Univerzita Palackého v Olomouci

Diplomová práce

Olomouc 2010

Bc. Barbora Klocová

Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra buněčné biologie a genetiky

Mapování genů kvantitativních znaků u diploidní pšenice *T. monococcum* L.

Diplomová práce

Bc. Barbora Klocová

Studijní program: Biologie Studijní obor: Molekulární a buněčná biologie Forma studia: Prezenční

Olomouc 2010

Vedoucí práce: Mgr. Miroslav Valárik Ph.D.

Prohlašuji, že jsem předloženou diplomovou práci vypracovala samostatně podle metodických pokynů vedoucího práce a za použití uvedené literatury a informačních zdrojů.

V Olomouci 12. 5. 2010

Bc. Barbora Klocová

Chtěla bych poděkovat Mgr. Miroslavu Valárikovi, Ph.D. za cenné rady, trpělivost a pomoc při zpracování mé diplomové práce. Dále bych chtěla poděkovat všem laborantkám z ÚEB v Olomouci, spolužačkám Bc. Monice Kladivové a Bc. Heleně Staňkové za pomoc při sázení a sběru dat. Také bych chtěla poděkovat společnosti SELGEN a. s. za poskytnutí lokality a spolupráci.

Souhrn

Pšenice je jednou z nejdůležitějších plodin světa podílejících se na výživě lidstva. V posledních letech její spotřeba převyšuje produkci a tak je nutné pěstovat výnosnější kultivary. Pšenice setá má relativně velký allohexaploidní genom, což z ní dělá nejkomplexnější kulturní plodinu. Využití diploidních předků pro mapování a studium genomu je jednou z hlavních cest efektivního studia genomu pšenice a identifikaci agronomicky důležitých genů. Pro účely mapování a studium výnosových prvků byla zkonstruována genetická mapa z mapovací populace rekombinatních inbredních linií (RILs) odvozených z křížení Triticum monococcum ssp. monococcum × Triticum monococcum ssp. aegilopoides. Mapa má celkovou délku 829 cM s 628 zamapovanými STS, IRAP, DArT markery pokrývajících všech sedm chromozomů. Což jí řadí mezi nejhustější genetické mapy pšenice. Mapa byla použita k identifikaci QTL lokusů pro celkem sedm znaků, tři znaky pro výnos, tři agronomicky významné znaky a jeden morfologický znak, ve kterých se rodiče významně odlišovali. Znaky pro QTL analýzu byly sledovány jeden rok na dvou lokalitách ve dvou opakováních. Bylo identifikováno celkem 14 QTL lokusů na šesti chromozomech.

Summary

Wheat is one of the most important crops involved in human nutrition. In recent years, its consumption exceeds production, so it is necessary to breed cultivars with higher yield. Bread wheat is allohexaploid species and has a relatively large genome, which makes it one of the most komplex crops. Use of diploid ancestors for genome mapping and studies is one of the main ways of effective study of the genome of wheat and the identification of agronomically important genes. At present time the most densest genetic map of the wheat A genome was constructed to study genetics of yield components. The map was constructed using 628 STS, IRAP, DART markers and 82 SSD F₈ lines derived from the cross of *Triticum monococcum* ssp *monococcum* × *Triticum monococcum* ssp *aegilopoides*. Total length of the map was 829 cM and linkage groups without gap were identified for all 7 chromosomes. Preliminary QTL analysis for seven yield and morphological traits on this mapping population yielded 14 QTLs on all chromosomes except chromosome 6. The constructed genetic map will be used to precise map yield components and other traits on this mapping population and test their usage in wheat breeding programs.

Obsah

1	Teo	retický úvod	. 8
	1.1	Genom pšenic	. 8
	1.2	T. monococcum L., nástroj pro šlechtění hexaploidní pšenice	10
	1.2.	1 Původ a charakteristika <i>T. monococcum</i> L 1	11
	1. 2.	2 Rozšíření <i>T. monococcum</i> L	12
	1. 2.	3 Historie pěstování <i>T. monococcum</i> L	13
	1.3	Lokusy s kvantitativním znakem, QTL	14
	1.3.	1 Mapování QTL lokusů	15
	1.3	3. 1. 1 Mapovací populace	15
	1.3	3. 1. 2 Molekulární markery 1	16
	1.3	3. 1. 3 Statistické metody	18
	1.4	Výnos1	19
2	Cíl _I	práce	21
3	Mat	eriál a metodika2	22
	3.1	Rostlinný materiál	22
	3. 1.	1 Pěstování mapovací populace	22
	3.2	Přístroje a zařízení	23
	3.3	Použité chemikálie a roztoky	23
	3.3.	1 Roztoky pro vysokovýkonnou izolaci DNA	23
	3.3.	2 Roztoky pro preparativní izolaci rostlinné DNA	24
	3.3.	3 Chemikálie pro polymerázovou řetězovou reakci	25
	3.3.	4 Chemikálie pro nedenaturující polyakrylamidovou elektroforézu	26
	3.4	Metodika	26
	3.4.	1 Vysokovýkonná izolace DNA	26
	3.4.	2 Preparativní izolace rostlinné DNA	27
	3.4.	3 Polymerázová řetězová reakce	28
	3.4.	4 Nedenaturující polyakrylamidová elektroforéza	33
	3.4.	5 Konstrukce genetické mapy	34
	3.4.	6 Hodnocení fenotypu	34
	3.4.	7 QTL analýza	35

	3. 5	5	Software	35
4		Výsl	edky3	36
	4. 1	1	Molekulární markery	36
	4.2	2	Genetická mapa3	37
	4.3	5	QTL analýza4	17
5]	Disk	use4	19
	5.2	2	QTL pro komponenty výnosu5	50
6	,	Závě	ér5	53
7]	Použ	źité zkratky5	54
8]	Lite	ratura5	56

1 Teoretický úvod

Pšenice je jednou z nejdůležitějších plodin světa. Poskytuje základní potravu pro 35 % obyvatel Země a 20 % veškeré kalorické výživy lidstva. Pšenice je pěstována v širokém rozmezí prostředí, hlavně mírného pásu, a její důležitost se může srovnávat asi jen s rýží. Rychle rostoucí lidská populace má stále větší nároky na produkci potravin a tedy i na pšenici. V posledních letech spotřeba pšenice převyšuje její produkci a zásoby rychle klesají. Protože osevní plochy není možné zvětšovat do nekonečna, řešením je pěstování výnosnějších a odolnějších kultivarů.

Pravidelné zvyšování výnosu pšenice je hlavní výzvou současných šlechtitelských programů. Avšak šlechtění naráží na problémy spojené s velkou komplexitou genomu pšenice (17 Gb) a nedostatkem polymorfních markerů s dostatečnou vazbou na sledovaný znak.

Pšenice setá *Triticum aestivum* L. je allohexaploidní druh (2n= 42, AABBDD), který vznikl hybridizací tetraploidního *T. turgidum* L. s *Aegilops tauschii* Coss. před asi 10 tis. lety. *T. turgidum* L. vzniklo hybridizací *T. urartu* Thum. ex Gandil. s vyhynulým předkem příbuzným s *Ae. speltoides* Tausch. (Schéma 1).

Jedním z hlavních postupů zjednodušení mapování a identifikace markerů s maximální vazbou na sledovaný znak je použití diploidních nebo tetraploidních předků pšenice nebo jejich blízkých příbuzných a následná aplikace na genom hexaploidní pšenice. Dobrými příklady takovéhoto postupu jsou projekty pozičního klonování genů ovlivňujících kvetení, rezistence k nemocem nebo kvalitu pšenice (Feuillet *et al.*, 2003; Huang *et al.*, 2003; Yahiaoui *et al.*, 2004; Yan *et al.*, 2003, 2004, 2006; Uauy *et al.*, 2006; Kuraparthy *et al.*, 2008; He *et al.*, 2009). V těchto projektech se nejčastěji využívá diploidní pšenice *Triticum monococcum* L.

1.1 Genom pšenic

Jak již bylo zmíněno hexaploidní pšenice *T. aestivum* L. má tří genomy, A, B a D. Za zdroj genomu A (hexaploidní i tetraploidní pšenice *T. turgidum* L.) je považována diploidní pšenice *T. urartu* Thum. ex Gandil. (AA) blízká příbuzná *T. monococcum* L. (A^mA^m). Právě *T. monococcum* L. bylo na základě prvních cytogenetických studií považováno za donora genomu A (Sax, 1922). Ukázalo se, že v těchto studiích označení "Einkorn" neplatí jen pro *T. monococcum* L., ale i pro *T. urartu* Thum. ex Gandil. Proto bylo nutné výsledky přezkoumat. Následující experimenty poukázaly, že donorem genomu A, hexaploidní i tetraploidní pšenice, je opravdu *T. urartu* Thum. ex Gandil. *T. monococcum* L. je donorem genomu A^m jen u pšenice *T. zhukovskyi* (AAA^mA^mGG), (Schéma 1), (Dvořák *et al.*, 1988; Dvořák *et al.*, 1993; González *et al.*, 1993).

Na prvním řádku jsou znázorněny genomy diploidních předků pšenic, na druhém řádku tetraploidních pšenic, na posledním řádku hexaploidní pšenice. Modrá barva – genom B, bílá – genom A, světle modrá – genom G, fialová – genom A^m, zelená - genom D. Barevné kruhy představují různé plasmony (převzato z http://www.k-state.edu/wgrc/Extras/evolve.html).

1.2 T. monococcum L., nástroj pro šlechtění hexaploidní pšenice

T. monococcum L. je atraktivním diploidním modelem pro funkční genomiku pšenice hlavně díky tomu, že je diploidní a blízký příbuzný *T. urartu* Thum. ex Gandil. donoru genomu A hexaploidní pšenice. Má relativně hustou genetickou mapu (Dubcovsky *et al.*, 1996) a zachovalo si velkou genetickou diverzitu, jelikož zahrnuje kulturní i plané odrůdy a nebylo intenzivně šlechtěno. Geny mapované a klonované s pomocí *T. monococcum* L. byly úspěšně využity k identifikaci homologních genů u *T. aestivum* L.

Prvními takovými geny byly *VRN-1* a *VRN-2*. Tyto geny kontrolují nutnost jarovizace a rozdělují pšenici na ozimou a jarní. Ozimá pšenice potřebuje jarovizaci (vystavení chladu), aby "přepnula" svůj vývoj z vegetativní fáze na reprodukční fázi. Věří se, že jarovizace je nejdůležitější adaptivní mechanismus dovolující ozimé pšenici synchronizovat vývoj rostliny s ročním obdobím a změnami počasí (Yan, 2009; Dubcovsky *et al.*, 1998 Kosová *et al.*, 2008).

Gen *VRN-1* byl prvním objeveným genem jarovizace. Je dominantní pro jarní hexaploidní pšenice. Ortologní gen *VRN-A^m1* byl zamapován na *T. monococcum* L. (Dubcovsky *et al.*, 1998) a následně byl úspěšně pozičně klonován (Yan *et al.*, 2003).

VRN-1 je hlavní gen jarovizace. U hexaploidní pšenice se nacházejí tři geny VRN-1. Vrn-A1 (původně označován jako Vrn1) se nalézá na dlouhém raménku 5A chromozomu. Vrn-A1 je ortologem genu Vrn-D1 (původně Vrn3), který je lokalizován na dlouhém raménku 5D chromozomu a Vrn-B1 (původně Vrn4 a Vrn2) na chromozomu 5B. Bylo zjištěno, že tyto geny 5. skupiny jsou navzájem homeoalelické (Dubcovsky et al., 1998; Yan, 2009).

Druhý gen jarovizace byl nalezen u *T. monococcum* L. a označuje se jako $VRN-A^m2$. Nachází se v distální oblasti chromozomu $5A^mL$ v segmentu, který byl translokován z chromozomu $4A^m$. Tento gen se nachází v oblasti, která je ortologní s lokusem VRN-H2 na chromozomu 4 u ječmene. Tento gen nebyl nikdy u hexaploidní pšenice mapován, avšak jeho exprese byla v *T. aestivum* L. potvrzena. Pravděpodobnou příčinou, proč nebyl VRN-2 u hexaploidní pšenice mapován, je přítomnost tří funkčních homologních alel v hexaploidní pšenici a jejich dominantní charakter (Yan, 2009; Kosová *et al.*, 2008).

Dalšími geny, které byly identifikovány nebo klonovány z *T. monococcum* L. a úspěšně aplikovány na hexaploidní pšenici, byli lokus domestikace Q (Faris *et al.*, 2003) a gen *EPSA^m1* ovlivňující kvetení a počet obilek na klas (Valárik, osobní sdělení). Dále byla úspěšně využita BAC knihovna *T. monococcum* L. k identifikaci ortologních genů rezistence proti rzi listové (*Lr10*) a následnému pozičnímu klonování genu přímo z hexaploidní pšenice (Feullet *et al.*, 2003).

1. 2. 1 Původ a charakteristika *T. monococcum* L.

Pšenice jednozrnka (*T. monococcum* L.) je diploidní pluchatá pšenice (2n = 2x = 14) s relativně uniformním a charakteristicky křehkým klasem, obilkou a semenem. Klas je dvouřadý osinatý s lámavým vřetenem. Většina kultivarů produkuje jedno semeno na obilku, odtud její jméno "Einkorn" (jednozrnka), ale existují i kultivary s dvěma zrny na obilku a nelámavým vřetenem (Obr. 1), (Hopf *et al.*, 2000).

