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This thesis delves into the creation and application of a predictive model aimed at optimizing

chip production on a wafer, while maintaining the on-resistance (Ron) of a MOSFET

within acceptable limits. Through a systematic approach, various regression models were

developed, including linear regression, Random Forest, XGBoost, and a Deep Neural

Network (DNN), to predict chip quantities considering both wafer and chip geometry.

Model performance was rigorously evaluated using mean absolute error, with a focus on

comparing machine learning models to a geometry-based predictor. The DNN demonstrated

superior accuracy and was integrated into an optimization algorithm that managed the

balance between chip quantity and Ron value. This algorithm employed Differential

Evolution to identify the optimal chip layout, expanding its scope by considering reticle-

based scenarios. This work contributes valuable insights into semiconductor manufacturing

and chip layout optimization, offering a method to enhance wafer productivity, efficiency,
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Abstract

This thesis explores the development and application of a predictive model for optimizing

the number of chips produced on a wafer while keeping the on-resistance (Ron) of a

MOSFET within an acceptable range of an existing MOSFET type. A systematic approach

has been employed, starting with the creation and assessment of multiple regression models,

including linear regression, Random Forest, XGBoost, and a Deep Neural Network (DNN).

These models were built to predict the number of chips on a wafer considering both wafer

and chip geometry.

The models’ performance was meticulously evaluated using mean absolute error as

the performance metric. Furthermore, a comparative analysis was conducted between the

machine learning models and a geometry-based predictor crafted using geometry rules.

The DNN emerged as the superior model based on its accuracy.

The selected DNN was integrated into an optimization algorithm to manage the critical

trade-off between the number of chips and the Ron value - a key performance indicator for

semiconductor devices. The optimization algorithm harnessed the power of the Differential

Evolution technique to explore the solution space and identify the optimal chip layout.

Additionally, the optimization algorithm was also tested by incorporating the formula

for the number of chips on a reticle, a rectangular mask featuring chip designs, thus

expanding the scope of potential scenarios under consideration. This thesis offers valuable

insights into the semiconductor manufacturing process, particularly concerning chip layout

optimization. Moreover, it introduces a methodology for maximizing wafer productivity,

which has implications for efficiency and cost-effectiveness in semiconductor manufacturing.
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Chapter 1
Introduction

This chapter outlines the considerations surrounding thesis selection, alongside the associ-

ated challenges and limitations. The first section delves into the driving factors behind the

problem and its potential ramifications. Subsequent sections delineate specific research

questions this thesis seeks to address. After presenting a broad overview of the adopted

approach and methodology, the chapter concludes by highlighting the study’s constraints

and limitations.

1.1 Motivation

The semiconductor industry is projected to become a trillion-dollar industry by 2030[1].

However, this growth comes with its challenges, particularly the high cost of semicon-

ductor equipment. The machinery required for semiconductor manufacturing is highly

specialized and expensive, posing a significant barrier for many companies entering the

market. To address this issue, artificial intelligence (AI) can be leveraged to optimize

the utilization of available equipment. By implementing AI algorithms and advanced

analytics, manufacturers can enhance production efficiency, reduce downtime, and improve

overall equipment effectiveness. Additionally, the industry is currently grappling with an

equipment shortage, further exacerbating the cost and supply challenges. AI can assist

in managing this shortage by analyzing data in order to identify bottlenecks, optimize

production schedules, and make informed decisions about equipment allocation, thereby

maximizing output within existing resources.

Lithography is a critical step in semiconductor fabrication, responsible for transferring
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Chapter 1. Introduction 1.2. Research Topic and Questions

complex patterns onto a silicon wafer, which are then etched to form the device structures.

Due to its complexity and precision requirements, it often becomes a significant bottleneck

in the overall manufacturing process of semiconductors. Currently, lithography equipment

is in short supply[2]. Also, these machines are quite expensive. The latest EUV lithography

machine from ASML, for instance, carries a price tag of USD 100 million[3]. The scarcity

of lithography machines poses a major challenge to the semiconductor industry, further

emphasizing the need for efficient utilization of available equipment. By employing AI-

driven optimization techniques, manufacturers can mitigate the impact of this shortage by

maximizing the productivity and lifespan of existing machines. This approach ensures that

the limited lithography machines are effectively utilized, enhancing production capacity

and meeting the growing demand for semiconductors.

1.2 Research Topic and Questions

This thesis presents a novel contribution to the field by integrating machine learning

techniques with optimization methodologies. By integrating machine learning algorithms

with optimization techniques, the prediction and optimization of chip production in the

lithography process can be enhanced. This optimization can be achieved by increasing

the number of chips produced from a single wafer, thereby optimizing the manufacturing

process.

Traditionally, the design of a MOSFET chip for a specific on-resistance (Ron) is

executed without considering its impact on the total number of chips produced. This

lack of consideration can lead to suboptimal production outcomes, thus highlighting the

need for an approach that integrates Ron design with the maximization of chip production.

This approach not only streamlines the optimization process but also opens doors for

extending the application of machine learning to other complex manufacturing steps in

the semiconductor industry. This thesis will answer these main questions:

1. How do chip dimensions influence the number of chips produced?

2. In this context, how do the different regression models stack up against each other

in terms of their performance?

2



1.3. Approach and Methodology Chapter 1. Introduction

3. How can we optimize the number of chips on a wafer with minimal Ron impact?

1.3 Approach and Methodology

In the process of lithography, semiconductors chip designs are fitted in a reticle mask which

is then exposed to a UV light to transfer the designs on a wafer. Predicting the number of

chips in a single wafer can help with optimizing the designs. The production data from

previously manufactured MOSFET types can be leveraged to model and comprehend the

behavior associated with the number of chips.

Machine learning algorithms, such as linear regression, decision trees, XGBoost, and

Deep Neural Networks (DNNs), can be employed to create a regression model. The

developed machine learning model can be integrated into an optimization algorithm.

This optimizer can then refine the chip geometry based on a specified Ron value and an

associated tolerance, determining the acceptable variation in the case of a new Ron. By

leveraging machine learning and optimization techniques, manufacturers can fine-tune the

lithography process, ensuring precise and efficient chip dimensions, which can result in

improved overall semiconductor manufacturing quality and quantity.

1.4 Scope and Limitations

Because of the broad nature of the thesis and the time constraints, it has been limited to

an extent. Following are the limitations of this thesis:

• Only the chip sizes meeting the design requirements were selected.

• A select few types of MOSFET were used for the optimization section.

1.5 Outline

The next chapter will deal with the theoretical background of the research. In Chapter

2, basic theoretical background of lithography, machine learning and optimization is

introduced. In Chapter 3, the relevant published literature is introduced and discussed.

The methodology for this thesis will be discussed in Chapter 4. In Chapter 5, the results

3
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of the experiments will be presented and discussed. Finally, the thesis will be concluded

in Chapter 6.
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Chapter 2
Theoretical Background

This chapter examines the theoretical foundations of the research presented in the thesis,

including a review of related theories, models, and conceptual frameworks. In particular,

these research questions will be addressed:

• What are the factors that impact chip quantities in the process of lithography?

• What sort of regression algorithms are available for the modelling?

• Which optimization algorithms can be used to improve the production process?

The answers to these questions will help us gain more detailed understanding of the

various works that are discussed in the literature review. Consequently, this will assist

in comprehending the contemporary techniques and methodologies employed in the field.

Section 2.2 will provide us with a basic understanding of the lithography process and

its sub-processes, namely reticle design and wafer layout design. This background is

necessary to better formulate and understand the problem. Section 4.3 will describe

different regression techniques available in the machine learning toolbox. It will also

discuss some of the metrics that are used to compare these models. Finally, optimization

will be discussed along with the available techniques in Section 2.3.

2.1 Lithography

To fully comprehend the rationale behind the research conducted in this thesis, it is

imperative to grasp the significance of the critical manufacturing process of lithography.

5



Chapter 2. Theoretical Background 2.1. Lithography

This understanding will serve as the foundation for subsequent steps in modeling and

optimization.

