0 m.s−1 temporal mean velocity
ujet m.s−1 glottal jet velocity
u m.s−1 filtered velocity vector
u′ m.s−1 fluctuating velocity vector
Ub m.s−1 mean bulk velocity above hills
⟨u⟩ m.s−1 temporal averaged velocity component
ui,u

′
i m.s−1 velocity components, fluctuating

uτ m.s−1 friction velocity
u+ − normalized velocity
w1,2 m sinusoidal displacement
T Pa viscous stress tensor
TLH Pa Lighthill tensor
xi m spatial coordinate
xo m location of observer (vector)
x+, y+, z+ - dimensionless wall distance
y+min, y

+
avg, y

+
max - dimensionless wall distance

(minimum, average, maximum)
ys m location of source (vector)

Symbol Dimension Description

Greek alphabet
δij - Kronecker delta
δd - Dirac delta
δxi m filter width of the LES filter (AMD model)
∆ m filter width of the LES filter
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∆x+,∆y+,∆z+ - grid spacing in wall units
∆la m acoustic element length
∆ta s acoustic time step
Γin,Γout,Γwall - boundary (inlet, outlet, walls)
ΓbVF,ΓuVF - boundary (bottom and upper vocal folds)
Γback,Γfront - boundary (z-normal)
ϵ m2.s−3 dissipation rate
µ Pa.s dynamic viscosity
µt Pa.s turbulent dynamic viscosity
µeff Pa.s effective dynamic viscosity
ν m2 s−1 kinematic molecular viscosity
νt m2 s−1 kinematic turbulent (SGS) eddy viscosity
νSt , ν

O
t , ν

W
t , ν

A
t m2 s−1 turbulent viscosity by the Smagorinsky,

One-Equation, WALE and AMD model
νQR
t m2 s−1 turbulent viscosity by the QR model
ψa m2.s−1 acoustic scalar potential
Dψa/Dt m2.s−2 total derivative of the acoustic potential

”acouPotentialD1”
Dpic/Dt Pa.s−1 PCWE term
λ m wave length
ρ kg.m−3 density
ρ

′
kg.m−3 fluctuating density

ρ kg.m−3 filtered density
ρ0 kg.m−3 temporal mean density
ρa kg.m−3 acoustic density
τij m2.s−2 exact sub-grid scale stress tensor
τ ′ Pa perturbed viscous stress tensor
τw Pa wall shear stress
ω s−1 vorticity vector
ω rad.s−1 angular frequency
Ωij s−1 deviatoric part of the velocity-gradient tensor
ξ1, ξ2 rad phase difference of vocal folds oscillations
O Bachmann–Landau notation
□ic incompressible field variables
□a acoustic quantities
□̂ Fourier transformed variables

Abbreviations

AMD Anisotropic Minimum Dissipation
APE Acoustic Perturbation Equations
CAA Computational AeroAcoustics
CFD Computational Fluid Dynamics
CT Computed Tomography
DNS Direct Numerical Simulation
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FFT Fast Fourier Transform
FEM Finite Element Method
FSI Fluid-Structure Interaction
FVM Finite Volume Method
IPA International Phonetic Alphabet
SGS Subgrid-Scale
LAM ”laminar model” for turbulent flow

(DNS on a coarse grid, no SGS model influence
on large-scales)

LEE Linearized Euler Equation
LES Large-Eddy Simulation
LES-NWR LES with Near-Wall Resolution
LES-NWM LES with Near-Wall Modeling
OE One-Equation eddy-viscosity
OpenFOAM Open Field Operation and Manipulation

(open source software for CFD)
(https://cfd.direct/openfoam/)

OpenCFS Open Coupled Field Simulation
(open source software for CAA)
(https://www.opencfs.org/)

PCE Perturbed Compressible Equations
PCWE Perturbed Convective Wave Equation
PML Perfectly Matched Layer
RANS Reynolds-Averaged Navier-Stokes equations
SMAG Smagorinsky model
SPL Sound Pressure Level
tVSA triangular Vowel Space Area
VAI Vowel Articulation Index
VLHR Very Low tone to High tone Ratio
WALE Wall-Adaptive Local Eddy-viscosity

Mathematical
operators

∇b gradient of scalar-valued function b
∇ · b divergence of vector-valued function b
∇× b curl of vector-valued function b
∆b = ∇ ·∇b laplacian of scalar-valued function b
D/Dt total (substantial) temporal derivative
b⊤ transpose of vector-valued function b
a⊗ b dyadic (outer) product
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1 Introduction
1.1 Principles of voice production

The generation of a human voice is a highly complex biophysical process, where the
viscoelastic multi-layered tissues of the vocal folds interact with the airflow expired from
the lungs, start to self-oscillate, and close the channel periodically. The vocal fold
oscillation and glottal closure modulate the mass flux, create complex turbulent
structures and pressure disturbances, which form the voice source. This source signal is
modulated by the vocal tract, radiated from the mouth, and perceived as a human
voice. Physiological principles are precisely described in the monograph by Titze (1994).
Phonation is performed by true vocal folds, a unique paired anatomical structure, see

Fig. 1.1. This paired structure produces vibrational modes during phonation, possibly
due to a very soft laminated structure of lamina propria which sits between
thyroarytenoid muscle and overlying epithelium surface. Elastin, colagen and interstitial
proteins are fundamental to pliability and extensibility of the vocal folds, known from
several voice pathology studies (Stemple et al., 2018). The vibration of true vocal folds,
hereinafter called vocal folds, is one of the dominant sound sources. Phonation relies on
pulmonary respiratory power caused by the abdominal and thoracic musculature.
During abdominal (belly) and thoracic (upper chest) breathing the lungs are
simultaneously pulling downward, followed by exhalation when the diaphragm rises back
to the relaxed position. In the case of quiet exhalation, the vocal folds are abducted
(open) as shown in Fig. 1.1 (left), and no sound is generated. During phonation (see
Fig. 1.1 (right)), the airflow from lungs is constricted and the vocal folds are adducted
(closed, in contact). This effect builds up the subglottal pressure below adducted vocal
folds until vocal folds are blown apart and set the surface covering vocal folds to
oscillate.

Fig. 1.1: Endoscopic view of the larynx and surrounding structures. Left: Fully open
in respiratory position (abducted). Right: during speech (adducted). Overtaken from
Stemple et al. (2018).
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The rate between the subglottal pressure from lungs and the pressure in the glottis
influences the quality of phonation (pitch, loudness, nasality etc.).
Vocal folds are able to produce four kinds of oscillations (vocal registers). The registers

are divided according to kind of vibrations, ordered from the lowest register they are: (1)
vocal fry, (2) modal, (3) falsetto and (4) whistle. The vocal fry register is characterized
as a bubbling of air through the totally relaxed adducted vocal folds. The modal (or
normal) register is typical register used in speech and lower singing voice, where the
entire structure of the vocal folds oscillates with complete closure of the glottal channel
for a considarable portion of the oscillation cycle. On contrary, the falsetto register is
caused primarily by oscillation of edges of vocal folds rather than whole vocal folds. And
the last whistle register occurs when muscles of lateral cricoarytenoid are more active than
the transversal ones. This atypical muscle clenching causes the highest tones of which the
vocal folds are physiologically capable (Titze, 1994).
Sound waves are carried upward in the direction of exhalation through a relatively

short supraglottal volume. Afterward sound waves travel through the pharynx and
articulatory structures. This airway full of cavities prolongs and reinforces acoustic
waveforms. The passage is named uniformly as a vocal tract (filter). In reality, the vocal
tract consists of the velum, teeth, tongue, hard and soft palate, and other structures
contributing to the resonance of the entire respiratory tract. Speech created only by
vocal folds without any contribution of the resonating vocal tract is just atonal buzz.
Fig. 1.2 illustrates the source-filter theory (Titze, 1994) of vocal production, where the

dominant source is located in the larynx. The vocal fold oscillation is characterized by
the so-called fundamental frequency fo, and the sound waves travel downstream to the
supralaryngeal vocal tract. The immediate shape of the vocal tract has its own resonant
frequencies, which are typically called and written as formants F1 − F4. Resonances
of vocal tracts are always higher than fundamental frequency fo, hence the resonances
have no or a very little influence on fo (Wolfe et al., 2009). The ranges of fundamental
frequencies are observed from 85 to 155 Hz for adult males and from 165 to 255 Hz for
adult females (Baken and Orlikoff, 2000) for ordinary spoken speech.

Fig. 1.2: Spectrogram of a vocalization of the vowel /a/, fundamental frequency fo and
formants F1 − F4. Overtaken from Kamiloğlu et al. (2020).

More informative illustration based on the source-filter theory of voice description is
shown in Fig. 1.3. From left: (1) The laryngeal source spectrum is formed by the vocal
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fold oscillation, (2) the vocal tract transfer function is affected by resonance frequencies
of the vocal tract itself, and (3) the previous two signals are composed into the voice
spectrum, which the speaker emits and others hear. The fundamental frequency fo in the
spectrum of the laryngeal source is followed by the harmonic series fn = fo(n+1). In the
broad voice spectrum, is it still a question of how to detect formants F1 − F4 precisely
(usually two-three human formants are enough to determine the vowel). Some authors
present their methods how to plot a spectrum envelope (as is marked by the blue line in
Fig. 1.3) to identify formants (Fant, 1970; Benade, 1990). Other research groups use a
more scientific approach to detect formants by the autoregressive filter based on Atal and
Hanauer (1971).

Fig. 1.3: Source-filter theory of speech production.

Locations of each formant frequencies F1, F2, ..., Fn are affected by many factors, for
example, the height and advancement of the tongue defining the articulatory working
space, in general all cavities in the vocal tract. Cavities can amplify and attenuate
frequencies as a band-pass filter, and damp and/or enhance specific ranges of
frequencies. In non-human vocal tracts, resonant properties are often static and more
predictable compared to human vocal tracts (Fitch, 1994). Human vocal tracts are
much more complex, defined as series of cross-sectional areas measured from glottis to
mouth. The length and shape of vocal tracts influence formant frequencies, where the
main determinants are set of muscles encircling the pharynx, such as pulling the tongue
backward in the example ”father” (vowel /a/), or pulling the tongue front in example
”beet” (vowel /i/) related with genioglossus muscle, or tongue position holding
backward and up in the example ”boot” (vowel /u/) related with styloglossus muscles
(Fitch, 1994). Fig. 1.4 (right) shows these vowels written in the international phonetic
alphabet distinguishing the vowels based directly on the tongue position, i.e. as front,
central and back lines at first. The letters around the point e.g. (i•y) mean the
”unrounded” /i/ and ”rounded” /y/ vowel, respecting the lips position. The frontmost
vowel is /i/, the highest and backmost vowel /u/, the lowest and front vowel /æ/, the
lowest and backmost /A/ etc. The vowels /u, i, A/ are found in almost all languages on
the world (Kuhl et al., 1997).
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Fig. 1.4: Left: Position of the tongue relative to the vowels. Right: International
Phonetic Alphabet (IPA).

The flow exhalation through the oral cavity, Fig. 1.4 (left), can be amplified when the
velum is pulled up and back to seal off the nasal cavity. On the contrary, the phonation
performed by both cavities (oral and nasal) is called a ”nasalized” sound, for example, by
a consonant /m/. Typical speakers where nasalization is common are French (more than
with vowel quality, they manipulate with vowel length).
A graphic representation of voice in terms of its frequencies is shown in recordings in

Fig. 1.5, where the x-axis is time (0-500 ms) and the y-axis is the frequency
(0-4,000 Hz). The dark spots in the spectrogram denoted by the arrows correspond to
formants (F1, F2, F3). The intensity of the black color corresponds to the prevalence of
the specific frequency. As it was seen in the rectangular trapezoid in Fig. 1.4 (right), the
vowels are placed at a higher (e.g. /i, u/) and lower position (e.g. /a, A/). The height of
the vowel is inversely related with the first formant F1, i.e. the higher placed vowel /u/
corresponds to the lower first formant F1 compared to /a/. Fig. 1.5 (left) shows the first
formant F1 in red rectangles, which mark the high vowels. They resonate at lowest
frequencies /i, u/ ∼ 280− 310 Hz, whereas the blue rectangles mark the first formant F1

for the mid/low vowels /æ, A/ ∼ 690 − 710 Hz. Fig. 1.5 (right) shows the same
spectrogram as on the left side, but with the marked second formant F2. The second
formant is related to degree of backness, the green rectangle highlights front vowels
(with higher F2, /æ, i/ ∼ 1660 − 2250 Hz) and the purple rectangle shows back vowels
(lower F2, /u, A/ ∼ 870− 1100 Hz).
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Fig. 1.5: Two identical spectrograms of eight vowels. Left: with marked F1, high (red)
and mid/low (blue) vowels. Right: with marked F2, front (green) and back (purple)
vowels. Source: (Shriberg et al., 2003)

1.2 Diagnostic methods

Diagnostic methods in voice production consist of instrumental and voice analysis. The
instrumental analysis can be:

1. Clinical examination of the larynx (laryngoscopy), where the flexible laryngoscope
is inserted through the nose or mouth into the larynx, equipped with an optical
adapter for recording a video (videolaryngoscope) and source of light, see Fig. 1.1.
To display complex vocal folds motions in detail, VKG techniques (VKG, HSDK
and SVKG) were invented, i.e. videokymography (VKG), high-speed digital
kymography (HSDK) and strobovideokymography (SVKG). VKG delivers
kymographic images in real time whereas the other techniques construct the
kymographic images from recordings. (Švec and Schutte, 2012).

2. Laboratory voice analysis (electroglottography (EGG)), where EGG is performed
through a laryngograph, which measures impedance between contact electrodes
placed on both sides of the thyroid cartilage. The signal is called the
electroglottogram, which can monitor the closure of vocal folds (by contact of
superficial mucosa layers).

Voice analysis has countless methods, here will be referred only those which appear
in the chapter Voice disorders. Triangular vowel space area (tVSA) (1.1) and the vowel
articulation index (VAI) (1.2) are extracted from the first two formants of vowels /A, i,
u/ by calculating (Skodda et al., 2012)
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A relatively easy technique to analyse the speech is to ask the patient to produce
isolated syllables /pa/-/ta/-/ka/ as quickly as possible and as long as possible with
breath. The acoustic method of repetition /pa/-/ta/-/ka/ is called diadochokinesis in
clinical neurology at pre-clinical stages (Konstantopoulos et al., 2017). Another
technique VLHR (Very Low tone to High tone Ratio) is used in routine as an index of
nasality. The value is evaluated as a sum in dB of the low power spectrum in the range
50-600 Hz divided by a sum of high power spectrum from 601 to 8063 Hz (Lee et al.,
2009).
The quality of voice can be discussed by terms jitter and shimmer (Rammage, 2013),

which are defined usually from prolonged vowels /i, A/. The existence of jitter means
fluctuation of glottal cycle length, see Fig. 1.6 (middle) compared to reference voice
Fig. 1.6 (left). Evaluation of jitter allows for early detection of carcinoma of the larynx
and is related to the physiological condition rather than age. The existence of shimmer,
Fig. 1.6 (right), shows different amplitude in each period. The shimmer is measured
together with the jitter and can be the first signal of cancerous lesions on the vocal
folds. Aging may also start a shimmer in voice, mainly related to vocal folds weakness.

Fig. 1.6: Perturbations (jitter and shimmer) in the glottal source waveform. Overtaken
from Rammage (2013).

