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Abstract 
Brain disorders and diseases affect 1 in 6 peopie woridwide and in many cases result in 

a condition that profusely impacts the life of patient. Mental health topics surge as 1 in 
10 people is diagnosed with a mental health disorder. It is therefore crucial to study the 
organ that is still in a big part a mystery to the researchers - brain. 

The focus of this thesis is on Brain Computer Interface (BCI) which can act as a 
intermediary between the brain and a device by acquiring the brain signals and translating 
them into a set of actions or commands. One of the methods to control a device by thoughts 
is motor imagery which is based on the fact that imagining moving a part of the body elicits 
the same brain response as actual movement. This thesis proposes to utilize a recent field of 
the E E G for the B C I applications - microstate analysis. Classifier for distinguishing between 
the motor imagery tasks is proposed as a combination of microstate features extracted from 
different regions of the brain with the already established features such as from frequency 
or time-domain. 

The subject-specific classifiers was trained for 30 participants. Two distinct classifiers 
were implemented - one for the classification of the rest versus activity and second for the 
classification of the left versus right motor imagery. The mean accuracy across participants 
for the rest versus activity classification was 0.85. The mean accuracy across participants 
for the left versus right motor imagery classification was 0.74. 

The microstates proved to be helpful in distinguishing between different conditions in a 
task settings, but need some improvements in terms of the further research. 

Abstrakt 
Rôzne poruchy a choroby mozgu postihujú približne každého šiesteho človeka a veľa z 

nich necháva na pacientoch trvalé následky. Téma mentálneho zdravia je čoraz viac dôležitá, 
keďže každý desiaty človek má diagnostikovánu mentálnu poruchu. Je preto dôležité štu­
dovať orgán, ktorý je stále z veľkej čati záhadou - mozog. 

Diplomová práca sa zameriava na Brain Computer Interface (BCI) - rozhranie, ktoré 
ponúka priame komunikačné spojenie medzi mozgom a vonkajším svetom. Základná myšlienka 
B C I je veľmi jednoduchá - najprv získať signál z mozgu, dekódovať ho a vykonať akciu vy­
chádzajúcu zo zámeru užívateľa. Jedna z metód ako pomocou mozgu priamo komunikovať 
sú predstavované pohyby, čo je metóda založená na fakte, že predstava pohybu vyvoláva v 
mozgu rovnakú odozvu ako skutočný pohyb. V diplomovej práci je navrhnuté použiť E E G 
a jeho relatívne novú metódu analýzy - mikrostavy. Klasifikátor na rozlišovanie medzi 
úlohami predstavovaných pohybov je navrhnutý ako kombinácia vlastností mikrostavov ex­
trahovaných z rôznych oblastí mozgu s už známymi vlastnosťami, ako napríklad frekvenčné 
alebo časové vlastnosti signálu. 

Klasifikátory boli natrénované na 30 účastníkoch, pre každého zvlášť.Boli implemento­
vané dva odlišné klasifikátory - jeden na klasifikáciu nečinnosti oproti aktivite a druhý na 
klasifikáciu predstavy pohybu ľavej ruky verzus pravej ruky. Priemerná presnosť klasifikácie 
nečinnosti a aktivity bola 0.85. Priemerná presnosť klasifikácie predstavy pohybu ľavej a 
pravej ruky bola 0.74. 

Ukázalo sa, že mikrostavy sú užitočné pri rozlišovaní medzi rôznymi stavmi v kon­
texte predstavovaných pohybov a BCI , ale potrebujú určité vylepšenia z hľadiska ďalšieho 
výskumu. 
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Rozšířený abstrakt 
Hlavným cieľom diplomovej práce je navrhnúť Brain Computer Interface pre predstavo­

vané pohyby za využitia analýzy mikrostavov zo signálu elektroencefalografie. 
Mozog, najkomplikovanejší orgán ľudského tela, je pre nás stále záhadou. Rôzne poruchy 

a choroby mozgu postihujú približne každého šiesteho človeka a veľa z nich necháva na 
pacientoch trvalé následky. 15 miliónov ľudí každoročne postihne mŕtvica a z nich 5 mil­
iónov ostáva zdravotne postihnutých - od straty schopnosti hýbať určitou časťou tela až 
po celkovú paralýzu. Rehabilitácia pre takýchto pacientov je nevyhnutnosť a často jediná 
možnosť, ako získať späť stratené schopnosti. Avšak prináša so sebou mnoho problémov 
- je finančne a časovo náročná pre pacienta aj personál, nakoľko je vysoko individuálna. 
Pacient musí dochádzať na miesto rehabilitácie, a napriek úsiliu a dlhodobej liečbe nemusí 
byť nakoniec účinná. Moderný svet však trápia aj mentálne poruchy, ktoré sú často na prvý 
pohľad neviditeľné a veľmi ťažko diagnostikovateľné. Je preto potrebné prísť na spôsoby, 
ako diagnostikovať a liečiť práve mozog. 

V posledných rokoch záujem o štúdium mozgu a hlavne o to, ako dekódovať ľudské 
myšlienky, výrazne vzrástol. Brain Computer Interface (BCI) sa stal odetvím technológie, 
ktorá fascinuje nielen vedcov ale aj širokú verejnosť. B C I je rozhranie, ktoré ponúka priame 
komunikačné spojenie medzi mozgom a vonkajším svetom. Základná myšlienka B C I je veľmi 
jednoduchá - najprv získať signál z mozgu, dekódovať ho a vykonať akciu vychádzajúcu 
zo zámeru užívateľa. Potenciál využitia B C I je obrovský - od medicíny, cez priemysel 
až po zábavu. V medicíne to je práve napríklad využitie pri rehabilitácii, kedy pacient 
môže ovládať robotickú ruku len za pomoci myšlienok a trénovať tak mozog, aby rozhýbal 
nakoniec aj ruku skutočnú. Takáto rehabilitácia už bola v minulosti odskúšaná a ukázala sa 
ako účinná. Ďalší prípad kde B C I funguje už pomerne dlho a ukázalo sa ako nenahraditeľné 
je komunikácia s pacientmi, ktorí sú úplne paralyzovaní. Pre nich je B C I kde komunikujú 
len cez myšlienky nevyhnutná vec, keďže nemôžu hýbať telom ani sa prejavovať verbálne. 
Okrem medicíny je ale ľahké predstaviť si využitie B C I aj v priemyselnej sfére - kontrolovať 
zariadenia myšlienkami, monitorovať užívateľovu náladu alebo mentálnu únavu pomocou 
mozgových signálov a prispôsobiť takýmto postupom pracovné procesy. Tieto možnosti 
môžu v budúcnosti zefektívniť pracovné úlohy. 

Existuje vela možností ako zachytiť mozgový signál pre B C I využitie, či už ide o funkčnú 
magnetickú rezonanciu, kde je možné dostať signál aj z oblastí vo vnútri mozgu, alebo 
elektroencefalografiu (EEG), kde je signál dostupný len z vrchných oblastí mozgu. V tejto 
diplomovej práci bolo využité E E G vďaka jeho výbornému časovému rozlíšeniu, a pretože je 
to najpopulárnejšia metóda zachytenia mozgových signálov pre BCI . Predstavované pohyby 
sú taktiež jednou z populárnych možností ako pomocou myšlienok niečo ovládať. Predstava 
pohybu vyvoláva v mozgu rovnakú odozvu ako skutočný pohyb, ktorý vyvoláva reakciu v 
primárnej motorickej kôrovej oblasti mozgu. 

Pre analýzu predstavovaných pohybov je použitá analýza mikrostavov, čo je relatívne 
nový prístup k analýze E E G , ktorý v kontexte B C I ešte nebol použitý. Mikrostavy sú 
prechodné, vzorované, kvázi stabilné stavy alebo vzory E E G , ktoré sa držia po dobu niekoľko 
milisekund (20 - 250 ms) a následne sa rapídne vymenia. Z E E G signálu sa extrahujú 
pomocou metód zhlukovania. 

V diplomovej práci je navrhnutý postup spracovania E E G signálu pre extrakciu mikrostavov. 
V práci je taktiež navrhnuté použiť lokalizované mikrostavy, ktoré sú extrahované z cen­
trálnej, frontocentrálnej a celej oblasti hlavy a počet použitých mikrostavov je navrhnuté 
vyvodiť z presnosti klasifikácie pohybov. Okrem mikrostvov boli na klasifikáciu predstavo­
vaných pohybov použité taktiež ostatné bežné analýzy E E G , ako napríklad frekvenčná 



analýza a analýza signálu v časovej doméne. V práci bol použitý verejne dostupný dataset 
E E G signálov nahraných pri vykonávaní predstavovaných a skutočných pohybov pravej a 
ľavej ruky. 

V práci sú navrhnuté dva rôzne druhy klasifikátorov - jeden na rozlíšenie medzi pohy­
bom a nečinnosťou a jeden na rozlíšenie medzi pohybom pravej a ľavej ruky. Dva rôzne 
klasifikátori boli vybrané aby sa ukázalo, či má zmysel lokalizovať mikrostavy - hypotet­
icky, mikrostavy z frontocentrálnj oblasti by mali byť informatívne pri rozlišovaní medzi 
pohybom a nečinnosťou a mikrostavy z centrálnej oblasti medzi ľavým a pravým pohybom 
ruky. 

Výsledky ukázali, že natrénovaný klasifikátor na pohyb verzus nečinnosť dosahoval pril-
ižne 85% presnosť za použitia vlastností mikrostavov, frekvenčných vlastností a časových 
vlasností E E G signálu. Klasifikátor na pohyb ľavej verzus pravej ruky dosahoval pres­
nosti približne 74%. Klasifikátor pre rozlíšenie pohybu verzus nečinnosti bol porovnaný s 
klasifikátorom natrénovaným na dátach s reálnym pohybom a taktiež na klasifikátore na­
trénovaným na dátach len s frenvenčnými vlastnosťami. Klasifikácia na reálnom pohybe 
bola úspešnejšia a klasifikácia len z frekvenčných vlastností bola menej úspešná, podľa 
očakávania. Mikrostavy v celej topografii boli úspešnejšie ako mikrostavy z lokalizovaných 
topografií. 

Záverom práce je, že vlastnosti mikrostavov pomohli v klasifikácii predstavovaných po­
hybov ako je zrejmé z porovnania voči iným modelom. Je však stále veľa priestoru na 
zlepšenie, a to hlavne v procese extrahovania mikrostavov. 
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Chapter 1 

Introduction 

Brain, the most intricate and complex organ in a human body, is still a mystery for us. 
Brain disorders and diseases affect 1 in 6 people worldwide and in many cases result in 
a condition that profusely impacts the life of patient. 15 million people worldwide each 
year suffer a stroke and 5 million of them are left with permanent brain damage and get 
disabled in some way. In developed countries, which are currently dealing with a trend of 
an aging population, the Alzheimer's disease is also on the rise, as 1 in 9 people aged 65 or 
more have it. The mental health topics are also getting more important as 1 in 10 people 
is diagnosed with a mental health disorder and it is estimated that 50 % of the population 
at some point in their life suffer from it 1 . 

However, there is little to no cure for the ones affected by the brain disorders. In case of 
a stroke patients, the rehabilitation takes a lot of time, is tedious and in some cases does not 
even bring any improvement. The development of the brain imagining technologies made 
it possible to learn about a ways a brain is processing information in the real time and 
allowed us a glimpse into the complex organ a brain is. Brain Computer Interface (BCI) 
is the recent result of an ongoing technological developments in this area, which has shown 
an immense potential in helping those whose suffer from the brain disorders. 

BCIs record the signals from a brain, decode it and based on the intention of a user, 
perform an action. It was already proven to be invaluable to completely locked-in patients 
who are unable to communicate with the outside world, as the B C I provides a way for 
them to relay their thoughts without moving a muscle. B C I has found usage in multiple 
medical fields, helping with rehabilitation, diagnosis or treatment of many different brain 
conditions. It is not hard to see that B C I will also play an important role in the industrial 
settings, from control of the machines in a dangerous environments, to playing an actual 
mind games with friends on a Friday night. The possibilities ranging from entertainment 
to a industry devices acting on our thoughts are seemingly endless. 

It's a no-brainer to strive for a way to directly „observe" and translate human thoughts 
into actions by getting as close as possible to the brain, the absolute source of our thinking. 
However our limited understanding of its function as well as limitations of the technology 
and methodology make the industrial B C I still a song of a future. From a technical stand­
point, the current brain recording devices fall into two categories. Some are highly efficient 
in decoding deep brain signals but come with a hefty price tag and require a room-sized 
machine. On the other hand, there are more affordable and wearable options that strap 
onto your head, but they provide only limited insights into the brain's inner workings. Cur-

1 https: / / www. cdc. gov / mentalhealth/learn / index, htm 
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rently, the most optimal middle ground is represented by Electroencephalography (EEG), 
which is fast, compact, relatively inexpensive and its disadvantages can be outweighted by 
the current state-of-the-art algorithms and techniques to get as much information out of it 
as possible. 

On the functional side of the things, over the centuries the researchers have figured 
out which areas of a human brain are approximately responsible to perform what function. 
But only recently (at around 1990) have we started to also look into how the ctr6cts sire 
communicating between each other. From the communication between the brain regions, 
there is seemingly only a small step to forming the whole paths the information might 
take and indeed, major paths such as how is visual information processed inside the brain 
are already documented. But the small and complex information hidden deep inside brain 
structures, including our emotions, dreams, complex decision making and many other are 
still a mystery. It is therefore crucial to find new ways of looking into the information that 
we can observe and find even the smallest of bread crumbs in the vast space of billions of 
neurons to one day put together a comprehensive picture that would allow us to understand 
ourselves better. And maybe learn to read minds in the process. 

Limitations mentioned above are the reason why researchers are always coming up with 
new ways how to interpret the signal that we can record directly from our brain. The main 
objective of the thesis is to therefore contribute to the research of the B C I and include, along 
with the established features, the newest E E G paradigm - microstate analysis. Microstate 
analysis is a study of the brain patterns, which has previously demonstrated a success in 
distinguishing between a healthy and mentally i l l patients (mostly in schizophrenia). It is 
based on the fact, that at any given point in time, the so-called activated and deactivated 
brain areas form some topography which hold for several milliseconds. The topographies 
are usually repeating, forming a set of a few maps that can represent majority of the 
topographies during the recording. In the context of the BCI , it has not yet been studied 
extensively and only a handful of studies were published where the microstate analysis 
was used in the context of motor imagery. Motor imagery is one of the most prevalent B C I 
paradigms, where the device is controlled by the thought of moving left or right limb, which 
is very useful in the machine control in paralysed patients and also have ample potential in 
the industry. The goal of the thesis is to in incorporate microstate analysis into the B C I 
for the imagined movements. 

The thesis is structured as follows - the Chapter 2 gives the introduction to the brain and 
the B C I for an overview about the brain structure, goal of the BCI , its paradigms, usage and 
current applications and limitations. Chapter 3 gives an overview on the E E G , its signal 
acquisition, preprocessing and general overview on the most usual types of analysis. Chapter 
4 gives a proposed solution to the thesis - the selection of the dataset for the appropriate 
for the thesis objective, data preprocessing steps, detailed description about the extraction 
of the microstate maps and classification. Chapter 5 deals with the implementation details 
of the proposed solution and Chapter 6 will give an evaluation and benchmark result of the 
solution. Finally, the thesis is concluded in the Chapter 7. 
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Chapter 2 

Bra in Computer Interface 

Brain Computer Interface (BCI) provides a direct communication path between the brain 
and the external world. The basic idea is very simple one - to observe the user's mental 
state we read the various signals coming from the brain, decode those signals and make 
actions accordingly to the user's intent. The overall components comprising the B C I can 
be summarized as the following: 

1. way to measure brain signals 

2. methods to process these signals and predict the user's intentions 

3. interface to communicate with the external application or device 

They are pictured in Figure 2.1. 
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Figure 2.1: B C I scheme. 

The inputs therefore, are raw brain signals measured by different modalities, depend­
ing on the use of the BCI . One could measure electrical impulses generated in the brain, 
or blood flow in certain brain areas. The signal processing part of the B C I transforms 
these raw signals into information from which we can make conclusions about the user's 
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state or intent, based on classification output and the use of the various machine learning 
techniques. Finally, these classification or recognition results are translated into the actions 
and communicated through the application interface to a device that performs them. While 
these components form a complete B C I structure, one can argue about adding the feedback 
loop, which is undoubtedly the most important part in neurofeedback applications, where 
users learn to regulate and modulate their brain activity [39]. 

The history of the B C I started in 1924 with the Hans Berger's discovery of brain's 
electrical activity and subsequent invention of the electroencephalography, which measures 
electrical potentials of the brain. At first, it was used to study brain pathology and diseases. 
In 1973, Jacques J . Vidal published the first B C I paper utilizing the electroencephalography 
and coined the term brain computer interface [168]. The first experiments were carried out 
on monkeys and first human experiments were carried out in the 90s [80]. 

Over the years, the popularity of the B C I slowly rose, and while between 1979 and 2011 
there were only around 2000 publications regarding the BCI , in the last decade alone this 
number tripled [147]. The rapid development can be attributed not only to the fast devel­
opment in the technology, robotics, artificial intelligence, but also the growing popularity 
of cognitive sciences, cognitive psychology or neuroscience [80]. 

BCIs are used in researching the brain as we know, in augmenting or repairing the 
human cognitive or motor functions, in assisting the impaired people in their daily tasks, 
enhancing the user's experience in gaming and many more. It is safe to say that the B C I 
will only gain more popularity as science and technology advancements are finally making 
it possible to study the most complex organ in the human body - brain. 

This chapter will cover the basics of the brain anatomy and function to have the neces­
sary knowledge for constructing any BCI . It will give the definitions of the different types 
of the BCI , their advantages and disadvantages and what purpose they serve. It will give 
a review about the current utilization of the B C I in various fields including medical and 
industrial. Last section will cover the current challenges the B C I faces and the views for 
the future. 

2.1 Bra in 

It is crucial for the reliable construction of a B C I system to have a basic understanding of the 
anatomy and structure of a brain. Brain is a complicated organ and to this day we do not 
have a complete image of how it might function. Wi th the understanding of responsibilities 
of each part of our brain, B C I researchers can conveniently pinpoint the exact location that 
needs to be recorded or stimulated in order to achieve the defined results of the B C I task. 

Our nervous system is divided into two distinct systems - the Central Nervous System 
(CNS) which acts as the body's processing centre and the Peripheral Nervous System (PNS) 
which relays information from the CNS to the organs and limbs. Brain, along with a spinal 
cord, is part of a CNS. 

The CNS consists of two basic cell types: neurons and glia. Neurons are the information 
messengers, conveying information through electrical impulses and chemical signals between 
different regions of the brain and also between the brain an the rest of the body. The major 
parts of a neuron are the cell body, dendrites, and the axon as can be seen in Figure 2.2a. 

