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Chapter 1

Introduction

A porous medium is a material, which contains pores. Pores are filled with one
or more different fluids, for instance air, water or oil. Skeletal structure of porous
medium is called matrix and is usually very complex with fractal structure. In
terminology of hydrology, the porous medium is saturated if all the pores contain
water and is unsaturated if some pores are filled with water and some with air.
The saturation is defined as the fraction of the total volume of the fluid and pore
volume. There exist many natural porous substances such as soil, rocks, wood,
cork or bones.

Flow of liquids through porous media is a long standing, well researched, yet
still not fully understood problem. There are two broad areas that draw heavily
on understanding porous media flow – oil recovery [69], and vadose zone hydrology
[29], [137]. In oil recovery applications, two immiscible and incompressible fluids
– water and oil – move in a complex space of pores in a reservoir rock. In
vadose zone hydrology, the two fluids are water (incompressible and wetting) and
air (compressible and non-wetting). Many other applications of porous media
flow have been investigated, such as carbon sequestration [118], transport of
radionuclides in the soil [14], filtration [117], hydrogen storage [2], geothermal
engineering [8], and applications in biological systems and biotechnology [123].
This thesis concentrates on the flow of water through soil which is not fully
saturated. Lack of understanding of vadose zone hydrology is one of the main
bottlenecks in our understanding of the hydrological cycle [68].

Problems concerning fluid flow are notoriously difficult due to non-linearity
caused by inertial forces (the so-called convective term in the Navier-Stokes equa-
tions). In the porous media setting, the flow velocity is usually so small that in-
ertial forces can be neglected. Still, the problem is difficult because the pressure
in the wetting fluid at each point is determined by an interplay between hydro-
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static forces due to gravity, and capillary forces due to the presence of menisci of
air-water interfaces which are in turn determined by the geometry of the porous
matrix. Since the geometry of the matrix is so complex that it cannot be fully
resolved in any reasonable model, some simplification or approximation is needed.

Over the years, there has been a growing body of experimental evidence of
observed unsaturated porous media flow regimes that were not easy to describe
or explain by the known mathematical models [29], [137]. These persistent and
important flow regimes will be described in Section 1.1. In Section 1.2, we will
derive the most celebrated equation associated with homogeneous porous media
flow in the context of hydrology, the so-called Richards’ equation.

1.1. Flow regimes in unsaturated homogeneous
porous media

The purpose of this section is to briefly describe each of the regimes in porous
media flow. All of the regimes share the following setting: the porous medium
is homogeneous, i.e. it does not contain any macropores, cracks, or preferential
channels. The porous medium is unsaturated, i.e. some of the pores are filled
with wetting fluid and some with gas. Gravity and capillary forces both play
important roles and neither can be neglected.

Finger flow

The so-called finger flow, or gravity-driven fingering, rates among the most in-
triguing of the flow regimes in unsaturated homogeneous porous media (UHPM).
This phenomenon has been studied extensively since the early 1970s [59], more
detailed reference is provided in Section 2.1. The regime can be reached e.g. as
follows: let us start with a sample of initially dry homogeneous porous medium,
usually fine grain sand. Wetting fluid is supplied to a single point at the up-
per boundary of the sample at a small constant rate. Under a wide range of
experimental conditions (see Section 2.1), a single macroscopic finger forms and
proceeds downwards at almost constant velocity (see Figure 1.1). The finger tip
can be almost fully saturated.

The proceeding finger leaves an under-saturated trace. Subsequent infiltration
follows the path wetted by the first finger. The key feature of this regime is the
non-monotonicity of the saturation, i.e. a ratio of the total volume of the fluid
to the pore volume. At certain points (through which the finger tip passes)
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Figure 1.1: A schematic representation of a single one-dimensional finger.

saturation is a non-monotone function of time, first it increases abruptly as the
over-saturated fingertip arrives, and then it gradually decreases as the under-
saturated fingertail passes. This effect is called saturation overshoot as it is
characteristic for finger flow.

Wetting front instability

Earlier studies of wetting front instability were presented by Raats [101]. Let
us start with a sample of initially dry homogeneous porous medium. Water is
supplied to the entire upper boundary at a small constant rate (usually by spray-
ing). In experiments, a complicated structure of rivulets (preferential pathways,
fingers) is formed in the porous matrix [106]. Large parts of the matrix remain dry
even if the experiment continues for a long time (months), see Figure 1.2. Subse-
quent infiltration follows the preferential pathways formed by the first event. The
paths can be erased either by over-drying or by complete wetting of the matrix
pore space. Fingers were observed to merge (often) and bifurcate (rarely). Each
finger can exhibit saturation overshoot at its tip. For a deeper understanding of
wetting front instability, we recommend a detailed experimental work provided
in a series of papers from Glass et al. [46, 50, 48, 49, 45, 41].
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Figure 1.2: Demonstration of wetting front instability. The experiment was re-
alized at Mlaky II near Sekule in 2010 [76]. Water was supplied across the top
boundary at a small constant rate. Substantial part of the matrix remained dry
after long time of steady infiltration.

Buoyancy destabilized non-wetting invasion

A sample of initially wet porous medium is placed into a box. Air is supplied
to one point near the bottom of the box at a small constant rate. In experi-
ments, a beautiful structure of jellyfish-like clusters of air is formed, one on top
of another. The clusters are interconnected with pore-scale fingers. The clus-
ters pulsate: once a cluster is large enough (to become buoyancy destabilized) it
sends a pulse of air through the pore-scale finger to the cluster above and so on.
For more details, see experiments from Glass et al. [42], [52].

Draining by air overpressure: the problem of residual mois-
ture

The main draining branch is usually measured in the following way [100]:
start with a sample of initially wet homogeneous porous medium. The water is
displaced from matrix by gradually increasing overpressure of the ambient air,
which is supplied at the entire upper boundary. The main draining branch is
then measured as the dependence of air pressure and outflowed water. The ex-
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perimental procedure is usually done by using pressure plate apparatus [105].
Some isolated clusters of water always remain inside the porous matrix, even
if huge overpressure is used. This residual moisture can be removed only by
increasing temperature inside the porous matrix e.g. by burning.

Free evaporation

A sample of initially wet homogeneous porous medium is left to dry by evap-
oration from its upper boundary [98]. A rich networks of dry fingers and wet
islands is formed inside the porous matrix. There is no simple interface between
the dry and wet regions.

Oscillation water discharge

A sample of initially dry homogeneous porous medium is placed into a box.
Water is supplied to the entire upper boundary at a small constant rate. It is
a black-box experiment, only the discharge (outflow as a function of time) is
measured. Experimental records are scarce [99], [134]. Two distinct discharge
regimes are observed:

• Monotonic sigmoid-like discharge stabilizing at a constant rate, which is
equaled to the influx rate. This is predicted by the continuum theory. It
is observed for instance in very fine sands or clays, where the diffusion-like
behavior appears.

• Oscillation water discharge: the discharge never stabilizes at a constant
rate, it keeps fluctuating. The oscillations are chaotic rather than periodic.
Sometimes a peak initial discharge appears before oscillatory discharge. It
is shown in [134], that the varying discharge from the soil is a manifestation
of the finger flow.

Old and new water

Start with a sample of initially partially wet homogeneous porous medium.
Old water is distributed throughout the porous medium, usually sitting in the
small pores. New water is supplied to the entire upper boundary at a constant
rate. It is a black-box experiment, only the proportion of old and new water in
the discharge is measured. Old and new water can be distinguished by chemical
or physical tracers. Experimental records are again scarce, however some field
studies are available [121], [131], [132]. Initially, a mixture of old and new water
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emerges, then mostly new water flows out, followed again by a mixture of old
and new water. Another experiments showed significant old water portion during
rainfall and snowmelt events in the Canadian Prairies [107].

1.2. Governing equations

Let us first introduce physical variables, which are usually used for the de-
scription of porous media flow:

• Saturation S [–]: a relative moisture content, i.e. a ratio of the total volume
of the fluid to the pore volume.

• Pressure P [kg/ms2].

• Flux q [m/s].

• Porosity θ [–]: a ratio of the total volume of voids to the total volume of
the porous material.

• Intrinsic permeability κ [m2]: a property of the soil to transfer fluid through
a porous medium.

• Dynamic viscosity µ [kg/ms]: a fluid’s resistance to flow.

• Relative permeability k [–]: a function of saturation calculated as a ratio
of the effective permeability of the particular saturation to the intrinsic
permeability. Values are bounded between 0 and 1.

• Gravitational acceleration g [m/s2].

• Density ρ [kg/m3].

We begin with the standard fractional flow formulation of two-phase flow
system [13], [84], [12], [120], [69], [119], when the first fluid (e.g water) displace
the second fluid (e.g gas or oil). Two-phase flow system is characterized by the
wetting phase (denoted by index w) and non-wetting phase (denoted by index n).
If no external force is given, the mass balance law for each phase is represented
by the equation

∂tθρiSi + div(ρiqi) = 0, (1.1)
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where i denotes index for each phase. Saturation Si, densities ρi and fluxes qi
are functions of space x ∈ Ω ⊂ R3 and time t ∈ R. The following constitutive
relation holds for the two-phase flow

Sw + Sn = 1. (1.2)

In the fractional flow formulation it is usually assumed incompressibility of
both fluids [33, 58, 109, 142], therefore we can write

ρw(x, t) = ρw = const,

ρn(x, t) = ρn = const.
(1.3)

By assuming, that the porous medium is homogeneous, we can get another
great simplification

θ(x, t) = θ = const. (1.4)

Using assumptions (1.3) and (1.4) in the mass balance Equation (1.1) yields

θ∂tSn + div(qn) = 0 (1.5)

for the non-wetting phase and

θ∂tSw + div(qw) = 0 (1.6)

for the wetting phase. Fluxes qi for each phase are given by the Darcy-Buckingham
law [5]

qi = −ki(Si)
µi

κ
(
∇Pi + (0, 0, ρig)

)
= −λi(Si)κ

(
∇Pi + (0, 0, ρig)

)
, (1.7)

where λi(Si) = ki(Si)
µi

is the mobility of the phase i. The flux of the wetting phase
can be derived in terms of phase mobilities, phase densities and phases pressure
difference. Let’s denote

Q = qw + qn, (1.8)

and
λT = λw + λn, (1.9)

where Q and λT is the total volume flux and total mobility, respectively. Adding
Equations (1.5) and (1.6), and using Equation (1.2) shows

div(qw + qn) = div(Q) = 0. (1.10)
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The equation above implies, that the total volume flux is independent of space for
a one-dimensional case. Moreover, Hilfer et al. [58] claim that the independency
of space also applies for higher dimension, although the proof is unclear. Hence,
we can write

qw(x, t) + qn(x, t) = Q(t). (1.11)

Using Equations (1.8) and (1.9), we can write(
1− λn

λT

)
qw =

λw
λT

(Q− qn). (1.12)

The flux of the wetting phase can be then expressed as

qw =
λw
λT
Q− λw

λT
qn +

λn
λT
qw. (1.13)

Substitute relation (1.7) for both phases into Equation (1.13) to eliminate qn
gives the result

qw =
λw
λT
Q+

λnλw
λT

κ
(
∇Pn + (0, 0, ρng)

)
− λnλw

λT
κ
(
∇Pw + (0, 0, ρwg)

)
=
λw
λT
Q
[
1 +

λn
Q
κ
(
∇Pc + (0, 0, ρn − ρw)g

)]
,

(1.14)

where the capillary pressure Pc is usually given as a function of the wetting phase
saturation:

Pc = Pc(Sw) = Pn − Pw. (1.15)

Here, the capillary pressure Pc(Sw) represents the so-called retention curve (hys-
teresis operator). Let us note, that the capillary pressure is always given as a
suction. The retention curve consists of the main wetting and draining branches
and is assumed to be non-increasing [128] (see Figure 1.3 for a simplified model
of the retention curve). It is well known, that retention curve exhibit substan-
tial hysteresis, thus the pressure-saturation relation depends also on history of a
system. Some approaches of modelling hysteresis of the retention curve can be
found in [85, 70, 96].