1.3 Voice disorders

Most of the acoustic energy is contained in the fundamental frequency fo generated by
vocal folds. Therefore one might think that healthy vocal folds have to be a guarantee of
a healthy voice. Still, the situation is more complicated; the voice is also rapidly changed
with the onset of neurological disease and being a physiologically healthy man at the same
time. Voice disorders are also connected with common colds, as everyone has encountered,
but this chapter will focus on more severe voice disorders.
Nodules, polyps. Among the structural disorders are, for example, vocal fold nodules,

small calluses, usually located on each vocal fold separately. The voice handicapped
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with nodules is perceived as singing. On the contrary, vocal fold polyps and cysts occur
unilaterally and they are filled by fluid or solid. Vocal fold polyps are benign lesions with
individual symptoms as hoarseness, or breathiness and vocal fatigue (Vasconcelos et al.,
2019).
Laryngitis. Other organic causes, such as laryngitis, are caused by viruses, bacteria,

tumors, parasites, antigens from the contaminated environment, and trauma (Dworkin,
2008). The immune system responds to the inflammation of the tissues of the larynx
in the body and significantly affects the main functions of the larynx, which are voice
production, breathing, coughing and swallowing processes. But without this protective
reaction, the afflicted tissues could not survive. The larynx is an integral component of
the anatomic framework. Hence the inflammation that arises within the unified airway is
able to spread in the whole respiratory tract. Thereby, the voice is changed by a degree
of acute laryngitis and the voice is associated with a dry barking cough, muffled voice,
hoarseness, meaning the patient cannot fully control the pitch and timbre of the voice.
The recent study published by Peters et al. (2021) pointed out also an effect of the physical
condition of the laryngeal mucus layer on lubricating the vocal folds and viscoelasticity
of vocal folds. The fact about the rigidity of mucus layers by smokers is not so surprising,
nicotine was found to reduce the thickness of the mucus layer. In general, mucus is filled
with 90-95% of water, 1-5% of mucins, 1% electrolytes, 1-2% lipids, other proteins etc.
Especially mucins, the main component of mucus, determine vocal folds viscoelasticity.
The Parkinson’s disease manifests itself even up to 5 years before the diagnosis by

reduced vocal tract volume, tongue flexibility and articulation rate. Also, the narrower
vocal range of pitches that a human is able to phonate was observed from audio samples
of the healthy subjects and subjects with a confirmed diagnosis (Vaiciukynas et al., 2017).
The increasing amount of samples can allow training the software helping to match the
voice recorded on a smartphone’s microphone with a diseased voice with some accuracy.
For example, the study published by Orozco-Arroyave et al. (2015) contains a dataset
including 35 Czech speakers, i.e. 20 voices affected by Parkinson’s disease and 15 samples
with healthy voice, following 100 Spanish speakers, and subsequent 170 German speakers.
A total of four speeches were prepared, including sustained vowels, sentences repetition,
read text and monologue. Results stated lower VAI (1.2) for patients with Parkinson,
which means the loss of dopaminergic neurons in the mid-brain as a consequence of
Parkinson disease and getting old. In addition, the tVSA value (1.1), which is computed
from the first two formants as well as VAI, was significantly lower only for female patients.
These indicators can be the first sign of starting the disease, directly from the locations
of vowels. Towards both groups of subjects, no motor symptoms were observed, only
the articulation imprecision as a predominant characteristic of Parkinson’s disease. The
accuracy of the method for the fore-mentioned three languages gained 98% in monologues,
where the measured subject got a task to speak about daily activities for around 180
seconds and read 80 words from a paper. More results from General University Hospital in
Prague can be find in Rusz et al. (2013). Medical interventions and also the progress of the
disease may affect vowel articulation. The quality of each vowel is determined primarily
by acoustic energy emitted by the first two formant frequencies, which are controlled
inversely with tongue height and tongue advancement (Kent et al., 1999). Recordings are
typically made 15-30 cm from the subject’s mouth, and subjects are instructed to say a
short sentence in one breath and repeated it five times. The minimal length of the vowel
had to be 40 ms. Concerning the mechanism responsible for the speech in Parkinson’s
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disease, speech impairment is attributed to dopamine deficiency as well as hypokinesia and
rigidity of the vocal tract. Articulation of the vowel /u/ requires more involvement of the
orofacial muscles than in cases /i, A/, thereby the measurement of F /u/

2 based on a single
vowel showed the most sensitive differentiation between the healthy and diseased groups.
Acoustic measurements of the vowel articulation is a promising method for detecting the
severity of Parkinson’s disease early, monitoring the progress, etc.
Down syndrome. The voice of the Down syndrome population is perceived as

breathy, rough and low-pitched (Jeffery et al., 2018). The measurements are focused on
fundamental frequency, jitter (perturbation of frequency), shimmer (amplitude
variation) and the so-called harmonic-to-noise ratio (extra noise in the harmonic
spectrum) (Jeffery et al., 2018). The study published by Moura et al. (2008) reported
the elevated study of jitter and shimmer during sustained vowels /a, e, i, o, u/ of 66
Portuguese children (4-6 yo) with Down syndrome. The children sustained vowels at
lower fundamental frequencies, got higher perturbations in shimmer and jitter, and
increased the ratio between the noise and strength of the phonation. The perceived
voice quality by adults with Down syndrome results in detection of slightly higher mean
fundamental frequency compared to a healthy population, but the other parameters
were not so evident. Down syndrome is projected to the voice by several factors:
harmonic-to-noise ratio, laryngeal tension, etc. In other studies, for example, published
by Seifpanahi et al. (2011), the jitter was observed lower in Down population and the
shimmer plus-minus comparable compared to healthy population.
Myasthenia Gravis. The disease manifests itself by an error in the transmission of nerve

impulses to muscles. Phonatory function assessment is done using sustained phonation of
the front vowel /a/ in combination with reading. The jitter, standard deviation from a
fundamental frequency were higher compared to the healthy population. The group with
the Myasthenia Gravis had a longer silence between /pa/-/ka/ productions and a higher
duration of the consonant /t/ when the syllable /ta/ was produced.
Vocal Tremor. The vocal tremor is another neurological disease, which can affect voice

production. This diagnosis may result in tremulousness of the larynx, tongue and palate.
In the majority of cases, the physiological tremor has a frequency 8-12 Hz (Herteg̊ard et al.,
2000). In speech, it is characterized by periodic modulation in pitch, loudness and voicing.
To soft this handicap, patients are treated with laryngeal botulinum toxin injections
directly targeting thyroarytenoid muscles (Herteg̊ard et al., 2000). The diagnosis of the
vocal tremor is divided into several methods of investigation, i.e. with palpation, especially
on abdominals, chest walls and vertical movements of the larynx (Hemmerich et al., 2017).
Detection of the vocal tremor from abdominal walls by plethysmography measured from a
breathing mode was also often used, but it proved to be very ineffective (under 35%). On
the other side, the laryngoscopy (or nasendoscopy) focused on vocal folds and supraglottic
structures can confirm the diagnosis in 95% of cases.
Cleft Palate. The sound production can be negatively influenced by excessive coupling

of the oral and nasal cavity, resulting in an additional resonance called hypernasality.
The voice of the population with cleft lips and cleft palates is an example of abnormal
resonances, which results in poor speech intelligibility. In a recent study published by
Dodderi et al. (2016), 30 children (8-15 yo) with congenital cleft of palates were measured
to produce in 5 seconds sustained vowels /a/, /u/ and /i/ at a comfort loudness settled
by a participant. The gained records were analysed in Praat software (Phonetic Sciences,
University of Amsterdam) with the integrated Hillenbrand algorithm to extract VLHR.
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The result score in dB was compared between preoperative and postoperative patients to
discuss the varying level of hypernasality.
Attention Deficit Hyperactivity Disorder (ADHD). The most common

neurodevelopmental disorder, ADHD is occurring most in childhood. In study published
by Barona-Lleo and Fernandez (2016) performed on children (5-13 yo), including 44
patients with ADHD and 35 patiens as a control healthy group were measured. The
assessment protocol observed higher subglottal pressure and lower transglottal flow rate
than the control healthy group. The subglottal pressure is computed as a difference
between the tracheal and pharyngeal pressures, and the transglottal flow is defined from
the sum of airflows exhaled from the nose and mouth. The treatment for the ADHD
population would be speech therapy containing special training programs to manipulate
with the breath, phonation techniques to optimize the air for emitting the voice, and in
combination with pharmacotherapy. As many investigations confirmed, the pathological
findings are very common among by the ADHD children (more than 90%). In the
majority of cases, it is about vocal nodules.
A particular group of voice disorders is speech-articulation disorders connected with

difficulties to activate articulatory muscles precisely. Dysarthria is a complete inability or
weakness to control the face, mouth and respiratory system. The voice is stated as soft,
weak and slurred. A very similar handicap with the lack of speech musculature is the
apraxia disease when patients have difficulty sequencing sound. Associated with speech
fluency are stuttering and cluttering. The first occurs when repetitions disrupt the flow
of the speech and the latter when speaking is excessive.

1.4 State of the art in human phonation modeling

Owing to the restricted access to the glottis, human phonation numerical modeling is
becoming increasingly important. For example, the phonation model ”simVoice”
(Maurerlehner et al., 2021) is developed and based on an extended experimental
database for voice treatment (specific vocal fold motions and boundary conditions),
obtained at University Hospital Erlangen and Freiburg (Birk et al., 2017; Probst et al.,
2019). During recent decades, numerical simulation of human phonation has advanced
considerably towards a state where full-scale aeroacoustic simulations on realistic CT- or
MRI-based geometries are possible. It can be anticipated that soon these simulations
could be used for subject-specific pre-surgical predictions of vocal fold oscillations and
resulting voice quality for people suffering from various vocal fold dysfunctions (Sadeghi
et al., 2019a,b), or for the development of vocal folds prostheses. Authors of the
simVoice software refer to a good agreement with acoustic measurements and state as a
critical factor to further efficiency the optimization of the CFD part in their CFD-CAA
workflow. An example of usage of simVoice in a clinical environment can be as follows.
(1) The motion of vocal folds is measured by a high-speed imaging camera and the voice
is recorded. (2) The examined human larynx and vocal tract are recorded by a magnetic
resonance imagining. (3) The simVoice model is adapted regarding to findings and
specific physiology of the patient. (4) The original and modified geometric models of the
larynx are uploaded into the phonation software. In other words, the simVoice model
confirms the efficiency of the suggested surgical treatment. (5) The numerical model of
phonation can offer precise arguments to accept or decline a proposal for surgical
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intervention. The presented workflow (1)-(5) aims to improve surgical and medical
treatment of voice disorders. However, although powerful numerical simulation tools are
available, the numerical methods still face challenges due to the nonlinear phenomena
both in solid and fluid mechanics. One more reason why the simulations are not
performed in units of lower hours is a necessity to compute 3D simulations to get a
realistic turbulent flow (Mattheus and Brücker, 2011).

1.4.1 CFD simulations

Tab. 1.1 summarizes flow parameters for voiced speech (Baken and Orlikoff, 2000).

Tab. 1.1: Flow parameters - fundamental frequency of vocal fold oscillation fo, volumetric
flow rate Q, glottal jet velocity |ujet|, glottal gap g, Reynolds number Re, Strouhal number
St..

Variable Value Variable Value
fo 80− 220 Hz Q 0.08− 0.25 l/s

|ujet| 15− 45 m/s g O(1mm)
Re O(100)− O(10, 000) St O(0.001)− O(0.01)

The male vocal folds occupy the lower range of fo. Low values of the Strouhal number
led to an idea of a quasi-steady flow field (Mongeau et al., 1997), but lately, it has been
shown that the high accelerations caused by fast-changing from the convergent and
divergent position of vocal folds are dependent on a Reynolds-Strouhal relationship
corresponding more to unsteady flow. Based on current knowledge, intraglottal and
supraglottal flow features have been shown to affect vocal folds vibration fo and,
therefore, with no big doubt phonation itself. The flow pattern is affected by jet
formation, shear-layer instabilities, vortex shedding and transition to turbulence (Zhang
et al., 2002a). Measurements on excised canine larynges suggest that the airflow in the
trachea, subglottal and intraglottal space is typically laminar but encounters transition
to turbulence shortly downstream of the glottis (Alipour and Scherer, 1995; Oren et al.,
2009; Alipour and Scherer, 2006). The vortex dynamics in the supraglottal spaces and
vocal tract are governed by turbulent momentum transfer. Turbulence also induces a
broadband sound source, which is important especially in the case of breathy phonation,
but also significant in the case of modal voice (Zhang, 2016).
Turbulence is an inherent property of medium and high Reynolds number flows, where

the energy of the large flow structures is transferred in a cascade of scales towards the
smallest vortices, where the turbulent kinetic energy dissipates into heat.
For numerical modeling of turbulent flow, three approaches are commonly used in CFD:

1. Direct Numerical Simulations (DNS), i.e. straightforward discretization of the
Navier-Stokes equations on a sufficiently fine computational mesh, where all
turbulent scales up to the smallest dissipating vortices are resolved. Even for
moderate Reynolds numbers encountered in laryngeal airflow, this type of
simulation is prohibitively expensive in terms of computational requirements.
Sometimes, the term ”laminar simulation” is incorrectly used for a DNS of flow
using a coarse mesh. The term is correct for purely laminar flow with no
turbulence. However, using the ”laminar model” for turbulent flow is actually a
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DNS on a coarse grid unable to capture the small-scale fluid motions, which
introduces error since the influence of the subgrid-scale vortices on the large-scale
(resolved) turbulent motions is neglected.

2. Unsteady Reynolds-Averaged Navier-Stokes equations (RANS) is the current
industry standard, which completely gives up to resolve the turbulent fluctuations
and dynamic evolution of vortical structures and aims to calculate the mean,
time-averaged flow. The influence of turbulence on the mean flow is modeled using
some of the plethora of more or less complex turbulence models. Clearly, RANS is
unsuitable for aeroacoustic simulations of voice where the unsteady turbulent
motions represent a crucial portion of the aeroacoustic sources.

With rigorous DNS being infeasible and RANS inapplicable, numerical modeling
of the aeroacoustic principles of voice production can use laminar simulations
(de Oliviera Rosa et al., 2003; Alipour and Scherer, 2004; Bae and Moon, 2008;
Larsson and Müller, 2009; Link et al., 2009; Thomson, 2015; Šidlof et al., 2015;
Jiang et al., 2017; Sváček and Horáček, 2018).

3. The third arguably most promising approach is the large-eddy simulation (LES).
LES may be regarded as a compromise between RANS, where the entire effect
of turbulence is modeled, and DNS, where all the turbulent scales are resolved.
The LES concept resolves the large, anisotropic energy-carrying fluid motions and
models the effect of largely isotropic subgrid-scale turbulent structures. These large-
scale simulations are still computationally expensive, especially if the boundary
layer is to be resolved properly. However, current parallel computational resources
make this approach viable for low and moderate Reynolds-number flows. In the
numerical simulation of human phonation, the LES approach has been used in
recent years. One of the first studies was the work of Suh and Frankel (2007), who
used compressible LES and Ffowcs Williams-Hawkings acoustic analogy in a static
model of human glottis for far-field sound predictions. Mihaescu et al. (2010, 2011)
employed the LES capability of ANSYS Fluent (ANSYS, Canonsburg, PA/USA)
to study the laryngeal airflow both during phonation and inspiration. The work of
Schwarze et al. (2011) explores a variant called Implicit LES, where the intrinsic
dissipation of the numerical method is assumed to act as a subgrid-scale model.
Another compressible LES simulation on a static glottis was published by de Luzan
et al. (2015). Recently, Sadeghi (Sadeghi et al., 2019c,a,b) simulated the laryngeal
flow and effect of ventricular folds using the LES feature of STAR-CCM+ (Siemens
PLM Software, Plano, TX/USA) and quantified the computational requirements on
parallel architectures. In the study by Schickhofer et al. (2019), the same software
and similar numerical approach was used to study the influence of the supraglottal
coherent structures produced by flow through the static glottis on the far-field sound
signal on a realistic vocal tract geometry from MRI-based data.

1.4.2 Modeling of the vocal fold structure and FSI simulations

Lumped-parameter models are based on lumped elements, such as masses, dampers and
springs. From the point of view of kinematics, two-mass models cannot reproduce
sagittal phase difference of the vocal fold displacement precisely and multi-mass models
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also cannot control this phase difference in a direct way. The model published by Drioli
and Aichinger (2021) allows to control sagittal phase difference by enabling a phase
delay between oscillations at posterior and anterior parts of the vocal fold edge. This
kind of models of human phonation are deployed to study structural and vibratory
asymmetries, simulating vocal folds paralysis, jitter etc. Studies of complex effects, such
as impact stress in fully closed vocal folds, was published by Horáček et al. (2007),
concluding that the higher vocal fold loading is proportional to higher impact stress. An
increase of fundamental frequency fo does not raise maximum impact stress and
decrease the maximum amplitude of vibration (due to higher stiffness of the vocal folds
margins).
Continuous models. Full fluid-structure interaction with complete structural

mechanics were simulated in many studies in 2D (Luo et al., 2008; Link et al., 2009;
Hájek et al., 2016), and 3D (Xue et al., 2014b; Jo et al., 2016), and special studies with
pathological changes, such as tension imbalance caused by unilateral paralysis of vocal
folds (Xue et al., 2014a), or the 2D model simulating a subglottal stenosis (Smith and
Thomson, 2013). The subglottal stenosis occurs when the airway within the subglottal
region or upper trachea is critically narrowed, often as a consequence of damage after
endotracheal intubation and/or tracheotomy. In the glottic stenosis study is mentioned
that disturbances in subglottal flow are already evident at 60% stenosis and increase
with stenosis severity. More precisely, the disturbed flow contains on the stenosis side
increased shear stress, decreased pressure, increased velocities and presence of vortices
during respiration. The presence of turbulent structures in glottal flow contributes to
hoarseness or breathiness in the voice (Grisel et al., 2010). Other models focusing on
fluid-structure interactions take into account the morphological structure of the vocal
fold cover, where computational models have more layers with different material
properties (Smith and Thomson, 2012; Pickup and Thomson, 2011) since the vocal fold
tissue has an anisotropic and inhomogeneous morphology (Titze and Alipour, 2006).
More about nonlinear viscoelastic and hyperelastic layers is in Mittal et al. (2013).

1.4.3 CAA simulations

Voice generation is governed by a three-way interaction between the structure, airflow,
and acoustics. The dominant aeroacoustic sound sources are located within the glottis
and the supraglottal region, whereas sound sources below the glottis are not observed.
Three characteristics of flow-induced sound are defined in terms of free-field radiation:
First, vocal fold oscillation induces a monopole radiation pattern. Second, the interaction
of the vocal folds and the air jet creates surface pressure fluctuations that radiate like
a dipole. Third, the turbulent structures located downstream of the glottal constriction
have a quadrupolar radiation pattern (Zhao et al., 2002; Zhang et al., 2002b). The sound
due to the turbulent flow has a significant influence on the broadband noise at higher
frequencies. The possibilities of how to get sound sources from tracheal flow and how to
solve wave propagation are in general three:

1. Acoustic analogies: The compressible Navier-Stokes equation is transformed into an
exact inhomogeneous wave equation (Lighthill, 1952)-(Lighthill, 1954). His general
wave equation achieved very reasonable results, especially for cases with a low Mach
number. In the following years, Lighthill proposed an equation for the free radiation
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field using Green’s function. The equations developed by Lighthill do not respect
solid boundaries (reflection, absorption). The mentioned limit has been replaced
by Curle (1955), who defined the static surfaces as a surface dipole distribution.
The computation of noise radiation in cases including moving boundaries based on
Kirchhoff’s formula has been presented by Ffowcs Williams and Hawkings (1969).

2. Direct noise computation, i.e. computing all vortical O(u8/c50) and acoustic
O(u6/c30) scales. Since the disparity of scales is enormous and this method requires
computing the acoustic and fluid dynamics as a single field, few studies were
published, e.g. the study of a turbulent jet, which validates an acoustic analogy
(Freund et al., 2000). Recently, direct noise computations have been attempted by
the Lattice-Boltzman very large-eddy simulation (LB-VLES) method. The lattice
Boltzman method uses generalized Navier-Stokes equations at the microscopic
level; it allows computing a flow field bounded by very complex geometries. The
low dissipation and dispersion numerical scheme are also beneficial properties of
the lattice Boltzman method compared to aeroacoustic results obtained by a
high-order large-eddy simulation, presented by Marié et al. (2009). The method
has reached good results in far-field pressure spectra also in cases with a high
Reynolds number (10.5M), e.g. in the aircraft industry (landing gears), published
by Fares et al. (2016) and Sanders et al. (2016).