Neurons are connected with each other through synaptic connection, which is when the 
tip of axon of one neuron connects to another neuron through its dendrites or cell body. The 
neurons communicate through the exchange of the neurotransmitters, which are chemical 
messengers of the body. This transmission is a very quick process, taking no more than 
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a few milliseconds to happen [162]. When neurotransmitters reach the neuron, they are 
converted into the action potential, electrical signal, which travels through the neuron to 
the axon, to pass the information to the next neuron. As depicted in Figure 2.2b, there is 
an area between the axon of one neuron and the receiving neuron and they are not directly 
connected. 

(a) Basic neuron structure. (b) Synaptic connection. 

Figure 2.2: Neuron structure and connection between two neurons. 

When dissecting a brain, there is a distinguishable layer of grayish matter followed by 
the white matter (Figure 2.3b). In 19th century it was discovered that gray matter consisted 
of aggregations of neuron cell bodies called nuclei and that white matter was comprised of 
axons [126]. 

At the highest level, the brain can be divided into cerebrum, brain stem and cerebellum 
as depicted in Figure 2.3a. 

Brodmann area 4 (motor function) 

Parietal Lobe 

(a) Different brain regions. (b) Gray and white matter. 

Figure 2.3: Structure of the brain. 

For the purposes of the BCI , the cerebrum with its cerebral cortex (gray matter covering 
the cerebrum) is of the biggest importance, because it is the closest to the skull and therefore 
it is easiest to record the signal from it. Moreover, the cerebral cortex (cortex) is involved in 
high-level functions, such as reasoning, emotion, personality, memory and language, among 
many others. 

The cortex can be anatomically divided into four lobes by the major fissures (deep 
grooves on the surface of the brain) - frontal, parietal, occipital and temporal lobe. These 
lobes are shown in Figure 2.3a. 
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Each of the lobes is associated with multiple functions: 

1. Frontal lobe - high-level functions, such as decision making or planning. Area dedi­
cated to the movement is also located on a frontal lobe. 

2. Parietal lobe - sensory information such as smell, touch or pain. 

3. Occipital lobe - primary vision processing area. 

4. Temporal lobe - memory, hearing and speech functions. 

The cortex does not have a uniform structure. Its thickness as well as layering of 
different neuron cell varies. The older cortex areas (in terms of evolution), for example, 
only consist of three cell layers, while the newer ones, called neocortex consist of six cell 
layers [126]. Based on the different layering of the cells and lobes, Korbinian Brodmann 
in 1909 [22] divided the cerebral cortex into 52 areas, with some of them also having a 
specific function. For instance the Brodmann area 4 (Figure 2.3a), which is located in the 
frontal lobe is the primary motor area of the brain, or Brodmann areas 17 and 18 located 
in the occipital lobe are the primary visual areas. Since Brodmann, several areas have been 
further subdivided, but his division is still widely used [126]. 

2.2 Classification of the brain-computer interfaces 

Over the years, several types of the BCIs have emerged and are used in today's applications. 
The division is vast and at the highest level, the B C I systems can be divided by the means 
of their recording method, dependability and mode of operation [143]. 

Dependability refers to the need of an active participation in the task. Dependent BCIs 
require user to do some activity, for example imagine a movement or move their eyes in 
order to produce an action. Independent or spontaneous B C I is based on the spontaneous 
activity in the human brain, elicited by external stimuli, such as visual or auditory. 

Mode of operation can be synchronous or asynchronous. Synchronous B C I require the 
brain signals to be time-locked, so the participant usually sees some cue on the screen and 
performs the task at that time. Asynchronous B C I try to predict the intention of an user 
without any information about when are they performing an action. Understandably, the 
synchronous B C I is easier to implement, as it is possible to precisely time the actions of 
the user. However, it is also much less user-friendly - ideally, the B C I should be able to 
recognize the intents of the user without any cues. 

The following subsections will talk about the measurement techniques most commonly 
used in the B C I and their advantages or disadvantages. 

2.2 .1 Recording Methods 

The recording method refers to the placement of the measuring device inside or outside of 
the skull to record brain activity and also the type of the recording device used. 

Invasive B C I 

Invasive B C I applications are single unit BCIs that place the micro electrodes directly into 
the cortex to measure electrical activity of a single area of brain cells. The placement 
of the electrodes is shown in Figure 2.4. The invasive B C I require subject to undergo a 
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neurosurgery, which might be expensive and risky operation, although with right procedures 
the actual number of recorded problems seem to be minimal [172]. 

Still, invasive BCIs are used only when the patient's condition is so severe, that the 
advantages outweigh the risks, for example in paralyzed or blind patients. The potential 
dangers of placing the electrodes directly into the cortex besides the risk of the operation 
itself include body rejecting the foreign object or scar tissue forming around the electrode, 
which might render the signal unusable after some time. 

The quality of the signal is very high due to the proximity to the source with little to no 
noise. The spatial resolution of invasive B C I is within the 0.1 mm and temporal resolution 
is around 0.003 s [123]. 

Semi-invasive B C I 

Semi-invasive BCIs are mostly built upon the Electrocorticography (ECoG) which places 
electrodes not directly in the cortex, but rather in the area called dura mater, which is outer 
membrane layer located directly under the skull as depicted in Figure 2.4. The operation 
to implant small number of electrodes therefore require only small burr hole and do not 
penetrate the brain tissue itself [183]. 

Most of the research regarding the semi-invasive BCIs comes from the patients diagnosed 
with epilepsy [67]. These patients are implanted with the electrode array for limited dura­
tion (~1 week) to monitor their brain activity for precise localization of epileptogenic area 
[85]. During this time, they are often asked whether they would be willing to participate 
in the B C I research, utilizing already implanted array of electrodes. 

Signal-to-noise ratio of a data recorded from E C o G is superior to that of a non-invasive 
method and the implants themselves are less dangerous than invasive ones. The spatial 
resolution is approximately 1 mm and spatial resolution is around 0.003 s [123]. Still, there 
is some surgical intervention necessary. 

The quality of the data might be the reason that companies are starting to develop 
ways to implant the electrodes more efficiently and commercially, for example the company 
Neuralink 1, which also came with the way to implant these electrodes by the use of the 
robotic electrode inserter [118]. 

Non-invasive 

Scalp 
Skull 
Dura 

Cortex 

White matter 

Figure 2.4: Brain layers and corresponding electrode placement in them. 

Non-invasive B C I 

Non-invasive BCIs measure brain activity from the surface of the scalp and eliminate the 
need for any neurosurgical intervention. This in itself brings a notable advantage over the 
invasive ones, as it eliminates not only any risk associated with the operation, but also 

1 https:/ /neuralink. com/ 
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the need for medical staff and need for any operational recovery. There are multiple types 
of non-invasive recording devices that can measure different processes inside of the brain. 
These modalities are explained in more detail in the next section. 

2.2.2 Measurement Modalities for non-invasive BCI 

The decision on the measurement modality used in the B C I usually comes down to four 
different factors and what role do they play in the intended use of the BCI . These factors 
are the temporal and spatial resolution of the modality, its portability and cost [143]. The 
decision might also come down to the type of the processes recorded, as some modalities 
measure metabolic activities and some electrical properties of the brain. 

Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (FMRI) measures brain activity by detecting 
changes associated with blood flow [72]. When there is a neuronal activity in an area 
of the brain, blood flow to that region increases to deliver the energy in the form of glucose 
to the neurons. This process is called hemodynamic response. It utilizes M R I machine that 
can capture the brain structure using magnetism and radio waves. The fMRI, on the other 
hand, captures the functional activity of the brain, but with the same machine. 

The fMRI has an excellent spatial resolution, being able to pinpoint the precise location 
inside the brain of around 3mm 3 [58]. Due to the hemodynamic response being a slow 
process, the neuronal actions following the stimuli peak between 2-5 seconds, which makes 
fMRI having a very poor temporal resolution. In addition to that, it is not portable and M R I 
machines are very expensive, being used mostly in the clinical settings. This makes fMRI 
being used primarily in the neurofeedback settings, where patients learn to volitionally 
control the activation of certain brain regions [72]. This method has been utilized to 
treat patients with addictions [79] [82], psychiatric patients with problems controlling their 
emotions [97] or in epilepsy detection [38]. A l l of these applications require a precise location 
of the activity in the structures deep inside of the brain, but are not so dependent on the 
precise time information and rapid actions, making fMRI a preferred choice. 

Functional Near-Infrared Spectroscopy 

Functional Near-Infrared Spectroscopy (FNIRS) is based on the same concept as the fMRI. 
The oxygenated and deoxygenated hemoglobin scatter near-infrared (NIR) light differ­
ently. It is possible to measure the absorption of NIR light by placing light emitters and 
photodetectors on a scalp and capture the ratio of the oxygented and deoxynated blood 
present in the area. Compared to fMRI, the fNIRS is fully portable and does not require 
expensive M R I machine, but in return offers only a fraction of the fMRI's spatial resolution. 

Because the hemodynamic response is a slow process, the time resolution of fNIRS 
is only between 0.1-1 seconds. A depth sensitivity is approximately 1.5 cm, and a spatial 
resolution up to 1 cm [141]. Its less susceptible to electrical and movement noise (as opposed 
to to fMRI and E E G ) , however, due to it not yet being used widely, it is still more expensive 
than E E G [122]. The fNIRS is fully portable, making it very suitable for any commercially 
used BCI . It is expected that this field will grow and there is much undiscovered potential 
in it [122]. 

16 



Magnetoencephalography 

Magnetoencephalography (MEG) measures magnetic field generated by the electrical ac­
tivity of neurons firing. Usually, it is combined with M R I to give better structural overview 
of the patient's brain [158]. 

M E G based BCIs are usually used for motor movement and motor imagery tasks 
[109][146] and have improved spatial resolution over E E G . However, they are not portable 
as M E G requires large immovable hardware. The research towards more portable M E G 
devices is currently ongoing [129]. 

Electroencephalography 

Electroencephalography (EEG) captures the postsynaptic potentials of the neurons that are 
located in the cortex. The electrodes placed on the scalp measure the voltage fluctuations, 
which are then sent to the amplifier to obtain the electrogram. 

Since the E E G captures the electrical activity of the neurons in the cortex, it has an 
excellent temporal resolution, measuring the events in the milliseconds. However, it suffers 
from the poor spatial resolution of only around 1 cm, limited to the cortex area. It is fully 
portable and the most popular B C I modality among the researchers [89]. This popularity 
drove the price of the E E G down and made it considerably cheaper when compared to the 
others. The number of electrodes used to record the signal will determine the price, but for 
some applications where there is no need to have more than 8 electrodes, the price could 
be even lower. 

2.2.3 Comparison Summary 
The comparison in terms of spatial and temporal resolution between the different modal­
ities can be seen in Figure 2.5. In these domains, the invasive methods without a doubt 
outperform the non-invasive ones, as they are able to pinpoint the exact signal location 
within milliseconds. As was mentioned before, the risk of body rejecting the electrodes and 
the risk and costs of neurosurgery itself are the reasons that invasive BCIs are only used in 
medical settings - usually for patients with serious impairments. 

•a 
x 

fMRI 

fNIRS 
MEG 

EEG 

Temporal resolution High 

Figure 2.5: Comparison of different B C I modalities in terms of their spatial and temporal 
resolution. 

When comparing the non-invasive recording modalities, the choice always depends on 
the purpose of the B C I and its availability. If the BCI is to be used by the industry and has 
to assist people with their tasks, it has to be portable and as inexpensive as possible. On 
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that front, E E G is the primary choice and is the most used recording device, thanks to its 
great temporal resolution, portability and cost. The fNIRS suffers from the lower temporal 
resolution and higher cost, but with the further research might prove much more useful as 
it does not suffer from the artifacts as much as the E E G does. 

For the medical applications where the research requires the information about brain 
structures deep in the brain, the fMRI is the primary choice. It is used extensively in 
the emotion control neurofeedback for patients with psychiatric disorders. The recording 
modalities can also be combined together to complement each others weaknesses. The 
combination of the E E G and fMRI can bring unique insights, as it enables us to draw the 
correlations of the activity measured on the surface of the scalp with the information about 
activation deep in the brain [108]. 

For the purposes of this thesis, the E E G was chosen as the recording modality. Ideally, 
the user should use the B C I independently of the situation, which renders the non-portable 
measurement devices inconvenient. Additionally, the temporal resolution of the E E G is so 
precise, that it is possible to measure events in the range of milliseconds of them happening, 
which is suitable for any tasks requiring fast reaction times. 

Chapter 3 gives a detailed overview of the E E G , what does it measure and what are 
the techniques commonly used to infer neural information from it. 

2.3 E E G based B C I 

E E G based BCIs can be built upon several paradigms, depending on the spontaneity, 
synchronicity and the purpose of the BCI . 

2.3.1 Motor Imagery 

Motor Imagery (MI) refers to the mental simulation of the body movement. The primary 
area activated during the movement is motor cortex, located on the frontal lobe, which is 
associated with planning, control and execution of voluntary movement [178]. The motor 
cortex can be further divided into primary motor cortex, premotor cortex and supplemen­
tary motor area. The primary motor cortex is mainly responsible for the execution of the 
movement, while the premotor cortex is associated with the planning of the movement and 
supplementary motor area with movement coordination and sequence planning. On the 
primary motor cortex, there are small areas all designated for very specific movement of 
the different body parts. The motor area and slice of the primary motor cortex reveal­
ing the body parts represented is depicted in Figure 2.6. The slice view represents only 
one hemisphere, but the primary motor cortex is present at both hemispheres, with right 
hemisphere controlling the left side of the body and vice versa. 

The most crucial finding for the B C I was that the movement that person only imagines 
doing, without executing the movement activates the same areas in the brain as the actual 
movement [35]. This enabled the creation of the MI based BCI , where user is asked to 
imagine moving his limb and control some external device. Usually, these BCIs are build 
upon imagining hand or arm movements and that is because of the proximity of these on 
the primary motor cortex to the scalp. It is evident from the Figure 2.6 that thumb, fingers, 
hands and arms have relatively large designated areas, close to the skull, whereas toes and 
feet are folded inward, which makes these much harder to measure, especially with E E G . 

MI based BCIs are used extensively for the rehabilitation to regain the body movement, 
but have a lot of potential in any device control. They require a lot of training to master 
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Figure 2.6: Motor area and respective body parts present on the primary motor cortex. 

the control. If done right, however, they would be an ideal way to for the implementation 
of the asynchronous BCI , which would be an ideal case. 

2.3.2 Steady-State Evoked Potentials 

Steady-State Evoked Potentials (SSEP) are signals that are responses to a stimulation 
at specific frequencies. This stimulation can be visual (SSVEP), auditory (SSAEP) or 
somatosensory (SSSEP). In case of the SSVEP, when a person is looking at an object 
flickering at certain frequency, it creates oscillations in the brain which are the same (or 
multiple of) frequency as the flickering object. This can be very reliably detected using the 
E E G and inspecting the spectrum of the recorded brain signal in the occipital lobe - the 
area associated with visual processing. A n example of the SSVEP is pictured in Figure 2.7. 
The same principles hold for the auditory or somatosensory SSEP, but with hearing the 
frequencies or feeling the frequencies physically. 

Screen with objects flickering 
at certain frequncies. Frequency analysis Decoding 

Power spectral density 
10 Hz 

Frequency [Hz] 

Figure 2.7: Example of the SSVEP based BCI . 

Usually SSVEP based B C I are used as spellers, so that paralyzed people are able to 
communicate, but can be utilized for various applications, such as a wheelchair control 
[159]. 

SSEP based B C I have very high accuracy and virtually no training time is needed for a 
user to be successful [62]. Moreover, SSVEP spellers have the highest information transfer 
rate out of all non-invasive B C I spellers [30]. Disadvantage is the maximum number of 
targets that can be presented to reliably distinguish between them, which is about 60, 
but in some cases can be as high as 80 [56]. Another drawback is high visual fatigue and 
possibility of an user getting epileptic seizure from the flickering [86]. 
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2.3.3 Event Related Potentials 
Event Related Potentials (ERP) represent a time-locked neuronal response to the specific 
task. They are described in more detail in section 3.3.2. 

The most common usage for the ERPs in the B C I are the spellers. When a person 
encounters something unexpected, it elicits a response in the brain that is already well 
defined by the years of research and can be detected. As different letters are presented 
to the subject on the screen, when the target letter appears the brain's response can be 
decoded. 

Besides spellers, another exciting application of the ERPs in the B C I is detecting errors. 
When the signals are incorrectly classified as some action and the user realises that, it elicits 
a response in the brain that produces Error Potential (ErrP). This can be utilized to make 
a correction accordingly, such as repeating the last incorrectly classified letter in the speller 
[33]. ErrPs bring a potential of reinforcement learning to the BCI , where machine could 
learn the intention of the user over time [102]. 

The advantages of E R P based B C I is that a user does not have to be trained for the task 
and the results can be very good only after a few trials. However, in case of detecting an 
E R P , the E E G signal is considered as noise, and is much more prevalent than small ERPs . 
In the E R P research, this problem is tackled with averaging tens of trials to zero-out the 
noise [101]. In BCI , unfortunately, the E R P wave has to be detected on a single-trial basis 
and therefore sophisticated processing and detection techniques have to applied to infer the 
E R P for correct classification [28]. 

2.4 Areas of Applicat ion 

The areas where the B C I are predominantly used can be divided into two categories -
medical and non-medical [133]. Because all of the measurement modalities were at first 
used in a clinical setting for various diagnoses, the medical applications of the B C I are 
dominant, with utilization ranging from diagnosis to treatment and rehabilitation. 

2.4.1 Medical Applications 

Diagnosis 

Studying and evaluating brain responses to various tasks, such as in BCI , brings an unique 
insight into the underlying processes happening in person's brain and consequently, might 
reveal abnormalities that contribute to diseases and disorders. These functional abnormal­
ities might not be evident from simple structural scan, for example depression or other 
psychiatric disorders. The usage of B C I might therefore be beneficial to diagnose disorders 
that are a challenge even for the professionals. For example autism diagnosis [7], where 
professionals are scarce, the automatic diagnosis could help. 

Another example is a Disorder of Consciousness (DoC). DoC refer to state where con­
sciousness has been affected by damage to the brain and the patient might not be awake or 
aware (coma or vegetative state). Conventional methods to assess the patient's conscious­
ness are highly dependent on the patient's motor ability, and might lead to misdiagnosis 
[130]. Preliminary research shows that it is possible to use BCIs to assist in consciousness 
detection, auxiliary diagnosis, prognosis, and rehabilitation of patients with DoC [130]. 
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Rehabilitation 

After the brain injury or damage, brain areas can cease to function properly, resulting in 
patient's losing the ability to perform certain tasks, such as movement or the speech. Neu-
roplasticity refers to ability of a human brain to modify, change, and adapt both structure 
and function [170]. Brain can be trained to make new neuronal connections and replace the 
damaged areas by substituting them in the different part of the brain. The rehabilitation 
to regain the lost functions is a very promising field in the B C I application and has been 
utilized for various nervous system injuries [24]. 