Obr. 1: Klasy *T. monococcum* L. Převzato z: http://fotobank.ru/image/SF17-6300.html

T. monococcum L. je úzce svázán se skupinou divokých a plevelných forem pšenice tradičně označovaných jako divoká jednozrnka nebo *T. boeoticum* Boiss. rozšířených po celém blízkém východě a přilehlých teritoriích. Divoká a kulturní jednozrnka jsou morfologicky stejné. Obě jsou diploidní a obsahují identické chromozomy. Hybridi mezi divokým *boeoticum* a kulturním *monococcum* jsou plně fertilní a chromozomové párování v meiose je normální. Hlavním rozlišujícím znakem

mezi divokou jednozrnkou a kulturní jednozrnkou je způsob rozptylu semen. Divoká jednozrnka má křehké klasy a jednotlivé obilky se při zralosti oddělují a rozptylují semena do okolí rostliny. U kulturní jednozrnky tento znak, důležitý pro přežití v přírodě, dále neexistuje. Zralé klasy zůstávají intaktní a rozdělují se na jednotlivé obilky jen působením tlaku. Přežití kulturní jednozrnky je plně závislé na člověku. Další znak indikující domestikaci je tvar zrna. Zrno kulturní formy je širší než zrno divoké formy (Hopf *et al.*, 2000).

Protože jsou si divoká jednozrnka a kulturní jednozrnka morfologicky i geneticky velmi blízké a naopak velmi rozdílné od dalších druhů skupiny *Triticum*, většina studií dnes zařazuje *boeoticum* a další divoké druhy jednozrnky (*T. aegilopoides* (Link) Bal., *T. thaoudar* Reuter.) jako poddruh *T. monococcum* L., a to hlavně protože se jedná o divoké předky dnes kulturní jednozrnky (*T. monococcum* ssp. *monococcum* L.), (Hopf *et al.*, 2000).

1. 2. 2 Rozšíření *T. monococcum* L.

Divoká jednozrnka je široce rozšířená v západní Asii a pronikla také na jižní Balkán. Její distribuční centrum leží na Blízkém Východě, a to severní Sýrie, jižní Turecko, severní Irák a Irán, a také části západní Anatólie (Obr. 2). V těchto oblastech je jednozrnka součástí stepních biotopů. Divoká jednozrnka na takovýchto primárních lokalitách roste jako plevel a kolonizuje sekundární lokality jako konce polí a okraje silnic. Někdy vniká i na pole kulturních obilovin. Pšenice *boeoticum* je distribuována skrz všechny ekologické a klimatické oblasti. Je adaptována na základní substráty jako vápenatý jílovec, jíl a vápenec. Daří se jí na suchých úpatích severní Evropy stejně jako v mírně chladné vyvýšené plošině centrální a východní Anatólie s jejími letními dešti (Hopf *et al.*, 2000).

Obr. 2: Rozšíření jednozrnky v Neolitu na Blízkém Východě. Křížek – místo předpokládané první domestikace jednozrnky (převzato z Lev-Yadun *et al.*, 2000)

Můžeme rozeznat několik ekogeografických a morfologických typů mezi divokými jednozrnkami. Na severní a severozápadní části území jejího rozšíření rostou rostliny s malými, jedno-osinatými, jedno-semennými obilkami. Jsou často označovány jako *T. aegilopoides* (Link) Bal. V jižní suché a slunečné oblasti rostlou více robustnější rostliny s dvěma semeny a dvěma osinami na obilku často patřící k *T. thaoudar* Reuter. Ale v centrální Anatólii, Transylvánii a Iráku jsou formy něco mezi oběma. Ve skutečnosti mnoho anatolských populací vykazují vysokou variabilitu v morfologii obilky (Hopf *et al.*, 2000).

1. 2. 3 Historie pěstování *T. monococcum* L.

Zrna jednozrnky byla pravděpodobně sbírána ještě před zkulturněním této pšenice. Na nalezištích v severní Sýrii byla objevena v před-zemědělské vrstvě (9. a 8. milénium před Kristem) spálená úzká zrna dokonale totožná se semeny dnešních divokých forem jednozrnky (Hopf *et al.*, 2000).

V neolitu se jednozrnka stala hlavní plodinou pěstovanou na Blízkém východě. Objevuje se společně s *T. dicoccoides* Körn. ("emmer wheat") a ječmenem, ale preferuje hlavně oblasti s chladnějším klimatem. Má malý výskyt v teplejších oblastech a vůbec nebyla pěstována na místech jako Egypt a jižní Mezopotámie. Byla pěstována i v době bronzové a době železné, pak ale byla stejně jako *T. dicoccoides* Körn. nahrazena nahou pšenicí (free-threshing) s větším výnosem (Hopf *et al.*, 2000).

1.3 Lokusy s kvantitativním znakem, QTL

Většina fenotypových znaků jak u živočichů, tak u rostlin je podmíněná více, než jedním genem. Tyto geny nejčastěji přispívají k danému znaku různým způsobem a v různé míře. Například u obilovin jsou více geny ovlivňovány znaky jako výška rostliny, výnos a jeho složky, kvalita semene a mouky a různé formy rezistence. Znaky, které se vyznačují měřitelností (můžeme je kvantifikovat) označujeme jako kvantitativní.

Kvantitativní znaky, podmíněné více než jedním genem, mají často kontinuální proměnlivost (variabilitu) v populaci a při tom distribuce jedinců v populaci s různě intenzivním fenotypovým projevem odpovídá normálnímu rozložení četnosti na Gaussově křivce (Obr. 3). To znamená, že jeden fenotyp nepozorovaně přechází v další. Není zde žádná diskontinuita v distribuci četnosti jako bychom očekávali u majorgenu (1 : 2 : 1 štěpný poměr genotypu a fenotypu v F₂ generaci). Proto mapování pomocí klasických postupů jak je odvodil J. G. Mendel není možné. Velký boom ve vývoji molekulární biologie, molekulárních markerů a účinných statistických metod umožnil mapovat i lokusy přispívající ke kvantitativnímu znaku (Kearsey, 1998; Collard *et al.*, 2005). Takovéto lokusy, které ovlivňují kvantitativní znak, jsou označovány jako QTL (Quantitative Trait Loci, lokusy s kvantitativním znakem), (Gelderman, 1975). QTL lokus může být jeden gen nebo klastr genů ve vazbě.

Obr. 3: Gaussova křivka normálního rozložení četnosti Pro znak obsah dusíku v sušině semene

Od 80. let, kdy byl zaznamenán pokrok v mapování QTL, bylo publikováno mnoho vědeckých prací. Většina se zaměřila na člověka a kvantitativně podmíněné nemoci (pro více informací viz review Mackay *et al.*, 2009). Důležité byly ovšem i práce na rostlinách a to především na obilovinách kvůli jejich důležitosti ve výživě člověka. U obilovin bylo mapováno mnoho agronomicky významných znaků jako výnos, rezistence ke škůdcům a kvalita semene (pro více informací viz review Asins, 2002), některé z těchto genů byly i pozičně klonovány (pro více informací viz review Price, 2006).

1. 3. 1 Mapování QTL lokusů

Hlavními cíly mapování QTL lokusů jsou identifikovat oblast genomu, která způsobuje daný znak a analyzovat efekt tohoto QTL lokusu na znak. Abychom byli schopni zamapovat takové lokusy, potřebujeme k tomu genetickou vazebnou mapu a statistické metody.

Genetická vazebná mapa představuje teoretické rozložení lokusů na chromozomech na základě frekvence rekombinace mezi těmito lokusy. Vzdálenosti jsou udávány v cM. Nepředstavuje tedy fyzickou vzdálenost. Pro konstrukci genetické vazebné mapy je potřeba dostatečně velká mapovací populace, jež se liší ve znaku, který budeme mapovat a dostatek molekulárních markerů.

1. 3. 1. 1 Mapovací populace

Důležitým nástrojem, pro mapování je mapovací populace. K vytvoření mapovací populace jsou potřeba rodičovské linie s dostatečnou variabilitou v sledovaném znaku. Čím je populace polymorfnější, tím snadněji bude sledovaný znak zamapován (Collard *et al.*, 2005; Schneider, 2005).

Pro vytvoření mapovací populace je důležité vědět, jak se rostliny rozmnožují. Nejjednodušeji se vytváří mapovací populace rostlin, které jsou samosprašné (self-fertilizzing), (Collard *et al.*, 2005; Schneider, 2005). Nejčastější typy mapovacích populací pro samosprašné druhy jsou popsány níže.

- *F*₂ *populace* vychází z mapování na liniích F₂ generace, které segregují ve znacích, ve kterých se liší rodiče. Nevýhodou je, že tuto mapovací populaci nelze přemnožovat a je nevhodná pro QTL mapování (Schneider, 2005).
- Rekombinantní inbrední linie (Recombinant Inbred Lines, RILs) jsou odvozené z F_2 generace samosprášením. V tomto procesu je jedno semínko každé linie zdroj další generace (Single-Seed Descent lines, SSD). Už v šesté generaci jsou linie téměř homozygotní. Tato mapovací populace má velkou výhodu v tom, že od F_6 generace skoro nedochází k segregaci ve sledovaném znaku a tato mapovací populace se může neomezeně přemnožovat (Schneider, 2005).
- Populace zpětných kříženců (Backcross populace, BC) v této mapovací populaci je fragment DNA z jednoho rodiče například A převeden do genetického pozadí rodiče B, a to zpětným křížením F₁ potomků s rodičem B (Schneider, 2005).
- Dihaploidní linie (Doubled Haploid lines, DH) obsahují dvě identické sady chromozomů v každé buňce. Jsou úplně homozygotní. Vznikají z haploidních linií. Jsou permanentním zdrojem pro mapování, avšak příprava DH linií není možná pro všechny druhy (Schneider, 2005).

1. 3. 1. 2 Molekulární markery

Molekulární markery jsou v současnosti důležitým nástrojem genetického mapování. Pomáhají lokalizovat geny způsobující znak. Nemusí představovat geny jako takové, ale stačí, že se nacházejí v jejich blízkosti a jsou s nimi těsně svázány. Výjimkou jsou EST (Expressed Sequence Tag), které vznikají při sekvenování transkripčních produktů genů. Markery jsou něco jako vlajky nebo značky na vazebné mapě chromozomů (Collard *et al.*, 2005).

Genetické vazebné mapy pro mnoho rostlinných druhů byly vytvořeny pomocí molekulárních markerů, jako jsou RFLP, SSR, STS, IRAP, DArT, SNP, RAPD, AFLP, SCAR a mnoho dalších (Collard *et al.*, 2005; Nguyen *et* Wu, 2005).

- *RFLP* (Restriction Fragment Length Polymorphism, délkový polymorfismus restrikčních fragmentů) jsou markery první generace. Využívá se přestaveb v genomu, které způsobují vznik nebo zánik restrikčního místa. Specifické restrikční enzymy štípou DNA za vzniku různě dlouhých fragmentů. Ty jsou pak hybridizovány se sondami a vizualizovány. RFLP markery jsou kodominantní, ale pracné. Mohou být převedeny na SCAR markery (Botstein *et al.*, 1980).
- SSR (Simple Sequence Repeat, opakování jednoduchých sekvencí) jsou založené na mikrosatelitech, které se nacházejí v celém genomu v nekódujících oblastech. Jsou to jednoduché markery detekovatelné pomocí PCR. Jsou vysoce polymorfní a kodominantní (Litt *et* Luty, 1989).
- *STS* (Sequence-Tagged Sites) jsou markery založené na znalosti sekvence. Mohou být jednoduše detekovány pomocí PCR (Palazzolo *et al.*, 1991).
- *IRAP* (Inter-Retrotransposon Amplified Polymorphism, amplifikovaný polymorfismus mezi retrotranspozóny) jsou markery založené na přítomnosti retrotranspozomů v genomu rostlin. Jsou vysoce polymorfní, z jedné PCR lze získat až 10 polymorfismů (Kalendar *et al.*, 1999).
- *DArT* (Diversity Arrays Technology) je vysokokapacitní micro-array technika získávání markerů, založená na hybridizaci bez znalosti sekvence (Jaccoud *et al.*, 2001).

1. 3. 1. 3 Statistické metody

Spolehlivá identifikace QTL lokusů vyžaduje pokročilé statistické metody, které umožňují kvantifikovat příspěvek jednotlivých lokusů k celkové detekované variabilitě, případně určit jestli je příspěvek genu aditivní nebo dominantní. K tomu je používáno několik přístupů, jako například: jedno-markerová analýza (Single-marker Analysis), jednoduché mapování pomocí intervalu (Simple Interval Mapping, SIM) a složené mapování pomocí intervalu (Composite Interval Mapping, CIM), vícenásobné mapování pomocí intervalu (Multiple Interval Mapping, MIM), testování signifikance (Significance testing), tvoření vícenásobných QTL modelů (Multiple-QTL model Building), QTL mapování vícenásobných znaků (Multiple-trait QTL Mapping), QTL mapování vícenásobných křížení (Multiple-cross QTL Mapping) a optimalizované výpočetní metody (Computational Optimization Methods), (Collard *et al.*, 2005, Nelson, 2005). Tři nejpoužívanější metody jsou popsány níže.