3. Decomposition of the flow field. The main idea of this approach is hidden in the
decomposition of the physical field into the temporal mean and a fluctuating
component of field variables (pressure, density, and velocity). The fluctuations are
further decomposed into an aerodynamic and acoustic component (based on
Helmholtz decomposition). In contrast to the Lighthill analogy, the fluctuating
component is further decomposed into the incompressible and acoustic ones. Last
studies of the human voice are based on the Perturbed Convective Wave Equation
(PCWE) developed by Hüppe and Kaltenbacher (2015). The PCWE has been
used with a success on aeroacoustic simulations of human phonation by their
co-workers (Zörner et al., 2016; Schoder et al., 2019; Valášek et al., 2018; Lasota
et al., 2021). In (Lasota et al., 2021) large-eddy simulations were used with a
variety of subgrid-scale models implemented in the OpenFOAM C++ package.
The investigation has brought enough evidence to prove significant influence of the
SGS modeling on the aeroacoustic spectrum.

The simplifications, which were done in acoustic phonation models are related to
vocal tract geometries. Many years were used simplified vocal tracts such as circular 3D
geometries of cross-section based on magnetic resonance imagining (Story et al., 1996),
or computed tomography (Sundberg and Rossing, 1987). After a comprehensive study
published by Arnela et al. (2016b) comparing highly realistic MRI-based, elliptical and
circular geometries of vocal tracts, it is concluded that usage of simplified vocal tracts can
be limited only for frequencies lower than (4,000-5,000) Hz in terms of acoustic response.
The bent vocal tracts also have a weak influence on a transfer function. Some formants
are shifted to lower frequencies, but not more than 5%. The cross-sectional shape affects
formants less than 3% in comparison to circular and realistic vocal tract shapes. Other
resonating parts such as lips have a negligible or minor impact on the transfer function
(Arnela et al., 2016a), but teeth have become a subject of interest. The relevance of
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teeth in computational models is dependent on oral configuration, resonant frequencies
are changed with a presence of teeth, but very slightly, instead of models with side cavities
and side branches, where the effect is really significant (up to the fifth formant, except
the first). This occurs during high-pitched singing, or phonating an open back vowel /A/.
Traser et al. (2017) sheds light on resonance parts of the human respiratory tract, which
could be ignored in numerical models. Hence vocal tract replicas from MRI are smoothed
and averaged to a uniform model of the vocal tract, published by Probst et al. (2019),
neglecting details such as lips (influence on the first formant is not relevant (Arnela et al.,
2013)) and teeth (are not resolved by a standard MRI). More complex realistic vocal
tracts from MRI are rather used in laboratory experiments, where the tracts are printed
from silicone and mounted on a mass flow generator with a supercritical valve and silencer
(Kniesburges et al., 2013; Lodermeyer et al., 2015).

1.5 Summary

Interdisciplinary topics combining medical application (treatment) and mathematical
(or physical) modeling are increasingly common. Thereby, numerical simulations
undoubtedly have strong potential to be applied in clinical routine (diagnostics,
treatment control, etc.) because the computer analysis can provide 3D data of the flow
and acoustic field, which are often not feasible by in-vivo, excised larynx or synthetic
vocal fold measurements (Döllinger et al., 2011; Kniesburges et al., 2011). In lands
where medical centers are struggling daily with voice diseases, it should be a high
motivation to study the fundamentals of voice as a prevence for severe voice disease and
medical costs.

1.6 Objectives of the thesis

This thesis builds on the work of the author’s predecessors (Šidlof et al., 2015; Zörner
et al., 2016). The main objectives of the thesis are as follows:

• To perform 3D large-eddy simulations of laryngeal airflow.

• To perform 3D aeroacoustic simulations of human phonation.

• To perform deep literature search and seek for recent less common subgrid-scale
turbulence models, potentially suitable for laryngeal flow modeling.

• To implement such a new subgrid-scale model in OpenFOAM.

• To make a conclusion about the impact of using subgrid-scale turbulence models on
human phonation modelling.
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2 CFD model of incompressible
laryngeal flow

2.1 Mathematical model

Large-eddy simulation is a mathematical concept for modeling turbulent flows, which
deals with flow structures carrying most kinetic energy, i.e. spatially organized large
scales. These consist of two main categories: coherent structures and coherent vortices
of recognizable shape (Lesieur et al., 2005). In the numerical implementation, the
characteristic length ∆, defining a cutoff between resolved large scales and modeled
subgrid scales, is usually given by the mesh grid spacing (Versteeg and Malalasekera,
2007).
In the LES concept, any flow variable f(x, t), where x = (x1, x2, x3) is the spatial

coordinate and t time, may be decomposed as

f(x, t) = f(x, t) + f ′(x, t), (2.1)

where f(x, t) = Gf (x) ∗ f(x, t) =
∫
Gf (r,x,∆)f(x− r, t)dr is the large-scale component,

obtained by spatial filtering, and f ′(x, t) is the small subgrid-scale contribution. Filtered
variables for LES are functions of time and space, unlike the Reynolds averaged variables,
hence in LES: f ̸= f , f ′ ̸= 0.
The convolution introduced above contains a filter function Gf separating spatial

scales. Commonly used filters are the top-hat filter (2.2), the Gaussian filter (2.3) and
the spectral cut-off filter (2.4):

Gf (r,x,∆) =

{
1/∆3 for |r| ≤ ∆/2,

0 otherwise,
(2.2)

Gf (r,x,∆) =
( 6

π∆2

)1/2

exp
(
− 6|r|2

∆2

)
, (2.3)

Gf (r,x,∆) =
3∏

i=1

sin(ri/∆)

ri
. (2.4)

The top-hat filter is used in the current simulation, which is a common choice in
low-order finite volume methods.
The effect of subgrid-scale (SGS) contributions on the large flow scales relies on the

assumption of isotropic (non-directional) small-scale turbulence and is modeled.
Compared to the Reynolds stresses in RANS, the SGS stresses carry much less of the
turbulent energy, so the model’s accuracy is less critical. The LES solution seeks to
compute only the scales of motion larger or equal than the filter width ∆.
The continuity and momentum equations for the incompressible fluid flow, with LES

filtering applied, can be written as

∂ui
∂xi

= 0, (2.5)
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∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (2.6)

where ui is the filtered velocity, p represents the filtered static pressure and ν is the
kinematic molecular viscosity. The term uiuj is the dyadic product and cannot be
expressed directly (Ferziger, 1998). Modification of the momentum equation (2.6) by
+ ∂

∂xj
(uiuj) yields

∂ui
∂t

+
∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

. (2.7)

The new term on the right-hand side of (2.7) is the divergence of the subgrid-scale (SGS)
turbulent stress tensor

τij = uiuj − uiuj = −(u
′
iu

′
j + uiu

′
j + u

′
iuj + uiuj − uiuj), (2.8)

where the individual tensors are: −u′
iu

′
j the Reynolds-stress-like term, −(uiu

′
j + u

′
iuj) the

Clark term (Clark et al., 1979) and −(ui uj + uiuj) the Leonard term (Leonard, 1975).
The SGS stress tensor τij is left to be modeled to close the set of equations.
Since the turbulence is not fully understood, a wide range of closure models have been

introduced, often using heuristic and ad hoc techniques.

2.1.1 Smagorinsky SGS model

One of the first and simplest subgrid-scale closure models was the Smagorinsky algebraic
model (Smagorinsky, 1963), based on the eddy-viscosity assumption

τij −
1

3
τkkδij = −2νtSij = −νt

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.9)

which states that the deviatoric part of the SGS stress tensor (dev τ = τij − 1
3
τkkδij)

is proportional to the rate-of-strain tensor Sij = symm(∇u). The operators dev() and
symm() are described in (A.9) and (A.6), respectively.
The constant of proportionality in this relation, νt, is called the kinematic subgrid-scale
eddy-viscosity (or just turbulent viscosity), which eventually adds to the kinematic
molecular viscosity ν. The Smagorinsky model assumes that the small scales dissipate
instantaneously all energy transferred from the resolved scales. From this, Smagorinsky
derived that the SGS viscosity may be estimated as

νSt = (CS∆)2
√
2SijSij = (CS∆)2|S|, (2.10)

where CS ≈ 0.18 is the Smagorinsky constant describing the rate of the break-up of
isotropic vortices in the viscous subrange of the turbulence energy spectrum, and where
|S| is the magnitude of the strain rate tensor (see A.11). The rotation-rate tensor Ωij, the
antisymmetric part of the velocity gradient tensor, is not taken into account. Eq. (2.10)
can be rewritten using the second invariant of the strain-rate tensor IIS = 1

2
tr(S2

) into
the form

νSt = (CS∆)2
√

4IIS. (2.11)
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The main limitation of the Smagorinsky model lies in the assumption of local
equilibrium between the production and dissipation of turbulent SGS energy. This
assumption is not fulfilled in many real cases. Notably, free shear layer flows, separating
and reattaching flows, and wall-dominated flows (which is also the case of glottal
airflow). This is why more accurate SGS models have been tested in our study, as
described in the following sections.
The numerical simulations used in this thesis were performed in the OpenFOAM

package, which uses slightly different notations of quantities, e.g. D is used in place of S.
Implementation of the Smagorinsky model will be shown in following lines. The model
comes from the assumption of local equilibrium

D : τ︸ ︷︷ ︸
SGS energy production

+Cϵ
k1.5SGS

∆︸ ︷︷ ︸
dissipation

= 0, (2.12)

where the double dot scalar product between the strain-rate and subgrid-scale stress
tensors represents the production of subgrid-scale energy; the second term on the left side
is a dissipation of subgrid scales, where kSGS is the subgrid-scale turbulent energy, ∆ the
grid element size and Cϵ a model constant. The subgrid-scale stress tensor τ in (2.12) can
be substituted as follows

D :

(
2

3
kSGS I− 2νSt devD

)
+ Cϵ

k1.5SGS

∆
= 0. (2.13)

To obtain the approximation of kSGS a series of modifications on (2.13) has to be done,
leading to following equation

D :

(
2

3
kSGS I− 2Ck∆

√
kSGS devD

)
+ Cϵ

k1.5SGS

∆
= 0. (2.14)

And by modifying (2.14) the following form is achieved√
kSGS

(
Cϵ

∆︸︷︷︸
a

kSGS +
2

3
trD︸ ︷︷ ︸
b=0

√
kSGS − 2Ck∆

(
devD : D

)
︸ ︷︷ ︸

c=Ck∆|D|2

)
= 0. (2.15)

Thereby, (2.15) can be simplified into

akSGS − c = 0, (2.16)

where the variable b is zero for incompressible cases. Therefore the subgrid scale energy
is computed from

kSGS =
c

a
=
Ck∆

2|D|2

Cϵ

, (2.17)

where
|D|2 = 2DijDij, (2.18)

corresponding to the magnitude-squared of the tensor field (see A.12).
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The subgrid scale viscosity computed by the Smagorinsky model is implemented as

νSt = Ck∆
√
kSGS = Ck∆

2

√
Ck

Cϵ

|D|. (2.19)

The modelling of νSt depends on the length ∆ of the user-chosen filter and model
constants. The static value of the Smagorinsky model constant CS was found to cause
excessive damping of large-scale fluctuations in cases with homogeneous isotropic
turbulence (Germano et al., 1991). A priori tests provided by Mcmillan et al. (1980)
confirmed a correlation that the Smagorinsky model constant decreases with increasing
strain rate. From a practical point of view, Mason and Callen (1986) have found that
CS = 0.2 and fine mesh refinement were in a good agreement with experiments, whereas
in cases with coarse mesh, they recommended CS < 0.2. This is in direct contradiction
with the study published by Piomelli et al. (1988), where the boundary layer is resolved
with optimal value y+ = 0.1. Piomelli used damping functions for ensuring asymptotic
behavior for the SGS shear stresses near walls. Smagorinsky model cannot account for
energy flow from small-scales to large-scales (known as backscatter).
To summarize, the Smagorinsky model gives acceptable results in simulations of

decaying homogeneous isotropic turbulence (Rozema et al., 2015), but due to high eddy
dissipation for laminar and transitional flows, the model causes wrong predictions of
shear stress at walls, which delays the transition to turbulence. The classical
Smagorinsky model fails in practical LES simulations. Unlike the static Smagorinsky
SGS model, the dynamic procedure of the Smagorinsky coefficient published by
Germano et al. (1991) has a slight computational cost augmentation, caused by local
computation of the model coefficients the model coefficients locally, but the model
determines the Smagorinsky coefficient CS by comparing the eddy dissipation at two
filter levels. Therefore the model gives a correct level of eddy dissipation and switches
off for laminar or transitional flow regime (Meneveau and Katz, 2000).

2.1.2 One-equation SGS model

The one-equation eddy-viscosity subgrid-scale model (or also k-equation) tries to address
the deficiency of the model of Smagorinsky by solving an additional transport equation.
Yoshizawa and Horiuti (1985) derived the transport equation for the turbulent kinetic
SGS energy kSGS in the form

∂kSGS

∂t
+
∂ujkSGS

∂xj
− ∂

∂xj

[
(ν + νt)

∂kSGS

∂xj

]
= −τijSij − Cϵ

k
3/2
SGS

∆
, (2.20)

where the terms represent the temporal change, convection, diffusion, production and
rate of dissipation. Unlike the Smagorinsky model, which disregards the first three of
these, the one-equation model takes into account also the history effects for kSGS. The
production term, modeling the decay of turbulence from the resolved scales to the SGS
scales via the energy cascade, is approximated by

−τijSij = 2νtSijSij, (2.21)

where the double inner product of two second-rank tensors (on both sides) is a sum of
nine components, and the product is a scalar value (see A.1).
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The model constant in (2.20) is set to Cϵ = 1.048, where

Cϵ = π

(
3Cν

2

)−3/2

, (2.22)

and where Cν = 0.094 due to the Kolmogorov law with the dissipation rate ϵ

kSGS =

(
3

2

)
Cν

(
∆ϵ

π

)3/2

. (2.23)

The one-equation model relies on the SGS eddy viscosity concept with the SGS
viscosity

νOt = Cν∆
√
kSGS. (2.24)

Both the Smagorinsky and One-Equation models cannot reproduce the laminar to
turbulent transition and tend to overpredict the production rate and thus the turbulent
viscosity in free shear layers and near the walls. This is caused by the fact that the term
SijSij is large in the regions of pure shear because it is only related to the rate-of-strain
Sij, not to the rate-of-rotation Ωij (Lesieur et al., 2005).

2.1.3 WALE SGS model

The inaccuracy concerning free shear and boundary layer treatment, caused by the
previously described SGS models, can be alleviated by using the Wall-Adapting Local
Eddy-viscosity (WALE) model (Nicoud and Ducros, 1999). The Smagorinsky model is
based on the second invariant of Sij, which means a missing relation with the
rate-of-rotation tensor Ωij. The WALE model considers the traceless symmetric part of
the square of the velocity gradient sdij written as

sdij =
1

2
(G

2

ij +G
2

ji)−
1

3
δijG

2

kk =

=
1

2

(
∂ui
∂xk

∂uk
∂xj

+
∂uj
∂xk

∂uk
∂xi

)
− 1

3
δij
∂uk
∂xk

∂uk
∂xk

, (2.25)

where G
2

ij = GikGkj, Gij = ∂ui/∂xj is the filtered velocity gradient tensor, δij is the
Kronecker symbol. The WALE and the following model (AMD) will be presented in
codes, but it should be noted that only the AMD model was implemented by the author.
The term sdij is implemented on line 7 of the following code

1 template<class BasicTurbulenceModel>
2 tmp<volSymmTensorField> WALE <BasicTurbulenceModel > : : Sd
3 (
4 const vo lTensorF ie ld& gradU
5 ) const
6 {
7 return dev (symm(gradU & gradU ) ) ;
8 }
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See A.1 for explanations of used functions.
The term in (2.25) can be rewritten with the symmetric part and the deviatoric part

of the velocity gradient

sdij = Sik Skj + Ωik Ωkj −
1

3
δij[Smn Smn − Ωmn Ωmn], (2.26)

where the terms are rate-of-strain

Sij =
1

2
(gij + g⊤ij) (2.27)

and rate-of-rotation

Ωij =
1

2
(gij − g⊤ij) (2.28)

tensors. The trace of (2.26) is zero and the second invariant is proportional to sdijs
d
ij, that

is

sdijs
d
ij =

1

6
(S2S2 + Ω2Ω2) +

2

3
S2Ω2 + 2IVSΩ, (2.29)

where S2 = SijSij, Ω2 = ΩijΩij and the fourth invariant

IVSΩ = tr(SijΩ
2

ij) = Sik Skj Ωjl Ωli (2.30)

is used. The term (2.29) is able to detect turbulent structures with strain, or rotation
rate, or even both. Regarding to this behavior, the pure shear flow located near solid
boundaries during laminar flow will cause that the eddy-viscosity vanishes (Nicoud and
Ducros, 1999).
The turbulent viscosity computed by the WALE model is defined as

νWt = Ck∆
√
kWSGS, (2.31)

which refers to the code line 4

1 template<class BasicTurbulenceModel>
2 void WALE<BasicTurbulenceModel > : : correctNut ( )
3 {
4 this−>nut = Ck ∗ this−>de l t a ( )∗ s q r t ( this−>k ( fvc : : grad ( this−>U ) ) ) ;
5 this−>nut . correctBoundaryCondit ions ( ) ;
6 fv : : opt ions : : New( this−>mesh ) . c o r r e c t ( this−>nut ) ;
7
8 BasicTurbulenceModel : : correctNut ( ) ;
9 }

where the term kWSGS is computed by

kWSGS =

(
C2

w∆

Ck

)2 (sdijs
d
ij)