Spinal cord injuries are a form of injury that damages the spinal cord resulting in partial 
or, in worse case, total paralysis. Restitution of movement for these cases takes years and 
is expensive. Rehabilitation sessions utilizing BCIs in the virtual reality settings or with 
exoskeletons (such as shown in Figure 2.8) and neuroprosthetis bring notable benefits, how­
ever it still requires a lot of trained professionals to guide the rehabilitation and expensive 
hardware [110]. The goal is to work towards a fully autonomous B C I that would help with 
the rehabilitation at home, such as in [25]. 

Figure 2.8: Use of an exoskeleton by a paralyzed man. Picture taken from [1]. 

Stroke is a leading cause of long-term disability and reduces mobility in more than half 
of stroke survivors [2]. It is a result of a cut-off of a blood supply to some part of a brain, 
which causes brain damage and subsequently loss of function. This loss can be permanent 
and include speech impairment, comprehension, memory problems or paralysis. Therefore, 
multiple BCIs for various body parts are being developed, utilising robotic replacement 
controlled by the brain to elicit a perception of a movement for these patients resulting in 
improvements in regaining the control over their body[12][31][99]. This movement restora­
tion BCIs can also help patients with epilepsy, as their brain areas also get damaged. 
Additionally, it is also crucial to enhance the quality of life for post-stroke patients in case 
the stroke resulted in irreversible damage, for example controlling simple tasks at their 
home by the use of the brain signals [32]. 

Another use is stimulation of certain brain areas based on the information within the 
brain. Such B C I is proving to be crucial for treatment of patients with Parkinson's disease, 
which is usually accompanied by severe tremors [138]. One of the possible treatments is 
Deep Brain Stimulation - the electrodes are implanted into patient's brain, sending electrical 
impulses into the brain area to stimulate it. The already implanted electrodes can be used 
to also provide a feedback to control the timing of the stimulation, improving efficiency and 
efficacy [98]. 
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Neurodevelopmental Disorders 

Neurodevelopmental disorders affect the development of nervous system, which has an effect 
on emotion, learning abilities, self-control, memory and in some cases motor functions [115]. 
These disorders usually last lifetime. For these patients, B C I is used mainly for training -
preparing patients for social situations, training their attention or improving their motor 
functions. 

Children and adolescents being diagnosed with Attention Deficit Hyperactivity Disorder 
(ADHD) suffer from the lack of attention, excessive motor activity and impulsiveness [87]. 
B C I systems are already established as an effective complementary treatment for A D H D 
patients to offset several problems patients are facing [180]. B C I games to improve the 
attention of A D H D children were shown plausible, improving the attention span of patients 
over numerous training sessions [96]. Wi th the addition of the virtual reality, these types 
of game-based trainings for various attention deficit disorders might over time prove very 
effective [145]. 

Autism Spectrum Disorder (most commonly known as autism), is neurodevelopmental 
disorder that can mostly be defined by the problems with social interactions, communication 
and restricted or repetitive behaviors [3]. BCIs are being utilized in conjunction with the 
virtual reality settings to assess the emotional levels and engagement levels for better autism 
intervention [50]. It is important, however, for these BCIs to not be reliant on any training, 
such as in motor imagery tasks, due to the low attention span of autistic patients [11]. It 
might be also possible to improve social skills of autistic patients [8]. 

Communication 

Locked-in syndrome is a rare neurological condition, where a patient is completely paral­
ysed and unable to voluntary control muscles, except for the vertical eye movement. The 
cognitive functions, however, remain undisturbed, meaning patients can perceive their sur­
roundings, think and reason with usual capabilities [160]. B C I provides the means of 
communication, creating a direct path from the brain to an external world. 

The conventional methods for these patients take advantage of the eye-movement and 
gaze tracking [179]. B C I spellers, were successfully utilized and provided faster information 
retrieval than conventional eye-movement ones[166]. BCIs for these patients are invasive, 
as their quality of life is so severely impacted, that having as precise signal as possible is 
a must [167]. There is a research in non-invasive BCIs for locked-in patients, but they are 
usually less accurate [65]. Non-invasive communication BCIs usually utilize spellers based 
on the P300 E R P and S S V E P paradigms. 

2.4.2 Non-Medical Applications 

B C I is still used predominantly in the medical applications, but it is evident, that industrial 
applications could also benefit enormously from the brain-controlled devices. There are 
several reasons why such applications cannot yet be seen on a day-to-day basis. Firstly, 
most commercially available B C I sets require a lot of electrode calibration prior to the 
recording, which takes a huge portion of experiment time. This is not an issue in medical 
setting, but it is a problem for inexperienced user who, ideally, should be able to use B C I 
device on his own. Secondly, only portable B C I devices are E E G and fNIRS ones. E E G 
is very sensitive to any electrical noise and most experiments are conducted in electrically 
shielded rooms. Moreover, E E G is also very sensitive to movement, which places a huge 
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constraint on the real-world applications. fNIRS might be the answer to these problems, 
but the research is still relatively young. Thirdly, it is a low accuracy and low transfer rate 
that might frustrate end-users. A l l of these points are reasons why it wil l take some time 
before any real industry used B C I [10] [27]. 

Gaming 

The aim of the B C I within a game industry is to enable user to control movement-based 
actions through mental commands. There are already multiple games developed for the 
BCI , including classics, such as Pacman or Tetris [5]. A popular one, shown to the public 
many times, is a mind game Mentalista Foot, where two participants are instructed to 
move the ball into opponent's cage by concentration 2 . The games range from single player 
games to multiplayer, cooperative, logical or fighting - safe to say the B C I can be used in 
any game settings 3 . 

According to [6], the gaming industry will be the first one to use the B C I on a large 
scale when it will become industrially viable. However, in the current state, the B C I is not 
yet mature enough to be used in gaming widely. Along pitfalls mentioned in the section 
above, the B C I games suffer from the lack of appropriate game design, where ease of use is 
one of the most important aspects for gamers [27]. 

Industry 

In the recent years, B C I started to draw attention of the various industrial areas to enhance 
work safety, train the employees more effectively or control devices [46]. Passive BCIs aim 
to monitor the mental state of a person from the brain signals, assessing their arousal 
levels or cognitive workload. This is crucial for work positions, where operator must be in 
excellent condition to make decisions, such as pilots [36], air traffic controllers or drivers 
[10]. The B C I could monitor driver's drowsiness level and mitigate traffic accidents [81]. 

Military 

There are multiple areas in the military which would benefit from the mind-controlled 
devices. For example making complex multitasking operations more efficient, such as in 
[14], where the B C I is used to control drone-robot interactions, or controlling drone swarms, 
which might be a non-trivial task [90]. Other usages could be smart helmets with integrated 
dry electrodes for simple usage, for mental load monitoring and performing small tasks 
according to the intentions read from the helmet [83]. 

2.5 Challenges and the Future of the B C I 

The B C I applications still have a long way to go and there are several pitfalls to overcome 
before the reliable and publicly accepted BCI . 

Because each human brain works differently, there is a significant intra and inter-
individual variability between different brain signals [147]. The BCIs are therefore all 
subject-specific and each subject must undergo training sessions. Long training times re­
quired for the successful completion of the task are tedious and users might lose motivation 
and interest. 

2 https: / / studio, mentalista. com / foot 
3https: //bcigamejam.com / pages / showcase2021 .html 
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Moreover, it seems that some users cannot learn to control the B C I even after numerous 
trainings. This phenomenon is known as B C I illiteracy and affects a lot of MI research 
[165]. Another limitation to this might also be the mental state of the B C I user, which 
might negatively impact the performance. Fatigue and frustration were shown to lower the 
performance as well as attention [121]. 

For the medical applications, the B C I should ideally lower the number of trained pro­
fessionals to guide the rehabilitation or training. As of now, however, the time and the 
resources put into this training in the medical centers are huge, which places a huge con­
straint on the availability. In the ideal situation, the patient would use this B C I at his 
home, without requiring any professional assistance and rehabilitate at his own pace, which 
might take months or years [157]. This long training times are also posing a problem, as 
the patients might, again, lose the motivation and determination to improve. 

Although the E E G is the most popular modality for the B C I for now, there are numerous 
challenges that E E G has to overcome. Mostly, it is its susceptibility to the movement, where 
even the slightest movement can produce spikes in the signal, rendering it unusable. For 
any user-friendly B C I it is crucial to implement algorithms and techniques that mitigate 
movement artifacts [154]. 

Some ethical factors also play a role in the future of the BCI . As was mentioned above, 
the B C I for the locked-in patients enable them to have a connection with an external world. 
However, how do we obtain the informed consent to participate in the B C I in the first place 
[66]? In [66] it was also noted, that media creating catchy headlines regarding mind-reading 
or zero training BCIs might create false expectations within the public. It is important for 
the researchers to state the abilities and limitations of the B C I clearly as to avoid any 
misunderstandings. 

When the BCIs become more popular, another problem might come up, such as privacy 
of the user or identification of a user through his unique brain signals [16]. If we can control 
the tremors of the Parkinson's disease now by implanting electrodes into the brain, what 
can stop us from the controlling the emotions one day? Or even person's actions altogether? 

Emotional control and mind-reading, is, of course, seemingly far in the future as to not 
bother the researchers now. In the present, it might seem that the biggest challenge is 
that the researchers are sacrificing the easiness of the use in exchange for the results and 
performance [27]. The primary challenge for the future is to eliminate the above mentioned 
problems, such as users not being able to use the BCIs alone without the assistance of 
trained professionals and make the B C I more robust, so that it could be also used in the 
industry. The industrial use of the B C I is the most exciting one, because it offers many 
possibilities, but also places the most constraints. The devices must be comfortable to 
wear, must be portable and must be reliable to deliver the results it promised outside of 
the laboratory settings [46]. 
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Chapter 3 

Electroencephalography 

Non-invasive Electroencephalography (EEG) is a way to measure brain's electrical activity 
by placing electrodes on a scalp that can detect it. It is a non-invasive method, that has an 
excellent temporal resolution, but suffers from the poor spatial resolution. Mostly thanks 
to the temporal resolution and relative low cost of the equipment, it is the most popular 
modality used for the B C I applications and also chosen as a modality for this thesis. 

The aim of this chapter is to give a general overview on the E E G . It will explain how 
to record the signal and what are the general processing steps to acquire a signal without 
artifacts. The chapter will also talk about various types of analysis used in the field, their 
most popular methods and usage. 

3.1 Signal Acquisition 

To measure the electrical brain activity from the scalp, the appropriate recording setup 
is required. The E E G setup consist (mainly) of electrodes, amplifiers, A / D converter and 
a recording device. Electrodes capture the electrical signals, which are then amplified by 
amplifiers to bring it into the ranges suitable for accurate digitization. The A / D converter 
converts the analog signal to the digital signal, which is then stored on a recording device 
(for example a computer). This setup is depicted in Figure 3.1. 

Cap with electrodes 

Figure 3.1: Data acquisition setup for E E G . 

This section will first give an overview of the electrodes and their placement on the scalp 
and then it will talk about montages, which are essential for understanding what exactly 
the E E G signal represents. 

3.1.1 Electrodes 

Multiple electrode types exist and their usage depends on the defined task. The classical 
E E G electrode is a small disc made of silver and silver chloride. For these electrodes to 
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acquire a good signal a lot of effort needs to be put into their setup. Firstly, the skin under 
the electrode needs to be cleaned of imperfections and sanitized. Then, the electrolyte gel 
that facilitates the transfer of electric currents between the scalp and the electrode needs 
to be applied to the area, leaving the substance in the hair even after recording. The 
experimenters need to manually adjust the electrodes and reapply the gel to get a low 
electrode-skin impedance and good signal. This is a very time-consuming effort, more so 
with many electrodes, and is only suitable for clinical applications. 

To mitigate this problem, dry electrodes were invented, that do not require any con­
ductive substance and have a much quicker setup time. This is ideal for B C I applications, 
since the user should be able to set up a recording all by themselves. However, it suffers 
from the poor signal-to-noise ratio and therefore for clinical application, the gel electrodes 
are still considered to be the gold standard [69]. A good review of different electrodes and 
their usages can be found in [40]. 

Electrode Placement 

For any results to be comparable between experiments, it is crucial to have an unified way 
to place the electrodes on the scalp. The widely used placement is called 10-20 placement, 
because it divides the scalp into a 10% and 20% sections, where the electrodes are placed 
relative to the other electrodes. This relative division ensures that the electrodes are placed 
over the same regions of the brain even when the head sizes of the people differ. The 10-20 
electrode placement is shown in Figure 3.2. By the convention, the electrode name starts 
with the first letter of the lobe that the electrode is placed above and a number indicating 
the hemisphere and distance from the central line. Electrodes on the left hemisphere have 
odd numbers, while electrodes on the right hemisphere have even numbers. For instance, 
the electrode T8 would indicate the electrode placed to record activity from the temporal 
region in the right hemisphere. 

In ion 

Figure 3.2: 10-20 electrode placement. 

Adding more electrodes requires placing them proportionally in the empty spaces, re­
sulting in the 10-10 systems or even 10-5 systems. The number of the electrodes to use 
depends on the experimental design and purpose. In research settings, researchers opt to 
use 64 or even more electrodes. It is debatable, what is the ideal number, although re­
search indicates that 32 might be enough [114]. Naturally, more electrodes require larger 
setting time and therefore, for the B C I settings, researchers tend to use as few electrodes 
as possible, focusing their position over the brain areas associated with the task. 
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3.1.2 Montages 
To successfully interpret the E E G signal it is important to understand that because of 
the amplifiers, the E E G signal is always recorded relatively to some other signal, called 
reference. This is depicted in Figure 3.3. 

Amplifier Channel 

Input 1 

Input 2 

Figure 3.3: Resulting channel signals is a result of two different signals. 

The montages define to what referential signal the electrode signal is relative to. Based 
on the montage, the E E G data interpretation can vary and so it is crucial to study the 
different results they can produce. The montages can be divided into two major categories 
- bipolar montages and referential montages. 

Bipolar Montage 

In bipolar montages, the electrode signals are referenced in pairs. Every electrode is con­
nected to a different one to produce the resulting data. The most widely used bipolar 
montage is called double banana, for the characteristic chains on both hemispheres. Each 
electrode is referenced to the electrode that is next in chain, as is shown in Figure 3.4. 

Nasion 

Figure 3.4: Double banana montage. 

The main reason for using bipolar montages is a phase reversal. In case the first electrode 
recorded more positive signal then the second, the resulting signal is a downward deflection. 
Consequently, if the signal recorded on the first electrode is less positive than on the other 
electrode, the resulting signal would be an upward deflection. These deflections of different 
polarities are called phase reversals and because they are easy to spot in the recordings, 
they are the main reason the bipolar montages are used in the clinical studies as large 
deflections might represent of abnormalities. 

The biggest disadvantage of the bipolar montages is the possible phase cancellation. 
If the electrodes contain very similar signal, they might cancel each other out, leaving 
no information from the area. That is one of the reasons the bipolar montages are not 
used in the B C I setting and referential montages are used instead. Another reason is their 
challenging interpretation as each electrode is referenced to a different signal and the fact 
that the first and last electrode in the chain might not have a reference at all. 
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Referential Montage 

The referential montage compares all of the electrodes to one single reference, which can 
be one designated electrode or average of many electrodes. It is easier to interpret, since 
there is no phase reversal and the electrode with the highest amplitude waveform is really 
the one with the greatest voltage. 

Referential montages aim to reconstruct the true E E G potentials from the scalp elec­
trodes. For that, ideally, the reference signal should be zero. However, there is no single 
point on the body where the potential would be zero and therefore the reference will in­
evitably bring a noise into the data. This zero potential reference problem is shown in 
Figure 3.5. 

Recorded signal Reference signal True signal 

Figure 3.5: Recorded signal is a composition of the true signal and the reference signal 
subtracted from it [41]. 

Common Reference Common reference utilizes one designated electrode as a reference 
one. The referential electrode is placed on a body far enough from the recording site as to 
not pick up the signal of the interest. As was stated before, there is no place on a body with 
zero potential, so the reference will definitely bring some bias, but it will do so uniformly 
across the electrodes. 

The placement of the referential electrode on a body can in theory be anywhere and a 
lot of researchers even opt to designate a one of the scalp electrodes as one. It is acceptable 
to do so if the reference signal is not in the area used in the analysis. It is also not 
recommended to use single electrode placed on one hemisphere, as that might bring uneven 
bias to the electrodes located on the other hemisphere. Electrodes from the central areas 
are the most ideal (Cz, Pz or Fz). 

Most commonly used reference is called Linked Mastoids (LM), which is calculated as 
an average of signal from left and right mastoids. The idea behind L M reference is that it 
should pick up minimal signal from the body (either neuronal or other, such as E C G ) . In 
reality, however, it was proven to contain muscle artifacts, which distort the signal [177]. 
Still, its independence from the number of electrodes used in the recording makes it easy 
to compare different experiments between each other [174] and is therefore still a popular 
reference to use. 

Average Reference The first attempt (in 1950 by [59]) in a zero-potential reference is 
an average reference (AR), which is calculated as an average of the sum of all electrode 
potentials. If there is a noise affecting all of the electrodes the same way, it should be 
reflected in the average reference and then subtracted from the data to obtain (in theory) 
the dereferenced solution. 
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However, this only holds true if we assume a sufficient electrode density with full head 
coverage, which means a large number of electrodes, otherwise the bias of the reference will 
still be present in the signal [41]. 

The A R reference is still most widely used in the clinical studies as a good approximation 
of the zero potential reference, as the number of electrodes used in those experiments is not 
a problem. 

Reference Electrode Standardization Technique Reference Electrode Standardiza­
tion Technique (REST) developed in 2001 by [176], is an approach to reconstruct the E E G 
potentials with the theoretical zero reference. It has gained popularity as a re-referencing 
method (it cannot be used as a reference during the actual recording). 

It aims to find a reference point at infinity, which is far from all the possible neural 
sources and thus has a theoretically neutral potential, which is used as an approximate of 
zero potential [44]. It was proven to be the best dereferencing method to study ERPs or 
E E G spectrum [93]. 

The R E S T method relies heavily on the head model, which might be biased because of 
the tissue conductivity or inaccurate segmentation [127]. It is not recommended to use it 
with insufficient number of electrodes (64 or more). 

Choosing the Reference 

To this day, the researchers cannot agree as to which reference should be accepted uni­
versally, which brings problems in the form of result interpretability, comparability and 
reproducibility across different experiments [177]. The resulting E E G data will differ sub­
stantially based on the reference used and it is therefore important to disclose the reference 
used when publishing any E E G results [144]. 

It is a normal practice in the E E G research to change the reference method after the 
recording when analysing the data, since the E E G data acquisition systems usually have a 
predefined reference that might not be suitable for the experiment type. 

In the B C I applications, the reference used is either common or average one, depending 
only on the researchers. For clinical applications, average and R E S T references are consid­
ered a gold standard for majority of the use cases. In this thesis, average reference is used 

sufficient reference for the B C I applications. 

3.2 Preprocessing of the E E G data 

The true neuronal signal as generated by the action potentials is a very weak signal, easily 
disturbed by any interference. The signal that reaches the recording device is a sum of this 
true neuronal signal and noise, which can be a result of the environment or physiological 
processes affecting the body. 