The fractional flow equation is then obtaint by inserting Equation (1.14) into
Equation (1.6):

θ∂tSw+div

(
λw(Sw)

λT (Sw)
Q
[
1+

λn(Sw)

Q
κ
(
∇Pc(Sw)+(0, 0, ρn−ρw)g

)])
= 0. (1.16)
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Figure 1.3: A simplified retention curve. The pressure is given as a underpressure
and thus the retention curve is non-decreasing.

In controlled experiments in which water is injected into the porous medium, the
total volume flux Q(t) is known. Moreover, if a constant boundary flux q is used,
then we can write Q(t) = q.

For a very small intrinsic permeability or when gravity and capillary effects can
be neglected, the Equation (1.16) reduces to the Buckley-Leverett equation [13]

θ∂tSw + div
(λw(Sw)

λT (Sw)
Q
)

= 0. (1.17)

For applications in hydrology (w corresponds to water and n to air), one can
assume ρn = 0 and Pn = 0 and then Equation (1.7) implies qn = 0. Therefore, the
non-wetting phase vanishes from the problem and inserting Darcy-Buckingham
equation (1.7) for the wetting phase into the Equation (1.6) gives the Richards’
equation [104] (RE); for the simplicity, we will denote the wetting phase without
index w:

θ∂tS(t,x) + div

[
κk(S(t,x))

µ

(
∇Pc(S(t,x))− (0, 0, ρg)

)]
= 0. (1.18)

In other words, the RE is the limit of the fractional flow equation (1.16), when the
mobility of the air-phase tends to infinity. Thus, if we assume that the dynamic
viscosity of the air cannot be neglected, we will receive more general case of the
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RE. The RE is usually stated in the following form:

θ∂tS(t,x) + div
[
K(S(t,x))∇h(S(t,x))−

(
0, 0, K(S(t,x))

)]
= 0, (1.19)

where K = κk(S)
µ
ρg [m/s] denotes the hydraulic conductivity and the function

h [m] denotes the capillary height. The hydraulic conductivity is assumed to
be non-negative and non-decreasing function of the saturation. The capillary
pressure Pc(S) is related to the capillary height h(S) by the simple rescaling
relation

Pc(S(t,x)) = ρgh(S(t,x)).

The Richards’ equation is fundamental in hydrology, while the Buckley-Leverett
equation is usually used for applications in petroleum engineering.
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Chapter 2

Different approaches of modelling
unsaturated porous media flow

Let us now introduce different approaches of modelling UHPM. We will focus
mostly on the most intriguing and the famous regime, the so-called saturation
overshoot (see Section 1.1). Porous media flow is usually modeled in the frame-
work of continuum mechanics [5], [29], [137]. This approach has been popular
because the mathematical tools of continuum mechanics (differential calculus and
partial differential equations) were well established and very successful in science
and technology.

In Section 2.1, the experimental evidence of saturation overshoot will be pre-
sented followed by Sections 2.2–2.4, where different approaches of modelling are
described. Finally we will suggest methodology for evaluation different models in
Section 2.5. Sections 2.1-2.4 are taken from Kmec et al. [65], and are extended
in this thesis.

2.1. Experimental evidence of saturation over-
shoot

Saturation overshoot in gravity-driven fingers was experimentally observed
by Glass et al. [47], Liu et al., [77]. and Selker et al. [111]. To our knowledge,
the most comprehensive experimental work was done by DiCarlo (see [23] and
[26] and the reference and discussion therein) and Bauters et al. [3]. The main
experimental results of DiCarlo and Bauters et al. can be summarized as follows:

• Finger flow accompanied by saturation overshoot is observed in wide range
of homogeneous porous media types – soils, sands, and artificial glass beads,
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uniformly or randomly packed. It is observed for wide range of flow rates,
and for wide range of initial saturation levels.

• The overshoot effect is observed in three-dimensional, two dimensional
(Hele-Shaw cells) and one-dimensional (narrow tubes) settings.

• The finger behavior depends on the initial saturation of the matrix. With in-
creasing initial saturation, the fingers first become more narrow and faster,
then they widen and slow down and the saturation overshoot decreases. For
initial saturation close to the residual moisture limit, the fingering regime
disappears and diffusion-like front forms with no overshoot.

• The saturation overshoot magnitude (i.e. the difference between the sat-
uration in the tip and the saturation in the tail) increases with increasing
flow rate up to a certain value, beyond which it decreases until it disappears
completely. However, there is also a lower limit – saturation overshoot is
not observed for very small flow rates.

• Glass et al. [49] observed, that the finger width is increasing with increasing
flux. Moreover, Yao et al. [138] showed the increase in finger width at
very low applied fluxes. DiCarlo [29] compared these results (see Figure 2
in [29]). The increase in the finger width for high applied fluxes is predicted
by Chuoke et al. [20] and Parlange et al. [97]. However, they do not predict
the finger width increase for very low fluxes.

• Saturation overshoot depends on the shape of the porous matrix grains.
The effect is less pronounced for spherical sand grains than for sands with
more angular (irregular) shapes. Materials with very similar macroscopic
continuum properties exhibit different saturation overshoot patterns.

• The finger-tip is not always fully saturated, its saturation depends on the
flow rate and on initial saturation of the medium.

• Capillary pressure overshoot is consistent with the saturation overshoot,
and the pressure-saturation relation does not seem to depend on the finger
velocity, although other sources (see e.g. [39]) report some evidence for
velocity dependent behavior.

• The overshoot behavior depends on the ratio of capillary and gravitational
forces captured in [94] by the so-called Bond number.
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2.2. Continuum modelling

Naturally, there have been many attempts to capture gravity-driven fingers
and especially the saturation overshoot by continuum mechanics based models.
Continuum mechanics uses the concept of reference volume element to transition
from naturally discontinuous pore-level quantities to continuous and differentiable
macroscopic fields (e.g. pressure, saturation). Various forms of conservation laws
such as balance of mass, momentum and energy for these fields are then derived
in the form of partial differential equations. The “canonical” equation used for
UHPM flow is the celebrated Richard’s equation [104] (see Section 1.2 for the
derivation).

For a long time, it had not been known whether the RE admits solutions
that exhibit saturation overshoot, although it was widely doubted because of the
parabolic nature of the equation. In 1996, Nieber [92] claimed to have produced a
finger-like solution of the RE numerically which exhibited saturation overshoot.
However, Eliassi and Glass [35] demonstrated why the finger-like solution was
a numerical artifact. The arguments used by Eliassi and Glass were numerical
in their nature: the authors went through the numerical methods used in [92]
and explained why the computed finger-like solution was incorrect. This issue
was finally settled in [40] where the authors show by means of a mathematical
proof that the RE, in principle, cannot admit saturation overshoot for three-
dimensional homogeneous unsaturated porous media flow, subject to monotone
boundary conditions. The authors prove that any solution to the RE, under the
above boundary conditions, is non-decreasing in time at all points. The result
is not dependent on any particular form of the hydraulic conductivity or the
retention curve, and it holds for any type of hysteretic behavior of the retention
curve. Together with the references [127], and [34] it can be concluded that the
RE is completely stable, to infinitesimal and finite-size perturbations, with or
without hysteresis, and both in asymptotic and transient sense (see the discussion
in [21]). Thus, the finger flow and saturation overshoot have been proven to be
outside the scope of the RE based modelling.

Thus, it is obvious that in order to model saturation overshoot with continuum
models, some extra terms in the governing equation are needed. Hassanizadeh et
al. [55], [57], [56], [54] proposed to include a dynamical term into the pressure-
saturation equation to yield a formula

Pdyn(S) = Pstat(S)− τ(S)
∂S

∂t
, (2.1)

where S stands again for the saturation, Pcs(S) is the equilibrium pressure-
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saturation curve, and τ(S) is a saturation dependent coefficient. This leads to
a new term in the governing equation which is second order in space, and first or-
der in time. DiCarlo [24] showed that solutions to such an extension of RE are not
necessarily monotone in time, thus they can exhibit saturation overshoot. How-
ever, the function τ(S) represents the third unknown material function (together
with the equilibrium pressure-saturation curve, and the hydraulic conductivity-
saturation curve). Moreover, DiCarlo [24] notes that the parameter τ(S) is not
clearly related to any measurable property of the porous medium. Even if τ is as-
sumed to be saturation independent, its value has to be adjusted over two orders
of magnitude to match experimental results in two media which are very simi-
lar from the macroscopic point of view. Experimental results have not brought
conclusive evidence that the dynamical term in Equation (2.1) is necessary to
characterize the pressure-saturation relation [27]. It is well known, that the dy-
namical term can produce solutions that exceed unity (due to pseudo-parabolic
behavior of equations), as observed in [126]. However, if the relative permeabil-
ities are vanishing for given values of saturation (0 or 1 in this case), then the
saturation remains between these two bounds [18], [81].

Leroux and Pomeroy [75] developed a new model using the dynamic extension.
A new approach for estimating residual water content in the hysteretic retention
curves is used. This model reproduces well pressure overshoot experimentally
measured in snowpack water flow [62]. However, the three model parameters were
manually varied to match the experimental data. One of the model parameters
defines the main imbibition curve, thus the retention curve varies for different
input fluxes in the same medium. The main imbibition curve should remain the
same for one porous medium. Other models using the dynamic extensions can
be found e.g. in [91], [90], [19], [64], [102], and [82].

Eliassi and Glass published a series of papers [35], [36], [37] where they in-
troduced the hold-back–pile-up effect to explain the saturation overshoot. They
proposed three different extensions of the RE: a hypodiffusive model (which in-
cludes a term with the second order derivative of the saturation with respect to
space), a hyperbolic model (with the second order derivative of the saturation
with respect to time), and a mixed model (second order in space and first order
in time). All the three extensions admit non-monotonic solutions and thus allow
for saturation overshoot modelling. The hypodiffusive model is equivalent to the
use of a non-monotonic pressure-saturation relation [32], [37]. All these exten-
sions were analyzed by DiCarlo [32]. It is reported that the hypodiffusive and
hyperbolic models are not well posed and require a regularization term. Solutions
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(of the regularized equation) in the form of a traveling wave are found and their
ability to match the experimentally observed features is discussed. The mixed
model can be related to the dynamic capillary pressure concept of Hassanizadeh
and Gray [55], [57], [56], [54] (see the discussion in the previous paragraph).
Cueto-Felgueroso and Juanes [21] further question the above model extensions
because they can produce overshoot which is not bounded between 0 and 1.

The approach presented in [21] represents another attempt to extend the RE
for saturation overshoot modelling. The authors notice an analogy between the
finger behavior and the flow of a thin fluid film along an inclined plane. An
extension of the RE is presented which includes a fourth order space derivative
of the saturation field. The governing equation (abbreviated here as CFJ) reads

θ∂tS(t, x) = div [K(S(t, x))∇h(S(t, x)) + (0, 0, K(S(t, x)) + α∇∆S(t, x))] .

(2.2)
The model is then derived from free energy [9] in the framework of phase fields
models [17], [16] (without any explicit reference to the thin film equation). The
model introduces one new parameter α, however the authors link it to (well mea-
surable) material parameter already presented in the RE. The authors then show
by means of numerical simulation in one and two dimensions that the model is ca-
pable of reproducing many features of finger flow, including saturation overshoot
and its dependence on initial saturation and flow rate.

The spatial patterns produced by the equation match very well the patterns
observed for film flow on an inclined plane (see the Figure 2 in [21]). However,
fingers in porous media tend to exhibit much more complicated structures. Gomez
et al. [53] added spatial heterogeneity in the permeability field. By this approach,
fingers are not “straight” anymore, they can meander, merge (two fingers meet)
and breakup (a single finger splits). This is a remarkable success, however, there
are several issues that bring even this model into question:

• It is experimentally observed, that the saturation overshoot has usually
a plateau form [23]. However, the saturation overshoot of two and three
dimensional fingers simulated by CFJ model has always a drop-like shape
[53]. The authors claim [21], that simulations with a finer grid will lead to
a sharper wetting front and larger saturation overshoot at the finger tip.

