

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL ENGINEERING

REDUKCE NO_X VE SPALINÁCH NO_X REDUCTION IN FLUE GAS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE

Bc. TOMÁŠ RUMÁNEK

VEDOUCÍ PRÁCE SUPERVISOR Ing. RADEK DVOŘÁK, Ph.D.

BRNO 2010

Abstrakt

Předložená diplomová práce se zabývá problematikou snižování NO_x vyskytujících se v odpadních plynech. Důraz je přitom kladen na čištění odpadních plynů prostřednictvím látkového rukávce nebo keramické svíčky, kde nanesený katalyzátor umožňuje snižování NO_x metodou selektivní katalytické redukce. V prácí je rovněž popsána experimentální jednotka pro současné odstraňování plynných polutantů (dioxiny, VOC a NO_x) a popílku na katalytickém látkovém rukávci nebo na katalytické keramické svíčce. Pro experimentální jednotku byl proveden výpočet tlakové ztráty. Tlaková ztráta byla vypočítána jak pro látkový rukávec tak pro keramickou svíčku za nominálních a maximálních podmínek. Poslední kapitola se zabývá sestavením experimentálních režimů při různých parametrech koncentrace NO, průtoku a teploty spalin.

Klíčová slova:

Oxidy dusíku (NO_x), katalytický filtr, selektivní katalytická redukce (SCR)

Abstract

My master's thesis deals with the problems of NOx abatement that are included in flue gas. The accent is put on flue gases treatment throug cloth filter or ceramic candles, where the deposited catalyst enables NOx reduction throug the method of selective cytalytic reduction. In thesis is also describe experimental unit which current remove gaseous pollutants (dioxin, VOC and NOX) and ash on catalytic cloth filter or catalytic ceramic candles. For experimental unit has been calculated pressure drop. Pressure drop has been calculated for nominal and maximal conditions for cloth filter and ceramic candle. Last part of thesis deals with compile a experimental schemes for different concentration of NO, flow and temperature of combustion.

Key words:

Nitrogen oxides (NO_x), catalytic filter, selective catalytic reduction (SCR)

Bibliografická citace mé práce:

RUMÁNEK, T. *Redukce NOx ve spalinách*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2010. 63 s. Vedoucí diplomové práce Ing. Radek Dvořák, Ph.D.

Čestné prohlášení

Prohlašuji, že jsem diplomovou práci na téma Redukce NO_x ve spalinách vypracoval samostatně pod vedením Ing. Radka Dvořáka Ph.D. s využitím parametrů uvedených v přehledu literatury.

V Brně dne 28. května 2010

Podpis:....

Poděkování

Děkuji touto cestou Ing. Radku Dvořákovi Ph.D. za poskytnuté rady a připomínky k této práci a za poskytnutí literatury potřebné k vypracování diplomové práce.

Obsah

Seznam symbolů	. 7 .	-
1 Úvod	. 9	-
2 Metody zneškodňování NO _x 1	10	-
2.1 Primární opatřeni	10	-
2.2 Sekundární opatření	10	-
2.2.1 Selektivní katalytická redukce	11	-
2.2.2 Selektivní nekatalytická redukce	12	-
3. Katalytická filtrace	14	-
3.1 Látkový filtr	16	-
3.2 Keramický filtr	17	-
4 Současný stav poznání v katalytické filtraci NO _x	20	-
4.1 Test katalyzátoru TiO ₂ /V ₂ O ₅ /WO ₃	20	-
4.2 Test katalyzátoru CuMnOx	21	-
4.3 Test katalyzátoru MnO _x	22	-
5 Experimentální jednotka INTEQ II	23	-
5.1 Hlavní části jednotky INTEQ II	23	-
5.2 Princip činnosti jednotky INTEQ II	27	-
5.3 Současný stav jednotky INTEQ II	29	-
6 Výpočet tlakové ztráty	33	-
6.1 Výpočet tlakové ztráty pro látkový rukávec	33	-
6.1.1 Tlaková ztráta na látkovém rukávci	34	-
6.1.2 Tlaková ztráta potrubního systému pro látkový rukávec	35	-
6.2 Tlaková ztráta keramické svíčky	40	-
6.2.1 Tlaková ztráta keramické svíčky	41	-
6.2.2 Tlaková ztráta potrubního systému pro keramickou svíčku	43	-
7 Návrh experimentálních režimů	46	-
7.1 Vyhodnocení naměřených dat	50	-
9 Závěr	52	-
Seznam použité literatury	53	-
Seznam příloh	54	-

Seznam symbolů

Symbol	Význam	Jednotka
А	- Filtrační plocha keramické svíčky	m ²
A _c	- Celková filtrační plocha	m^2
Ar	- Filtrační plocha jednoho látkového rukávce	m^2
A_1	- Filtrační plocha experimentální jednotky	m^2
С	- Pórozita	m
C_s	- Sutherlandova konstanta	Κ
c	- Rychlost proudění media v potrubí	m/s
D	- Střední průměr svíčky	m
Dr	- Průměr rukávce	mm
\mathbf{D}_{v}	- Vnější průměr svíčky	m
d	- Průměr kanálku	m
d_p	- Průměr póru	m
$d_{\rm v}$	- Vnitřní průměr potrubí	m
f	- Součinitel tření	-
g	- Gravitační zrychlení	m/s^2
H_{d}	- Dynamický tlak	ft
Id	- Vnitřní průměr potrubí	in
Κ	- Konstanta pro výpočet tlakové ztráty v potrubí	-
K_1	- Konstanta pro výpočet tlakové ztráty v potrubí	-
K _{1,RUK}	 Koeficient odporu pro odprášený rukávec 	kPa/(m.min)
K_2	- Koeficient odporu pro vrstvu popílku	kPa/(m.mim.g.m ²)
\mathbf{K}_{∞}	- Konstanta pro výpočet tlakové ztráty v potrubí	-
K _{BEZ}	 Koncentrace složky při referenčním obsahu kyslíku 	mg/m_N^3
K _{gem}	- Naměřená koncentrace složky při skutečném obsahu kyslíku	mg/m_N^3
KSP	- Koncentrace suchého plynu	-
KVP	- Koncentrace vlhkého plynu	-
k	- Koncentrace složky	mg/m_N^3
L	- Délka svíčky	m
La	- Délka aktivního filtru	m
L _r	- Délka rukávce	mm
1	- Délka rovných úseků	m
lp	- Délka póru	m
MW	- Molární hmotnost složky	g/mol
m	- hmotnost složky	g
n	- Látkové množství složky	mol
Р	- Tlak	kPa
Q	- Průtok media	m_N^3/h
Re	- Reynoldsovo číslo	-
Т	- Teplota	°C
TZL	- Tuhé znečišťující látky	mg/m^3

Symbol	Význam	Jednotka
T _{ref}	- Vztažná teplota	°C
t	- Regenerační cyklus	1/h
t_1	- Regenerační cyklus experimentální jednotky	1/h
ts	- Tloušťka stěny	m
V_1	- Reálný průtok experimentální jednotky	m ³ /h
v_{f}	- Filtrační rychlost	m/min
v _{fl}	 Filtrační rychlost experimentální jednotky 	m/mim
Vk	- Rychlost proudění v kanálku	m/s
Vp	- Rychlost proudění v pórech	m/s
W	 Objemový podíl vody v plynu 	-
W	- Zatížení rukávce popílkem	g/m^2
W_1	- Zatížení rukávce popílkem na experimentální jednotce	g/m^2
xO_2	- Naměřený obsah kyslíku	%
x_rO_2	- Referenční obsah kyslíku	%
Δp_{max}	 Maximální tlaková ztráta experimentální jednotky 	kPa
Δp_{min}	 Minimální tlaková ztráta experimentální jednotky 	kPa
Δp_{KS}	 Celková tlaková ztráta pro keramickou svíčku 	kPa
Δp_{f}	 Tlaková ztráta na keramické svíčce 	kPa
Δp_{ch}	- Tlaková ztráta v kanálku	kpa
Δp_p	- Tlaková ztráta v pórech	kPa
Δp_s	 Tlaková ztráta přes filtrační koláč 	kPa
Δp_{LR}	 Celková tlaková ztráta pro látkový rukávec 	kPa
$\Delta p_{rukavec}$	 Tlaková ztráta látkového rukávce 	kPa
$\Delta p_{potrubi}$	- Tlaková ztráta v potrubí	kPa
Δp_1	 Tlaková ztráta na oprášeném látkovém rukávci 	kPa
Δp_2	 Tlaková ztráta na vrstvě popílku 	kPa
3	- Drsnost potrubí	m
η	- Dynamická viskozita	Pa.s
η_{ref}	- Vztažná dynamická viskozita	Pa.s
ρ	- Hustota media	kg/m ³
π	- Ludolfovo číslo	-

1 Úvod

V současné době je energie u nás stále v rozhodující míře získávána spalováním fosilních paliv. S tím je spojen jeden ze základních problémů a to znečištění ovzduší. Mezi tyto škodlivé látky patří i oxidy dusíku NO_x , které jsou toxické pro živé organismy a způsobují závažné environmentální problémy jako kyselé deště, městský smog a oslabování ozónové vrstvy. Jedná se především o oxid dusnatý (NO), oxid dusičitý (NO₂) a oxid dusny (N₂O).

Na emisích se podílejí zdroje stacionární a zdroje mobilní. Mezi stacionární zdroje se řadí především zařízení spalovacího nebo jiného technologického procesu, které znečišťuje ovzduší (elektrárny, rafinerie). Mezi mobilní zdroje patří dopravní prostředky a tvoří největší podíl na tvorbě oxidů dusíku. Na obr. 1.1 je znázorněno procentuální rozdělení zdrojů oxidů dusíku.

Obr. 1.1 Procentuální rozdělení zdrojů NO_x[1].

Oxidy dusíku vznikají při spalování tuhého a kapalného paliva oxidací dusíku vázaného v palivu nebo oxidací plynného molekulárního dusíku obsaženého ve vzduchu. U spalovacích zařízení je směs NO_x tvořena přibližně 95% NO. Hlavním zdrojem NO v atmosféře je antropogenní činnost tj. doprava a průmyslová činnost. Existují tři mechanismy vzniku antropogenních NO [2]:

- palivové NO (NO vznikají oxidací chemicky vázaného dusíku v palivu)
- promptní NO (NO vznikající z chemicky vázaného dusíku radikálovými reakcemi na rozhraní plamene)
- termické NO (NO vznikají oxidací dusíku ze spalovacího vzduchu za vysoké teploty)

2 Metody zneškodňování NO_x

Techniky ke snižování oxidů dusíku lze rozdělit do dvou skupin. První skupinu tvoří opatření primární, která vedou k řízení spalovacího procesu zajišť ujícímu minimalizaci tvorby NO_x. Druhou skupinu tvoří sekundární opatření zabezpečující snižování emisí již vzniklých NO_x ve spalinách [3].

2.1 Primární opatřeni

Primární metody spočívají v úpravě spalovacího procesu s cílem potlačit vznik NO_x . Tato opatření směřují k úpravě provozu nebo projektových parametrů spalovacích zařízení takovým způsobem, aby se tvorba oxidů dusíku snížila nebo aby se již vytvořené oxidy dusíku změnily uvnitř kotle ještě před jejich vypuštěním. Přehled primárních opatření je znázorněn na obrázku 2.1.

Obr. 2.1 Přehled primárních opatření ke snižování emisí NO_x [4].

2.2 Sekundární opatření

Sekundární metody jsou technikami koncového čištění ke snižování oxidu dusíku, které se již vytvořily. Hlavními sekundárními opatřeními, která se využívají, jsou selektivní katalytická redukce (SCR) a selektivní nekatalytická redukce (SNCR). Tyto metody jsou na bázi injektáži čpavku, čpavkové vody, močoviny nebo dalších sloučenin, které reagují s NO_x ve spalinách a redukují je na molekulární dusík. Při těchto metodách jsou reakce prováděny za přítomnosti kyslíku dle následujících rovnic [9]:

Se čpavkem (NH₃):

$$4NO + 4NH_3 + O_2 \to 4N_2 + 6H_2O \tag{2-1}$$

$$6NO + 4NH_35N_2 + 6H_2O$$
 (2-2)

$2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$	(2-3)
$6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$	(2-4)

$$NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O \tag{2-5}$$

S močovinou ((NH₂)₂CO)

$$4NO + 2(NH_2)_2CO + 2H_2O + O_2 \rightarrow 4N_2 + 6H_2O + 2CO_2$$
(2-6)

$$6NO_2 + 4(NH_2)_2CO + 4H_2O \rightarrow 7N_2 + 12H_2O + 4CO_2$$
(2-7)

Mohou se vyskytnout rovněž nežádoucí reakce:

 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$ (2-8)

$$2NH_3 + O_2 \rightarrow N_2O + 3H_2O \tag{2-9}$$

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \tag{2-10}$$

 $4NH_{3} + 4NO + 3O_{2} \rightarrow 4N_{2}O + 6H_{2}O$ (2-11)

2.2.1 Selektivní katalytická redukce (SCR)

Metoda selektivní katalytické redukce je nejrozšířenější metodou k redukci oxidů dusíku ve výstupních plynech z velkých spalovacích zařízení.

Díky přítomnosti katalyzátoru dosahuje SCR vyšších stupňů konverze (80% až 90%) a to při nižších teplotách, které záleží na použitém katalyzátoru.

Základní skupiny katalyzátorů jsou [5]:

- Drahé kovy pro nízké teploty 177-288 °C
- V_2O_5 , TiO₂ pro teploty 260-427 °C
- Zeolity (vysoce porézní, krystalické, přírodní nebo syntetické aluminosilikáty) pro teploty 455-594 °C

Hlavní složky katalyzátoru pro SCR jsou oxidy titanu (TiO₂), vanadu (V₂O₅), wolframu (WO₃) a molybdenu (MoO₃). Rychlost výměny katalyzátoru závisí na několika faktorech:

- Vlastnosti spalovaného paliva
- provoz zařízení
- vstupní koncentrace NO_x
- požadovaná účinnost redukce NO_x
- poměr čpavku a močoviny k NO_x.

Nevýhoda selektivní katalytické redukce se týká úniku čpavku. K tomu dochází následkem neúplné reakce NH₃ s NO_x, když spolu se spalinami opouštějí reaktor malá množství čpavku. Tento jev je známý, jako strhávání čpavku.

Únik čpavku se zvyšuje se vzrůstajícím poměrem NH_3/NO_x a se snižováním aktivity katalyzátoru [4].

Z dalších nevýhod této metody je, že katalytický způsob čištění spalin od NO_x je výrazně dražší než způsob nekatalytický; a to jak v investičních nákladech, tak v nákladech provozních. Vyžaduje odloučení tuhých prachových částic a sloučenin ovlivňující funkci katalyzátoru (katalytické jedy, stabilizátory).

Hlavní výhody technologie selektivní katalytické redukce jsou následující [4]:

- konverze NO_x nevytváří žádné vedlejší složky znečištění
- emise NO_x se mohou snížit o 90 % nebo více
- ke splnění požadavků na kvalitu ovzduší se může při selektivní katalytické redukci spotřeba čpavku přizpůsobit tak, aby se snížil vliv strhávání čpavku a prodloužila se doba životnosti.

2.2.2 Selektivní nekatalytická redukce (SNCR)

Metoda selektivní nekatalytické redukce (SNCR) je dalším sekundárním opatřením ke snižování již vytvořených oxidů dusíku ve spalinách spalovací jednotky. Provozuje se bez katalyzátoru při teplotách mezi 850 a 1100 °C. Toto teplotní rozmezí je značně závislé na použitém reakčním činidle (čpavek, čpavková voda, močovina, kyselina kyanurová).

V současnosti se používají tyto druhy SNCR [6]:

- DeNOx proces používá se amoniak (NH₃), častěji vodný roztok hydroxidu amonného (NH₄OH)
- NOxOUT proces používá se močovina (NH₂CONH₂)
- RAPRENOx proces používá se kyselina kyanurová ((HOCN)₃)

Reakce oxidů dusíku se čpavkem/močovinou na vodu a dusík značně závisí na teplotě a době prodlevy v potřebném teplotním rozmezí, stejně jako na poměru čpavku a NO_x. Teplotní rozmezí pro čpavek a hydroxid amonný je 850 – 1000 °C. Pro srovnání je teplotní rozmezí při použití močoviny širší (800 – 1100 °C) s optimální teplotou 1000 °C [19]. Tyto teplotní rozsahy lze rozšířit přídavkem určitých sloučenin. Například přídavkem methanolu do močoviny.

Volba reakčního činidla také ovlivňuje tvorbu oxidu dusného (N_2O). Použití čpavku a hydroxidu amonného vyvolává zanedbatelné množství N_2O , třebaže by se mohla naměřit poměrně vysoká množství, když by se přímo do kotlů vstřikovala močovina.

K překonání tohoto problému a téměř eliminaci N_2O se může močovina nastřikovat do spalovacího vzduchu.

Doba prodlevy uvnitř potřebného teplotního rozmezí je 0,2 - 0,5 sek. Tento časový interval pro kontakt je dost nestabilní a proto čpavek musí být spíše v nadstechiometrickém poměru k NO_x. Opět je třeba molární poměr NH₃ k NO_x optimalizovat. Podíl odstranění NO_x podporuje vyšší podíl čpavku, ale v průběhu doby se jeho únik příliš zvyšuje, což vede k nárůstu znečištění následujících jednotek (např. výměníků tepla, kouřovodů spalin). Aby se tyto dva

protichůdné vlivy vyrovnaly, byl nalezen optimální poměr NH_3/NO_x mezi 1,5 a 2,5 mol/mol [19].

Strojní vybavení pro proces SNCR je zcela snadné namontovat a nezabírá příliš mnoho prostoru, dokonce ani tehdy, když je téměř pokaždé zapotřebí více než jednoho nástřiku. SNCR snižuje NO_x méně, takže se může použít samostatně v kotlích, které již mají dost nízkou hladinu emisí. Může být také užitečná u kotlů vybavených technikou primární redukce. Není však příliš vhodná pro kotle se střídavým zatížením nebo s kolísající jakostí paliva.

Účinnost procesu SNCR bývá okolo 50 - 65 %. Současné náklady na stavbu závisejí na kotli a jeho provozním profilu, přibližně činí 20 % nákladů na SCR. Únik NH₃ se spalinami by neměl překračovat hodnotu 50 mg/m³ [19].

Jednotlivá činidla mají své určité přednosti i nevýhody. Kapalný čpavek musí být skladován v tlakových nádržích a dodržována přísná bezpečnostní opatření. Předností močoviny je, že nezapáchá, je rozpustná ve vodě a lze ji snadno přechovávat jako roztok v beztlakých nádržích.

3. Katalytická filtrace

Je technologie, kde je využita SCR na bázi keramického nebo látkového filtru, do jejichž materiálové struktury je vložen katalyzátor. Katalytické filtry jsou keramické nebo látkové porézní přepážky, kde probíhá odstraňování TZL a SCR. Jako redukční činidlo se používá čpavek, čpavková voda, který je vstřikován proti proudu spalin. Tento způsob se ukázal jako výhodné řešení na úsporu nákladů při spojení dvou technologii dohromady. Další výhodou je úspora tepla, kdy k filtraci může dojít za vysokých teplot ($250 - 450 \,^{\circ}$ C) což má za následek že spaliny se nemusí dohřívat před vstupem do komína. Pokud se před filtr předsune i dávkování vhodného sorbentu, lze na filtru odstraňovat i sloučeniny SO_x, HCl, HF a těžké kovy. Mezi vhodné typy katalyzátorů, u nichž byla prokázána vysoká konverze lze zařadit TiO₂/V₂O₅, TiO₂/V₂O₅/WO₃ nebo TiO₂/V₂O₅/MoO₃, MnO_x/CeO₂, Rh₂O₃/CeO₂ nebo zeolity. Na obr. 3.1 je vidět konverze jednotlivých typu katalyzátorů při určitých parametrech (hmotnost katalyzátoru 160 mg, tlak 98 kPa, průtok plynu 60cm_N³/min, složení: He, NH₃=800 ppm, NO=800 ppm, 1% O₂).

Obr. 3.1 Závislost NO konverze na teplotě: a) $WO_3(9)/TiO_2$, b) $V_2O_5(0,78)/TiO_2$, c) $V_2O_5(1,4)/TiO_2$ d) $V_2O_5(0,78)/WO_3(9)/TiO_2$, e) $V_2O_5(1,4)/WO_3(9)/TiO_2$ [7].