To study the brain, E E G data should be cleaned as thoroughly as possible to analyze it 
(which is the case for classical E E G analysis, not for deep learning approaches). To clean 
the data, multiple methods were developed to detect the unintended artifacts in the data 
and their subsequent removal. 
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3.2.1 Artifacts 
E E G data is prone to many kind of artifacts which disrupt already weak neuronal infor­
mation. In the clinical settings, the researchers usually try to minimize chance of anything 
interfering with the E E G data by conducting the experiment in the noise-proof environ­
ment and placing multiple constraints on the subject with respect to their behavior and 
movements. In the B C I settings, the artifacts have to be removed and, ideally, all of the 
neuronal information must be preserved. 

E E G artifacts can be divided into two groups based on the source of the artifact -
non-physiological or physiological. 

Non-Physiological Artifacts 

The artifacts that are due to the environment noise, poor grounding or bad electrodes are 
relatively easy to detect and correct, and usually lie outside of the frequencies of the useful 
E E G data and therefore can be simply filtered out. 

The most common one is a line noise artifact, which is represented as a spike in frequen­
cies of either 50 or 60 Hz (depending on the location). The line noise and its characteristic 
peak frequency is depicted in Figure 3.6. In most analyses, the researchers do not take into 
account frequencies above 40 Hz, as it does not probably contain much useful data (which 
will be talked more in Section 3.3.3) and thus effectively disregard the line noise altogether. 
In other case, a notch filter will reliably remove unwanted frequencies around power line 
frequency. 

10 20 30 40 50 60 70 80 
Frequency (Hz) 

Figure 3.6: Frequency spectrum of multiple channels. The line noise of 60 Hz can be clearly 
visible, affecting all channels. 

Electrode movement can drastically alter the signal, abruptly changing amplitudes. The 
electrode movement can happen because it loosened up from a cap, because some external 
object moved it or simply by just head movement and cap sliding. This poses several 
problems. Firstly, it renders the portion of the signal where the movement happened 
almost unusable. Secondly, electrodes changed the position (albeit slightly). This is crucial 
for B C I applications, as they should be prone to such noise. There is, however, no single 
solution to solve all motion artifact issues [154]. In the clinical settings, this problem is 
resolved by placing a constraint on a participant to move as little as possible and designing 
experiments in a manner that requires no movement whatsoever. 

Another problem related to the electrodes is when its signal properties suddenly change, 
simply because the electrode lost connection to the acquisition device, resulting in the zero 
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signal, or because it lost connection with the skin resulting in the abnormal voltages. Apart 
from visual inspection to identify these bad channels several automatic methods are used 
to detect them without any human interaction. The bad channels can be identified by 
their abnormal amplitudes, lack of correlation with other channels, lack of predictability by 
other channels and presence of high frequency noise [17]. These channels can then either 
be omitted from the analysis, or can be interpolated from the signal of the neighbouring 
good electrodes. However, these interpolations do not bring any new information to the 
E E G data, as they are only reconstructed from already existing signals and therefore it is 
not recommended to interpolate more than 15% of the channels used. 

Special kind of artifact to mention is a Gradient Artifact (GA), which is present in 
the simultaneous f M R I - E E G recordings. G A is a result of the MRI's machine magnetic 
field gradients, which induce current in E E G electrodes hundreds times larger than neural 
activity. As can be seen in Figure 3.7, the artifact renders the raw E E G signal completely 
unreadable, and must be removed from data. As its frequencies coincides of those the E E G , 
it cannot be simply filtered out. Because the G A is time-locked to the repetition time of the 
M R I machine, the most popular method is a template method, which creates an estimation 
of the artifact, that can be simply subtracted from the original data [23]. 

Figure 3.7: Gradient Artifact. Figure taken from [23]. 

Physiological Artifacts 

One of the reasons why E E G is still not used widely in the industrial settings is also its 
susceptibility to physiological artifacts, inevitably created when performing tasks. Any 
kind of head or eye movement is visible on the recording, rendering any analysis potentially 
flawed. These artefacts sometimes coincide with the signal in a way that it is challenging 
to even detect them and over the years, various methods and algorithms were proposed to 
remove them from the data automatically. In the classical E E G research, many researchers 
choose to simply remove the corrupted segments of the data from the analysis and use visual 
inspection to detect them. This is impossible to do in the B C I settings as the B C I should 
be able to decode the brain signals in any situation automatically. Here, most common 
physiological artefacts are mentioned, along with possible solutions for their removal. 

Eye Two types of the eye artifacts can be observed from the E E G signal - eye blinking 
and eye movements. 

Eye blink artefacts are most common in any type of task-related E E G recording. They 
are visible as prominent high amplitude peaks of low frequencies, mostly occurring in the 
signal of frontal channels and slowly diminishing as the channels get further to the back. 
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Because they overlap the frequencies used in the E E G analysis, they cannot be simply re­
moved from the signal by high-pass filtering. The artefacts as present in the E E G recording 
are shown in Figure 3.8a. It is evident from the picture, that the biggest amplitude changes 
are present at the electrodes FP1 and FP2, which are located at the very front of the head 
and therefore capture most of the artifact. 

Eye blink artifacts in the EEG recording 

(a) Eye blink artifacts present in the recording, (b) Independent Component Analysis on the EEG 
data - component representing the eye blink arti­
fact, its frequency spectrum and topography. 

Figure 3.8: Eye blink and its characteristics in the E E G recording. 

There are multiple ways to remove the eye movement and blinks from the data. Multiple 
experiments utilized Electrooculogram (EOG). The eye acts as a dipole where the anterior 
pole is positive and posterior pole is negative. When the person is looking left, the cornea 
moves closer to the outer corner of the eye, which result in the negative potential difference 
being recorded. On the contrary, the right gaze, when the cornea moves closer to the inner 
corner of the eye, results in the positive potential difference. This potential differences are 
measured by placing electrodes around the eyes. For the eye blink artifacts, the electrodes 
are placed above and below the eye, and the sudden spikes represent the eye blink. 

Wi th the information from the E O G , the eye artifacts can be removed in regression based 
approach where the E O G channels are correlated with the E E G channels and subtracted 
from the data [70]. 

Naturally, adding more channels to specifically record one artifact goes against the prin­
ciples of the BCI , which should ideally utilize as little channels as possible. Other popular 
method for artifact removal is based on the Blind Source Separation (BSS) approach, utiliz­
ing Independent Component Analysis (ICA) to separate the linearly mixed sources present 
in the sensor data. I C A does not assume any prior knowledge about the sources that make 
up the final signal. It is used heavily in the research community for artifact removal of the 
E E G , but relies on the visual inspection of the components, which even trained profession­
als might make a mistake in, and their manual removal. Furthermore, the components will 
never be perfectly separated, and some neuronal activity will inadvertently be removed. 
This is especially the case with the E R P research, where the removal of I C A components 
regarded as artifacts can potentially alter the E R P amplitudes and latency [139]. The com­
ponent representing the eye artifact as a result of the I C A can be seen in Figure 3.8b. The 
topoplot shows high activity at the frontal regions, characteristic for the eye movements. 

Other BSS methods were also utilized for the E E G artifact removal, such as Canonical 
Component Analysis (CCA) or wavelet based Independent Component Analysis (WICA). 
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Adaptive filters [29] or Wiener filtering [76] were proven to work well in removing the eye 
artifacts. Different machine learning based algorithms can also help to distinguish between 
the artifacts and the neuronal data, such as using Support Vector Machines (SVM) and 
BSS methods to help classify the eye artifacts [156] or simple K-Means to detect artifact 
patterns [103]. Deep-learning approach to artifact removal are still in the early stages of 
the research, but the already published results show promise in generalization ability, being 
able to remove noise successfully even among different trails [173]. 

Heart Cardiac artifacts are generated by the electric activity of the heart and are repre­
sented by the Electrocardiogram (ECG) . In the signal, they are present as a spiky artifacts, 
usually of low amplitude, but that also depends on the subject's body physique [73]. If 
the E C G is recorded simultaneously with the E E G , the E C G signal can be extracted from 
E E G by simple subtraction of averaged signals around spikes, however, this might poten­
tially disrupt the signal. Another option is to use BSS methods as with any other E E G 
artifacts. 

In the typical E E G recording, the heart artifacts are not very prominent and usually do 
not disrupt the neural data. They can be more visible in the recordings that use referential 
montages using earlobe electrodes A l and A2. The one special case is the simultaneous 
fMRI-EEG recording, where the heart artifacts (in this case called Ballistocardiogram) is 
very prominent and interferes with the neuronal data. This is because of the changes in 
magnetic properties of the blood flow, which is influenced by heart [23]. Usually, the E C G 
is recorded along with the E E G and M R I data, to have a location of these artifacts. Then, 
either template methods similar to those used in the G A are utilized, or classical BSS 
methods, such as P C A or C C A [23]. 

Muscle Muscle artifact is a high-frequency and high-amplitude artifact, that is present 
in the signal as a sudden burst of high frequencies (20-100 Hz) 3.9. Usually, it is caused by 
clenching or tightening of jaw muscles and is most evident in the signal from the electrodes 
in frontal and temporal region. 

Because of their bursts, they are easily detectable in the signal by simply either tem­
porally by their sudden change in the amplitude, or spectrally, by sudden change in the 
power. Most common methods to remove them are BSS methods [55]. 

time [s] 

Figure 3.9: Muscle artifact in the E E G recording. Figure taken from [152]. 
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3.3 Analysis of the E E G Signal 

With the E E G data cleaned of any noise, it is possible to look at its signal properties to infer 
its characteristics. The E E G signal can be studied from various perspectives. Apart from 
the classical signal analysis in time domain, frequency domain and time-frequency domain, 
the E E G signal offers to also analyze the relationships between the signals from the different 
channels. It is also possible to construct models that would estimate the areas inside the 
brain that generated the resulting E E G data. The next sections provide a non-exhaustive 
review on the analyses that are used in the field of the E E G most frequently. 

3.3.1 Source Localization 

Source localization refers to the problem of finding true brain sources that generated the 
signal recorded by the E E G electrodes. It is important to understand that the signal 
captured by the E E G electrode did not originated at the exact location of the electrode. It 
is, in fact, a sum of many potentials originating from various sources, some even deep inside 
the brain. If it would be possible to reliably reconstruct the underlying brain sources, it 
would allow non-invasive and inexpensive insight into the real brain activity. This would 
prove crucial in localizing the epilepsy centers for instance. 

Identification of the underlying sources requires a source model, a head model and the 
resulting E E G data. The source model is simply positions of sources in the 3D space. The 
head model defines how these sources end up generating the E E G data and that depends 
on two factors - the geometry of the head and the conductivity of various tissues. The 
estimation of the source model given the E E G data is called an inverse problem. In the 
forward problem, the source model of the brain signals is known and from it, the E E G 
data can be calculated. But source localization poses a problem inverse to that - the E E G 
data are available, but the true sources are unknown. This problem is considered ill-posed, 
since there are many solutions to this - multiple unknown sources contribute to the channel 
signal and also one source can contribute to many channel signals. 

Brain sources EEG recording 

Figure 3.10: Forward and inverse problem in the E E G source localizing. 

The methods to solve the inverse problem can be divided into two categories - parametric 
and non-parametric. The parametric methods assume the fixed number of dipoles apriori. 
Non-parametric methods do not make any underlying assumptions and use the data to infer 
the sources. Generally speaking, the parametric models are faster and require less data, 
but the result will contain some error because of the approximations. On the other hand, 
the non-parametric models might find the sources very precisely and reliably, but it will be 
a slower process requiring more data. 

In parametric method, the apriori assumption is that only one or a few areas in the 
brain can generate specific signal measured by the electrodes. Wi th this assumption, the 
dipole parameters that best explain the observed data can be determined by using different 
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optimization methods. The problem with parametric method is that in case the number of 
dipoles is underestimated, the source locations will be biased by the missing dipole. If the 
number of dipoles in overestimated, it might result in the estimated sources that in reality 
are not there [111]. The example of the parametric method is Multiple Signal Classification 
(MUSIC) [116], with its derivatives such as Recursively Applied and Projected MUSIC 
(RAP-MUSIC) [117] and truncated R A P - M U S I C (TRAP-MUSIC) [104]. 

The non-parametric methods for source localization mostly replaced the parametric 
ones. They do not make apriori assumptions about the number of dipoles. The first one 
was a Minimum Norm Estimate (MNE) [64], which estimates the amplitude of brain sources 
by finding a solution that best fits the observed data with minimum overall amplitude of 
brain activity. Among the derivatived of the M N E solution are Low Resolution brain Elec­
tromagnetic Tomography ( L O R E T A ) , standardized L O R E T A (sLORETA), exact L O R E T A 
(eLORETA) and Local Autoregressive Average ( L A U R A ) . 

3.3.2 Event Related Potentials 

Event Related Potentials (ERP) are time-locked neuronal activity related to the onset of a 
specific task. They reflect the postsynaptic activity of multiple neurons in the same area 
that fire synchronously [163]. These activities are recorded with the E E G as very small 
waves, usually in the range of ±10/xF and have to be extracted from the E E G recording. 
Sensory E R P s refer to the E R P s present approximately up until 100 ms and are usually 
vision or auditory related responses. After 100ms, the ERPs are linked with cognition 
and represent higher functions of the brain, such as reasoning or decision making. ERPs 
are defined by their amplitude and the latency, which refers to the time onset after the 
event. Based on these parameters, they are named either P (positive wave deflection) or 
N (negative wave deflection) plus their time onset. P300 which would mean a positive 
deflection at around 300 ms after the stimulus. The ERPs and their characteristics are 
shown in Figure 3.11. 
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Figure 3.11: Different event related potentials and their characteristics. 

The most commonly utilized E R P in the B C I is the P300. It has been linked to par­
ticipant's engagement in the task of detecting targets and its latency and amplitude varies 
depending on the difficulty of recognizing the target [134]. There are multiple BCIs utilizing 
the P300, most common ones are spellers, where the participants are presented with a grid 
of letters an numbers. These symbols are then randomly highlighted on a screen. High­
lighting of the letter that the participant wants to spell results in the P300 peak, whereas 
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highlighting any other symbols does not. 
3.12. 

The example of such speller is pictured in Figure 

Speller with column highlighted. 

B C D E F 

G H 1 J K L 

M N 0 P 0 

S T u V w 

Y Z 1 2 3 

5 6 7 8 9 0 

Figure 3.12: Example of a speller based on the P300 E R P . 

In clinical settings, the ERPs have been used in the studies of drug addiction [47], reward 
processing [60], emotion processing [48], diagnosis [140] and countless other use cases. 

3.3.3 Frequency Analysis 

Frequency analysis of the E E G is one of the most popular and also very mature fields of the 
E E G analysis. It was observed very early on (1929) that certain frequencies present in the 
E E G signal can be mapped to specific brain functions, which has led the researchers to split 
the E E G frequency range into separate frequency bands. These bands will be explained in 
the next section. 

Frequency Bands 

When the large groups of neurons fire synchronously, the oscillations of certain frequency 
and amplitude can be observed from the E E G recording, which is evident from the rhythmic 
pattern of the signal [124]. These oscillatory patterns were discovered between the years 
1929-1938 and were studied extensively since then. There are five major frequency bands 
all named after the Greek letters (Delta, Theta, Alpha, Beta and Gamma) and one which 
is crucial for analysis of the motor movement and MI (Mu). 

Frequency bands are one of the most important characteristics of the E E G . They are 
studied heavily for their relationships with different task or for their characteristics in 
multiple diagnoses. Therefore in many publications and research, only specific bands are 
analyzed, disregarding the information in the other bands. 

It is important to note that the frequency boundaries mentioned here are not fixed and 
many researchers use different boundaries, although usually they differ mostly ± 1 Hz. 

Delta Delta waves represent oscillations with the lowest frequency but with the highest 
amplitude. They are defined by the frequency range lower than 4 Hz. Most commonly, 
they are associated with the deep sleep in the adults, where they are present in the frontal 
regions of the brain and are found posteriorly in babies. The presence of the delta waves 
during waking state in the adults is considered abnormal and can be an indicator of lesions 
in the brain [57]. The delt wave is depicted in Figure 3.13. 

Theta Theta wave, as shown in Figure 3.14 represents the frequency range of 4-8 Hz and 
can be seen normally in young children. In adults, theta frequencies are present in a drowsy 
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Delta 

Time [s] 

Figure 3.13: Example of the delta wave. 

state, but can also be observed in meditation. The abnormal presence of the theta wave 
can be an indicator of lesions or even some brain disorders, such as depression [105]. 

Theta 

1 2 3 
Time [s] 

Figure 3.14: Example of the theta wave. 

Alpha Alpha frequencies (8-13 Hz) are very prominent during the resting state and re­
laxation. They mostly resemble sinusoidal signal, as can be seen in Figure 3.15. When 
relaxing with the closed eyes, the alpha frequencies are prominent posteriorly, mostly in 
the area of the occipital lobe. Opening the eyes diminishes these frequencies, but they can 
still be observed if the person is relaxing. They disappear during the task execution. Higher 
level of arousal were also reported to lower the power of the alpha frequencies 

Studying and understanding the resting state of the healthy brain and comparing it to 
the resting states of the human brain with disorders can reveal important biomarkers, which 
could help with the diagnosis of the disorder. For example, the lower power of the alpha 
frequencies as compared to healthy subjects were found in the patients with depression [78]. 
In dementia, the alpha waves are replaced by the theta waves [148]. 

Alpha 

Time [s] 

Figure 3.15: Example of the alpha wave. 

M u M u band's range is within the alpha range and is sometimes classified as only a sub-
band of the alpha frequencies, usually between 8-15 Hz. However, it plays a different role 
in the E E G analysis. It is studied during the motor execution or MI tasks as it emerges 
when the hands and arms are idle and is supressed during the execution. 

Beta Beta frequencies (13-30 Hz) are symmetrically distributed over the brain and are 
usually observed over the frontal areas. They are associated with cognition, thinking, prob­
lem solving and active concentration. Prior to and during the movement, these frequencies 
are suppressed. 
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Asymmetry in the beta range, especially if the asymmetry is more then 50% may be 
considered abnormal (if also other indicators are taken into consideration). Excessive beta 
activity can be a indicator of A D H D , anxiety disorder or epilepsy. 

Beta 

Figure 3.16: Example of the beta wave. 

Gamma Gamma waves are characterized by their low amplitude but high frequencies of 
over 30 Hz. There is still a debate whether the gamma activity represents any neuronal 
activities, although it has been linked with cognition, working memory and information 
transfer between different regions [107]. 

Frequency features 

To transform the E E G signal into its representation in a frequency domain, the Fourier 
Transform (FT) and its algorithm Fast Fourier Transform (FFT) is utilized, resulting in a 
distribution of power spectrum over different frequencies. 

When in frequency domain, the usual frequency features, such as total power can be 
inferred. Usually, the different frequency bands are compared to each other in terms of their 
total power or relative power. Below are the most common features and their example for 
the frequency analysis. 