- Jedno-markerová analýza je jednoduchá metoda pro detekci kvantitativního znaku spojeného s jedním markerem. Statistické metody používané pro jedno-markerovou analýzu zahrnují *t*-test, analýzu variace (ANOVA) a lineární regresy. Tato metoda nevyžaduje kompletní vazebnou mapu. Tuto metodu využívají QGene a MapManagerQTX počítačové programy (Sax, 1923; Soller *et al.*, 1979).
- Jednoduché mapování pomocí intervalu využívá vazebných map. Analyzuje intervaly mezi sousedícími páry markerů ve vazbě po celém chromozomu současně. Použití markerů ve vazbě kompenzuje rekombinaci mezi markerem a QTL lokusem. Tuto analýzu využívají programy jako MapMaker/QTL a QGene (Lander *et* Botstein, 1989).
- Složené mapování pomocí intervalu v sobě kombinuje mapování pomocí intervalu a lineární regresi. Přidává další genetické markery na základě statistického modelu pro mapování pomocí intervalu. Této analýzy využívají programy jako QTLCartographer, MapManagerQTX a PLABQTL (Jansen *et* Stam, 1994).

1.4 Výnos

Výnos je vedle kvality nejdůležitějším parametrem pro výběr kultivarů obilovin vhodných k pěstování. Většina šlechtitelských programů je zaměřená na udržení a zvyšování výnosu především u hexaploidní pšenice *T. aestivum* L.

Výnos je komplexní kvantitativní znak kontrolovaný velkým počtem genů a ovlivňovaný faktory prostředí (klimatické podmínky, kvalita půdy, biotické a abiotické stresové faktory, atd.). Výnos jako komplexní znak může být rozdělen na tři hlavní komponenty: počet klasů na m², váhu tisíce zrn, počet zrn na rostlinu. Počet zrn na rostlinu je dále možné rozdělit na počet klasů na rostlinu a počet zrn na klas. Počet zrn na klas je možné rozčlenit na počet obilek na klas a počet zrn na obilku (Quarrie *et al.*, 2006). Jednotlivé komponenty výnosu mají vyšší dědivost než výnos jako celek a i vliv prostředí na jednotlivé složky je menší (Cuthbert *et al.*, 2008).

Pšenice je hexaploidní druh s velkým genomem, což ji dělá nejkomplexnější plodinou pro genetické mapování. Přesto je výnos u pšenice intenzivně studován. Bylo publikováno mnoho článků na toto téma jak u hexaploidní pšenice (Börner *et al.*, 2002; Groos *et al.*, 2003; Huang *et al.*, 2004; Quarrie *et al.*, 2005; Kumar *et al.*, 2006; Marza *et al.*, 2006; Li *et al.*, 2007; Kirigwi *et al.*, 2007; Kuchel *et al.*, 2007a, 2007b; Ma *et al.*, 2007; Cuthbert *et al.*, 2008), tak tetraploidní pšenice (Peng *et al.*, 2003; Maccaferri *et al.*, 2008).

Výnos byl zamapován skoro na všech chromozomech pšenice (Börner *et al.*, 2002; Groos *et al.*, 2003; Huang *et al.*, 2004; Quarrie *et al.*, 2005; Kumar *et al.*, 2006; Marza *et al.*, 2006; Li *et al.*, 2007; Kirigwi *et al.*, 2007; Kuchel *et al.*, 2007a, 2007b; Ma *et al.*, 2007; Cuthbert *et al.*, 2008; Peng *et al.*, 2003; Maccaferri *et al.*, 2008). Také výnosové prvky jsou distribuovány po celém genomu. QTL lokusy pro jeden ze tří hlavních komponentů výnosu s největší dědivostí, váha tisíce zrn, byly zamapovány skoro na všechny chromozomy kromě 1A, 3D, 4D a 6D (Peng *et al.*, 2003; Groos *et al.*, 2003; Huang *et al.*, 2004; Li *et al.*, 2007; Cuthbert *et al.*, 2008). Pro další znak, počet obilek na klas, byly identifikovány QTL lokusy na chromozomech 1B, 2D, 5A, 5B, 7A a 7D (Ma *et al.*, 2007). QTL lokusy pro výšku rostliny, znak, který také ovlivňuje výnos, byly zamapovány na třinácti chromozomech (Börner *et al.*, 2002; Maccaferri *et al.*, 2008; Peng *et al.*, 2003; Marza *et al.*, 2006; Huang *et al.*, 2004).

Pro další znak, který také působí na výnos, délku klasu byly identifikovány QTL lokusy na chromozomech 1A, 1B,2B, 2D, 3B, 4A, 4B, 5A, 5B, 7A, 7B a 7D (Börner *et al.*, 2002; Ma *et al.*, 2007; Marza *et al.*, 2006). Pro znak obsah proteinu v zrnu byly zamapovány čtyři QTL lokusy na chromozomech 2A, 2D, 3A, 4D, 7A a 7D (Börner *et al.*, 2002; Groos *et al.*, 2003).

2 Cíl práce

Cílem diplomové práce bylo vytvořit genetickou mapu pro RILs mapovací populaci odvozenou z křížení *T. monococcum* ssp. *monococcum* DV92 \times *T. monococcum* ssp. *aegilopoides* G3116 jako základ pro QTL analýzu složek výnosu a dalších znaků.

3 Materiál a metodika

3.1 Rostlinný materiál

Pro konstrukci genetické mapy bylo požito 82 linií pšenice jednozrnky (*T. monococcum* L.) F_8 generace RILs (SSD) odvozené z F_2 mapovací populace z křížení DV92 × G3116.

Rodič DV92 je *T. monococcum* ssp. *monococcum* L. kulturní jednozrnka z Titogradu Montenegro v Itálii. Jeho alely jsou označovány písmenem A. Rodič G3116 je *T. monococcum* ssp. *aegilopoides* divoká jednozrnka získaná sběrem v Libanonu. Jeho alely jsou označovány písmenem B. Semena linií mapovací populace F₈ generace a rodičů byli poskytnuty Prof. J. Dubcovským (University of California v Davis).

3. 1. 1 Pěstování mapovací populace

7. – 8. ledna 2009 bylo 18 semen každé linie F₉ generace sterilizováno 1 minutu v 5% Savu a následně omyta ve sterilizované vodě. Semena klíčila v Petriho miskách na buničité vatě, v chladicím boxu při 4 °C. 22. a 23. ledna byla naklíčená semena vysazena do jiffy květináčů (rašelinové květináčky) do pěstitelského substrátu s Agrisorbem (1%) a hnojivem (Hydrokomplex). Rostliny ve stádiu 2 - 3 listu byly jarovizovány 8 týdnů při teplotách 0 – 10 °C. Rostliny byly přihnojovány jednou týdně roztokem 1x Hoagland. 7. a 8. dubna byly rostliny přesazeny ven do připravených venkovních parcel v Olomouci a ve Stupicích. Rostliny byly vysazeny v náhodném rozestavení s použitím metody Latinských čtverců. V průběhu vegetace byly hodnoceny sledované fenotypové znaky a v srpnu byly rostliny sklizeny.

3. 2 Přístroje a zařízení

Magnetická destička, 96 direct Inject Magnet (Beckman Couter, USA)

Stolní mixér, ERGO 7011 (ETA, Česká republika)

Homogenizační oscilační mlýn MM301 (Retsch, Německo)

Chlazená centrifuga Jouan CR4i (Thermo, USA)

Centrifuga Jouan GR2022 (Thermo, USA)

Thermocycler C-1000 (Bio-Rad, Kanada)

ELFO aparatura Dual adjustace Mega gel Kit C-DASG-400-50 (C. B. S. Scientific, USA)

Zdroj, MP-500V Power Supply (Major Science, USA)

Transluminátor Model GVM20 (Syngene chemi Bio Imaging systém, UK)

Dokumentační systém pro analýzu ELFO gelů (Syngene chemi Bio Imaging systém, UK)

Nicolet ANTARIS II FT (Thermo, USA)

Semimikro váhy, SBC 21 (Scaltec, Německo)

Oběhový vodní termostat s lázní, U15C (MLW)

Termostat, BT 120M (Laboratorní přístroje Praha, Česká republika)

3.3 Použité chemikálie a roztoky

3. 3. 1 Roztoky pro vysokovýkonnou izolaci DNA

Basic Lysis Buffer (pH 7,2; 2000 ml):

200 ml 5 M	500 mM NaCl
200 ml 1 M	100 mM Thris-HCl
200 ml 0,5 M	50 mM EDTA

Lyzační pufr (na 100ml Basic Lysis B.):		
0,5 g	Sodium bisulfite	
0,1 g	Ascorbic acid	
100 µl	Merkaptoethanol	
100 µl (30 mg/ml)	RNAsa (0,03 mg/ml)	

AGENCOURT® GENFINDTM v2 - Blood &Serum Genomic DNA Isolation Kit (Berckman Coulter, USA)

3. 3. 2 Roztoky pro preparativní izolaci rostlinné DNA

10x homogenizační pufr (pH 9,4 – 9,5; 2000 ml):

6,85 g	10 mM Spermine
5,09 g	10 mM Spermidine
400 ml 0,5M	100 mM EDTA
200 ml 1M	100 mM Tris Base
119,28 g	0,8 M KCl

1x homogenizační pufr (pro 24 vzorků):

400 ml	10x homogenizační pufr
684,6 g	sacharóza
doplnit dH ₂ O na 4000 ml	

H+20 (400 ml, před použitím zamíchat):

50 ml	10x homogenizační pufr
85,8 g	sacharóza
doplnit dH ₂ O na 400 ml	
100 ml	Triton X-100 míchat

Lyzační pufr pro jádra + 0,05% SDS:400 mllyzační pufr pro jádra20 ml10% SDS

Lyzační pufr pro jádra (2000 ml):

40 ml 5 M	100 mM NaCl
400 ml 0,5 M	100 mM EDTA
100 ml 1 M	50 mM Tris Base
doplnit dH ₂ O na 2000 ml	

TE (500 ml):

5 ml 1 M	10 mM Tris-HCl (pH 8)
1 ml 0,5 M	1 mM EDTA (pH 8)
doplnit dH ₂ O na 500ml	

Proteináza K: (držíme na ledu, pro 24 vzorků, musí být čerstvě připravena)

25 ml	lyzační pufr pro jádra
0,056 g	proteináza K

3. 3. 3 Chemikálie pro polymerázovou řetězovou reakci

10x PCR pufr (40 ml)

4 ml 1 M	100 mM Tris-HCl (pH 8,2)
20 ml 1 M	500 mM KCl
600 µl 1M	15 mM MgCl ₂
0,4 ml	1% Triton X-100
doplnit dH ₂ O na 40 ml	

Nukleotidy (Fermentas, Kanada)

dTTP 100 mM dATP 100 mM dGTP 100 mM dCTP 100 mM

Taq polymeráza Primery (Invitrogen, USA)

3. 3. 4 Chemikálie pro nedenaturující polyakrylamidovou elektroforézu

5x TBE (na 1000 ml)

54 g	0,45 M Tris base
27,5 g	0,45 M kyselina boritá
20 ml 0,5 M	10 mM EDTA (pH 8)

6x Stop C (na 10 ml)

2 ml 0,5 M	100 mM EDTA (pH 8)
0,1 g 10 %	1 % SDS
5 mg	0,05 % bromfenolová modř
5 mg	0,05 % xylenecyanol
5 ml 0,85% glycerolu	42,5 % glycerol

40 % acrylamide : N, N' methylenebisacrylamide 19 : 1 (Fluka analytical, USA)

Tetramethylenthylenediamine TEMED (Fluka BioChemika, USA)

Ammonium peroxodisulfate APS (Fluka BioChemika, USA)

10x Ethidium Bromide (Sigma Aldrich, USA)

Velikostní marker, Gene Ruler ™ 100bp, DNA Ladder Plus (Fermentas, Kanada)

3.4 Metodika

3. 4. 1 Vysokovýkonná izolace DNA

Byla použita rychlá vysokovýkonná metoda pro izolaci DNA z 96 vzorků najednou. Jedná se o upravený protokol pro kit AGENCOURT® GENFIND[™] v2 - Blood & Serum Genomic DNA Isolation Kit (Berckman Coulter).

Na začátku je nutné odebrat 3 x 3 cm mladého listu do 96 jamkové misky a nechat je usušit v lyofilizátoru nebo dva dny při 37 °C. Po vysušení homogenizovat 4 min/27 Hz pomocí homogenizačního oscilačního mlýna se dvěma skleněnými kuličkami (0,5 cm). K homogenizovanému vzorku přidat 1 ml lyzačního pufru a promíchat. Pak inkubovat 45 minut při 65 °C. Po inkubaci centrifugovat 3000 rpm, 10 minut, 4 °C v misce.

Po centrifugaci k 100 μ l lyzátu přidat 5 μ l magnetických kuliček a promíchat. Pak přidat 70 μ l izopropanolu a znovu promíchat a nechat stát 5 minut při pokojové teplotě. Následně misku umístit na magnet na cca 5 minut do vyčeření roztoku. Pak odpipetovat a vyhodit supernatant. Poté mimo magnet přidat 100 μ l Wash Buffer I a důkladně promíchat. Znovu misku umístit na magnet na cca 5 minut opět do vyčeření roztoku. Potom odpipetovat a vyhodit supernatant. Zopakovat kroky použití Wash Bufferu I. Pak pokračovat přidáním 100 μ l Wash Buffer II mimo magnet a promícháním. Misku umístit na magnet na cca 5 minut do vyčeření. Následně odpipetovat a vyhodit všechen supernatant. Mimo magnet přidat 40 μ l H₂O, důkladně rozsuspendovat, nechat stát 2 minuty. Je nutné, aby všechny kuličky byly v elučním roztoku. Nakonec umístit misku na magnet na 10 minut a pak odebrat 38 μ l extrahované DNA do nové misky.