Lithography, as a fundamental process in semiconductor manufacturing, plays a pivotal

role in achieving the desired patterns and structures on a wafer. It involves the precise

transfer of patterns from a mask or a reticle onto a photosensitive material, typically

through the use of light or other forms of radiation. The accuracy and efficiency of

the lithography process significantly impact the overall quantity, performance, and cost-

effectiveness of semiconductor devices.

Figure 2.1: Lithography Overview [4]

An examination of the intricacies of lithography, encompassing its underlying principles,

equipment, and techniques, sheds light on the challenges and complexities inherent in

maximizing chip production. This understanding will highlight the need for modeling and

optimization approaches to enhance the lithography process.

6



2.1. Lithography Chapter 2. Theoretical Background

Furthermore, comprehending the critical manufacturing steps of lithography, such as

reticle design and wafer layout design, will illuminate the key considerations and trade-offs

faced by semiconductor manufacturers. The design and arrangement of the reticle and

wafer layouts directly impact the number of chips that can be produced, as well as the

desired electrical characteristics, such as Ron. Therefore, knowledge of these sub-processes

will provide valuable insights into the opportunities for improvement and optimization.

By establishing an understanding of lithography’s critical manufacturing processes,

this research aims to contribute to the field by developing a number of chips prediction

model and an optimizer. These components will enable more accurate number of chip

predictions and effective optimization strategies, ultimately leading to enhanced chip

quantities and improved efficiency in semiconductor manufacturing. The two important

steps in lithography are:

• Reticle Design

• Wafer Floorplanning

2.1.1 Reticle Design

Reticles, also known as photomasks, are an integral part of the lithography process in

semiconductor manufacturing. They serve as templates or stencils that contain the desired

patterns to be transferred onto the wafer during the fabrication process. Reticles are

typically made of glass or quartz substrates coated with a thin layer of chrome or other

materials that can selectively block or transmit light.

7
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Figure 2.2: A single reticle

The planning and design of reticles involve several important considerations. First,

reticle design encompasses the layout and arrangement of the patterns that need to be

projected onto the wafer. It involves determining the location, size, and shape of the

patterns, as well as any alignment marks or registration features. The reticle design process

is typically carried out using computer-aided design (CAD) software, where designers

create and manipulate the patterns with high precision.

Once the reticle design is finalized, reticle manufacturing takes place. This involves

transferring the design onto the reticle substrate using processes such as photolithography

and etching. The precise and accurate fabrication of reticles is crucial to ensure the fidelity

of pattern transfer during lithography.

Reticle planning involves optimizing the use of reticles for efficient chip production. As

multiple chips are typically patterned on a single wafer, reticle planning aims to maximize

the number of chips produced while minimizing material waste and manufacturing costs.

This involves strategically arranging the chip patterns on the reticle to minimize the space

between them and maximize the use of available reticle area. The number of chips (n) of

size (x, y) on a reticle with a width Rx and height Ry can be roughly calculated using the

following formula:

n =
Rx

x
· Ry

y
(2.1)

8



2.1. Lithography Chapter 2. Theoretical Background

In reticle planning, considerations such as chip size, design complexity, and alignment

requirements come into play. The goal is to achieve the highest possible yield by minimizing

defects, reducing overlay errors, and optimizing the use of reticles. Reticle planning also

involves managing the life cycle of reticles, including their maintenance, cleaning, and

replacement.

Overall, reticles and their planning are crucial elements in the lithography process.

They enable the accurate transfer of patterns onto the wafer, contributing to the precise

fabrication of semiconductor devices. Effective reticle design and planning are essential for

optimizing chip production and ensuring efficient utilization of resources in semiconductor

manufacturing.

2.1.2 Wafer Layout Design

Wafers are the substrate materials used in semiconductor manufacturing. They are typically

circular, thin slices made of silicon or other semiconductor materials. Wafers provide the

foundation on which integrated circuits and other semiconductor devices are fabricated.

Wafer layout and design involve the arrangement and organization of multiple chip

patterns on a single wafer. The layout determines the position, size, and orientation of

each chip on the wafer surface. Wafer design is crucial for maximizing chip production

efficiency, optimizing yield, and minimizing costs.

Figure 2.3: A wafer map [5]

The process of wafer layout begins with defining the size and shape of individual

chips. This includes considering the dimensions and requirements of the intended devices.

9



Chapter 2. Theoretical Background 2.1. Lithography

The layout design also considers factors such as inter-chip spacing, alignment marks, and

electrical connections.

One important aspect of wafer layout design is the consideration of process variations.

Variations in the lithography process, such as exposure and etching, can lead to deviations

in the final chip dimensions. Designers must account for these variations and incorporate

sufficient margins (M) to ensure that the chips are not compromised during the fabrication

process. This can be expressed using the following equation:

Dimenions(final) = Dimenions(desired) +M (2.2)

Efficient utilization of the wafer area is a critical objective in wafer layout design.

Maximizing the number of chips produced on a wafer is essential for achieving high yield

and cost-effectiveness. Designers employ various optimization techniques, such as tiling

and nesting, to efficiently pack the chip patterns on the wafer surface while minimizing

unused areas.

In wafer design, considerations are also given to wafer-level tests and probing. Test

structures, such as test chips or test pads, are strategically placed on the wafer to enable

the testing and validation of the fabricated devices. These test structures provide crucial

feedback on the performance and quality of the manufacturing process.

Furthermore, wafer design involves implementing design rules and guidelines that

ensure manufacturability and compatibility with the lithography process. Designers need

to adhere to specific constraints related to minimum feature sizes, spacing, and layer

alignments to ensure successful fabrication.

In summary, wafer layout and design play a significant role in semiconductor manu-

facturing. Effective wafer layout design optimizes chip production, maximizes yield, and

minimizes costs. It involves careful placement and arrangement of chip patterns on the

wafer, considering process variations, design rules, and test requirements. By efficiently

utilizing the wafer area and incorporating optimization techniques, designers can enhance

the efficiency and effectiveness of the overall lithography process. The consideration of

process variations and the inclusion of design margins (M) ensure that the final chip

dimensions meet the desired specifications.

10



2.2. Machine Learning Chapter 2. Theoretical Background

2.2 Machine Learning

For a comprehensive grasp of the regression models and other concepts presented in this

thesis, a foundational knowledge of machine learning concepts is essential. The techniques

described here will help form the basis for further analysis, discussion and subsequent

conclusion. To generate predictions about unseen data, there is a need for algorithms which

can inherently identify and mimic the patterns in the existing examples. Such algorithms

are commonly associated with machine learning techniques. Machine learning is a sub-field

of artificial intelligence, which is broadly defined as the capability of a machine to imitate

intelligent human behavior[6]. The algorithms are designed and trained by a human expert

who can tune and test these algorithms to make better predictions. The algorithm then

learns the pattern through trial and error. It can be thought of as fitting an equation to a

set of data points. One very clear example of a machine learning algorithm is stock price

prediction. Using least squares linear regression we can predict stock prices[7]. Similar

models can be used to predict inflation, GDP growth, production of vehicle parts and

many other variables. Machine learning is broadly classified into four different approaches:

• Supervised learning

• Unsupervised learning

• Semi-supervised learning methods

• Reinforcement learning

The coming discussion will be limited to the supervised learning as it is relevant to the

thesis.

Figure 2.4: Machine learning classification

11



Chapter 2. Theoretical Background 2.2. Machine Learning

2.2.1 Supervised learning

In supervised learning, the algorithms are trained on labeled datasets. That means that

the algorithm is fed with the information about how the output should look like or what

the algorithm should expect for a certain input[8]. By understanding the known inputs

and output(s) the algorithm is able to learn and predict unseen and unlabeled examples.

Supervised machine learning is one of the most common techniques used in the larger

domain of ML. Some of the commonly known types are:

• Regression: A continuous input variable is fed into an algorithm, which then calculates

and returns a continuous output. One example of regression is the prediction of

power consumption depending on the number of residents and rooms.

• Classification: The algorithm utilizes the provided input to classify it into a specific

category. This category is selected from the set of possible classes on which the

algorithm has been trained. An example is the classification of different dog breeds.

• Forecasting: In this approach, the input data is associated with a timestamp, enabling

the algorithm to recognize temporal patterns and predict future outcomes based on

historical trends. Stock price prediction is an example of this category.