Peak Power and Frequency Peak frequency is a frequency at which the maximum 
power of the signal occurs. This peak frequency can be calculated separately for each 
frequency band. For instance, it was shown, that the peak frequency of the alpha band 
lowers with aging [149]. While the people under 40 years of age have a peak alpha frequency 
somewhere around 9.8-10.5 Hz, older people tend to have an alpha peak frequency around 
8.5-9.7 Hz. 

Absolute and Relative power Absolute power is the total power of the E E G frequency 
band, independent of the power of other bands. Relative power, on the other hand, is a ratio 
of the total power in a band compared to the other bands. For instance, when inspecting 
the resting-state E E G of a person with closed eyes, it is expected that the alpha band will 
be the most dominant one, having the highest relative power. Another example are patients 
with depression, as their absolute power of the alpha frequency in the occipital region is 
lower then in healthy patients [78]. 

Spectral Edge Frequency Spectral Edge Frequency (SEF) refers to the frequency below 
which 80-95% (depends on the publication) of the total power is located. The SEF is an 
established feature to measure the state of the anesthesia. When the person is awake 
and resting, the usual values of the S E F fall between 18-20 Hz. During the deep stage of 
anesthesia, the SEF values fall between 12-14 Hz [151]. 
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Brain Symmetry Index Brain Symmetry Index (BSI) compares power of the left and 
right channels. The perferct symmetry is obtained if BSI=0, the perfect asymmetry when 
BSI=1. Brain assymmetries were found for instance in relation to the dominant hand of 
a person - greater right alpha power as compared to the left alpha power were found in a 
right-handed people and vice versa [128]. 

Naturally, there are many other frequency features used in the field of frequency analysis. 
Usually, the frequency features are compared to the other bands, between different tasks 
or between healthy and diagnosed subjects. 
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Figure 3.17: Frequency analysis of the E E G signal - frequency bands and features. 

3.3.4 Time-series Analysis 
The E E G signal can also be analyzed in a time series analysis, which helps to understand 
its statistical properties over the time. Mostly, they define the complexity of the data. 

Entropy The entropy can be defined as the degree of disorder or uncertainty in a sys­
tem. Measure of the entropy in the signal processing assesses the complexity of the signal. 
Higher values of entropy indicate less predictability of the signal, while low values indicate 
completely predictable signal. Entropy measures in the time domain generally break up 
the signal into segments that are then compared for similarity. There are numerous meth­
ods to calculate entropy of a signal, for instance sample entropy, approximate entropy or 
Composite Permutation Entropy Index (CPEI). 

Entropy measures were used in the anesthesia studies to detect the stage of the anes­
thesia [95], to characterize the depth of a sleep [77] assessment of the cerebral injuries [34] 
or detection of epilepsy seizures [175]. 

Other measures that quantify the complexity of the E E G signal are Fractal Dimension 
[4], Hjort complexity [63] or Hurst exponent [142]. 

3.3.5 Time-Frequency Analysis 

Combination of frequency information with respect to the time brings more in-depth insights 
into the underlying function of the brain. The frequency analysis alone gives an information 
about the underlying frequencies of the whole signal, but the signal from brain is non-
stationary, so it changes over time. 
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The first attempts at localizing the frequency at the given time moment came as a Short 
Time Fourier Transform (STFT). S T F T segments the signal into a series of (overlapping) 
windows, calculating the Fourier transform for each window. The question arises as how to 
choose the appropriate window. If the window chosen is too big, the frequency information 
would be precise, but the time information would be lost. Conversely, if the window is 
too small, not all frequencies of the frequencies can be captured, although, they could be 
pinpointed precisely at time. The result of the S T F T is a spectogram, from which frequency 
at each time point can be observed. 

A n alternative approach is the Continuous Wavelet Transform (CWT) , which decom­
poses a function into a set of wavelets. Wavelet can be defined as a wave or oscillation that 
is localized in time. It has two properties - scale, which is related to frequency and location, 
related to time. Just like a Fourier Transform is convolving input signal with complex si­
nusoids of different frequencies, in C W T , the input signal is convoluted with the wavelet of 
different scales and locations. The result of the C W T is scalogram.The difference between 
the spectogram and scalogram can be seen in Figure 3.18. The Discrete Wavelet Transform 
(DWT) differs from the C W T in terms of scale and position parameter. In C W T , this 
choice is arbitrary, while in D W T it is not. 

W W 

Time Time 

(b) CWT and wavelets. (a) STFT and complex exponentials. 

Figure 3.18: Difference between S T F T and C W T for time-frequency analysis. 

There are numerous wavelets to choose for the analysis, each suitable for different anal­
ysis. Most used ones according to [51] are db4 and Morlet wavelets, both shown in Figure 
3.19. 

(a) db4 wavelet. (b) Morlet wavelet. 

Figure 3.19: Two most used wavelets in C W T and D W T . 

Time-frequency analysis has been used extensively in detection of the seizures [88] and 
epilepsy [51], as both of these are characteristic for their abrupt changes in the signal 
frequency. It also has been utilized in sleep analysis, for example for detecting sleep spindles 
[182]. 
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3.3.6 Connectivity Analysis 
Connectivity analysis explores the communication between different brain regions. Execut­
ing any task requires a coordinated flow of information between areas that are functionally 
connected. For instance, to grab an object a person must first look at the object and gain 
a visual perception of it, which would activate primary visual cortex area. To grab the 
object, the execution of the movement would activate a primary motor area and so on. 

The connections between different areas were discovered as early as in 19th century, 
when Broca and Wernicke identified areas responsible for language. Modern neuroimaging 
techniques facilitated the discovery of many networks. Seven of these networks are consid­
ered major ones, but there are multiple others as no simple task has a single designated area 
in a brain, but rather requires cooperation of different ones. The major networks include 
the visual, sensorimotor, dorsal attention, limbic, default, central executive and salient one. 

The main purpose of the connectivity analysis is to understand how the brain operates 
under different conditions. This might be helpful in the diagnosis, as different medical 
conditions might alter the functioning of the brain, which can be apparent from the modified 
interaction between during specific task. 

Wi th respect to the E E G , the connectivity analysis represents the comparison of signals 
recorded from different areas and finding influences or synchronizations that would reveal 
communication flow between these areas. This can be done on a source level or sensor level, 
depending on whether the relationship between areas is calculated for the already localized 
sources or if its calculated from the channel signals directly. The advantage of sensor level 
connectivity analysis is the saving of the computational power over the source level analysis, 
but in return might provide less accurate results. 

On the highest level, the methods can be divided into two categories - functional connec­
tivity and effective connectivity. Functional connectivity defines a non-directed relationship 
between signals. It is possible to conclude from the functional connectivity that there is a 
certain relationship between the signals, but it is impossible to say whether it is one signal 
influencing the other or vice versa. Effective connectivity, on the other hand, defines a 
directed measure of influence between the signals. 

In the next section, some methods for connectivity evaluation are mentioned, but this is 
by no means an exhaustive list, as there are countless different approaches. A good review 
of the topic can be found in [13]. 

Functional Connectivity 

The simplest measure of the functional connectivity can be a Pearson's correlation coef­
ficient, which measures the linear correlation between two sets of data. The relationship 
between two E E G signals can hardly be explained as linear, and therefore mutual infor­
mation or Spearman's Rank Correlation might be a better measure, since it explains also 
non-linear relationships and interdependence between signals [13]. A l l of these measures ig­
nore the temporal information of the data and the results would be the same if the samples 
of the signals were mixed up. 

To retain the time information, cross-correlation is used more frequently. It compares 
two time-series data and measures how well these two signals match with each other and 
when in time is this match mostly pronounced, thus inferring the information about the 
time delay between the signals. 
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In frequency domain, coherence measures the frequency dependent correlations of brain 
activity measured by two or more brain sensors [19]. It determines how similar the power 
spectra of two signals are. 

Coherence is however, heavily affected by the effects of the volume conduction. When 
one true source inside of a brain is effecting two different sensors in the same way, the 
similarity between the signals might be high, even though in reality, there might not be 
any connection at all. One way to tackle this problem is to look at the phase information 
of the coherence. Ideally, when the regions communicate between each other, some time 
passes between the processing in one region and then sending signal to the other one. Zero 
phase delay would indicate instantaneous information flow, which is usually suspicious and 
is attributed to the volume conduction. 

Another way to solve this problem is to calculate the coherence from the sources and not 
from the sensors [111]. Taking only imaginary part of the coherence into consideration as it 
was shown that the volume conduction strictly affected only the real part of the coherence 
[125]. 

Effective Connectivity 

Granger causality is one of the most popular methods for evaluating directed relationships 
between sensors. The idea is that if one signal has some relationship with other signal, its 
future values can be predicted by that other signal. 

Firstly, the future values are predicted solely as a weighted sum of the past values of 
the first signal Si and compared to the actual future signal, resulting in some error, e\. 
Secondly, the future values are predicted not only based on the past values of the S\, but 
also based on the past values of a different signal, S2, resulting in Variances between 
the two errors are compared. If the variance of ei is smaller than the variance of the e2, the 
S\ can be better represented only by its own past values, indicating no relationship with 
the 1S2. If the variance of the errors is smaller for e2, the S2 signal does contribute to the 
Si, therefore revealing its influence over the Si. 

Granger causality can be implemented for both time domain as well as frequency do­
main. The interpretation of the Granger causality is dependent on the experiment. It is 
argued, it is more suited to compare the connectivity of different regions between experi­
mental conditions, rather then revealing the connectivity itself [155] [161]. 

Pitfalls of the Connectivity Analysis 

Connectivity analysis has many pitfalls, which renders it tricky to use. Volume conduc­
tion, processing steps and different types of analysis make it challenging to compare results 
between the studies [113]. The reference chosen for the E E G analysis is crucial. When 
common reference is used, the same signal is subtracted from each electrode, possibly com­
promising all of the channels the same way. This has a huge impact on the connectivity 
analysis, which might find a non-existent relationship between locations [13]. There are 
multiple other problems linked to noise, sample sizes or system dynamics [13]. It is impor­
tant to note that even though there are many variables affecting the connectivity analysis, 
it is not useless or unimportant, it just has to be interpreted very carefully. 
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3.3.7 Microstate Analysis 
Microstate analysis is one of the newer fields of the E E G with a lot of unexplored potential. 
It gained attention thanks to the work of Koening and Lehmann in 1999 [84], when they 
studied the dynamics of the brain potentials at rest in healthy and schizophrenic patients. 
Both of the authors are still prominent figures in the microstate analysis field. Its popularity 
surged when the notions about the resting state of the brain started to be challenged. 
Previously, it was believed that the brain remained inactive during the rest and only an 
incoming stimuli would prompt an action. However, further research showed that the brain 
is active even in the resting state to optimally respond to the incoming stimuli [54]. This 
led to a lot of research in identifying the resting state networks and their characteristics. 

The microstates can be defined as transient, patterned, quasi-stable states or patterns of 
a multichannel E E G potentials [112]. These states remain prominent in the brain for about 
60-120 ms before rapidly transitioning to another state. It might seem that the topographies 
at different times during a spontaneous brain activity are random, but multiple research 
proved that only a handful of states are actually present among topographies (usually only 
2 - 7 microstate maps are enough to explain 90% of the analysis time [171]). Therefore, from 
the microstates it can be observed that the topographies of the brain electrical activity do 
not change randomly and continuously, but rather remain stable and then change abruptly. 

There are multiple steps to identify the maps and they will be described in the next 
sections. When the maps are already derived, multiple features can be extracted from them. 

Global Field Power 

The first step is to obtain the input topographies that would be then used to infer the 
global states. Most of the research opt to extract only topographies that are based on data 
observed at Global Field Power (GFP) peaks, where the signal-to-noise ratio is optimal and 
topographies are considered stable. The G F P is defined as: 

G F P = ^ E ! U v M - n > m ( 3 1 ) 

where M is number of channels in the recording, Vn(t) defines recorded potential in 
time t and channel n and V(t) represents the average potential of all channels at time t. 
The topographies at the peaks (local maxima) of GFP , where the spatial variability across 
channels is highest, are further considered for clustering. The G F P is depicted in Figure 
3.20 (1). 

The choice of the reference can impact the microstate analysis as it might alter the 
G F P peaks. Usually, the A R is used, but the authors in [71] argued that using the R E S T 
reference produced more objective maps. 

Clustering and back-fitting 

After extracting the relevant topographies, global microstates are found by clustering. Mul­
tiple clustering algorithms across the research can be seen, but the most usual are modified 
K-means (and also different variants of K-means algorithm such as Fuzzy C-means) as de­
fined in [131], Topographic Atomize and Agglomerate Hierarchical Clustering (TAAHC) or 
Principal Component Analysis (PCA) . 

The modified K-means has usual steps of a classic K-means algorithm. Firstly, n ran­
dom topographies are chosen as representatives of a cluster. Then the solution is found 
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iteratively, performing two steps in each iteration - assignment of the topographies to the 
current global maps based on the correlation and then recalculation of the global maps 
representing the cluster. The T A A H C represents a bottom-up approach, where all of the 
topographies are firstly clustered into the pairs that are the most similar and in each iter­
ation the clusters are again paired together until the desired number of clusters is reached. 

Wi th all of the aforementioned methods the number of clusters is determined by the 
researcher beforehand. In the resting state research, the microstates were already studied 
so heavily, that the 4 microstate maps are well established and used in most of the cases. As 
will be later evident from Section 3.3.7, 4 microstate maps are also standard in many other 
tasks, when researchers do not even consider a different number (which is advantageous for 
comparability between different research but might not be as much for the identification of 
the maps themselves). One can look at the G E V of the maps and choose the number of 
them that explains at least 70% (or other defined percentage) of the data. Other criterions, 
such as Krzanowski-Lai criterion and its normalised version, cross-validation criterion or 
dispersion can be used to infer the ideal number of clusters. 

Resulting global maps are then used to back-fit all of the data. The input data need 
to be assigned the label and in case of the microstate analysis, the usual approach is a 
winner-takes-all. At each data point, the topography must be represented by exactly one 
global map. To calculate the similarity of the global map and instantaneous topography, 
usually the measure used is orthogonal squared distance between the vectors as defined in 
[131]. Minimizing this distance is equivalent to maximizing the squared correlation between 
the two maps. Therefore for each topography over time, the global map with the highest 
correlation will be chosen as a label for that topography. The clustering and back-fitting 
to the data is represented in Figure 3.20 (2) and (3). 

To ensure that the global microstate maps are a good representation of the data, General 
Explained Variance (GEV) which measures the percentage of data variance explained by 
a given set of microstate maps is usually calculated. For instance, the K-means algorithm 
relies heavily on the initialization of the topographies and optimal maps might not be found. 
The common approach then is to run the clustering algorithm arbitrary number of times 
and choose the run with the highest G E V . 

Features 

After the clustering, microstates can be analysed in terms of their duration, occurrence, 
coverage or transition probabilities. The duration refers to the mean time in milliseconds 
that a microstate is active. This can be anywhere from 50 to 250 ms and can be different 
for multiple conditions. The occurrence is simply number of times a microstate occurred in 
the data and coverage refer to the percentage of all of the time the microstate was active. 

Hidden Markov Models (HMM) are used to model the transition probabilities between 
the different states. 

Applications 

Microstates for the resting state are already well defined and consistent across multiple 
research, as can be seen from the review in [112]. These maps are shown in Figure 3.20 
(2). They play a key role in a different application and have already been connected to 
the underlying brain activities in the simultaneous E E G - f M R I studies [119]. For instance, 
microstate D has been linked to the cognition and might be linked to dorsal attention 

44 



1. 2. 
EEG recording 

A B 

3. 

Figure 3.20: Steps of the microstate analysis. 1) Finding the G F P and extracting to­
pographies at the local maxima. 2) Clustering of the topographies and finding the global 
microstates. 3) Back-fitting to the data. 

network [20]. The microstate C was shown to be more prominent in the resting state than 
in any other states and it believed to be associated with the default mode network [153]. 

Microstate analysis has been used extensively in schizophrenia research [92], autism [18] 
or sleep [21]. Microstates have also been studied in relation with the working memory, where 
the studies indicate that it is possible to predict a performance based on the microstate 
dynamics [120] [164]. 

Not a lot of work has been done with regards to the task-related microstates apart 
from the memory or other cognitive tasks such as mental arithmetic. The microstates are 
advantageous in their temporal characteristics, as they can exploit fast-pacing processes 
happening on the whole-brain scale. The relationships between different microstate maps 
might reveal more information about how brain works not only in the resting state but in 
different tasks settings as well. 

Microstate Analysis of Motor Imagery 

There is a lot of research already done regarding the microstate analysis of the resting state, 
where it is utilized to identify the differences between the microstates of the healthy patients 
and the diagnosed ones. Regarding the microstate analysis of the motor movement or MI, 
it has not been so heavily studied and there is a great deal of room for improvement and for 
novel approaches. As of the time of writing this thesis, searching on Scopus revealed only 
8 articles regarding the keywords E E G , microstate and motor movement or motor imagery. 
Their short description and microstate maps identified for them are present in the Table 

Only in three of those articles, the authors were distinguishing between the left and right 
movement (two imagined movement and one real movement) and others were focusing on 
identifying the maps for different motor execution tasks or motor imagery tasks in general. 

The most notable takeaway from the articles is that most of them identified the states 
comparable to the ones found resting state. In [137], the authors noted that states of 

A . l . 
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ongoing spontaneous activity are also commonly active during behavioral tasks, which was 
supported by multiple research. 

For the work that focused on distinguishing between the left and right movement, the 
only distinction across research was the difference between transition probabilities [100]. 
However, none of the articles tried to find the maps specific to the left or right imagery as 
they only derived the maps from the whole recording using all of the electrodes. In [100], 
the authors only focused on the mu band, which is the frequency related to the E R D / E R S 
phenomena of the motor execution. 

The very limited number of articles regarding the motor imagery and microstate analysis 
indicate that this field has a lot of potential in the research. The temporal resolution of the 
microstates in theory makes an ideal candidate to study a fast changes in the brain, which 
is ideal for the B C I applications. Hence, in this thesis, it is proposed that microstates and 
their combination with other features may be explored for the B C I application. 

3.4 Summary 

A l l of the aforementioned methods can be used in the B C I settings. For the preprocessing, 
the methods used in the B C I must be fully automatic and fast so that they could transform 
the data reliably in the real-time. Usually, various automatic BSS methods based on the 
ICA are utilized to detect and remove the artifacts from the data. Same constraints apply 
to the feature extraction and analysis methods. The summary of the analysis methods, 
their usage in the EEG-based B C I paradigms described in 2.3 and their advantages and 
disadvantages can be found in Table 3.1. 
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Table 3.1: Comparison of different analysis methods with regards to the BCI , their advan­
tages and disadvantages. 

Analysis Meth­
ods 

B C I Applica­
tions Advantages Disadvantages 

Time, Fre­
quency and 
Time-Frequency 
Analysis 

MI , SSEP 
Very well studied field with 
lot of references and proven 
concepts. 