• The pressure-saturation relation has to be amended to prevent saturation
from exceeding the unity. This is achieved by introducing a “compressibility
term” to the capillary energy-saturation dependence. This term activates
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(and becomes dominant) near saturation (S = 1) and prevents the satura-
tion to increase any further, which is physically incorrect.

• DiCarlo [28] describes a simple experiment, in which an initially wet porous
medium is allowed to drain under the force of gravity. After an equilibrium
is reached, saturation is measured as a function of height. The zero-flux
situation in the RE yields the equation Pw(S) = z, where z stands for
the vertical coordinate. Measuring S(z) allows one to obtain the pressure-
saturation curve directly from this simple experiment. In the CFJ model,
the zero-flux situation yields the relation

Pc(S) = z − ∂2S

∂z2
,

which seems to produce non-monotonic pressure-saturation curves. This
is certainly an issue to be considered. The authors of the model reply
to this criticism in [22] by arguing that their model is capable of captur-
ing the draining experiment without the need for non-monotonic pressure-
saturation curves. We believe this is an answer to a slightly different ques-
tion. We think that the stationary model should be compatible with ex-
periments.

• To solve the model, one needs boundary conditions that contain higher
order derivatives of the saturation field. It is not clear how second or third
derivatives can be obtained experimentally and what physical quantity they
represent. In the thin-film context, the boundary conditions can be clearly
related to (well measurable) geometry of the film, however, in the porous
media flow context this is no longer possible.

• DiCarlo reports in [23] that saturation overshoot depends on the shape of
the porous matrix grains. Materials with very similar macroscopic contin-
uum properties exhibit different over-saturation patterns. This observation
naturally challenges any continuum model of saturation overshoot (see the
title of DiCarlo’s article [23]).

Another very interesting approach is that of Brindt et al. [10] who treat the
flow in 1D as a free-boundary problem. The model is based on the fact that a
contact angle of the invading fluid should not be neglected [135]. The domain is
divided into two subdomains with a sharp boundary between them. The upper
subdomain (behind the wetting front) consists of water and air, whose proportion
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is calculated by the RE. The lower subdomain (in front of the wetting front)
consists of initially dry porous medium and the saturation remains constant in
this region. The wetting front will propagate only if the capillary pressure head
at the wetting front is lower than water-entry pressure Ψwe, otherwise the flux
through the boundary is equal zero. In case of finger flow, this is yet another way
to ensure water accumulation in the fingertip. The presented model is in good
agreement with experiments from DiCarlo [23] (see Figure 2 in [10]). However,
the saturation overshoot is still pronounced for the lowest flux although it was
not observed experimentally. On the other hand, the model can capture well the
transition between saturation overshoot and diffusive like behavior for increasing
boundary fluxes (see Figure 8 in [10]). Unfortunately, more simulations in 1D are
not available (e.g. dependence on initial saturation).

Next, the moving-boundary approach has been implemented in 2D [11] (the
authors claim, that the model is not a naive straightforward extension of the 1D).
The authors produce physically correct gravity-driven finger, which is consistent
with the experimentally measured finger in [3]. They also produced stable 2D
flow, however different parameters to simulate stable and unstable flow were used
including different retention curve, boundary flux and other important parame-
ters of the model. Moreover, the dependence on initial saturation is not available
in [11], thus any detailed comparison with experiments of Bauters et al. [3] is not
possible. The price the authors pay for this approach is the necessity to indirectly
prescribe the flow across the free boundary as an input to the model. We would
rather see this to be an output. The division of the matrix into two domains is
rather arbitrary -– in reality it is a single domain through which water and air
move. There is no clear physical process (e.g. phase change as in the case of
continuous casting modelling) which would define the position of the boundary.
We are not sure how Brindt’s modelling strategy allows for reproducing the de-
pendence of flow characteristics on initial saturation of the matrix. Moreover, is
it possible to define the free boundary, if the matrix is not in equilibrium at the
start of new infiltration?

DiCarlo et al. [33] compared the standard fractional flow approach (see Equa-
tion 1.16) [13], [84], [120], [69], [119] to the Richards’ equation (see Equation
1.18) [104]. The aim of the research was not focused on a prediction of the
saturation overshoot. On the contrary, the authors claim that the saturation
overshoot is not allowed from the continuum multiphase equations because they
are parabolic. It is postulated that the saturation overshoot does occur over an
infinitesimal distance and then they compare saturation behavior for the frac-
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tional flow approach and the RE. It is shown, that the effect of non-wetting
phase is negligible for infiltrations with fluxes less than half of the saturated
conductivity. Hilfer et al. [58] proposed model which is based on fractional flow
equation with hysteresis in the relative permeability. Schneider et al. [109] then
extended recent predictions for stability of the saturation overshoot within the
traditional generalized Darcy model. In [115], some comparison with experi-
mental results of DiCarlo [23] were performed. The authors claim in [58], that
the traditional theory has been abandoned prematurely because of its failure of
producing the saturation overshoot. However, initial buildup of the saturation
overshoot is modeled as a time-dependent Dirichlet condition. We conjecture
that this is not appropriate for modelling fingering flow. The model is not able
to produce the saturation overshoot with constant time-independent boundary
condition. Finally, Zhang and Zegeling [142, 140, 141] implemented dynamic
capillary pressure into a fractional flow equation and suggested hysteresis in the
τ(S) − S relationship. They successfully compared results with experiments of
one dimensional profiles. However as was already mentioned, the function τ(S)

represents the third unknown material function, which is not clearly related to
any measurable property of porous medium.

To sum up, current continuum models are struggling to capture the rich va-
riety of complex UHPM flow regimes. For the saturation overshoot modelling,
several extensions of the RE were proposed [29] (most of these extensions are
described above). While they usually succeed in allowing saturation overshoot
solutions, all of them have drawbacks and none seems to be able to capture the
complexity of UHMP flow regimes entirely. Let us now turn to a completely
different possibility of UHPM flow modelling, which we call discrete modelling.

2.3. Discrete modelling

The interest in discrete dynamical systems goes back to the work of Ulam [122]
and von Neumann [130]. The field of discrete models, often called cellular au-
tomata, was usually considered as a part of statistical physics, and had almost no
overlap with porous media flow modelling. In the 1970s, a new branch of discrete
dynamical systems science emerged, which became known as percolation theory.
The most important early contributions can be traced back to Kirkpatrick [63]
and Stauffer [113].

It was soon recognized that percolation theory can be used to model im-
miscible fluid flow in porous media. The theory was used to predict the fractal
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structure of the percolating clusters of fluids, capture the critical behavior of pres-
sure and hydraulic conductivity dependence on saturation near the percolation
threshold, and point out the universality of the various scaling relations [136].
Lenormand et al. conducted an extensive research in this direction, both ex-
perimental and theoretical, which clarified the mechanisms by which individual
pores are filled and drained by wetting and non-wetting fluids [74, 73, 72, 71],
see also [7] for important contributions to the understanding of collective pore
filling mechanisms. Based on these seminal papers, there has been an explosion
of theoretical and experimental results which used percolation theory to capture
the flow of immiscible fluids in two or there dimensional porous media at the pore
level, under various combinations of viscous and capillary forces and the force of
gravity. The porous medium is usually modeled as two or three dimensional regu-
lar or random network of pores and/or throats, of various types of cross-sectional
shapes and various types of connectivity. Usually two (sometimes three) immis-
cible fluids are allowed to move inside this network. Pores and throats are usually
filled with one fluid, or the other, intermediate levels of saturation inside a single
pore are seldom considered. These models are typically called Invasion Percola-
tion (IP) models or, if they also include an external force field, Modified Invasion
Percolation (MIP). Meheust et al. [80] reports an extensive experimental study of
water-air interface patterns in synthetic two-dimensional porous media under the
combined effect of viscous and capillary forces and the force of gravity. Various
IP and MIP models devised for modelling the patterns can be found in [1], [6],
[38], [78], [79], [124], [125].

The binary nature majority of these models (a pore is either empty or full)
suggests that it is not possible to model the saturation of the porous matrix as a
continuous variable. Accordingly, there have been almost no attempts to capture
saturation overshoot directly by these models. However, the non-monotonicity
of flow can be captured by allowing the pores to fill with the fluid and then
desaturate (empty) again. Birovljev et al. [6] studied the migration of a gas
cluster in water filled two dimensional random porous media and used MIP model
to capture repeated withdrawal and invasion of water at the pore level. The
proposed MIP model was shown to match the experimental results well. The
purpose of their model did not include saturation overshoot modelling, they were
trying to capture fragmentation and migration of air clusters, not water clusters.
However, the MIP model had to allow for both invasion and withdrawal, which
is something other MIP models rarely dealt with.

Further attempt was made by DiCarlo [25] who used a state-of-the-art dis-
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crete model of Valvante and Blunt [124], [125] to model the advancing water
front at the pore level. Saturation was recovered from the discrete model by
averaging over space. The model included viscous and capillary forces but the
force of gravity was not included, as it was argued that it can be neglected at
the pore-scale. This comes to us as a surprise because it suggests that saturation
overshoot should be observable for horizontal imbibition, which we find no exper-
imental evidence of. The author himself compares the predictions of the model to
experiments performed on vertical sand columns. We argue that gravity cannot
be disregarded because it influences the distribution of pressure throughout an
entire cluster (connected region of water filled pores) which is macroscopic, so
pore-scale arguments are not valid. Nevertheless, the model exhibits some quali-
tative agreement with vertical infiltration experiments, including the dependence
of the overshoot on the influx magnitude.

To sum up, various IP and MIP (discrete) models have been used to capture
UHPM flow. Few of them aimed at saturation overshoot modelling. Although
some features of the UHMP flow may be captured very well by the IP and MIP
models, discrete models have several disadvantages:

• The models usually treat saturation as a binary quantity. To obtain contin-
uous values of saturation, some kind of time and/or space averaging must
be performed.

• In any of these models, one needs to define the shapes of the pores and/or
throats and their connectivity. This is often done in an arbitrary way
(using circular or rectangular pores, and using regular or random network
of pores). It then becomes difficult to link the properties of the artificial pore
network to a real porous matrix (see the discussion in [89]). Consequently,
one can never be sure whether the predictions of the models are due to
correct underlying physics of the model, or whether they are artifacts of
the arbitrary geometry of the model.

• Most of the models do not capture time in a physically meaningful way.
The local percolation rules are executed one at a time, in an order which
usually reflects the energetic accessibility of the states. Consequently, the
order of the pore-filling (or draining) events is physically correct, however,
the exact times of the filling and draining events may be artificial.
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2.4. Semi-continuum modelling

It is natural to try to combine the advantages of both the continuum-based
and discrete approaches. Let us call these models semi-continuum models bor-
rowing the term from [30]. To our knowledge, there have been only two attempts
in this direction.

DiCarlo et al. [30] performed extensive experimental study of overshoot phe-
nomena in quasi-one-dimensional vertical sand columns. They define the so-called
overshoot flux – a critical flux below which no overshoot is observed. When the
overshoot flux is plotted against the grain size on a log-log scale, it exhibits
a power-law behavior and suggests a critical grain size for which no overshoot
should be observed. It is also found that overshoot flux scales with the mean
grain size D as D−3. Moreover, a linear relationship is found between the over-
shoot flux and the ratio of surface tension to viscosity. DiCarlo proposes a clever
heuristic way to explain these two observations. Continuum theory is used to
capture the motion of the water front. Then a thin film equation is proposed to
capture the movement of the films ahead of the water front. The film equation is
considered at the level of a single grain/pore. Combining these two approaches,
DiCarlo is able to produce a formula that matches the overshoot flux depen-
dence on surface tension, viscosity and grain size. Thus, this semi-continuum
model is not used to capture the UHPM flow, it is only used to explain certain
experimentally observed scaling relations.

Another semi-continuum model was reported by Glass et al. in [52] following
a series of papers [50], [51], [44], [43]. Let us note that the authors themselves
call the approach “mechanistic modelling”, or Macro Modified Invasion Percola-
tion (MMIP), they never use the term “semi-continuum model”. In their MMIP
model, the porous medium is represented as a regular grid of rectangular sites
(called blocks) in two or three dimensions, with certain specified type of con-
nectivity. Each block is a small part of the original porous medium (hence our
“semi-continuum” label) completely described by two numbers:

• Pw is the pressure needed for the invading phase to fully percolate the
block (that means to form a connected network of filled pores throughout
the block so that the block becomes conductive for that phase).