Tyto filtry musí být čištěny od kyselých složek aby, se nemohly vytvářet katalytické jedy jako např. SO₂, HCl, H₂SO₄ a kyselý nebo zásaditý popílek, jenž mají za následek zhoršení funkčnosti katalyzátoru. Při experimentu bylo zjištěno, že pokud je v popílku přítomen oxid arsenu je schopen V-Ti katalyzátor otrávit a zničit jak po chemické stránce, tak po mechanické stránce. Naváže se na povrch katalyzátoru a zabrání adsorpci NH₃. Další alkalické oxidy, jenž dovedou deaktivovat katalyzátor jsou seřazeny podle míry nebezpečnosti [8]:

$$Cs_2O > Rb_2O > K_2O > PbO > Na_2O > Li_2O >> CaO.$$

Při testech bylo zjištěno, že pokud spaliny obsahují vysoké množství sodíku tak se zhoršuje výkonnost katalyzátoru, jelikož probíhá reakce s katalytickými aktivními částicemi. Při zkoumání plynné složky SO₂, kvůli jejich případnému jedovatému účinku reagují s alkalickými solemi přítomnými v popílku za vzniku eutektických tekutin, které tečou přes povrch katalyzátoru a ucpávají póry. Dalším problémem je, že kyselina chlorovodíková HCl reaguje s NH₃ za vzniku NH₄Cl nebo přímo s vanadem a vytváří se oxidy chloridu, které jsou rozpustné za nízkých teplot.

Malý vliv na dlouhodobou účinnost katalyzátoru mají i jiné plyny např. CO₂, CO, H₂O. Na základě těchto poznatků, lze snadno dojít k závěru, že nejlepším způsobem, jak se vypořádat s problémy deaktivace katalyzátoru při katalytické filtraci je [8]:

- 1) Maximalizovat vyčištění SO₂ před vstupem do filtru
- 2) Minimalizovat průnik popílku do struktury filtru
- 3) Udržovat provozní teplotu
- 4) Správný molový poměr NH₃/NO
- 5) Správné promísení sloučenin NH₃

Pro řešení prvního problému stačí využít stále lepší a účinnější metody suché nebo mokré vypírky SO₂. Řešení druhého problému může spočívat v používání pevných filtrů ze syntetických vláken anorganických materiálů. V literatuře se uvádí, že popílek ze spalovacího uhlí má partikulární rozměry $0,2 - 0,26 \mu m$, pevné filtry mají póry 10, 22, 30 μm a umožňují průnik částic do své struktury pouze do hloubky 40, 75 a 150 μm , což je vzhledem k tloušťce běžných filtrů (15 – 20 mm) nepatrný průnik. Zrnité keramické filtry mají obecně vyšší mechanickou odolnost než filtry látkové, ale zároveň mají vyšší tlakovou ztrátu z důvodu nižší pórovitosti. Keramické filtry jsou tvořeny ze dvou vrstev. Vnější vrstva má tloušťku okolo 100 μm a póry jsou pouze v desítkách μm . Tato vrstva znemožňuje průnik popílku. Zatímco vnitřní vrstva o tloušťce 15 – 20 mm s většími póry poskytuje filtru mechanickou odolnost, průchodnost a prostor pro umístění katalyzátoru.

Z výsledků experimentu na jednovrstvých filtrech z uhlíkových vláken je zřejmé, že větší množství katalyzátoru snižuje potřebnou teplotu pro zneškodnění většiny NO (95%) při konstantní povrchové rychlosti, ale zároveň snižuje teplotu, při které začíná převládat oxidace NH₃. Maximální redukce NO je omezena přítomnosti oxidace NH₃ za vyšších teplot. Oxidace NH₃ při teplotách nad 300 °C začíná převládat a snižuje účinnost redukce NO. Je to z důvodů:

- 1) NH₃ reaguje bez účinnosti na redukci NO
- 2) Oxidací amoniaku vznikají další NO_x sloučeniny (především N₂O)

$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O \tag{3-1}$$

Zatímco provozní teplota je většinou dána procesem tak optimální množství katalyzátoru lze volit s ohledem na maximální redukci NO a minimální přítomnost N₂O a NH₃ v proudu za

reaktorem. Je nutné také počítat s rostoucí tlakovou ztrátou úměrné množství katalyzátoru a povrchové rychlosti [8].

3.1 Látkový filtr

Filtrace na látkovém filtru byla vyvinuta na odstraňování škodlivých látek PCDD a PCDF, ale testy ukázaly, že pokud je v čištěných spalinách přítomen amoniak nebo jeho sloučeniny, probíhá zde také selektivní katalytická redukce NO_x . Filtr je tvořen membránou z ePTFE (expandovaný polytetrafluoretylen), na kterou je nanesený katalyzátor (V_2O_5 -WO₃/TiO₂) a to vše je pak všité do látky GORE-TEX, která tvoří filtrační povrch rukávce. Tento filtr může pracovat v teplotním rozmezí 220 – 240 °C. To je znázorněno na obr 3.2.

Obr. 3.2 Redukce NO_x na katalytické vrstvě a filtrace popílku [9].

Na membráně z ePTFE, lze oddělit až 96,6% popílku, které obsahují těžké kovy a na katalyzátoru z $(V_2O_5-WO_3/TiO_2)$ lze zachytit až 98,8% dioxinů [9].

Materiál ePTFE má vysokou odolnost vůči chemickým a tepelným vlivů, ÚV záření a absorpci vody.

Díky porézní struktuře ePTFE nezpůsobuje velkou tlakovou ztrátu, takže je vhodným nosičem pro katalyzátor. Na povrchové membráně dochází k odprášení a tím i k ochraně katalyzátoru před zanášením. Filtrační rychlost by se měla pohybovat od 0,8 do 1,4 m^3/m^2 .min.

Účinnost redukce NO na katalytickém filtru závisí provozní teplotě, filtrační rychlosti, složení spalin a koncentraci NO ve spalinách.

3.2 Keramický filtr

V praxi se při čištění spalin používá vícestupňové čištění, kde se zvlášť v jednotlivých částech odstraňují tuhé částice, NO_x , SO_x a další. Nevýhodou této multistupňové čistící procedury je nutnost předehřátí spalin na požadovanou teplotu katalyzátoru SCR. Proto kombinace filtrace a katalytické reakce v jednom zařízení tzv. katalytickém filtru by umožnila využití velkého množství energie obsažené ve spalinách. Tímto způsobem mohou být výrazně sníženy provozní náklady, investiční náklady a náklady na údržbu. Jednostupňový čistící proces je založený na multifunkčním filtru, který kombinuje filtraci TZL a SCR NO_x užitím pevných keramických katalytických filtračních prvků. Při injektáži vhodného sorbentu před DeNOx katalytický filtr, mohou být dostatečně odstraněny plynné polutanty a rovněž katalytické jedy jako SO_x a HCl. Tímto způsobem je realizováno suché čištění, které kombinuje odstranění TZL a plynných polutantu. Schéma je zobrazeno na obr. 3.4.

Obr. 3.4 Schematický princip suchého čištění spalin [10].

Katalytické jedy jako SO₂, HF a HCl jsou odstraněny pomocí sorbentu např. hydrogenuhličitan sodný (NaHCO₃) nebo hydroxid vápenatý (Ca(OH)₂) zatímco NO_x katalyticky reaguje s NH₃ a O₂ za vzniku N₂ a H₂O při průchodu přes katalytické filtrační prvky. Hydrogenuhličitan sodný podléhá rozkladu na uhličitan sodný, pokud je vystaven působení teploty 140 °C nebo vyšší. Maximální vhodná teplota pro rozklad sody je přibližně 310 °C. Proces rozkladu, vytváří na povrchu částice hydrogenuhličitanu sodného, povrchovou vrstvu uhličitanu sodného, která má podobný vzhled jako pražená kukuřice.

Aktivací je tedy zásadním způsobem měněna povrchová struktura částice hydrogenuhličitanu sodného tak, že je vytvářena velká reaktivní plocha, vyplněná uhličitanem sodným, který má velký měrný povrch.

Při procesu suchého čištění spalin pomocí hydrogenuhličitanu sodného nastává, vlivem působení teploty spalin, následující reakce:

$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2 \tag{3-2}$$

Reakce, které následně probíhají, jsou:

$$NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2 \tag{3-3}$$

$$2NaHCO_3 + SO_2 + 1/2O_2 \to Na_2SO_4 + H_2O + 2CO_2$$
(3-4)

$$NaHCO_3 + HF \rightarrow NaF + H_2O + CO_2 \tag{3-5}$$

Tyto adsorpční látky a soli jsou zachytávány na povrchu katalyzátoru. Hydrogenuhličitan sodný musí být v kontaktu se spalinami po dobu nejméně 1s aby byla dosažena dokonalá disperze hydrogenuhličitanu sodného [14].

Katalytické filtrační svíčky jsou založeny na katalyticky aktivních filtrech pevných keramických svíček. Tělo je vyrobeno z hrubého porézního nosiče na bázi karbidu křemíku (SiC) jenž je pokryto jemnou filtrační membránou (SiO₂-Al₂O₃), která chrání filtr před katalytickými jedy. Střední velikost póru se pohybuje okolo 50 µm. Vzhledem k různorodému použití a účinnosti může mít membrána různou velikost póru. Jemné membrány dokážou zachytit částice menší než 0,3 µm. Tloušťka membránové vrstvy se pohybuje od 150 až do 200 µm. Kombinace těla a membránové vrstvy dosáhneme nízkého tlakového rozdílu a vysoké jemnosti filtrace. Karbid křemíku jako keramický filtrační materiál se vyznačuje výbornou tepelnou odolností. Z toho důvodu jsou tyto filtrační materiály vhodné pro filtraci horkého plynu. Schéma katalytického filtračního prvku je ukázáno na obr. 3.5.

Obr. 3.5 Schéma struktury katalytické filtrační vložky [10].

Na filtrační membráně je zachycen popílek a sorbenty, a zároveň membrána chrání filtr před zanášením což má za následek zvýšení životnosti katalyzátoru. Vzhledem k tomu že sorbent se drží dostatečně dlouho na povrchu filtru, jsou znečišťující látky účinně zneškodněny. Odstranění nánosu z povrchu keramické svíčky se provádí vzduchovým pulsem. Během reverzního vzduchového pulsu je prachový koláč nanesený na povrch elementu odstraněn ve formě "záplaty" (obr. 3.6). "Záplaty" se odlomí z koláče v určité hloubce prachové vrstvy, čímž se zajistí, že ochranná vrstva prachu je vždy přítomna na povrchu elementu. Tento čistící mechanismus vychází z pevnosti elementu a je docela jiný od čistícího mechanismu reversním pulsem u látkového rukávce. Při čištění tkaninového filtru

reverzním pulsem expanduje tlakový puls rukávcem. Na místě maximální expanze má nehybný filtrační koláč tendenci se odtrhnout od povrchu rukávce, takže koláč je téměř kompletně odstraněn. Poté má znovu nehybná zbývající vrstva prachu tendenci vést částice skrz tělo filtračního média. Tento jev může vést k dlouhodobému zaslepení a "bafání" (emisní špičky) během čištění. Výhody, které vyplívají z čistícího mechanismu keramického filtračního elementu, jsou [10]:

- vysoká filtrační účinnost
- schopnost přijmout proměnné provozní podmínky
- dlouhodobá stabilita tlakové ztráty
- žádné emisní špičky během čištění

Obr. 3.6 Schematické znázornění čistícího mechanismu [11].

Prachový koláč se periodicky pulzní regenerací tlakového vzduchu odděluje z povrchu filtračního prvku a shromažďuje se na dně filtračního kužele, který se pravidelně vypouští ze systému.

4 Současný stav poznání v katalytické filtraci NO_x

4.1 Test katalyzátoru TiO₂/V₂O₅/WO₃

Pro laboratorní testování, byl použit katalyzátor na bázi $TiO_2/V_2O_5/WO_3$ impregnován do těla keramické svíčky a jako zkušební plyn byly použity spaliny se vstupní koncentraci 500-1720 ppmv [10]. Amoniak byl vstříknutý v molárním poměru NH₃/NO = 1 mol/mol. Měření bylo prováděno v teplotním rozmezí 140 až 360 °C při celkovém tlaku 100 – 110 kPa. Filtrační rychlost se pohybovala v rozmezí 20 – 40 mm/s. Výsledky testů jsou zobrazeny v následujících grafech

Graf 1 Účinnost NO v závislosti na teplotě při filtrační rychlosti 20 mm/s
Graf 2 Účinnost NO v závislosti na reakční teplotě a filtrační rychlosti při vstupní koncentraci NO 17200 ppmv [10].

Z prvního grafu je patrné že nejvyšší účinnost až 98% bylo dosaženo při vstupní koncentraci NO 500 ppmv a reakční teplotě 300 °C. Při zvýšení teploty vyšší jak 320 °C účinnost klesala je to z toho důvodu že vznikala nežádoucí oxidace amoniaku, který se souběžně vyskytuje v selektivní katalytické redukci NO. Pří zvýšení vstupní koncentrace na 1720 ppmv byla zjištěna účinnost kolem 90% při teplotě 300 °C. Tvorba N₂O nebyla zjištěna u žádného z měření.

Z druhého grafu je patrné, že konvergence NO mírně klesala s rostoucí rychlostí filtrace. Díky zvýšení rychlosti filtrace, dochází ke snížení doby zdržení plynu ve struktuře filtračního prvku.

Z tohoto testu bylo zjištěno, že nejvyšší účinnost NO až 96% se dosáhne při teplotě 300 °C, reakční rychlosti 20 mm/s a tlaku 2,83 kPa.

4.2 Test katalyzátoru CuMnOx

Jedním z dalších testovaných katalyzátoru, je katalyzátor na bázi CuMnO_x [12]. Jeho výhoda je, že dokáže pracovat relativně při nízkých teplotách 150 – 250 °C. Tento katalyzátor se skládá ze tří vrstev. První vrstva je vyrobena z mikroporézní pěny, která může zabránit pronikání jemných částic a má vynikající schopnost separace prachového koláče uloženého na povrchu. Druhá vrstva je vyrobena z vlákna PSA (polytetrafluorethylen) s vynikající tepelnou odolností, odolností vůči kyselinám a dobrou filtrační vlastností. Poslední vrstva je vyrobená ze skelného vlákna, jenž se vyznačuje dobrou tepelně-chemickou odolností. Druhá a třetí vrstva byly pokryty polymery pryskyřice pro vysoké teploty s dobrou tuhostí a anti abrazivními vlastnostmi. Test katalyzátoru byl prováděn za těchto podmínek: Reakční teplota: 150 – 300 °C, rychlost 16,7 mm/s, molární poměr NH₃/NO je roven 1 mol/mol, vstupní koncentrace NO byla 250 ppm, SO₂ byla 20 – 150 ppm a koncentrace O₂ byla 1 – 21 %, množství katalyzátoru 250 – 550 g/m². Měnícími se parametry byla provozní teplota, množství katalyzátoru a koncentrace SO₂.

Graf 3 Účinnost odstranění NO v závislosti na reakční teplotě při různém množství katalyzátoru [12].

Z grafu je patrné, že nejvyšší účinnosti bylo dosaženo při teplotě 200 °C a to při různém množství katalyzátoru. Čím nižší množství katalyzátoru tím byla i nižší účinnost.

Pozn. NO removal efficiency – účinnost odstranění, Reaction time – reakční doba, catalyst loading – zatížení katalyzátoru, SO₂ injected – vstřikování SO₂

Graf 4 Účinek SO₂ ve vstupním plynu na účinnosti odstranění NO při různé teplotě. **Graf 5** Účinnost odstranění NO jako funkce koncentrace SO₂ při různém množství vstřikování SO₂ [12].

Z grafu 4 a 5 je vidět, že při vstřikování SO₂ se účinnost odstranění NO značně snížila přibližně na 20 %. Test byl proveden za podmínek: množství katalyzátoru 350 g/m², teplotě 150 °C, 200 °C, 300 °C, molárního poměru NH₃/NO = 1 mol/mol a vstřikování SO₂ bylo 150 ppm po dobu 2 hod. Tento výsledek si lze vysvětlit tak, že SO₂ reaguje s redukčním činidlem (NH₃) za vzniku NH₄HSO₄ a (NH₄)₂SO₄. Tyto látky se vytvoří na povrchu katalyzátoru a brání tak SCR. Tomu lze zabránit zvýšením reakční teploty na 300 °C.

4.3 Test katalyzátoru MnO_x

Dalším katalyzátorem, který byl je katalyzátor na bázi MnO_x [13]. Tento katalyzátor byl impregnován do tkaninového filtru a testy byly prováděny při teplotě 100 a 150 °C, reakční rychlosti byla volena 27,8 mm/s a vstupní koncentraci 500 ppm NO. Poměr NO/NH₃ = 1 mol/mol.

Z výsledků testu vyplívá, že nejvyšší účinnost odstranění NO_x je 93% při teplotě 150°C a rychlosti 27,8 mm/s při množství katalyzátoru 470 g/m². Při zvyšování zatížení se ukázal pokles odstranění NO_x [13].

5 Experimentální jednotka INTEQ II

Jednotka INTEQ II byla navržena pro experimentální zkoušky selektivní katalytické redukce pomocí metody katalytické filtrace (pro parametry průtoku pohybujících se v rozmezí od 28 do 41 m_N^3/h , filtrační rychlosti pohybující se v rozmezí od 1 do 2,4 m/min a pracovní teploty pohybující se v rozmezí od 230 do 360 °C).

Jedním z hlavních důvodů proč byla experimentální jednotka navržena je, aby bylo možné na ní testovat různé druhy filtračních materiálů pro odstraňování škodlivých látek zejména oxidů dusíku, tuhých znečišťujících látek a PCDD/F. Při dávkování vhodného sorbentu je možné na jednotce odstraňovat i kyselé složky jako je HF, HCl, SO₂ aj. bez nutnosti velkých úprav. Na jednotce se budou testovat dva druhy filtračních materiálů, jedná se o látkový rukávec a keramickou svíčku.

Díky tomu, že je zařízení mobilní můžeme jej bez použití těžké techniky snadno převést do běžných provozů např. spalovny komunálních odpadů, jelikož na akademické půdě nejsme schopni si vytvořit reálné spaliny. V běžném provozu se průtoky spalin pohybují i v řádech 100000 m_N^3/h . Jednotka je tedy menší a vzdálila se od provozního měřítka. Tento ústupek je však mnohonásobně vyvážen širokým využitím tohoto zařízení, které tak může sloužit pro aplikovaný výzkum.

Jednotka je vyrobená z nerezové oceli a lze jí použít i v agresivním prostředí jako jsou spalovny odpadů. Pro snadné čištění jsou funkční a potrubní části spojovány pomocí přírub. Připojovací příruby jsou navrhnuty tak aby bylo možné jednotku snadno připojit na stávající zařízení.

Jednotka umožňuje automatické řízení procesu. Lze tak snadno měnit provozní podmínky automaticky podle potřeb procesu. Dávkování amoniaku, který je použit, jako redukční činidlo je rovněž dávkován automaticky. Díky dávkování amoniaku dosahujeme lepšího promísení, ale oproti čpavkové vodě je amoniak dražší a je s ním horší manipulace.

5.1 Hlavní části jednotky INTEQ II

V současnosti je jednotka navržena tak aby byla použita jednotná instalace pro dva typy filtrů. Jedná se o látkový rukávec o průměru 152 mm a délce až 1000 mm a keramickou svíčku o průměru 40 mm a délce až 1450 mm.

Zařízení se skládá z filtrační komory, modulu kompresoru, elektroohřevu, ventilátoru, řídící jednotky sběru dat a řízení, řídící jednotky pulzní regenerace, ejektoru a potrubního systému s měřícími čidly. Na obr. 5.1 je sestavený INTEQ II. Modrou barvou je zvýrazněna filtrační komora, zelenou je vstupní potrubí a červenou je výstupní potrubí včetně ventilátoru.

Obr 5.1 INTEQ II

Ve filtrační komoře probíhá samostatný proces katalytické filtrace. Filtrační komora je sestavena ze tří částí. Jedná se výstupní komoru, střední část a výsypku. Výstupní komorou odchází čisté spaliny. Do střední části komory jsou spaliny přiváděny hrdlem, které je umístěno tangenciálně a to z důvodu, aby bylo rovnoměrné obtékání spalin kolem rukávce nebo svíčky a zároveň, aby byl filtr chráněn před poškozením. Ve výsypce se zachycuje odstraněný popílek z filtrů.