• Sequence: A sequential data, commonly in the form of audio or words, is fed into

the algorithm. The algorithm is then able to generate a sequence of outputs that

are connected with each other. ChatGPT is a very good example of this.

Dataset

In supervised learning [8], the training data consists of “tagged” output data along with

the input data. The model is fed input data X and the corresponding output data Y .

During training the model learns patterns and behavior from labeled data, thus creating a

mapping. The model acts as a function f which maps input X into the labeled data Y .

f : X → Y (2.3)

Once the model has “learned” during the training phase, it can now generalize to new

unseen inputs. A dataset D can be thought of as an ordered set (xi, yi), while xi ∈ X and

yi ∈ Y . In case of regression both xi and yi are real-valued and can be multi-dimensional.

12



2.2. Machine Learning Chapter 2. Theoretical Background

On the other hand, in case of classification problems, the output variable yi is a discrete

variable which can assume any class represented by it.

Figure 2.5: X, Y mapping

2.2.2 Linear Regression

Linear Regression is a widely used method to model a relationship between a dependant

variable and one or more independant variables. This method tries to find the best-fit

linear version of an equation which can describe the output behavior. If y1, y2, ..., yn ∈ Y

is the output vector or the target vector and x1, x2, ..., xn ∈ X is the input vector, then

linear regression can be defined as:

Y = β0 + β1X1 + β2X2 + ...+ βnXn (2.4)

where, β0, β1, ..., βn are the tunable co-efficients that can be trained to model a particular

dataset.

Figure 2.6: Linear regression
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2.2.3 Random Forest

Random forest is a popular machine learning algorithm that is used for regression and

classification problems. It is a type of ensemble machine learning method, which means

that it combines a number of decision trees to generate an output. Random forest is

quite useful as it offers robustness and flexibility. Additionally, it performs well with high

dimensional datasets[9].

Figure 2.7: Random forests

The Random Forest algorithm operates by generating and training a multitude of

decision trees, each operating on a random subset of the data. Decision trees in a random

forest split data recursively based on different features to create branches and leaf nodes.

Each decision tree generates an output and then all the outputs are aggregated to generate

a prediction. The aggregation of results from multiple trees allows the algorithm to capture

non-linearity and handle relationships between different features. This also ensures reduced

over-fitting and better generalization on unseen data.

Random forest algorithm is robust to outliers and is good with missing data. Because

of these advantages, random forest works well for many applications like regression analysis,

classification problems and feature selection[10].
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2.2.4 XGBoost

XGBoost is another powerful machine learning algorithm used for regression and classifi-

cation tasks. It essentially works by combining predictions from weak learners to create a

robust and accurate prediction.

The key concept lies in the optimization objective, which is really a combination of a

loss function and a regularization term. To minimize the objective function weak learners

(or decision trees) are iteratively added[11]. Mathematically, it can be represented as:

Obj =
∑

loss(yi, ŷi) +
∑

Ω(fk) (2.5)

where the loss function calculates the discrepancy between the real yi and predicted values

ŷi for each instance. Each fk represents an independent tree structure with associated

leaf weights w and parameters q. The Ω(fk) is the regularization term that manages the

complexity of the problem.

Now to optimize the objective function, XGBoost uses gradient boosting, which is the

minimization of objective function by adding weak learners. Each weak learner is trained

to minimize the gradients of the loss function with respect to the predictions. The process

can be modeled as:

ŷi = ŷi−1 + α ∗ fm(xi) (2.6)

where ŷi is the predicted value at iteration i, ŷi − 1 is the prediction at the previous

iteration, α is the learning rate, and fm(xi) represents the prediction of the m-th weak

learner for the input instance xi.

Furthermore, this algorithm incorporates techniques such as pruning, regularization

and feature sub-sampling, which enhances generalization and prevents over-fitting. All of

these are already a part of objective function and the training process, which makes it

even more efficient.

Due to the strong optimization framework, XGBoost can achieve remarkable perfor-

mance on a variety of datasets. It is scalable[11], efficient, and has the ability to model

complex relationships.

2.2.5 Deep Neural Networks

Deep neural networks(DNNs) [12] are machine learning algorithms that are inspired by the

functioning of human brains. A DNNs is composed of layers of interconnected “nodes”,
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collectively these nodes can learn hierarchical structures in the data. Each of these “nodes”

takes an n-dimensional vector x1, x2, ..., xn ∈ X as an input from the previous layer, the

vector is then multiplied by a weight vector w1, w2 ∈ W to produce an output a.

Figure 2.8: A single neuron

Mathematically a single neuron takes an input vector, applies a weighted sum and

then passes the result through an activation function. This can be represented as:

z = g(w1x1 + w2x2 + · · ·+ wnxn) (2.7)

A single layer of neuron will be:

yli = g(
∑
j

wl
ijx

l
j + bli) (2.8)

Where,

yli: output of the i-th neuron in the ℓ-th layer,

xl
j: output of j-th neuron in the (ℓ-1) layer,

wl
ij: weight associated with the i-th neuron in the ℓ-th layer,

bli: bias associated with the i-th neuron in the ℓ-th layer,

g: activation function applied to a particular neuron

To tune these parameters, a loss function calculates the loss associated with a chosen set

of parameters [12]. In case of regression, an example of a loss function J can be mean

absolute error (MAE):

J =
1

N

∑
(| yi − ŷi |) (2.9)

where N is the number of data-points, yi is the real output for the i-th sample, and

ŷi is the predicted value for the i-th sample. The weights of deep neural networks are

assigned randomly at the start but with each training cycle the weights are re-adjusted.

The readjustment is done based on the calculated loss gradient w.r.t the weights. To
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update the weights, the calculated gradients are added to them [12]. The update can be

illustrated as:

wnew = wold − α
∂J
∂wold

(2.10)

Where α is the adjustable hyper-parameter known as the learning rate that can be tuned.

Similarly, for bias the update equation will be:

bnew = bold − α
∂J
∂bold

(2.11)

Activation Functions

Now that the basics working of a deep neural network is established, some background

about the activation functions is needed. An activation function [13] plays an integral part

in a neural network by introducing a non-linearity. It basically decides if a neuron should

be fired or not. A neuron can also be partially “ON”, which allows a neural network to

learn complex and intricate patterns. Depending upon the application there are many

types of activation functions. The discussion will be limited to regression tasks, so the

common activation functions for regression tasks are:

• Identity function

• Sigmoid function

• Rectified Linear Unit (ReLU)

The identity function or simply the linear function is used for simple regression

cases. This activation functions works well, when the behavior of the system can be

modeled through linear equations. It preserves the original output produced by the neuron.

Mathematically it can be represented as:

f(x) = x (2.12)

Although identity functions work well with linear relationships, they are of no use

when non-linear patterns are to be captured. Usually they are used at the output layer of

the neural network in that case. Sigmoid function is an alternative that is used to model

the non-linear relationships. The sigmoid function maps the input function between the

values of 0 and 1. This is represented mathematically as:

f(x) =
1

1 + e−x
(2.13)
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Although, the sigmoid function can capture non-linearity, it has a disadvantage. To-

wards the extremes of the input range it tends to saturate which causes a problem of

vanishing gradients. A problem in which the gradients become very small, which makes

the training very slow.

Apart from these two options, there is also the rectified linear unit, commonly known as

ReLU [14]. A ReLU function is also able to capture non-linearity. When the input is

negative the function sets the output to zero, thus deactivating the neuron. In case of

ReLU there is no upper bound, so it works well there is no predefined range for the input.

It is represented as:

ReLU(x) =

x, x > 0

0, otherwise

(2.14)

The ReLU function is able to address the problem of vanishing gradients, an issue

which causes the gradients of the loss function to become increasingly small as they are

propagated back through the earlier layers of the network. This leads to slower convergence

or even a complete halt in learning. It does not suffer from this problem, because the

gradient is always 1 for positive input value. Thus it allows efficient training of the neural

network.
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Figure 2.9: Comparison of Identity, Sigmoid and ReLU functions

Optimizers

Optimizers are crucial components in the training of deep neural networks (DNNs). They

are the algorithms that are used to update a model’s parameters after each iteration. It is

done by minimizing the loss function, which in turn improves the model’s performance.