• Pd is the pressure needed for the defending (retreating) phase to reinvade
the block.
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The pressure can be related to a radius of curvature by means of the formula

Pi = −2σ cosφ

Ri

, (2.3)

where i stands either for w or d, σ is the surface tension between the phases and
φ is the contact angle. Thus, each block can be assigned a critical wetting radius
Rw and a critical draining radius Rd.

The MMIP conceptualization has the great advantage (over IP and MIP mod-
els) of not having to worry about the particular geometry of the pores and throats.
It is important to note that the radii Ri in Equation (2.3) do not represent any
dimension of any actual (real) pore in the block – they represent the capillary
pressures given in units of capillary radii. Each block is either full (percolated
by the invading fluid) or empty (not percolated). The model is binary in nature
as almost all IP and MIP models, it does not capture saturation as a contin-
uous variable. The percolation rules for invasion and withdrawal are based on
local pressure considerations and global gradient of the force of gravity (although
the authors are not particularly clear in this matter). The process of facilita-
tion (preferential filling of pores which are surrounded by already full pores) is
included if the invading phase is wetting.

The model is used to capture the following three situations:

• The formation of a single macroscopic gravity-driven finger for water infil-
tration from a point source into initially dry UHPM.

• Buoyancy-driven migration of CO2 injected at constant rate at the bottom
of heterogeneous sand column, initially fully water saturated.

• The formation of a single gravity-driven water finger for infiltration from
a point source located at the top of a dry, vertical rough-walled fracture
formed by two textured glass plates.

The agreement of this MMIP model with experiments in all the three cases
is astonishing. For the gravity driven UHPM fingering, saturation overshoot is
not only reproduced qualitatively but also the finger width and the size of the
overshoot zone are captured well. Two discrepancies are reported by Glass et al:

• Behind the saturated finger tip, the wetting phase becomes fully fragmented
with a narrow backbone that quasi-periodically connects the source to the
advancing finger-tip. This is not observed in experiments and the authors
attribute this discrepancy to the failure of the model to account for film
flow.
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• Multiple pathways (finger divergence) are never produced by the model,
although they are observed in experiments. This is due to the deterministic
nature of the algorithm – the filling and vacating pressures for the blocks
are almost always distinguishable.

In our opinion, the MMIP model by Glass et al. is the most successful ap-
proach presented so far to capture the overshoot phenomenon. The model is
reasonably simple, it does not introduce any free parameters (not related to mea-
surable properties of the porous medium) and it is able to capture three very
different flow regimes by means of a unified approach. To the best of our knowl-
edge, no attempts were made to capture the effects of initial saturation or influx
magnitude by the MMIP model. Due to the discrete nature of saturation in the
MMIP model, it may not be possible at all.

2.5. Benchmarking

There exist many different models for modelling multiphase flow of porous
media. Therefore there has been interest how to compare and evaluate such
models. DiCarlo in [29] proposed rules of evaluation which model is “the most
appropriate” for modelling UHPM. The model should satisfy the following bench-
marks [29]:

1. Have a minimum of adjustable parameters, and parameters should have
a defined and natural scaling as a function of grain size, fluid pairs, and
initial conditions.

2. Reduce to the Richards’ equation in nonovershoot and static profiles.

3. Produce a good match of the observed one dimensional profiles, e.g. the
magnitude of the saturation and pressure overshoot, the dependence on
boundary influx, the dependence on initial saturation, the finger velocity
and the finger build up.

4. Can produce predictions of the two and three dimensional preferential flow
in terms of finger widths, finger velocities and finger spacing.

The main advantage of evaluating the models in terms of one dimensional
flow is reducing three-dimensional nonlinear partial differential equation into a
one-dimensional nonlinear partial differential equation. It is then possible to
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compare quickly 1D experiments with simulations as a function of different pa-
rameters such as initial saturation dependence or boundary flux dependence. In
the next step, more complex evaluation of model can be provided by comparing
2D experiments of unstable flow in terms of finger characteristics. Many models
succeed in one or more items mentioned above. However, none seems to be able
to capture all at once. Especially none can fully satisfy the predictions of the two
dimensional preferential flow. For this reason, a different approach of modelling
UHPM will be presented in this thesis.
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Chapter 3

1D semi-continuum model

In this chapter, we present a semi-continuum model for fluid flow in unsat-
urated porous medium in one spatial dimension. This model reproduces qual-
itatively and quantitatively all of the features of saturation overshoot behavior
reported by DiCarlo [27] (see the summary in Section 2.1).

In Section 3.1, the physics of the model will be presented and the result-
ing model will be fully described. Then, the ability of the model to reproduce
experimental observations will be demonstrated in Section 3.2 followed by Sec-
tion 3.3, where the limit of the semi-continuum model will be explained. Finally,
this chapter will be closed with the discussion in Section 3.4. Sections 3.1, 3.2
(except Section 3.2.5) and 3.4 are taken from Kmec et al. [65], and are slightly
extended here. Parts from Section 3.4 are also published in [66]. Some parts from
Section 3.3 are also published in [65, 66].

3.1. Model derivation

The model is based only on well-established physics, measurable parameters
and material characteristics. The porous material is characterized by porosity,
intrinsic permeability, the main wetting and draining branches of the retention
curve, and the saturation dependence on the relative permeability. The fluid is
characterized by its density and dynamic viscosity. The only physics involved is
the mass balance of fluid together with the Darcy-Buckingham law for fluid flow
in unsaturated porous media.

Let us suppose a long narrow vertical tube filled with homogeneous porous
medium, e.g. 20/30 sand as in the experiments of DiCarlo [27]. The tube has
a cross-section of A [m2], the height of the tube is L [m]. Lets subdivide the
tube into small blocks of height dx and cross sectional area A. These blocks
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represent “pieces” of the original porous medium and they are not to be con-
sidered infinitesimal. For a given time, the key physical quantities (see below)
are considered constant within a single block. This is a direct reference to the
semi-continuum approach of Glass and Yarrington [52]. The tube now consists
of slices [ndx, (n+ 1)dx] with n = 0, 1, . . . N. The key quantities that we want to
track are

• Saturation Si [-] in each block. Saturation is assumed to be uniform through-
out each block but continuously varying in time.

• Capillary pressure Pi [Pa] in each block i.e. the average pressure difference
across the menisci (wetting fluid–gas interfaces) in the block. For simplicity,
air pressure is set to zero everywhere. Pressure is assumed to be uniform
throughout each block but continuously varying in time.

• Fluxes qi,j [m/s] between the blocks i and j. Real fluxes in [m3/s] can be
recovered as Aqi,j. Naturally, only fluxes between neighbouring blocks are
non-zero in this setting. Fluxes are assumed to be continuous in time.

Gravity is directed downward along the long axis of the tube, which is called
the x−axis here. A constant (in time) influx qB [m/s] at the top boundary (x = 0)
is assumed. Zero discharge (i.e. zero flux) at the bottom boundary (x = L) is
assumed.

3.1.1. Saturation update

Naturally, a mass balance has to hold. Here, we use the form

θ∂tS(t, x) + ∂xq(t, x) = 0,

where θ [-] stands for the porosity of the material. This can be understood in the
semi-continuum setting as a simple explicit discrete scheme

θ

dt
[Si(t)− Si(t− dt)] =

1

dx
[qi−1,i(t− dt)− qi,i+1(t− dt)] , (3.1)

where dx and dt are discretization parameters. The specific form of the fluxes
qi,j are given by (3.6). Thus, knowing the fluxes at time t − dt, one can update
the saturation in each block in this straightforward way at time t.
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3.1.2. Pressure update

Next, the pressure in each block has to be updated, because the fluxes are
governed by pressure gradients. Hysteresis of the retention curve has to be ad-
dressed in this step because it is known [103] that, in the case of fingering, the
(over-saturated) finger tip is in the imbibition mode while the under-saturated
finger tail is in the draining mode. Consequently, no reasonable model of the
saturation overshoot can ignore hysteresis. Let us use the following very simple
approach. Suppose that the material has a well-defined main wetting branch of
the retention curve denoted by

Pi(t) = FW (Si(t)). (3.2)

This means that if a block starts at zero saturation and becomes more and more
wet, the capillary pressure in the block will be dependent on its saturation through
Equation (3.2). Analogously, there is the main draining branch of the retention
curve

Pi(t) = FD(Si(t)). (3.3)

For any block that starts at unit saturation and becomes less and less wet, the
capillary pressure will be given by (3.3). A typical retention curve of a 20/30

sand is shown in Figure 3.1. The wetting and draining branch are both modeled
by the logistic functions with small corrections at the S = 0 and S = 1 ends.

Figure 3.1: The retention curve used for one dimensional simulations. The curve
roughly matches 20/30 sand used in the article of DiCarlo [27].
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If a block first undergoes imbibition but then switches to draining, it moves in
the saturation-pressure diagram (Figure 3.1) between the two main branches. In
experiments, significant changes in pressure are observed with almost no change
in saturation [27]. There are many approaches to hysteresis modelling [85, 70, 96].
Here, we adopt the simplest modelling approach and describe this process by a
relation

dP

dS
= KPS (3.4)

with some large constant KPS. It means that between the main branches, sat-
uration changes with pressure very rapidly, following a line with a very large
slope KPS (such scanning curve is plotted in Figure 3.1). One may think of the
saturation jumping from the wetting to the draining branch discontinuously (i.e.
vertically) but this would cause unnecessary numerical issues in the model; hence
this approximation. We believe there is a simple explanation for this rapid be-
havior: capillary pressure originates as an average of the pressure drops across
the fluid–gas menisci. As a block switches between imbibition and draining, the
shape of the menisci changes (they become more pronounced with smaller radii),
which causes almost no measurable change in volume, but a dramatic increase
in the pressure drop across the menisci. Relation (3.4) holds anywhere between
the main wetting and the main draining branches. Once a block in the drain-
ing mode reaches the main draining branch, it sticks to it and continues along
it. Analogously, once a block in the imbibition mode reaches the main wetting
branch, it sticks to it. In this way, we update the pressures in all the blocks using
the current (already updated) levels of the saturation.

3.1.3. Flux update

At last, we have to update the fluxes. This is where we slightly depart from
the usual Richards’ equation formulation (1.19). It is understood that the ad-
vancing of the finger tip is where the classical theory fails. The overshoot can
be understood as fluid piling up behind the fingertip because the dry medium
ahead of the fingertip has insufficient hydraulic conductance; thus the flux across
the fingertip cannot keep up with the flux in the tail of the finger. Therefore,
fluid piles up behind the fingertip which increases the hydraulic gradient across
the finger tip until the large gradient “matches” the low conductivity and the
flux across the fingertip equals the flux in the tail. Then, a stable finger with an
oversaturated tip proceeds with a constant velocity downwards.

The original Darcy-Buckingham law for unsaturated porous media flow [5]
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states:
q =

κ

µ
k(S) (ρg −∇P ) ,

where κ [m2] is the intrinsic permeability of the medium, µ [Pas] is the dynamic
viscosity of the fluid, ρg is the gradient of the gravitational potential, and P [Pa]
is the capillary pressure. Here k(S) [-] stands for the relative permeability which
is very sensitive to S and is usually modeled by a power law relation

k(S) = Sm (3.5)

with m usually around 3 or 4 (some sources report m as high as 10 [21] but since
saturation may vary over three orders of magnitude, this would result in relative
permeability varying over 30 orders of magnitude, which may not be reasonable).