Pro výrobu tlakového vzduch pro pulzní regeneraci keramického nebo látkového filtru je použit kompresor MATTEI ERA 211 jehož maximální tlak je 0,7 MPa a průtok vzduchu je 2,6 m_N^3 /hod.

Vysokotlaký ventilátor, který byl pro zařízení použit je řady HRD typu 1T/FUK-105/0,55. Výkon ventilátoru je 0,55 kW a maximální tlakový spád je 5 kPa. Pro řízení množství protékajícího media ventilátor disponuje frekvenčním měničem pro regulaci otáček, který je kompaktní součástí elektromotoru.

Řídící jednotka pulsní regenerace slouží k čištění filtru metodou pulse-jet před možným zanášením látkových nebo keramických filtrů a zabraňuje zvyšování tlakové ztráty. Řídící jednotka pulzní regenerace je autonomní jednotka MSC 320, která může pracovat ve dvou režimech. Prvním režimem je periodická regenerace nastavena pomocí zvolených časových prodlev a druhý režim je periodická regenerace řízená tlakovou ztrátou na filtračním rukávci. Řídící jednotka pulzní regenerace pracuje nezávisle na systému, avšak lze ji napojit na hlavní řídicí systém.

Pomocí řídící jednotky sběru dat a řízení je možné celý proces filtrace ovládat, regulovat a kontrolovat. Informace z procesu respektive akční zásahy potřebné pro řízení jsou pomocí

vstupně výstupních modulů průmyslového automatu Octagon převáděny na požadovaný signál. Pro vizualizaci, archivaci dat a výpočet optimalizačních algoritmů slouží PC, které komunikuje s průmyslovým automatem. Na řídící jednotku jsou připojeny teploměry tlakoměry, průtokoměry, ventily, analyzátory spalin, měnič otáček a elektroohřev.

Elektroohřev slouží k tomu, aby spaliny, které mají před vstupem do filtrační komory nižší teplotu, než je teplota provozní, bylo možné dohřát na požadovanou teplotu. Elektroohřev je realizován pomocí topného drátu namotaného na vstupní potrubí v délce 1,8 m kaskádovým způsobem.

Ejektor je zařízení, které slouží k ochlazování spalin je umístěný před ventilátorem a to z toho důvodu že spaliny před ventilátorem mohou mít max. 180 °C. Princip ejektoru spočívá, že do potrubí je přisáván vzduch, který ochlazuje spaliny na požadovanou teplotu.

Potrubí, které je použito v jednotce má rozměry DN 32 a DN 40. Potrubí DN 32 je použito v celém systému před ejektorem a potrubí DN 40 je použito za ejektorem. Je to z důvodu, že když ejektor dodává vzduch na ochlazení spalin, tak aby za ejektorem zůstala konstantní rychlost proudění. Na potrubí jsou navařené nátrubky, které slouží k umístění různých armatur zejména teploměry, tlakoměry, průtokoměry a analyzátory spalin. Jednotlivé příruby jsou typu péro-drážka z důvodů snadné montáže. Na potrubí je instalována izolace. Použitá izolace je kamenná vlna Rockwool, která má teplotu tání vyšší jak 1000 °C.

Mezi konstrukcí a ventilátorem jsou umístěny silentbloky, které pohlcují vibrace, které způsobuje ventilátor.

Specifické parametry INTEQ II				
		Keramická svíčka	Látkový rukávec	
	pracovní teplota	230 - 360 °C	220 – 250 °C	
	max. pracovní tlak (rel.)	-5 kPa	- 5 kPa	
	filtrační rychlost v _f	1,2 – 2,4 m/min	0,8 – 1,4 m/min	
	reálný průtok spalin před	$32,78 \text{ m}_{\text{N}}^{3}/\text{h}$	$40,09 \text{ m}_{\text{N}}^{3}/\text{h}$	
	ejektorem	při T = 360 °C	při T = 250 °C	
Duovorní	normálný průtok před	$13,44 \text{ m}_{\text{N}}^{3}/\text{h}$	$19,90 \text{ m}_{\text{N}}^{3}/\text{h}$	
Provozni	ejektorem	při T = 360 °C	při T = 250 °C	
parametry	min. normálný průtok	$51,01 \text{ m}_{\text{N}}^{3}/\text{h}$	$27,74 \text{ m}_{\text{N}}^{3}/\text{h}$	
	chladícího vzduchu	při T = 360 °C	při T = 250 °C	
	rychlost proudění	10 m/s	10 m/s	
	v potrubí			
	max. výkon	600 W	542 W	
	elektroohřevu			
Detwyhi	před ejektorem DN 32	Ø 38 x 3 mm	Ø 38 x 3 mm	
rotrubi	za ejektorem DN 40	Ø 44,5 x 2,9 mm	Ø 44,5 x 2,9 mm	
	střední průměr	Ø 50 mm	Ø 152 mm	
Parametry	tloušťka stěny	10 mm	1 mm	
filtračních	délka	1450 mm	1000 mm	
materiálů	filtrační plocha	$0,23 \text{ m}^2$	$0,48 \text{ m}^2$	
	počet svíček	1 ks	1 ks	
l'i tua ăni zamava	vnitrni prumer	Ø 219,1 mm	Ø 315,9 mm	
Filtrační komora	výška	Ø 219,1 mm 2200 mm	Ø 315,9 mm 1700 mm	
Filtrační komora	výška délka	Ø 219,1 mm 2200 mm 1800 mm	Ø 315,9 mm 1700 mm 1800 mm	
Filtrační komora Rozměry rámu	výška délka šířka	Ø 219,1 mm 2200 mm 1800 mm 880 mm	Ø 315,9 mm 1700 mm 1800 mm 880 mm	
Filtrační komora Rozměry rámu	výška délka šířka výška	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm	Ø 315,9 mm 1700 mm 1800 mm 880 mm 2000 mm	
Filtrační komora Rozměry rámu Ventilátor	výška délka šířka výška max. podtlak	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa	Ø 315,9 mm 1700 mm 1800 mm 880 mm 2000 mm 2,36 kPa	
Filtrační komora Rozměry rámu Ventilátor s frekvenčním	výška délka šířka výška max. podtlak max. průtok	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa 186 m ³ /h	Ø 315,9 mm 1700 mm 1800 mm 880 mm 2000 mm 2,36 kPa 186 m ³ /h	
Filtrační komora Rozměry rámu Ventilátor s frekvenčním měničem	výška délka šířka výška max. podtlak max. průtok	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa 186 m ³ /h	Ø 315,9 mm 1700 mm 1800 mm 2000 mm 2,36 kPa 186 m ³ /h	
Filtrační komora Rozměry rámu Ventilátor s frekvenčním měničem	výška délka šířka výška max. podtlak max. průtok	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa 186 m ³ /h 350 kg	Ø 315,9 mm 1700 mm 1800 mm 2000 mm 2,36 kPa 186 m ³ /h 350 kg	
Filtrační komora Rozměry rámu Ventilátor s frekvenčním měničem	výška délka šířka výška max. podtlak max. průtok celková hmotnost jednotky (bez	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa 186 m ³ /h 350 kg	Ø 315,9 mm 1700 mm 1800 mm 2000 mm 2,36 kPa 186 m ³ /h 350 kg	
Filtrační komora Rozměry rámu Ventilátor s frekvenčním měničem Ostatní specifikace	výška délka šířka výška max. podtlak max. průtok celková hmotnost jednotky (bez kompresoru	Ø 219,1 mm 2200 mm 1800 mm 880 mm 2000 mm 4,9 kPa 186 m ³ /h 350 kg	Ø 315,9 mm 1700 mm 1800 mm 2000 mm 2,36 kPa 186 m ³ /h 350 kg	

V následující tabulce (tab. 5.1) jsou uvedeny parametry jednotky INTEQ II jak pro keramickou filtrační svíčku tak pro látkový rukávec.

Tab. 5.1 Přehled parametrů jednotky INTEQ II

5.2 Princip činnosti jednotky INTEQ II

Experimentální filtrační jednotka INTEQ II je navržena pro zneškodňování NO_x pomocí selektivní katalytické redukce. Výhodou je možnost regulování teploty a průtoku odpadního plynu. Jednotka je navržena pro dvě varianty filtrace a to pro látkový rukávec a keramickou svíčku. Princip činnosti lze popsat pomocí technologického schématu viz obr 5.2 ve směru proudů.

Odpadní plyn je přiveden do potrubí DN 32. Na vstupním potrubí je umístěn termočlánek, který kontroluje teplotu před vstupem do jednotky. Pokud je teplota spalin vysoká uzavře se ventil 1. Ventil 2 se otevře a přivádí se množství přisávaného vzduchu do potrubí. Je to z důvodu ochrany filtru před možnou tepelnou zátěží. Kontinuálně měřena data jsou, stejně jako u dalších kontinuálně pracujících čidel, zpracovávána řídící jednotkou sběru dat a řízení s počítačem. Z tlakové láhve 1 lze do proudu spalin dávkovat NO. Na základě aktuálního průtoku, který určuje průtokoměr 1 lze jeho množství regulovat ventilem 3. Dávkování NO je nastavené pro umělé navýšení obsahu NO ve spalinách v případě měření v režimu s vyšším obsahem NO a pro možnost experimentu v laboratorních podmínkách. Na stejném principu je založeno dávkováni NH₃, které se dávkuje z tlakové láhve 2 a na základě aktuálního průtoku, který určuje průtokoměrem 2 lze jeho množství regulovat ventilem 4. Plynný amoniak zde slouží jako redukční činidlo pro proces selektivní katalytické redukce. V případě, že teplota spalin je pro katalytickou filtraci nižší lze spaliny dohřívat pomocí elektroohřevu. Před vstupem do filtrační komory se na potrubí nachází tlakoměr a analyzátor spalin. Odpadní plyn je do filtrační komory přiveden tangenciálně pro lepší distribuci plynu na keramické svíčce nebo látkovém rukávci. V komoře proti směru proudění odpadního plynu je umístěn teploměr 2 pro přesné stanovení teploty uvnitř filtru a pro případně řízení elektroohřevu. Tuhé znečišť ující látky obsažené v odpadním plynu proudící přes stěnu filtru způsobující zanášení filtru. Důsledkem toho se zvyšuje tlaková ztráta a proto je nutné vznikající filtrační koláč průběžně odstraňovat. To je uskutečňováno pomocí nezávislé řídící jednotky pulzní regenerace metodou pulse-jet tlakovým vzduchem. Při překročení určité hodnoty rozdílu tlaků je otevřen ventil 5 a ze vzdušníku proudí tlakový vzduch pro pulzní regeneraci filtru. Přívod tlakového vzduchu pro pulzní regeneraci obstarává kompresorový modul, který se skládá ze sušky vzduchu, pístového kompresoru a vzdušníku. Zachycený tuhý odpad je shromažďován ve výsypce, která je manuálně čištěna. Na výstupním potrubí z filtrační komory dochází k zaznamenávání dalších charakteristik. Na potrubí se nachází tlakoměr, průtokoměr a analyzátor spalin. Teploměr 3 na výstupu z filtrační komory je důležitý z hlediska ochrany ventilátoru před tepelným zatížením jelikož spaliny do ventilátoru mohou mít maximálně 180 °C, proto je nutný ejektor pro případné ochlazení spalin. Přisávání vzduchu se provádí ventilem 7 a je řízen počítačem. Ventil 6 před ejektorem slouží k manuálnímu ovládání průtoku vyčištěného plynu. Před ventilátorem se ještě nachází teploměr 4, který je v součinnosti s teploměrem 3 a slouží spíše jako kontrolní čidlo. Za ventilátorem se pak nachází ventil 8 a připojovací příruba výstupního potrubí.

Obr 5.1 Technologické schéma

5.3 Současný stav jednotky INTEQ II

V současné době je experimentální jednotka INTEQ II sestavena do finální podoby chybí jen doinstalovat měřící aparáty (tlakoměry, teploměry, analyzátory spalin) a příslušenství jako jsou tlakové lahve s amoniakem a dusíkem, dále chybí řídící jednotka pulzní regenerace, řídící jednotka sběru dat a řízení s počítačem, modul kompresoru, elektroohřev a elektroinstalace.

Obr 5.2 Pohled na přední a zadní část jednotky INTEQ II

Na obrázku (obr. 5.3) je pohled na přední část jednotky INTEQ II s popisem. Do rozvaděče bude vstupovat celková elektroinstalace.

Obr 5.3 Přední pohled na jednotku INTEQ II

Na obrázku (obr 5.4) je zobrazen tangenciální vstup spalin do filtrační komory pro lepší distribuci plynu na keramické svíčce nebo látkovém rukávci.

Obr 5.4 Tangenciální vstup do filtrační komory

Na obrázku (obr. 5.5) je zobrazena filtrační komora pro keramickou svíčku a nátrubky za filtrační komorou.

Obr 5.5 Filtrační komora

Na obrázku (obr. 5.6) je zobrazen ventilátor s elektromotorem, který dává maximální tlakový spád 5 kPa.

Obr 5.6 Ventilátor s elektromotorem

Na obrázku (obr. 5.7) je zobrazena výstupní komora osazena nátrubky pro teploměr a přívod tlakového vzduchu pro regeneraci filtru.

Obr 5.7 Výstupní komora

Na obrázku (obr. 5.8) jsou zobrazeny nátrubky pro tlakoměry, teploměry a analyzátory spalin před vstupem do filtrační komory a před vstupem do ventilátoru. Dále je na obrázku zobrazen ventil se servopohonem, který je ovládán řídící jednotkou. Tento ventil slouží pro řízení přisávaného vzduchu z ejektoru.

Obr 5.8 Nátrubky pro měřící aparáty

6 Výpočet tlakové ztráty

Jedním z důležitých parametrů jednotky, které se musí spočítat je tlaková ztráta. Na základě tlakové ztráty se určuje výkon ventilátoru. Tlaková ztráta je počítána pomocí Two-K Metody a je spočítána jak pro látkový rukávec tak i pro keramickou svíčku. Výpočet se prováděl pro nominální a maximální hodnoty.

6.1 Výpočet tlakové ztráty pro látkový rukávec

V následující kapitole bude postupně popsán výpočet tlakové ztráty pro látkový rukávec. Výpočet se skládá ze dvou částí:

- Tlaková ztráta na látkovém rukávci
- Tlaková ztráta v potrubí

V následující tabulce (tab. 6.1) jsou uvedeny potřebné hodnoty pro výpočet.

		Nominální hodnoty	Maximální hodnoty
Veličina	Označení	Hodnota	Hodnota
Tuhé znečišťující látka	TZL	4000 mg/m^3	4000 mg/m^3
Teplota	Т	230 °C	250 °C
Tlak	Р	-5 kPa	-5 kPa
Filtrační rychlost	Vf	1,0 m/min	1,4 m/min
Průměr rukávce	Dr	152 mm	152 mm
Délka rukávce	Lr	1000 mm	1000 mm
Regenerační cyklus	t	0,95 h ⁻¹	0,95 h ⁻¹

Tab. 6.1 Přehled požadovaných parametrů pro výpočet

Pro výpočet tlakové ztráty na filtračním rukávci je ještě potřeba spočítat filtrační plochu rukávce (A) a průtok přes látkový rukávec (Q):

$$A_r = \pi \cdot D_r \cdot L_r \tag{6-1}$$

$$Q = v_f \cdot A_r \tag{6-2}$$

Celková tlaková ztráta je dána součtem tlakové ztráty na zaprášeném rukávci a tlakové ztráty v potrubí:

$$\Delta p_{LR} = \Delta p_{rukávec} + \Delta p_{potrubí} \tag{6-3}$$

Podrobný výpočet je uveden v kapitole 6.1.1 a 6.1.2

6.1.1 Tlaková ztráta na látkovém rukávci

Při výpočtu tlakové ztráty na látkovém rukávci se vycházelo ze vztahu uvedených v literatuře [15] a z experimentálních dat provedené na obdobném zařízení. Celkovou tlakovou ztrátu na látkovém rukávci lze spočítat ze vztahu:

$$\Delta p_{rukávec} = \Delta p_1 + \Delta p_2 = K_{1,RUK} \cdot v_f + K_2 \cdot w \cdot v_f$$
(6-4)

Celková tlaková ztráta Δp_{nkavec} je dána součtem tlakové ztráty na látkovém rukávci bez popílku Δp_1 a tlakové ztráty na vrstvě popílku Δp_2 . Konstanty $K_{1,RUK}$ a K_2 jsou koeficienty odporu. $K_{1,RUK}$ pro rukávec po odprášení a K_2 pro vrstvu popílku. Dále v_f je filtrační rychlost a w je zatížení rukávce popílkem.

Abychom mohli pokračovat ve výpočtu, musíme nejdříve vypočítat konstanty $K_{1,RUK}$ a K_2 ty byly vypočítány pomocí experimentálních dat na obdobném zařízení. V následující tabulce jsou uvedeny potřebné hodnoty pro výpočet.

Veličina	Označení	Hodnota
Tuhé znečišť ující látka	TZL	4000 mg/m^3
Filtrační rychlost	V _{f1}	0,93 m/min
Max. tlaková ztráta na rukávci	Δp_{max}	0,69 kPa
Min. tlaková ztráta na rukávci	Δp_{min}	0,45 kPa
Reálný průtok	V_1	$1000 \text{ m}^3/\text{h}$
Regenerační cyklus	t_1	0,95 1/h
Filtrační plocha	A_1	$17,91 \text{ m}^2$

 Tab. 6.2 Data z experimentální jednotky

Výpočet zatížení rukávce w1 pro experimentální jednotku:

$$w_1 = \frac{TZL \cdot V_1 \cdot t_1}{A_1} = \frac{4 \cdot 1000 \cdot 0.95}{17.91} = \frac{212.17g/m^2}{17.91}$$
(6-5)

Výpočet koeficientu K₂:

$$K_{2} = \frac{\Delta p_{\max} - \Delta p_{\min}}{w_{1} \cdot v_{f1}} = \frac{0,69 - 0,45}{212,17 \cdot 0,93} = \underline{0,001216}$$
(6-6)

Výpočet koeficientu K_{1,RUK}:

$$K_{1,RUK} = \frac{\Delta p_{\min}}{v_{f1}} = \frac{0.45}{0.93} = \underbrace{0.483570}_{0.93}$$
(6-7)

Vypočtené konstanty K_{1,RUK} a K₂ mají stejnou hodnotu i pro jednotku INTEQ II.

Výpočet zatížení rukávce w pro jednotku INTEQ II:

$$w = \frac{TZL \cdot Q \cdot t}{A} \tag{6-8}$$

kde TZL je průměrná koncentrace tuhých látek ve spalinách, t je interval mezi cykly pulzní regenerace rukávce a A je filtrační plocha. Nyní lze dopočítat tlakovou ztrátu na látkovém rukávci pro INTEQ II která se spočítá z rovnice (6-4).

6.1.2 Tlaková ztráta potrubního systému pro látkový rukávec

Tlaková ztráta v potrubí je počítána pomocí Two-K metody [17]. Pro výpočet se tlakové ztráty se využívá pouze dvou konstant, průměru potrubí a armatur a Reynoldsova čísla. Výpočet je rozdělen na dvě části:

- Potrubní úsek DN32 od vstupu spalin do technologie po ejektor
- Potrubní úsek DN40 od ejektoru po výstup z technologie

V tab. 6.3 jsou vstupní data pro výpočet tlakové ztráty. V tabulce jsou uváděny kromě jednotek SI soustavy také hodnoty v anglosaské soustavě, jelikož metoda vyžaduje dosazení v těchto jednotkách.