Non-stationarity and non-
linearity are the funda­
mentals of the E E C Any 
changes in state or mood 
can significantly alter the 
studied signal and even af­
ter profound research on 
these methods, the B C I is 
still not robust enough. 

E R P Analysis 
B C I based on the 
P300, error detec­
tion in the B C I 

E R P s represent sponta­
neous brain activity and 
ERP-based B C I require 
little user training. 

Low accuracy, hard to de­
tect the desired E R P com­
ponent on a single trial ba­
sis. 

Source Localiza­
tion 

MI 

Determining the true 
sources proven highly 
informative for the M I B C I 
[181]. 

Not well studied in the B C I 
settings 

Connectivity 
Analysis 

M I , evaluation of 
the performance 

Robust to artifact and 
inter-subject amplitude 
variability. 

Inconclusive results be­
tween the studies [91], not 
researched enough in the 
B C I settings. 

Microstate Analy­
sis / 

Microstates show a consis­
tent results across different 
tasks and in between par­
ticipants. 

No prior B C I attempts. 

The time-frequency (and subsequently time and frequency) analysis has been the most 
extensively used in the field of the B C I so far. In the recent years, other methods, such 
as source localization and connectivity analysis have also proven to be informative and can 
reveal features discriminative enough to distinguish between different states (mainly in the 
context of the MI task). Microstate analysis have not yet been explicitly used in the B C I 
application. Microstates have already been replicated across different tasks and individuals, 
which might indicate their robustness and their great temporal resolution is beneficial for 
the BCI . Therefore this thesis focuses on microstates and their combination with different 
features proposed solution to the BCI . 
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Chapter 4 

Proposed solution 

The aim of the thesis is the construction of the E E G based B C I for the motor imagery 
task. The general proposed solution is depicted in Figure 4.1 and is comprised of the 
appropriate dataset selection, data preprocessing methods, data extraction methods and 
the classification of the MI based on the microstate analysis, frequency analysis and time-
domain analysis. The novelty of the proposed solution is in optimizing microstates for the 
classification of the MI task. 

Data selection 

>-

\ r -< 
Data 

f N 
v Feature \ 

r- ~\ 

Classification Data selection 

>- ? preprocessing 
^- J "7 extraction 

r- ~\ 

Classification 

Microstates 
Frequency 

features 

Time domain 
features 

Localization of 
the activity' 

Defining ideal number 
of microstates for BCI 

Extraction of 
representative microstates 

Extraction of features 
from the microstates 

Figure 4.1: Thesis proposed solution. 

Data selection For the purposes of the thesis, the dataset selected needs to contain the 
instances of the left/right MI and the instances of the rest in between the tasks, collected 
from multiple subjects to test the proposed solution on multiple participants. 

Preprocessing The data preprocessing is a crucial step in the pipeline and for the B C I 
applications in general, all of the preprocessing methods need to be fully automatic and able 
to work in a real-time settings. The proposed solution consists of the data re-referencing, 
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data filtering and artifact removal to obtain clear E E G data. The reference chosen is an 
average one, as it is considered a gold standard for most of the E E G applications. For the 
data filtering, simple band-pass filter between 8 - 30 Hz is proposed as this includes all of 
the meaningful E E G frequency bands commonly found during the motor tasks. For the 
artifact removal, the thesis proposes the utilization of the BSS methods, such as automatic 
wICA for the real-time removal of the artifacts. Additional bad channels or bad segments of 
the data will be handled using statistical methods for the bad channel/EEG data detection. 

Microstates The thesis proposes a novel method of the feature extraction for the B C I 
and that is a microstate analysis for the MI task. This includes multiple steps: localizing 
the activity during the MI task, determining the optimal number of the microstate maps, 
clustering the derived microstate maps and then extracting the meaningful features out of 
them. This pipeline is depicted in Figure 4.2. 

A B C D A B C D 
Rest Movement 

Occurences 
Frequencies 

Figure 4.2: Proposed pipeline for the microstate analysis for the B C I application. 

Localizing the activity means finding the maps only from the region that is associated 
with the motor execution and MI. For this reason, three different regions are proposed and 
compared with each other. 

For the establishment of the ideal number of the maps, the thesis proposes the classifi­
cation accuracy as an indicator of the number of the maps required. Additionally, the maps 
have to have reach at least 70% of the G E V to be even considered for the classification 
purposes. 

For clustering of the maps, the widely used modified K-means algorithm will be imple­
mented, as it is faster then T A A H C , which is crucial for the B C I application. The thesis 
proposes that the different tasks (left/right hand MI and rest) will be differentiated based 
on the features extracted from the microstate sequences. 

Feature Extraction and Selection The features extracted from the data are proposed 
to be: microstate features, time-domain features and frequency features as all of those were 
previously used for motor imagery classification. For the microstate features, also ones 
that are not usually used in the literature, such as microstate transitions recurrences are 
considered as well. 
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Classification The classification is proposed to be done on a subject-level. The data 
from one user from one experimental run will be split into the training data to extract the 
microstate features and then classify the intent from the rest of the data. This mimics the 
usual B C I usage pipeline, where the classifier is trained for each subject and this classifier 
is then used to predict the intentions of the user in during the next sessions. Additionally, 
two separate classifiers are proposed - one for the classification of the rest versus activity 
segments and one for the classification of the left and right motor imagery segments. 

4.1 Dataset Selection 

To analyze the MI of left and right hand and their respective microstates, the dataset 
collected by [150] was used. It contains data from 109 participants each performing 14 test 
runs: 

• 1 minute of baseline task with eyes open 

• 1 minute of baseline task with eyes closed 

• 3 x 2 minutes of opening and closing of the fist (either left or right) 

• 3 x 2 minutes of imagining opening and closing of the fist (either left or right) 

• 3 x 2 minutes of opening and closing either both fists or both feet 

• 3 x 2 minutes of imagining opening and closing either both fists or both feet 

Participants were seated in front of a monitor with their arms resting on the arm rest. 
In the task regarding the fist clenching, the targets appeared on either the left or right side 
of the screen and participants were instructed to open and close the corresponding fist for 
the duration of the cue. In fist and feet task, the cues appeared either on top or the bottom 
of the screen. The task and rest periods alternated and thus each task data were divided 
into the 4 second sections of rest and 4 second sections of task. The experiment protocol 
can be seen in Figure 4.3. 

4 seconds 

Experimental 
protocol Rest Left movement Rest Right movement Rest 

120 seconds 

Figure 4.3: Experiment protocol - alternating conditions in the recording. 

The data is a 64-channel E E G recording with the electrodes positioned according to the 
standard 10-10 system. The electrodes used and their locations are depicted in Figure 4.4. 

4.2 Data Preprocessing 

The data for the analysis are proposed to be preprocessed using the M A T L A B toolbox 
E E G L A B [37] and P y P R E P library [9] in Python. The data will be stored in the M N E [61] 
structures, which is a Python library for E E G and M E G data processing and analysis. 

The data will first be filtered with a band-pass filter between 8 Hz an 30 Hz. Then, the 
channels will be re-referenced to the average reference. 
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Figure 4.4: Electrodes and their positions used in the dataset. Figure taken from [150]. 

4.2.1 Wavelet Independent Component Analysis 
Additional artifacts such as eye blinks and eye movements can be detected by the wavelet 
ICA (wICA). When performing a standard I C A on an E E G data, the components that are 
considered artifacts are rejected as a whole, assuming that the component contains 100% 
of artifact data. That is, however a false assumption, as there will always be some neuronal 
data present in the component and by rejecting the component, all of that data will get lost. 
The motivation behind a wICA is to filter out the actual artifacts from the components 
themselves and reconstruct the signal with the corrected components. 

The component can be divided into the artifact (localized high amplitude) and neuronal 
activity (evenly spread out lower amplitudes). Wavelets provide and excellent way to detect 
the high amplitude artifacts in time-frequency domain. The steps included in the wICA 
are therefore following: 

1. Application of classical I C A on a raw data E E G and obtaining N independent com­
ponents. 

2. Using wavelets to transform the components into a time-frequency domain. 

3. Thresholding the wavelet coefficients - set them to 0 if they are higher then some 
threshold. This will eliminate prominent artifacts but keep the neuronal activity. 

4. Reconstruction of the E E G from wavelet corrected components. 

4.2.2 Bad channel handling 

Some channels will always deviate from the others, which might pose problems with iden­
tifying the relevant maps. Therefore, automatic detection of the bad channels and their 
subsequent interpolation is proposed using the PyPrep library, which is a Python imple­
mentation of the M A T L A B software described in [17]. Bad channels are detected using 4 
different criteria - deviation criterion, correlation criterion, predictability criterion (using 
R A N S A C [53]) and noisiness criterion. In-depth description of the methods can be found in 
[17]. The channels marked as bad were interpolated using the spherical spline interpolation 
as described in the [132] and implemented in the M N E . 

Additionally, the data is proposed to be bandpass filtered between 8 and 30 Hz, which 
includes alpha, mu and beta band - all associated with different stages of motor movement 
or motor imagery. 

51 



4.2.3 Interpolating bad epochs 
Muscle artifacts or sudden movements might render some parts of the E E G signal com­
pletely unusable and the high noise might completely overshadow any neural activity. In 
research it is a common practice to identify the bad epochs manually just by visual inspec­
tion, but this process is very ineffective, even if it usually yields more clean data (or at 
least that is a general consensus after discussing this topic with several people in the field 
of E E G ) . However, this practice is not scalable and also very often not reproducible. 

In this thesis, the automatic rejection and interpolation pipeline for Python called au-
toreject [74] [75] is proposed to be utilized. The goal of the autoreject is to identify the 
epochs that are deviating from the rest of the data and possibly repair them by interpo­
lation based on the electrode neighbors. This is achieved by defining an electrode-wise 
rejection threshold as opposed to a global rejection threshold (such as when comparing 
a peak-to-peak threshold from all electrodes to peak-to-peak amplitude of one electrode). 
This ensures that even if the electrode has a different amplitude then the rest of the elec­
trodes (since the placement of the electrode over different areas might make a difference in 
the signal amplitudes), the data from it will not be automatically excluded. 

For each data epoch, data from each electrode is separately marked good or bad. If 
there are more than k bad electrode data in the epoch, the epoch is marked as bad and 
should be excluded from the dataset, since there will not be enough good electrodes to 
interpolate the bad ones. On the other hand, if there is less than k bad electrode data, 
then interpolate the first p bad ones and keep the rest as is (as they are not the worst in 
the epoch, there is a possibility that they are just false positives). The example of the bad 
epoch interpolation/rejection is shown in Figure 4.5. 

A. Original data B. After autoreject (local) 

CO o 
co c <D CO 

• m m • •1 m 
• m m i m •1 m 

trials trials 

• Good sensor Interpolated sensor P=2 

Rejected trial | Bad segment 
and 
K=4 

Figure 4.5: Segments of the epochs are either interpolated or the whole epoch is rejected, 
based on the parameter k (if there are more than k bad segments, reject the whole epoch) 
and p (interpolate p worst epochs). Figure taken from [75]. 

In the end, the data was divided according to the participant and task, creating epochs. 
For each participant, the data from MI and motor execution task was studied separately 
to identify any similarities between the two. Data of one task from one participant (for 
instance MI of left and right hand) was concatenated and separate epochs were extracted 
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that contained only rest data, left hand MI data and right hand MI. The resulting data for 
one participant were: 

• 7 epochs of left hand motor execution/Ml, each 4 seconds. 

• 7 epochs of right hand motor execution/Ml, each 4 seconds. 

• 15 epochs of rest in-between the tasks, each 4 seconds. 

4.3 Microstate Analysis 

4.3.1 Localization of the Microstates 

Three approaches for the microstate localization are proposed. Firstly, only the motor 
cortex area is taken into consideration, as that is the area primarily activated during the 
motor execution and MI task. The electrodes corresponding to this ctr6ct sire FC3, FC2, 
FC1, FC4, C I , C2, C3, C4, Cz, FCz and are shown in Figure 4.6a. 

Second approach is to choose the electrodes on the motor cortex along with all of the 
frontal electrodes. The frontal lobe is responsible for decision making and it was proven to 
be also activated during the motor execution and MI. 

Third way is to find the microstate maps from all 64 electrodes used in the recording, 
which might reveal more complex relationships between the brain areas. 

The electrodes corresponding to the ctrests sire shown in Figure 4.6b. 

Figure 4.6: Proposed selections of the electrodes for the localized microstates. 

4.3.2 Number of Microstates 

The thesis proposes to define the ideal number of microstates with regards to the classifica­
tion results on a subject level. In the literature, the ideal number of maps is usually chosen 
as a number of maps for which the G E V exceeds some arbitrary threshold value. However, 
the number of maps chosen this way might not accurately reflect the number of maps ideal 
for the classification. 

4.3.3 Map Extraction 

The pipeline of extracting the microstates and back-fitting them back into the data is de­
picted on 3.20. The clustering algorithm chosen for this analysis is a modified K-means 

(a) Electrodes in the motor (b) Electrodes in the fronto-
cortex area. central area. 

(c) Al l electrodes used. 
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algorithm as proposed by the [131] and implemented in the Python library for E E G mi-
crostate analysis Pycrostates [52]. 

Equations explaining the modified K-means algorithm are based on the original work 
in the [131] and [169]. Modified K-means are based on the linear model of the E E G data, 
where each E E G topography X at some time i can be modelled as a linear combination of 
a global map A and some residual error e: 

Xi = ^auAi + ei (4.1) 
l 

Solution can be found by minimizing the cost function: 

£ | | * i - £ a « 4 H (4.2) 
i I 

Because the microstate analysis assumes that only one global map can represent the 
topography rather than their linear combination, the ant = 1 and an = 0 for I ^ Li. 

The minimum of the cost function is found iteratively. Assume n microstate maps to 
represent the E E G data. Firstly, n random topographies extracted from the G F P peaks 
are assigned as a prototype microstates. Then in each iteration, two steps are performed 
- assignment of the labels to the existing topographies and recalculation of the prototype 
maps. The labels are assigned based on the maximum correlation between the prototype 
map A[ and the topography Xf. 

Cl = ( £ X ^ f (4-3) 

where j represents a channel index. The corresponding labels for the topography Li 
can then by found by: 

Li = argmax(Cfz) (4.4) 
i 

Recalculation of the topographies based on the labels found this iteration is defined as: 

Ai = argmax U'SiU (4.5) 
u 

where the maximum is computed across all c/i-dimensional column vectors U , where ch 
is number of channels, subject to \\U\ \ = 1 and 

St = Y, X'iXi (4-6) 
i:Li=l 

The convergence is assessed by the relative change in residual variance proportional to: 

i j 

The stopping criteria can either be a convergence threshold (for instance setting a 
a2 = 10 - 6 ) or fixed number of iterations. Usually, both of these condition are defined and 
the algorithm stops when either of them is met. Because the K-Means algorithm is prone to 
the initialization steps, namely choosing the first n topographies as prototype mas, multiple 
runs of the algorithm are usually performed and one with the highest G E V is chosen. G E V 
is calculated as: 
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GEV = GEVi (4.c 

where 

GEVi (4.9) 

where = 1 for I = Li and is 0 otherwise. 
The proposed method to extract the microstate maps consists of two different ap­

proaches. The first approach is a subject-level extraction, where the maps are extracted 
only from one subject. This includes maps being extracted separately for each condition 
in the dataset (rest, left, right). For each condition instance, the maps are extracted and 
then grouped together with the maps found in the other instances of the same condition. 
The representative maps then go through the second round of the clustering to extract the 
representative maps. This multiple level clustering is a common practice when extracting 
the maps from multiple participants to find a topical maps representing some condition. 
The first two levels of clustering are shown in Figure 4.7. 

First level of clustering 

Rest Left movement 

EEG signal \/\ / \ /\sA 

Right movement 

Second level of clustering 

Maps from each 
condition instance 

Rest instance 1 #P 0$ & 

Rest instance 2 ^ Ijs Ijs 

Rest instance 3 #|| f | ^ 

Representative maps 
for resting condition 

Clustering 

Third level of clustering 

Resting paps from each 
subject 

Rest subject 1 # | ^ 

Rest subject 2 (g) ^ ^ 

Rest subjcct3 *J ^ O 

Global maps 
for resting condition 

Clustering 

• i ** 

Figure 4.7: Levels of clustering in the process of microstate extraction. 

The map extraction from each condition separately aims to find maps that could be 
specific only for the given condition and differentiate well between them. If the maps 
were extracted from the whole recording, the specific condition maps might not be as 
much represented when compared to others, and therefore when clustering they might be 
considered just as outliers. After the maps for each condition specifically are extracted, 
they are grouped together to form one set of maps for the experimental run. This is 
done because some maps are found consistently across different conditions and even across 
different subjects (such as resting state maps). The maps that have a spatial correlation 
higher than 0.8 shall be considered the same map. The example for clarification is depicted 
in Figure 4.8. 
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Figure 4.8: Resulting set of maps is derived from maps extracted from the conditions. 

4.4 Feature Extraction 

Multiple features are proposed for the classification between the experimental conditions. 
They include microstate features, frequency-domain features and time-domain features. 

Microstate Features 

After the microstate map extraction, the maps are fitted back to the data. At each time 
point of the recording, map with the highest correlation as defined in the Equation 4.3 is 
chosen as a representative of that time. This results in a sequence of map labels extracted 
from the recording. 

Microstate Time Statistics Each microstate map within a sequence can be quantified 
in terms of its time characteristics. Proposed time features are: maximum length of a 
microstate map found in the data, minimum length of a microstate map, mean length of a 
microstate map and standard deviation of lengths of microstate maps. A l l of the features 
can be seen in Figure 4.9. Mean, maximum and minimum duration were already used as a 
features in multiple studies. 

Microstate time statistics 
Duration 
< > 

Microstate sequence B A C B A C H I H < H A H A H ( 

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Max duration 
Min duration 
Mean duration 
Standard deviation 

Figure 4.9: Time statistics of the microstate sequence. 

Microstate Occurrence and Contribution Microstate occurrence refer to the mean 
number of times a map occurs in one second. The contribution of a map is calculated as 
occurrence times mean duration. Contribution is more telling of how much map is really 
present in the recording then occurrence or mean duration. The occurrence and contribution 
is depicted in Figure 4.10. 

Feature inferred from the occurrence is recurrence of an occurrence, which defines mean 
times between the map appears again in the sequence. Occurrence recurrence is depicted 
in Figure 4.11. 

Microstate Transitions Transition between the microstate A and B is defined as number 
of times A was followed by the B in the sequence, divided by number of times the A was 
followed by a different microstate, pictured in Figure 4.12. 
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Figure 4.10: Occurrence and contribution of a microstate in a sequence. 

Microstate recurrence 

Microstate sequence B A C B A 
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Microstate C: Positions: [3,7,11,17] 
Recurrence vector: [4,4,6] 
Mean recurrence: 4.6 
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Figure 4.11: Recurrence of occurrence of a microstate in a sequence. 

Similarly as with the occurrence, transition recurrences can be inferred from the tran­
sition probabilities - Figure 4.13. 