3(
(Sij Sij)5/2 + (sdijs

d
ij)

5/4
)2 (2.32)
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corresponding with code lines 12-20

1 template<class BasicTurbulenceModel>
2 tmp<vo lSca l a rF i e l d> WALE <BasicTurbulenceModel > : : k
3 (
4 const vo lTensorF ie ld& gradU
5 ) const
6 {
7 vo l S c a l a rF i e l d magSqrSd (magSqr (Sd( gradU ) ) ) ;
8
9 return vo l S c a l a rF i e l d : : New
10 (
11 IOobject : : groupName( ”k” , this−>alphaRhoPhi . group ( ) ) ,
12 sqr ( sqr (Cw )∗ this−>de l t a ( )/ Ck )∗
13 (
14 pow3(magSqrSd )
15 /(
16 sqr
17 (
18 pow(magSqr (symm(gradU ) ) , 5 . 0 / 2 . 0 )
19 + pow(magSqrSd , 5 . 0 / 4 . 0 )
20 )
21 + dimens ionedSca lar
22 (
23 ” smal l ” ,
24 dimensionSet (0 , 0 , −10, 0 , 0 ) ,
25 smal l
26 )
27 )
28 )
29 ) ;
30 }

The model constants are set to Cw = 0.325 and Ck = 0.094. The way how to determine
Cw is to make the assumption that the model gives the same ensemble-average subgrid
kinetic energy dissipation as the classical Smagorinsky model (Nicoud and Ducros, 1999),
which means

C2
w = C2

S

〈√
2(SijSij)

3/2
〉〈

SijSij(sdijs
d
ij)

3/2
(
(SijSij)5/2 + (sdijs

d
ij)

5/4
)−1〉 (2.33)

respecting Smagorinsky constant CS ≈ 0.18. Thereby, the turbulent viscosity computed
by WALE has the full form

νWt = (Cw∆)2
(sdijs

d
ij)

3/2

(Sij Sij)5/2 + (sdijs
d
ij)

5/4
, (2.34)

where the term (sdijs
d
ij)

3/2/(Sij Sij)
5/2 would not be well conditioned, because the

denominator term can be zero for pure shear or rotational strain. The added term
(sdijs

d
ij)

5/4 keeps the turbulent viscosity finite.
In summary, the WALE algebraic model formulation accounts for the rotational rate

in the computation of νWt , and thus the turbulent viscosity tends to zero near walls. Hence
it is not necessary to use any ad hoc damping methods.
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2.1.4 AMD SGS model

The anisotropic minimum-dissipation (AMD) subgrid-scale model was derived by Rozema
et al. (2015) with modified Poincaré inequality addressing the grid anisotropy. The AMD
model has not yet been applied in numerical simulation of human phonation, and thus
the model was chosen as a candidate to new implementation performed by the author of
this thesis into the OpenFOAM CFD package.
AMD is developed from the QR model (Verstappen, 2011), and both models are in

the category ”minimum-dissipation models”. The main objective of these models is to
ensure that the energy of subgrid scales is not increasing

∂t

∫
Ωδ

1

2
u

′

iu
′

idx ≤ 0. (2.35)

In the situation where subgrid scales are assumed to be periodical on filter box Ωδ, it is
possible to apply the Poincaré inequality, and define thus the upper bound of the SGS
energy on the left side ∫

Ωδ

1

2
u

′

iu
′

idx ≤ CA

∫
Ωδ

1

2
(∂iuj)(∂iuj)dx. (2.36)

The right hand side corresponds to the velocity gradient energy, and CA is the Poincaré
constant

CA = (δ/π)2 (2.37)

for the LES filter of width δ. The evolution of the right hand side in (2.36) can be written,
considering Taylor expansion of the exact subgrid-scale tensor, as

∂t

(
1

2
(∂iuj)(∂iuj)

)
=

R1︷ ︸︸ ︷
−(∂kui)(∂kuj)Sij −(∂kSij)∂k(2νSij)− (∂kSij)∂k(2ν

QR
t Sij) + ∂ifi,

(2.38)
where fi is the flux of velocity gradient energy and ν

QR
t is the turbulent viscosity defined

by the QR model. Upon spatial integration over the LES filter, the divergence term ∂ifi
can be rewritten to a boundary integral. The boundary integrals express transport of
velocity gradient energy instead of production or dissipation and thus can be ignored in
the derivation of minimum-dissipation models (Rozema et al., 2015). The term R1 from
(2.38) is the production of the velocity gradient energy and can be rewritten to

−(∂kui)(∂kuj)Sij = 4IIIS +∇ · (...), (2.39)

having the important third invariant of the resolved strain-rate tensor

IIIS = −detS = −1

3
tr(S3) = −1

3
SijSjkSki. (2.40)

The dissipation rate of the velocity gradient energy is∫
Ωδ

2IIS dx =

∫
Ωδ

SijSijdx ≤ Cδ

∫
Ωδ

(∂kSij)(∂kSij)dx, (2.41)

where the second invariant is
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IIS =
1

2
tr(S2) =

1

2
SijSij. (2.42)

Finally, the condition which is necessary for the eddy disipation to stop the production
of the velocity gradient energy is in the form

4

∫
Ωδ

IIIS dx ≤ 4
νQR
t

CA

∫
Ωδ

IIS dx. (2.43)

The minimum eddy dissipation is thus equal to

νQR
t = CAδ

2max{IIIS, 0}
IIS

, (2.44)

where CA is a model constant. The third invariant IIIS vanishes in flows that are laminar
(Vreman, 2004). To summarize:

• The production term in (2.38) is proportional to the dissipation of the leading term
on the right-hand side in (2.39).

• The dissipation of the energy of subgrid-scales is proportional to IIIS.

• The QR model is consistent with the eddy dissipation of the exact subgrid-scale
tensor.

The main drawback of the QR model is necessity to set a filter width δ and applicability
on isotropic grids only.
The AMD model can sidestep the dependence of model constants on the filter width

by using the modified Poincaré inequality

∫
Ωδ

1

2
u

′

iu
′

idx ≤ CA

∫
Ωδ

R2︷ ︸︸ ︷
1

2
(δxi∂i︸ ︷︷ ︸

R3

uj)(δxi∂iuj) dx, (2.45)

where Ωδ is the filter box, having dimensions δx1, δx2 and δx3, and CA is a model constant,
which will be discussed later. The term R2 is the scaled velocity gradient energy, R3 the
scaled gradient operator. The inequality (2.45) demonstrates that the subgrid energy is
confined by imposing a bound on the term R2 (Rozema et al., 2015). Time derivative is
applied on the term R2 and the evolution equation of R2 on the filter box δxi is expressed

∂t

(
1

2
(δxi∂iuj)(δxi∂iuj

)
=

R4︷ ︸︸ ︷
−(δxk∂kui)(δxk∂kuj)Sij −

− (ν + νAt )δxk∂k(∂iuj)δxk∂k(∂iuj) + ∂ifi,

(2.46)

where the term R4 is the production of the scaled velocity gradient energy. This means
the third invariant is not computed from the resolved strain-rate tensor Sij, such as in
the QR model (2.40), and for the second invariant in (2.42).
The following inequality ensures that the AMD model predicts sufficient dissipation

to stop the production of scaled velocity gradient energy R4
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∫
Ωδ

−(δxk∂kui)(δxk∂kuj)Sijdx ≤ νAt
CA

∫
Ωδ

(∂iuj)(∂iuj)dx, (2.47)

where the minimum dissipation effect is held by satisfying

νAt = CA

max{
∫
Ωδ

−(δxk∂kui)(δxk∂kuj)Sijdx, 0}∫
Ωδ
(∂lum)(∂lum)dx

. (2.48)

Integrals in (2.48) can be approximated by the mid-point rule, and the turbulent viscosity
from AMD νAt results in a more practical form

νAt = CA

n︷ ︸︸ ︷
max{

−AijSij︷ ︸︸ ︷
−(δxk∂kui)(δxk∂kuj)Sij, 0}

(∂lum)(∂lum)︸ ︷︷ ︸
d

. (2.49)

The terms −AijSij and d are written as

AijSij = (δxk∂kui)(δxk∂kuj)Sij =

=
3∑

i,j=1

(
δx1

∂ui
∂x1

+ δx2
∂ui
∂x2

+ δx3
∂ui
∂x3

)(
δx1

∂ui
∂x1

+ δx2
∂ui
∂x2

+ δx3
∂ui
∂x3

)
Sij =

= S11

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S12

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S13

(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
+

+ S21

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S22

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S23

(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
+

+ S31

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u1
∂x1

+ δx2
∂u1
∂x2

+ δx3
∂u1
∂x3

)
+

+ S32

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u2
∂x1

+ δx2
∂u2
∂x2

+ δx3
∂u2
∂x3

)
+

+ S33

(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)(
δx1

∂u3
∂x1

+ δx2
∂u3
∂x2

+ δx3
∂u3
∂x3

)
(2.50)

and
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d = (∂lum)(∂lum) =

=
3∑

l,m=1

(
∂um
∂xl

)(
∂um
∂xl

)
=

=

(
∂u1
∂x1

)(
∂u1
∂x1

)
+

(
∂u2
∂x1

)(
∂u2
∂x1

)
+

(
∂u3
∂x1

)(
∂u3
∂x1

)
+

+

(
∂u1
∂x2

)(
∂u1
∂x2

)
+

(
∂u2
∂x2

)(
∂u2
∂x2

)
+

(
∂u3
∂x2

)(
∂u3
∂x2

)
+

+

(
∂u1
∂x3

)(
∂u1
∂x3

)
+

(
∂u2
∂x3

)(
∂u2
∂x3

)
+

(
∂u3
∂x3

)(
∂u3
∂x3

)
=

= (∇u) : (∇u). (2.51)

The implementation of −AijSij is shown on lines 10 and 13, the whole nominator n is
on line 13, and the whole denominator d refers to line 14; implemented into OpenFOAM
(version 6 and 7).

1 template<class BasicTurbulenceModel>
2 void LAAMD<BasicTurbulenceModel > : : c o r r e c t ( )
3 {
4 LESeddyViscosity<BasicTurbulenceModel > : : c o r r e c t ( ) ;
5
6 const vo lVec to rF i e ld& U = this−>U ;
7 tmp<volTensorFie ld> tgradU ( fvc : : grad (U) ) ;
8 const vo lTensorF ie ld& gradU = tgradU ( ) ;
9 volSymmTensorField S( dev (symm(gradU ) ) ) ;
10 vo lTensorF ie ld Ai j= ( this−>de l t a ( )∗ gradU)&( this−>de l t a ( )∗ ( gradU ) .T( ) ) ;
11 d imens ionedSca lar my nul l ( ”my nul l ” ,
12 dimensionSet (0 ,2 , −3 ,0 ,0 ,0 ,0 ) , s c a l a r ( 0 ) ) ;
13 vo l S c a l a rF i e l d n = max(−Aij && S , my nul l ) ;
14 vo l S c a l a rF i e l d d = gradU && gradU ;
15
16 // s c a l a r C A = 0.57735 ;
17 nu amd = (0 .57735∗ n )/ d ;
18
19 correctNut ( ) ;
20 }
21
22 template<class BasicTurbulenceModel>
23 void LAAMD<BasicTurbulenceModel > : : correctNut ( )
24 {
25 vo l S c a l a rF i e l d k ( this−>k ( fvc : : grad ( this−>U ) ) ) ;
26
27 this−>nut =nu amd ;
28 this−>nut . correctBoundaryCondit ions ( ) ;
29 fv : : opt ions : : New( this−>mesh ) . c o r r e c t ( this−>nut ) ;
30
31 BasicTurbulenceModel : : correctNut ( ) ;
32 }
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Line 17 shows the turbulent viscosity via computed by (2.49), including the value of
the model constant CA. The constant suitable for the AMD model is recommended
from (Rozema et al., 2015) with respect to the order of discretization of Navier-Stokes
equations, tested on decaying grid turbulence cases. The AMD model gave the best results
with CA = 0.300 for a central second-order scheme and CA = 0.212 for a fourth-order
scheme. A recent study by Zahiri and Roohi (2019) states an optimal value of the constant
CA = 1√

3
= 0.577 based on various study cases. Author’s own test of model constants

(CA = 0.3 and CA = 0.57735) was performed and results are discussed in Chap. 2.1.5.
Rozema et al. (2015) has shown that after a Taylor expansion of τij it can be shown

that the AMD model is really consistent with the exact subgrid-scale stress tensor

τij = uiuj − uiuj =
1

12
(δxk∂kui)(δxk∂kuj) + O(δx4i ) (2.52)

and the eddy dissipation of the exact subgrid-scale stress tensor is approximated as

−τijSij = − 1

12
(δxk∂kui)(δxk∂kuj)Sij + O(δx4i ), (2.53)

which means that the term Aij in (2.49) is consistent with the product of Taylor series in
(2.53). The term Aij is also referred as the gradient sub-filter model (Vreman, 1995). If
the exact eddy dissipation gives zero dissipation, then the term Aij as well, this means the
AMD model can be switched off for flows where the exact eddy dissipation is vanishing.
Thus, the AMD model also switches off when no SGS energy is created (Rozema et al.,
2015; Vreugdenhil and Taylor, 2018).
One of the complex applications of the AMDmodel has been made by Zahiri and Roohi

(2019), including cavitating and non-cavitating external flow around a sphere. Despite a
coarser grid, the AMD model predicts accurate location of separation point, pressure and
friction coefficients (compared to a detached eddy simulation).
Another application of the AMD model is for example computation of atmospheric

boundary layer flows in the thermally stratified atmosphere (Abkar and Moin, 2017),
where authors slightly modified the AMD model by adding a contribution of buoyant
forces. In addition, the authors pointed out a relatively high grid-independence of the
modified AMD model.
The anisotropic behavior of the AMD model can be advantageous in dynamic mesh

applications, such as the moving grid within the glottis. In the following sections, the
new implementation of the AMD model is thus verified on two test cases.

2.1.5 Verification of the AMD implementation: plane channel

As a first case validating the newly implemented AMD model in OpenFOAM was chosen
”channel395”, internal horizontal incompressible flow between parallel smooth walls with
Reynolds number based on friction velocity, Reτ = |uτ |h/ν = 395, Re = 7890. The mesh
used in the unsteady simulation was built from 80x120x60 hexahedral elements (x, y, z)
and the initial steady simulation, from which the results were mapped into the finer mesh,
was performed on a coarse grid (40x60x30). The boundary condition at walls was treated
by the no-slip condition. The periodic boundary conditions were prescribed at inlet and
outlet to cope with continuous inflow and outflow to ensure a fully turbulent regime.
First, the AMD model was tested with two model constants introduced in the literature
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to handle the settings for this case and get a close agreement with the DNS provided by
Moser et al. (1999). The graph in Fig. 2.1 (left) shows the difference between the AMD
model with CA = 0.300 and CA = 0.577. The case with CA = 0.300 follows the trend of
the DNS curve in range y+ ∈ (40; 140) better, whereas the CA = 0.577 seems to be closer
in y+ < 40. Hence, for next computations was chosen CA = 0.577. In Fig. 2.1 (right), the
newly implemented AMD model is compared to traditional SGS models. It can be seen
that the prediction of the AMD model lies closer to the DNS data. This confirms proper
implementation of the AMD code into the OpenFOAM package.

Fig. 2.1: Turbulent flow in a plane channel. u+ = ⟨u⟩/uτ denotes normalized velocity.

2.1.6 Verification of the AMD implementation: periodic hill

This section contains another test case of incompressible single-phase turbulent flow in a
channel, but this time involving a periodic arrangement of smooth curved constrictions to
force flow separation. The sketch of the instantaneous flow field, geometry configuration
and position of vertical lines for subsequent analysis is attached in Fig. 2.2. Boundary
conditions are cyclic in the streamwise (x-axis) and spanwise (z-axis) direction and at the
top and bottom walls the no-slip condition is prescribed. The mean bulk velocity Ub is set
to 1 m/s. The height of the hill h is 0.028 m, the length of the domain is 9h and the last
parameter, height of the channel, is 3.035h. The mesh consists of 160x200x80 hexahedral
elements. Flow parameters are held in a fully turbulent regime at Re = 10595, with
streamwise Görtler-type vortices and spanwise Kelvin-Helmholtz instabilities in separated
shear-layer (Schlichting and Gersten, 2016).
The test case was chosen from the following reasons:

• The Reynolds number is set up to 10595, corresponding to the laryngeal flow more
precisely than the previous test case ”channel395”;

• The separated flow is included;

• Validation DNS data are well available (Fröhlich et al., 2005);

The flow is driven from the left side downstream into the domain. The separation
occurs shortly downstream of the crest due to adverse pressure gradient forming the
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recirculation zone at the ”lee-ward side” of the hill. Afterward, the flow reattaches between
the two hills. The exact point of the separation and reattachment varies with the Reynolds
number.

Fig. 2.2: Periodic hill test case: geometry, instantaneous velocity, evaluation locations.

In this paragraph, normalized velocity profiles from simulations are shown in Figs. 2.3-
2.5, presenting the temporal averaged normalized velocity component ⟨u⟩ in different
locations to highlight the fundamental characteristics of the flow when using various
subgrid-scale models.
In Fig. 2.3 (left) are velocity profiles at x/h = 0.05, where the flow is attached to the

bottom wall. Near the bottom wall, the AMD model predicts significantly higher flow
velocity than other models. On the other side, the other simulations underestimate the
velocities compared to the DNS curve.
Fig. 2.3 (right) shows velocity profiles at x/h = 0.5, where the simulation with AMD

was not able to capture the reverse flow.