		Jednot	ky SI	Imperia	al units
DN32		Nominální	Maximální	Nominální	Maximální
		hodnoty	hodnoty	hodnoty	hodnoty
Veličina	Ozn.	Hodnota	Hodnota	Hodnota	Hodnota
Teplota media	Т	230 °C	250 °C	503,15 K	523,15 K
Průtok	Q	$28,64 \text{ m}_{N}^{3}/\text{h}$	$40,09 \text{ m}_{\text{N}}^{3}/\text{h}$		
Vnitřní průměr potr.	$d_{\rm v}$	0,032 m	0,032 m	1,260 in	1,260 in
Gravitační zrychlení	g	9,81 m/s ²	9,81 m/s ²	32,185 ft/s ²	$32,185 \text{ ft/s}^2$
Hustota media	ρ	$0,653 \text{ kg/m}^3$	$0,653 \text{ kg/m}^3$	0,041 lb/ft ³	0,041 lb/ft ³
Drsnost potrubí	3	0,0001 m	0,0001 m	0,0003 ft	0,0003 ft
Délka rovných úseků	1	6,425 m	6,425 m	21,080 ft/s	21,080 ft/s
Vzt. dyn. viskozita	η_{ref}	1,83e-05 Pa.s	1,83e-05 Pa.s		
Vztažná teplota	T _{ref}	18 °C	18 °C	291,15 K	291,15 K
Sutherlandova konst.	Cs	120 K	120 K	120 K	120 K
		Jednot	ky SI	Imperia	al units
DN40		Nominální	N <i>T</i> 1 1 1	ът • /1 /	
		INOIIIIIaiiii	Maximalni	Nominalni	Maximální
		hodnoty	hodnoty	Nominalni hodnoty	Maximální hodnoty
Veličina	Ozn.	hodnoty Hodnota	Maximaini hodnoty Hodnota	Nominalni hodnoty Hodnota	Maximální hodnoty Hodnota
Veličina Teplota media	Ozn. T	hodnoty Hodnota 160 °C	Maximaini hodnoty Hodnota 160 °C	Nominalni hodnoty Hodnota 433,15 K	Maximální hodnoty Hodnota 433,15 K
Veličina Teplota media Průtok	Ozn. T Q	hodnoty Hodnota 160 °C 44,15 m _N ³ /h	Maximaini hodnoty Hodnota 160 °C 67,99 m _N ³ /h	Nominalni hodnoty Hodnota 433,15 K	Maximální hodnoty Hodnota 433,15 K
Veličina Teplota media Průtok Vnitřní průměr potr.	Ozn. T Q d _v	hodnoty Hodnota 160 °C 44,15 m _N ³ /h 0,0387 m	Maximaini hodnoty Hodnota 160 °C 67,99 m _N ³ /h 0,0387 m	Nominalni hodnoty Hodnota 433,15 K 1,524 in	Maximální hodnoty Hodnota 433,15 K 1,524 in
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení	Ozn. T Q d _v g	$\begin{array}{r} \text{hodnoty} \\ \text{Hodnota} \\ \hline 160 \ ^{\circ}\text{C} \\ 44,15 \ \text{m}_{\text{N}}^{3}/\text{h} \\ 0,0387 \ \text{m} \\ 9,81 \ \text{m/s}^{2} \\ \end{array}$	$\begin{tabular}{c} Maximalini \\ hodnoty \\ Hodnota \\\hline 160 \ ^{\circ}C \\ 67,99 \ m_N^3/h \\ 0,0387 \ m \\ 9,81 \ m/s^2 \\end{tabular}$	Nominalní hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ²	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ²
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media	Ozn. Τ Q d _v g ρ	Hodnoty Hodnota 160 °C 44,15 m_N^3/h 0,0387 m 9,81 m/s² 0,789 kg/m³	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Nominalm hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí	Ozn. Τ Q d _v g ρ ε	hodnoty Hodnota 160 °C 44,15 m_N^3/h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m	Maximaini hodnoty Hodnota $160 ^{\circ}\text{C}$ $67,99 \text{m}_{\text{N}}^{3}/\text{h}$ 0,0387 m $9,81 \text{m/s}^{2}$ $0,789 \text{kg/m}^{3}$ 0,0001 m	Nominalni hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků	Ozn. Τ Q d _v g ρ ε 1	hodnoty Hodnota 160 °C 44,15 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m	Maximaini hodnoty Hodnota $160 ^{\circ}\text{C}$ $67,99 \text{m}_{\text{N}}^{3}/\text{h}$ 0,0387 m $9,81 \text{m/s}^2$ $0,789 \text{kg/m}^3$ 0,0001 m 1,2 m	Nominalm hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků Vzt. dyn. viskozita	Ozn. T Q dv g ρ ε 1 1 ηref	hodnoty Hodnota $160 \degree C$ $44,15 \ m_N^3/h$ $0,0387 \ m$ $9,81 \ m/s^2$ $0,789 \ kg/m^3$ $0,0001 \ m$ $1,2 \ m$ $1,83e-05 \ Pa.s$	Maximaini hodnoty Hodnota $160 \ ^{\circ}C$ $67,99 \ m_N^3/h$ $0,0387 \ m$ $9,81 \ m/s^2$ $0,789 \ kg/m^3$ $0,0001 \ m$ $1,2 \ m$ $1,83e-05 \ Pa.s$	Nominalní hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s
Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků Vzt. dyn. viskozita Vztažná teplota	Ozn. T Q dv g ρ ε 1 ηref ηref	hodnoty Hodnota 160 °C 44,15 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m 1,83e-05 Pa.s 18 °C	Maximaini hodnoty Hodnota $160 ^{\circ}C$ $67,99 m_N^3/h$ 0,0387 m $9,81 m/s^2$ $0,789 kg/m^3$ 0,0001 m 1,2 m 1,83e-05 Pa.s $18 ^{\circ}C$	Nominalm hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 291,15 K	Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 291,15 K

Tab. 6.3 Vstupní hodnoty pro výpočet

Následující vztahy jsou stejné pro oba úseky, pouze jsou dosazeny příslušné hodnoty. Výpočet rychlosti proudění media v potrubí:

$$c = \frac{4 \cdot Q}{\pi \cdot d_v^2 \cdot 3600} \tag{6-9}$$

Výpočet dynamické viskozity η lze stanovit pomocí Suthearlondovy rovnice pro ideální plyn, která vyjadřuje závislost dynamické viskozity na teplotě a tlaku. Jelikož jednotka má podtlak 5kPa tak můžeme závislost na tlaku zanedbat:

$$\eta = \eta_{ref} \cdot \frac{T_{ref} + C_s}{T + C_s} \cdot \left(\frac{T}{T_{ref}}\right)^{3/2}$$
(6-10)

V následující tabulce (tab. 6.4) jsou hodnoty rychlosti proudění media v potrubí a dynamické viskozity přepočteny z SI soustavy do anglosaské soustavy.

		Jednotky SI		Imperi	al units
DN32		Nominální	Maximální	Nominální	Maximální
		hodnoty	hodnoty	hodnoty	hodnoty
Veličina	Ozn.	Hodnota	Hodnota	Hodnota	Hodnota
Rychlost media	С	9,90 m/s	13,85 m/s	32,47 ft/s	45,45 ft/s
Dynamická	η	2,74e-05 Pa.s	2,82e-05 Pa.s	1,84e-05	1,89e-05
viskozita				lb/ft.s	lb/ft.s
		Jednot	ky SI	Imperi	al units
DN40	-	Jednot Nominální	ky SI Maximální	Imperi Nominální	al units Maximální
DN4 0	-	Jednot Nominální hodnoty	ky SI Maximální hodnoty	Imperi: Nominální hodnoty	al units Maximální hodnoty
DN40 Veličina	Ozn.	Jednot Nominální hodnoty Hodnota	ky SI Maximální hodnoty Hodnota	Imperia Nominální hodnoty Hodnota	al units Maximální hodnoty Hodnota
DN40 Veličina Rychlost media	Ozn.	Jednot Nominální hodnoty Hodnota 10,43 m/s	ky SI Maximální hodnoty Hodnota 16,06 m/s	Imperia Nominální hodnoty Hodnota 34,22 ft/s	al units Maximální hodnoty Hodnota 50,70 ft/s
DN40 Veličina Rychlost media Dynamická	Ozn. c η	Jednot Nominální hodnoty Hodnota 10,43 m/s 2,47e-05 Pa.s	ky SI Maximální hodnoty Hodnota 16,06 m/s 2,47e-05 Pa.s	Imperia Nominální hodnoty Hodnota 34,22 ft/s 1,66e-05	al units Maximální hodnoty Hodnota 50,70 ft/s 1,66e-05

Tab. 6.4 Převod veličin z jednotek SI na anglosaské jednotky

Výpočet Reynoldsova čísla:

$$\operatorname{Re} = \frac{c \cdot d_{v} \cdot \rho}{\eta} \tag{6-11}$$

Výpočet součinitele tření je stanoven ze dvou vztahů. Podle Moodyho (6-12) a podle Coolebrooka (6-13), kdy je nutný iterační výpočet. V dalších krocích se bere součinitel tření jako aritmetický průměr z výsledků rovnic (6-12) a (6-13) [17]:

$$f = \left(\frac{1}{-2 \cdot \log\left[\left(\frac{6,81}{\text{Re}}\right)^{0.9} + \frac{\varepsilon}{3,7 \cdot d_v}\right]}\right)^2$$
(6-12)
$$\frac{1}{\sqrt{f}} = -2 \cdot \log\left[\frac{\varepsilon}{3,7 \cdot d_v} + \frac{2,51}{\text{Re} \cdot \sqrt{f}}\right]$$
(6-13)

Hodnota konstanty K pro rovné úseky se získá ze vztahu:

$$K = f \cdot \frac{l}{d_{\nu}} \tag{6-14}$$

V příloze jsou uvedeny tabulky pro výpočet konstanty K_1 a K_{∞} . Každá armatura, koleno, T-kus, potrubní redukce i vstup a výstup z potrubí má přiřazenou hodnotu K_1 a K_{∞} . Dvě konstanty dobře popisují podmínky v potrubí. Při nižších hodnotách Reynoldsova čísla je výsledná hodnota konstanty K více ovlivněná konstantou K_1 viz. vztah (6-15) pro výpočet konstanty K [17]:

$$K = \frac{K_1}{\text{Re}} + K_{\infty} \cdot \left(1 + \frac{1}{Id}\right)$$
(6-15)

kde Id je vnitřní průměr potrubí v palcích. Po výpočtu hodnoty K ze vztahu (6-15) pro jednotlivé armatury atd. se výsledný součet přičte ke konstantě získané vztahem (6-14).

Výsledná tlaková ztráta se vypočte dle vztahu:

$$\Delta p_{\text{potrubi}} = K \cdot H_d \tag{6-16}$$

kde K je výsledná hodnota konstanty K a H_d je dynamický tlak daný vztahem:

$$H_d = \frac{c^2}{2 \cdot g} \tag{6-17}$$

Dosazením rychlosti c i gravitačního zrychlení g je opět výsledek v anglosaských jednotkách převeden do jednotek SI soustavy.

V následující tabulce jsou uvedeny výsledky pro výpočet tlakové ztráty látkového rukávce.

Redukce NO_x ve spalinách

Tlaková ztráta látkového rukávce						
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Filtrační plocha rukávce	Ar	0,48 m ²	$0,48 \text{ m}^2$			
Průtok	Q	$28,64 \text{ m}_{\text{N}}^{3}/\text{h}$	$40,09 \text{ m}_{\text{N}}^{3}/\text{h}$			
Koeficient K ₁	K _{1RUK}	0,483570	0,483570			
Koeficient K ₂	K_2	0,001216	0,001216			
Zatížení rukávce	W	228 g/m^2	$319,2 \text{ g/m}^2$			
Tlaková ztráta rukávce	$\Delta p_{rukavce}$	0,76 kPa	1,22 kPa			
	Potrub	í DN32				
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Reynoldsovo číslo	Re	7538,5136	10294,0176			
Součinitel tření (Moody)	f	0,037726	0,035516			
Součinitel tření (Coolebrook)	f	0,030619	0,030619			
Koeficient pro rovné úseky	K	6,8613	6,6394			
Koeficient pro armatury	K	33,4572	33,0949			
Dynamický tlak	H _d	16,3754 ft	32,0957 ft			
Tlaková ztráta pro DN32	$\Delta p_{potrubi}$	1,29 kPa	2,49 kPa			
	Potrub	í DN40				
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Reynoldsovo číslo	Re	12904,2817	19872,3015			
Součinitel tření (Moody)	f	0,033306	0,031087			
Součinitel tření (Coolebrook)	f	0,030844	0,028382			
Koeficient pro rovné úseky	K	0,9564	0,9220			
Koeficient pro armatury	K	7,2449	7,1797			
Dynamický tlak	H _d	18,1953 ft	43,1507 ft			
Tlaková ztráta pro DN40	$\Delta p_{potrubi}$	0,29 kPa	0,68 kPa			

Tab. 6.5 Výsledné data pro látkový rukávec

Celková tlaková ztráta jednotky při použití látkového rukávce podle vztahu (6-3) je uvedena v následující tabulce:

	Nominální podmínky	Maximální podmínky
Celková tlaková ztráta	2,34 kPa	4,39 kPa

Tab. 6.6 Celková tlaková ztráta jednotky při použití látkového rukávce

6.2 Tlaková ztráta keramické svíčky

Tlaková ztráta keramické svíčky se opět dělí na:

- Tlaková ztráta v keramické svíčce
- Tlaková ztráta v potrubí

V tabulce (tab. 6.7) jsou uvedeny potřebné hodnoty pro výpočet.

		Nominální hodnoty	Maximální hodnoty
Veličina	Označení	Hodnota	Hodnota
Teplota	Т	230 °C	360 °C
Tlak	Р	-5 kPa	-5 kPa
Filtrační rychlost	Vf	1,8 m/min	2,4 m/min
Střední průměr svíčky	D	0,05 m	0,05 m
Vnější průměr svíčky	D_v	0,06 m	0,06 m
Délka svíčky	L	1,45 m	1,45 m
Délka aktivního filtru	La	1,3 m	1,3 m
Průměr kanálu	d	0,04 m	0,04 m
Průměr póru	dp	2,5e-05 m	2,5e-05 m
Tloušťka stěny	ts	0,009 m	0,009 m
Délka póru	lp	0,027 m	0,027 m
Pórozita	С	0,5 m	0,5 m
Hustota	ρ	0,653 kg/m3	0,653 kg/m3
Vztažná dynamická viskozita	η_{ref}	1,83e-05 Pa.s	1,83e-05 Pa.s
Vztažná teplota	T_{ref}	291,15 K	291,15 K
Sutherlandova konstanta	Cs	120 K	120 K

Tab. 6.7 Vstupní hodnoty pro keramickou svíčku

Pro výpočet tlakové ztráty na keramické svíčce je ještě nutno spočítat filtrační plochu svíčky (A) a průtok (Q):

$$A = \pi \cdot D \cdot L \tag{6-18}$$

$$Q = v_f \cdot A \tag{6-19}$$

Celková tlaková ztráta jednotky při použití keramické svíčky je dána vztahem [16]:

$$\Delta p_{KS} = \Delta p_f + \Delta p_{potrubi} \tag{6-20}$$

Podrobný výpočet je uveden v kapitole 6.2.1 a 6.2.2

6.2.1 Tlaková ztráta keramické svíčky

Celková tlaková ztráta na keramické svíčce je dána vztahem [16]:

$$\Delta p_f = \Delta p_{ch} + \Delta p_p + \Delta p_s \tag{6-21}$$

kde tlaková ztráta v kanálku Δp_{ch} , tlaková ztráta v pórech Δp_p a tlaková ztráta přes filtrační koláč Δp_s jsou vypočteny níže.

Tlaková ztráta v kanálku Δp_{ch} je tlaková ztráta v potrubí o průměru d a délce L jak je znázorněno na obr. 6.1 a je dána vztahem 6-22 [16]:

Obr 6.1 Schematické znázornění kanálku

$$\Delta P_{ch} = \frac{\frac{64}{\text{Re}} \cdot L \cdot v_k^2}{2 \cdot d}$$
(6-22)

kde Re je Reynoldsovo číslo a v_k je rychlost proudění v kanálku, která se spočítá:

$$v_k = \frac{4 \cdot Q}{\pi \cdot d^2} \tag{6-23}$$

Výpočet Reynoldsova čísla:

$$\operatorname{Re} = \frac{v_k \cdot \frac{\pi \cdot d^2}{4} \cdot \rho}{\eta}$$
(6-24)

Pro výpočet Reynoldsova čísla je nutné spočítat dynamickou viskozitu, kterou lze stanovit pomocí Sutherlandovy rovnice pro ideální plyn (6-10).

Pro výpočet tlakové ztráty v pórech Δp_p je nutné znát geometrii pórů, kterou nelze stanovit přesně. Proto se např. pro vyjádření délky pórů používá tzv. efektivní délka pórů l_p . Schematické znázornění pórů je na obr. 6.2 a tlaková ztráta je dána vztahem [16]:

Obr. 6.2 Schematické znázornění pórů

$$\Delta p_p = \frac{32 \cdot \eta \cdot v_p \cdot l_p}{d_p^2} \tag{6-25}$$

Pro výpočet tlakové ztráty v pórech je zapotřebí vypočítat rychlost v pórech v_p:

$$v_p = \frac{v_k \cdot d^2}{4 \cdot d_p \cdot l_p \cdot C} \tag{6-26}$$

Tlaková ztráta přes filtrační koláč Δp_s se vypočítá [16]:

$$\Delta p_s = K \cdot w \cdot v_f \tag{6-27}$$

Koeficient K lze použit z rovnice (6-6). Pro výpočet zanášení keramické svíčky použijeme vztah (6-5) s tím rozdílem, že celková plocha A se spočítá ze vztahu:

$$A_c = \pi \cdot D \cdot L_a \tag{6-28}$$

Kde průměr D je střední průměr keramické svíčky a L_a je délka aktivního filtru. Na obr 6.3 je schematicky zobrazen střední a vnější průměr keramické svíčky.

Obr. 6.3 Schematicky zobrazen střední a vnější průměr keramické svíčky.

6.2.2 Tlaková ztráta potrubního systému pro keramickou svíčku

Tlaková ztráta v potrubním systému pro keramickou svíčku se spočítá stejně jako v případě látkového rukávce (kapitola 6.1.2) se změnou vstupních parametrů. Tabulka (tab. 6.8) vstupních parametrů je uvedena níže. V tabulce jsou uvedeny i vypočtené hodnoty pro rychlost v potrubí a dynamickou viskozitu.

		Jedno	tky SI	Imperia	ıl units
DN32		Nominální	Maximální	Nominální	Maximální
		hodnoty	hodnoty	hodnoty	hodnoty
Veličina	Ozn.	Hodnota	Hodnota	Hodnota	Hodnota
Teplota media	Т	230 °C	360 °C	503,15 K	633,15 K
Průtok	Q	$24,59 \text{ m}_{\text{N}}^{3}/\text{h}$	$32,78 \text{ m}_{\text{N}}^{3}/\text{h}$		
Vnitřní průměr potr.	d	0,032 m	0,032 m	1,260 in	1,260 in
Gravitační zrychlení	g	9,81 m/s ²	9,81 m/s ²	32,185 ft/s ²	$32,185 \text{ ft/s}^2$
Hustota media	ρ	0,653 kg/m ³	0,653 kg/m ³	0,041 lb/ft ³	0,041 lb/ft ³
Drsnost potrubí	3	0,0001 m	0,0001 m	0,0003 ft	0,0003 ft
Délka rovných úseků	1	6,425 m	6,425 m	21,080 ft/s	21,080 ft/s
Dynamická viskozita	η	2,7e-05 kg/s	3,2e-05 kg/s	1,84e-05	2,15e-05
				lb/ft.s	lb/ft.s
Rychlost proudění c		8,50 m/s	11,33 m/s	27,87 ft/s	37,17 ft/s
		Jedno	tky SI	Imperia	ll units
DN40		Jedno Nominální	tky SI Maximální	Imperia Nominální	l units Maximální
DN40		Jedno Nominální hodnoty	tky SI Maximální hodnoty	Imperia Nominální hodnoty	l units Maximální hodnoty
DN40 Veličina	Ozn.	Jedno Nominální hodnoty Hodnota	tky SI Maximální hodnoty Hodnota	Imperia Nominální hodnoty Hodnota	l units Maximální hodnoty Hodnota
DN40 Veličina Teplota media	Ozn. T	Jedno Nominální hodnoty Hodnota 160 °C	tky SI Maximální hodnoty Hodnota 160 °C	Imperia Nominální hodnoty Hodnota 433,15 K	ll units Maximální hodnoty Hodnota 433,15 K
DN40 Veličina Teplota media Průtok	Ozn. T Q	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m _N ³ /h	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h	Imperia Nominální hodnoty Hodnota 433,15 K	l units Maximální hodnoty Hodnota 433,15 K
DN40 Veličina Teplota media Průtok Vnitřní průměr potr.	Ozn. T Q d	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m _N ³ /h 0,0387 m	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in	l units Maximální hodnoty Hodnota 433,15 K 1,524 in
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení	Ozn. T Q d g	Jedno Nominální hodnoty Hodnota $160 \ ^{\circ}C$ $38,28 \ m_N^3/h$ $0,0387 \ m$ $9,81 \ m/s^2$	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ²	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ²	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ²
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media	Ozn. T Q d g p	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí	Ozn. Τ Q d g ρ ε	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m_N^3/h 0,0387 m 9,81 m/s^2 0,789 kg/m³ 0,0001 m	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků	Ozn. T Q d g p ε 1	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m_N^3/h 0,0387 m 9,81 m/s^2 0,789 kg/m³ 0,0001 m 1,2 m	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků Dynamická viskozita	Ozn. Τ Q d g ρ ε 1 1	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m 2,47e-05	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m 2,47e-05	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 1,66e-05	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 1,66e-05
DN40 Veličina Teplota media Průtok Vnitřní průměr potr. Gravitační zrychlení Hustota media Drsnost potrubí Délka rovných úseků Dynamická viskozita	Ozn. Τ Q d g ρ ε 1 η	Jedno Nominální hodnoty Hodnota 160 °C 38,28 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m 2,47e-05 kg/s	tky SI Maximální hodnoty Hodnota 160 °C 83,96 m _N ³ /h 0,0387 m 9,81 m/s ² 0,789 kg/m ³ 0,0001 m 1,2 m 2,47e-05 kg/s	Imperia Nominální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 1,66e-05 lb/ft.s	l units Maximální hodnoty Hodnota 433,15 K 1,524 in 32,185 ft/s ² 0,049 lb/ft ³ 0,0003 ft 3,937 ft/s 1,66e-05 lb/ft.s

Tab. 6.8 Vstupní hodnoty pro výpočet

V následující tabulce (tab. 6.9) jsou uvedený výsledky pro tlakovou ztrátu keramické svíčky.