3. 4. 2 Preparativní izolace rostlinné DNA

Pro izolaci celkové DNA z linií mapovací populace byla použita metoda podle Dvořáka *et al.* (1988).

Nasbírat 10 g rostlinných vzorků a zabalit je do označených papírových ručníků a uchovat v ledu. Podle počtu vzorků připravit 200 ml centrifugační kyvety s 5 ml H+20 a umístit je na led.

Následující kroky je nutné dělat v digestoři. Pro 24 vzorků připravit 4000 ml 1x homogenizačního pufru, přidat 4 ml 2mercaptoethanolu, důkladně promíchat a udržovat na ledu. Nůžkami nastříhat rostlinný materiál na malé kousky a vložit do mixéru, přidat 150 ml 1x homogenizačního pufru s 2mercaptoethanolem. Nechat rozmixovat přibližně 1 minutu, mezitím si připravit filtrační aparaturu. Do nálevky dát vrstvu miraclouthu a pod nálevku centrifugační 200 ml kyvetu s 5 ml H+20 a správným označením. Rozmixovaný vzorek pomocí skleněné tyčinky nalít do nálevky. Skleněnou tyčinkou zeškrábat všechno ze dna. Vymačkat přebytečnou tekutinu z miraclouthu. Následně zazátkovat centrifugační kyvetu a jemně zamíchat. Položit zpátky na led a nechat lyzovat aspoň 5 min. Opláchnout mixér, nachystat novou nálevku s vrstvou miraclouthu a novou centrifugační kyvetou. Tyto kroky opakovat dokud nebudou všechny vzorky hotové.

Lyzáty centrifugovat 20 minut při 4000 – 4500 rpm při 4 °C. Mezitím připravit lyzační pufr pro jádra + 0,05% SDS, které se umísti do 65 °C vodní lázně. Připravit proteinázu K – na ledě (viz kapitola 3. 3. 2). Po centrifugaci vylít supernatant do odpadu a postavit kyvety na papírový ručník dnem vzhůru. Dát centrifugovat další kyvety. Pelet rozsuspendovat jemně štětečkem v 1 ml proteinázy K. Přidat 15 ml lyzačního pufru pro jádra + SDS, který je ohřátý na 65 °C. Promíchat jemně dokud není směs viskózní a homogenní. Přelít směs do označených plastových zkumavek (50 ml), zazátkovat a dát na 30 minut do 65 °C vodní lázně. Všechny vzorky najednou. Nakonec v digestoři do všech vzorků přidat 8 ml fenolu a 8 ml chloroformu. Promíchat a nechat přes noc v ledničce.

Druhý den je provedena purifikace extrahované DNA. Do digestoře si připravit vzorky, plynový kahan, 50 ml centrifugační kyvety, 500 ml kádinku a jehlu. V rukavicích odzátkovat kyvetu. Nad kahanem nahřát jehlu a propíchnout jí dno kyvety. Do 500 ml kádinky nechat odtéct fenol a chloroform. Horní vrstvu přelít do čisté označené centrifugační kyvety (50 ml). Provést se všemi vzorky. Přidat do všech kyvet TE pufr až po okraj a vyvážit. Centrifugovat 30 minut při 10 000 rpm a teplotě 14 °C. Po centrifugaci slít supernatant do 250 ml erlenmayerovy baňky.

Purifikovanou DNA přesrážet přidáním 25 ml 3M NaOAc a 500 ml vychlazeného ethanolu. Jemně promíchat. Háčkem ze skleněné kapiláry vylovit vysráženou DNA. Háček s DNA ponořit na 1 minutu do 80 % etanolu, vymáchat. Přemístit DNA do sterilních skleněných zkumavek s 2 - 3 ml TE. Zazátkovat a nechat přes noc opatrně míchat. Skladovat při - 20 °C.

3. 4. 3 Polymerázová řetězová reakce

Polymerázová řetězová reakce byla provedena ve 25 μ l (1x PCR pufr, 200 μ M dNTP, 1 μ M primery, Taq polymerázy 0,5U). Markery (primery) byly vybrány pomocí databáze GrainGenes 2.0 a již zhotovené mapy pro *T. monococcum* L. (Dubcovsky *et al.*, 1996). Bylo vybráno 62 STS a 1 SSR tak, aby pokrývali celou délku

chromozomů a byly od sebe vzdáleny 10 cM. Některé vybrané markery byly zamapovány na více než jednom místě v genomu.

Podmínky PCR pro STS, SSR markery:

Zahřátí	95 °C – 5 min	
Denaturace Přisedání Polymerace	95 °C – 30s viz Tab. I 72 °C – 30 s – 1 min	} 40 cyklů
Závěrečná polymerace	72 °C – 10 min	

Marker	Marker Primery									
	Chromozom 1A									
	SMP F	GCA AGG GAA GAG AAA AGC AG								
x SMP	SMP R	TTT CTC AAT CTC ATG TTA TCC TTC A	55 °C – 30s							
	abc156 F	TTA CGG GAT CAA AGC TGA GGC								
x abc 156	abc156 R	GAC AAG CAA CAC CAA CCA AGC	50 °C – 30 s							
	ksuE18 F	TGA GCC GGT TGC TGT TCG TC								
x ksu E18	ksuE18 R	AAG CAC CGA CAT GGT CAC CC	50 °C – 30 s							
	abg500 F	GCT AGA ACT TGA CCA ATC TC								
x abg 500	abg500 R	AAG AAG AAC CCG GAG AAT CT	Nepřisedá							
	abg452 F	TCT ACC TAG CTT CTT TCA AA								
x abg 452	abg452 R	AGC TGC CAC CAC CCC CAG TG	Nepřisedá							
	abg387 F	GCA CTG GCA TAG TCT CAC AA								
x abg 387	abg387 R	CGA TGC TGG TTC GGT CAT AC	50 °C – 30 s							
	ksuE8 F	TAT GGG CCA GTG ATT TCC AC								
x ksu E8	ksuE8 R	TGC TCG GTT CAA TTG ACT GC	50 °C – 30 s							
	ksuG34 R	GTC TCA GGA AGG TGA TGA TC								
x ksu G34	ksuG34 L	GAG CAG TAG GGT AAA GTA AG	45 °C – 1 min 30 s							
	abc261 F	AGG AAG CTC AAG AAG GTG AA								
x abc 261	abc261 R	AAA GTC AAG AGT TGC ATC AA	50 – 30 s							
	ksuE11 R	CTG TCA CTG CTT CCA TAA CT								
x ksu E11	ksuE11 F	AAG AAA AGC CTT CAA GAC TT	Nepřisedá							
		Chromozom 3A	Přisedání							
	mwg2021 F	GTT CCA CTG GAT GCA CCA CA								
x mwg 2021	mwg2021 R	CAT CAA GCC TCA CAA CAT CC	Nepřisedá							
	mwg813 F	TTG GAC AGG ATG TTG CCA								
x mwg 813	mwg813 R	CAT TCA GTA ACA CCG CCA TG	56 °C - 30 s							
	abg471 F	TGG ATT TGA TGG CGG AGA CC								
x abg 471	abg471 R	CAA GAC TGA CAA CAC AAG AC	50 °C – 30 s							

TGC GTA TGT AAT GTA GGA CT

GGA AAA TAT AAA AAT CAG AT

AGC ACC AAA GCA CCT GAA CC

CGG GAG GAG GGG AAG AGG AC

TTA GAA GCA GGC TAT GAC CA

TAC CAT CAA GAC GCC AGA AG

GTC CGA GGG CCG CCC TAC AC

CCT GAA TCA ACA ACC AAA TA

Nepřisedá

50 °C - 30 s

50 °C – 30 s

50 °C – 30 s

ksuG59 R

ksuG59 L

abg 4 F

abg 4 R

ksuG62 L

ksuG62 R

abc166 F

abc166 R

x ksu G59

x abg 4

x ksu G62

x abc 166

Tab. I: Primery pro jednotlivé markery a jejich teplota přisedání

Marker		PCR							
	Chromozom 2A								
	ksuD18 F	GGA CAC TAA ACT TTA GAG GC							
x ksu D18	ksuD18 R	CCA CTG TTA GGA TTA GTG ATC C	Nepřisedá						
	ksuC2 F	TTT CGC TGT GGC ACT TGT AC							
x ksu C2	ksuC2 R	ATG GAG AAG TCT TAC CTC AGC	Nepřisedá						
	abg459 R	GCC ACC ACG CTC TCC ATT GT							
x abg 459	abg459 L	CCA CGC TCG CTT GCT GAC TC	50 °C - 30 s						
	abg378 R	TTA GTC ATA GAA TCC CTG TT							
x abg 378	abg378 F	AAA ATT CGC CTG TGC TGT GT	50 °C - 30 s						
	mwg503 F	GTC GTC AGA GCC CAC GCC AC							
x mwg 503	mwg503 R	TCC AAG CGG CAA CCA TCC CG	50 °C - 30 s						
	ksuD22 F	AGC AGG AAC AAA CAC ATC AT							
x ksu D22	ksuD22 R	TCG CCG TCA CCC AAC TCA CC	50 °C - 30 s						
	abc153 F	GCC TCT GCC GCT GGA ACT AC							
x abc 153	abc153 R	AAA CAC CTC CTG GCT CTC AG	50 °C - 30 s						
	ksuH16 R	CAC CTT CTT CTT CTT CTA CT							
x ksu H16	ksuH16 F	ACA CTC TTC ATT GGC ATC TC	Nepřisedá						
	mwg949 F	CGG CTG GTA AAT GAA CTG AA							
x mwg 949	mwg949 R	GGC TTC CGC TAC TAC GTC TT	Nepřisedá						

		Chrom	ozom	4A						Přisedání
	abg460A F	TTG	TGT	GGT	AAA	AGT	AAA	AT		
x abg 460.1	abg460A R	TGG	AGG	AGA	GCG	GAA	GAG	AT		50 °C – 30 s
	abg55 R	ATC	CGC	AGC	AGA	TCG	AGG	AC		
x abg 55	abg55 F	CAG	GCA	AGA	TTG	ACG	CAG	TА		50 °C – 30 s
	psr922 F	CAT	GTG	GTC	CCC	ACC	TTC			
x psr 922	psr922 R	AAG	GCA	AGG	TTT	GCT	TCT	CA		52 °C – 30 s
	ksuH8 L	GAG	ACC	GTG	CAT	CTT	CAT	GT		
x ksu H8	ksuH8 R	GCA	TAG	GTG	TTC	CCA	TCT	GA		60 °C – 30 s
	wg464 F	AGT	CCA	AAT	GAT	GTC	ACA	GG		
x wg 464	wg464 R	AGG	ACT	GTG	AAG	ATG	CTA	CT		50 °C – 30 s
	ksuG10 R	TGT	CCA	GCT	TCA	GCG	AGT	AC		
x ksu G10	ksuG10 L	GTG	TTG	ATG	TCC	TTG	AGG	CC		50 °C – 30 s
	abg390A F	AAC	ACA	ACC	ACA	ATA	AAG	AA		
x abg 390	abg390A R	TTT	GAA	CAG	AAG	AAA	ACC	TА		Nepřisedá
	abg463 R	CAA	ATC	CCC	AAG	ATA	AAA	TG		
x abg 463	abg463 F	ATG	CCC	CAC	TCA	AAT	AGT	TΤ		Nepřisedá
	mwg851A R	GTG	CAA	TAC	CAG	CAA	ACT	CA		
x mwg 851	mwg851A F	CAT	AGC	AGA	ACG	TCT	CAA	GT		50 °C – 30 s
	wmc283 R	GAC	CCG	CGT	GTA	AGT	GAT	AGG	A	
x wmc 283	wmc283 F	CGT	TGG	CTG	GGT	TAT	ATC	ATC	Т	60 °C – 30 s

Marker		PCR	
	Přisedání		
	abg497 F	GGA TGA GGA GAT ACA TGG AGC	
x abg 497	abg497 R	CAT TTG GTG GTC AAC AAG GC	Nepřisedá
	mwg920 R	GTC ACC GCC CGT CAC GTT GCG CTT CA	
x mwg 920	mwg920 F	GAG TAC CGC GAC CGT CGC GCT CGA GC	50 °C – 30 s
	abg395 F	TTA GGA AAG CGA TGG ACA CA	
x abg 395	abg395 R	TTA CAG GGC CAG GGT TAC TG	50 °C – 30 s
	ksuH9 F	GTG TAT CAC AAG CTT GCT GT	
x ksu H9	ksuH9 R	ATT GAC CAT TGC CCG GAG AA	50 °C – 30 s
	wg530 R	GAG ACC AAA GAT TCA ACA GC	
x wg 530	wg530 L	CAA TGC TCC AAA TCT CAC CA	52 °C – 30 s
	mwg820 F	GGG GAG AAA ATG CAT GCA AT	
x mwg 820	mwg820 R	CAG CGT CGT ATA AAT GTC TT	50 °C – 30 s
	ksuG14 R	GGA GGC TAT GGG TGC GTC AAC	
x ksu G14	ksuG14 F	AGC CCA ACC TGT AAA CAA CAC	50 °C – 30 s
	ksuF1 R	CAG TGG TTC ACG ATA GTA GAT	
x ksu F1	ksuF1 F	TTG GAT AAC TTC AGT CAG ATG	Nepřisedá
	wg114 R	GGC TCA ATA GAA TAG TAT CA	
x wg 114	wg114 L	ATC ACA ACA TTT CAG AGT TT	50 °C – 30 s
	ksuH11 R	GTA GCC GCT AAT CTC GTC TGT	
x ksu H11	ksuH11 F	CGA TCT CAT AGC GAA TAT GT	Nepřisedá