In view of the two preceding paragraphs, it is crucial how we model the
conductance at the finger tip, where ∇P is large, and S changes abruptly from
small values in front of the fingertip to large values inside the fingertip. We
propose the following discrete implementation of the Darcy-Buckingham law:

qi,j(t) =

{
κ
µ

√
k(Si(t))k(Sj(t))

(
ρg − Pj(t)−Pi(t)

dx

)
for j = i+ 1

0 otherwise
(3.6)

Thus, for the relative permeability at the finger tip edge, we simply take the
geometric mean of the permeability of the respective blocks. The geometric mean√
ab has the desirable property of being small if one of the numbers a and b is

small. It is also possible to use the harmonic mean with similar results. The more
common (arithmetic) mean does not behave in this way. Further justification for
using this type of averaging comes from [61], where the authors show that the
geometric mean is appropriate by means of numerical experiments in random
pore networks. Detailed explanation is left to Discussion section. Notice that
if the saturation vanishes in a block, the flux to/from the neighbouring blocks
becomes zero. Therefore, the initial saturation in all blocks has to be set to a
nonzero value.

Notice that in the limit dt→ 0, dx→ 0, the numerical scheme (with geometric
or arithmetic mean) converges back to the RE which is known [40] to be incapable
of producing any overshoot. Thus, the issue of the limit of this semi-continuum
model is an important one and it is left to Section 3.3.

3.1.4. Model description

The resulting model in one dimension works as follows:
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1. The size of the blocks dx is chosen and an appropriate time step dt is set.
Initial saturation Sin is prescribed in each block (the same in all the blocks),
the corresponding capillary pressure is computed (depending on whether we
start on the wetting or draining branch), and all fluxes are initially set to
zero.

2. The top boundary condition is set: the flux into the topmost block is set
and fixed to qB. The bottom boundary condition is set: the flux out of the
bottom block is set and fixed to zero.

3. Using the current value of the fluxes qi,j, saturation Si in each block is
updated according to Equation (3.1).

4. Pressure Pi in each block is updated according to Equations (3.2), (3.3),
or (3.4), keeping track whether the block is in the imbibition or draining
mode.

5. Fluxes qi,j between neighbouring blocks are updated according to (3.6),
keeping the boundary fluxes fixed by step 2.

6. Time is updated to t+ dt and the process goes back to step 3.

3.2. Results

In this section, we reproduce the experimental results of DiCarlo [27]. The
experiments were performed with water infiltrating a narrow tube filled with
20/30 sand. The diameter of the test tube was chosen by DiCarlo so that the
saturation in the column was uniform transverse to the flow direction at all times.
There was no observable preferential flow in the columns, as the diameter was
less than the finger diameter. The tight packing of the sand ensured there were
no observable effects of preferential flow along the tube walls. A tube with the
inner diameter of 1.27 cm was used. Saturation and capillary pressure overshoot
behavior is reproduced, both qualitatively and quantitatively. The dependence
of the saturation overshoot on influx and initial saturation is reproduced, too.

To keep close to the experimental setting (see the Materials and Methods
section in the article of DiCarlo [27]), the following parameters are used for the
simulation:

• porosity of the material θ = 0.35 [-],

• intrinsic permeability of the material κ = 1× 10−10 m2,

36



• dynamic viscosity of water µ = 9× 10−4 Pas,

• density of water ρ = 1000 kg/m3,

• acceleration due to gravity g = 9.81 m/s2,

• cross sectional area of the tube A = 10−4 m2 (this will not be needed in the
model because it is one dimensional),

• length of the tube L = 40 cm (the tube will be divided into 40 blocks of
height 1 cm).

The choice of dx is inspired by Glass and Yarrington [52] and reflects the require-
ment for the blocks to be large enough to retain the characteristics of the original
porous medium. At the beginning, all blocks are assumed to be in imbibition
mode. The saturation dependence of the relative permeability is modeled by
relation k(S) = S3. The retention curve in Figure 3.1 is used with KPS = 105 Pa.

3.2.1. Saturation overshoot in initially dry medium and its
dependence on the influx

First, we want to demonstrate the ability of the semi-continuum model to
capture saturation overshoot in infiltration into initially dry homogeneous porous
medium, and the dependence of the overshoot on the influx. The dependence of
the oversaturation profile on the influx is rather complicated: for a very small
influx, there is no visible saturation overshoot. With increasing influx, a distinct
overshoot pattern appears. The magnitude of the overshoot and the length of
the oversaturated zone increases with increasing influx. If the influx is too large,
the fingertip becomes almost completely saturated and the length of the over-
saturated zone grows all the way to the upper boundary of the sample. Thus,
the overshoot disappears for fluxes which are too large. This rather complicated
dependence is well replicated by the semi-continuum model, see the comparison
of the experimental data by DiCarlo [27] in the left panel of Figure 3.2 and our
numerical simulation in the right panel of the figure. For a technical reasons,
we cannot prescribe initial saturation to be zero (this would yield zero hydraulic
conductivity) so we chose Sin = 0.003 everywhere. Since we report the results in
SI units and assume the cross-sectional area of the tube to be A = 1 cm2, the con-
version factor for the influx between the experiment and the simulation is roughly
60× 100× 1.272 ∼= 10000. Thus, the experimental influx that was small enough
not to cause saturation overshoot (qB = 8× 10−4 cm/min) corresponds roughly
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to qB = 2 × 10−8 m/s in our simulation. Further, the experimental flux which
causes complete flooding of the material (qB = 11.8 cm/min) with no overshoot
roughly matches the same situation in our simulation (qB = 10−3 m/s). It can
be observed that the model is able to reproduce both the dependencies, magni-
tude of the overshoot and the length of the oversaturated zone. The quantitative
match of the experimental data is not perfect, however, we were not attempting
at that. The retention curve we are using is rather arbitrary and matches the
20/30 sand only roughly, we were not trying to fit it to obtain the best fit to
experimental data.
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Figure 3.2: Comparison of the saturation profiles for various influx rates. Left
panel: Experimental data, infiltration into a narrow tube of initially dry 20/30
sand, reprinted from the article of DiCarlo [27] (Fig. 2), fluxes are reported
in cm/min into a test tube of inner diameter of 1.27 cm. Right panel: One
dimensional simulation of the same situation by the semi-continuum model, initial
saturation Sin = 0.003, fluxes are reported in m/s into a system of cross-sectional
area of 1 cm2.

Let us also note that the presented model is in no way “tuned” to capture
saturation overshoot. When diffusion-like monotonic behavior is expected, the
model captures it well, too (see Figures 3.3 for a smooth transition from overshoot
to no-overshoot behavior).
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Figure 3.3: Smooth transition from overshoot behavior for large fluxes to no-
overshoot behavior for small fluxes. Various influx magnitudes [m/s] color
coded. Left panel: Initial saturation Sin = 0.06. Right panel: Initial satura-
tion Sin = 0.14. No visible saturation overshoot is present for this initial satura-
tion. However, the model shows a small but distinct pressure overshoot (see the
Capillary pressure overshoot section).

3.2.2. The effect of initial saturation

Let us now investigate the effect of initial saturation on the saturation over-
shoot. It is known [3] that with increasing initial saturation, the overshoot is less
and less pronounced and finally disappears completely, and diffusion-like behav-
ior prevails. This seems to be captured well by the semi-continuum model, see
Figure 3.4. In the experiments reported by DiCarlo [27], the overshoot disap-
pears completely for Sin = 0.14, for influx comparable to our simulation. This is
in a quantitative agreement with our simulation (see Figure 3.4). Let us further
observe that in the simulation, the tail saturation remains independent of the
initial saturation Sin. This is in agreement with the experimental results of Fritz
[39] (see Figure 6.3 in this article).

Further, we want to reproduce the dependence of the magnitude of the over-
shoot on the initial saturation. Figure 3.5 shows that the model is in qualitative
agreement with the experimental data. The experimental data are considerably
noisy, so we do not comment on quantitative agreement.

Bauters et al. [3] report a hyperbolic relationship between the initial satura-
tion and the overshoot magnitude. The overshoot magnitude is measured as the
difference between the tip saturation and the tail saturation. This observation is
very well reproduced by the semi-continuum model, see Figure 3.6.
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Figure 3.4: Comparison of saturation profiles for various values of initial satura-
tion. Simulation with a constant influx of qB = 5× 10−5 m/s.
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Figure 3.5: Saturation overshoot magnitude. Tip and tail saturations are shown
as a function of the influx magnitude for various values of initial saturation. Left
panels: Experimental data, infiltration into a narrow tube of initially dry 20/30
sand, reprinted from [27] (Fig. 3 and 4). Right panel: Simulation data.
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Figure 3.6: Dependence of the overshoot magnitude on initial saturation. A hy-
perbolic relation fitted to the simulated data.

3.2.3. Capillary pressure overshoot

The capillary pressure overshoot is in agreement with saturation overshoot.
If we observe the evolution of capillary pressure at a single point along the tube,
and offset the time scale so that t = 0 corresponds to the arrival of the finger tip
through this point, we obtain behavior depicted in Figure 3.7.

Let us fix a point 12.5 cm from the upper boundary, i.e. a point in the 13th
block from the top. Let us offset the time so that t = 0 corresponds to the arrival
of the fingertip at this point. We now track the evolution of the capillary pressure
at this point. The time series of capillary pressure at this point exhibits visible
oscillations after the finger tip passes. This is caused by a numerical error: in
performing the limit for dx → 0, these oscillations disappear (see Section 3.3).
The solid line in Figure 3.7 shows a 20 second moving average of the capillary
pressure.

Next, we want to address the dependence of the lowest capillary pressure (i.e.
the pressure at the finger tip, at the wettest point) on initial saturation of the
medium and on the influx. Figure 3.8 shows capillary pressure at the fingertip
for various fluxes and four levels of initial water saturation. DiCarlo [27] observes
two basic trends: the capillary pressure at the fingertip increases with decreasing
flux and it increases with increasing initial water saturation. Both these trends
are reproduced well by the semi-continuum model.
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oscilation

Figure 3.7: Evolution of the capillary pressure at a single point in the 13th block
from the top. Capillary pressure given as pressure head in cm of water column.
The time is offset so that t = 0 corresponds to the arrival of the finger tip. Left
panel: Experimental data reprinted from the article of DiCarlo [27] (Fig. 5).
Influx of qB = 0.8 cm/min into initially dry 20/30 sand. Right panel: Simulation
by the semi-continuum model. The corresponding influx of qB = 8 × 10−5 m/s
into initially dry (Sin = 0.003) medium. The thin line shows the evolution of the
capillary pressure at the point, the thick line shows the moving average over 20
seconds.
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Figure 3.8: Dependence of the lowest capillary pressure (i.e. the pressure at the
finger tip) on initial saturation and influx magnitude. Capillary pressure given as
pressure head in cm of water column. Left panel: Experimental data reprinted
from [27] (Fig. 7). Right panel: Simulation by the semi-continuum model. The
fluxes in the simulation are chosen to approximately match the experimental
fluxes.
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Although the pressure overshoot is consistent with the saturation overshoot,
a more careful look reveals the following observation: DiCarlo [27] reports that
“When a larger initial water saturation of 0.06 was used, the saturation profiles
are found to be monotonic at all fluxes, with no saturation overshoot”. However,
a careful look at Fig. 8 of the original article [27] (not reprinted here) shows that
there is, in fact, a small capillary pressure overshoot for initial saturation 0.06

for fluxes higher than 10−1 cm/min. Even for initial saturation of 0.14 where no
saturation overshoot was observed, the pressure overshoot is still clearly visible
for high enough fluxes. This subtle behavior is well reproduced by our semi-
continuum model (see Figure 3.9).

10
−6

10
−5

10
−4

10
−3

0

1

2

3

4

5

6

Flux (m/s)

C
a

p
ill

a
ry

 p
re

s
s
u

re
 o

v
e

rs
h

o
o

t 
(c

m
)

Capillary pressure overshoot

S =0.06

S =0.14

in

in

Figure 3.9: Capillary pressure overshoot as a function of the initial saturation
and influx magnitude. The pressure overshoot is measured by the difference of
the pressure in the finger tip and the pressure in the tail. Capillary pressure given
as pressure head in cm of water column.