Tlaková ztráta keramické svíčky						
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Filtrační plocha svíčky	А	0,228 m ²	$0,228 \text{ m}^2$			
Průtok	Q	$24,59 \text{ m}_{\text{N}}^{3}/\text{h}$	$32,78 \text{ m}_{\text{N}}^{3}/\text{h}$			
Rychlost v kanálku	$\mathbf{v}_{\mathbf{k}}$	5,44 m/s	7,25 m/s			
Reynoldsovo číslo	Re	5177,77	5910,94			
Tlaková ztráta v kanálku	Δp_{ch}	0,006 kPa	0,01 kPa			
Rychlost v pórech	$\mathbf{v}_{\mathbf{p}}$	0,075 m/s	0,1 m/s			
Tlaková ztráta v pórech	Δp_p	2,844 kPa	4,43 kPa			
Celková filtrační plocha	Ac	2041 cm^2	2041 cm^2			
Zatížení keramické svíčky	W	457,75 g/m ²	610,34 g/m ²			
Tlaková ztráta přes filtrační koláč	Δp_s	1,002 kPa	1,78 kPa			
	Potrub	oí DN32				
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Reynoldsovo číslo	Re	6472,21	7388,67			
Součinitel tření (Moody)	f	0,04	0,04			
Součinitel tření (Coolebrook)	f	0,04	0,04			
Koeficient pro rovné úseky	Κ	8,1287	8,0192			
Koeficient pro armatury	Κ	33,6824	33,4858			
Dynamický tlak	H _d	3,68 ft	6,54 ft			
Tlaková ztráta pro DN32	$\Delta p_{potrubi}$	0,3 kPa	0,53 kPa			
	Potrub	oí DN40				
Veličina	Ozn.	Nominální podmínky	Maximální podmínky			
Reynoldsovo číslo	Re	11188,58	24540,06			
Součinitel tření (Moody)	f	0,03	0,03			
Součinitel tření (Coolebrook)	f	0,03	0,03			
Koeficient pro rovné úseky	Κ	0,9965	0,9349			
Koeficient pro armatury	Κ	7,2735	7,1568			
Dynamický tlak	H _d	4,17 ft	20,06 ft			
Tlaková ztráta pro DN40	$\Delta p_{potrubi}$	0,067 kPa	0,316 kPa			

Tab. 6.9 Výsledné hodnoty pro keramickou svíčku.

Celková tlaková ztráta jednotky při použití keramické svíčky podle vztahu (6-20) je uvedena v následující tabulce:

	Nominální podmínky	Maximální podmínky
Celková tlaková ztráta	4,22 kPa	7,07 kPa

Tab. 6.10 Celková tlaková ztráta jednotky při použití keramické svíčky

Pro lepší představu je tlaková ztráta keramické svíčky a látkového rukávce znázorněna v grafu (graf 7).

Graf 7 Celková tlaková ztráta jednotky pro látkový rukávec a keramickou svíčku

Závislost tlakové ztráty na filtrační rychlosti je zobrazena v grafu 8.

Graf 8 Závislost tlakové ztráty jednotky na filtrační rychlosti

7 Návrh experimentálních režimů

Pro návrh experimentálních režimů bude použito medium, jehož složení je uvedeno v následující tabulce (tab. 7.1):

Látka	Značka	Hodnota [%]
Dusík	N_2	77,925495
Kyslík	O_2	10,290799
Argon	Ar	0,862781
Oxid uhličitý	CO_2	6,096523
Voda	H_2O	8,733922
Oxid siřičitý	SO_2	0,024024
Chlorovodík	HCl	0,059250
Oxid dusnatý	NO	0,007064
Oxid dusičitý	NO_2	0,000146

Tab. 7.1 Chemické složení media

Je třeba si uvědomit, jaké parametry se budou měnit a jaké parametry zůstanou konstantní. Parametry a jejich hodnoty, které se budou měnit, jsou uvedené v následující tabulce (tab. 7.2). Na základě kombinace těchto parametrů byly sestaveny jednotlivé režimy.

Látkový rukávec										
Koncentrace NO $[mg/m_N^3]$	Průtok media [m _N ³ /h]	Teplota [°C]								
200	28,64	230								
400	34,36	240								
600	40,09	250								
Kei	ramická svíčka									
Koncentrace NO $[mg/m_N^3]$	Průtok media [m _N ³ /h]	Teplota [°C]								
200	24,59	230								
400	27,32	300								

 Tab. 7.2 Přehled měnících se parametrů

Parametry, které jsou konstantní při experimentálních režimech, jsou pracovní podtlak, který bude nastaven na -5 kPa a molární poměr $NH_3/NO = 1,1$ mol/mol. Další potřebné parametry pro stanovení režimů jsou uvedeny v tabulkách tab. 6.5 a tab. 6.9, které se mění v závislosti na parametrech z tabulky 7.1. Návrh experimentálních režimů byl proveden v simulačním programu ChemCad. Výsledkem je potřebné množství NO, NH_3 a množství přisávaného vzduchu před vstupem do ventilátoru. Na obr 7.1 je schéma uvedených uzlů.

Obr. 7.1 Schéma technologie v simulačním programu ChemCad

	Smíšení dávkovaného bikarbonátu sodného do proudu spalin
$2\overline{3}\overline{4}$	Reaktory pro reakci bikarbonátu sodného se spalinami
571315	Regulátory pomocí kterých se v programu nastavují výpočtové hodnoty
(14)	Smíšení dávkovaného NO do proudu media
6	Smíšení dávkovaného NH3 do proudu media
8	Elektroohřev
9	Katalytický filtr
1011	Reaktory pro reakci NH3 s oxidy dusíku
(12)	Ejektor
Χ	Čísla proudů

Dávkování Bikarbonátu sodného se děje v reaktorech, kde probíhají následující chemické reakce:

$$NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2 \tag{7-1}$$

 $2NaHCO_3 + SO_2 + 1/2O_2 \rightarrow Na_2SO_4 + H_2O + 2CO_2$ (7-2)

$$2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2 \tag{7-3}$$

Na katalytickém filtru se zachytí tuhé látky (soli NaHCO₃, NaCl, Na₂SO₄, Na₂CO₃). Oxidy dusíku reagují s amoniakem (NH₃) podle chemických reakcí:

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O \tag{7-4}$$

$$2NO_2 + 4NH_3 + O_2 \to 3N_2 + 6H_2O \tag{7-5}$$

	Koncentrace	Průtok	Tenlota	Dávkování	Dávkování	Dávkování
	NO	media	ropiota	NO	NH ₃	vzduchu
	[m _N ³ /h]	[m _N ³ /h]	[°C]	[m _N ³ /h]	$[m_N^3/h]$	[m _N ³ /h]
režim 1	200	28,64	230	0,0023	0,0048	15,2689
režim 2	200	28,64	240	0,0023	0,0048	17,4042
režim 3	200	28,64	250	0,0023	0,0048	19,5962
režim 4	200	34,36	230	0,0028	0,0057	18,3457
režim 5	200	34,36	240	0,0028	0,0057	20,8821
režim 6	200	34,36	250	0,0028	0,0057	23,5115
režim 7	200	40,09	230	0,0032	0,0067	21,3671
režim 8	200	40,09	240	0,0032	0,0067	24,3590
režim 9	200	40,09	250	0,0032	0,0067	27,4302
režim 10	400	28,64	230	0,0066	0,0095	15,4484
režim 11	400	28,64	240	0,0066	0,0095	17,5413
režim 12	400	28,64	250	0,0066	0,0095	19,7314
režim 13	400	34,36	230	0,0079	0,0114	18,5069
režim 14	400	34,36	240	0,0079	0,0114	21,0432
režim 15	400	34,36	250	0,0079	0,0114	23,6729
režim 16	400	40,09	230	0,0092	0,0133	21,5558
režim 17	400	40,09	240	0,0092	0,0133	24,5487
režim 18	400	40,09	250	0,0092	0,0133	27,6187
režim 19	600	28,64	230	0,0109	0,0142	15,5815
režim 20	600	28,64	240	0,0109	0,0142	17,6767
režim 21	600	28,64	250	0,0109	0,0142	19,8664
režim 22	600	34,36	230	0,0131	0,0170	18,6678
režim 23	600	34,36	240	0,0131	0,0170	21,2042
režim 24	600	34,36	250	0,0131	0,0170	23,8346
režim 25	600	40,09	230	0,0152	0,0199	21,7450
režim 26	600	40,09	240	0,0152	0,0199	24,7372
režim 27	600	40,09	250	0,0152	0,0199	27,8094

Výsledné potřebné množství NO, NH₃ a vzduchu jsou uvedeny v následujících tabulkách. První tabulka (tab. 7.3) je pro látkový rukávec a tabulka (tab. 7.4) je pro keramickou svíčku.

Tab. 7.3 Přehled režimů výsledných hodnot pro látkový rukávec

	Koncentrace NO	Průtok media	Teplota	Dávkování NO	Dávkování NH2	Dávkování vzduchu
	$[m_N^3/h]$	$[m_N^3/h]$	[°C]	$[m_N^3/h]$	$[m_N^3/h]$	$[m_N^3/h]$
režim 1	200	24,59	230	0,0020	0,0041	13,2612
režim 2	200	24,59	300	0,0020	0,0041	26,3961
režim 3	200	24,59	360	0,0020	0,0041	37,9749
režim 4	200	27,32	230	0,0022	0,0045	14,7303
režim 5	200	27,32	300	0,0022	0,0045	29,4469
režim 6	200	27,32	360	0,0022	0,0045	42,1931
režim 7	200	32,78	230	0,0026	0,0054	17,6592
režim 8	200	32,78	300	0,0026	0,0054	35,3323
režim 9	200	32,78	360	0,0026	0,0054	50,6263
režim 10	400	24,59	230	0,0057	0,0081	13,4843
režim 11	400	24,59	300	0,0057	0,0081	26,7332
režim 12	400	24,59	360	0,0057	0,0081	38,2112
režim 13	400	27,32	230	0,0063	0,0090	14,9776
režim 14	400	27,32	300	0,0063	0,0090	29,7011
režim 15	400	27,32	360	0,0063	0,0090	42,4531
režim 16	400	32,78	230	0,0076	0,0109	17,9545
režim 17	400	32,78	300	0,0076	0,0109	35,6373
režim 18	400	32,78	360	0,0076	0,0109	50,9381
režim 19	600	24,59	230	0,0094	0,0122	13,7078
režim 20	600	24,59	300	0,0094	0,0122	26,9621
režim 21	600	24,59	360	0,0094	0,0122	38,4451
režim 22	600	27,32	230	0,0104	0,0136	15,2252
režim 23	600	27,32	300	0,0104	0,0136	29,9552
režim 24	600	27,32	360	0,0104	0,0136	42,7129
režim 25	600	32,78	230	0,0125	0,0163	18,2500
režim 26	600	32,78	300	0,0125	0,0163	35,9424
režim 27	600	32,78	360	0,0125	0,0163	51,2496

Tab. 7.4 Přehled režimů výsledných hodnot pro keramickou svíčku

Výsledné hodnoty nám umožní zjistit, jaká bude účinnost filtrů při jednotlivých režimech a to jak pro látkový rukávec tak i keramickou svíčky. Díky tomu pak budeme schopni zvolit vhodné parametry, abychom získali co nejvyšší účinnost odstraňování oxidů dusíku.

7.1 Vyhodnocení naměřených dat

Po samostatném procesu katalytické filtrace bude výsledná koncentrace čistého plynu v jednotkách ppm. Musíme proto provést přepočet na referenční jednotky, které jsou mg/m_N^3 a porovnat je s legislativou. Přepočet se provede podle vzorce (7-6).

$$k\left[mg/m_{N}^{3}\right] = k\left[ppm\right] \cdot \frac{MW}{22,414}$$
(7-6)

kde:

k[mg/m_N³] – koncentrace složky [mg/m_N³] k[ppm] – koncentrace složky [ppm] MW – molární hmotnost složky [g/mol] 22,414 – objem 1 kmol za normálních podmínek [m_N³]

Emisní limity musí být vyjadřovány a porovnávány za stejných podmínek, kterými se dosáhne přepočet koncentrací jednotlivých emisních složek spalin na standardní podmínky (273 K, 101,325 kPa), současně s přepočtem na suchý nosný plyn s referenčním obsahem kyslíku 11 % obj. Přepočet koncentrace NO s naměřeným obsahem kyslíku na koncentraci NO s referenčním obsahem kyslíku se provede podle vzorce (7-7)

$$K_{BEZ} = K_{gem} \cdot \frac{21 - x_r O_2}{21 - x O_2}$$
(7-7)

kde:

$$\begin{split} &K_{BEZ}-koncentrace NO při referenčním obsahu kyslíku [mg/m_N^3] \\ &K_{gem}-naměřená koncentrace NO při skutečném obsahu kyslíku [mg/m_N^3] \\ &x_rO_2-referenční obsah kyslíku [%] \\ &xO_2-naměřený obsah kyslíku [%] \end{split}$$

Výslednou koncentraci NO musíme přepočítat na NO₂ z důvodu, že NO nám v atmosféře reaguje na NO₂ podle rovnice (7-8).

$$NO + \frac{1}{2}O_2 \to NO_2 \tag{7-8}$$

Výpočet se provede podle vzorce (7-9). Nejdříve si vyjádříme látkové množství pro NO a pak následně podle vzore (7-9) provedeme výpočet hmotnosti NO₂.

$$n = \frac{m}{MW} \tag{7-9}$$

kde:

n – látkové množství [mol], m - hmotnost složky [g], MW – molární hmotnost složky [g/mol].

Přepočet vlhkého plynu na suchý plyn se provede podle vzorce (7-10).

$$K_{SP} = K_{VP} \cdot \frac{100}{100 - W}$$
(7-10)

kde:

 K_{SP} – koncentrace suchého plynu, K_{VP} – koncentrace vlhkého plynu, W – Objemový podíl vody v plynu.

Stanovené emisní limity a další podmínky pro spalování odpadů stanovuje Nařízení vlády č.354/2002, částka 127. Emisní limity jsou uvedeny v tabulce (tab. 7.5) [18].

Znečišť ující látka	Emisní lir	nit (mg/m _N ³)	Poznámka
	Obecně platné	Přechodně platné	
Tuhé znečišťující látky (prach) celkem	10	20	А
Organické látky v plynné fázi,	10		
vyjádřené jako TOC			
Oxid uhelnatý	50		
Chlorovodík	10		
Fluorovodík	1		
Oxid siřičitý	50		
	400	500	В
NO _x vyjádřené jako NO ₂	200	400	С
	200	400	D

Tab. 7.5 Průměrné denní limity emisí pro spalovny komunálních odpadů

Poznámky

A... Platí pro stávající spalovny. Emisní koncentrace musí být povolena příslušným orgánem

B... Platí pro zařízení s jmenovitou kapacitou do 6 t/h

C... Platí pro zařízení s jmenovitou kapacitou od 6 t/h do 16 t/h

D... Platí pro zařízení s jmenovitou kapacitou od 16 t/h do 25 t/h, ve kterém nevzniká odpadní voda

Po přepočtu podle vzorců uvedených výše porovnáme hodnoty s hodnotami z tabulky (tab. 7.5) a provedeme případná opatření.

9 Závěr

Po krátkém úvodu do problematiky NO_x následuje přehled primárních a sekundárních opatření, které vedou ke snižování oxidů dusíku. V samostatné kapitole je popis na modelu SCR na katalytických látkových i keramických filtrech.

Experimentální jednotka pro snižování NO_x je podrobně popsána jak z hlediska konstrukčního, tak z hlediska technologického v kapitole 5.

Jedním z cílů diplomové práce bylo zjistit, zda zvolený typ ventilátoru pro experimentální jednotku je vyhovující. Bylo proto nutné vypočítat tlakovou ztrátu. Tlaková ztráta byla vypočítána jak pro látkový rukávec tak pro keramickou svíčku za nominálních a maximálních podmínek. Výsledná tlaková ztráta na látkovém rukávci za nominálních podmínek je 2,34 kPa a za maximálních podmínek je 4,39 kPa. Výsledná tlaková ztráta pro keramickou svíčku za nominálních podmínek je 4,22 kPa a za maximálních podmínek je 7,07 kPa. Z výsledku vyplívá, že zvolený typ ventilátoru o maximálním podtlaku 5 kPa se dá použít pro látkový rukávec jak při nominálních podmínek. Při maximálních podmínkách a pro keramickou svíčku by se musel zvolit jiný typ ventilátoru s vyšším podtlakem nebo např. sériové zapojení stejného ventilátoru.

Dalším cílem diplomové práce bylo navrhnout experimentální režimy jednotky při různých parametrech koncentrace NO, průtoku media a teploty při daném složení media. Výsledkem je získání potřebného množství NO, NH₃ a přisávaného vzduchu, který je potřeba na ochlazení media před vstupem do ventilátoru. Tyto návrhy byly provedeny v simulačním programu ChemCad a výsledky jsou uvedeny v tabulkách (tab. 7.4 a tab. 7.5). Pomocí těchto hodnot pak budeme schopni zjistit účinnost látkového rukávce nebo keramické svíčky v jednotlivých režimech. Následně pak budeme schopni určit parametry, abychom získali maximální účinnost pro daný typ filtru.

Seznam použité literatury

- [1] Internetové stránky: <u>http://www.teachengineering.org/view_lesson.php?url=http://www.teachengineering.org/view_lesson</u>
- [2] Gómez-García M.A., Pitchon V., Kiennemann A.: Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Dostupné online: 11.11. 2004. Dostupné z http://www.sciencedirect.com.
- [3] IBLER, Z. a kol.: *Technický průvodce energetika*, BEN technická literatura, Praha 2002. 615s. ISBN 80-7300-026-1
- [4] European Commission, Institute for Prospective Technological Studies (Seville): Reference Document on Best Available Techniques for Large Combustion Plants. Dostupné online z http://eippcb.jrc.es/pub/english.cgi/0/733169>.
- [5] Schnelle Karl B., Jr. Brown, Charles A.: *Air pollutation control technology handbook*. Florida: CRC Press LLC, 2001. 408 p. ISBN 0-8493-9588-7
- [6] Lee S., Park K., Park J., Kim B.: Charakteristics of reducing NO using urea and alkaline additives. *Combustion and flame*, 2005, no. 141, pp. 200-203. Zveřejněno dne: 5.2.2005. Dostupné z http://www.sciencedirect.com>.
- Busca G., Lietti L., Ramis G., Berti F.: Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review. *AppliedCatalysis B: Evriromental*, 1998, no. 18, pp.1-36.
 Zveřejněno dne: 16.11.1998. Dostupné z http://www.sciencedirect.com.
- [8] Sarraco G., Specchia V.: Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases. *Applied Thermal Engineering*, 1998, no. 18, pp. 1025-1035. Zveřejněno dne: 22.9.1998.
 Dostupné z http://www.sciencedirect.com.
- [9] Dvořák R., Chlápek P., Jecha D., Puchýř R., Stehlík P.: New approach to common removal of dioxins and NO_x as a contribution to environmental protection. *Journal* of Cleaner Production, 2010, Zveřejněno dne: 25.1.2010. Dostupné z http://www.sciencedirect.com>.
- [10] Heidenreich S., Nacken M., Hackel M., Schaub G., Catalyc filter elements for combined particle separation and nitrogen oxides removal from gas streams. *Powder Technology*, 2008, no. 180, pp. 86-90. Zveřejněno dne: 6.3.2007. Dostupné z http://www.sciencedirect.com>.