	Přisedání								
	abg704 F	ATA	TGC	TCG	ATG	CTG	ATT	AG	
x abg 704	abg704 R	CCT	TCT	TCA	GAT	TCC	TAC	CA	Nepřisedá
	mwg530 F	CGA	TCT	GGA	CAT	CGA	AAG	CC	
x mwg 530	mwg530 R	GCT	AGT	GCT	CTT	GCC	AAG	TCG	Nepřisedá
	ksuD9 R	GGT	GAC	GAC	CCG	AGC	GTT	GAT	
x ksu D9.1	ksuD9 L	CAC	CAG	ATA	TTG	CTT	GCC	TCC	52 °C – 30 s
	abc152 R	TCC	GCA	AGT	ACC	AGA	AGA	GC	
x abc 152	abc152 F	GAC	AAG	GAA	AGC	CAA	TCA	AC	60 °C – 30 s
	abc465 F	GCT	ACT	GGG	ACA	AAA	TCT	CC	
x abc 465	abc465 R	CAC	GAC	AGA	CGG	ACC	AAA	TG	56 °C – 30 s
	abc310 F	TCC	TGA	TGG	TCC	TCT	TAT	GC	
x abc 310	abc310 R	ACA	TAG	TTC	TCT	TCC	CAG	ТА	48 °C - 1 min
	abc305 F	GAC	AAC	GGC	CAA	CAA	ATC	TA	
x abc 305	abc305 R	AGC	ATG	TCA	TTG	AAC	ACT	TC	56 °C – 30 s
	abg461 R	TAG	AAG	TAG	AAA	AAG	GAA	CC	
x abg 461	abg461 F	GAA	GAA	CAA	CCA	ATA	GAA	TG	50 °C - 1 min
	mwg2062 F	TCT	CGC	TGG	TAT	TCA	GGG	TCC	
x mwg 2062	mwg2062 R	AAA	CGA	TAG	CAA	GAG	GAA	CCG	50 °C – 30 s

Marker			Pri	mery					PCR
Chromozom 6A									Přisedání
	abg466 F	TGC	ACG	CGC	TGT	GGC	ATC	TC	
x abg 466	abg466 R	CCA	AGC	ATT	CCA	ACC	TTA	GC	50 °C – 30 s
	mwg573 R	CTG	CAC	TCA	TGT	CAG	CAA	GA	
x mwg 573	mwg573 F	GAC	CAA	CGG	GAG	ATG	CTC	GT	Nepřisedá
	ksuG48 F	CGG	TAG	GGC	TCG	TGC	TCA	CC	
x ksu G48	ksuG48 R	AGG	GAG	GCT	CGC	TGG	TTT	TT	50 °C – 30 s
	abg458 L	GAG	AGC	CGA	TGA	CGG	TAT	GT	
x abg 458	abg458 R	CTT	GGA	CAC	ATG	CCA	TAT	CC	Nepřisedá
	abg20 F	GGC	AAC	CGC	AAG	AAA	GAA	AG	
x abg 20	abg20 R	CCT	CTC	ATG	TCA	GAG	CAT	TT	Nepřisedá
	nar7 R	TCA	CCG	AGT	TGA	TGT	TGA	GC	
x Nar7	nar7 L	TTC	GAC	CTC	TTC	TCC	TCC	TC	50 °C – 30 s
	abc154 F	TTC	ATT	TCA	TCG	TTT	TCA	TA	
x abc 154	abc154 R	ATC	AGG	TTC	AGC	AGT	GTT	TA	Nepřisedá
	mwg2053 R	CCC	CGG	TAT	CCT	CAA	ATG	CA	
x mwg 2053	mwg2053 F	GTT	TTC	GCG	ACG	ATG	TCC	TT	50 °C – 30 s

Marker	Primer	Marker	Primer	Marker	Primer
3157	ATT CCA CAC GTG CAT ATG GGT	3138	ACG CAA GAG CTG CCG CCC GAG AGA A	3118	CTC GAC AGT AAT TTG TTC ACC CAC C
3156	ATC CTC GCG GTT GGG AGG TTG T	3137	GCG GCA GCT CTT GCG TTA TCC	3117	TGA AAC CTA TGG CCC CCG GGT C
3155	CAA ACC TTG TAT GCA CTC TCC A	3136	CAT ACT AAT GGC GCA CCA CAC	3116	GTG TGA GTA GTT TAC CTC AGA CC
3154	TGT CGT GGT TCT AAG TCT GAC AGT A	3135	TGC CAC CGA TAG CCA TCC ATG A	3115	AGG AAC TGG CAC TTG GCA CTG AG
3153	TAC TGT CAG ACT TAG AAC CAC GAC A	3134	GGT CCA CGA AGA AGC AAC CT	3114	GAG TTG CAT ATT GAC GAA ACA CCA C
3152	TGA TGA AGC TAT GTA CCT AGG GTA GG	3133	CGT GGA TGT ACG ATA GCA CCA C	3113	AGC GTT GCT AGT TGC AGG TGA AGA
3151	GGT CCA TGA CCC TAC CCT AGG TAC A	3132	ACG TAA TCT CGG TGA GAC CG	3112	TCA CCT GCA ACT AGC AAC GCT
3150	TGT GGC AAT GAC AGG TCA TGC A	3131	CAC CTA GGG ATT AGT TGC ACT TTC A	3111	CAC ATA ACC GCG GGC ACG GCT TTC G
3149	CTT AGG ATC GGG GTC CCG ACA	3130	GCA TCA TGA AAT TGG TGA TGG AGG A	3110	ATA GCC GCA TCG AGG GCG TTA CA
3148	CTT AGG TTG GCC GGC ATG TGT CC	3128	CCT TTG TTT CGG TGC AAA TGG GT	3109	ATG CGG TTA TGC CTC TAA GTC GTG C
3147	GCT ACC TTT ACC AAA TCG TGT TCA C	3127	TTG CAC CGA AAC AAA GGG ACC T	3108	TTC CTA CGC ACA CGC AAG ATC
3146	GCA TGA CCT GTC ATT GCC ACA GT	3126	GGT TCC TGC TAA GGT GAT GTG GT	2107	AGC ATG ATG CAA AAT GGA CGT ATC A
3145	CTC GTG CGT TCG CCT CGA TCT GCT C	3125	GCA CAG GTT TTC TAT GTG AAG GAC A	2106	TAA TTT CTG CAA CGT TCC CCA ACA
3144	TCG AGT TCT GTT CAT AGG TTG TCA C	3124	GGA TGC AGT CAT TAG GGC ATG	692	GCG ATT GCT AAG GCG CAA CG
3143	CGA CTT TGA CGA TCC GAC TAC A	3123	CAG TCA CAC CAT TCT CTG CCT TCC A	679	GGG TCG CAT ATT GGG CGT GAC
3142	TCG TAG TTG CGG ATG CTT GC	3122	AGT TCG GGA CCC CCT ACC CGA GAT C	675	AGC GCG CGT GCT GGG CTG GG
3141	TTC TCC CTC TTC ATG TAA ACC TTG	3121	CCC TAA TCC AGG ACT CCC TCA	640	TCC CAT GCG ACG TTC CCC
3140	GCA TGA TGC AAA ATG GAC GTA TCA G	3120	GAC CGC TAT CCA GCA TGC ATC T	554	CCA ACT AGA GGC TTG CTA GGG AC
3139	GCA TGA TGC AAA ATG GAC GTA TCA C	3119	GCA TGC TGG ATA GCG GTC GAT G		

Tab. II: Primery pro IRAP markery

Pro zahuštění mapy bylo také použito 56 IRAP markerů (Tab. II), které poskytl Doc. R. Kalendar (Institute of Biotechnology, University of Helsinki, Finsko), a 769 DArT markerů (http://www.diversityarrays.com).

Podmínky	y PCR	pro	IRAP	markery	y:
-		-		-	_

Zahřátí	95 °C – 5 min		
Denaturace Přisedání Polymerace	95 °C – 30s 60 °C – 1 min 72 °C – 30s	}	30 cyklů
Závěrečná polymerace	72 °C – 10 min		

3. 4. 4 Nedenaturující polyakrylamidová elektroforéza

Pro separaci vzorků po PCR byla použita nedenaturující polyakrylamidová elektroforéza. Byla použita jak 4%, tak i 6% nedenaturující polyakrylamidová elektroforéza (Tab. III), vždy v závislosti na délce očekávaného produktu.

Chemikálie	4% gel	6% gel
40% Akrylamide : N, N' –	15 ml	22,5 ml
Methylenebisacrylamide 19:1		
TEMED	110 µl	110 µl
10x APS	1 ml	1 ml
5x TBE	Doplnit do 150 ml	Doplnit do 150 ml

Tab. III: Rozpis chemikálií na polyakrylamidový gel

Připravit gel smícháním chemikálií v požadovaném poměru (Tab. III) a nechat ztuhnout asi 45 minut při pokojové teplotě. Po ztuhnutí vložit gel do vertikální elektroforetické aparatury. Naplnit horní i dolní vaničku aparatury 0,5 x TBE pufrem a do dolní vaničky přidal 8 µl ethidiumbromidu (10%). Před nanášením vzorků nechat gel 60 min při 350 V (prerun). Mezitím připravit vzorky s nanášecím pufrem (6 x Stop C) v poměru jeden díl nanášecího pufru a 9 dílů PCR produktu. Po prerunu odpojit aparaturu od zdroje a nanést 5 µl vzorku (pro IRAP markery je třeba nanášet 15 µl vzorku). Dělení PCR produktů provádět při 300 V 30 - 90 min dle délky separovaných fragmentů.

3. 4. 5 Konstrukce genetické mapy

Genetická vazebná mapa byla konstruována za použití programu JoinMap 4 (Van Ooijen, 2006) analýzou rekombinační frekvence mezi všemi polymorfními markery. Genetická vzdálenost mezi jednotlivými markery byla vypočítána pomocí Kosambi funkce (Kosambi, 1943). Pro identifikaci vazebných skupin byla použita metoda regresního mapování. Pro identifikaci vazby markerů byly využity pouze kombinace markerů s rekombinační frekvenci menší než 0,4 a LOD skóre větším než 1. Po přidání každého markeru bylo provedeno přepočítání s ohledem na přilehlé tři markery (ripple).

3. 4. 6 Hodnocení fenotypu

Fenotypické pokusy byly prováděny ve dvou opakováních pro linie ze dvou lokalit (Olomouc a Stupice). Bylo sledováno celkem osm znaků, tři pro výnos (váha tisíce zrn, počet obilek na klas a délka klasu), tři agronomicky významné znaky (výška rostliny, rozpadavost klasu a obsah dusíku v sušině semen) a dva morfologické znaky, ve kterých se rodiče významně odlišovali (ochlupení listů a rozkladitost trsu). V Olomouci bylo sledováno všech osm znaků. Ve Stupicích byly sledovány 4 znaky (váha tisíce zrn, počet obilek na klas, výška rostliny, ochlupení listů).

- Váha tisíce zrn z každé linie bylo vyloupáno a očištěno od plev 100 zrn, které byly následně zváženy. Pro statistické zpracování byly hodnoty přepočítány na váhu jednoho zrna.
- Počet obilek na klas u každé linie bylo vybráno pět nejstarších klasů, u kterých byl spočítán počet obilek. Pro následnou statistickou analýzu byly použity průměrné hodnoty pro rostlinu.
- *Délka klasu* byla změřena délka klasů použitých pro stanovení počtu obilek na klas. Pro další statistickou analýzu byly hodnoty zprůměrovány.
- Výška rostliny u jednotlivých rostlin byla změřena výška od půdy po poslední obilku nejvyššího klasu.

- *Rozpadavost klasu* byla provedena ve dvou opakováních ve srovnání s rodičovskými liniemi. Rodič DV92 má nerozpadavý klas, označen jako 0. Rodič G3116 má klas rozpadavý, označen jako 1.
- *Obsah dusíku v sušině semen* pomocí přístroje Nicolet ANTARIS II FT (Thermo Scientific, USA) byl změřen obsah dusíku v sušině pro každou linii.
- Ochlupení listů byla hodnocena vizuálně dvěma pozorovateli. Rodič DV92 nemá na listech skoro žádné chlupy, označeno jako 0. Rodič G3116 má listy ochlupené výrazně, označeno jako 1.
- *Rozkladitost trsu* byla hodnocena vizuálně dvěma pozorovateli podle pokynů Bareše *et al.* (1985).

3. 4. 7 QTL analýza

QTL analýza byla provedena za použití sesbíraných fenotypických dat za jeden rok za dvou lokalit (Olomouc, Stupice). Byla provedena pomocí programu R/Qtl (Broman *et al.*, 2003), který pro detekci QTL lokusů využívá jednoduché mapování pomocí intervalu.

3.5 Software

Pro zpracování výsledků, konstrukci genetické mapy a QTL analýzu byly požity tyto počítačové programy:

- *JoinMap 4* (Van Ooijen, 2006) pro vytvoření mapy.
- *Microsoft Office Excel 2007* jednoduché statistické metody a zpracování sesbíraných fenotypických dat.
- *R/Qtl* (Broman *et al.*, 2003) pro detekci QTL pro změřené znaky.