Each type of optimizer uses a unique technique to find the optimal parameter values, like

weights and biases. Some of the common optimizers used in a DNN training are:

• Stochastic Gradient Descent (SGD): SGD is one of the simplest optimizers. It

basically works by computing the gradient of the loss function with respect to each

parameter using a single training example at a time. Since the gradients are updated

on every single training example, this approach introduces a lot of noise in the

parameters update. It’s also slow to converge [15] because of this reason.

• Mini-batch Gradient Descent: This algorithm is actually an extension of SGD, where

instead of updating on every single training example, the algorithm updates on a
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small batch of training examples. This approach reduces the noise in the parameters

update and the algorithm is able to converge faster.

• AdaGrad (Adaptive Gradient Algorithm): AdaGrad is able to adapt the learning

rate for each parameter based on historical trends. It dynamically assigns more

weight to less frequently updated parameters and less weight to frequently updated

parameters. This is especially useful for handling sparse data and it also helps to

improve learning on parameters with different scales.

• RMSprop (Root Mean Square Propagation): AdaGrad has a problem of overly

aggressive learning rate decay [16] and this problem is rectified by RMSprop. It

solves this problem by calculating the moving average of squared gradients to control

the learning rate adaptation.

• Momentum: This technique helps accelerate SGD in the right direction and dampens

oscillations. It does that by adding a fraction of the previous update to the current

update, which in-turn helps the optimizer maintain the velocity along the dominant

directions of the loss function.

• Adam (Adaptive Moment Estimation): This method combines the benefits of mo-

mentum and RMSprop. It is based on adaptive estimation of learning rates for each

parameter based on the first-order (mean) and second-order (uncentered variance)

moments. Adam is widely used in practice because of its robustness and efficiency.

2.2.6 Hyperparameter Tuning

One crucial aspect of training machine learning models is hyperparameter tuning. It

involves finding optimal values of hyperparameters that affect the learning process. Hy-

perparameters can be thought of as configuration settings that are configured before the

training process begins. These values cannot be learned from the training data unlike the

other model parameters. Each model can have its unique set of hyperparameters such as

learning rate, number of nodes, depth of a decision tree, number of neurons in a neural

network.

The central purpose of hyperparameter tuning is to find the specific set of hyper-

parameters which yield not only the best fit for the input data but the model is also
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able to generalize well on unseen data. Unfit hyperparameters can lead to a variety of

problems which can lead to models that either underfit (insufficiently complex) or overfit

(too complex) the data, resulting in poor performance. There are several approaches to

hyperparameter tuning, including:

• Grid Search: Grid search is a very blunt or brute-force approach that tries to test

all the possible combinations of hyperparameters (that are practical). Since this

approach exhausts all the possible combinations, it always leads to a solution but at

the same time it is computationally very expensive.

• Random Search: It was proposed by Bergstra and Bengio in their paper ”Random

Search for Hyper-Parameter Optimization” (2012) [17]. It is an alternative to the

grid search in which hyperparameters are randomly selected from a defined search

space. Despite not utilizing all the possible solutions, this approach leads to good

results. Random search is particularly useful with high dimensional search spaces,

which are otherwise computationally expensive in case of grid search.

• Bayesian Optimization: This approach is based on Gaussian process and it models

the performance metric such as validation error as a probabilistic surrogate model[18].

It balances the trade-off between the two: active learning (exploitation) and best

objective function (exploration). It iteratively selects the next hyperparameters to

evaluate based on an acquisition function that balances exploration and exploitation.

• Evolutionary Algorithms: These algorithms create a population of potential hyperpa-

rameter configurations and evolve them over several pre-specified generations. After

a number of iterations it produces the best “offspring” or the hyperparameter setting

[19].

2.2.7 Evaluation Metrics

Evaluation metrics are used to measure the performance and effectiveness of a machine

learning model. These metrics provide a quantitative measure, which helps the researchers

and practitioners to understand how well the model performs on a given dataset. Today,

there are various evaluation metrics, each tailored and utilized for specific machine learning

goals. These metrics are selected based on tasks like regression, classification, clustering

etc.
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In classification tasks, the goal is to assign data points to predefined categories or

classes, so accuracy is the widely used evaluation metric. As the name describes, accuracy

is used to measure the proportion of correctly predicted labels over a number of datapoints

in a dataset. Although accuracy works well with straightforward datasets with balanced

classes, it does not work well with imbalanced datasets. In imbalanced datasets, some

classes are more prevalent than the others, so metrics like precision, recall, and the F1-score

work well. Precision and recall for example are defined as:

Precision =
TP

TP + FP
(2.15)

Recall =
TP

TP + FN
(2.16)

Where, TP (True Positives) are the values that are predicted as true, and are actually

true, FP (False Positives) are the values that are predicted as true but are not actually

true and FN (False Negative) are the values that are predicted not to be true but are

actually true.

In case of binary classification tasks, two common evaluation metrics are the receiver

operating characteristics (ROC) and the area under the curve (AUC). The ROC curve

plots the true positive rate against the false positive rate at various classification thresholds.

So it is a graphical method used to measure the performance of a binary classifier. The

AUC is the measure of the area under the ROC curve, so it summarizes the performance

of a model in the form of a singular scalar value. The True Positive Rate (TPR) is the

same as Recall while the False Positve Rate (FPR) is defined as:

FPR =
FP

FP + TN
(2.17)

where, TN (True Negaives) are the values that are predicted as not true and are actually

not true. An example ROC curve could look like:
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Figure 2.10: ROC Curve [20]

In regression tasks, for example, the goal is to predict continuous values based on a

given input. The metrics like mean squared error (MSE) and mean absolute error (MAE)

are the standards. MSE calculates the average squared difference between the predicted

and actual values while the MAE calculates the absolute difference between the two. Thus,

MSE gives more weight to larger errors while the MAE is less sensitive to outliers compared

to MSE.

Depending on the task at hand, a solid understanding of each of these evaluation

metrics is essential for creating a practical model. By the correct use of these metrics the

model performance can be evaluated and enhanced. Interpreting these values allows the

practitioner to make informed decisions and draw right conclusions about a model.

2.3 Optimization

To grasp the optimization techniques employed in this thesis, a foundational understanding

of the concept of optimization is essential. Optimization plays an important role in various

fields such as machine learning, operational research, and engineering. The usual goal is

to find the best possible solution or to achieve an optimal value for a given problem.

In the context of this thesis, optimization will refer to minimizing or maximizing a

certain objective function, while maintaining certain constraints and limitations. The

objective function will typically be minimizing a certain value to be introduced later on.

There are several optimization techniques, but the central goal they share is to ex-

plore the solution space and identify the point that provides the best solution to the
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problem. Optimization techniques iteratively adjust and refine the selected parameters to

reach a certain outcome. By leveraging mathematical algorithms and search strategies,

optimization algorithms traverse the solution space, evaluate different possibilities and

iteratively improve the objective function value. Mathematically, this can be represented

as an iterative process:

x(k+1) = xk +∆x (2.18)

In the given context, x represents a vector of decision variables that influence possible

solutions, and ∆x denotes a minor shift in the search space following the k-th iteration.

One commonly used approach is gradient-based optimization. It utilizes the gradient infor-

mation of the objective function to guide the search towards the optimal solution. Other

optimization methods are evolutionary algorithms, swarm intelligence, and mathematical

programming. All of them are very much used for optimization problems.

In practical applications, optimization is used to solve a wide range of complex problems.

The problems can vary from resource allocation, scheduling, logistics to parameter tuning

in machine learning models. Researchers and practitioners are able to improve and enhance

effectiveness in their respective domains.

Broadly optimization is divided into several categories, which include deterministic

and stochastic methods, continuous and discrete optimization, as well as constrained and

unconstrained optimization. The selection of an appropriate technique depends on the

problem structure, constraints and the characteristics of a particular problem.