- [11] The increasing use of ceramic filters in air pollution control applications.
 Filtration & Separation, 1997, no. 34, pp. 331. Zveřejněno dne: 18.12.2003. Dostupné z http://www.sciencedirect.com.
- [12] Young-Ok Park, Keon-Wang Lee, Young-Woo Rhee: Removal charakteristics of nitrogen oxide of high temperature catalytic filtersfrom simultaneous removal of fine particulate and NO_x. *Journal of Industrial and Engineering Chemistry*, 2009, no. 15, pp. 36-39. Zveřejněno dne: 11.1.2009.
 Dostupné z http://www.sciencedirect.com.
- [13] Min Kang, Eun Duck Park, Ji Man Kim, Jae Eui Yie: Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts. *Korean Journal of Chemical Engineering*, pp. 86-89, Zveřejněno dne: 28.1.2009 Dostupné z ">http://www.springerlink.com/content/a01461w112841522/>.
- [14] Dvořák R., Pařízek T., Bébar L., Stehlík P.: Incineration and gasification technologies completed with up-to-date off-gas cleaning system for meeting environmental limits. Vlean Technologies and Environmental Policy, pp. 95-105. Zveřejněno dne: 26.9.2008. Dostupné z http://www.springerlink.com/content/b85hw301r816405h/>.
- [15] Perry, R.H., Green, D.W., Maloney, J.O.: *Perry's chemical engineers handbook*. 7th ed. New York: McGraw-Hill, 1997. ISBN 0-07-049841-5
- [16] Heck R. and Farrauto R.: Catalytic air pollutation control: Commercial Technology. 2nd edition. New Yourk, 2002. ISBN 0-471-43624-0.
- [17] Hooper B. William, Monsanto Co: The two-K Method predict head losses in pipe filttings. Chemical engineering august 24, 1981.
- [18] Nařízení vlády č. 354 ze dne 3. Července 2002, kterým se stanoví limity a další podmínky pro spalování odpadu, Sbírka zákonů č. 354/2002, částka 127. Dostupné z ">http://aplikace.mvcr.cz/sbirka-zakonu/SearchResult.aspx?q=2002&typeLaw=zakon&what=Rok&stranka=8>">http://aplikace.mvcr.cz/sbirka-zakonu/SearchResult.aspx?q=2002&typeLaw=zakon&what=Rok&stranka=8>">http://aplikace.mvcr.cz/sbirka-zakonu/SearchResult.aspx?q=2002&typeLaw=zakon&what=Rok&stranka=8>">http://aplikace.mvcr.cz/sbirka-zakonu/SearchResult.aspx?q=2002&typeLaw=zakon&what=Rok&stranka=8>">http://aplikace.mvcr.cz/sbirka-zakon&what=Rok&stranka=8">>.
- [19] Mi-Soo S., Hey-Suk K., Dong-Soon J.: Numerical study on the SNCR application of space-limited industrial boiler. *Applited Thermal Engineering*, 2007, no. 27, pp.2850-2857. Zveřejněno dne: 10.5.2007. Dostupné z http://www.sciencedirect.com>.

Seznam příloh

1. Konstanty K pro výpočet tlakové ztráty str. 51

Konstanty K pro látkový rukávec (nominální hodnoty)

NoteNoteNoteNoteNoteNoteNote90°Standardni (R/D=1), šroubované1 surget8000.250.05	Výpočet pro DN32										
Kolena Standardní (R/D=1), šroubované Standardní (R/D=1), přírubové/svařované 800 0,4 0 0,82 0 90° Velký rádius (R/D=1), přírubové/svařované 1 svarek (90°) 300 0,25 0,66 2,3244 90° Segmentové, svařované (R/D=1,5) 1 svarek (90°) 1000 1,55 0 0,73 0 0,64 0 0,55		Typ fitinky					K1	K∞	n	к	Kcelk
Kolen Standardn (R/D=1), přítubové/svařuve 800 0,25 0 0,55 0,00 Kolen - 1 svarek (90°) 1000 1,15 0 2,03 0 0,04 0,03 0 0,04 0,03 0 0,04 0 0 0,05 0 0,04 0 0 0,05 0 0,04 0 0 0,05 0 0,04 0 0 0,05 0 0,04 0 0 0,05 0 <td></td> <td></td> <td>Standardní (F</td> <td>R/D=1), šroubované</td> <td></td> <td></td> <td>800</td> <td>0,4</td> <td>0</td> <td>0,82</td> <td>0</td>			Standardní (F	R/D=1), šroubované			800	0,4	0	0,82	0
Kolena Velký rádius (R/D=1,5), všechny typy 800 0,2 5 0,46 2,3244 90° 1 svarek (8°)° 1000 1,15 0 2,0 0 Segmentové, svarované (R/D=1,5) 3 svarky (30°) 800 0,3 0 0,64 0 4 svarky (22,5°) 800 0,27 0 0,55 0 0 0,64 0 4 svarky (22,5°) 800 0,27 0 0,55 0 0,25 0 0,43 0 4 svarky (22,5°) 500 0,25 0 0,15 0 0,34 0 4 svarkované 1 svarek (45°) 500 0,15 0 0,16 0 <t< td=""><td></td><td></td><td>Standardní (F</td><td>R/D=1), přírubové/svařov</td><td>vané</td><td></td><td>800</td><td>0,25</td><td>0</td><td>0,55</td><td>0</td></t<>			Standardní (F	R/D=1), přírubové/svařov	vané		800	0,25	0	0,55	0
Kolena 90° 1 svarek (40°) 1000 1,15 0 2,20 0 Kolena Segmentové, svařované (R/D=1,5) 3 svarky (30°) 800 0,3 0 0,59 0			Velký rádius ((R/D=1,5), všechny typy			800	0,2	5	0,46	2,3244
Kolena Segmentové, svařované (R/D=1,5) švařky (35°) 800 0,35 0 0,64 Velký rádius (R/D=1,5) svařky (22,5°) 800 0,27 0 0,59 0 45° Štandardní (R/D=1), všechny typy 500 0,25 0 0,34 0 Velký rádius (R/D=1), všechny typy 500 0,25 0 0,34 0 Savařky (45°) 500 0,25 0 0,34 0 0 Velký rádius (R/D=1), řvšechny typy 500 0,15 0 0,34 0 Savařované 2 svarky (25,5°) 500 0,15 0 0,34 0 Standardní (R/D=1), přirubovásvařované 2 svarky (25,5°) 500 0,15 0 0,34 0 Standardní (R/D=1), přirubovásvařované 500 0,05 0 0,15 0 0,25 0 1,22 0 Kolen Standardní, Sroubované 500 0,15 0 0,25 0 0,15 0 0,25 0 0 <td></td> <td>90°</td> <td></td> <td></td> <td>1 sva</td> <td>rek (90°)</td> <td>1000</td> <td>1,15</td> <td>0</td> <td>2,20</td> <td>0</td>		90°			1 sva	rek (90°)	1000	1,15	0	2,20	0
Kolena Segmentove, segmentove, segmentove, segmentove, relation (R/D=1,5) 3 svarky (3C ²) 800 0,3 0 0,64 0 4 svarky (22,5°) 800 0,22 0 0,55 0 0 0,02 0 0,03 0 0,04 0 0 0,025 0 0,04 0 0 0,04 0 0 0,04 0 0 0,04 0 0,04 0 0,04 0 0,04 0 0 0,04 0 0,04 0 0,04 0 0,04 0 0,04 0 0,04 0 0 0,04 0 0 0,04 0 0 0,04 0 0 0,05 0 0,04 0 0 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0 0,05 0					2 sva	rky (45°)	800	0,35	0	0,73	0
Valoratic Svartovanic Svartovanic Standardní (R/D=1), všechny typy Sto 0.27 0 0.39 0 0.55 0 45° Standardní (R/D=1), všechny typy 500 0.25 0 0.45 0	Kolena		Segmentove,		3 sva	rky (30°) day (22.5%)	800		0	0,64	0
Amb Standardní (R/D=1), všechny typy 500 0,25 0 0,35 0 45° Velký rádius (R/D=1,), všechny typy 500 0,25 0 0,34 0 svařované 1 svarek (45°) 500 0,25 0 0,34 0 svařované 2 svařky (22,5°) 500 0,15 0 0,34 0 svařované Standardní (R/D=1), přírubové/svařované 1000 0,66 0 1,21 0 180° Standardní (R/D=1,5), všechny typy 1000 0,35 0 0,67 0 180° Standardní (R/D=1,5), všechny typy 1000 0,35 0 0,67 0 Vyrobené Standardní (R/D=1,5), šroubované 500 0,77 0 1,32 0 z Velký rádius (R/D=1,5), šroubované 800 0,4 0 1,82 0 z Velký rádius (R/D=1,5), šroubované 800 0,4 0 1,92 0 T-kusy Vstup do potrubní větve 1000			svarovane (R	/D=1,5)	4 sva	「Ky (22,5°) πμα ^α (4.9%)	800	0,27		0,59	0
Af5° Velký rádius (R/D=1,5), všechny typy 500 0,2 0 0,34 0 Segmentové, svařované 1 svarek (45°) 500 0,025 0 0,11 0 Standardní (R/D=1,5), všechny typy 2 svarky (22,5°) 500 0,15 0 0,34 0 180° Standardní (R/D=1), přírubové/svařované 1000 0,6 0 1,21 0 180° Standardní (R/D=1, šroubované 1000 0,6 0 1,22 0 Velký rádius (R/D=1,5), všechny typy 1000 0,6 0 1,32 0 Z Velký rádius (R/D=1,5), všechny typy 500 0,7 0 1,32 0 Z Velký rádius (R/D=1,5), všechny typy 500 0,7 0 1,32 0 Z Velký rádius (R/D=1,5), všechny typy 500 0,7 0 1,32 0 Z Velký rádius (R/D=1,5), všechny typy 500 0,7 0 1,32 0 T-kusy Vstehy optrubní vétve 500			Standardní (E	P(D-1) vězehov tvov	15 sva	rku (18°)	800 500	0,25		0,55	0
Vertey radius (iC)= 1.5), vsechny typy 1 svarek (45°) 500 0.025 0 0.11 0 segmentové, 180° Standardní (R/D=1), šroubované 1 svarek (45°) 500 0.025 0 0.11 0 180° Standardní (R/D=1), šroubované 1000 0.35 0 0.67 0 180° Standardní (R/D=1), přírubové/svařované 1000 0.35 0 0.67 0 Vyrobené Standardní, Sroubované 500 0.76 0 0 0.82 0 z Velký rádius (R/D=1,5), šroubované 800 0.4 0 0.82 0 z Velký rádius (R/D=1,5), šroubované 800 0.4 0 1.93 0 Z Velký rádius (R/D=1,5), šroubované 800 0.4 0 1.93 0 Tek Štandardní, přírubové/svařované 1000 1 0 1.93 0 Tekusy Vstup do potrubní vétve 1000 0.5 0 0.92 0 Tekusy		1 5°	Velký rádius ((D-T), všechny typy (P/D=1.5), všechny typy			500	0,2		0,43	
Vyrobené Standardní (R/D=1), šroubované 2 svarky (22,5°) 500 0,15 0 0,34 0 180° Standardní (R/D=1), přírubové/svařované 1000 0,65 0 1,21 0 180° Standardní (R/D=1), přírubové/svařované 1000 0,35 0 0,67 0 Velký rádius (R/D=1,5), všechny typy 1000 0,3 0 0,67 0 z Velký rádius (R/D=1,5), šroubované 500 0,7 0 1,32 0 kolen Standardní, přírubové/svařované 800 0,4 0 0,82 0 kolen Standardní (R/D=1,5), šroubované 800 0,4 0 1,54 0 kolen Standardní (R/D=1), přírubové/svařované 800 0,4 0 1,54 0 Tok Štroubované Vstup do potrubní větve 1000 1 0 1,54 0 Šoupátko, Plně průtočné, Beta=1 200 0,1 0 0,22 0 Vaturiaci ventil </td <td></td> <td>40</td> <td>Segmentové</td> <td>(1/D - 1, 3), vsecinily typy</td> <td></td> <td>1 svarek (45°)</td> <td>500</td> <td>0,13</td> <td></td> <td>0,34</td> <td></td>		40	Segmentové	(1/D - 1, 3), vsecinily typy		1 svarek (45°)	500	0,13		0,34	
Armatury Standardní (R/D=1), šroubované 100 0,6 0 0,6 0 0,6 0 </td <td></td> <td></td> <td>svařované</td> <td></td> <td></td> <td>$2 \text{ svarky} (22.5^{\circ})$</td> <td>500</td> <td>0,025</td> <td></td> <td>0,11</td> <td>0</td>			svařované			$2 \text{ svarky} (22.5^{\circ})$	500	0,025		0,11	0
180° Standardní (RD=1), bříruboválsvařované 1000 0,35 0 0,76 0 180° Standardní (RD=1), příruboválsvařované 1000 0,35 0 0,76 0 Velký rádius (R/D=1,5), všechny typy 1000 0,35 0 0,76 0 Z Velký rádius (R/D=1,5), všechny typy 500 0,7 0 1,32 0 Z Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,82 0 Z Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,82 0 Z Velký rádius (R/D=1,5), šroubované 800 0,8 0 1,54 0 Tok Šroubovant Standardní, přírubové/svařované 1000 1 0 0,21 0 skriz Přírubové/svařované 1000 0 1 0,01 0,0133 Šoupátko, kulový Plně průtočné, Beta=1 300 0,15 0 0,372 0 Zavírací s redukovaným průtokem, Beta=0,9 <t< td=""><td></td><td></td><td>Standardní (F</td><td>?/D=1) šroubované</td><td></td><td></td><td>1000</td><td>0,10</td><td>0</td><td>1 21</td><td>0</td></t<>			Standardní (F	?/D=1) šroubované			1000	0,10	0	1 21	0
Nome Velký rádius (R/D=1,5), všechny typu 1000 0.0,3 0 0,67 0 z Velký rádius (R/D=1,5), všechny typu 500 0,7 0 1,32 0 z Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,82 0 kolen Standardní, přírubové/svařované 800 0,8 0 1,54 0 T-kusy Vstup do potrubní větve 1000 1 0 1,93 0 Tok Šroubovaň Vstup do potrubní větve 1000 0,1 0 0,21 0 skrz Přírubové/svařované 100 0,5 0 0,92 0 r-kusy Vstup do potrubní větve 100 0,5 0 0,92 0 skriz Přírubové/svařované 100 0,5 0 0,92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		180°	Standardní (F	R/D=1), přírubové/svařov	vané		1000	0.35	0	0.76	0
Vyrobené Standardní, šroubované 500 0,7 0 1,32 0 T-kusy Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,82 0 T-kusy Standardní, přírubové/svařované 800 0,4 0 0,82 0 T-kusy Standardní, přírubové/svařované 1000 1 0 1,93 0 Tok Šroubované 200 0,1 0 0,21 0 T-kusy Vstup do potrubní větve 100 1 0 0,21 0 T-kusy Vstup do potrubní větve 100 0 1 0,01 0,0133 Šoupátko, kulový Vstup do potrubní větve 100 0 1 0 0,22 0 Kulový S redukovaným průtokem, Beta=0,9 500 0,15 0 0,34 0 Uzavírací ventil, standardní S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Vstup Vzavírací ventil, tíhlový nebo Y-typ 1000			Velký rádius ((R/D=1.5), všechny typy	,		1000	0,3	0	0.67	0
r-kusy z Velký rádius (R/D=1,5), šroubované Standardní, přírubové/svařované 800 0,4 0 0,82 0 T-kusy Standardní, přírubové/svařované 1000 1 0 1,54 0 Tok Šroubované 200 0,1 0 0,21 0 T-kusy Vstup do potrubní větve 100 0 1 0 0,21 0 T-kusy Vstup do potrubní větve 100 0 1 0 0,21 0 Šoupátko, ventil Plně průtočné, Beta=1 300 0,1 0 0,22 0 Kalový kohout, uzavírací S redukovaným průtokem, Beta=0,9 300 0,15 0 0,34 0 Uzavírací ventil, úhlový nebo Y-typ 500 0,15 0 0,372 0 Membránový ventil S redukovaným průtokem, Beta=0,8 1000 2.25 0 3,72 0 Vstup Normální Vsazirací ventil, úhlový nebo Y-typ 1000 2.25 0 3,72 0		Vyrobené	Standardní, š	roubované			500	0,7	0	1,32	0
kolen Standardní, pří ubové/svařované 800 0.8 0 1,54 0.0 T-kusy Šroubované 1000 1 0 1,93 0 Tok Šroubované Přírubové/svařované 200 0,1 0 0,21 0,01 Karz Přírubové/svařované 150 0,5 0 0,22 0 T-kusy Vstup do potrubní větve 100 0 1 0 0,133 Šoupátko, klový Plně průtočné, Beta=1 300 0,1 0 0,22 0 kulový S redukovaným průtokem, Beta=0,9 300 0,1 0 0,38 0 ventil Standardní, úhlový -průtokem, Beta=0,9 500 0,58 0 <td< td=""><td></td><td>z</td><td>Velký rádius (</td><td>(R/D=1,5), šroubované</td><td></td><td></td><td>800</td><td>0,4</td><td>0</td><td>0,82</td><td>0</td></td<>		z	Velký rádius ((R/D=1,5), šroubované			800	0,4	0	0,82	0
T-kusy Vstup do potrubní větve 1000 1 0 1,93 0 Tok Šroubované Sroubované 200 0,1 0 0,21 000 skrz Přírubové/svařované 100 0 0 0 0,013 0,0133 T-kusy Vstup do potrubní větve 100 0 0 0 0 0,0133 Šoupátko, kulový Plně průtočné Beta=1 300 0,15 0 0,0133 kulový S redukovaný průtokem, Beta=0,9 300 0,15 0 0,01 variaci S redukovaný průtokem, Beta=0,9 0 0,05 0 0,05 variaci S redukovaný průtokem, Beta=0,9 0 0,05 0 0,05 Variaci S redukovaný průtokem, Beta=0,8 1000 0,25 0 0,58 Membránový ventil S redukovaný Y-typ 1000 2 3,72 0 Vstup Normálni Vsazený 10 0,0 10 0		kolen	Standardní, p	řírubové/svařované			800	0,8	0	1,54	0
$ \begin{array}{ c c c c } & Tok & \ddot{S}roubované & 200 & 0,1 & 0 & 0,21 & 0 \\ \hline Skrz & Přírubové/svařované & 150 & 0,5 & 0 & 0,92 & 0 \\ \hline T-kusy & Vstup do potrubní větve & 100 & 0 & 1 & 0,0133 \\ \hline Skrz & Vstup do potrubní větve & 300 & 0,1 & 0 & 0,22 & 0 \\ \hline Skrz & Průnové/svařované & 100 & 0,1 & 0 & 0,22 & 0 \\ \hline Skrz & Sredukovaný průtokem, Beta=0,9 & 500 & 0,15 & 0 & 0,35 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,9 & 100 & 0,25 & 0 & 0,35 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & S redukovaný průtokem, Beta=0,8 & 100 & 0,25 & 0 & 0,58 & 0 \\ \hline Ventil & Ventil & standard & 150 & 0 & 3,72 & 0 & 0 & 0,58 & 0 \\ \hline Ventil & Varáci V + ventil & informální & 100 & 0,25 & 0 & 0,55 & 0 \\ \hline Vstup & Normální & J normální & 0,55 & 0 & 0,55 & 0 \\ \hline Výstup & Ventil & D2>D1 & Re<4000 & Re>4000 & 1 & 1 & 0,0 & 0,102 & 0 \\ \hline Véntil & Válcová & U2>D1 & Re<4000 & Re>4000 & 0,5 & 0 & 0,55 & 0 \\ \hline Ventil & Ventil & Ventil & D2>D1 & Re<4000 & Re>4000 & 0,0 & 0,0 & 0,0 & 0,10 & 0,102 & 0,0 & 0,10 & 0,102 & 0 & 0,100 & 0,102 & 0 & 0,100$	T-kusy		Vstup do potr	ubní větve			1000	1	0	1,93	0
skrz Přírubové/svařované 150 0,05 0 0,92 0 T-kusy Vstup do potrubní větve 100 0 1 0,01 0,0133 Šoupátko, kulový kohout, uzavírací Plně průtočné, Beta=1 300 0,15 0 0,22 0 Armatury S redukovaným průtokem, Beta=0,9 50 0,15 0 0,25 0 0,58 0 Vzavírací S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Vzavírací ventil, standardní S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Vzavírací ventil, standardní S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Vzavírací ventil, standardní Vstup 1000 2 0 3,72 0 Membránový ventil standardní 1000 0,55 0 0,55 0 Vstup Normální Jzavíří klapka D2 <d1< td=""> n 11 0 11 0 Výstup Vácová D2<d1< td=""> Re<4000</d1<></d1<>		Tok	Šroubované				200	0,1	0	0,21	0
T-kusy Vstup do potrubní větve 100 0 1 0,0133 Šoupátko, kulový Plně průtočné, Beta=1 kohout, ventil 300 0,15 0 0,22 0 Armatury Vzavírací ventil S redukovaným průtokem, Beta=0,9 500 0,15 0 0,34 0 Armatury Vzavírací ventil, standardní S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Armatury Vzavírací ventil, standardní 1500 4 4 7,37 29,4959 Vzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,72 0 Membránový ventil ventil ventil 500 0,55 0 Vstup Normální Vsazený 160 0,55 0 Výstup Normální D2 <d1< td=""> 6 10 1 1,00 1 Výštup D2<d1< td=""> Re<4000</d1<></d1<>		skrz	Přírubové/sva	ařované			150	0,5	0	0,92	0
Soupátko, kulový kulový Plně průtočné, Beta=1 300 0,1 0 0,22 0 Armatury S redukovaným průtokem, Beta=0,9 500 0,15 0 0,34 0 Armatury Uzavírací ventil S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Armatury Uzavírací ventil, standardní 5 redukovaným průtokem, Beta=0,8 1500 4 4 7,37 29,4959 Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,72 0 Membránový ventil 1000 2 0 3,72 0 Škrtící klapka 800 0,25 0 0,55 0 Výstup Normální 1000 2 0 3,72 0 Výstup Normální 10,52 0,5212 0 0 100 100 100 0 100 0 100 0 100 0 0 10 0 100 0 100 0 10 0 100 0 10 0 10 0 10 0 <td></td> <td>T-kusy</td> <td>Vstup do potr</td> <td>ubní větve</td> <td></td> <td></td> <td>100</td> <td>0</td> <td>1</td> <td>0,01</td> <td>0,0133</td>		T-kusy	Vstup do potr	ubní větve			100	0	1	0,01	0,0133
Kulovy kohout, uzavírací ventil S redukovaný průtokem, Beta=0,9 500 0,15 0 0,34 0 Armatury S redukovaný průtokem, Beta=0,8 1000 0,25 0 0,58 0 Armatury Uzavírací S redukovaný průtokem, Beta=0,8 1000 0,25 0 0,58 0 Vzavírací Vzavírací Vstop 1500 4 4 7,37 29,4959 Uzavírací Vstop Nembránový ventil úhlový		Soupátko,	Plně průtočné	é, Beta=1			300	0,1	0	0,22	0
Konodi, ventil S redukovaným průtokem, Beta=0,9 300 0,13 0 0,34 0 0,34 0		KUIOVY kobout	S redukovaný	im průtokom Bota=0.9			500	0.15		0.34	0
ventil S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,58 0 Armatury Uzavírací v=ntil, standardní 1500 4 4 7,37 29,4959 Uzavírací v=ntil, úhlový n=bo Y-typ 1000 2 0 3,72 0 Membránový ventil úhlový n=bo Y-typ 1000 2 0 3,72 0 Škrtící klapka ventil ventil 1000 0,55 0 0,55 0 Vstup Normální Vsazený 160 0,5 1 0,52 0,5212 Výstup Normální 102 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0		uzavírací		m protokem, Deta-0,9			500	0,13	ľ	0,34	0
Armatury Uzavírací ventil, standardní 1500 44 7,37 29,4959 Uzavírací ventil, úhlový nebě Y-typ 1000 22 0 3,72 00 Membránový ventil Membránový ventil 1000 2 0 3,72 00 Škrtící klapka 1000 0.25 0 0,55 0 Vstup Normální 160 0.1 0 0,52 0 Výstup Normální 1000 1000 1000 1000 1000 1000 0,525 0 Výstup D2 <d1< td=""> Intervention 1600 11 0 1,000 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1 1 1,000 1,000 1,000 1 1 1,000 1,000 1,000</d1<>		ventil	S redukovaný	im průtokem, Beta=0,8			1000	0,25	0	0,58	0
Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,72 0 Membránový ventil 1000 2 0 3,72 0 Škrtící klapka 1000 2 0 3,72 0 Vstup Normální 800 0,25 0 0,55 0 Vsazený 160 0,5 1,00 1,00 1,00 0 1,00 Výstup 160 0,1 0 1,00 1,00 0 1,00 Výstup 102 10 1 1,00 1,00 1 0 1,00 1 Redukce Válcová D2 <d1< td=""> Re<4000</d1<>	Armatury	Uzavírací v	entil, standard	ní			1500	4	4	7,37	29,4959
Membránový ventil Škrtící klapka 1000 2 0 3,72 0 Škrtící klapka 800 0,25 0 0,55 0 Vstup Normální 160 0,5 1 0,52 0 Vsazený 160 0,5 1 0,52 0 Výstup 0 0 1 0 1,02 0 Výstup 0 0 1 1 1,00 1 1 Redukce Válcová D2 <d1< td=""> Re<4000</d1<>		Uzavírací v	entil, úhlový ne	ebo Y-typ			1000	2	0	3,72	0
Skrifici klapka Skrifici klapka 0,25 0 0,55 0 Vstup Normální 160 0,5 1 0,521 0 0,521 0 0,521 0 0,521 0 0,521 0 0 0 0 1,00 0		Membránov	vý ventil				1000	2	0	3,72	0
Vstup Normaini 160 0,5 1 0,52 0,5212 Vsazený 160 1 0 1,02 0 Výstup 0 1 1 1 1 0		Skrtici klap	ka			800	0,25	0	0,55	0	
Výstup 160 1 0 1,00 1 Redukce Válcová D2 <d1< td=""> Re<4000</d1<>	vstup	Normaini					160	0,5	1	0,52	0,5212
Vystup D2 <d1< th=""> Redukce Re<4000 Re>4000 D I I,00 I I,010 0,1025 I</d1<>	Michurg	vsazeny					160	1		1,02	0
D2 <d1< th=""> Re<4000 0 D2>D1 Re>4000 1 0,10 0,1025</d1<>	Podukoc	Válocyá		02<01			0	1		1,00	
Re>4000 1 0,1025	Redukce	valcova				Bo<1000			0		
						Re~4000			1	0.10	0 1025
SKooly 22.4572								2			33 4572