Frequency-domain Features 

Absolute Power To estimate the Power Spectral Density (PSD) of the signal in the 
different frequencies, Welch's method is proposed, as it has been used extensively in the 
field of the E E C Since the data is bandpass filtered between 8 and 30 Hz, it leaves only two 
bands for the analysis - alpha and beta. Power in alpha frequencies is dominant in resting 
states, but its mu sub-band can distinguish between movement and resting state. Beta 
frequencies are present in the E E G especially in the frontal lobe as an indicator of mental 
activity (which motor imagery is). The alpha (8-13 Hz) and high beta powers (20-30 Hz) 
are calculated for each channel separately, resulting in the 64 features respectively for each 
segment. 

Relative Power Relative power of a band can be calculated as PSD of the band, divided 
by the sum PSD from all bins for each frequency bin between the frequencies 8 and 30 Hz: 

Alpha power 
Relative alpha = — — (4-10) 

Power across the whole spectrum 

It expresses how much a frequency band is represented in the signal. The E E G signal, for 
instance, has a high relative alpha power in the resting state conditions. For the purposes 
of the thesis, relative alpha as well as relative beta are considered as features. 

Asymmetry Asymmetry (Brain Symmetry Index - BSI) can be expressed as a ratio of 
band powers between two areas and therefore calculated as: 

.Power A — Power B . 
BSI = 1 (4-11) 

Power A + Power B 
The greater the power in two regions differ, the higher the asymmetry is (0 - the power 

in two regions is identical, 1 - the power between two regions is completely different). For 
the asymmetry, three different region splittings are considered: 
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Microstate transitions A ^ D C —* B 

Microstate sequence B A C B A C B ( B C B A I A I c 

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Transitions: 
B ->A: 2 
C ^ B : 2 
D ^ C : 2 
D ^ B : 1 
A ^ D : 3 . . . 

Figure 4.12: Transitions of the states within a microstate sequence. 

^ A ^ D A ^ D 

Microstate sequence B A C B A C B I B C | A | A H c 

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Transition recurrence A D: Positions: [5, 13,15] 
Recurrence vector: [8,2] 
Mean recurrence: 5 

Figure 4.13: Recurrence of microstate transitions in a sequence. 

1. Asymmetry between the hemispheres - the powers from all left or right hemisphere 
electrodes are averaged and compared. 

2. Asymmetry between the areas (frontal, occipital, temporal, parietal, central). 

3. Asymmetry between individual electrodes from left/right hemisphere. 

Time-domain Features 

Time domain features were extracted from the data utilizing the Python library Antropy 1 . 

Approximate Entropy Approximate Entropy (ApEn) examines the time series of a 
signal to find similar epochs - the more of a similar epochs the signal contains, the smaller 
the value of the A p E n is [136] since when the signal gets more predictable, its entropy 
should also be as little as possible. The similarity of the epochs is based on the distance 
metric as well as a threshold value. If the distance between the two pairs is smaller then 
some value, they are considered to be of a same template. This is depicted in the Figure 
4.14. 

The A p E n is then calculated as: 

ApEn = - l ° 9 j ^ ; (4-12) 

For applications, it is crucial to select the right values of m as well as the threshold 
value r. While m is usually set to be 2 (3 in some cases), the r varies on the application. It 
is recommended to be set as a 0.2 * (varianceofdata). 

A p E n has some notable disadvantages (dependent on the length of the data and lack 
consistency across different datasets) and that is the reason why alongside ApEn , the Sample 
Entropy is also utilized. 

Sample Entropy Sample Entropy (SampEn) is similar to the approximate entropy, but 
the equation to calculate it is: 

1https: / / github.com/raphaelvallat / antropy 
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Ai - number of matches with template i of length m 
Bi - number of matches with the template i of length m+1 

Figure 4.14: Approximate Entropy. 

SampEn = -log(^—^) (4.13) 

It has two advantages over the ApEn: 

1. Independent of the data length. 

2. Easier to implement and computationally faster. 

Hjorth's Parameters The Hjorth's Parameters are statistical properties of the signal 
in the time domain, used heavily in the field of the E E G . There are three parameters 
calculated: 

1. Activity - simply a variance of the input signal y{t): 

Activity = var(y(t)) (4-14) 

2. Mobility - mean frequency or the proportion of standard deviation of the power spec­
trum: 

/ VdV ( ~^~^~^) 

Mobility = \ T^hv (4.15) 

V var{y{t)) V ; 

3. Complexity - estimate of the bandwidth of the signal, indicating the similarity of the 
shape of the signal to a pure sine wave: 

MobilityC^) , 
Complexity = - - , , f ' (4.16) 

1 y Mobility (y(t)) v ' 

Fractal Dimension Fractals are mathematical sets with a high degree of geometrical 
complexity that can model many natural phenomena [106]. The fractal dimension is there­
fore an index of complexity, which shows how a detail in a pattern changes with a scale at 
which it is measured and complexity of E E G signal measured by fractal dimension presents 
self-similarities across different scales [45]. 
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There are multiple ways how to estimate the fractal dimension of a signal and for the 
purposes of this thesis, three are considered: Higuchi's, Katz's and Petrosian. In [49] it is 
argued that careful selection of the appropriate fractal dimension approximation is crucial, 
as for instance Higichi's fractal dimension is more sensitive to noise. Therefore all three 
were considered for the thesis: 

• Higuchi Fractal Dimension [68] - given a signal X of length n and parameter kmax > 2, 
for each k G { 1 , k m a x } and m G { 1 , k ] define the Lm(k) as: 

I N — m I 
N - 1 

Lm{k) = N Y, \ X ^ m +iA;) " X ^ m + (* - (4-17) 
\ ~ ~ \ k i=i 

The length L{k) is then defined as average of all Lm{k) values and the Higuchi fractal 
dimension is is defined as the slope of best-fitting linear function through the data 
points: 

{(log^),logL(k)} (4.18) 

• Petrosian Fractal Dimension - for the time series of x(l),x(2), ...x(N) and waveform 
signal consisting of {2/1,2/2, •••,'!JN} the sequence is first 'binarized' as: 

{1, Xi > mean(v) 
y y ' ,i = 1,2,...N (4.19) 

— 1, Xi < mean(y) 

The total number of adjacent symbol changes in sequence is defined as: 

N-2 
Zi+i - Vi 

1=1 

And finally, the Petrosian fractal dimension is calculated as: 

logN 
D = N (4.21) 

logN + log(N+0ANJ 

Katz Fractal Dimension - the fractal dimension of a signal (xi,yi)is defined as: 

log(N) 
D = y y ' . (4.22 

log{N) + log{j-)' 

where is a length of signal and and: 

L = ]T N - 2 i = ^ ( y i + 1 - y i y + (xi+1-xiy (4.23) 

d = max(y/(t/j+i - yi)2 + (xi+i - Xi)2) (4.24) 

Katzd fractal dimension is a little slower to compute than Petrosian one, but still 
faster than Higuchi fractal dimension. 
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4.5 Feature Selection 

The thesis proposes a to select the best set of features that can discriminate between differ­
ent conditions based on the recursive feature elimination with cross validation ( R F E C V ) . 
The feature matrix with all of the proposed features are input into the R F E C V and fitted 
to the selected estimator. Features are ranked based on their predictability and the least 
important feature(s) is eliminated. The new set of features is used to train a classifier again 
and the cross-validation accuracy determines whether the new feature set is to be selected 
as a resulting one or whether to continue eliminating more features. This process is shown 
in Figure 4.15 

Input feature matrix 

I 
> Fit RFC model 

Get importance of 
features 

Remove least 
important feature 

Is the remaining number 
of features greater than 

minumum number of features? 

Accuracy improved 
since last iteration Cross-validate the model with 

new features 

Is the remaining number 
of features greater than 

minumum number of features? 

Cross-validate the model with 
new features 

Accuracy did not 
improve since last iteration 

Figure 4.15: Recursive feature elimination with cross-validation. 

The estimator chosen to eliminate features is Logistic Regression. To overcome overfit-
ting issues, the L2 penalty, known as ridge penalty is utilized: 

A $ > ! (4.25) 

4.6 Classification 

Classification of the movement imagery or the resting state is proposed to be done on 
a subject level, which is a common practice for the B C I applications. Two levels of the 
classification are proposed: 

1. Classify the condition instance as either rest instance or movement instance. 

2. Based on the results of the previous classification, in case of movement instance classify 
the instance as left imagery condition or right imagery condition. 

Multiple levels of the classification are proposed to differentiate between the motor 
imagery conditions. Wi th regards to the microstate analysis, different number of maps as 
well as different areas of extraction of these maps might differentiate between the conditions 
better. The hypothesis is, that the maps that differentiate between the rest versus activity 
conditions might have patterns more in the frontal area as opposed to the motor cortex 
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area and conversely, there could be a map that has a distinct pattern in the motor cortex 
area for the distinction between the left and right motor imagery. 

It is proposed to choose the classifier with the appropriate parameters by cross valida­
tion. The proposed classifier is Random Forests. Random Forest classifiers are an ensemble 
learning method widely used for classification tasks. They are built upon the concept of 
decision trees and operate by constructing multiple decision trees during training. Each 
tree is trained on a random subset of the original data and features, and the final prediction 
is determined through a majority vote of the individual tree predictions. This aggregation 
of predictions helps improve the model's accuracy and generalization ability compared to 
individual decision trees. One of the key reasons why Random Forest classifiers do not 
overfit is due to the random sampling of both data and features for each tree. This in­
troduces diversity among the trees, preventing them from memorizing the training data 
too closely. Additionally, Random Forest classifiers incorporate techniques like bagging 
and feature randomization, further reducing overfitting tendencies by promoting model 
variance while controlling bias. As a result, Random Forests can effectively handle noisy 
data, high-dimensional feature spaces, and avoid overfitting, making them ideal for the 
thesis task, since number of features compared to the number of the training samples is 
disproportionately high. 

4.7 Summary 

The comprehensive summary of all the proposed steps is as follows: 

1. Preprocessing 

(a) Bandpass filtering between 8-30 Hz 
(b) Reference: average 
(c) Artifact removal with wICA 
(d) Additional bad channel identification and interpolation with PyPrep. 
(e) Additional bad epoch identification and rejection/interpolation with Autoreject. 

2. Feature Extraction 

(a) Time-domain Features 

• Sample Entropy 
• Approximate Entropy 
• Hjorth's parameters: Complexity and Mobility 
• Fractal Dimension: Petrosian, Katz and Higuchi fractal dimension approxi­

mations 

3. Frequency-domain Features 

(a) Alpha/Beta absolute power (channel-wise) 

(b) Alpha/Beta relative power (channel-wise) 

(c) Alpha/Beta Assymetry (channel pair-wise an region-wise) 

4. Microstate Features 

(a) Duration: mean/max/min/std duration 
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(b) Transitions, transition recurrences 

(c) Occurrences, occurrence recurrences 

(d) Contribution 

5. Feature Selection - Recursive Feature Elimination with Logistic Regression 

6. Classification - Random Forests 
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Chapter 5 

Implementation 

The implementation and testing was done in Matlab and Python. Matlab was utilized for 
the initial parts, specifically for the identification and removal of the artifacts. 

5.1 Preprocessing and Feature Extraction 

The preprocessing pipeline is depicted in Figure 5.1. The raw data (64 channel E E G ) were 
first loaded into the E E G L a b [37] structures, which make handling of the E E G data very 
easy. The primary reason why Matlab was chosen for some part of the preprocessing is 
the wICA implementation proposed in [26] provided in the Matlab code. First, the data 
were filtered using the Butterworth filter in the range of 8-30 Hz and rereferenced using the 
average reference. wICA was applied to the filtered data and the number of components 
for it was set to 64 (same as original number of channels). 

Next step was the interpolation of the bad electrodes. The bad electrodes were identified 
and interpolated using the pyPrep library as discussed in the previous chapter. For that, 
the data from Matlab were loaded into the Python's M N E structures. The parameters for 
the pyPrep pipeline were kept at default. 

After the interpolation, the data were epoched - each experimental run that included 
either motor imagery tasks or real movement tasks was segmented using rolling windows 
of length 1 second and overlap of 0.5 seconds. This resulted in the segments of the shape 
(n, 160), where number of segments n ~ 247. The labels for the segments were given ac­
cording to the conditions - 0 if the segment was from rest condition, 1 for left motor imagery 
(or real movement) and 2 for right motor imagery (or real movement). The segments that 
were in-between the different conditions were labeled as -1 and were excluded from training 
and testing. 

Subsequently, the autoreject tool was used as discussed in the previous chapter to repair 
or reject epochs that may still (even after the wICA and filtering) contain some artifacts. 
The autoreject pipeline was run with the bayesian optimization and other parameters were 
kept at default as was recommended by the authors of the library. The output is a reject 
log as illustrated in Figure 5.2 with the resulting epochs (original epochs with interpolated 
ones and without the rejected ones). 

From each epoch, the respective features as discussed in the previous chapters were 
extracted as shown in Figure 5.1. The scipy library was used to calculate the PSD for the 
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EEG recording 

Implemented in Matlab 

Filter data 8-30 Hz -> Set average 
reference -> Wavelet ICA 

Bad channel identification 

PyPrc p 

Bad epoch identification 
and interpolation/rejection 

Auto reject 

Epoch the data -
windows of length 1 second 

with 0.5 seconds overlap 

4 
M i c r o s l a l e Ext ruction 

Divide data into 
respective conditions -

rest/left/right 

Frequency /Time-domain Feature Extraction 

Extract respective features 
for each epoch 

Exlracl niicrosMiic 
maps for each condition 

Pycrostates 

Group together 
maps from each condition 

to form one map set 

Backfit the extracted maps 
to the data 

Extract respective features 
for each epoch 

i 
Output feature matrix of shape (number of epochs, number of features) 

Figure 5.1: Implemented pipeline of the data preprocessing and feature extraction. 

frequency features using scipy.signal.periodogram. The Antropy library was used to extract 
the time-domain features1. 

The microstates were extracted and backfitted using Pycrostates. The parameters for 
the clustering of the maps include number of initializations, which was set to 100 to make 
sure as much as possible that the algorithm will find a local minimum when it comes to 
cost function. The stopping criteria was set to a maximum number of iterations of 300 and 
convergence threshold was set to le — 6. During the backfitting, the minimum map length 
was set to be 18 ms - if the map was present at one particular time for a period shorter than 
18 ms, then the area was reassigned to the neighbouring maps according to the correlation. 

1https: / / github.com/raphaelvallat / antropy 
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Figure 5.2: Example of the autoreject detection of interpolated and rejected epochs. 

5.2 Classification 

The process of classification include the selection of the appropriate parameters for the 
classifier, which include the selection of the model parameters, selection of appropriate 
number of maps as well as selection of the appropriate area from which the microstates 
were extracted from. 

5.2.1 Cross-validation with Feature Selection 

The cross validation was utilized to assess the model parameters as well as the ideal number 
of microstate maps along with the area of the microstates. A l l epochs from one experimental 
run were divided into the training and testing set in the 80/20% ratio total of 5 times, each 
time with a different training and testing set. The cross-validation is depicted in Figure 
5.3. 

Input feature matrix 

4, 
Split the data into 80% training and 20% testing set 

5 times for cross validation 

i 
Cross-validation 

Data scaling 

Feature Selection with 
RFECV 

Estimator: Logistic Regression 
Penalty: L2 

kfold: 5 times 

Selected features 

Classification 
with selected model 

Evaluation 

Figure 5.3: Implemented pipeline of the feature selection and cross validation. 
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The feature selection process was implemented as a Recursive Feature Selection with 
Cross-Validation ( R F E C V ) . The estimator for the feature selection was chosen to be Logistic 
regression with L2 penalty and number of cross validations for the testing whether the 
accuracy of the model improved with the feature removal was set to 5. The number of 
features eliminated in one cycle was set to 10. 

For the model parameters, the Gini and entropy were tested and number of nodes 
was set to be 1000 (since Random Forests do not suffer from overfitting). In the context 
of a random forest classifier, the Gini impurity and entropy are criteria used to measure 
the quality of a split when constructing decision trees. The Gini impurity, denoted as G, 
represents the probability of misclassifying a randomly chosen element in the dataset if it 
were randomly labeled according to the class distribution in the node. On the other hand, 
entropy, denoted as H, is a measure of the information content in the node, reflecting the 
level of uncertainty in the data. Both criteria are commonly employed to evaluate the 
homogeneity of the target classes in each split during the construction of decision trees 
within the random forest ensemble. 

For the microstates, the models were tested with the number of maps from 5-9 and from 
the central, frontocentral and whole head topography. 

5.2.2 Evaluation Metrics 
In the context of binary classification tasks, several performance metrics are commonly used 
to assess the effectiveness of a model. Because the proposed models were trained on the 
rest/activity and left imaginary movement/right imaginary movement, the classification is 
binary. Three fundamental metrics are accuracy, precision, and recall. Accuracy measures 
the proportion of correctly classified instances out of the total number of instances in the 
dataset and is given by the formula: 

Number of True Positives + Number of True Negatives 
Accuracy = 

Total Number of Instances 
Precision represents the ability of the model to correctly identify positive instances 

among all instances classified as positive and is calculated using the formula: 

Number of True Positives 
Precision Number of True Positives + Number of False Positives 

Recall, also known as sensitivity or true positive rate, measures the proportion of actual 
positive instances that are correctly identified by the model and is defined as: 

Number of True Positives 
Recall Number of True Positives + Number of False Negatives 

These metrics play a crucial role in evaluating the performance of classification models 
and are often used together to gain a comprehensive understanding of the model's behavior. 
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Chapter 6 

Evaluation and Benchmarks 

To evaluate and compare the models, accuracy, precision and a recall is reported for each 
experimental run and for each participant. Additionally, comparative test is performed to 
test the predictive power of the proposed solution as opposed to the usual classifiers. 

6.1 Evaluation 

For all of the participants the best topography for the microstate extraction was the whole 
head topography and the number of maps was 9. This is on one hand not very surprising, 
since the increase of the maps results in the increase of the input features from which the 
model can learn, but it makes he hypothesis that different regions can contribute differently 
for the respective conditions. 

6.1.1 Imaginary movement 

For the imaginary experimental runs, the results are reported in Table 6.1 and show the 
accuracy, precision and recall score for classifying rest versus activity instances. 

The mean accuracy is 0.861, 0.842 and 0.853 respectively for each experimental run. 
Similarly, the accuracies for the classification between the left and right imagery movement 
were calculated and the results are shown in Table 6.3. 

As expected the, accuracies between the left and right movement were were less when 
compared to the accuracies of rest versus activity classification. The mean accuracy for 
the first run classification of the left versus right motor imagery is 0.727. For the second 
run it is 0.729 and for the third run it is 0.734. Overall, participants did not get better at 
left/right imagery task as the experiment progressed as is evident from the classification 
accuracies. 

6.1.2 Real Movement 

Classification and evaluation through the same pipeline was done on the experimental run 
where participants were actually moving their left or right hands to compare whether the 
accuracy is higher or not, as it hypothetically should be. 