Overall, optimization is indeed a very useful technique used to find optimal solutions

in any domain. By employing these techniques, complex problems, process optimization

and new advancements can be made. Since the optimization technique used in this thesis

is based on Evolutionary Algorithms, the next section will focus solely on evolutionary

algorithms and the techniques used.

2.3.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are optimization algorithms based on the principles of

evolution and natural selection. They work by maintaining a population of candidate

solutions, which evolve iteratively through processes of selection, recombination, and

mutation. The suitability of each solution is assessed using a fitness function that determines

the quality of the solution for the problem at hand.
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The workflow of evolutionary algorithms typically involves:

Initialization: A population of candidate solutions is generated, typically randomly. The

size of this population is usually held constant through the evolution process.

Fitness Evaluation: Each solution in the population is assigned a fitness score, calculated

using a pre-defined fitness function. This score determines the solution’s suitability to the

problem being addressed.

Selection: Candidate solutions are selected for reproduction based on their fitness scores.

The selection process is typically stochastic, with solutions having higher fitness scores

having higher probability of being selected.

Recombination: Offspring are generated by combining elements of two or more parent

solutions. The recombination process varies widely depending on the specific type of EA

being used.

Mutation: Random changes are made to the offspring solutions to maintain population

diversity and avoid premature convergence to a sub-optimal solution.

Replacement: The current population is replaced by the newly generated offspring. The

replacement strategy can be deterministic (e.g., replace the worst solutions) or stochastic.

Algorithm 1 General: Evolutionary Algorithm

Initialize population with random candidate solutions

while termination criteria not met do
Evaluate: each candidate’s fitness

Select: individuals for reproduction based on fitness

Recombine: Generate offspring by combining elements of selected individuals

Mutate: For each offspring, apply random changes with a certain probability

Evaluate: each offspring’s fitness

Replace: population with new offspring population

end

Result: Best solution found
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Chapter 3
Literature Review

Optimization techniques, lithography, regression models, and the on-resistance (Ron or

Rds) are fundamental concepts presented in this thesis. The integration of these concepts

has the potential to create powerful models for predicting and optimizing the number of

chips on a wafer.

3.1 Lithography

Lithography is a critical step in semiconductor manufacturing, and the yield from lithog-

raphy processes is a key factor in determining the cost and performance of the final

product[21]. Several factors affect the number of chips on a wafer, including the precision

of the lithography equipment, the quality of the photomask, and the conditions of the pro-

cess[22]. Research and optimization of lithography is a vital area of study in semiconductor

manufacturing.

3.2 Regression

Regression models serve as essential tools in both statistics and machine learning, facili-

tating the prediction and forecasting of outcomes based on independent variables. There

are many types of regression models like linear, logistic, polynomial, etc., each serving a

specific purpose depending on the type and distribution of data[23]. In semiconductor

manufacturing, regression models have been employed to predict outcomes like yield and

performance based on process parameters [24].
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3.3 Resistance Drain-Source (Ron)

The resistance drain-source (Ron or Rds) is a critical parameter in MOSFET devices,

affecting the device’s power usage and speed. Lowering Ron allows for faster switching

speeds and lower power usage, which are key goals in semiconductor device design[25].

The Ron models presented in the paper [26] are borrowed and used during the optimization

part of this thesis.

3.4 Optimization

Optimization methods are essential in semiconductor manufacturing to minimize the cost

and maximize the output and performance. This can involve optimizing process parameters,

designs, or schedules. Traditional optimization techniques include linear programming and

statistical methods, but more recent approaches use evolutionary algorithms and machine

learning techniques[27].

3.5 Conclusion

In summary, the integration of lithography, regression models, optimization techniques, and

the Ron parameter presents a promising approach to improving outcomes in semiconductor

manufacturing. These elements, when considered collectively, have the potential to refine

our predictions and understanding of the lithography process and the overall semiconductor

production.
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Methodology

This study uses several regression models, which include linear regression, random forest,

XGBoost and Deep Neural Networks (DNNs) to make predictions. All of these models are

essentially able to predict the number of chips on a wafer with varying accuracy. Following

these predictions, differential evolution was applied to optimize the number of chips on a

wafer. This chapter discusses the details of the steps followed during prediction and the

optimization. The exact hyperpareters and results will be described in Chapter 5. This

chapter will attempt to answer the following questions:

• How are different features selected?

• What sort of normalization is applied to the input features?

• Which methods are used for predicting the number of chips on a wafer?

• Which method is used for the optimization of chip geometry?

4.1 Feature Selection

The first step was to select the input features. This was done using data visualization,

hit-and-trial and calculating correlations. During feature selection relevant inputs are

identified and retained while the redundant ones are removed. This increases the accuracy

and saves a lot of computation time during the training process.

Reticle utilization factor (RUF) is the measure of how well the area of a single reticle

is utilized. So if the chip has a width X and height Y , and no chip rotation is allowed

then using Equation 2.1 the RUF has the following spread:
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Figure 4.1: Chip Dimensions Vs Reticle Utilization

As expected for very large chip sizes, the RUF is bound to be very poor. For other

sizes, there is a recurring pattern in which RUF keeps on oscillating. A number of features

such as chip width, chip height, chip size, reticle width, reticle height, and number of chips

were correlated. The resulting correlation matrix is showed in Figure 4.2. All of these

features are highly correlated with the number of chips but due to data unavailability,

reticle width and height are not used as input features.

4.2 Data Normalization

Prior to the implementation of the models, the input features were normalized to ensure

smooth and better training. Normalization is an essential step in data preprocessing since

different features exist on different scales [28]. This essentially speeds up the training

process while increasing accuracy. Normalization was done depending on the model being

trained.
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Figure 4.2: Feature Correlation Matrix

For linear regression, the sklearn’s RobustScalar was utilized. RobustScalar rescales

the dataset by using the following equation:

Xscaled =
X −Q1(X)

Q3(X)−Q1(X)
(4.1)

where, X represents the data and Q3(X)−Q1(X) represent the interquartile range (IQR).

By using this range instead of the standard deviation, the RobustScaler reduces the

influence of outliers on the scaling process without completely eliminating them.

In the case of Deep Neural Networks (DNNs), a normalization layer was used at the

input stage. Normalization plays a pivotal role in deep learning. By ensuring consistent

scales for input features, it prevents minor variances from inducing significant output

changes, thus stabilizing the network. Additionally, normalization facilitates faster training

by improving optimization conditions and averts potential issues like activation function

saturation, thereby maintaining consistent gradient norms [29].

The normalization layer used in this study standardizes the inputs to have zero mean

and unit variance, a method often referred to as Z-score or Standard Score normalization.

The equation for this method is as follows:

Xnorm =
X − µ

σ
(4.2)

where µ is the mean and σ is the standard deviation of the input features. By

maintaining zero mean and unit variance, this type of normalization prevents the DNN

from giving more weight to features with a higher average or variability, leading to more

accurate predictions [29].
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The use of normalization methods has been validated in various studies as effective

in enhancing model performance, by ensuring that the optimization algorithm converges

faster to the minimum, and by preventing the algorithm from getting stuck in local optima

[30] [23].

4.3 Regression Models

Various regression models are employed in this study to predict the number of chips on a

wafer. Each model brings a unique approach to prediction and has its advantages and

potential limitations.

4.3.1 Linear Regression

The model used in this study is implemented using the sklearn ElasticNet linear regression

model. This form of regression is easy to understand and interpret but it does not work

well when the relationships are complex and non-linear [31].

ElasticNet is a linear regression model that combines both L1 and L2 regularization,

from Lasso and Ridge regressions respectively, to both avoid overfitting and allow for

feature selection. It can be useful when there are multiple correlated features. The

hyperparameters of sklearn’s ElasticNet used here are:

• alpha: This is the parameter that scales the penalty term. It’s a constant that

multiplies the penalty terms, thereby determining the amount of regularization. A

larger value of alpha results in a higher level of regularization, which can help to

avoid over-fitting. The default value is 1.0.

• l1 ratio: This is the ElasticNet mixing parameter, and it is used to balance the

contributions of L1 and L2 regularization in the model. For l1 ratio = 1, the penalty

is an L1 penalty (Lasso), and for l1 ratio = 0, it’s an L2 penalty (Ridge). For values

between 0 and 1, you get a combination of L1 and L2.