The model reveals that, indeed, there is saturation overshoot accompanying
any pressure overshoot but the saturation overshoot magnitude may be negligible
(on the order of 10−3) and thus it cannot be observed in experiments. This
explains the seemingly self-contradictory observation of DiCarlo.
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3.2.4. Finger build up

To understand the formation of the finger, it is convenient to plot the profile
of the finger at various time points. Figure 3.10 shows the profile at several
successive time points. The finger build up is a gradual process, both in space
and in time. It takes several minutes before the saturation profile reaches its final
(steady) shape. That is compatible with the experiments reported in the article
of Fritz [39], although the author expected, in contrast to his own experimental
results, that the finger develops immediately at the inflow boundary and then
flattens over time and depth.
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Figure 3.10: The process of finger build up. The profile of the finger at several
successive time points.

Two more trends can be observed in the experiments reported in the article
of Fritz [39] (Fig. 6.7): (1) the velocity of the finger tip gradually increases before
reaching a steady state at a certain depth, (2) the length of the oversaturated
zone of the finger increases with time (and thus also with the depth). Both these
trends are correctly captured by the semi-continuum model (see Figure 3.11).
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Figure 3.11: Evolution of the finger velocity and the length of the oversaturated
zone. Compare with Fig. 6.7 in the article of Fritz [39].

3.2.5. The effect of parameters

Let us now investigate the effect of parameters on the final shape of the
finger. It is obvious that each parameter of the simulation forms the finger.
However, here we want to demonstrate that each part of the finger is mainly
effected by some physical properties of the porous medium. Figure 3.12 (left)
shows a representation of the effect for different parts of the finger. A finger is
depicted at time 800 s for boundary flux qb = 5× 10−5 m/s and initial saturation
Sin = 0.01. Let us subdivide the finger into four segments: finger tail, back part,
middle part and front part of the overshoot. In Figure 3.12 (right) saturation
and it’s corresponding pressure is plotted. It can be seen that the finger tail and
the back part of the overshoot is on the draining branch, while the middle part
of the overshoot is on the scanning curve and the front part of the overshoot is
on the main wetting branch. This corresponds with experimental observations
[103]. Each segment of the finger will be commented separately:

• Finger tail: saturation in the finger tail is effected only by intrinsic and
relative permeability, dynamic viscosity, density, gravity and boundary flux.
It is well known, that saturation in the finger tail is constant. That means
that the flux in the finger tail has to be also constant (equal to boundary
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flux qb), and so is. If it was not a true, the saturation would change. A flux
balance is then given by Darcy-Buckingham law:

κ

µ
k(Stail)ρg = qb,

where Stail denotes the saturation in the finger tail. By assuming k(S) = S3,
we can write:

Stail =
( µ

κρg
qb

) 1
3
.

This is exactly the reason why saturation in the finger tail is independent
on initial saturation (see Figure 3.4).

• Back part: the back of the overshoot is on drainage mode and thus the
biggest impact on forming this part has the main draining branch.

• Middle part: the middle part of the overshoot is mostly effected by the
scanning curve. See Figure 3.13 (left), where different exponents KPS of
the scanning curve are used. We observed that smaller exponent results in
longer middle part of the overshoot with higher inclination. This is caused,
because the length of the scanning curve is larger for smaller exponents
and thus the block remains on the scanning curve for larger time. For KPS

large enough, the distance between branches does not change and thus the
effect is negligible. To further demonstrate this behavior, we can simply
increase the distance between the main branches of the retention curve.
Figure 3.13 (right) shows fingers for three different draining branches. The
basic retention curve (given by Figure 3.1) is used for the red finger. Other
two fingers are calculated with modified draining branches, such that we
add 300 Pa to the main draining branch for the blue finger and we subtract
300 Pa to the main draining branch for the green finger. Basically it means,
that the distance between the main branches is smaller for blue finger and
larger for green finger. Consequently the middle part of the overshoot
changes the length regarding to the distance between the main branches.

• Front part: we observed similar behavior as for the back part of the over-
shoot. Since the front part is in the imbibition mode, the finger tip is formed
especially by the main wetting branch. Moreover, a geometric mean of the
permeability between blocks plays a crucial role.
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Figure 3.12: Left panel: Representation of the effect of parameters on the final
shape of the finger. Right panel: Saturation and corresponding pressure.
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Figure 3.13: Left panel: Effect of the hysteresis exponent KPS. Right panel:
Effect of the distance between the main branches. See the text for more details.

3.3. Limit of 1D semi-continuum model

In case of the porous media flow, there are more reasons to doubt the con-
tinuum mechanics approach apriori. The discrete nature of the fluid is not a
problem – the pores are orders of magnitude larger – it is rather the nature of
the acting forces that raises doubts about continuum modelling. In a turbulent
fluid (described for instance by well known Navier-Stokes equations [88, 116]), the
representation of internal forces (viscosity and pressure) through a smooth tensor
field makes sense at each point. On the other hand, a water body inside a porous
matrix is “suspended” on its air-water menisci. Tension at each point of the water
body is dictated by the geometry of the menisci at its outskirt. Capillary forces
act only at the air-water interfaces and it may not be sensible to assume they
are “spread out” throughout the porous medium in the form of a “capillary force
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field”. However, this is exactly the key assumption behind continuum mechanics
modelling.

There is a major issue to be clarified before the model can be considered
appropriate: the size of the blocks and the behaviour of the model as this size goes
to zero. We show that the question is interesting because the correct answer has to
live between the two long established “extremes”. On one hand, a mathematically
trivial but physically incorrect limit of the semi-continuum model yields the RE,
which works well for the diffusion-like regime but fails in the fingering regime.
On the other hand, passing to the limit in the retention curve without sending
the block size to zero yields the original Macro Modified Invasion Percolation
model of Glass et al. [50], which works well in the fingering regime but fails
in the diffusion-like regime [51, 44, 43, 52]. The correct limiting process has to
balance the convergence in the retention curve with the block size. It yields
neither a partial differential equation, nor a cellular automaton. In this sense,
we believe that the semi-continuum model is the golden mean in porous media
flow modelling, and that it is a representative of a rather interesting family of
mathematical models. Surprisingly, we are not aware of much work dealing with
this type of models.

It is crucial to understand, that in performing the limit dt → 0, dx → 0,
one cannot assume that the distribution of the characteristics of the blocks (i.e.
their permeability, porosity and retention curve) stays the same. We conjecture
that with decreasing dx, the variance of this distribution has to increase. As the
blocks become smaller and smaller, some of them will likely represent a void of the
porous matrix (thus becoming very permeable) and others will likely represent
the bulk of the porous matrix (thus becoming negligibly permeable). Note that
this idea goes directly against the continuum mechanics paradigm! To stress the
contrast further, imagine we treated the problem of heat diffusion by the semi-
continuum approach presented above. The heat conducting material would be
cut up into blocks and heat would flow between the adjacent blocks according
to Fourier’s Law. Each block would be described by the same heat conductivity
coefficient. Next, the mesh would be refined. Naturally, the heat conductivity
coefficients would not be affected by the refinement of the mesh. Taking the limit
of the refinements (together with dt→ 0) would yield the classical heat equation.

However, in the context of unsaturated porous media flow, the material coef-
ficients cannot stay constant during the limiting process. As the blocks become
smaller, the variance of the material parameters has to increase. Moreover the
variability of the geometry of its pore-space decreases, and consequently its re-
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tention curve becomes simpler. If we imagine a block so small that it contains
only a single pore, its retention curve becomes completely flat. For a single pore,
the transition from zero to unit saturation happens at a constant pressure (the
water-entry pressure) and the transition from unit to zero saturation also hap-
pens at constant pressure (the air-entry pressure). Thus, in the limit dx → 0,

the retention curve of each block collapses to two parallel horizontal lines, one for
imbibition and the other one for drainage. Such a retention curve is inadmissible
in the context of the RE and so the semi-continuum model does not reduce to
the RE in the limit dx→ 0.

To simplify the ideas as much as possible, the limiting process of one-dimensional
version of the model will be addressed in this chapter. All parameters remain the
same as for 1D simulations provided in this chapter.

3.3.1. A numerical limit

We showed in Results section 3.2 that the model is able to reproduce well
all the observed features in unsaturated flow in a narrow vertical test tube filled
with sand in experiments reported by DiCarlo [23, 26, 28]. The model correctly
predicts when a saturation overshoot effect will appear. Moreover, it captures well
both the interesting aspects of the overshoot behavior: (1) the non-monotonic
dependence of the overshoot magnitude on the influx, and (2) the transition from
the overshoot regime to diffusion-like regime for increasing initial saturation.

Fingering regime in a narrow tube does not allow the fingers to exhibit com-
plicated spatial patterns. To observe these, one has to switch to two-dimensional
experiments such as [46, 47, 50, 48, 45, 3, 103]. In Chapter 4 we will use the two-
dimensional version of the model to show that it is able to correctly reproduce the
transition between fingering regime with saturation overshoot (for small initial
saturation) and diffusion-like regime of a stable flat water front with a monotonic
saturation profile (for large initial saturation), see Figure 4.15. The overshoot
magnitude and spatial structure of the fingers are also reproduced correctly [95].

In [29], DiCarlo states the four criteria to evaluate a model for unsaturated
porous media flow (see Section 2.5). Since the semi-continuum model can never
reduce to the RE, we understand the second criteria in the way that the model
should be able to reproduce also diffusion-like regime, not only the fingering
regime. The semi-continuum model formulation uses only the physics of the RE
(porosity, permeability, the retention curve, mass conservation, and the Darcy-
Buckingham Law), thus no new parameters are introduced. In view of Figures
3.2, 4.15 and other results in Chapters 3 and 4, points 2–4 are satisfied, too. One
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might be tempted to say that the issue is settled and the semi-continuum model
is the appropriate one. However, that would miss the question how to choose
the block size. This is clearly a “parameter” of the semi-continuum model, and
clearly a rather artificial one.

First, note that the time step is not a free parameter of the model – it is a
discretization parameter. Figure 3.14 (left) shows the behavior of the 1D semi-
continuum model for a range of dt values. The solution is stable in the limit
dt→ 0.
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Figure 3.14: Left panel: The dependence of the moisture profile at t = 10 minutes
on time step dt, the profiles are almost identical for a range of dt between 10−3

and 10−5. The right vertical axis denotes the difference of the saturation in the
finger tip for various dt, which are plotted with coloured circles. The reference
finger is calculated for time step dt = 0.0125 ms. Right panel: The dependence of
the moisture profile at t = 10 minutes on dx. As dx→ 0, the overshoot behavior
disappears and the semi-continuum model converges to the Richards’ equation.

This is not the case for dx. If we let the block size go to zero (dt has to go
to zero, too), the overshoot behavior disappears (see right panel of Figure 3.14).
This is natural because in the limit dx → 0, dt → 0, the semi-continuum model
converges to the RE. The only difference between a numerical scheme for the RE
and the semi-continuum model is the use of geometrical mean for flux update.
However, in the limit a → b, all means (arithmetic, geometric, and harmonic)
converge to the same value a, so this has no effect in the limit. In view of
this convergence, one might say that the semi-continuum model is just another
wrong numerical scheme for the RE [92, 93] — the scheme is wrong because it
produces saturation overshoot while the RE cannot produce overshoot. This line
of thinking has a rich history, see the discussion of Eliassi and Glass [35]. We will
argue that it is quite the opposite: the RE is a wrong limit of the semi-continuum
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model.
The main idea is the following: each block is a sample of the original medium

characterized by the porosity, intrinsic permeability, and the retention curve.
If we decrease the sample size, the characteristics of the block have to change,
especially the retention curve. We claim that smaller samples of the original
medium have flatter retention curves. To fix ideas, imagine a single pore in the
shape of a cylinder of radius R. Assuming zero contact angle, a drop of water
would “sit” inside this capillary cylinder bounded by two hemispherical menisci
of radius R. According to the Young-Laplace equation [139], the pressure drop
across each of the meniscus is 2σ/R where σ is the surface tension between
water and air. Setting the air pressure to zero, the water drop is under tension
(i.e. negative pressure) P = 2σ/R. Connecting such an empty pore to a water
reservoir at a pressure lower than −P will yield zero saturation in the pore —
the suction of the pore is not enough to draw any water in. Once the pressure
in the reservoir increases above −P , the pore will immediately fill with water,
switching to unit saturation. Thus, the dependence of saturation on pressure
(i.e. the retention curve) is a horizontal line at −P . Let us continue this thought
experiment and imagine two pores of radii R1 < R2. At certain pressure −P1, the
first pore will fill, and at a higher pressure −P2, the second one will fill. Thus,
the retention curve of this system of two pores is a broken horizontal line (see
Figure 3.15). A macroscopic sample of a porous medium contains many pores of
various shapes. The result of assembling many horizontal lines at different levels
is a smooth function such as the one presented in Figure 3.1. The main point of
this excursion is to explain that as the sample size converges to zero, its retention
curve has to converge to the retention curve of a single pore – i.e. to a horizontal
line.