	Výpočet pro DN40									
	Typ fitinky						K∞	n	к	Kcelk
		Standardní (R	R/D=1), šroubované			800	0,4	0	0,72	0
		Standardni (R	R/D=1), prirubove/svarov	ane		800	0,25	U 1	0,40	0 2022
	۹N°			1 sva	rek (90°)	1000	1 1 5		1 98	0,3933
				2 sva	rkv (45°)	800	0.35	0	0.64	0
Kolena		Segmentové,		3 sva	rky (30°)	800	0,3	0	0,56	0
		svařované (R	/D=1,5)	4 sva	rky (22,5°)	800	0,27	0	0,51	0
				5 sva	rků (18°)	800	0,25	0	0,48	0
		Standardní (R	R/D=1), všechny typy			500	0,2	0	0,37	0
-	45°	Velký rádius (R/D=1,5), všechny typy			500	0,15	0	0,29	0
		Segmentové,			1 svarek (45°)	500	0,025	0	0,08	0
		svařované			2 svarky (22,5°)	500	0,15	0	0,29	0
		Standardní (R	R/D=1), šroubované			1000	0,6	0	1,07	0
	180°	Standardní (R	R/D=1), přírubové/svařov	ané		1000	0,35	0	0,66	0
		Velky radius (R/D=1,5), vsechny typy			1000	0,3	0	0,57	0
	Vyrobene	Standardni, s	roubovane			500	0,7		1,20	0
	Z	Standardní n	r/D=1,5), stoudovane			800	0,4		0,72	0
T-kusv	KOICH	Vstup do potr	ubní větve			1000	0,0	0	1 73	0
T Ruey	Tok	Šroubované				200	0.1	0	0.18	0
	skrz	Přírubové/sva	iřované			150	0,5	0	0,84	0
	T-kusy	Vstup do potr	ubní větve			100	0	1	0,01	0,0077
	Šoupátko,	Plně průtočné	, Beta=1			300	0,1	0	0,19	0
	kulo∨ý									
	kohout,	S redukovaný	m průtokem, Beta=0,9			500	0,15	0	0,29	0
	ventil	S redukovaný	m průtokem, Beta=0.8			1000	0.25	0	0.49	0
Armatury	Uzavírací v	entil. standardı	ní			1500	4	1	6.74	6.7416
,, ,	Uzavírací v	entil, úhlový ne	ebo Y-typ			1000	2	0	3,39	0
	Membránov	vý ventil				1000	2	0	3,39	0
	Škrtící klap	ka				800	0,25	0	0,48	0
Vstup	Normální				160	0,5	0	0,51	0	
	Vsazený					160	1	0	1,01	0
Výstup			r			0	1	0	1,00	0
Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>							
			D2>D1		Re<4000			0		
					Re>4000			1	0,10	0,1023
							Σ	Ce	lk	7.2449

Konstanty K pro látkový rukávec (maximální hodnoty)

		Typ fitinky			K1	K∞	n	к	Kcelk
	Standardní (R/D=1), šroubované			800	0,4	0	0,80	0
	Standardní (R/D=1), přírubové/svařov	/ané		800	0,25	0	0,53	0
	Velký rádius	(R/D=1,5), všechny typy			800	0,2	5	0,44	2,1831
90°			1 svar	ek (90°)	1000	1,15	0	2,16	0
			2 svar	ky (45°)	800	0,35	0	0,71	0
Kolena	Segmentové		3 svar	ky (30°)	800	0,3	0	0,62	0
	svarovane (F	R/D=1,5)	4 svar	ky (22,5°)	800	0,27	0	0,56	0
	Ctandardní (l		5 svar	KU (18°)	800	0,25	0	0,53	0
459	Volký ródiuc	(R/D=1), vsechny typy			500	0.15		0,41	0
45	Sogmontovó			$1 \operatorname{syarok} (45^{\circ})$	500	0,15		0,32	0
	Segmentove	1		$2 \text{ svarky} (22.5^\circ)$	500	0,025		0,09	0
	Standardní (R/D=1) šroubované		2 SVAINY (22,3)	1000	0,15	0	1 17	0
180	Standardní (R/D=1), sroubovane R/D=1), přírubové/svařov	/ané		1000	0.35	0	0.73	0
	Velký rádius	(R/D=1.5), všechny typy	lano		1000	0.3	0	0.64	0
Vvrobe	né Standardní,	śroubované			500	0.7	0	1.30	0
Z	Velký rádius	(R/D=1,5), šroubované			800	0,4	0	0,80	0
kole	Standardní, j	přírubové/svařované			800	0,8	0	1,51	0
T-kusy	Vstup do pot	rubní větve			1000	1	0	1,89	0
Tok	Šroubované				200	0,1	0	0,20	0
skrz	Přírubové/sv	ařované			150	0,5	0	0,91	0
T-ku:	y Vstup do pot	rubní větve			100	0	1	0,01	0,0097
Šoupát	ko, Plně průtočn	é, Beta=1			300	0,1	0	0,21	0
kulovy	Srodukovan	ým průtokom Bota-0.0			500	0 15		0 3 2	0
		yili plutokelli, beta-0,9			500	0,15		0,32	0
ventil	S redukovan	ým průtokem, Beta=0,8			1000	0,25	0	0,55	0
Armatury Uzavíra	cí ventil, standaro	Iní			1500	4	4	7,32	29,2840
Uzavíra	cí ventil, úhlový n	ebo Y-typ			1000	2	0	3,68	0
Membr	ánový ventil				1000	2	0	3,68	0
Skrtici	klapka	ka			800	0,25	0	0,53	0
Vstup Norma	ni				160	0,5	1	0,52	0,5212
Vsazer	<u>y</u>				160	1	0	1,02	0
					0	1		1,00	
				Bo<1000			0		
				Re>4000			1	0.10	0 1025
				116-4000		ΣΙ			33 0949