4.3.2 Random Forest

Random Forest is renowned for its resilience to outliers and its ability to manage non-

linear datasets effectively. Nevertheless, its limitations include potentially suboptimal
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performance on datasets with very high dimensions or those of a smaller size [32]. Since,

the dataset being used here is not very high dimensional, the results should be satisfactory.

For this study the random forest model from sklearn was used. Here are the main

hyperparameters for sklearn’s RandomForestRegressor:

• n estimators: The number of trees in the forest. More trees reduce the variance of

predictions, improving the model’s performance. However, after a certain number,

performance gain is negligible, and the extra computation becomes inefficient. Default

is 100.

• max features: The number of features to consider when looking for the best split. It

can take a number of types: ”auto”, ”sqrt”, ”log2”, or None (consider all features), or

an integer (exact number of features), or a float (fraction of total features). Choosing

max features ¡ n features leads to a reduction of variance and an increase in bias.

Default is ”auto”.

• max depth: The maximum depth of the tree. If None, then nodes are expanded until

all leaves are pure or until all leaves contain less than min samples split samples.

The higher the value, the more complex the model, leading to higher chances of

overfitting. Default is None.

• max leaf nodes: The maximum number of leaf nodes. If None then unlimited number

of leaf nodes. If not None then max depth will be ignored. Default is None.

4.3.3 XGBoost

XGBoost or Extreme Gradient Boosting is an implementation of gradient boosted decision

trees specifically designed for speed and performance [11]. In XGBoost an ensemble of

weak prediction models, typically decision trees, are used simultaneously to create a strong

prediction. They are able to handle a variety of data types, relationships and distributions

[11]. In this thesis, XGBoost was implemented using the Python XGBoost library. Here

are some of the main hyperparameters for XGBoost:

• min child weight: Minimum sum of instance weight (hessian) needed in a child. Used

to control over-fitting. Higher values prevent a model from learning relations which

might be highly specific to the particular sample selected for a tree.

33



Chapter 4. Methodology 4.3. Regression Models

• gamma: Minimum loss reduction required to make a further partition on a leaf node

of the tree. The larger, the more conservative the algorithm will be.

• subsample: Subsample ratio of the training instances. Setting it to 0.5 means that

XGBoost would randomly sample half of the training data prior to growing trees

and this will prevent overfitting.

• colsample bytree: Subsample ratio of columns when constructing each tree.

• max depth: Maximum tree depth for base learners. Increasing this value makes the

model more complex and likely to overfit.

4.3.4 Deep Neural Networks(DNNs)

Deep Neural Networks (DNNs) are a type of artificial neural networks with multiple hidden

layers [33]. These hidden layers allow the model to learn complex patterns and hierarchies

in the data. The use of multiple hidden layers is indeed very powerful, but it may also

require lots of data for training [33]. Also, DNNs are prone to over-fitting. In this thesis,

the DNN model was built using Keras with a Tensorflow backend. The network consists

of several dense layers, the specific number and configuration was determined by trial

and error. Deep Neural Networks (DNN) in TensorFlow have numerous hyperparameters.

Some of them related to regularization, optimizer, and learning rate are:

• L1/L2 regularization: Regularization methods that add a penalty proportional to

the L1 or L2 norm of the weights to the loss function in order to reduce overfitting

by discouraging complex models.

• Optimizer: The optimization algorithm used to minimize the loss function. Some pop-

ular choices include SGD (Stochastic Gradient Descent), Adam (Adaptive Moment

Estimation), RMSProp (Root Mean Square Propagation), etc.

• Learning rate: The size of the steps the optimizer takes to reach the minimum of the

loss function. A smaller learning rate might converge slowly, while a larger learning

rate might skip the minimum.
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4.3.5 Hyperparameter Tuning

To obtain the best results, a critical step was the tuning of hyperparameters for each

regression model to ensure optimal performance. For the Linear Regression model,

regularization terms were tuned to control the complexity of the model. For the Random

Forest model, parameters like the number of trees, the maximum depth of the trees, and

the minimum number of samples required to split a node were optimized. In the case of

the XGBoost model, learning rate, maximum tree depth, and the number of estimators

were among the parameters tuned. The Deep Neural Network (DNN) required a more

complex set of hyperparameters to be tuned, including the number of hidden layers, the

number of neurons in each layer, and the learning rate.

To determine the best values for these parameters, a Grid Search methodology was

employed. Grid Search involves specifying a subset of the hyperparameter space and

exhaustively trying all combinations within this subset. For each combination of parameters,

the model was trained and evaluated using cross-validation, and the performance of the

model was recorded. This method allowed for the identification of the hyperparameters

that resulted in the best performance for each model. After the optimal hyperparameters

were found, these were used to train the final versions of each model on the entire training

dataset.

Through meticulous hyperparameter tuning using Grid Search, it was ensured that each

model was given the best chance to reach its maximum predictive performance, leading to

more robust and reliable results.

4.3.6 Geometrical Approach

The problem at hand involves predicting the number of chips that can be fitted into a

wafer, which is essentially a circular disk with a notch in it. One approach to solve this

problem is through geometric methods.

In this approach, we can consider the circular wafer as a two-dimensional shape and

use geometric calculations to determine the maximum number of chips that can be placed

within it. By carefully analyzing the dimensions of the chips and the wafer, taking

into account the notch in the wafer, we can derive an optimized arrangement of chips

to maximize the number that can fit inside the circular area. The problem is solved

algorithmically using Algorithm 2. Figure 4.3 shows the placement of first two rows in the
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top half circle.

Algorithm 2 Calculation: Maximum Number of Chips in a Wafer

Initialize total chips and used height to 0.

Set p (the perpendicular distance from the wafer’s center to the chip) as chip height
2

.

for each half in {Top,Bottom} do

while used height < r (half = Top) or used height < r− notch (half = Bottom)

do
If First Iteration Update p = p+ chip height+ kerfy.

Calculate upper bound = 2×
√
r2 − p2 (the maximum horizontal distance that the

chips can occupy in a row).

Calculate chip count =
⌊

upper bound
chip width+kerfx

⌋
(the maximum number of chips that can

be placed within a row).

Add chip count to total chips. used height = p+ chip height+ kerfy

end

end

Result: The maximum number of chips that can fit in the wafer is given by

total chips.

This geometric approach provides valuable insights into chip placement strategies

and can be used as a complementary method to machine learning models for chip area

optimization.

4.4 Optimization With Differential Evolution

After creating and selecting a regression model, the Differential Evolution (DE) technique

was employed for optimization of number of chips on a wafer. DE, which is a population-

based metaheuristic optimization algorithm, was initially proposed by Storn and Price in

1997. It excels in dealing with continuous variables [34].

Differential Evolution continuously generates trial candidate solutions in the solution

space and selects the best “offspring” for the next generation based on their fitness value,

which is the quality of the solution. The whole algorithm has three main steps, which

are mutation, cross-over and selection. These steps are performed iteratively until a

termination criteria is met. The termination criteria could be a maximum number of
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Figure 4.3: Feature Correlation Matrix

iterations or a minimum error threshold [34].

In the context of this thesis, the central goal is the optimization of the maximum

number of chips on a wafer, while keeping the on-resistance Rds or Ron in the defined error

range. To achieve this an objective function is defined which takes in the chip width x,

chip width y, wafer size, maximum Ron, minimum Ron and the Ron tolerance.

As one of the key advantages of differential evolution is that it requires fewer adjustable

parameters compared to other evolutionary algorithms such as particle swarm optimization

or PSO, it is easy to use. DE has been found to be very effective in handling non-linear

and non-differentiable optimization problems. Because of this, it is an excellent choice for

a variety of complex optimization problems [35]. The DE algorithm used here is borrowed

from the Python’s Scipy library. The following are some of the important hyperparameters

in this algorithm:

• maxiter: The maximum number of generations over which the entire population is

evolved. The maximum number of function evaluations (with no polishing applied)

is: (maxiter + 1) * popsize * len(x), where len(x) is the number of parameters in

37



Chapter 4. Methodology 4.4. Optimization With Differential Evolution

the function to be optimized.