The same idea can also be approached from a different angle: if we want
to decrease the block size and yet preserve the character of the flow, the fluxes
across the block boundaries must stay roughly the same. The fluxes are given by
Equation (3.6) in which decreasing dx to a half increases the flux by a factor of
two. To compensate for this, the difference in pressure between the blocks must
decrease. And decreasing the pressure difference without changing the saturation
in the blocks amounts to the flattening of the retention curve.

Suddenly, a clear picture emerges. Letting dx → 0 without flattening the
retention curve should yield a physically unsound model. And so it does —
the RE is unable to capture experimentally observed flow patterns. The correct
limiting process must include correct scaling of the retention curve. We propose

51



Figure 3.15: The main draining branch of two pores of radii R1 < R2 and cor-
responding pressures −P1 and −P2. Both pores have the same volume, thus a
break in horizontal line is for S = 0.5.

the following simple mechanism in which the retention curve of a block takes the
form

P = dx

[
− 100 log

( 1

S
− 1
)]

+ C, (3.7)

where dx denotes the block size, and C is −700 Pa for the main wetting branch
and −1300 Pa for the main draining branch. This retention curve is the simplest
possible parametrization and roughly matches the characteristics of 20/30 sand
in the experiments of DiCarlo [23]. We did not try to fit the constants -– the
purpose of this article is to explain the scaling not to produce the best possible
fit of experimental data. Figure 3.16 illustrates the scaling of the retention curve
as dx goes to zero. Notice that the distance between the two main branches does
not change.

Left panel of Figure 3.17 shows the predicted moisture profile in 1D simulation
for a decreasing sequence of block size values. The setting is the same as in
Figure 3.14 but, unlike in Figure 3.17, this time the flow profile converges to
the experimentally correct finger flow pattern, with overshoot in the fingertip
and under-saturated finger tail. Notice that the limit saturation profile is almost
rectangular. The right panel of Figure 3.17 shows the numerical convergence for
dx → 0 in case of a diffusion-like flow regime. Thus, this scaling works in both
the regimes, fingering and diffusion-like.

Finally, Figures 3.18 and 3.19 show the predicted pressure profiles for a de-
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Figure 3.16: The scaling of the retention curve with the block size dx. The
solid line denotes the main wetting branch and the dashed line denotes the main
draining branch.
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Figure 3.17: Left panel: Convergence of the moisture profile at t = 10 minutes
for dx → 0 for initial saturation Sin = 0.01. The moisture profile converges and
retains the overshoot pattern. Right panel: Convergence of the moisture profiles
at t = 5 minutes for dx → 0 for initial saturation Sin = 0.14. The moisture
profile converges to a sharp water-front without saturation overshoot.

creasing sequence of block size values at a point 5 cm from the upper boundary.
It is important to mention, that initial setting is crucial for the pressure behav-
ior. While in Figure 3.18, we started on the main wetting branch (the same setup
was used in Figure 3.17), in Figure 3.19 all blocks started on the main draining
branch.

We can clearly see, that for the first case (all blocks are assumed to be in
the imbibition mode), the behaviour of the pressure profile is not consistent with
experimental results [27]. In the limit, the pressure first equals −700 Pa (as the
block is in the imbibition mode), then the pressure slowly decreases (as the block
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is on the scanning curve) and finally the pressure is again constant and equals
−1300 Pa (as the block is on the main draining curve). On the other hand, if all
blocks are assumed to be in the draining mode, the pressure first increases and
then slowly decreases which is consistent with experimental observation. The
convergence of moisture profiles is similar as shown in Figure 3.17 and thus it
is not presented here. Let us also note, that the oscillations observed in 1D
simulation (see Figure 3.7) disappear in limiting process.
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Figure 3.18: The predicted pressure profiles for initial saturation Si = 0.01. All
blocks started on the main wetting branch.
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Figure 3.19: The predicted pressure profiles for initial saturation Si = 0.01. All
blocks started on the main draining branch.

The semi-continuum allows for a physically reasonable scaling of the retention
curve with dx so that the character of the solution remains the same. This numer-
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ical evidence suggests there should be a limit form of the semi-continuum model,
i.e. a model to which the semi-continuum model converges as dx → 0, while
scaling the retention curve in the appropriate way. The idea of the mathematical
limit is presented in the next section.

3.3.2. A mathematical limit

In this section, we pay attention to the limit process suggested above. First,
let us complete the model (3.1), (3.6) with initial conditions

Si(x, 0) = Si(x), for i = 0, . . . , n+ 1, (3.8)

and boundary conditions

q0,1(t) = q0 > 0, and qn,n+1(t) = 0. (3.9)

Let us denote by xi+1 the point between block i and i + 1. Points x0 and
xn+2 form the boundary of the one-dimensional sample. To simplify notation
we denote h := dx. A single block thus corresponds to the interval [xi, xi + h).
Further, we define the following notation. A function f̃h(x) denotes a piecewise
constant function that takes the value fi on each interval x ∈ [xi, xi + h). In this
notation, S̃h(x) is the saturation, piecewise constant on each block. A piecewise
linear (and thus continuous on [0, L]) approximation will be denoted without the
tilde, i.e.

fh(x) :=
(

1 +
xi
h
− x

h

)
fi +

(x
h
− xi
h

)
fi+1,

for x ∈ [xi, xi + h). In the following paragraphs, we will use these piecewise
constant and piecewise linear approximations to saturation, pressure, and flux.
We will also denote

∂t :=
∂

∂t
and ∂x :=

∂

∂x

With this notation, Equation (3.1) can be rewritten as a partial differential
equation

θ∂tS̃h(x, t) = −∂xqh(x, t), for (x, t) ∈ [0, L]× [0, T ]. (3.10)

This approach is inspired by the Rothe’s scheme which related a partial differ-
ential equation (PDE) to its discrete approximations [108]. Similarly, Equation
(3.6) can be rewritten as follows

q̃h(x+ h, t) =
κ

µ

√
k(S̃h(x, t))

√
k(S̃h(x+ h, t)) (ρg − ∂xP (h))

for (x, t) ∈ [0, L]× [0, T ]. (3.11)
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Next, we employ the toolbox of modern PDE theory and pass to the weak
formulation. We take a smooth function ϕ, multiply both sides of (3.10) with it,
and integrate over the interval [0, L] to get

θ

∫ L

0

∂tS̃h(x, t)ϕ(x) dx =

∫ L

0

qh(x, t)∂xϕ(x) dx+ q0ϕ(0). (3.12)

In this equation, the derivative is transferred to the test function ϕ which enables
us to relax the assumptions on the limits performed below.

The retention curve defined by (3.7) can be decomposed into two branches
(wetting and draining) in the following symmetrical way

gw(h, S) = f(h, S) + C, and gd(h, S) = f(h, S)− C, (3.13)

with

f(h, S) = h

(
−100 log

(
1

S
− 1

))
− 1000

and C = 300. The scanning curves b(S) are modelled such that they follow a
straight line given by

dP

dS
= KPS. (3.14)

Using the form of the two branches we can see similarity between (3.13) and
(3.14) and the classical Prandtl model of elasto-plasticity (the stop operator), see
Visintin for more details [129]. The hysteresis operator P defined by (3.13) and
(3.14) can be thus express using the differential inequality

(KPS∂tS − ∂tP (h)) (P (h)− v) ≥ 0, for all v ∈ [gd(h, S), gw(h, S)],

with P (h) ∈ [gd(h, S), gw(h, S)], and S ∈ [0, 1].

To see that the equations above really describe the classical Prandtl model of
elasto-plasticity, we use the substitution

S̄(h) := KPSS − f(h, S), P̄ (h) := P (h)− f(h, S), w := v − f(h, S). (3.15)

The resulting operator form of the semi-continuum model takes the form of the
following differential inequality(
∂tS̄(h)− ∂tP̄ (h)

) (
P̄ (h)− w

)
≥ 0, for all w ∈ [−C,C] with P̄ (h) ∈ [−C,C].

(3.16)
We now check whether the differential inequality in (3.16) corresponds with the
hysteresis operator defined by (3.13) and (3.14):
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1. Let P̄ (h) ∈ [−C,C]. Then there exists wj ∈ [−C,C], j = 1, 2, such that
P̄ (h)− w1 > 0 and P̄ (h)− w2 < 0. From (3.16) it follows:

∂tS̄(h)− ∂tP̄ (h) = 0.

Integration in time variable together with (3.15) results in

P (h, t) = KPSS(t)−KPSS(t0) + P (h, t0),

where t0 is an initial time such that P̄ (h, t0) ∈ (−C,C). Thus, we are
located on the scanning curve for this case.

2. Let P̄ (h) = C and thus P (h) = f(h, S) + C. Then P̄ (h) − w ≥ 0 and
∂tS̄(h)− ∂tP̄ (h) ≥ 0. Hence and from (3.15) it follows

KPS∂tS ≥ ∂tP (h)⇒ KPS ≥ ∂Sf(h, S),

because the pressure corresponds to this branch only if ∂tS ≥ 0 and more-
over ∂tf(h, S) = ∂Sf(h, S)∂tS. Without the inequality ∂tS ≥ 0 we are un-
able to connectKPSS and f(h, S)+C. From the inequalityKPS ≥ ∂Sf(h, S)

it follows that KPSS and f(h, S) + C are connected.

3. Let P̄ (h) = −C and thus P (h) = f(h, S) − C. Then P̄ (h) − w ≤ 0 and
∂tS̄(h)− ∂tP̄h ≤ 0. Hence and from (3.15) it follows

KPS∂tS ≤ ∂tP (h)⇒ KPS ≥ ∂Sf(h, S),

because the pressure corresponds to this branch only if ∂tS ≤ 0 and more-
over ∂tf(h, S) = ∂Sf(h, S)∂tS. Without the inequality ∂tS ≤ 0 we are un-
able to connectKPSS and f(h, S)−C. From the inequalityKPS ≥ ∂Sf(h, S)

it follows that KPSS and f(h, S)− C are connected.

Finally, assume that as h → 0, the solutions of the operator form of the
semi-continuum model (3.16) converge in the following sense

S̃h → S, qh → q, q̃h → q, and P̄ (h)→ P + 1000. (3.17)

The validity of this assumption is suggested by the numerical evidence described
above. Performing the limit in (3.12), (3.13) and (3.14) yields

θ

∫ L

0

∂tS(x, t)ϕ(x) dx =

∫ L

0

q(x, t)∂xϕ(x) dx+ q0ϕ(0), (3.18)
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where
q :=

κ

µ
k(S) (ρg − ∂xP ) (3.19)

and

(KPS∂tS − ∂tP ) (P − v) ≥ 0, for all v ∈ [−1300,−700] and P ∈ [−1300,−700].

(3.20)
Thus, the limit form of the semi-continuum model is a weak formulation (3.18) for
a partial differential equation together with the classical Buckingham-Darcy law
(3.19), containing a hysteresis operator of the Prandtl model of elasto-plasticity
(3.20). Passing from the weak formulation to the classical one yields

θ∂tS + ∂x

(
κ

µ
k(S)(ρg − ∂xP )

)
= 0. (3.21)

Equation (3.20)–(3.21) represent the classical form of the limit of the semi-
continuum model. It is a partial differential equation containing a Prandtl-type
hysteresis operator under the derivative, which makes the equation switch be-
tween a hyperbolic and parabolic type. This is a rather interesting mathemati-
cal object and we are not aware of much research dealing with such equations.
Since these equations seem to arise naturally from a limiting process of the semi-
continuum model, we think they deserve more attention of the mathematical
community.