KolenKn<	Výpočet pro DN40											
Kolena Standardní (R/D=1), šroubované Standardní (R/D=1), přírubové/svařované 800 0,4 0 0,00 0,37 0,371 90° Velký rádius (R/D=1,5), všechny typy 800 0,25 0 0,62 0 0,63 0 0,62 0 0,37 0,371 0 0,62 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0,62 0 0 0 0,63 0 0,27 0 0,63 0 0,70 0 0,63 0 0,07 0 0,63 0 0,07 0 0,63 0 0,70 0 0 0 0 0 0 0 0 0 0 0	Typ fitinky						K1	K∞	n	к	Kcelk	
NoteVelký rádius (R/D=1,5), všechny typy8000,210,370,371 590°90°1 svarek (90°)1,001,1501,001,0500,0202 svarky (30°)8000,3500,4900 <t< td=""><td></td><td colspan="5">Standardní (R/D=1), šroubované Standardní (R/D=1), přírubové/svařované</td><td>800 800</td><td>0,4 0,25</td><td>0 0</td><td>0,70 0,45</td><td>0 0</td></t<>		Standardní (R/D=1), šroubované Standardní (R/D=1), přírubové/svařované					800 800	0,4 0,25	0 0	0,70 0,45	0 0	
Kolena90°90°1 svarek (90°)10001.1601.9602 svarky (45°)8000.3500.62000 <t< td=""><td></td><td></td><td colspan="4">Velký rádius (R/D=1,5), všechny typy</td><td>800</td><td>0,2</td><td>1</td><td>0,37</td><td>0,3715</td></t<>			Velký rádius (R/D=1,5), všechny typy				800	0,2	1	0,37	0,3715	
Kolena Segmentové, svařované (R/D=1,5) 2 svarky (35°) 800 0,35 0 0,62 0 4 svarky (22,5°) 800 0,37 0 0,49 0		90°			1 sva	rek (90°)	1000	1,15	0	1,96	0	
Kolena Segmentové, vařované (R/D=1,5) 3 svarky (32°) 800 0,3 0 0,54 0 svařované (R/D=1,5) 4 svarky (22,5°) 800 0,27 0 0,49 0 svařované (R/D=1,5), všechny typy 500 0,27 0 0,45 0 0,27 0 0,45 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,27 0 0,36 0 0,37 0 0,37 0 0,37 0 0,37					2 sva	rky (45°)	800	0,35	0	0,62	0	
Vision Svarků (22,5) Sourků (22,5) Sourků (18") Sourků (18") <td>Kolena</td> <td></td> <td>Segmentové,</td> <td></td> <td>3 sva</td> <td>rky (30°) dec (32.5°)</td> <td>800</td> <td>0,3</td> <td>0</td> <td>0,54</td> <td>0</td>	Kolena		Segmentové,		3 sva	rky (30°) dec (32.5°)	800	0,3	0	0,54	0	
Standardní (R/D=1), všechny typy 500 0.22 0 0,36 0 45° Velký rádius (R/D=1), všechny typy 500 0,15 0 0,27 0 Segmentové, svařované 1 svarek (45°) 500 0,025 0 0,07 0 Standardní (R/D=1), šroubované 1 svarek (45°) 500 0,025 0 0,07 0 180° Standardní (R/D=1), šroubované 1000 0,61 0 1,04 0 180° Standardní (R/D=1), šroubované 1000 0,35 0 0,55 0 Vyrobené Standardní, šroubované 500 0,7 0 1,18 0 z Velký rádius (R/D=1,5), všechny typy 1000 0,3 0 0,55 0 T-kusy Vstpobené Standardní, přírubové/svařované 800 0,8 1,37 0 Tok Šroubované 200 0,1 0 18 0 T-kusy Vstup do potrubní větve 1000 0 1			svarovane (R	(D=1,5)	4 sva 5 sva	ſKY (∠∠,5⁺) rků (18°)	800	0,27		0,49	0	
45° Velký rádius (R/D=1,5), všechný typy 500 0,15 0 0,27 0 Segmentové, svařované 1 svarek (45°) 500 0,025 0 0,77 0 Standardní (R/D=1), šroubované 1 svarek (45°) 500 0,615 0 0,27 0 180° Standardní (R/D=1), šroubované 1000 0,6 0 1,04 0 180° Standardní (R/D=1), šroubované 1000 0,3 0 0,55 0 Velký rádius (R/D=1,5), všechny typy 1000 0,3 0 0,55 0 0 0,70 0 Velký rádius (R/D=1,5), všechny typy 1000 0,3 0 0,55 0 0 0,70 0 Velký rádius (R/D=1,5), šroubované 500 0,7 0 1,18 0 0,70 0 1,18 0 Z Velký rádius (R/D=1,5), šroubované 800 0,8 0,70 0 1,18 0 Kolen Standardní, přírubové/svařované 1000 1 0 1,71 0 Tok Šroubované Stedukovaným p			Standardní (R	/D=1), všechny typy	0014		500	0.2	0	0.36	0	
Segmentové, svařované 1 svarek (45°) 500 0,025 0 0,07 0 svařované 1 svařované 2 svarky (22,5°) 500 0,15 0 0,27 0 180° Standardní (R/D=1), šroubované 1000 0,65 0 0,63 0 0,65 0 0,65 0 0 0,55 0 0,55 0 0,70 0 0 55 0 0,63 0 0,55 0 0 0,55 0 0 0,55 0 0 0,55 0 0 0 0,55 0 0 0 0,55 0 0 0 0,55 0		45°	Velký rádius (R/D=1.5), všechny tvpv				500	0,15	0	0,27	0	
Image: constraint or constra			Segmentové,			1 svarek (45°)	500	0,025	0	0,07	o	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			svařované	svařované 2 svarky (22,5°)				0,15	0	0,27	0	
180° Standardní (R/D=1), přírubové/svařované 1000 0,3 5 0 0,63 0 Velký rádius (R/D=1,5), všechny typy 1000 0,7 0 0 1,18 0 Z Velký rádius (R/D=1,5), šroubované 500 0,7 0 0 1,8 0 kolen Standardní, přírubové/svařované 800 0,7 0 0 1,7 0 Kolen Standardní, přírubové/svařované 1000 1,0 1 0 1,7 0 T-kusy Vstup do potrubní větve 200 0,1 1 0 1,8 0 T-kusy Vstup do potrubní větve 1000 1,0 1 1,7 1 0 T-kusy Vstup do potrubní větve 100 0,1 1 0 0,8 0 0,8 0 T-kusy Vstup do potrubní větve 1000 0,1 1 0 0,8 0 0,0 0 0 0,0 0 0 0,0 1 0 0,8 0 0,0 0 0,0 0 0 0,0 0 0,0 0 0 0,0 0 0,0 0 0,0 0 0,0 0 0 0,0 0 0 0,0 0 0 0,0 0 0 0,0 0 0 0,0 0 0			Standardní (R	/D=1), šroubované			1000	0,6	0	1,04	0	
velký rádius (R/D=1,5), všechny typy 1000 0.3 0 0.55 0 verký rádius (R/D=1,5), všechny typy 500 0.7 0 1.18 0 z Velký rádius (R/D=1,5), šroubované 800 0.4 0 0 0.0 0.0<		180°	Standardní (R/D=1), přírubové/svařované				1000	0,35	0	0,63	0	
Vyrobené Standardní, šroubované 500 0,7 0 1,18 0 z Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,70 0 kolen Standardní, přírubové/svařované 800 0,4 0 0,70 0 T-kusy Vstup do potrubní větve 1000 1 0 1,71 0 Tok Šroubované 200 0,1 0 1,80 0 Skrz Přírubové/svařované 1000 1 0 1,81 0 Kulový Skrz Přírubové/svařované 100 0 1 0 1,81 0 Kulový Vstup do potrubní větve 100 0 1 0 0 0,84 0 Kulový Prejubové/svařované 1000 0 0 0 0,01 0,015 0 Kulový Predukováný Průtočné, Beta=1 300 0,15 0 0,670 0 Ventil S redukovaným pr			Velký rádius (Velký rádius (R/D=1,5), všechny typy			1000	0,3	0	0,55	0	
z Velký rádius (R/D=1,5), šroubované 800 0,4 0 0,70 0 kolen Standardní, přírubové/svařované 800 0,8 0 1,37 0 T-kusy Vstup do potrubní větve 1000 1 0 1,71 0 Tok Šroubované 150 0,5 0 0,84 0 T-kusy Vstup do potrubní větve 100 0 1 0,01 0,050 T-kusy Vstup do potrubní větve 100 0 1 0,01 0,015 Šoupátko, kulový Přírubové/svařované 500 0,15 0 0,27 0 kulový kohout, s S redukovaným průtokem, Beta=0,9 500 0,15 0 0,27 0 Armaturi Zavírací ventil, standardní S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Armaturi Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Vstup Normální <td< td=""><td></td><td>Vyrobené</td><td colspan="5">Standardní, šroubované</td><td>0,7</td><td>0</td><td>1,18</td><td>0</td></td<>		Vyrobené	Standardní, šroubované					0,7	0	1,18	0	
T-kusy Standardni, prirubove/svarovane 800 0,8 0 1,37 0 T-kusy Vstup do potrubni větve 1000 1 0 1,71 0 Skrz Přírubové/svarované 200 0,1 0 0,18 0 T-kusy Vstup do potrubni větve 100 0 1 0,01 0,0050 T-kusy Vstup do potrubni větve 100 0 1 0,01 0,0050 Šoupátko, Plně průtočné, Beta=1 300 0,1 0 0,18 0 kohout, S redukovaným průtokem, Beta=0,9 500 0,15 0 0,27 0 uzavírací ventil S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Armatury Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Membránový ventil standardní, úhlový 100 2 0 3,36 0 Vstup Normální Úžezvírací ventil, úhlový S 100 0 1,01 0 Vstup Normál		Z	Velký rádius (800	0,4	0	0,70	0				
1-kusy Vstup do potrubni verve 1000 1 0 1,71 00 Tok Šroubované 200 0,1 0 0,18 0 skrz Přírubové/svařované 150 0,5 0 0,84 0 T-kusy Vstup do potrubní větve 100 0 1 0,0050 0 0,015 0 0,0050 Šoupátko, Plně průtočné, Beta=1 300 0,1 0 0,18 0 kolový kohout, S redukovaným průtokem, Beta=0,9 500 0,15 0 0,46 0 Armatury Uzavírací ventil, standardní 5 redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Armatury Uzavírací ventil, standardní 1500 4 1 6,70 6,7008 Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Membránový ventil Membránový ventil 100 2 0 3,36 0 Výstup D2 D2 160 1 0 1,01 0	Thursday	kolen	Standardni, p	rirubove/svarovane			800	0,8		1,37	0	
10k Stroubovalie 200 0,1 0 0,1 0 0,1 0 0,1 0 0,1 0 0,1 0 0,005 0 0,0050 100 7-kusy Vstup do potrubní větve 100 0 1 0,01 0,0050 0 0,015 0 0,015 0 0,015 0 0,0050 Šoupátko, kulový Plně průtočné, Beta=1 300 0,1 0 0,15 0 0,27 0 ventil S redukovaným průtokem, Beta=0,9 500 0,15 0 0,46 0 Armatury Uzavírací S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Armatury Uzavírací v=ntil, standardní 1500 4 1 6,70 6,7008 Membránový ventil S redukovaným průtokem, Beta=0,8 1000 02 0 3,36 0 Vstavírací v=ntil, úhlový n=bo Y-typ 1000 2 0 3,36 0 Vstup Normální Vsazený 160 1,01 0 0 0 0 </td <td>T-KUSY</td> <td>Tok</td> <td colspan="5"></td> <td>0.1</td> <td>0</td> <td>1,71</td> <td>0</td>	T-KUSY	Tok						0.1	0	1,71	0	
T-kusy Vstup do potrubní větve 100 0,0 1 0,01 0,0050 Šoupátko, Plně průtočné, Beta=1 300 0,1 0 0 0,018 0 kulový S redukovaným průtokem, Beta=0,9 500 0,15 0 0,27 0 ventil S redukovaným průtokem, Beta=0,9 1000 0.25 0 0,46 0 Armatury Uzavírací ventil, standardní 1500 4 1 6,700 Vzavírací ventil, standardní Vzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Vstup Normální Vsazený 160 0,55 0 0,45 0 Výstup Normální Vzavírací kapka 1000 2 0 3,36 0 Výstup Normální Vsazený 100 0 100 10 0 10 0 Výstup Normální Joz D1 Re<4000		TUK skr z	Dřírubová/sva	150	0,1		0,10	0				
Normální Veltov jostů bratov jostů bratovni vetve 100 0			Vstup do potrubní větve					0,5	1	0,04	0 0050	
kulový kulový kohout, uzavírací ventil S redukovaným průtokem, Beta=0,9 500 0,15 0 0,27 0 Armatury Uzavírací ventil, standardní Uzavírací ventil, úhlový nebo Y-typ 1500 4 1 6,700 6,7008 Membránový ventil Vstup S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Vstup Vstup 1000 2 0 3,36 0 Vstup Normální Vsazený 160 0,5 0 0,51 0 Výstup Normální D2>D1 Re<4000 Re>4000 0 1,00 0 1,00 0 Válcová D2>D1 Re<4000 Re>4000 0 1 0,1023 0		Šoupátko	Plně průtočné	Beta=1			300	01	0	0.18	0,0000	
kohout, uzaviraci S redukovaným půtokem, Beta=0,9 500 0,15 0 0,27 0 Armatury S redukovaným půtokem, Beta=0,8 1000 0,25 0 0,46 0 Armatury Uzavírací S redukovaným půtokem, Beta=0,8 1000 0,25 0 0,46 0 Membránový ventil, standardý ventil, úhlový ventil, úhlový ventil 1500 1 0 3,36 0 Vstup Normální úhlový ventil 1000 025 0 3,36 0 Výstup Normální úhlový V 1000 0,55 0 0,50 0 0,5		kulový		, Dota				•,.	Ŭ	0,10	Ĵ	
Image: black wentil S redukovaným průtokem, Beta=0,8 1000 0,25 0 0,46 0 Armatury Uzavírací ventil, standardní 1500 14 1 6,700 6,7008 Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Membránový ventil Ventil 1000 2 0 3,36 0 Vstup Normální Vsazený 160 0,25 0 0,45 0 Výstup Normální Image: I		kohout,	S redukovaným průtokem, Beta=0,9					0,15	0	0,27	0	
Armatury Uzavírací ventil, standardní 1500 4 1 6,7008 Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Membránový ventil 1000 2 0 3,36 0 Škrtící klapka 1000 2 0 3,36 0 Vstup Normální 160 0,55 0 0,45 0 Výstup Normální 160 1 0 1,01 0 Výstup Image: Stratici Strat		ventil S redukovaný		rm průtokem, Beta=0,8			1000	0,25	0	0,46	0	
Uzavírací ventil, úhlový nebo Y-typ 1000 2 0 3,36 0 Membránový ventil 1000 2 0 3,36 0 Škrtící klapka 800 0,25 0 0,45 0 Vstup Normální 160 0,5 0 0,51 0 Výstup Normální 160 0,5 0 1,00 0 0 Výstup O 160 100 100 0 1,00 0 0 Výstup O O 160 10 0 1,00 0 0 0 Redukce Válcová D2 <d1< td=""> Re<4000</d1<>	Armatury	Uzavírací v	Jzavírací ventil, standardní						1	6,70	6,7008	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Uzavírací v	zavírací ventil, úhlový nebo Y-typ						0	3,36	0	
Škrtící klapka 800 0,25 0 0,45 0 Vstup Normální 160 0,5 0 0,51 0 Vsazený 160 160 1 0 1,01 0 Výstup 0 0 1,01 0 1,00 0 </td <td></td> <td colspan="6">Membránový ventil</td> <td>2</td> <td>0</td> <td>3,36</td> <td>0</td>		Membránový ventil						2	0	3,36	0	
Vstup Normální 160 0,5 0 0,51 0 Vszený 160 160 1 0 1,00 0 Výstup 0 1 0 1,00 0		Škrtící klapka						0,25	0	0,45	0	
Vsazený 160 1 0 1,01 0 Výstup 0 0 1 0 1,00 0	Vstup	/stup Normální					160	0,5	0	0,51	0	
Výstup 0 1 0 1,00 0 Redukce Válcová D2 <d1< td=""> Re<4000</d1<>		Vsazený					160	1	0	1,01	0	
Redukce Válcová D2 <d1< th=""> Re<4000 0 0 D2>D1 Re<4000</d1<>	Výstup							1	0	1,00	0	
D2>D1 Re<4000 0 Re>4000 1 0,1023	Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>								
Re>4000 1 0,1023				02>01		Re<4000			0	0.40	0.4000	
						Ke>4000				0,10	0,1023	

Výpočet pro DN32										
Typ fitinky								n	к	Kcelk
	Standardní (R/D=1), šroubované						0,4	0	0,84	0
		Standardní (R/D=1), přírubové/svařované				800	0,25	0	0,57	0
		Velký rádius (R/D=1,5), všechny typy					0,2	5	0,48	2,4118
	90°	1 svarek (90°)				1000	1,15	0	2,22	0
				2 svar	ky (45°)	800	0,35	0	0,75	0
Kolena		Segmentové,		3 svar	ky (30°)	800	0,3	0	0,66	0
		svařované (R	/D=1,5)	4 svar	ky (22,5°)	800	0,27	0	0,61	0
				5 svar	ků (18°)	800	0,25	0	0,57	0
		Standardní (F	R/D=1), všechny typy			500	0,2	0	0,44	0
_	45°	Velký rádius (R/D=1,5), všechny typy			500	0,15	0	0,35	0
		Segmentové,			1 svarek (45°)	500	0,025	0	0,12	0
		svařované			2 svarky (22,5°)	500	0,15	0	0,35	0
_		Standardní (F	R/D=1), šroubované			1000	0,6	0	1,23	0
_	180°	Standardní (F	1000	0,35	0	0,78	0			
	Velký rádius (R/D=1,5), všechny typy						0,3	0	0,69	0
	Vyrobené	Standardní, šroubované					0,7	0	1,33	0
	z	Velký rádius (800	0,4	0	0,84	0			
	kolen	Standardní, p	800	0,8	0	1,56	0			
T-kusy		Vstup do potrubní větve						0	1,95	0
	Tok	Sroubované				200	0,1	0	0,21	0
	skrz	Přírubové/sva	iřované			150	0,5	0	0,92	0
	T-kusy	Vstup do potr	ubní větve			100	0	1	0,02	0,0155
	Soupátko,	Plně průtočné	e, Beta=1			300	0,1	0	0,23	0
	kulový kohout	S rodukovoní	m průtokom Boto-0.0			500	0.15		0.25	0
	Konoul, Uzavírací	S redukovany	m prutokem, Beta=0,9			500	0,15	0	0,35	0
	ventil	S redukovaným průtokem, Beta=0,8					0,25	0	0,60	0
Armatury	Uzavírací v	Jzavírací ventil, standardní						4	7,41	29,6270
	Uzavírací v	ventil, úhlový nebo Y-typ					2	0	3,74	0
	Membránov	vý ventil				1000	2	0	3,74	0
	Škrtící klapka						0,25	0	0,57	0
Vstup Normální						160	0,5	1	0,52	0,5247
	Vsazený							0	1,02	0
Výstup							1	1	1,00	1
Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>							
			D2>D1		Re<4000			0		
					Re>4000			1	0,10	0,1034
								Σ Kcelk		33,6824

Konstanty K pro keramickou svíčku (nominální hodnoty)

Výpočet pro DN40											
	Typ fitinky						K∞	n	к	Kcelk	
	Standardní (R/D=1), šroubované					800	0,4	0	0,73	0	
		Standardní (R/D=1), přírubové/svařované				800	0,25	0	0,49	0	
	000	Velky radius (R/D=1,5), vsechny typy				1000	0,2		0,40	0,4028	
	90			1 SVa	$rky (45^{\circ})$	800	0.35		1,99	0	
Kolena		Segmentové		2 SVA	rky (30°)	800	0,33		0,03	0	
Rolona		svařované (R	/D=1.5)	4 sva	rky (22.5°)	800	0.27	0	0.52	0	
			,-,	5 sva	rků (18°)	800	0,25	0	0,49	0	
		Standardní (R	R/D=1), všechny typy		, ,	500	0,2	0	0,38	0	
	45°	Velký rádius (R/D=1,5), všechny typy				500	0,15	0	0,23	0	
		Segmentové,			1 svarek (45°)	500	0,025	0	0,09	0	
		svařované			2 svarky (22,5°)	500	0,15	0	0,29	0	
		Standardní (R	Standardní (R/D=1), šroubované					0	1,08	0	
	180°	Standardní (R/D=1), přírubové/svařované				1000	0,35	0	0,67	0	
		Velký rádius (R/D=1,5), všechny typy			1000	0,3	0	0,59	0	
	Vyrobené	Standardní, šroubované					0,7	0	1,20	0	
	Z	Velký rádius (800	0,4	0	0,73	0				
Tikuov	Kolen	Vstup do potrubní větve					0,8		1,40	0	
I-KUSY	Tok						01	0	1,75	0	
	skrz	Přírubové/sva	150	0,1		0,10	0				
	T-kusv	Vstup do potrubní větve					0,5	1	0,04	0 0089	
	Šoupátko.	Plně průtočné	Beta=1			300	0.1	0	0.19	0,0000	
	kulový		,				-,-		-,	_	
	kohout,	S redukovaný	m průtokem, Beta=0,9			500	0,15	0	0,29	0	
	uzavírací		ným průtokom. Poto-0.9			1000	0.25		0 50	_	
Armatury		nui jo redukovanym prutokem, Beta=0,0						1	6 76	6 7594	
Annatury	Uzavírací v	Izaviraci ventili, statuatuti Izaviraci ventili úhlový nebo V-tvn					2	0	3 40	0,7004	
	Membránov	Membránový ventil					2	0	3,40	0	
	Škrtící klapka						0,25	0	0,49	0	
Vstup	Vstup Normální Vsazený					160	0,5	0	0,51	0	
					160	1	0	1,01	0		
Výstup							1	0	1,00	0	
Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>								
			D2>D1		Re<4000			0			
					Re>4000			1	0,10	0,1024	
							Σ	Ce	lk	7.2735	

Výpočet pro DN32										
	Typ fitinky								к	Kcelk
	Standardní (R/D=1), šroubované						0,4	0	0,83	0
		Standardní (R/D=1), přírubové/svařované				800	0,25	0	0,56	0
		Velký rádius (R/D=1,5), všechny typy					0,2	5	0,47	2,3351
	90°			1 svare	ek (90°)	1000	1,15	0	2,20	0
				2 svarl	ку (45°)	800	0,35	0	0,74	0
Kolena		Segmentové,		3 svarl	(30°)	800	0,3	0	0,65	0
		svarovane (R	/D=1,5)	4 svari	xy (22,5°)	800	0,27	0	0,59	0
		Otomaloudus (/E		5 svari	(18°)	800	0,25	0	0,56	0
	450	Standardni (R/D=1), vsechny typy						0	0,43	0
	40	Segmentové	R/U=1,5), VSecnny typy			500	0,15		0,34	0
		Segmentove,			1 Svarek (45 [°])	500	0,025		0,11	0
		Standardní (E	ND-1) čroubovaná	·	2 SVAIKY (22,5)	1000	0,15	0	1 21	0
	180°	Standardní (F	2/D=1, sloubovalle 2/D=1) přírubové/svařov	ané		1000	0,0	0	0.76	0
	Velký rádius ($R/D=15$), všechny typy						0.3	0	0.67	0
	Vyrobené	Standardní š	roubované			500	0.7	0	1 32	0
	Z	Velký rádius (800	0.4	0	0.83	0 0			
	kolen	Standardní, p	800	0,8	0	1,54	0			
T-kusy		Vstup do potrubní větve					1	0	1,93	0
	Tok	Šroubované				200	0,1	0	0,21	0
	skrz	Přírubové/sva	150	0,5	0	0,92	0			
	T-kusy	Vstup do potr	ubní větve			100	0	1	0,01	0,0135
	Šoupátko,	Plně průtočné	e, Beta=1			300	0,1	0	0,22	0
	kulo∨ý					500	0.45		0.04	0
	konout,	S redukovany	m prutokem, Beta=0,9			500	0,15	0	0,34	0
	ventil	S redukovaný	m průtokem, Beta=0,8			1000	0,25	0	0,58	0
Armatury	Uzavírací v	Uzavírací ventil, standardní						4	7,38	29,5121
	Uzavírací v	Uzavírací ventil, úhlový nebo Y-typ						0	3,72	0
	Membránový ventil						2	0	3,72	0
	Škrtící klapka						0,25	0	0,56	0
Vstup Normální						160	0,5	1	0,52	0,5217
	Vsazený	160	1	0	1,02	0				
Výstup							1	1	1,00	1
Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>							
			D2>D1		Re<4000			0		
					Re>4000			1	0,10	0,1034
								{ce	lk	33,4858

Konstanty K pro keramickou svíčku (maximální hodnoty)

Výpočet pro DN40											
	Typ fitinky						K∞	n	к	Kcelk	
		Standardní (F	R/D=1), šroubované			800	0,4	0	0,70	0	
		Standardní (R/D=1), přírubové/svařované				800	0,25	0	0,45	0	
		Velký rádius (R/D=1,5), všechny typy					0,2	1	0,36	0,3639	
	90°			1 sva	rek (90°)	1000	1,15	0	1,95	0	
Kalana		Commontová		2 sva	rky (45°)	800	0,35		0,61	0	
Kolena		Segmentove,	/D-1 5)	J SVa	rky (30)	800	0,3		0,55		
			(,,,)	5 sva	rků (18°)	800	0.25	0	0,40	0	
		Standardní (F	R/D=1), všechny typy			500	0,2	0	0,35	0	
	45°	Velký rádius (R/D=1,5), všechny typy			500	0,15	0	0,27	o	
		Segmentové,			1 svarek (45°)	500	0,025	0	0,06	0	
		svařované	svařované 2 svarky (22,5°)					0	0,27	0	
		Standardní (F	R/D=1), šroubované			1000	0,6	0	1,03	0	
	180°	Standardní (R/D=1), přírubové/svařované				1000	0,35	0	0,62	0	
		Velký rádius (R/D=1,5), všechny typy				1000	0,3	0	0,54	0	
	Vyrobené	Standardní, š		500	0,7	0	1,18	0			
	Z	Velký rádius (800	0,4	0	0,70	0				
	kolen	Standardni, prirubove/svarovane					0,8	0	1,36	0	
I-kusy	Vstup do potrubni vetve				<u>.</u>	1000	1	0	1,70	0	
	I OK	Sroupovane					0,1		0,17	0	
		Prirubove/sva	100	0,5	1	0,03	0 0041				
	T-KuSy Šoupátko	Plně průtočné				300	01	0	0,00	0,0041	
	kulový		, Dela-T			500	0,1		0,10	0	
	kohout,	S redukovaným průtokem, Beta=0,9				500	0,15	0	0,27	0	
	uzavírací					1000	0.05		0.45		
Armoture	Ventil	S redukovaným průtokem, Beta=0,8					0,25	0	0,45	0	
Annatury		aviraci ventil, standardni							0,09	0,7021	
	Membránov	aviraci ventil, uniovy nebo t-typ						0	3,35	0	
	Škrtící klanka						0.25	0	0.45	0	
Vstup	Vstup Normální Vsazený					160	0.5	0	0.51	0	
						160	1	0	1.01	0	
Výstup							1	0	1,00	0	
Redukce	Válcová		D2 <d1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d1<>								
			D2>D1		Re<4000			0			
					Re>4000			1	0,10	0,1024	
							ΣΜ	Ce	lk	7,1568	