Fig. 2.3: Mean velocity profiles of the flow over a periodic hill at x/h=0.05 (left), where
the flow is attached on the bottom, and at x/h=0.5 (right), where the first separation is
indicated.
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In Fig. 2.4 (left) are plotted velocity profiles at x/h=2, where the recirculation zone
behind the hill is catched. The velocity profile at the bottom obtained from the
simulation with AMD is in good agreement with the DNS data, and surprisingly the
curves corresponding to simulations with WALE and SMAG models overpredict the
mean velocity.
Fig. 2.4 (right) shows velocity profiles at x/h=4, where the reattachment zone is

catched. The simulation with AMD shifted the maximum mean velocity from y/h = 2.5
to 2.0, as compared with the DNS curve. The simulation with SMAG predicted the mean
velocity best at the reattachment zone.

Fig. 2.4: Mean velocity profiles of the flow over the periodic hill at x/h=2 (left) and
x/h=4 (right), where the recirculation zone and reattachment zone are seen, respectively.

In Fig. 2.5 (left) are velocity profiles x/h = 6, where the flow is reattached again. The
simulation with AMD predicted higher mean velocity at the half-height of the domain
compared to velocity obtained from DNS, whereas simulations with WALE and SMAG
models were in relatively good agreement.
Fig. 2.5 (right) shows the velocity profiles at x/h = 8, where the reacceleration of

the flow is identified. The velocity profile predicted by AMD is acceptable. Velocity
profiles from simulations with OE underpredicted mean velocity from x/h = 4 and further
downstream.

Fig. 2.5: Mean velocity profiles of the flow over the periodic hill at x/h=6, where the flow
is reattached and at x/h=8, where the flow is reaccelerated.
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The usage of the AMD model required an improvised numerical setup due to the
absence of tuned tutorial cases in OpenFOAM with the AMD model. This probably
affects the quality of the simulation.

2.2 Geometry and boundary conditions

The computational domain for the CFD simulation represents a simplified model of the
human larynx with a rectangular cross-section, consisting of a short subglottal channel,
glottal constriction formed by the vocal folds, ventricles, further contraction by the false
vocal folds, and straight supraglottal channel (see Fig. 2.6).

Fig. 2.6: Mid-coronal (x-y) section of the CFD computational domain, domain boundaries
and details of the computational mesh. The z-normal (front and back) boundaries belong
to Γwall. Enclosed figures about mesh representation are discussed in Chap. 2.3.

The geometry of vocal folds is based on the M5 parametric shape by Scherer et al. (2001).
The false vocal folds were specified according to data published by Agarwal et al. (2003).
The geometrical model is in 3D, having a square cross-section at inlet 12x12 mm. More
details can be found in (Šidlof et al., 2015). The boundary conditions for the CFD
model are summarized in Tab. 2.1. The flow is driven by constant pressure difference
Pk = p/ρ = 300 m2/ss between the inlet Γin and outlet Γout. The velocity on Γin and Γout

is computed from the flux. The flow enters at the inlet and exits at the outlet or is set to
zero in case of backflow. On the fixed channel walls, a no-slip boundary condition u = 0
is prescribed.
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Tab. 2.1: Boundary conditions for the filtered flow velocity u and static pressure p. The
symbol n is the unit outer normal and h(x, t) is the prescribed displacement of the vocal
folds. Γwall also includes the front and back surface.

Boundary u [ms−1] p [Pa]

Γin u = 0 if u · n < 0, 350
∇(u) · n = 0 if u · n > 0

Γout u = 0 if u · n < 0, 0
∇(u) · n = 0 if u · n > 0

ΓbVF, ΓuVF u1 = 0, u2 = ∂
∂t
h(x, t), u3 = 0 ∇(p) · n = 0

Γwall u = 0 ∇(p) · n = 0

On the moving boundaries ΓbVF and ΓuVF, the flow velocity is equal to the velocity of
the moving vocal fold surface, given by function h(x, t). The function h(x, t) based on
the sinusoidal displacement w1,2 = A1,2 sin(2πfot+ ξ1,2) ensures the vibrating motion of
vocal folds in the medial-lateral (y) direction with two degrees of freedom. In the
current simulation, the vocal folds oscillate symmetrically with a frequency fo = 100 Hz,
amplitudes at the superior and inferior vocal fold margin are A1 = A2 = 0.3 mm. The
medial surface convergence angle is marked in Fig. 2.6 as ψ/2, which confines the
convergent and divergent position (-10 deg and +10 deg). The phase difference between
the inferior w1(ξ1) and superior w2(ξ2) vocal fold margin is ξ1 − ξ2 = π/2. The distance
(y) between both ventricles and both false vocal folds equals 16 and 6.15 mm,
respectively. In this study, the oscillation of the vocal folds allows closing/opening the
glottal gap g in the range 0.42-1.46 mm.

2.3 Mesh

In wall-bounded flows, the presence of solid walls fundamentally influences the flow
dynamics, turbulence generation, and transport in the near-wall regions due to
significant viscous stresses. The accuracy of the numerical simulation is thus closely
related to the grid resolution near the fixed walls. According to the classification by
Pope (2000), large-eddy simulations of wall-bounded flows can be classified as large-eddy
simulations with near-wall resolution (LES-NWR) with a grid sufficiently fine to resolve
80% of the turbulent energy in the boundary layer, and large-eddy simulation with
near-wall modeling (LES-NWM), which simulation employs a modeling approach similar
to RANS in the near-wall region. For these simulations, an important parameter is the
wall unit

y+ =
uτy

ν
, (2.54)

where uτ =
√

|τw|
ρ
is the friction velocity, τw = µeff

(
∂U
∂y

) ∣∣∣
y=0
is the wall shear stress,

µeff = (µ+ µt) is the effective dynamic viscosity and y the dimensional distance in
normal direction from the wall. The wall unit y+, commonly referred to as ”y plus”, is
used as the dimensionless wall-normal distance. Using the same normalization, x+ and
and z+ denote the dimensionless streamwise and spanwise distances. Wall units are also
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commonly used to indicate LES adequacy. According to (Georgiadis et al., 2010) and
(Jiang and Lai, 2016), in LES-NWR the theoretical limits for the grid spacing adjacent to
the wall are 50 ≤ ∆x+ ≤ 150, ∆y+ < 1 and 15 ≤ ∆z+ ≤ 40, with at least 3-5 gridpoints
between 0 < y+ < 10.
The computational mesh in the current CFD simulation (see Fig. 2.1) is

block-structured to capture well the boundary layer and consists of 2.1M hexahedral
elements. An open source 3D finite volume mesh generator blockMesh was used to build
the mesh. The mesh deforms in time due to vocal fold oscillation. The grid resolution in
wall units was evaluated in three distinct time instants, corresponding to a maximum
opening of the vocal folds, full closure during the divergent phase and full closure during
the convergent phase. On the boundary ΓbVF at the critical time when the vocal folds
are maximally adducted were evaluated these values: y+avg = 1.77, z+ = 14 and x+ = 8.

2.4 Discretization and numerical solution

The Navier-Stokes equations were discretized using the collocated cell-centered Finite
Volume Method. Fletcher (1991) demonstrated that even-ordered derivatives in the
truncation error are associated with numerical dissipation, and odd-ordered spatial
derivatives are associated with the numerical dispersion in the solution. Ideally, LES
simulations should use schemes with low numerical dissipation. The non-dissipative
central differencing scheme, which was applied in this study, allows an accurate
representation of the changing flow field (Launchbury, 2016). The discretization of the
diffusion term is split into an orthogonal and cross-diffusion term, using a procedure
described in (Jasak, 1996). Unlike the discretization of the temporal, convective, and
orthogonal part of the diffusive term, the nonorthogonal correctors are treated explicitly.
CFD simulations were run in parallel on:

1. Charon (Metacentrum NGI - Faculty of Mechatronics, Technical University of Liberec)

• 20 cores on a computational cluster, composed of nodes with two 10-core Intel Xeon
Silver 4114 2.20GHz CPUs with 96GB RAM,

2. Fox (Computing center of the Czech Technical University in Prague)

• 20 cores on a supercomputer (SGI Altix UV 100) with shared memory 576GB RAM
with the involvement of 6-core Intel Xeon Nehalem 2.66GHz CPUs.

In order to have sufficient resolution in the spectrum of the aeroacoustic signal, a
sufficiently long simulation time t = 0.2 s, i.e. 20 periods of vocal fold vibration, is
needed. For such a setting, one CFD simulation required 27 - 37 days, i.e. about 15000
core-hours of computational time.

2.5 CFD results

The current study reports on the results of four CFD simulations using different turbulence
modeling approaches, which are summarized in Tab. 2.2. The laminar case ”LAM” used
no turbulence model. ”OE”, ”WALE” and ”AMD” are LES simulations with the One-
Equation, WALE SGS and AMD SGS models, respectively. The simulations were run in
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parallel on 20 CPU cores for 20 periods of vocal fold oscillations, i.e. t = 0.2 s, either
on the computational cluster Charon, or on the symmetric multiprocessing machine Fox.
Hardware specifications are included in Chap. 2.4.

Tab. 2.2: Overview of the CFD simulations.

Case Type SGS model CPU Cluster Wall-time
LAM laminar - 20 Charon 27d 13h
OE LES One-Equation 20 Charon 34d 05h
WALE LES WALE 20 Charon 37d 13h
AMD LES AMD 20 Fox 34d 18h

2.5.1 Laryngeal flow rate

Fig. 2.7 shows the glottal opening and flow rates during the last four simulated cycles of
vocal fold oscillation. The time tN corresponds to the instant where the inferior margins
of the vocal folds approach most and reduce the glottal opening to 5.58mm2. Time
instant tC is the maximum approach of the superior vocal fold margins, where the glottal
opening drops to 4.98mm2. The third time instant, tO, corresponds to the maximum
glottal opening of 17.51mm2. Glottal gaps listed in mm are in Tab. 2.3.

Fig. 2.7: Glottal gap and flow rates during four oscillation cycles. Time instants for
further analysis: tN = 0.1900 s, tC = 0.1927 s and tO = 0.1963 s.

Tab. 2.3: Glottal gaps at time instants.

Time g[mm2] VF gap[mm]
tN 5.58 0.465
tC 4.98 0.415
tO 17.51 1.459

The subgrid-scale models affected the flow rates Q[l/s] (see Fig. 2.7): the predicted peak
flow rate in the laminar case is higher than in the One-Equation, WALE and AMD
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SGS models by 16.76%, 5.26% and 9.3%, respectively. This is caused by the different
values of the SGS viscosity, which adds to the molecular viscosity and limits the flow
rate through the glottal constriction. The laminar model does not capture the influence
of small-scale turbulence, which corresponds to νt = 0. The WALE SGS model and
the One-Equation SGS model compute with non-zero SGS viscosity, with the latter one
significantly higher due to the already mentioned deficiency of the One-Equation model,
which overestimates the turbulent viscosity near the vocal fold surfaces. The flow rate
does not reach zero value, corresponding physiologically to breathy phonation. The vocal
folds do not fully close the glottal channel from technical reasons. The minimum flow rate
is Qmin ≈ 0.122 l/s. The maximum flow rates are between 0.358− 0.434 l/s, see Tab. 2.4.
The peak flow rate predicted by the AMD model occurs sooner than in other simulations
(when 66% of the VF cycle is reached).

Tab. 2.4: Minimum and maximum flow rates [l/s] and state of the oscillation cycle of
vocal folds [%] when the maximum flow rate is reached.

Case Qmin[l/s] Qmax[l/s] VF cycle(Qmax)[%]
LAM 0.129 0.434 69
OE 0.122 0.358 67
WALE 0.128 0.409 69
AMD 0.127 0.389 66

2.5.2 Velocity and pressure distribution

The CFD simulations provide filtered velocity and pressure fields (u, p). For simplicity the
overbars are dropped in the following presentation of results. Fig. 2.8 shows 3D laryngeal
velocity fields during vocal fold oscillation. The vocal folds at tN and tC reduced the
glottal jet. The strongest jet is visible at tO when the vocal folds are maximally open.
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Fig. 2.8: Visualization of laryngeal flow at tN , tC and tO. Contours of the jet can be
observed.
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In Fig. 2.9, the effect of the SGS models is analysed in the mid-coronal plane. Velocity
magnitudes at three distinct times obtained from four simulations can be compared. The
jet in the supraglottal region interacts with turbulent structures and gradually decays.

Fig. 2.9: Mid-coronal view on the velocity magnitude.

Fig. 2.10 shows velocity fields in the mid-sagittal (x-z) plane, where spanwise structures
of expanding jets during phonation can be seen (airflow is from left to right). Velocity fields
obtained from the simulation with AMD have smooth distribution of velocity through the
glottis.
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Fig. 2.10: Instantaneous velocity fields [m/s] in mid-sagittal plane in three time instants.

The velocity and pressure fluctuations along the glottal mid-line (x) are plotted in
Fig. 2.11. The glottal region (bounded by the inferior and superior margin of the vocal
folds) is shaded. The maximum flow velocity in the glottis reaches 26.2 m/s. The
velocity curve obtained from the simulation with AMD seems to be perturbed least in
the supraglottal turbulent region, which is evident especially at tN , where the finite
volumes are stretched. This may be a feature of AMD reacting on mesh deformation.
The right column shows the pressure profiles in the laryngeal domain, where lower
pressure corresponds to increased velocities and vice versa. The location of the
minimum pressure in the glottis is shifted by change from the divergent (tN) to
convergent (tC) position of vocal folds by 2 mm. In the divergent position of the vocal
folds, the flow is perturbed even within glottis. The 3D pressure distribution is also
visualized in Fig. 2.12.
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Fig. 2.11: Velocity magnitude (left) and pressure distributions (right) along the glottal
mid-line (x) in time instant tN (1st row), tC (2nd row) and tO (3rd row). Color background
denotes the region of the moving vocal folds (glottis).
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Fig. 2.12: 3D visualization of the pressure distribution in the human larynx during vocal
fold oscillation.
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2.5.3 Vorticity field

Vorticity (ω = ∇ × u) is commonly used for characterizing turbulence in cases with no
entrainment rotation. The vorticity fields reveal the shear layers, where vortices are shed
as a consequence of Kelvin-Helmholtz instability. The vortices may undergo successive
instabilities, leading to a direct kinetic-energy cascade towards the small scales. This
paragraph presents vorticity fields at mid-coronal and mid-sagittal planes.
Fig. 2.13 shows vorticity fields presented in mid-coronal plane (x-y). The supraglottal

jet deflects stochastically towards either of the ventricular folds. This behavior is not a
consequence of the SGS model, it is caused by the bistability of the flow in this symmetric
geometry (Erath and Plesniak, 2010; Lodermeyer et al., 2015). Detailed analysis of the
vorticity within the glottal region shows that the average value of vorticity in glottal
region is similar for all SGS models.

Fig. 2.13: Vorticity fields |ω| in mid-coronal plane in range (0,30000) [s−1].
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Fig. 2.14 shows a complementary view on the magnitude of the vorticity vector |ω|
in mid-sagittal plane (x-z). The simulation with the AMD model predicts low vorticity
in the vicinity of the glottis. The absence of vorticity may imitate the situation in the
realistic larynx where the jet is frequently stopped and renewed, and thus the turbulent
eddies are forced to be dissipated.

Fig. 2.14: Vorticity fields |ω| in mid-sagittal plane in range (0,30000) [s−1].

2.5.4 Turbulent viscosity field

The effect of the unresolved turbulent subgrid scales on the resolved scales is carried by
the subgrid-scale turbulent viscosity νt, represented by equations (2.24) for νOt , (2.34) for
νWt and (2.49) for ν

A
t . The comparison between computations is shown in Figs. 2.15-2.17.

Figs. 2.15-2.16 show that the turbulent viscosity predicted by the simulation with the
One-Equation model is very high in regions of pure shear, especially within glottis. This
may be the reason why the simulation with the OE model predicted most of the time the
lowest intraglottal velocity. In contrast to this, WALE and AMD subgrid-scale models
predicted considerably lower subgrid-scale viscosity in the shear layers at tN and tC. The
fields computed by the AMD model seem to be similar to fields computed by WALE with
spots of gently higher subgrid-scale viscosity at tN and tC. The other situation occurs in
tO when the turbulent viscosity predicted by the AMD model is around two times higher
than by OE and five times higher than by WALE.
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Fig. 2.15: Turbulent viscosity νt [m2.s−1] in the mid-coronal plane at tN (left) and tC
(right).

Fig. 2.16: Turbulent viscosity νt [m2.s−1] in the mid-coronal plane presented at fully open
vocal folds.
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Fig. 2.17 shows turbulent viscosity fields in mid-sagittal plane. The simulation with
OE predicted twice higher turbulent viscosity located at vicinity of the inferior margin of
the vocal folds than others. The narrow barrier of turbulent viscosity at tN in the case
with AMD reduced the flow rate just by 0.8% (1 ml/s of air) compared to WALE.

Fig. 2.17: Turbulent viscosity νt [m2.s−1] in the mid-sagittal plane.

2.6 Summary of findings

This paragraph summarizes the major findings after performing four CFD simulations of
laryngeal flow based on various subgrid-scale models.

• Subgrid-scale turbulence model selection and configuration: The adjustment of
dynamic constant in the subgrid-scale turbulence model and damping functions is
not needed when the WALE and AMD models are used for the simulation of
wall-bounded flows. The models contain a prediction of turbulent viscosity
combining the strain rate and rotation rate tensor.

• Benchmark cases: The newly implemented AMD model has been subjected to two
tests. The normalized velocity profiles from simulations of turbulent flow within the
periodic plane channel were compared with DNS. The AMD model achieved better
agreement with the DNS curve than the conventional WALE model. However, the
second verification case showed that the AMD model has a tendency to overpredict
the mean velocity in the middle of the channel.

• Laryngeal flow rates: The simulation with AMD predicted by 5.1% lower, 11.6%
lower and 8.7% higher maximum than the WALE, LAM and OE models,
respectively. In the AMD and OE cases, the peak flow rate in the vocal fold
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oscillation cycle occurs noticeably sooner than with LAM and WALE subgrid-scale
models.

• Velocity fields: High value of the turbulent viscosity has a tendency to reduce the
airflow in the glottis and decrease intraglottal velocity. The simulation using the OE
model, which is known to overestimate the turbulent viscosity near walls, confirms
this statement.