• strategy: This is the differential evolution strategy to use. It should be one of

’best1bin’, ’best1exp’, ’rand1exp’, ’randtobest1exp’, ’currenttobest1exp’, ’best2exp’,

’rand2exp’, ’randtobest1bin’, ’currenttobest1bin’, ’best2bin’, ’rand2bin’, ’rand1bin’.

The default is ’best1bin’.

• popsize: A multiplier for setting the total population size. The population has popsize

* len(x) individuals (where len(x) is the number of parameters in the function to be

optimized).

• mutation: The mutation constant. In the literature, this is also known as differential

weight. This should be a floating-point value in the range [0, 2].

• recombination: The recombination constant, should be in the range [0, 1]. In the

literature, this is also known as the crossover probability.
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Chapter 5
Results & Empirical Data

In this chapter, an overview of the obtained results, the data utilized, and the experimental

process implemented to address the research questions is presented. Section 5.1 is dedicated

to a detailed examination of the dataset and the experimental setup. Subsequently, the

results achieved through this study are comprehensively articulated in Section 5.2. Overall,

the following questions will be answered in this chapter:

• How many data points were utilized in the training, testing, and analysis stages?

• What software libraries or tools were employed for metrics calculation, dataset

generation, and conducting experiments?

• What strategies were used to optimize the algorithms?

• How did the performance of different regression algorithms compare?

• Which tools were used for the optimization process?

• How does the effectiveness of the optimization compare to that of existing solutions

or products?

5.1 Empirical Data

The subsequent section provides an empirical quantification to the methodology delineated

in the preceding chapter. Figure 5.1 illustrates the data dispersion through a box-and-

whisker plot, whereas Table 5.1 provides a comprehensive statistical overview.
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Figure 5.1: Outlier Detection

Table 5.1: Dataset Overview

Raster X [mm] Raster Y [mm] Chip Size [mm2] Wafer Diameter [mm]

Count 701 701 701 701

Mean 3.664775 2.904724 11.970264 238.516405

Std. 1.562096 1.511133 9.893986 56.252709

Min 0.441776 0.158417 -6.198533 150.000000

25% 2.465412 1.774196 4.716342 200.000000

50% 3.531037 2.715778 9.673779 200.000000

75% 4.536036 3.731191 16.589483 300.000000

Max 9.437646 9.316388 64.638373 300.000000

As illustrated in Figure 5.1, only a handful of outliers are present among the input

features. Distinctly different distributions can be observed for different features, as depicted

in Figure 5.2. To rectify this issue, we employed the RobustScaler from the scikit-learn

library for linear regression. For the Deep Neural Network (DNN) model, the normalization

layer from Keras was utilized to standardize the input features. However, for the Random

Forests and XGBoost models, no normalization techniques were applied, as these methods

are not reliant on normalization[36]. The adjusted distributions post-application of the

scikit-learn’s RobustScaler are depicted in Figure 5.3.
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Figure 5.2: Feature Distribution

Figure 5.3: Feature Distribution After Scaling

Manufacturing data is extracted from an Excel file and imported into a Pandas
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DataFrame employing the ’read excel()’ function. Upon loading, duplicates are eliminated

and outliers are identified. The data is then visualized using the Seaborn library, followed

by the creation of distinct training and testing datasets from the preprocessed data.

Algorithms, such as linear regression, random forest, XGBoost, and Deep Neural Networks

(DNNs), are trained using the training data. Once training is finalized, these models are

evaluated using the test data, facilitating the tuning of hyperparameters based on the

obtained results. An overview of the entire process is presented in Figure 5.4.

Figure 5.4: Modelling Process

Upon completion of the modeling phase, the developed model was utilized in conjunction

with the Ron model, as delineated in Section 3.3, for the subsequent optimization process.

The optimization algorithm implemented in this context was the Differential Evolution

algorithm. A minimum of four pre-existing products were enhanced using this algorithm.

The concept is graphically represented in Figure 5.5.

42



5.2. Results Chapter 5. Results & Empirical Data

Figure 5.5: Optimization Process

The following python libraries were used for the different steps:

• dash

• seaborn

• matplotlib

• pandas

• numpy

• scipy

• scikit-learn

• XGBoost

• tensorflow

5.2 Results

This section commences with the examination of the training error from the Deep Neural

Network (DNN) model, followed by the presentation of results from all regression models

for subsequent comparison. Upon providing a summary of the regression results, selected

examples of optimization are introduced. These instances have been selected from products

already existent within the industry.
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5.2.1 Regression

For methodologies including linear regression, random forest, XGBoost, and Deep Neural

Networks (DNNs), hyperparameter tuning was performed as delineated in Subsection 4.3.5.

Essentially, this entailed extensive and exhaustive testing of different parameters. The

Table 5.2 enumerates the various hyperparameters that were subjected to testing.

Table 5.2: Hyperparameters for each model

Model Name Hyperparameter Values

Linear Regression
alpha [0.1, 0.3, 0.5, 0.7, 0.9]

L1 ratio [0.1, 0.3, 0.5, 0.7, 0.9]

Random Forests

n estimators [25, 50, 100, 150, 300]

max features [’sqrt’, ’log2’, None]

max depth [3, 6, 9, 12, 15, 18]

max leaf nodes [3, 6, 9, 12, 15]

XGBoost

min child weight [1, 5, 10]

gamma [0.5, 1, 1.5, 2, 5, 8, 10]

subsample [0.6, 0.8, 1.0]

colsample bytree [0.6, 0.8, 1.0]

max depth [3, 4, 5, 6, 7, 8]

DNN

L1 [0, 0.001, 0.1, 1]

L2 [0, 0.001, 0.1, 1]

optimizer [’Adam’, ’Adadelta’]

learning rate [0, 0.001, 0.1, 1]

Upon examining the various hyperparameter combinations, the models that demon-

strated the best performance in minimizing Mean Absolute Error (MAE) were selected.

Figure 5.6 elucidates the progression of training and validation losses, while Table 5.3

provides a detailed account of the achieved metrics. These include training Mean Square

Error (Train MSE), training Mean Absolute Error (Train MAE), testing Mean Square

Error (Test MSE), and testing Mean Absolute Error (Test MAE). In the case of the

geometric model, since it does not require training, its performance is assessed solely based

on the test data.
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Figure 5.6: DNN Losses

Table 5.3: Models Performance

Train RMSE Train MAE Test RMSE Test MAE

Linear Regression 3986.8 5604.8 3986.8 5239.3

Random Forests 99.19 266.2 2462.4 922.9

XGBoost 567.1 385.8 2426.8 1132.1

DNN 684.7 307.4 864.3 475.7

Geometric Model – – 1108 587

5.2.2 Optimization

The optimization process utilized the Differential Evolution (DE) algorithm, a robust and

efficient optimization method renowned for its efficacy. The primary goal was to retain the

Ron value within a specified range of tolerance. This objective is paramount as it strikes a

balance between the power performance of the device and the prospect of proposing an

optimized chip geometry.

In the heart of the DE algorithm lies the objective function that it strives to minimize.
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This objective function takes into account factors such as chip dimensions, wafer size, the

Ron model, and the model for the number of chips. If the chip dimensions, generated

during a certain generation, fail to result in an Ron value within the designated range, that

generation is penalized relative to the error magnitude. Conversely, if the Ron lies within

the specified range, the function returns the negative of the number of chips generated by

the objective function, which DE then seeks to minimize through iterative evolution.

The model underwent rigorous testing using an array of parameter combinations

during the experimentation process. Various facets of the algorithm’s configuration,

such as population size, mutation factor, and crossover strategy, were evaluated. The

comprehensive testing process assisted in identifying the most effective settings, thereby

contributing to the robust performance of the optimization model.

Lastly, the algorithm was deployed on four distinct product models available in the

market. These models represent typical devices in the semiconductor industry, serving as

real-world examples. The algorithm was tested on both the reticle Equation 2.1 and the

DNN regression model for the number of chips on a wafer. The practical application of

the algorithm to these product models tested its viability and effectiveness. The results

derived from the DNN regression model are summarized in Table 5.4, while those obtained

from the reticle floorplanning optimization are presented in Table 5.5.