4 Výsledky

4.1 Molekulární markery

Bylo otestováno celkem 62 STS, 56 IRAP a 1 SSR marker. Z 62 testovaných STS markerů bylo 39 polymorfních, avšak některé markery poskytli až devět polymorfních fragmentů na jednu PCR (Obr. 4). Markery, které nebyly polymorfní a dávali jeden fragment pro celou mapovací populaci (monomorfní), mohou být osekvenovány a převedeny na SCAR nebo CAPS markery. Z 56 IRAP markerů bylo 9 polymorfních, ale i přesto dávaly až 5 polymorfismů na jednu PCR (Obr. 5). naší Ze 769 DArT mareků polymorfních na mapovací populaci bylo 579 informativních. Ostatní byly vyřazený z důvodů chybějících nebo arteficiálních signálů na DNA rodičovských linií.

M - velikostní marker, A - rodič DV92, B – rodič G3116, H – heterozygot, K – negativní kontrola, šipky označují polymorfní fragmenty, červená – kodominantní fragmenty, černé - dominatní fragmenty

Obr. 5: Příklad IRAP marker IRAP 692

(a) gel po 20 minutách běhu, (b) gel po hodině běhu

M - velikostní marker, A - rodič DV92, B – rodič G3116, H – heterozygot, K – negativní kontrola, šipky označují polymorfní fragmenty, černé - dominatní fragmenty

4. 2 Genetická mapa

Byla zkonstruována genetická mapa pomocí 39 STS, 1 SSR, 9 IRAP a 579 DArT markerů a za využití programu JoinMap 4 (Van Ooijen, 2006). Pro identifikaci jednotlivých vazebných skupin byla použita metoda regresního mapování a pro výpočet rekombinační frekvence mezi jednotlivými markery byla použita funkce Kosambi (Kosambi, 1943). Bylo identifikováno sedm vazebných skupin o celkové délce 829 cM. Jednotlivé vazebné skupiny byly přiřazeny k chromozomům *T. monococcum* L. pomocí DArT markerů, u kterých byla lokalizace poukázána již dříve. Nemohli být využity STS markery vybrané z již zhotovené mapy (Dubcovsky *et al.*, 1996), protože některé markery byly zamapovány na více míst v genomu a jiné dávali více polymorfních fragmentů z jedné PCR.

Bylo tedy identifikováno všech sedm chromozomů *T. monococcum* L. (Tab. IV). Jednotlivé chromozomy jsou znázorněny na obr. 6. U chromozomů není zatím určena jejich orientace a centromery.

Dosažené výsledky Dubcovsky <i>et al.</i> (1996)		Singh <i>et al.</i> (2007)			Quarrie <i>et al.</i> (2005)						
Chromozom	Délka [cM]	Počet markerů	Chromozom	Délka [cM]	počet markerů	Chromozom	Délka [cM]	počet markerů	Chromozom	Délka [cM]	počet markerů
1A ^m	121,526	102	1A ^m	157	51	1A ^m	171	28	5A	190	
2A ^m	157,085	93	2A ^m	168	42	2A ^m	205	42	4A	179	data
3A ^m	114,73	111	3A ^m	145	31	3A ^m	254	27	2A	170	ı nejs
4A ^m	83,46	49	4A ^m	127	46	4A ^m	79	12	7A	167	sou
5A ^m	117,685	89	5A ^m	192	80	5A ^m	224	32	3A	158	dostı
6A ^m	124,945	69	6A ^m	144	30	6A ^m	89	14	6A	151	ıpná
7A ^m	108,607	115	7A ^m	146	48	7A ^m	238	24	1A	131	
Σ	828,038	628	Σ	1067	328	Σ	1260	179	Σ	1146	224

Tab. IV: Délka jednotlivých chromozomů a počet zamapovaných markerů

Dubcovsky *et al.* (1996): mapovací populace 72 rostlin odvozené z křížení *T. monococcum* ssp. *monococcum* × T. *monococcum* ssp. *aegilopoides*

Singh *et al.* (2007): mapovací populace 121 rostlin odvozených z křížení *T. boeticum* × *T. monococcum*

Quarrie et al. (2005): mapovací populace 95 rostlin hexaploidní pšenice odvozené z křížení Chinese Spring × SQ1

Chromozom IA^m

Na levé straně jsou uvedeny vzdálenosti jednotlivých markerů v cM. Na pravé straně jsou jednotlivé markery. Markery začínající písmeny G nebo dv jsou DArT markery, IRAP markery jsou označeny jako IRAP. Ostatní jsou STS markery. 14 QTL je vyznačeno na pravé straně chromozomu. Odbélník znázorňuje QTL lokus. Výška rostliny ■(Ph), chlupatost □ (Ha), ochlupení listů (Es), váha tisíce zrn □(Tgw), počet obilek na klas (Gn), obsah dusíku v sušině semene Gp), délka klasu (El).

Obr. 6 (pokračování) Chromozom 2*A*^m

Obr. 6 (pokračování) Chromozom $3A^m$

0.0 3.8 4.8 6.1 10.1 10.2 10.8 13.5 14.8 13.5 12.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.2 23.3 23.3 23.5 23.4 30.6 39.1 39.3 39.5 39.3 14.5 14.7 14.9 14.6 14.0 14.0 14.6 14.0	r dv-645 dv-573 dv-518 G-219 dv-258 G-175 dv-287 dv-504 dv-351 G-1 dv-351 G-1 dv-475 G-213 G-159 G-122 G-12 G-10 G-16 G-18 dv-359 dv-451 dv-432 dv-359 dv-404 dv-433 - dv-559 dv-404 dv-433 - dv-507 dv-285 dv-831 - dv-896 - dv-851 - dv-859 - dv-851 - dv-859 - dv-859 - dv-481 - dv-859 - dv-855 - dv-859 - dv-85 - dv-85	$QEs.ieb.3A^m$
45.7 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0 52.4 52.5 52.6 52.9 53.8 54.5 56.7 60.3 64.1 65.9 66.0 68.1 69.6 77.0 77.6.5 77.0 77.6.5 77.0 77.6.5 77.0 77.6.5 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 <td>dv-285 dv-485 dv-538 G-225 G-99 G-236 G-27 dv-547 dv-380 G-151 G-52 G-52 G-218 dv-585 WG464_2 G-151 G-52 G-218 dv-585 WG464_2 G-218 dv-585 WG464_2 G-262 ABG461_1 - ABG310_1 G-262 ABG461_1 - ABG310_1 G-50 G-263 dv-334 dv-649 dv-398 dv-334 dv-649 dv-398 dv-334 dv-649 dv-398 dv-334 dv-647 dv-651 G-253 dv-520 dv-281 ABC166_1 G-55 dv-520 dv-281 ABC166_1 G-55 dv-520 dv-281 ABC166_1 G-55 dv-381 G-47 dv-646 dv-381 G-196 dv-412 dv-646 dv-381 G-196 dv-412 dv-646 G-237 ABC305_1 dv-648 Hdv-514 dv-283 Hdv-647 dv-489 dv-412 dv-401 LRAP3149_2 ABC305_2 G-84 Hdv-514 dv-283 Hdv-616 dv-420 G-101 dv-470 G-101 dv-477 G-84 Hdv-510 ABC153_1 dv-64 G-23 G-84 Hdv-576 dv-380 dv-428 dv-420 dv-420 dv-420 dv-420 dv-64 dv-56 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-64 dv-65 dv-64 G-237 ABC305_2 G-84 dv-64 dv-57 dv-64 dv-64 dv-57 dv-65 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-65 dv-283 dv-427 dv-60 dv-420 dv</td> <td>$QHa.ieb.3A^m$</td>	dv-285 dv-485 dv-538 G-225 G-99 G-236 G-27 dv-547 dv-380 G-151 G-52 G-52 G-218 dv-585 WG464_2 G-151 G-52 G-218 dv-585 WG464_2 G-218 dv-585 WG464_2 G-262 ABG461_1 - ABG310_1 G-262 ABG461_1 - ABG310_1 G-50 G-263 dv-334 dv-649 dv-398 dv-334 dv-649 dv-398 dv-334 dv-649 dv-398 dv-334 dv-647 dv-651 G-253 dv-520 dv-281 ABC166_1 G-55 dv-520 dv-281 ABC166_1 G-55 dv-520 dv-281 ABC166_1 G-55 dv-381 G-47 dv-646 dv-381 G-196 dv-412 dv-646 dv-381 G-196 dv-412 dv-646 G-237 ABC305_1 dv-648 Hdv-514 dv-283 Hdv-647 dv-489 dv-412 dv-401 LRAP3149_2 ABC305_2 G-84 Hdv-514 dv-283 Hdv-616 dv-420 G-101 dv-470 G-101 dv-477 G-84 Hdv-510 ABC153_1 dv-64 G-23 G-84 Hdv-576 dv-380 dv-428 dv-420 dv-420 dv-420 dv-420 dv-64 dv-56 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-64 dv-65 dv-64 G-237 ABC305_2 G-84 dv-64 dv-57 dv-64 dv-64 dv-57 dv-65 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-64 dv-65 dv-283 dv-427 dv-65 dv-283 dv-427 dv-60 dv-420 dv	$QHa.ieb.3A^m$

Obr. 6 (pokračování) Chromozom $4A^m$

 $QGn.ieb.4A^m$

Obr. 6 (pokračování) Chromozom *5A^m*

Obr. 6 (pokračování) Chromozom $6A^m$

Obr. 6 (pokračování) Chromozom 7*A*^{*m*}

4.3 QTL analýza

Ve fenotypických pokusech bylo sledováno celkem osm znaků – váha tisíce zrn, počet obilek na klas, délka klasu, výška rostliny, rozpadavost klasu, obsah dusíku v sušině semen, ochlupení listů a rozkladitost trsu. Všechna sesbíraná data ze dvou lokalit pro tyto znaky, byla podrobena QTL analýze pomoci programu R/Qtl (Broman *et al.*, 2003). U rozkladitosti trsu byla pozorována velká variabilita i v rámci jedné lokality, proto nebyl tento znak zahrnut do QTL analýzy.

Bylo identifikováno celkem 14 QTL lokusů (Tab. V). Na chromozomu 6A^m nebyl identifikováno žádné QTL lokus, naopak na chromozomu 7A^m byly nalezeny čtyři QTL lokusy. Pro váhu tisíce zrn bylo identifikováno nejvíce QTL lokusů, a to na chromozomech 2A^m, 4A^m, 7A^m a 1A^m. Pro ochlupení listů, rozpadavost klasu, počet obilek na klas a obsah dusíku v sušině semene bylo identifikováno po dvou QTL lokusech. Na chromozomu 2A^m byl nalezen QTL lokus pro výšku rostliny a také jeden QTL lokus byl nalezeno pro délku klasu a to na chromozomu 7A^m.

Všechny identifikované QTL lokusy jsou znázorněny na Obr. 6. QTL lokusy jsou pojmenovány podle používané nomenklatury.

Znak	QTL na T. monococcum L.	Publikované QTL na ostatních pšenicích	Citace	
Ochluponí listů	$QHa.ieb.5A^m$	4B 4D	Dobrovolskaya et al. (2007)	
Oemupem iistu	$QHa.ieb.3A^m$			
Rozpadavost	$QEs.ieb.3A^m$	Nebylo publi	ikováno	
klasu	$QEs.ieb.1A^m$			
		1B, 2B, 3A, 3B, 7A	Maccaferri el al. (2008)	
		5A	Peng et al. (2003)	
Výška rostliny	QPh.ieb.2A ^m	1A, 2D, 4A, 6A	Börner et al. (2002)	
		2B, 2D, 3B,4B, 6A	Marza <i>et al</i> . (2006)	
		1A, 1D, 3B, 4B, 5A, 6A, 6D, 7D	Huang et al. (2004)	
	$QTgw.ieb.2A^m$	3A, 7D, 5D, 6A, 1D	Li et al. (2007)	
	$QTgw.ieb.4A^m$	1B, 2A, 4A, 5A, 5B. 5B, 6B, 7A, 7B	Peng et al. (2003)	
Váha tisíce zrn	$QTgw.ieb.7A^m$	2B, 5B, 7A	Groos et al. (2003)	
	QTgw.ieb.1A ^m	1B, 2D, 4B, 6A, 7A, 7D	Huang et al. (2004)	
		2D, 3B, 5A, 7A	Cuthbert et al. (2008)	
Počet obilek na klas	$QGn.ieb.7A^m$		Ma et al. (2007)	
	$QGn.ieb.4A^m$	5A, 5B, 7D, 2D, 1B, 7A		
Obsah dusíku	$QGp.ieb.7A^m$	2A, 3A, 4D, 7D	Groos et al. (2003)	
v sušině semene	$QGp.ieb.5A^m$	7A, 2D	Börner et al. (2002)	
Délka klasu		1B, 4A, 5A	Börner et al. (2002)	
	QEl.ieb.7A ^m	1A, 2D, 5A, 7D	Ma et al. (2007)	
		1A, 1B, 2B, 3B, 4B, 5B, 7A, 7B	Marza <i>et al.</i> (2006)	

Tab. V: QTL lokusy nalezeny u *T. monococcum* L.

5 Diskuse

Použitím 82 RILs linií mapovací populace odvozené z křížení T. *monococcum* ssp. *monococcum* DV92 × *T. monococcum* ssp. *aegilopoides* G3116 a 628 markerů (579 DArT, 1 SSR, 9 IRAP a 39 STS markerů) byla získaná do této doby nejhustější genetická mapa genomu A pšenice o celkové délce 829 cM.