• Vorticity fields: In the glottis was observed a significant reduction of vorticity
predicted by AMD compared to WALE and the other models. This finding
confirms the expectation that the AMD model is able to stop the production of
the scaled velocity gradient energy, and hence the minimum dissipation is kept to
a suitable range. This feature leads to the increased estimation of local turbulent
viscosity, which smooths the rotation of velocity.

• Turbulent viscosity: The simulation with the AMDmodel predicted the highest local
increase of the turbulent viscosity, identified directly before the glottal constriction
and partly on the sagittal walls. The OEmodel also predicts high turbulent viscosity,
expecially in the vicinity of the vocal fold margins and in the shear layer. The AMD
model contributed to less turbulence intensity in the glottis.
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3 CAA model of wave propagation
in vocal tract
Aeroacoustics deals with flow-induced sound generation and wave propagation. Sound

generation is caused by the turbulent motion of fluid, periodic varying flow fields, or
aerodynamic forces acting on solids. The sources in the case of human phonation are
commonly denoted as:

i. A monopole source term due to the motion of vocal folds (the term is zero when
the vocal folds are fixed).

ii. A dipole source term due to the unsteady force exerted by the surface of the vocal
folds onto the fluid.

iii. A quadrupole sound term due to the unsteady flow inside the vocal tract.

See (Zhao et al., 2002) for more details.

The numerical simulation of aeroacoustic effects can be performed either by using
direct simulations or hybrid methods. Direct simulation is based on the compressible
Navier-Stokes equations, which capture both the fluid dynamic and acoustic fluctuations.
The limitation of this approach is hidden in the computational effort associated with the
disparity of scales between the flow and acoustic variables (the small turbulent scales and
the large acoustic wavelength during common speech), which can reach several orders of
magnitude. To circumvent this problem, hybrid approaches are commonly used, where the
flow field and the acoustic field are computed separately (Bae and Moon, 2008; Schoder
et al., 2020; Lasota et al., 2021; Valášek, 2021). This work is also based on the hybrid
approach.
For simplicity, the overbars (·) from the LES filtering are dropped in the following

paragraphs and equations.

3.1 Acoustics

3.1.1 Linear acoustic wave equation

The linear acoustic wave equation is derived from the linearized Euler equations using
acoustic perturbations (·)a around variables (·)0

p = p0 + pa(x, t), ρ = ρ0 + ρa(x, t), u = u0(x) + ua(x, t), (3.1)

where ua is the acoustic particle velocity and u0 ambient flow velocity. Acoustic
perturbations are

|pa| ≪ p0, |ρa| ≪ ρ0, u0 = 0, (3.2)

where a non-static solution of a very small order is considered.
Conservation of mass is reformulated using terms (·)0 and (·)a as
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∂(ρ0 + ρa)

∂t
+∇ · ((ρ0 + ρa)(u0 + ua)) = qma, (3.3)

that is

∂ρ0
∂t︸︷︷︸
=0

+
∂ρa

∂t
+∇ · (ρ0ua + ρ0u0︸︷︷︸

=0

+ ρaua︸︷︷︸
≈0

+ ρau0︸︷︷︸
=0

) = qma, (3.4)

where qma is a source term, the term u0 = 0 hence ∇· (ρ0u0) = 0 and ∇· (ρau0) = 0, and
finally the multiplication of two perturbation quantities ρaua is negligible. This leads to

∂ρa

∂t
+ ρ0∇ · ua +∇ · (ρaua)︸ ︷︷ ︸

≈ρ0∇·ua

= qma. (3.5)

Conservation of momentum is reformulated using terms (·)0 and (·)a as well leading to

(ρ0 + ρa)
∂(u0 + ua)

∂t
+
(
(ρ0 + ρa)(u0 + ua) · ∇

)
(u0 + ua) +∇(p0 + pa) = qmo, (3.6)

where qmo is a source term and

• ∂u0/∂t and ∂ρ0/∂t are zero,

• ρa∂ua/∂t is a second-order term, which can be neglected,

• spatial derivatives in the convective term containing u0 are zero,

• and ∇p0 = 0 is taken, i.e. p0 does not vary over space.

Thereby, the equation (3.6) arrives at

ρ0
∂ua

∂t
+
(
(ρ0 + ρa)ua · ∇

)
ua︸ ︷︷ ︸

≈0

+∇pa = qmo, (3.7)

where the convective term is neglected.
Next, the thermodynamic relation is taken into account with a constant entropy and
linear pressure-density relation

pa = c20ρ
a, (3.8)

employing speed of sound c0. Now, after manipulations of (3.5)–(3.7) and using the
relation (3.8), the linear acoustic wave equation can be written as

1

c20

∂2pa

∂t2
−∇ ·∇pa =

∂qma

∂t
−∇ · qmo, (3.9)

or as the Helmholtz’s equation of acoustics

k2p̂a +∇ ·∇p̂a = jωq̂ma −∇ · q̂mo, (3.10)
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where (̂·) are Fourier transforms of the pressure and source terms; ω is the angular
frequency (not to be confused with the vorticity vector ω); j is the imaginary unit, and
kw is the wave number

kw =
ω

c0
=

2π

λ
, (3.11)

representing spatial periodicity of waves, using the wavelength λ.
If (3.5) and (3.7) are written with zero sources, i.e.

∂ρa

∂t
+ ρ0∇ · ua = 0 (3.12)

and

ρ0
∂ua

∂t
+∇pa = 0, (3.13)

then the linear wave equation (3.9) can be written with no source terms as

1

c20

∂2pa

∂t2
−∆pa = 0. (3.14)

Applying a curl operator on the equation (3.13) leads to

∇× ∂ua

∂t
= 0, (3.15)

which means that the acoustic velocity is a potential (curl-free) vector field. This allows
expressing the acoustic velocity as a gradient of an acoustic scalar potential ψa

ua = −∇ψa. (3.16)

The negative gradient means the acoustic velocity is oriented from the higher potential
to lower potential. (3.16) can be substituted into (3.13) to get another relation between
acoustic pressure and acoustic potential

pa = ρ0
∂ψa

∂t
. (3.17)

The combination of relations (3.17), (3.16) and (3.8) in (3.12) and (3.13) results in

1

c20

∂2ψa

∂t2
−∆ψa = 0, (3.18)

which is an attractive form of the wave equation with the acoustic scalar potential. It
saves computational effort due to the absence of vector representation.

3.1.2 Analytic solution of wave equation

The analytic solution will be presented first. Green’s functions are fundamental solutions
of partial differential equations forced by Dirac distributions δd

1

c20

∂2G(xo,ys, t)

∂t2
−∆G(xo,ys, t) = δd(x

o − ys)δd(t− ta) (3.19)
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where G(xo,ys, t) is the Green’s function, xo means a coordinate of the observer and ys is
a coordinate of the source. On the right-hand side there are two Dirac functions. The first
is spatial dependent, whereas the latter one is time dependent. The term ta represents
time when the sound is activated, hence if t < ta then G(xo,ys, t) = 0.
The simple equation of a free field Green’s function of the wave equation, representing

the solution without any obstacles, is dependent mainly on the distance between the
observer and source, i.e. |xo − ys|

G(xo,ys, t) =
1

4π|xo − ys|
δd

(
t− ta −

|xo − ys|
c0

)
. (3.20)

The wave equation for general sound distribution F is in the form

1

c20

∂2pa

∂t2
−∆pa = F(xo, t), (3.21)

where the right-hand side is a convolution

F(xo, t) =

∫ T

0

∫ ∞

−∞
F(ys, ta)δd(x

o − ys)δd(t− ta)dy
sdta. (3.22)

The sound distribution is written as a superposition of impulsive point sources, which are
integrated first over the whole space and second integrated over time.
The solution of acoustic pressure is

pa(xo, t) =

∫ T

0

∫ ∞

−∞
F(ys, τ)G(xo,ys, t− ta)dy

sdta, (3.23)

where the Green’s function from (3.20) is inserted into (3.23). The final product is written
as

pa(xo, t) =
1

4π

∫ T

0

∫ ∞

−∞

F(ys, ta)

|xo − ys|
δd

( RT︷ ︸︸ ︷
t− ta −

|xo − ys|
c0

)
dysdta, (3.24)

where the term in the bracket (RT) is called retarded time. If RT is zero then the final
form of the general source distribution is

pa(xo, t) =
1

4π

∫ ∞

−∞

F
(
ys, t− |xo−ys|

c0

)
|xo − ys|

dys; (3.25)

integrated over the whole space with respect to the absolute value of the distance
(observer-source).
Right-hand sides of (3.21) can represent well-known multipole sound sources (Howe,

2014):

• A monopole source term

F(x, t) = ρ0
∂q

∂t
(3.26)

induced by the volumetric flow q(x, t), which could be in example volume flow during
closing and opening the glottis.
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• A dipole source term

F(x, t) = ∇ · (f(x, t)δd(x)) =
∂

∂xj
fj(x, t), (3.27)

where the difference against the previous sound source is hidden in fj, representing a force
density on a surface (or negative gradient of pressure). It could be imagined as sound
distribution where the flow goes around some surface (vocal folds, ventricles, etc.).

• A quadrupole source term

F(x, t) = ∇ ·∇ · LLH =
∂2LLH

ij (x)

∂xi∂xj
, (3.28)

having second spatial derivative of the arbitrary tensor LLH , called as the Lighthill tensor,
which can be approximated for subsonic flow as LLH

ij ≈ ρ0UiUj. In this dissertation,
aeroacoustic simulations based on aeroacoustic analogy is not included, unlike in (Šidlof
et al., 2015; Zörner et al., 2013). Aeroacoustic simulations based on perturbation equations
are discussed in this work.

3.1.3 Far-field approximation

Fig. 3.1 illustrates the far-field approximation of acoustic pressure pa(xo, t), assuming the
condition |xo| ≫ |ys| measured from the origin of the coordinate system (point 0).

Fig. 3.1: Schema of a far-field approximation.

The computation of pa(xo, t) is executed far enough from the source region. The distance
is approximated by

|xo − ys| ≈ |xo| − xo · ys

|xo|
, (3.29)

Projection of xo ·ys/|xo| is drawn in Fig. 3.1 as a short line between A and 0. Next, (3.29)
is inserted into (3.25), thus a Fraunhofer approximation of the acoustic pressure pa in the
position xo can be used

pa(xo, t) ≈ 1

4π|xo|

∫ ∞

−∞
F
(
ys, t− |xo|

c0
+

xo · ys

c0|xo|

)
dys. (3.30)
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Compared to far field approximation, the near-field approximation makes sense in
cases of small distances

|xo − ys| ≪ λ. (3.31)

3.2 Acoustics and Fluid Dynamics

In this section the compressible and incompressible components of the velocity field are
presented as a product of a Helmholtz decomposition

u = ua + uv, |ua| << |uv|, (3.32)

where uv is the incompressible vortical part with the property ∇ · uv = 0, and ua is
the compressible acoustic part of the velocity field. The acoustic component requires
compressible fluid and is valid for low Mach numbers. The behaviour of the acoustic field
is limited to be irrotational

∇× ua = 0. (3.33)

Irrotational deformation produces no volume change, see Fig. 3.2 (left). The existence of
the irrotational component leads to a decomposition of the vector field into the gradient
of the scalar potential and the rotation of the vector potential

u = ua + uv = −∇ψa +∇× av, (3.34)

and getting the following property

∇ · (ua + uv) = −∇ ·∇ψa +∇ ·∇× av︸ ︷︷ ︸
=0

= −∆ψa, (3.35)

where the scalar potential ψa is associated with the fluid compressibility (∇ · u ̸= 0).
This leads to the property that the volumetric rate of expansion ∇ · u is proportional
to the isotropic expansion, see Fig. 3.2 (middle). Afterward, the rigid-body rotation is
ensured, see Fig. 3.2 (right), due to the vortical flow structures which are described by
the vorticity

ω = ∇× (ua + uv) = −∇×∇ψa︸ ︷︷ ︸
=0

+∇×∇× av. (3.36)

Fig. 3.2: Decomposition of the flow field. Deformation shapes: a) irrotational deformation,
b) isotropic expansion and c) rigid-body rotation.
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3.3 Aeroacoustic models

In this dissertation is used a hybrid method based on the incompressible flow computation
and utilizing a perturbation ansatz to obtain perturbation equations for the aeroacoustic
simulation. The word ansatz comes from German and means approach. Before we get
into the perturbation equations, the perturbation ansatz will be presented first; applied
on the linearized Euler equations (LEE)

Dρ

Dt
+ ρ∇ · u = 0, (3.37)

ρ
Du

Dt
+∇p = 0, (3.38)

that describe non-viscous compressible flow, neglecting viscous and heat conduction terms.
The field variables (ρ,u, p) are decomposed into the temporal mean component (·)0 and
perturbed fluctuating component (·)′

p = p0(x) + p′(x, t), ρ = ρ0(x) + ρ′(x, t), u = u0(x) + u′(x, t), (3.39)

leading to the general form of LEE. The conservation of mass

∂ρ′

∂t
+ u0 ·∇ρ′ + u′ ·∇ρ0 + ρ0(∇ · u′) + ρ′(∇ · u0) = 0 (3.40)

and conservation of momentum

∂u′

∂t
+ (u0 ·∇)u′ + (u′ ·∇)u0 +

1

ρ0
∇p′ − 1

ρ20
∇(p0ρ

′) = 0 (3.41)

equations, neglecting conductivity, can be written. (3.41) should not be confused with
the decomposition (·)0 + (·)a in (3.1), which leads to first order differential equations
known as the conservation equations of linear acoustics. The fluctuating density ρ′ was
introduced by Meecham and Ford (1958), and Blokhintsev (1956); Ribner (1962)
formulated the fluctuating pressure p′ as a sum of a ’pseudosound’ pressure (near-field)
p(0) and an ’acoustic’ pressure (far-field) p(1). In contrast to Ribner (1962), the
fluctuating component is decomposed by Hardin and Pope (1993) with usage of the
viscous/acoustic splitting technique

p = pic(x, t) + p′(x, t), ρ = ρ0 + ρ1(x, t) + ρ′(x, t), u = uic(x, t) + u′(x, t), (3.42)

where u, p and ρ are set of compressible variables, (·)ic are incompressible values, (·)′ are
perturbations of the system, the term ρ1(x, t) is referred by Hardin and Pope (1993) as a
density correction and ensures constant entropy in the fluid and ρ0+ρ1 is called ’corrected’
incompressible density. These decomposed variables can be inserted into the mass and
momentum equations (3.40) and (3.41), and the system is closed with the equation of
state p′(ρ′).
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3.3.1 Perturbed compressible equations (PCE)

The primed variables (·)′ have been described as a difference between the compressible
and incompressible solution in the near field (Hardin and Pope, 1993), where the coupling
effect plays a fundamental role. Seo and Moon (2005) introduced PCE for handling near-
field coupling effects. The coupling effect in the near field is investigated by the perturbed
vorticity ω′, in

ω = ωic + ω′, (3.43)

where ωic is the incompressible vorticity term. Seo and Moon (2005) derived PCE by
extracting the incompressible flow equations from their compressible counterparts, leading
to the conservation of mass

∂ρ′

∂t
+ u ·∇ρ′ + ρ∇ · u′ = 0 (3.44)

and the conservation of momentum equations

∂u′

∂t
+ u ·∇u′ +

1

ρ
∇p′ + u′ ·∇uic +

ρ′

ρ

Duic

Dt
=

1

ρ
∇ · τ ′, (3.45)

where the tensor τ ′ represents perturbed viscous stresses (difference between
incompressible and compressible viscous stresses). At cases with low Mach number the
perturbed vorticity ω′ is negligible, due to a minor effect on the sound field, and also,
what is essential, introduces a grid dependency. Therefore, (Seo and Moon, 2006)
reformulated PCE into the equation suppressing ω′ and ensuring grid independence -
linear PCE. The linear PCE is written by the conservation of mass

∂ρ′

∂t
+ uic ·∇ρ′ + ρic∇ · u′ = 0 (3.46)

and by the conservation of momentum equations

∂u′

∂t
+∇

(
uic · u′)+ 1

ρic
∇p′ = −(ωic × u′)− (ω′ × uic)− ρ′

ρic
Duic

Dt
+

1

ρic
∇ · τ ′. (3.47)

This approach was used in simulations of human phonation (Bae and Moon, 2008).