Table 5.4: Wafer Floorplanning Optimization Performance

No. of Chips Difference

Type Original Optimized No. of Chips Ron

A 2048 2213 +8% 0.84%

B 3129 3428 +9.5% 0.89%

C 3735 3935 +5.3% 0.83%

D 4253 4284 +0.7% 0.89%
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Table 5.5: Reticle Floorplanning Optimization Performance

No. of Chips Difference

Type Original Optimized No. of Chips Ron

A 25 28 +12% 0.03%

B 36 42 +16.7% 0.01%

C 40 50 +25% 0.03%

D 54 55 +1.85% 0.11%

5.2.3 Discussion

The review of results from the regression models developed for chip quantity prediction

reveals that the Deep Neural Network (DNN) model significantly outperformed other

models based on the test mean absolute error (MAE). The Linear Regression model,

showing subpar performance across all metrics, notably underfit the data. This is primarily

attributed to the non-linear relationship between the input features and the output.

Interestingly, both Random Forest and XGBoost models demonstrated disappointing

results. In fact, the performance of XGBoost was even weaker than that of Random Forest,

an observation possibly attributable to noise and the small dataset size. Noise appears

to impact XGBoost more negatively, hence the better performance of Random Forest.

However, their overall lackluster performance could be traced back to the dataset’s small

size.

In response to these issues, a carefully designed DNN model, not overly deep, was

deployed, yielding superior results compared to other regression models. To mitigate

overfitting in DNN, both L1 and L2 regularization were utilized. Notably, the DNN model

performed well even when compared to the geometric model, which exploited the problem’s

geometric aspect.

Turning the attention to the optimization phase, the Differential Evolution algorithm

proved successful in increasing the number of chips in both cases: whether the Ron

predictor was linked with the number of chips in a reticle or the number of chips on a

wafer. Interestingly, the optimizer delivered better results when used with the number of

chips on a reticle. When applied to the number of chips on a reticle, the optimizer induced
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a more significant percentage increase in chip quantity compared to when used with the

number of chips on a wafer. Moreover, the model coupling the Ron predictor with the

number of chips on a reticle yielded a lower Ron deviation compared to the model linked

with the number of chips on a wafer. This might be attributed to working more closely

with the reticle— the source of wafer chips through multiple shots— which forms the core

of the problem.
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Chapter 6
Conclusion

Lithography, as a key component of the chip fabrication process, acts as a bottleneck in

manufacturing, thereby necessitating optimization. The optimization scope of this process

encompasses two essential stages: reticle floorplanning and wafer layout design. Effective

chip size optimization and prudent floorplanning are potential solutions to optimize the

number of chips generated from a single wafer.

To optimize the number of chips produced, a predictor was developed to predict the

number of chips on a wafer based on specific chip geometry and the wafer in use. Treating

this prediction as a regression problem, an assortment of machine learning models were

prepared, tuned, and tested. The models—comprising linear regression, random forest,

XGBoost, and Deep Neural Networks—were validated against a geometry-based model.

Deep Neural Networks emerged as the most precise model according to mean absolute

error (MAE), the chosen metric for comparison.

Following the establishment and selection of the most accurate regression model, the

requirement for an optimizer became evident to further optimize chip geometry. Differential

evolution, an evolutionary algorithm, was chosen to fulfill this requirement. An objective

function was formulated, incorporating two models: an Ron model derived from previous

research and the initially-created model for predicting the number of chips on a wafer. The

objective of optimization was to increase the number of chips. The search was rewarded

for producing chip geometry that matched the original Ron and maximized the number of

chips on a wafer. Upon testing on existing market products, the optimizer successfully

generated a model that increased chip production while minimally impacting the Ron

value.
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Chapter 6. Conclusion

This concludes our efforts to streamline lithography in chip fabrication by optimizing

chip quantity while maintaining a balance with Ron. By leveraging machine learning

models and an evolutionary algorithm, this research provides a method to enhance the

efficiency of semiconductor manufacturing processes.

Possible directions for future work are:

• This work lays the groundwork for the exploration of other manufacturing processes,

potentially leading to new optimization strategies in semiconductor fabrication.

• The regression algorithm could be improved by collecting more features and data for

training, thereby enhancing its prediction accuracy.

• The prediction model developed for the number of chips could be expanded to other

manufacturing processes beyond lithography, offering a broader applicability.

• Including other electrical and thermal parameters, apart from Ron, in the optimization

problem could offer a more comprehensive view of the trade-offs in chip fabrication.
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Appendix A
Appendix

A.1 Code

The code for the complete thesis can be found in the repo at:

https://github.com/junaidahmad17/Chip-Geometry-Optmizer.git

To run the code:

• Install python.

• Install and activate python virtual environment.

• Install requirements by executing: pip install -r requirements.txt.

• Set the test and train files path in the .env folder.

• Run paper.ipynb notebook cells to train different regression models.

• Set the chip bounds and the path for the selected model inside the environment file.

• Execute the command: python app wafer pred.py.

• Go to http://localhost:8080 inside the browser and input all the required values

and click optimize.

• For reticle layout and design optimization run: python app wafer pred.py and

go to http://localhost:8081 and repeat the same.

• For geometry based predictor run: python geom wafer.py and input the values.

51



Bibliography

[1] Julia Dragon Ondrej Burkacky and Nikolaus Lehmann. “The semiconductor decade:

A trillion-dollar industry”. In: mckinsey (2022). url: https://www.mckinsey.com/

industries/semiconductors/our-insights/the-semiconductor-decade-a-

trillion-dollar-industry.

[2] Peter Clarke. “Lithography equipment in short supply through 2023 says ASML”. In:

eeNews Europe (2022). url: https://www.eenewseurope.com/en/lithography-

equipment-in-short-supply-through-2023-says-asml/.

[3] Toby Sterling. “Intel orders ASML system for well over USD 340 mln in quest

for chipmaking edge”. In: Reuters (2022). url: https://www.reuters.com/

technology/intel-orders-asml-machine-still-drawing-board-chipmakers-

look-an-edge-2022-01-19/.

[4] Paul van Gerven. “EUV for dummies”. In: BitsChips (2017). url: https://bits-

chips.nl/artikel/euv-for-dummies/.

[5] Warren Flack et al. “Lithography technique to reduce the alignment errors from

die placement in fan-out wafer level packaging applications”. In: Proceedings -

Electronic Components and Technology Conference (May 2011), pp. 65–70. doi:

10.1109/ECTC.2011.5898493.

[6] Sara Brown. “Machine learning, explained”. In: MIT Sloan abs/1709.09480 (2021).

url: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-

explained.

[7] C. C. Emioma and S. O. Edeki. “Stock price prediction using machine learning

on least-squares linear regression basis”. In: Journal of Physics: Conference Series

52

https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.eenewseurope.com/en/lithography-equipment-in-short-supply-through-2023-says-asml/
https://www.eenewseurope.com/en/lithography-equipment-in-short-supply-through-2023-says-asml/
https://www.reuters.com/technology/intel-orders-asml-machine-still-drawing-board-chipmakers-look-an-edge-2022-01-19/
https://www.reuters.com/technology/intel-orders-asml-machine-still-drawing-board-chipmakers-look-an-edge-2022-01-19/
https://www.reuters.com/technology/intel-orders-asml-machine-still-drawing-board-chipmakers-look-an-edge-2022-01-19/
https://bits-chips.nl/artikel/euv-for-dummies/
https://bits-chips.nl/artikel/euv-for-dummies/
https://doi.org/10.1109/ECTC.2011.5898493
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained


Bibliography Bibliography

1734.1 (Jan. 2021), p. 012058. doi: 10.1088/1742-6596/1734/1/012058. url:

https://dx.doi.org/10.1088/1742-6596/1734/1/012058.

[8] Padraig Cunningham, Matthieu Cord, and Sarah Delany. “Supervised Learning”. In:

Jan. 2008, pp. 21–49. isbn: 978-3-540-75170-0. doi: 10.1007/978-3-540-75171-

7{\_}2.

[9] Louis Capitaine, Robin Genuer, and Rodolphe Thiébaut. “Random forests for high-
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