V porovnání s již publikovanými mapami genomu A se jedná překvapivě o nejkratší mapu. Pro srovnání např. genetická mapa pro 74 F_2 linií mapovací populace vycházející ze stejného křížení má celkovou délku 1 067 cM a 328 zamapovaných RFLP markerů (Dubcovsky *et al.*, 1996). Další mapa založená na 179 SSR a RFLP markerech a 93 RILs liniích mapovací populace z křížení *T. monococcum* × *T. boeticum* (Singh *et al.*, 2007) má celkovou délkou 1 260 cM. Nebo mapa pro genom A hexaploidní pšenice pro mapovací populaci 96 DHLs linií měla celkovou délku 1 146 cM s 224 markery (Quarrie *et al.*, 2005). Pravděpodobným vysvětlením pro menší celkovou délku naši mapy v porovnání s ostatními mapami genomu A pšenice může být charakter DArT markerů. Protože DArT markery jsou dominantní a většina STS markerů přidaných do této mapy byla také dominantní. To znamená, že jedna čtvrtina až polovina možných rekombinací můze být utajena. Zohledněním této skutečnosti by celková délka mapy byla asi 1 036 – 1 243cM, což koresponduje s délkami již zmiňovaných *T. monococcum* L. map (Dubcovsky *et al.*, 1996; Singh *et al.*, 2007)

V naší mapě je 4A^m chromozom nejkratší, s 49 zamapovanými markery. Ke stejnému výsledku dospěli i Dubcovsky *et al.* (1996) a Singh *et al.* (2007). Naopak chromozom 4A u hexaploidní pšenice je geneticky i fyzicky druhým nejdelším chromozomem (Quarrie *et al.*, 2005, Doležel *et al.*, 2009). Za relativně velkou délku vděčí chromozom 4A translokacím. První translokace nastala na úrovni diploidního předka, kdy došlo k translokaci 5AL chromozomu. Druhá translokace části chromozomu 7BS do chromozomu 4AL vznikla během evoluce u tetraploidního předka hexaploidní pšenice (Devos *et al.*, 2004). Malý počet zamapovaných markerů na chromozomu 4A^m může svědčit o malé sekvenční variabilitě tohoto chromozomu mezi liniemi, která je všeobecně připisována homogenizačnímu efektu rekombinací (Emrich *et al.*, 2007). Na druhou stranu může být malá genetická délka chromozomu 4A^m způsobena nízkou frekvencí rekombinací, což je v protikladu s předešlým předpokladem. Dalším vysvětlením může být malý počet markerů, které nejsou schopny

odhalit všechny rekombinační události. Jednoznačné odpovědi na tyto otázky vyžaduje další studium.

5.2 QTL pro komponenty výnosu

Dalším cílem diplomové práce bylo otestovat vhodnost konstruované genetické mapy pro QTL analýzu složek výnosu a dalších znaků. Byla provedena analýza QTL pro výnosové prvky (váha tisíce zrn, počet obilek na klas a délka klasu), tři agronomicky významné znaky (výška rostliny, rozpadavost klasu a obsah dusíku v sušině semen) a dva morfologické znaky, ve kterých se rodiče významně odlišovali (ochlupení listů a rozkladitost trsu). Tyto znaky byly sledovány jeden rok ve dvou lokalitách a ve dvou opakováních.

Bylo identifikováno celkem 14 QTL lokusů (Tab. V) v celém genomu. U hexaploidní pšenice bylo zamapováno až 64 QTL lokusů pro 11 prostředí (Börner *et al.*, 2002), což by bylo 21 QTL lokusů na jeden genom. V této studii byl QTL experiment opakován pouze jednou pro dvě lokality. Předpokládáme, že po více opakováních bude nalezeno více QTL lokusů. Nejvíce QTL lokusů bylo na chromozomu 7A^m, což by mohlo souviset s nejvíce zamapovanými markery na tomto chromozomu. Naopak na chromozomu 6A^m nebyl identifikován žádný. Pro některé znaky jsou na tomto chromozomu minoritní QTL lokusy (LOD skóre nižší než 2). Až výsledky z dalších lokalit a sezón ukážou, jestli se tyto QTL lokusy dostatečně projeví.

Nejvíce QTL lokusů, čtyři, bylo nalezeno pro váhu tisíce zrn, a to na chromozomech $2A^m$, $4A^m$, $7A^m$ a $1A^m$. U hexaploidní pšenice je tento znak, také zamapován skoro na všech chromozomech genomu A, s výjimkou 1A chromozomu. QTL lokusy pro váhu tisíce zrn na chromozom 7A také identifikovali ve své práci Peng *et al.* (2003), Groos *et al.* (2003), Huang *et al.* (2004) a Cuthbert *et al.* (2008). Jen Peng *et al.* (2003) identifikovali QTL lokus po váhu tisíce zrn také na chromozomech 2A a 4A. QTL lokus pro váhu tisíce zrn na 1A nebyl nikde identifikován, ale byly identifikovány QTL lokusy na 1B a 1D chromozomech (Peng *et al.*, 2003; Huang *et al.*, 2004; Li *et al.*, 2007). Jestli se jedná o ortologní lokusy a nebo úplně nový lokus, vyžaduje další zkoumání. Dva QTL lokusy byly identifikovány pro počet obilek na klas, a to na chromozomech $7A^m a 4A^m$. U hexaploidní pšenice QTL pro počet obilek na klas byl zamapován zatím jen na 7A chromozomu (Ma *et al.*, 2007). Většina prací na hexaploidní pšenici se spíše zaměřuje na znak počet zrn na klas, který se skládá z počtu obilek na klas a počtu zrn na obilku. V budoucnu by mohlo být zajímavé se zaměřit na tyto znaky, protože rodiče naší mapovací populace se v těchto znacích výrazně odlišují. Rodičovská linie DV92 má jen jedno zrno na obilku, kdežto druhá rodičovská linie G3116 má většinou dvě zrna na obilku. Minoritní QTL lokus pro počet obilek na klas byl nalezen na $1A^m$ chromozomu. Nejspíše odpovídá lokusu *EPSA^m1*, který má pravděpodobně pleiotropní efekt, protože má vliv také na kvetení a je ovlivňován teplotou (Bullrich *et al.*, 2002; Lewis *et al.*, 2008). V dalších sezónách se ukáže, jestli se tento lokus projeví výrazněji i v podmínkách našeho experimentu.

Pro další agronomicky významný znak, délku klasu byl identifikován jeden QTL lokus na chromozomu 7A^m. U hexaploidní pšenice byla délka klasu zamapována jak na 7A chromozomu (Marza *et al.*, 2006) tak i na chromozomu 7D (Ma *et al.*, 2007). Tyto výsledky naznačují, že pro oba tyto lokusy mapované na chromozomech 7, se pravděpodobně jedná o homologní geny. Ma *et al.* (2007) připustili, že QTL lokus na chromozomu 7D má největší vliv na délku klasu a působí jinak na délku klasu než jiné QTL lokusy které mapovaly 2D a 5A.

Pro znak rozpadavost klasu, v anglické literatuře označovaný jako "brittle rachis", byl QTL lokus zamapován na dvou chromozomech $1A^m$ a $3A^m$. Předpokládalo se, že tento znak je spojen s domestikačním lokusem Q, ale v poslední době se ukázalo, že tomu tak není. Byly identifikovány dva geny *Br1* a *Br2* jak u hexaploidní tak i tetraploidní pšenice. *Br1* byl mapován na 3AS chromozomu a *Br2* na 3DS chromozomu pšenice (Li *et* Gill, 2006). Právě gen *Br1* na 3AS chromozomu by mohl odpovídat našim zjištěním.

Pro výšku rostliny byl identifikován jen jeden QTL lokus na chromozomu 2A^m. U hexaploidní a tetraploidní pšenice byl QTL lokus pro výšku rostliny nalezen jen na chromozomech 2B a 2D (Börner *et al.*, 2002; Marza *et al.*, 2006; Maccaferri *et al.*, 2008). Pro znak obsah dusíku v sušině semene byly identifikovány dva QTL lokusy na chromozomech 7A^m a 5A^m. Pro chromozom 7A také identifikoval QTL lokus Börner *et al.* (2002). Rovněž byl tento znak mapován na chromozomu 7D (Groos *et al.*, 2003). Na chromozomu 5A specifický lokus pro obsah dusíku v sušině semene nebyl zatím u hexaploidní pšenice nalezen.

Pro poslední znak, který jsme sledovali a ve kterém se rodičovské linie výrazně lišili, ochlupení listů, byly identifikovány dva QTL lokusy na chromozomech $5A^m$ a $3A^m$. Pro tento znak byly u hexaploidní pšenice mapovány dva QTL lokusy *Qhl.ipk-4B* a *QHl.ipk-4D* a gen *Hl2* na chromozomu 7BS (Dobrovolskaya *et al.*, 2007). QTL lokusy pro tento znak detekované u *T. monococcum* L. jsou s největší pravděpodobností nehomologní k lokusům identifikovaným u hexaploidní pšenice a pravděpodobně jsou výsledkem nezávislé domestikace *T. monococcum* L.

6 Závěr

Cílem diplomové práce bylo vytvořit genetickou mapu pro RILs mapovací populaci odvozenou z křížení T. *monococcum* ssp. *monococcum* DV92 × *T. monococcum* ssp. *aegilopoides* G3116 jako základ pro QTL analýzu složek výnosu a dalších znaků.

Byla zkonstruována genetická mapa pro všech sedm chromozomu *T. monococcum* L. o celkové délce 829 cM a s 628 zamapovanými markery. Jedná se tedy o do této doby nejhustší mapu pro genom A pšenice.

Byly získány výsledky QTL analýzy pro celkem sedm znaků, tři znaky komponentů výnosu (váha tisíce zrn, počet obilek na klas a délka klasu), tři znaky významně se podílející na výnosu (výška rostliny, rozpadavost klasu a obsah dusíku v sušině semen) a jeden morfologický znak, ve kterém se rodičovské linie významně odlišovali (ochlupení listů). Tyto znaky byly sledovány jeden rok na dvou lokalitách. Bylo nalezeno celkem 14 QTL lokusů na šesti chromozomech. Bylo tedy ověřeno, že tato mapa je dostatečně kvalitní pro QTL analýzu sledovaných znaků. Mapování zmíněných agronomických znaků bude pokračovat v dalších sezónách a na dalších lokalitách aby byl omezen vliv prostředí na mapování daných znaků.

7 Použité zkratky

AFLP	- Amplified Fragment Length Polymorphism, polymorfismus			
	amplifikovaných fragmentů			
BAC	- Bacterial Artificial Chromosome, knihovna dlouhých fragmentů			
BC	- Backcross populace, populace zpětných kříženců			
bp	- páry bází			
Br	- brittle rachis, gen podmiňující rozpadavost klasu			
CAPS	- Cleaved Amplified Polymorphic Sequences			
CIM	- Composite Interval Mapping, složené mapování pomocí intervalu			
cM	- centimorgan			
DArT	- Diversity Arrays Technology			
DH	- Doubled haploid lines, dihaploidní linie			
El	- ear length, délka klasu			
EPSA ^m 1	- Earlines per se			
Es	- ears shuttering, rozpadavost klasu			
EST	- Expressed Sequence Tag			
Gn	- grain number, očet obilek na klas			
Gp	- grain protein, obsah dusíku v sušině semene			
На	- hairy leaf, ochlupení listů			
IRAP	 Inter-Retrotransposon Amplified Polymorphism, amplifikovaný polymorfismus mezi retrotranspozóny 			
LOD	- Logarithm of the Odds (to the base 10), logaritmus pravděpodobnosti (o základu 10)			
Lr10	- gen rezistence proti rzi listové (Leaf rust)			
MIM	- Multiple Interval Mapping, vícenásobné mapování pomocí intervalu			

Ph	- plant height, výška rostliny			
QTL	- Quantitative Trait Loci, lokusy s kvantitativním znakem			
RAPD	 Random Amplified Polymorphic DNA, náhodně amplifikovaná polymorfní DNA 			
RFLP	- Restriction fragment lenght polymorphism, délkový polymorfismus restrikčních fragmentů			
RILs	- Recombinant Inbred Lines, rekombinantní inbrední linie			
SCAR	- Sequence-Characterized Aamplified Region, amplifikovaná oblast charakterizovaná sekvencí			
SIM	- Simple Interval Mapping, jednoduché mapování pomocí intervalu			
SNP	- Single Nucleotide Polymorphism, polymorfismus v jednom nukleotidu			
SSD	- Single-Seed Descent lines, jedno-semenové linie			
SSR	- Simple Sequence Repeat, opakování jednoduchých sekvencí			
STS	- Sequence-Tagged Sites			
Tgw	- hausend grain weight, váha tisíce zrn			
VRN	- geny jarovizace			

- ASINS, M. J. (2002): Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding 121: 281 291
- BAREŠ, L., SEHNALOVÁ, J., VLASÁK, M., VLACH, M., KRYŠTOF, Z., AMLER, P., MALÝ, J., BERÁNEK, V. (1985): Klasifikátor genus *Triticum* L., Agrodat, Výzkumný ústav rostlinné výroby Praha – Ruzině
- BÖRNER, A., SCHUMANN, E., FÜRSTE, A., CÖSTER, H., LEITHOLD, B., RÖDER, M. S., WEBER, W. E. (2002): Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (*Triticum aestivum* L.). Theoretical and Applied Genetics 105: 921 – 936
- BOTSTEIN, B., WHITE, R. L., SKOLNICK, M., DAVIS, R. W. (1980): Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314 331
- BROMAN, K. W., WU, H., SEN, S., CHURCHILL, G. A. (2003): R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889 890
- BULLRICH, L., APPENDINO, M. L., TRANQUILLI, G., LEWIS, S., DUBCOVSKY, J. (2002): Mapping of a thermo-sensitive earliness per se gene on *Triticum monococcum* chromosome 1A^m. Theoretical and Applied Genetics 105:585-593
- COLLARD, B. C. Y., JAHUFER, M. Z. Z., BROUWER, J. B., PANG, E. C. K. (2005): An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169 196
- CUTHBERT, J. L., SOMERS, D. J., BRULÉ-BABEL, A. L., BROWN, P. D., CROW, G. H. (2008): Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (*Triticum aestivum* L.). Theoretical and Applied Genetics 117: 595 – 608
- DEVOS, K. M., DUBCOVSKY, J., DVOŘÁK, J., CHINOY, C. N., GALE, M. D. (2004): Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theoretical and Applied Genetics 91: 282-288
- DOBROVOLSKAYA, O., PSHENICHNIKOVA, T. A., ARBUZOVA, V. S., LOHWASSER, U., RÖDER, M. S., BÖRNER, A. (2007): Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155: 285 – 293
- DOLEŽEL, J., ŠIMKOVÁ, H., KUBALÁKOVÁ, M., ŠAFÁŘ, J., SUCHÁNKOVÁ, P., ČÍHALÍKOVÁ, J., BARTOŠ, J., VALÁRIK, M. (2009): Chromosome Genomics in the TriticeaeIn: Feuillet, C., Muehlbauer, G. J. (eds.): Genetics and Genomics of the Triticeae, pp. 285 – 316, Springer, New York.