3.3.2 Acoustic Perturbation Equations (APE)

The acoustic perturbation equations are based on the decomposition introduced by Ewert
and Schröder (2003)

u = u0(x) + u′(x, t) = u0(x) + uv(x, t) + ua(x, t), (3.48)

where uv is the vortical (solenoidal) velocity fluctuation and ua is the acoustic
(irrotational) velocity fluctuation. The solenoidal component of the velocity field uv

plays no role in sound generation, but it has an important role in the energy transfer
across turbulent eddies, since the vorticity fluctuations are fundamental in the turbulent
motion. On the other hand, the irrotational component of the velocity field ua produces
the sound mode and cannot produce vorticity mode (Chu and Kovásznay, 1958).
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This decomposition is used in APE-x equations. The APE-1 formulation is written
with p′ and ua terms on the left-hand sides

∂p′

∂t
+ c20∇ ·

(
ρ0u

a + u0
p′

c20

)
= c20

(
−∇ρ · uv +

ρ0
cp

Ds′

Dt

)
, (3.49)

and

∂ua

∂t
+∇(u0 · ua) +∇

( p′
ρ0

)
= ∇qvel +∇qvor + T ′∇s0 − s′∇T0, (3.50)

where on the right-hand sides are entropy (s′, s0), temperature (T ′, T0), velocity source
terms qvel and vortical source terms qvor. For incompressible flow and low Mach number
cases the velocity sound term qvel is computed from

qvel ≈
∇(pic)

′

ρ∞
. (3.51)

3.3.3 Perturbed Convective Wave Equation (PCWE)

The APE-2 form for isothermal and low Mach numbers can be written as a system of
three partial differential equations (Hüppe et al., 2014)

∂ρ′

∂t
+∇ · (ρ′u0 + ρ0u

a) = 0, (3.52)

ρ0
∂ua

∂t
+ ρ0∇(u0 · ua) +∇p′ = 0, (3.53)

∂pa

∂t
− c20

∂ρ′

∂t
= −∂p

ic

∂t
, (3.54)

where the last equation has a source term. Combining (3.52), (3.54) and the equation of
state ρ′ = p′/c20 leads (after some manipulation) to

1

c20

(∂pa
∂t

+ u0 ·∇p′
)
+ ρ0∇ · ua = − 1

c20

∂pic

∂t
, (3.55)

and employing p′ = pic + pa the form results in

1

c20

(∂pa
∂t

+ u0 ·∇pa
)
+ ρ0∇ · ua = − 1

c20

(∂pic
∂t

+ u0 ·∇pic
)
. (3.56)

Next, (3.53) and (3.56) are modified. (3.56) is differentiated with respect to time, on
(3.53) is taken a divergence, and finally mean flows are neglected; after modifications the
equations result in the exact reformulation of APE-2

1

c20

∂2pa

∂t2
−∇ ·∇pa = − 1

c20

∂2pic

∂t2
. (3.57)

If the relation ua = −∇ψa is used in (3.53)

ρ0
∂(−∇ψa)

∂t
+ ρ0∇(u0 · (−∇ψa)) +∇pa = 0, (3.58)
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then

∇
(
ρ0
∂ψa

∂t
+ ρ0u0 · ∇ψa − pa

)
= 0. (3.59)

The argument of the gradient is a constant, which can be set to zero, and results in the
acoustic pressure

pa = ρ0
Dψa

Dt
= ρ0

∂ψa

∂t
+ ρ0u0 · ∇ψa. (3.60)

Now, (3.56) can be rewritten using the substantial derivative to

Dpa

Dt
+ ρ0c

2
0∇ · ua = −Dpic

Dt
, (3.61)

and finally the relation (3.60) is inserted into (3.61), using ua = −∇ψa and multiplied
by 1/ρ0c20; a scalar-valued partial differential equation called Perturbed Convective Wave
Equation (PCWE) published first by Hüppe et al. (2014) is obtained

1

c20

D2ψa

Dt2
−∇ · ∇(ψa) = − 1

ρ0c20

Dpic

Dt
. (3.62)

The vector-valued APE-2 has been reformulated into the scalar PCWE, which can spare
computational resources avoiding the vector form. In this dissertation PCWE was used
in all cases, while following should be remembered:

• The sound sources are discussed in terms of Dpic/Dt, i.e. in dimension [Pa/s].

• The wave propagation (3.62) contains the factor −1/(ρ0c
2
0) = −1/(1.025 ·343.252) =

−0.0000087 ms2/kg.

• From the solution of equation (3.62), i.e. ψa, the acoustic pressure pa [Pa] is
calculated according to (3.60). The convective term ρ0u0 · ∇ψa contributes only a
minor part to the solution, and thus pa = ρ0∂ψ

a/∂t is computed.

Benefits of PCWE are evident: faster computation with a scalar unknown, lower memory
requirements compared to APE-x, includes convection inside the wave operator and solves
the acoustic quantity compared to Lighthill’s analogy (Lighthill, 1952).

3.4 Geometry and mesh

Fig. 3.3 illustrates the geometry used for aeroacoustic simulations, where from the left
side are: the PML layer at inlet (dark green), larynx (red), vocal tract (purple) and the
radiation zone protected by PML (green hollow cube). PML (Perfectly matched layer)
is a technique published first by Berenger (1994). The original method was modified by
Kaltenbacher et al. (2013) by adding damping layers to guarantee that no wave reflections
occur at boundaries.
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Fig. 3.3: Geometry and mesh representation for the aeroacoustic simulation. This vocal
tract is in the shape for vowel /u/.

The geometry of the vocal tract was modeled from frustums (0.397 cm long) concatenated
one after another. The shape of the frustums was defined according to the vocal tract
area function measured by magnetic resonance imaging (Story et al., 1996).
The vocal tract was conformally attached to the larynx. The connection is formed by

two layers of hexahedral cells, with minor influence on wave propagation. The right edge
of the vocal tract was attached to the downstream free-field, where at distance 1 cm from
the end of the vocal tract a microphone ”MIC1” was placed.
In this work five geometric models of vocal tracts were created. The models correspond

to vowels /u, i, A, o, æ/. Lasota et al. (2021) discussed /u, i/, where the vocal tracts were
relatively similar in terms of surface area function, hence extra vocal tracts for /A, o, æ/
were built, see Fig. 3.4.

Fig. 3.4: Surface area function for the each geometrical segment of the used vocal tract.
The origin refers to x = 0.04 m in Fig. 3.3.

For some vowels, a longer vocal tract is characteristic and thus it is necessary to use a
higher number of segments. Tab. 3.1 lists the lengths of vocal tracts of five English vowels.
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Tab. 3.1: List of used vocal tracts (VT).
Phonetic symbol VT length [m] Nb. of segments Example of use

/u/ 0.1825 46 who [hu:]
/i/ 0.1667 42 heed [hi:d]
/A/ 0.1746 44 lock [lAk]
/o/ 0.1746 44 rock [rok]
/æ/ 0.1667 42 have [hæv]

As mentioned before, the shape parameters of vocal tracts came from the study
provided by Story et al. (1996). The study subject was the author of the paper himself,
29-years-old male, 66 kg, 170 cm, a native of the Midwestern United States, no history
of voice disorders. As the author says, the area functions of vocal tracts need to be
considered an ”average” shape for a particular vowel. The three-dimensional vocal
tracts used in CAA simulations are shown in Figs. 3.5-3.7 and were built in Gmsh.

Fig. 3.5: Visualization of the acoustic mesh for /u/ (left) and /i/ (right).

Fig. 3.6: Visualization of the acoustic mesh for /A/ (left) and /o/ (right).
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Fig. 3.7: Visualization of the acoustic mesh for /æ/.

The number of elements and nodes is listed in Tab. 3.2.

Tab. 3.2: Five computational meshes for the aeroacoustic simulation.

vowel elements nodes
/u/ 11,736 14,689
/i/ 11,256 14,077
/A/ 18,818 23,051
/o/ 18,818 23,051
/æ/ 18,484 22,567

The cross-sectional view of the acoustic mesh is shown in Fig. 3.8. Hexahedral first order
finite elements were used.

Fig. 3.8: Acoustic mesh for vowel /æ/ in transverse planes and cross-sectional view. Dark
blue shaded surfaces indicate PML layers.
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3.5 Boundary conditions

The partial differential equation (3.62) for the acoustic potential ψa, which will be solved
numerically in the acoustic domain, is equipped with zero initial conditions and boundary
condition

∇ψa · n = 0, (3.63)

where n is the outward unit normal. The boundary condition can be interpreted as a
perfect reflection of a sound wave from a barrier, also the condition is called ”sound
hard”. In these computations, the sound hard condition is applied at all boundaries
except the inflow and outflow, where PML is used.

3.6 Discretization and numerical solution

An open source 3D finite element mesh generator Gmsh was used to build the
computational mesh. The element length ∆la of the acoustic mesh and time step ∆ta

for the aeroacoustic simulation are given by estimations (Hüppe, 2012)

∆la ≤ c0
20fmax

= 3.43 mm, ∆ta ≤ 1

20fmax

= 1 · 10−5 s, (3.64)

assuming that 20 linear finite elements per one acoustic wavelength are sufficient. In
this case, the spatial discretization is limited by 3.43 mm and time step by 1 · 10−5 s
in order to resolve properly acoustic frequencies up to fmax = 5 kHz. If the condition
is not satisfied, then the acoustic results are affected by high dissipation and dispersion
(Kaltenbacher, 2018). The acoustic material properties in simulations are defined by the
density ρ = 1.11703 kg.m−3, the bulk modulus K = 0.1156 MPa and the speed of sound
c0 = 343.25 m.s−1.
The numerical solution (workflow) can be separated into three steps:

• The unsteady flow field in the larynx is computed in OpenFOAM on a fine CFD
mesh over 20 periods of vocal fold oscillation.

• The aeroacoustic sources in the larynx are computed by OpenCFS, and
conservatively interpolated on the coarse CAA mesh.

• In the last step, the wave propagation is simulated by OpenCFS on the coarse CAA
mesh.

The computational time needed for one CAA simulation is much lower than for one
CFD simulation, about five hours on a single CPU core compared to 34 days on 20 cores.
But it should be noted that five CAA simulations have been computed on top of each of
the CFD simulations. Altogether, four CFD simulations and 20 CAA simulations have
been performed in this work. The conservative interpolation of the sound source from
the very fine (2.2M) CFD mesh to the coarser (11k-18k) CAA mesh was performed by
the cfsdat tool (part of the OpenCFS). The work of Schoder et al. (2020) contains an
overview of the conservative strategies, granting a reduction of the simulation time.
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3.7 CAA results

First part of this chapter is dedicated to aeroacoustic sources in the larynx. The sound
sources can be analysed in the time or frequency domain:

• In temporal domain, spatial distributions of sound sources can be visualized at
distinctive times corresponding to specific vocal fold positions.

• In the frequency domain, locations of sound sources within a specific frequency
playing some role in human phonation can be highlighted - fundamental, harmonic
and non-harmonic.

Second part is dedicated to the wave propagation through the vocal tract and further
downstream to the far-field. Results are analysed in time and frequency domain, too:

• In the time domain, the acoustic pressure signal pa(t) is obtained from the probe
located in the far field and used for voice analysis in terms of amplitudes.

• On the aeroacoustic frequency spectra, variations of sound pressure levels due to
different subgrid-scale models can be exposed.
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3.7.1 Visualization of sound sources in the time domain

The distribution of the aeroacoustic sources in the computational domain covering the
larynx varies throughout the vocal fold oscillation period. Fig. 3.9 shows the
aeroacoustic source field while the vocal folds are in the closed-divergent position. The
jet is surrounded by spots of strong positive and negative acoustic sources related to
turbulent eddies created from shear layers of the jet.

Fig. 3.9: Aeroacoustic source term (Dpic/Dt) from (3.62) at closed-divergent vocal folds
positions during phonation. Twenty iso-surfaces in the range ±2 · 105 Pa/s are shown
(positive-purple ones, negative-green ones).
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Fig. 3.10 shows the aeroacoustic sound source distribution corresponding to the closed-
convergent position of vocal folds, which are visualized on the CFD mesh with closed-
divergent position of vocal folds. The aeroacoustic sources computed on the moving
geometry with oscillating vocal folds are mapped to a fixed geometry. This is done
because the current version of the acoustic solver cannot handle moving meshes.

Fig. 3.10: Aeroacoustic source term (Dpic/Dt) computed by (3.62) at closed-convergent
vocal folds positions during phonation which is mapped to the domain with closed-
divergent vocal folds positions. Twenty iso-surfaces in the range ±2 · 105 Pa/s are shown
(positive-purple ones, negative-green ones).
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Fig. 3.11 shows sound source distribution when vocal folds are fully open, and the
results are mapped to the closed-divergent domain. A strong sound source is observed at
the glottis, especially on the 2D view, while the 3D view shows preferred directions. This
can be caused by the presence of high turbulent viscosity (see Fig. 2.16). Compared to
adducted vocal folds, the sound sources in the larynx are stronger.

Fig. 3.11: Aeroacoustic source term (Dpic/Dt) computed by (3.62) at fully-open vocal
folds positions during phonation which is mapped to the domain with closed-divergent
vocal folds positions. Twenty iso-surfaces in the range ±2 · 105 Pa/s are shown (positive-
purple ones, negative-green ones).

It is not effective to present the sound sources in time domain for every subgrid-scale
model. This will be done in the frequency domain where the comparison is more obvious.

3.7.2 Visualization of sound sources in the frequency domain

The conversion from the time to frequency domain was made by the field Fast Fourier
Transform (field FFT), which brings useful insight into the spatial distribution of the
aeroacoustic sources at distinct frequencies related somehow to human phonation.
The first row in Fig. 3.12 shows aeroacoustic sources at the fundamental frequency

(frequency of vibration of the vocal folds). The strongest sources are located inside the
glottis, which is consistent with the theory. Results obtained from the laminar simulation
(LAM) show higher intensities than large-eddy simulations (OE, WALE and AMD). This
correlates with the flow rate amplitude, which is also higher in the laminar case (see
Fig. 2.7).
The second row shows the third harmonic frequency f2 = 300 Hz. Aeroacoustic sources

are observed within the glottis in accordance with the theory of higher harmonics. In the
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laminar and WALE cases, weak aeroacoustic sources also occur in the vicinity of the jet
and in the ventricular folds.
The last two rows refer to the higher harmonic frequency f9 = 1000 Hz and a non-

harmonic frequency f = 1235 Hz (randomly chosen). At these higher frequencies, the
dominant aeroacoustic sources do not occur within the glottis but in the places where the
fast glottal jet interacts with the ventricular folds and with the slowly moving recirculating
air in the supraglottal volume.

Fig. 3.12: Spatial distribution of PCWE sound sources in the mid-coronal plane at four
frequencies (as a result of Fast Fourier Transform).

The visualization of sound sources based on AMD is diplayed separately in Fig. 3.13,
since unlike OE and WALE the AMD is a non-standard subgrid-scale model newly
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implemented into OpenFOAM by the author of this thesis. The sound source
distribution at f = 100Hz in the case based on the AMD subgrid-scale model is most
similar to the simulation with OE, and the intensity of the sound sources at f = 100Hz
is also lower than with the LAM model. On the other side, the intensity of sound
sources at f = 1000Hz is 2.5-4x higher compared to the LAM, OE and WALE cases.
The explanation may be hidden in the presence of higher turbulence intensity
corresponding to the fully open glottis. At the higher harmonic frequency f = 300Hz
there is no evident difference among the simulations. The 2D visualization of the sound
source distribution at f = 1235Hz shows five times weaker sound sources within
ventricles than at the higher harmonic frequency f = 1000Hz.

Fig. 3.13: Spatial distribution of sound sources in the mid-coronal plane at four frequencies
(as a result of Fast Fourier Transform).

Fig. 3.14 shows the 3D spatial distribution of sound sources in the supraglottal volume
at f = 1000 Hz and f = 1235 Hz, same as in Fig. 3.13. At the non-harmonic frequency
the acoustic sources are distributed further downstream. The integrity of sound sources
can be observed, along with several local sound spots at the superior (trailing) edge of
vocal folds.
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Fig. 3.14: 3D spatial distribution of the PCWE source term at the harmonic frequency
f=1000 Hz and the non-harmonic frequency f = 1235 Hz.

3.7.3 Wave propagation in the time domain

The wave propagation was studied based on 20 CAA simulations (five vocal tracts and four
CFD simulations). In the following, the acoustic pressure fields pa(x, t) will be analysed
as a solution of equation (3.62) and (3.60).
Fig. 3.15 shows the acoustic field in the entire simulated domain. The usage of two

color scales helps to visualize within a single figure waveforms in the radiation free field
(MIC1 is located there) and 20x higher values of the acoustic pressure in the larynx and
vocal tract. The probe MIC1 in the free field sampled values of pa(t). The perfectly
matched damping layers (shaded by orange color in the scheme) at the inlet and around
the free field ensure pa(t) = 0 and non-reflecting wall.
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Fig. 3.15: Acoustic pressure field for vowel /A/ at t = 190 ms. The right color scale bar
corresponds only to the free field containing MIC1.

Signals pa(t) from the probe MIC1 will be discussed until the end of this work.
Fig. 3.16 shows the last three periods of the vocal fold oscillation of five CAA
simulations based on the AMD subgrid-scale model. The shortest and smoothest vocal
tract /æ/ transferred most energy. This should be related with the front near-open
unrounded character of the /æ/ vowel. On contrary, the back open unrounded vowel
/A/ occurs when the tongue opens the pharynx passage more gently, leading to pressure
amplitudes ±0.05 Pa, compared to ±0.15 Pa for /æ/. The close-front /i/ and close-back
/u/ vowels are known for the lowest amplitudes (Titze, 1994). The front vowel /i/
carries slightly more energy in amplitude than the back vowel /u/.

Fig. 3.16: Time history of the acoustic pressure in MIC1 for five vowels. CAA simulation
based on the CFD simulation with the AMD SGS model.

The impact of the subgrid-scale model on pa(t) can be also analyzed in terms of amplitudes
of pa(t) for a single vowel. Fig. 3.17 shows phonation of the close-back /u/, where the
AMD case has higher amplitudes compared to others. On the contrary, the simulation of
phonation of close-front vowel /i/ in Fig. 3.18 shows higher amplitudes of pa(t) computed
by common subgrid-scale models.
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Fig. 3.17: Acoustic time signals at monitoring point MIC1 for vowel /u/.

Fig. 3.18: Acoustic time signals at monitoring point MIC1 for vowel /i/.

Subsequent graphs of pa(t) plotted in the first three and last three periods of vocal fold
oscillation (sorted by subgrid-scale models or by single vowels) are attached in appendix
A.1-A.11.
The effective acoustic pressure is commonly measured by the sound pressure level

(SPL). The SPL is defined

L = 20 log10

(
parms

paref

)
, (3.65)
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where paref = 20 µPa is the hearing threshold. The term parms is the pressure root mean
square value

parms =

√
1

T

∫
(pa)2dt. (3.66)

Tab. 3.3 compares individual cases in terms of L and parms. The SPL value of the
radiated sound can be used as a measure of the acoustic energy transferred from the
larynx through the vocal tract, and using this value the impact of the subgrid-scale
model on aeroacoustics can be analysed. Minor differences in SPL are observed between
the front open vowel /u/ and back close vowel /A/. The simulations of front open/mid
vowel /æ/ transferred most energy of all simulated vowels. The simulations based on
the AMD model predicted the highest SPL of all vowels except the back-close /u/ and
front-close /i/. This may lead to the conclusion that WALE model can transfer more
energy in simulations with the so-called close vowels.