The mean accuracy on classifying the instances of the rest versus the instances of the 
activity was 0.898, 0.876 and 0.885 for the three experimental runs respectively. The 
accuracy did increase as was expected and confirm that the proposed solution is valid. 
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Table 6.1: Performance Metrics for Rest vs. Activity Classification in Imaginary Movement 
Task 

Subject ID Run 1 Run 2 Run 3 Subject ID 
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

1 0.838 0.836 0.842 0.811 0.808 0.82 0.833 0.826 0.833 
2 0.8 0.799 0.801 0.842 0.846 0.842 0.868 0.878 0.868 
3 1.0 1.0 1.0 0.919 0.938 0.906 0.963 0.976 0.929 
4 0.784 0.816 0.788 0.757 0.771 0.771 0.816 0.817 0.814 
5 0.737 0.73 0.73 0.75 0.75 0.748 0.737 0.734 0.734 
6 0.947 0.947 0.952 0.842 0.847 0.839 0.868 0.864 0.869 
7 0.811 0.81 0.812 0.861 0.862 0.856 0.938 0.944 0.938 
8 0.895 0.894 0.894 0.974 0.972 0.976 0.892 0.882 0.899 
9 0.865 0.867 0.874 0.861 0.862 0.856 0.842 0.842 0.846 
10 0.838 0.835 0.835 0.811 0.808 0.82 0.784 0.81 0.833 
11 0.947 0.947 0.952 0.842 0.846 0.842 0.842 0.842 0.846 
12 0.892 0.897 0.89 0.789 0.776 0.803 0.921 0.922 0.921 
13 0.868 0.896 0.868 0.676 0.683 0.673 0.868 0.869 0.868 
14 0.816 0.814 0.817 0.865 0.862 0.866 0.789 0.793 0.789 
15 0.895 0.894 0.894 0.974 0.972 0.976 0.892 0.882 0.899 
16 0.838 0.835 0.835 0.865 0.865 0.859 0.919 0.918 0.902 
17 0.865 0.867 0.874 0.865 0.863 0.855 0.865 0.866 0.864 
18 0.784 0.78 0.78 0.865 0.865 0.865 0.789 0.803 0.789 
19 0.865 0.867 0.874 0.816 0.816 0.817 0.842 0.838 0.838 
20 0.892 0.891 0.891 0.946 0.96 0.929 0.842 0.842 0.846 
21 1.0 1.0 1.0 0.816 0.816 0.817 0.816 0.817 0.814 
22 0.842 0.84 0.84 0.947 0.938 0.958 0.842 0.842 0.846 
23 0.865 0.866 0.864 0.842 0.842 0.858 0.784 0.778 0.786 
24 0.865 0.862 0.866 0.838 0.841 0.839 0.838 0.856 0.835 
25 0.895 0.894 0.894 0.789 0.78 0.78 0.865 0.874 0.867 
26 0.784 0.787 0.785 0.811 0.812 0.81 0.784 0.782 0.787 
27 0.816 0.828 0.832 0.838 0.835 0.856 0.919 0.92 0.92 
28 0.865 0.867 0.874 0.838 0.839 0.841 0.784 0.81 0.833 
29 0.789 0.789 0.789 0.838 0.841 0.853 0.947 0.947 0.947 
30 0.842 0.842 0.846 0.842 0.839 0.847 0.865 0.865 0.859 

Mean 0.861 0.868 0.875 0.842 0.841 0.847 0.853 0.859 0.853 

6.1.3 Comparison 
To compare the effectiveness of the model, the proposed solution is compared to the models 
utilizing only frequency features by using the very same pipeline. Generally, the frequency 
features are the most telling in terms of motor imagery or movement classification and offer 
a simple baseline to compare the proposed solution to. The results for the classification of 
the rest versus activity in imagined movement experiment is reported in Table 6.4. 

As expected, the overall classification accuracy got significantly worse when using only 
frequency features, which can be evident when comparing the results of the accuracy from 
the table 6.4 with the accuracies from the table 6.1. This is in accordance with the hy­
pothesis and proves that microstates do hold some informative power on the classification 
of the motor imagery task. 

6.1.4 Performance and Hardware requirements 

A l l of the training and evaluations were done on a P C with the following specifications: 

. Processor - Intel(R) Core(TM) 17-7700HQ C P U @ 2.80GHz 

. R A M - 8.00 G B 
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Table 6.2: Performance Metrics for Left vs. Right Hand Movement Classification in Imag­
inary Movement Task 

Subject ID Run 1 Run 2 Run 3 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

1 0.754 0.775 0.744 0.699 0.702 0.696 0.77 0.778 0.774 
2 0.686 0.663 0.653 0.811 0.818 0.823 0.563 0.572 0.577 
3 0.74 0.769 0.775 0.699 0.712 0.71 0.77 0.769 0.807 
4 0.74 0.744 0.737 0.72 0.747 0.748 0.775 0.788 0.792 
5 0.72 0.713 0.712 0.715 0.751 0.699 0.7 0.712 0.722 
6 0.895 0.886 0.905 0.905 0.919 0.91 0.862 0.875 0.865 
7 0.787 0.786 0.784 0.771 0.769 0.746 0.794 0.797 0.805 
8 0.667 0.668 0.651 0.696 0.75 0.702 0.597 0.666 0.64 
9 0.852 0.861 0.864 0.665 0.662 0.667 0.716 0.741 0.724 
10 0.761 0.751 0.754 0.699 0.702 0.696 0.758 0.753 0.754 
11 0.74 0.769 0.775 0.698 0.702 0.693 0.609 0.629 0.623 
12 0.786 0.804 0.785 0.636 0.664 0.602 0.796 0.812 0.791 
13 0.761 0.751 0.754 0.784 0.797 0.778 0.805 0.821 0.798 
14 0.733 0.727 0.739 0.698 0.702 0.693 0.753 0.75 0.746 
15 0.646 0.596 0.638 0.808 0.816 0.807 0.817 0.834 0.826 
16 0.67 0.699 0.667 0.773 0.794 0.785 0.722 0.745 0.723 
17 0.667 0.678 0.685 0.784 0.785 0.782 0.609 0.629 0.623 
18 0.721 0.76 0.725 0.72 0.747 0.74 0.634 0.661 0.658 
19 0.773 0.803 0.772 0.644 0.658 0.663 0.764 0.774 0.77 
20 0.711 0.759 0.701 0.796 0.804 0.791 0.656 0.651 0.653 
21 0.786 0.804 0.785 0.784 0.797 0.778 0.747 0.756 0.734 
22 0.756 0.733 0.726 0.596 0.599 0.594 0.747 0.756 0.734 
23 0.73 0.761 0.714 0.591 0.583 0.574 0.764 0.765 0.768 
24 0.657 0.674 0.66 0.68 0.695 0.672 0.743 0.774 0.74 
25 0.709 0.757 0.729 0.784 0.788 0.776 0.742 0.742 0.73 
26 0.698 0.699 0.702 0.826 0.82 0.815 0.711 0.708 0.74 
27 0.849 0.838 0.858 0.656 0.66 0.649 0.686 0.702 0.69 
28 0.595 0.594 0.595 0.701 0.722 0.734 0.709 0.705 0.713 
29 0.768 0.782 0.787 0.829 0.835 0.832 0.884 0.904 0.875 
30 0.674 0.708 0.67 0.726 0.754 0.723 0.758 0.753 0.754 

Mean 0.727 0.746 0.738 0.729 0.752 0.734 0.734 0.73 0.737 

70 



Table 6.3: Performance Metrics for Rest vs. Activity Classification in Real Movement Task 

Subject ID Run 1 Run 2 Run 3 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

1 0.895 0.89 0.89 0.806 0.812 0.81 0.917 0.919 0.91 
2 0.846 0.844 0.844 0.794 0.854 0.794 0.865 0.878 0.835 
3 0.97 0.978 0.955 0.968 0.977 0.95 0.933 0.955 0.9 
4 0.892 0.889 0.913 0.895 0.9 0.909 0.895 0.897 0.897 
5 0.892 0.898 0.887 0.842 0.846 0.842 0.794 0.794 0.795 
6 0.868 0.868 0.869 0.917 0.917 0.918 0.895 0.892 0.892 
7 0.943 0.95 0.941 0.973 0.975 0.972 0.919 0.92 0.92 
8 0.892 0.893 0.896 0.919 0.912 0.935 0.865 0.866 0.864 
9 0.921 0.917 0.935 0.886 0.89 0.887 0.833 0.819 0.836 
10 0.868 0.868 0.869 0.895 0.9 0.909 0.919 0.921 0.929 
11 0.921 0.917 0.935 0.944 0.944 0.944 0.974 0.974 0.975 
12 0.947 0.95 0.95 0.784 0.785 0.787 0.889 0.875 0.917 
13 0.868 0.891 0.875 0.857 0.857 0.85 0.865 0.871 0.871 
14 0.939 0.947 0.938 0.967 0.967 0.969 0.933 0.931 0.931 
15 0.921 0.935 0.917 0.895 0.895 0.899 0.974 0.974 0.975 
16 0.842 0.842 0.846 0.816 0.813 0.807 0.857 0.859 0.856 
17 0.895 0.892 0.892 0.944 0.944 0.944 0.895 0.899 0.895 
18 0.914 0.917 0.911 0.919 0.925 0.925 0.921 0.923 0.919 
19 0.865 0.864 0.866 0.946 0.95 0.947 0.919 0.921 0.929 
20 0.842 0.839 0.847 0.829 0.825 0.825 0.765 0.768 0.765 
21 0.846 0.844 0.844 0.829 0.825 0.825 0.833 0.819 0.836 
22 0.921 0.935 0.917 0.857 0.857 0.85 0.895 0.897 0.897 
23 0.939 0.947 0.938 0.829 0.825 0.825 0.974 0.974 0.975 
24 0.895 0.892 0.892 0.842 0.846 0.842 0.895 0.897 0.897 
25 0.895 0.892 0.892 0.857 0.857 0.85 0.919 0.92 0.92 
2G 0.868 0.891 0.875 0.895 0.895 0.899 0.919 0.921 0.929 
27 0.842 0.839 0.847 0.895 0.9 0.909 0.794 0.794 0.795 
28 0.842 0.842 0.846 0.857 0.857 0.85 0.895 0.899 0.895 
29 0.895 0.892 0.892 0.829 0.825 0.825 0.865 0.878 0.835 
30 0.947 0.95 0.95 0.816 0.813 0.807 0.889 0.875 0.917 

Mean 0.898 0.899 0.898 0.876 0.885 0.874 0.885 0.884 0.893 
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Table 6.4: Performance Metrics for Rest vs. Activity Classification in Real Imaginary 
Movement Task with Only Frequency-Domain Features 

Subject ID Run 1 Run 2 Run 3 

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

1 0.811 0.837 0.807 0.895 0.897 0.897 0.759 0.782 0.782 
2 0.8 0.8 0.796 0.737 0.739 0.739 0.711 0.724 0.721 
3 0.914 0.917 0.925 0.946 0.958 0.933 0.926 0.955 0.857 
4 0.73 0.73 0.73 0.73 0.732 0.731 0.676 0.664 0.664 
5 0.763 0.763 0.764 0.694 0.71 0.706 0.684 0.684 0.686 
6 0.923 0.925 0.922 0.816 0.819 0.822 0.816 0.819 0.822 
7 0.789 0.787 0.787 0.784 0.78 0.78 0.906 0.901 0.877 
8 0.789 0.798 0.798 0.789 0.791 0.782 0.737 0.731 0.747 
9 0.765 0.81 0.81 0.886 0.892 0.884 0.703 0.708 0.705 
12 0.703 0.701 0.699 0.737 0.726 0.713 0.842 0.842 0.842 
13 0.921 0.917 0.923 0.763 0.783 0.756 0.73 0.752 0.747 
14 0.895 0.895 0.913 0.649 0.634 0.63 0.757 0.756 0.757 
15 0.811 0.808 0.82 0.919 0.918 0.921 0.868 0.878 0.868 
16 0.789 0.792 0.792 0.676 0.674 0.674 0.784 0.795 0.791 
17 0.868 0.869 0.868 0.892 0.9 0.905 0.892 0.92 0.875 
18 0.868 0.875 0.872 0.703 0.703 0.703 0.842 0.829 0.862 
19 0.737 0.759 0.751 0.757 0.753 0.756 0.811 0.812 0.81 
20 0.921 0.919 0.923 0.921 0.919 0.923 0.921 0.919 0.923 
22 0.895 0.884 0.902 0.895 0.889 0.917 0.895 0.895 0.895 
23 0.919 0.921 0.918 0.811 0.807 0.837 0.811 0.82 0.808 
24 0.895 0.9 0.909 0.711 0.724 0.721 0.676 0.677 0.674 
25 0.892 0.893 0.896 0.811 0.816 0.816 0.895 0.892 0.892 
2G 0.784 0.798 0.781 0.789 0.787 0.787 0.73 0.732 0.731 
27 0.838 0.853 0.841 0.811 0.821 0.83 0.811 0.811 0.807 
28 0.838 0.839 0.841 0.649 0.649 0.648 0.757 0.778 0.79 
29 0.789 0.793 0.786 0.73 0.72 0.72 0.895 0.895 0.899 
30 0.789 0.787 0.787 0.789 0.798 0.798 0.763 0.761 0.763 

Mean 0.823 0.830 0.827 0.802 0.802 0.804 0.81 0.806 0.795 
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• System type - 64-bit operating system, x64-based processor 

No specific hardware such as graphic cards were used in the training and evaluation. 
The timing required for the training and then testing on one experimental run was as 
follows: 

• Time of feature extraction for one 1 second segment [seconds]: 

— Absolute power: 0.045 
— Sample entropy: 0.038 
— Approximate entropy: 0.281 
— Hjorth's parameters: 0.019 
— Relative power: 0.136 
— Assymetry: 0.042 
— Petrosian fractal dimension: 0.006 
— Katz's fractal dimension: 0.01 
— Higuchi fractal dimension: 0.002 
— Microstate features: 0.273 

• Training time: —30.70 seconds 

• Test time for one 1 second segment: 0.013 seconds 
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Chapter 7 

Conclusion 

The objective of the thesis was to understand the BCI , its current applications and limi­
tations, choose the appropriate recording modality for the task of the motor imagery and 
propose a solution for the motor imagery task that would incorporate one of the newest 
E E G fields emerging in the last years - microstates. 

Proposed solution gave an overview on the techniques and methods used to preprocess 
the E E G data, extract the representative microstate maps for different conditions and finally 
build a classifier that could distinguish between the left hand motor imagery and right hand 
motor imagery. To study the effects of the microstates on the classification, two different 
classifiers were proposed - one for the classification of the rest versus activity condition and 
one for the left versus right motor imagery conditions. The proposed solution was tested on 
30 participants across 3 different experimental runs on both actual movement experiment 
as well as motor imagery experiment to compare the two, with the expectations that the 
actual movement will have a higher classification accuracy then the imagined movement. 
Additionally, different number of maps as well as different regions of map extractions were 
proposed. 

The microstates themselves, unfortunately, did not bear enough informative power to 
distinguish between the different conditions on their own and therefore the features from 
other domains were also added to the classification. The initial hypothesis, that maybe 
extracting different maps from different areas can have a different impact on the experi­
mental condition classification (such as maps from the motor cortex area could distinguish 
between left and right motor imagery while maps from frontocentral areas could distinguish 
well between the rest and activity) did not prove entirely true. For all subjects, extracting 
as many maps as possible have proven to be more successful then focusing on a smaller 
subset of the maps. This is a little to the contrary of the analysis of the resting state maps, 
where a smaller subset is usually sufficient. However, in the resting state analysis of the mi­
crostates, the objective is to usually distinguish between one group of healthy participants 
and a group of participants with some pathology. Slight modifications in the map patterns 
or small variations in their duration or transitions might have proven to be enough for the 
resting state analysis, but it might not be enough for more complex tasks. 

The results of the classification and the comparison with the simpler model which was 
based only on the frequency features do suggest that the microstates can be used for the 
motor imagery task, as the classification accuracy while using them improved significantly 
and in both conditions (rest versus activity and left versus right motor imagery), the clas­
sification reached the accuracies above the chance point. 

74 



In the future, the microstates from multiple participants could be explored to find some 
definitive maps that could distinguish not only between the left and right motor imagery 
but between the actual movement as well. Resting state maps are very well defined and it 
is important to try finding a well defined maps for other conditions as well. 

Wi th regards to the microstate analysis itself, there are still some improvements that 
could potentially make an impact, most notable being the clustering algorithm used for 
map extraction. The golden standard as is now is either a K-Means or T A A H C , both of 
which require a priori definition of the number of maps to use and define G E V as a metric 
to use to assume the sufficient number of maps. While this might work in a resting state 
analysis, for cognitive or motor tasks this might not be enough and more then conventional 
number of maps is needed. It is then important to also define a metric that could conclude 
the sufficient number of maps other then relying on „at least 60% of G E V " . 
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Table A . l : Review of the microstate analysis used in the motor execution or motor imagery tasks. 

Authors Task Clustering Method Identified Maps 

Dinov, Martin, and Robert 
Leech (2017) [42] 

109 subject performing real and imagined movement of left 
and right hand - identification of maps for real and imagined 
movement 

K-means and Fuzzy C-means 
Real movement ^ ^ ^ ^ Ä̂^̂  

Imagined movement ^ ^ ^ ^ ^ ^f^^^ 

Liu, Weifeng, et al. (2017) 
[100] 

Left and right hand motor imagery - identifying features 
from the microstate analysis that distinguish the movements 

T A A H C 
Imagined movement - ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Pierpaolo, Croce, et al. 
(2022) [135] 

18 subjects pressing a bulb with right hand K-means with 
Krzanowski-Lai criterion 

Real movement -mm S T 
Pirondini, Elvira, et al. 
(2017) [137] 

8 subjects - identification of maps for rest and various move­
ments (reaching, grasping, holding) 

Modified K-means 
Real movement ^ ^ ^ \ / " * ^ \ / ^ ^ \ 

(reaching) ^ ^} \mm*s **^mm*/ 

Dipietro, L. , et al. (2012) [43] 2 subjects moving the handle of the wrist robotic device with 
the right hand - identification of the maps for the submove-
ments 

Modified K-means with 
Krzanowski-Lai criterion 

Real movement 
Dipietro, L. , et al. (2012) [43] 2 subjects moving the handle of the wrist robotic device with 

the right hand - identification of the maps for the submove-
ments 

Modified K-means with 
Krzanowski-Lai criterion 

Zhang, Lipeng, et al. (2022) 
[184] 

29 subjects performing real movement of left and right hand 
- identification of maps for left and right movements 

Modified K-means 

Real movement (left) "^^^j1 f j 

Real movement (rieht) V A 

L i , Yabing, et al. (2021) [94] Left and right hand motor imagery - identifying features 
from the microstate analysis that distinguish the movements 

T A A H C Imagined movement T 

Biasiucci, Andrea, et al. 
(2011) [15] 

6 subjects - motor imagery of stroke patients - identification 
of features for distinguishing rest and motor imagery task 
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