- DUBCOVSKY, J., LIJAVETZKY, D., APPENDINO, L., TRANQUILLI, G. (1998): Comparative RFLP mapping of *Triticum monococcum* genes controlling vernalization requirement. Theoretical and Applied Genetics 97: 968 - 975
- DUBCOVSKY, J., LUO, M., ZHONG, G., BRANSTEITTER, R., DESAI, A., KILIAN, A., KLEINHOFS, A., DVOŘÁK, J. (1996): Genetic Map of Diploid Wheat, *Triticum* monococcum L., and Its Comparison With Maps of Hordeum vulgare L. Genetics 143: 983 - 999
- DVOŘÁK, J., DI TERLIZZI, P., ZHANG, H., RESTA, P. (1993): The evolution of polyploid wheats: identification of the A genome donor species. Genome 36: 21 31
- DVOŘÁK, J., MCGUIRE, P. E., CASSIDY, B. (1988): Apparent sources of the A genome of wheats inferred from polymorphism in abundance and restriction fragment lenght of repeated nukleotide sequences. Genome 30: 680 689
- EMRICH, S. J., LI, L., WEN, T. J., YANDEAU-NELSON, M. D., FU, Y., GUO, L., CHOU, H. H., ALURU, S., ASHLOCK, D. A, P. S. SCHNABLE (2007): Nearly Identical Paralogs: Implications for Maize (Zea mays L.) Genome Evolution Genetics, 175: 429-439
- FARIS, J. D., FELLERS, J. P., BROOKS, S. A., GILL, B. S. (2003): A Bacterial Artificial Chromosome Contig Spanning the Major Domestication Lokus Q in Wheat and Identification of a Candidate Gene. Genetics 164: 311 - 321
- FEUILLET, C., TRAVELLA, S., STEIN, N., ALBAR, L., NUBLAT, A., KELLER, B. (2003): Map-based isolation of the leaf rust disease resistance gene *Lr10* from the hexaploid wheat (*Triticum aestivum* L.) genome. PNAS 100 (25): 15253 - 15258
- GELDERMAN, H. (1975): Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods. Theoretical and Applied Genetics 46: 319 - 330
- GONZÁLEZ, J. M., BERNARD, S., BERNARD, M. (1993): Metaphase-I analysis of a *Triticum aestivum* × *T.monococcum* hybrid by the C-banding technice. Euphytica 68: 187 192
- GROOS, C., ROBERT, N., BERVAS, E., CHARMET, G.(2003): Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics 106: 1032 - 1040
- HE, X. Y., HE, Z. H., MORRIS, C. F., XIA, X. C. (2009): Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. Genetic Resources and Crop Evolution 56: 311 321
- HOPF, MARIA; ZOHARY, DANIEL (2000). Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley (3rd ed.). Oxford University Press, Oxford

- HUANG, L., BROOKS, S. A., LI, W. L., FELLERS, J. P., TRICK, H. N., GILL, B. S. (2003): Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164: 655 - 664
- HUANG, X. Q., KEMPF, H., GANAL, M. W., RÖDER, M. S. (2004): Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (*Triticum aestivum* L.) Theoretical and Applied Genetics 109: 933 – 943
- JACCOUD, D., PENG, K., FEINSTEIN, D., KILIAN, A. (2001): Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids research 29 (4): E25
- JANSEN, R. C., STAM, P. (1994): High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 136: 1447 1455
- KALENDAR, R., GROB, T., REGINA, M., SUONIEMI, A., SCHULMAN, A. (1999): IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98: 704 - 711
- KEARSEY, M. J. (1998): The principles of QTL analysis (a minimal mathematics approach). Journal of Experimental Botany 49(327): 1619 1623
- KIRIGWI, F. M., VAN GINKEL, M., BROWN-GUEDIRA, G., GILL, B. S., PAULSEN, G. M., FRITZ, A. K. (2007): Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding 20: 401 – 413
- KOSAMBI, D. D. (1943): The estimation of map distances from recombination values. Ann. Eugenics. 12: 172 – 175
- KOSOVÁ, K., PRÁŠIL, I. T., VÍTÁMVÁS, P. (2008): The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biologia Plantarum 52 (4): 601 615
- KUCHEL, H., WILLIAMS, K. J., LANGRIDGE, P., EAGLES, H. A., JEFFERIES, S. P. (2007a): Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theoretical and Applied Genetics 115: 1029 - 1041
- KUCHEL, H., WILLIAMS, K., LANGRIDGE, P., EAGLES, H. A., JEFFERIES, S. P. (2007b): Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theoretical and Applied Genetics 115: 1015 - 1027
- KUMAR, N., KULWAL, P. L., GAUR, A., TYAGI, A. K., KHURANA, J. P., KHURANA, P., BALYAN, H. S., GUPTA, P. K. (2006): QTL analysis for grain weight in common wheat. Euphytica 151: 135 - 144
- KURAPARTHY, V., SOOD, S., GILL, B. S. (2008): Genomic targeting and mapping of tiller inhibition gene (*tin3*) of wheat using ESTs and synteny with rice. Functional & Integrative Genomics 8: 33 - 42

- LANDER, E. S., BOTSTEIN, B. (1989): Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185 199
- LEV-YADUN, S., GOPHER, A., ABBO, S. (2000): The Cradle of Agriculture. Science 288 (5471): 1602 1603
- LEWIS, S., FARICELLI, M. E., APPENDINO, M. L., VALÁRIK, M., DUBCOVSKY, J. (2008): The chromosome region including the earliness per se locus Eps- A^m1 affects the duration of early developmental phases and spikelet number in diploid wheat. Journal of Experimental Botany 59(13):3595 – 3607
- LI, S., JIA, J., WEI, X., ZHANG, X., LI, L., CHEN, H., FAN, Y., SUN, H., ZHAO, X., LEI, T., XU, Y., JIANG, F., WANG, H., LI, L. (2007): A intervarietal genetic map and QTL analysis for yield trans in wheat. Molecular Breeding 20: 167 178
- LI, W., GILL, B. S. (2006): Multiple genetic pathways for seed shattering in the grasses. Integrated Genomics 6: 300 - 309
- Litt, M., Luty, J. A. (1989): A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American Journal of Human Genetics 44: 397 401
- MA, Z., ZHAO, D., ZHANG, C., ZHANG, Z., XUE, S., LIN, F., KONG, Z., TIAN, D., LUO, Q. (2007): Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F₂ populations. Molecular Genetics Genomics 277: 31 - 42
- MACCAFERRI, M., SANGUINETI, M. C., CORNETI, S., ORTEGA, J. L. A., SALEM, M. B., BORT, J., DEAMBROGIO, E., DEL MORAL, L. F. G., DEMONTIS, A., EL-AHMED, A., MAALOUF, F., MACHLAB, H., MARTOS, V., MORAGUES, M., MOTAWAJ, J., NACHIT, M., NSERALLAH, N., OUABBOU, H., ROYO, C., SLAMA, A., TUBEROSA, R. (2008): Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (*Triticum durum* Desf.) Across a Wide Range of Water Availability. Genetics 178: 489 - 511
- MACKAY, T. F. C., STONE, E. A., AYROLES, J. F. (2009): The genetics of quantitative traits: challenges and prospects. Nature Reviews, Genetics 10: 565 577
- MARZA, F., BAI, G. H., CARVER, B. F., ZHOU, W. C. (2006): Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theoretical and Applied Genetics 112: 688 698
- NELSON, J. C. (2005): Methods and Software for Genetic Mapping. In: Meksem, K., Kahl, G., (ed): The Handbook of Plant Genome Mapping, pp. 53 – 74, WILEY – VCH Verlag GmbH & Co. KGaA, Weinheim
- NGUYEN, H. T., WU, X. (2005): Molecular Marker Systems for Genetic Mapping. In: Meksem, K., Kahl, G., (ed): The Handbook of Plant Genome Mapping, pp. 23 - 52, WILEY – VCH Verlag GmbH & Co. KGaA, Weinheim

- PALAZZOLO, M. J., SAWYER, S. A., MARTIN, CH. H., SMOLLER, D. A., HARTL, D. L. (1991): Optimized strategies for seguence-tagged-site selection in genome mapping. PNAS 88: 8034 - 8038
- PENG, J., RONIN, Y., FAHIMA, T., RÖDER, M. S., LI, Y., NEVO, E., KOROL, A. (2003): Domestication quantitative trait loci in *Triticum dicoccoides*, the progenitor of wheat. PNAS 100: 2489 - 2494
- PRICE, A. H. (2006): Believe it or not, QTLs are accurate! Trends in Plant Science 11: 213 216
- QUARRIE, S. A., STEED, A., CALESTANI, C., SEMIKHODSKII, A., LEBRETON, C., CHINOY,
 C., STEELE, N., PLJEVLJAKUSIC, D., WATERMAN, E., WEYEN, J.,
 SCHONDELMAIER, J., HABASH, D. Z., FARMER, P., SAKER, L., CLARKSON, D. T.,
 ABUGALIEVA, A., YESSIMBEKOVA, M., TURUSPEKOV, Y., ABUGALIEVA, S.,
 TUBEROSA, R., SANGUINETI, M. C., HOLLINGTON, P. A., ARAGUÉS, R., ROYO, A.,
 DODIG, D. (2005): A high-density genetic map of hexaploid wheat (*Triticum aestivum* L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics 110: 865 880
- QUARRIE, S. A., QUARRIE, P. S., RADOSEVIC, R., RANCIC, D., KAMINSKA, A., BARNES, J. D., LEVERINGTON, M., CEOLONI, C., DODING, D.(2006): Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. Journal of Experimental Botany 57 (11): 2627 2637
- SAX, K. (1922): Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7: 513 – 552
- SAX, K. (1923): The association of size difference with seed-coat pattern and pigmentation in *Phaseolus vulgaris*. Genetics 8: 552 560
- SCHNEIDER, K. (2005): Mapping Populations and Principles of Genetic Mapping. In: Meksem, K., Kahl, G., (ed): The Handbook of Plant Genome Mapping, pp. 3 -22, WILEY – VCH Verlag GmbH & Co. KGaA, Weinheim
- SINGH, K., GHAI, M., GARG, M., CHHUNEJA, P., KAUR, P., SCHNURBUSCH, T., KELLER, B., DHALIWAL, H. S. (2007): An integrated molecular likage map of diploid wheat based on a *Triticum boeticum* × *T. monococcum* RIL population. Theoretical and Applied Genetics 115: 301 - 312
- SOLLER, M., BRODY, T., GENIZI, A. (1979): The expected distribution of markerlinked quantitative effects in crosses between inbred lines. Heredity, 43: 179 190
- UAUY, C., DISTELFELD, A., FAHIMA, T., BLECHL, A., DUBCOVSKY, J. (2006): A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298 1301
- VAN OOIJEN, J. W. (2006) JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen, Netherlands

- YAHIAOUI, N., SRICHUMPA, P., DUDLER, R., KELLER, B. (2004): Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene *Pm3b* from hexaploid wheat. The Plant Journal 37: 528 538
- YAN, L., FU, D., LI, C., BLENCHL, A., TRANQUILLI, G., BONAFEDE, M., SANCHEZ, A., VALARIK, M., YASUDA, S., DUBCOVSKY, J. (2006): The weat and barley vernalization gene VRN-3 is an orthologue of FT. PNAS 103: 19581 - 19586
- YAN, L., LOUKOIANOV, A., TRANQUILLI, G., BLECHL, A., KHAN, I. A., RAMAKRISHNA, W., SAN MIGUEL, P., BENNETZEN, J. L., ECHNIQUE, V., LIJAVETZKY, D., DUBCOVSKY, J. (2004): The wheat VRN-2 gene is a flowering repressor downregulated by vernalization. Science 303: 1640 - 1644
- YAN, L., LOUKOIANOV, A., TRANQUILLI, G., HELGUERA, M., FAHIMA, T., DUBCOVSKY, J. (2003): Positional cloning of wheat vernalization gene VRN-1. PNAS 100: 6263 6268
- YAN, L. (2009): The Flowering Pathway in Whea. In: Carver B. F. (ed): Wheat Science and Trade, pp. 57 72, Willey Blackwell