Tab. 3.3: Root mean square acoustic pressures [Pa] and sound pressure levels [dB] at
MIC1 for all simulated vowels and SGS models

Case vowel parms[Pa] L[dB]
LAM /u/ 0.037184 65.39
OE /u/ 0.016591 58.38
WALE /u/ 0.015314 57.68
AMD /u/ 0.023259 61.31
LAM /i/ 0.034784 64.81
OE /i/ 0.017512 58.85
WALE /i/ 0.026830 62.55
AMD /i/ 0.018500 59.32
LAM /A/ 0.016384 58.27
OE /A/ 0.013493 56.58
WALE /A/ 0.015125 57.57
AMD /A/ 0.023004 61.22
LAM /o/ 0.041139 66.26
OE /o/ 0.022411 60.99
WALE /o/ 0.026176 62.34
AMD /o/ 0.043374 66.72
LAM /æ/ 0.045510 67.14
OE /æ/ 0.023582 61.43
WALE /æ/ 0.039824 65.98
AMD /æ/ 0.062786 69.94

Total sound pressure levels computed at the 1 cm distance from the mouth, listed in
Tab. 3.3, were computed to compare cases by energy transfer. The voice investigation at
clinics is commonly performed in 15-30 cm distance from the mouth. Since the SPL value
decreases by 6 dB each time the distance doubles, the signal at 30 cm would be about 30
dB lower. The whisper is defined as around 30 dB, normal conversation is about 60 dB.
The results can be interpreted as a whisper, which is in full accordance with the prescribed
flow boundary condition, where the pressure-driven flow was based on P = 350Pa at Γin.
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3.7.4 Wave propagation in the frequency domain

This section deals with frequency spectra. This kind of analysis can highlight
fundamental, harmonic and non-harmonic frequencies, accompanied by background
noise. The FFT analyses were performed on the signal spanning over 20 periods of the
vocal fold oscillation (1 period = 10 ms = 1000 samples), and thus the frequency
resolution is ∆f = 5 Hz. The spectra will be analysed vowel by vowel, and in the closing
of the chapter the computed formants will be compared with recorded formants
obtained from natural speech recordings. The list of all SPL values at important
frequencies evaluated from the spectra is attached in Tab. A.1.
Vowel /u/. Fig. 3.19 shows aeroacoustic spectrum based on the CFD simulation with

different subgrid-scale models. SPL at fundamental frequency fo = 100 Hz and higher
harmonics f1 = 200 Hz, f2 = 300 Hz and so forth, are well visible, but SPL at fo is
lower than at f1 and f2. Unfortunately, this trend is in contrast with the acoustic theory,
meaning the oscillation of vocal folds is simultaneously the dominant frequency in the
spectrum. Scientific groups (Falk et al., 2021; Schoder et al., 2020) report the same
unbalance with the first harmonic Lf1 higher than Lfo . The second formant computed
by the simulation with AMD is higher by 22% compared to the case with WALE. At the
third formant, on the contrary, WALE is higher by 28% than AMD. This trend occurs
only for vowels /u, A/, even though the vocal tracts for /u, A/ have very different shapes
(see Fig. 3.7).

Fig. 3.19: Acoustic sound spectra from the numerical simulation of vocalization of /u/ at
monitoring point MIC 1.

Vowel /i/. Fig. 3.20 shows the second aeroacoustic spectrum. The simulations with
OE performed on vocal tracts /u, i/ predict the lowest SPL at the fundamental frequencies.
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Fig. 3.20: Acoustic sound spectra from the numerical simulation of vocalization /i/ at
monitoring point MIC 1.

Vowel /A/. Fig. 3.21 shows that SPLs at fundamental frequency remain at the same
level for all models. This happened only twice, in cases /A, æ/ for open and mid-open
vowels, when the tongue is pressed down most. The close distance between formants
F1 − F2 is typical for vowels /u, A, o/, but in the simulation of /A/ the second formant
around 1300 Hz was not detected. However, in the case of AMD, it appears that the
second formant may be found. On the other hand, the third formant is clearly visible
and presents the same behavior as in /u/, i.e. a 9-13 dB lower value of AMD compared
to WALE and LAM.

Fig. 3.21: Acoustic sound spectra from the numerical simulation of vocalization of /A/ at
monitoring point MIC 1.

Vowel /o/. Fig. 3.22 shows the aeroacoustic spectrum with the widest passage of the
throat (7.25 cm2) during phonation (see Fig. 3.4). The simulation with the AMD model
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predicted the first formant around 900 Hz and SPL around 64 dB. At 30 cm, the value
would reach 34 dB.

Fig. 3.22: Acoustic sound spectra from the numerical simulation of vocalization of /o/ at
monitoring point MIC 1.

Vowel /æ/. Fig. 3.23 shows the aeroacoustic spectrum for the vocal tract /æ/, which
transfers most acoustic energy – 70 dB with the AMD model, 66 dB with the WALE
model (see Tab. 3.3). The first formant predicted by AMD is by 14 dB higher than the
formant predicted by the WALE model. Detailed SPL values of all the formants are
given in Tab. A.1. The formants in the high-frequency bandwidth are on the same level
for AMD and WALE. For all vowels except /æ/, at 600 Hz was detected a significant drop
in SPL.

Fig. 3.23: Acoustic sound spectra from the numerical simulation of vocalization of /æ/.

Fig. 3.24 and Tab. 3.4 summarize locations of formants from previous spectra, together
with the results of two investigations of human phonation obtained by measurements.
The location of formants obtained from simulations is independent of the subgrid-scale
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model used, and thus four simulations can be represented by one blue line. Three formant
frequencies F1, F2 and F3 are plotted on the y-axis as horizontal lines (blue), and compared
with two in-vivo measurements published by Story et al. (1996) (black) and Ireland et al.
(2015) (red). F /o/

1 and F /A/
2 are not visible. The CAA simulations of human phonation

agree relatively well with the measurements, although the extra resonant frequency at
1401 Hz in the case of the vowel /i/ is questionable.

Fig. 3.24: An overview of frequency formants F1 − F3 related to the specific vowel (not
always three formants are available).

Tab. 3.4: Location of formants. Values are obtained from CAA simulations (Lasota) and
from recordings (Story, Ireland).

Vowel Formant Lasota Story Ireland
/u/ F1 270 389 378

F2 1000 987 997
F3 2478 2299 -

/i/ F1 265 333 342
F2 1401 2332 2322
F3 2499 2986 -

/A/ F1 803 754 768
F2 - 1195 1333
F3 2538 2685 -

/o/ F1 - 540 497
F2 900 922 910
F3 2641 2584 -

/æ/ F1 706 692 588
F2 1805 1873 1952
F3 2701 2463 -

Fig. 3.25 shows the formant ranges measured by Peterson and Barney (1952) together
with the currently simulated formants. The simulated vowels /u, i, æ/ lie inside the
measured ranges. Vowels /A, o/ agree in one of the formants, which was detected, though
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the other formant is unclear. The vowel tract geometry could be relatively easily modified
to shift the location of formants where we need. Nevertheless, Fig. 3.25 confirms the
usability of grids based on the circular vocal tracts (Story et al., 1996).

Fig. 3.25: Formant ranges measured by Peterson and Barney (1952) together with the
currently simulated vowels.

3.8 Summary of findings

Analysis of the CAA simulations leads to the following important conclusions:

• For all vowels, the results of aeroacoustic simulations based on the AMD model have
strongest SPL of higher harmonic frequencies up to about 2000 Hz. For frequencies
between 2000-3000 Hz, the strongest harmonics are predicted by the WALE model.

• For all vowels, the usage of the AMD model leads to the stronger second formant,
whereas the WALE model results in the stronger third formant.

• For all vowels, SPL at 100 Hz was lower than at higher harmonic frequencies. In
the case with close-front and close-back vowels this might be an effect of the first
formant, but in cases with mid/open and open vowels, when the first formant is far.

• Simulations of phonation including vowels /A, æ/ computed higher SPL compared
to vowels /u, i, o/. This could be explained by greater vocal tract passage before
lips (see Fig. 3.4).

• The subgrid-scale model did not have any influence on the location of the formant
frequencies.
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4 Conclusion
Large-eddy simulations of laryngeal incompressible flow with no subgrid-scale model

(LAM) and with various of subgrid-scale models were performed, namely: One-Equation
(OE) (2.24), Wall-Adaptive Local-Eddy viscosity (WALE) (2.34) and the newly
implemented Anisotropic Minimum-Dissipation (AMD) (2.49) model. The AMD model
was tested on benchmark cases prior to use on the laryngeal flow. The chosen
benchmark cases were turbulent plane channel (Chap. 2.1.5) and periodic hill
(Chap. 2.1.6).
CAA simulations of the aeroacoustic sources and wave propagation during human

phonation of five vowels /u, i, A, o, æ/ were performed. The simulations were based on
the hybrid approach using decomposition of the flow variables. The perturbed convective
wave equation (3.62) was used in all cases.
Numerical results obtained from CFD and CAA simulations were discussed separately

in summaries of findings (Chaps. 3.8, 2.6). The concluding assessment regarding the usage
of SGS models in numerical modelling of human phonation can be formulated as follows:
The OE model overpredicts the turbulent viscosity in regions where shear is dominant, i.e.
in the boundary layer adjacent to the vocal folds and in the shear layers of the glottal jet
(Figs. 2.17, 2.16, 2.15). The difference in glottal flow rate among the simulations is clearly
induced by the subgrid-scale model, which adds the turbulent viscosity to the molecular
viscosity of air and hinders the airflow in the glottis (Fig. 2.7, Tab. 2.4). The WALE
model produced zero eddy viscosity in cases of pure shear flow (Figs. 2.17, 2.16, 2.15),
and hence the flow simulation with WALE predicted by 5% higher maximum transglottal
flow rate than AMD (Fig. 2.7, Tab. 2.4). Despite of this fact, the phonation simulation
based on the AMD model transferred more energy in terms of total sound pressure level
than WALE for all vowels except the front-close vowel /i/ (Tab. 3.3).
The WALE model, which is known to handle turbulent viscosity at the near-wall and

high-shear regions more precisely than the OE model, resulted in higher SPLs than OE in
all cases except the close-back vowel /u/ (Tab. 3.3). The OE model gives acceptable results
in general, but peaks of frequency formants are hardly visible and weaker compared to
the WALE or AMD model. The WALE model amplified third formants in high-frequency
bandwidth most of all the models (Figs. 3.19-3.23). Hovewer, the third formant is not
crucial for vowel characterization.
The AMD model seems to be a very promising successor to the WALE model in

modelling laryngeal flow, since the AMD model resulted in significantly higher harmonic
frequencies up to the second formant for all studied cardinal vowels (Figs. 3.19-3.23). This
finding could be related to known features of the AMD model: consistency with the exact
subgrid-scale stress tensor τij, no requirements on the approximation of the filter width
∆ and usability on an anisotropic mesh. This thesis represents the first application of the
AMD model in the field of human phonation.
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Appendices
A.1 Tensor operations in OpenFOAM

Double dot product or double contraction of two second order tensors (A && B)

A : B = AijBij = A11B11 + A12B12 + A13B13+

+ A21B21 + A22B22 + A23B23+

+ A31B31 + A32B32 + A33B33.
(A.1)

Inner dot product of two second order tensors (A & B)

A · B = AikBkj. (A.2)

Trace of a second rank tensor (T && I, or tr(T))

tr(T) = T : I = Tii = T11 + T22 + T33. (A.3)

Twice the symmetric part of a second rank tensor (twoSymm(T))

twoSymm(T) = T+ T⊤ =

 2T11 T12 + T21 T13 + T31
T21 + T12 2T22 T23 + T32
T31 + T13 T32 + T23 2T33

 . (A.4)

Gradient of a vector field (fvc::grad(u))

∇u =
∂ui
∂xj

=

∂u1/∂x1 ∂u2/∂x1 ∂u3/∂x1
∂u1/∂x2 ∂u2/∂x2 ∂u3/∂x2
∂u1/∂x3 ∂u2/∂x3 ∂u3/∂x3

 . (A.5)

Symmetric part of a second rank tensor

symm(T) =
1

2
(T+ T⊤) =

1

2

 2T11 T12 + T21 T13 + T31
T21 + T12 2T22 T23 + T32
T31 + T13 T32 + T23 2T33

 . (A.6)

Example: Calculation of the rate-of-strain tensor Sij =
1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
.

1 tmp<volTensorFie ld> tgradU ( fvc : : grad (U) ) ;
2 const vo lTensorF ie ld& gradU = tgradU ( ) ;
3
4 volSymmTensorField S(symm(gradU ) ) ;
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Skew-symmetric part of a second rank tensor (skew(T))

skew(T) =
1

2
(T− T⊤) =

1

2

 0 T12 − T21 T13 − T31
T21 − T12 0 T23 − T32
T31 − T13 T32 − T23 0

 . (A.7)

Example: The rate-of-rotation (vorticity) tensor Ωij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
.

1 tmp<volTensorFie ld> tgradU ( fvc : : grad (U) ) ;
2 const vo lTensorF ie ld& gradU = tgradU ( ) ;
3
4 vo lTensorF ie ld Omega( skew ( gradU ) ) ;

Hodge dual (*T)
∗T = (T23,−T13, T12). (A.8)

Example: The vector of vorticity ω = 2 × (∗Ωij) =
(

∂u3

∂x2
− ∂u2

∂x3
, ∂u1

∂x3
− ∂u3

∂x1
, ∂u2

∂x1
− ∂u1

∂x2

)
.

Deviatoric part of the tensor

dev(T) = T− 1

3
tr(T)I. (A.9)

Tensor (dyadic) product

A⊗ B = C, AijBkl = Cijkl. (A.10)

mag - calculates the magnitude of a tensor

mag(D) = |D| =
√
2D : D =

√
2DijDij. (A.11)

magSqr - calculates the magnitude-squared of a field

magSqr(D) = |D|2 = 2DijDij. (A.12)
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A.2 Time history of simulated sustained vowels

Fig. A.1: Time history of the acoustic pressure in MIC1 for five vowels. CAA simulation
based on the CFD simulation with no SGS model.

Fig. A.2: Time history of the acoustic pressure in MIC1 for five vowels. CAA simulation
based on the CFD simulation with the OE SGS model.
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Fig. A.3: Time history of the acoustic pressure in MIC1 for five vowels. CAA simulation
based on the CFD simulation with the WALE SGS model.
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Fig. A.4: Acoustic time signals at monitoring point MIC1 for vowel /u/

Fig. A.5: Acoustic time signals at monitoring point MIC1 for vowel /i/
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Fig. A.6: Acoustic time signals at monitoring point MIC1 for vowel /A/

Fig. A.7: Acoustic time signals at monitoring point MIC1 for vowel /o/
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Fig. A.8: Acoustic time signals at monitoring point MIC1 for vowel /æ/

Fig. A.9: Acoustic time signals at the monitoring point MIC1 for vowel /A/.
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Fig. A.10: Acoustic time signals at the monitoring point MIC1 for vowel /o/.

Fig. A.11: Acoustic time signals at the monitoring point MIC1 for vowel /æ/.
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A.3 Sound pressure levels

Tab. A.1: Sound pressure levels [dB] at the probe MIC1. 20 CAA simulations of five
cardinal vowels /u, i, A, o, æ/ based on four CFD simulations. The SPLs were evaluated
for the fundamental frequency fo = 100 Hz, higher harmonics f1 = 200 Hz, f2 = 300 Hz,
non-harmonic frequency 1235 Hz and three formant frequencies F1 − F3.

L
/u/
fo

L
/u/
f1

L
/u/
f2

L
/u/
1235 L

/u/
F1 L

/u/
F2 L

/u/
F3

LAM 48.53 57.48 55.20 33.12 34.25 57.31 45.49
OE 38.34 55.13 47.79 15.33 28.94 40.88 35.76
WALE 44.06 56.86 53.52 20.03 33.42 48.29 42.15
AMD 44.20 56.46 53.75 27.80 32.71 62.02 30.52

L
/i/
fo

L
/i/
f1

L
/i/
f2

L
/i/
1235 L

/i/
F1 L

/i/
F2 L

/i/
F3

LAM 52.68 53.31 51.52 28.99 32.46 34.62 56.02
OE 42.07 57.76 46.08 15.24 28.49 29.70 43.95
WALE 47.69 59.45 51.88 19.86 34.13 35.96 58.77
AMD 46.80 58.35 51.15 26.20 58.50 41.25 52.30

L
/a/
fo

L
/a/
f1

L
/a/
f2

L
/a/
1235 L

/a/
F1 L

/a/
F2 L

/a/
F3

LAM 42.98 52.75 55.86 25.44 51.19 - 39.62
OE 41.23 50.86 50.58 23.05 48.98 - 18.50
WALE 42.83 51.39 54.06 26.79 49.52 - 35.08
AMD 42.98 52.30 53.86 22.78 56.30 - 24.10

L
/o/
fo

L
/o/
f1

L
/o/
f2

L
/o/
1235 L

/o/
F1 L

/o/
F2 L

/o/
F3

LAM 38.63 46.76 45.79 41.86 - 56.17 43.59
OE 37.34 45.07 40.26 25.42 - 57.14 29.95
WALE 32.47 41.46 39.93 26.12 - 51.62 41.10
AMD 38.96 46.76 43.18 37.47 - 63.31 34.70

L
/æ/
fo

L
/æ/
f1

L
/æ/
f2

L
/æ/
1235 L

/æ/
F1 L

/æ/
F2 L

/æ/
F3

LAM 39.70 48.63 48.32 43.59 62.34 58.15 51.20
OE 38.23 46.44 42.65 26.63 60.71 52.74 35.79
WALE 39.24 47.73 46.43 30.15 57.47 55.26 50.25
AMD 40.22 48.54 45.79 22.37 71.42 49.46 49.46
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