If P was a differentiable monotonically increasing function (i.e. a retention
curve, not a hysteretic operator), Equations (3.20)–(3.21) would reduce to the
classical RE defined by equation (3.21). However, in view of the above arguments,
that would correspond to a physically unsound limiting process. For a sample size
above representative elementary volume (REV), a retention curve is a material
characteristic and is independent on the sample size. On the other hand, for
the sample size lower than REV (centimeters), the retention curve is dependent
on this sample. However, it is obvious, that the size of blocks (“the size of the
computational mesh”) should be lower than REV; thus for a mathematical model,
the retention curve should not be considered as a material characteristic. Taking
this into account, one arrives at a model that differs dramatically from the RE.

3.3.3. The golden mean in porous media flow

Many researchers in the community have been circling around the semi-
continuum model and its correct scaling. In 1996 (i.e. before it was proven that
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the RE cannot admit saturation overshoot), Nieber [92] claimed to have pro-
duced a finger-like solution to the RE numerically. However, Eliassi and Glass
[35] went through the discretization process used by Nieber and demonstrated
that his finger-like solution is a numerical artefact. With the benefit of hindsight,
we see that Nieber “guessed” the correct mechanism of flux across the fingertip,
however, he tried to put it into the context of the RE which is impossible. We
might say that he was right by producing an incorrect solution to an incorrect
equation.

Another approach came very close to this result. As soon as 1989, Glass and
Yarrington [50] proposed a cellular automaton under the title of “mechanistic
modelling”, or “Macro Modified Invasion Percolation (MMIP)”. They first pro-
posed the idea of representing the porous medium as a grid of blocks that retain
the character of a porous medium. In their approach, each block is completely
characterized by two numbers:

• Pw, the wetting pressure, i.e. the pressure needed for water to fully per-
colate the block (that means to form a connected network of filled pores
throughout the block so that the block becomes conductive),

• Pd, the draining pressure, i.e. the pressure needed for air to reinvade the
block.

For zero contact angle, capillary pressure can be related to a radius of cur-
vature by means of the formula P = 2σ/R, thus, each block can be assigned a
wetting radius Rw and a draining radius Rd. Each block is either full (percolated
by the invading fluid) or empty (not percolated) so that the model cannot cap-
ture saturation as a continuous variable. There are many important details to
make the model work (e.g. the wetting and draining radii have a distribution, a
mechanism of collective pore filling called “facilitation” has to be implemented,
etc.) but once in place, the model produces astonishing match of observed data
in a range of different conditions.

From the perspective of the model presented here, the MMIP model is an
incomplete limit of the semi-continuum model in the following sense. The char-
acterisation of each block by two critical values of pressure exactly corresponds to
a flat retention curve, i.e. to a retention curve of a single pore. Thus, the MMIP
model takes the limit in the retention curve but leaves the block size constant
(and arbitrary). The RE, on the other hand, arises by taking the limit in the
block size but leaving the retention curve of the block without change. We argue
that both the limiting processes have to proceed in parallel. In this way we strike
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the golden mean between the RE (which works well for diffusion-like flow but
fails in the fingering regime), and the MMIP (which works well in the fingering
regime but fails for diffusion-like flow). Hence the title of this section.

Let us present an analogy, which we find trivial but useful. The most famous
limit in mathematics is undoubtedly the expression

lim
n→∞

(
1 +

1

n

)n
which defines the Euler constant. A tempting but wrong freshmen approach is to
notice that 1/n goes to zero, thus the bracket goes to unity, and so the limit must
be 1. A similarly wrong approach is to say that the bracket is always greater than
one, the exponent goes to infinity, and conclude that the limit must therefore be
infinite. The correct answer is the golden mean: the decrease of the bracket to
unity is balanced by the increasing power to which the bracket is raised. This
resembles rather well the limiting process described here. The decrease in the
block size is balanced by the increasing “flatness” of the retention curve.

The price we pay for the semi-continuum approach is the awkward nature of
the limit. It is a partial differential equation containing a Prandtl-type hysteresis
operator under the derivative, which makes the equation switch between a hyper-
bolic and parabolic type. The limit derived here is a formal one, i.e. we assume
the solution of the semi-continuum model converges as dx→ 0 to a function and
show which equation this function should satisfy. The reader should be warned
that the “limit of a model” may be understood in two different ways which we
will explain on the example of Navier-Stokes equations. If we let viscosity of the
fluid go to zero, the Navier Stokes equations will reduce to Euler equations. This
“limit in the model” is easy. However, it is quite another matter to show that if
take the solution to Navier-Stokes equations and pass to the limit ν → 0 in the
solution, the resulting function will be a solution of the Euler system. This “limit
in the solutions” is still an open problem and almost no one in the community
believes it is true. In this article, Equations (3.20)–(3.21) represent the “limit in
the model” approach.

3.4. Discussion

There is an interesting connection between the presented results and the work
of Hassanizadeh and Gray [55, 57, 56, 54], who propose a dynamical term in the
pressure saturation equation. In their approach, the retention curve takes the
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form

Pdyn(S) = Pstat(S)− τ(S)
∂S

∂t

with Pstat(S) the original rate-independent retention curve, and τ(S) a new sat-
uration dependent material function. There has been a discussion whether the
term is physically sound and whether there is any experimental evidence of it
[28]. If saturation increases (i.e. if the wetting branch of the retention curve is
followed), the dynamical term is negative and so Pdyn < Pstat. On the draining
branch, the effect is opposite.

As stated earlier, decreasing dx without flattening the retention curve accord-
ingly produces too large fluxes across the fingertip (due to too large pressure
differences) which do not allow water to pile up in the finger and ultimately de-
stroy the overshoot. This is the reason why the RE cannot capture overshoot
profiles. Our solution of this problem is to flatten the retention curve along with
decreasing dx. Hassanizadeh’s solution is to decrease the pressure difference by
the dynamical term. The dynamical term is “silent” in most of the medium where
the rates of change of saturation are moderate. It kicks in precisely at the edge
of the advancing fingertip where the saturation rises quickly. From the numer-
ical point of view, it does not matter how we prevent the pressure differences
across the fingertip to increase too much. From the point of view of physics, we
believe that our approach is more reasonable. We reach the same effect without
introducing any new parameters by a process which is theoretically sound and
is backed by experimental evidence. Hassanizadeh needs to introduce a param-
eter which is saturation dependent, i.e. he needs to introduce a new material
function. Although his approach seems to have theoretical backing, experimental
evidence for the existence of the dynamical effect is lacking and it is unclear how
to measure the function τ(S).

Averaging of hydraulic conductance has been used before [92, 93] and heavily
criticized since then [35]. Nieber used the averaging process in a numerical solu-
tion to the RE. That was proven wrong by Eliassi et al. [35] who showed that
his “numerical solution” was far from the true solution to the RE. Thus, by the
averaging process, Nieber obtained an incorrect numerical solution to the RE.
Today we know that the RE is inappropriate for finger flow modelling [40]. In
the present semi-continuum model, the averaging process is not used to obtain a
numerical solution to any differential equation. The averaging process is based
on the studies of the so-called equivalent hydraulic conductivities of spatially
varying media [61]. There is theoretical justification to use the harmonic mean of
conductivities (as a lower bound) in case of a medium stratified perpendicular to
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the flow direction [61]. This is similar to the situation at the fingertip where an
almost saturated block is in contact with an almost dry block beneath. In a series
of numerical experiments in a random pore networks, Jang et al. [61] report re-
sults which are mostly consistent with the averaging process using the geometric
mean. Thus, the geometric mean of relative permeability of the neighbouring
blocks is used in our model.

Experiments show that the behavior of the finger tip edge is crucial for the
flow pattern. The overshoot can be understood as fluid piling up behind the fin-
gertip because the dry medium ahead of the fingertip has insufficient hydraulic
conductance thus the flux across the fingertip cannot keep up with the flux in the
tail of the finger. The detailed mechanism of the fingertip advance matters here.
The fluid menisci “jump” from grain to grain, rather than flow in a continuous
way. That is why the overshoot behavior so much depends on the shape of the
grains, as reported by DiCarlo [27]. Materials with identical macroscopic char-
acteristics exhibit different overshoot behavior. It may be possible to model this
process if we knew the exact positions and shapes of the grains at the fingertip.
However, such detailed knowledge is neither available nor wise to incorporate in
a porous medium flow model. Our model accounts for this “burst-and-hold” be-
havior by the following fast positive feedback: the block beneath the finger tip is
dry, thus its conductivity is very low. The flux into the dry block is thus negligible
and fluid piles up behind the fingertip. Once the pressure at the front increases
enough and the previously dry block starts filling with water, the flux from the
finger tip increases very quickly, making the block even more wet, which in turn
increases the flux even more. This positive feedback fills the dry block with fluid
almost instantly. This makes the finger “jump” ahead by one block. Notice that
modelling the flux between the blocks by means of the geometric average is crucial
in this process. It should also be stressed that it is crucial to take into account
the hysteresis of the retention curve which prevents the oversaturated fingertip
to drain into the undersaturated tail.

The microscopic origin of the “burst-and-hold” mechanism has been debated
for a long time. Capillary pressure arises from the shapes of the water-air in-
terfaces on the pores are dictated by the geometry of the pore space and the
incompressibility of the flow. It is probable that velocity dependent effects also
play a role [114, 4]. Hoffman [60] describes the dependence of the contact angle
on the velocity of the flow. Steenhuis et al. [114] use this result to predict the
capillary pressure in the fingertip for various levels of influx and initial saturation.
They assume that water at the fingertip advances by bursting through a single
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pore with a velocity high enough to cause a decrease in the contact angle. This
causes the pressure to build up in the tip of the finger. There is experimental
evidence in support of this mechanism [83]. Whatever the microscopic origin
of the capillary pressure is, a semi-continuum model has to capture its effect in
terms of quantities that are measurable on the level of the blocks. In our case,
the macroscopic manifestation of these pore-scale processes is the low relative
permeability between the wet block at the fingertip and the dry block directly
beneath.

It is well known that forward time discretization (see equation 4.1) may cause
instability of the numerical simulations which usually manifest themselves as
spurious oscillations in the finger tip. One may suspect that these spurious os-
cillations cause the overshoot behavior of the model. The explicit and implicit
discretizations were compared and it was shown that the overshoot behavior is
independent on the discretization scheme used. For more information, see Sup-
plementary Information in [66].

Let us stress again that the presented model is entirely based on well-known
physical principles and material properties. The coefficient KPS may be an ex-
ception – it is not usually assumed that all the scanning curves between the main
wetting and draining branch of the retention curve are lines with a large deriva-
tive. However, any measurement is difficult here and sometimes an estimate of
the scanning curves is the only option.

By an easy extension, the model can also be used to under fully or partially
saturated conditions. If a block becomes fully saturated, the (negative) cap-
illary pressure becomes zero and (positive) hydrostatic pressure appears. The
hydrostatic pressure is computed using the height of the water column (i.e. the
height of fully saturated blocks) above the considered block. Thus, in Equation
(3.6), hydrostatic pressure difference appears on the right hand side instead of
the capillary pressure difference.
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Chapter 4

2D semi-continuum model

In this chapter, we present the two-dimensional version of the semi-continuum
model [66] which is a straightforward extension of the 1D case [65]. We show that
the model is able to reproduce both the finger-like regime (for small initial sat-
uration of the matrix) and the diffusion-like regime (for large initial saturation),
and the transition between the two. In the finger-like regime, the model repro-
duces the persistence of the fingers and captures their spatial heterogeneity well.
Further, the model helps to explain the inner structure of the finger – the mo-
bile core and immobile fringe – that is observed in experiments. The well-known
two-dimensional experiments of Glass et al. [46, 47, 50, 48, 45] and Rezanezhad
et al. [103] are reproduced by the model.

A structure of this chapter is similar as for the 1D semi-continuum model.
First, we will derive the two-dimensional extension of 1D model in Section 4.1.
Next, in Section 4.2 we will demonstrate that the limit of 2D model works equally
well as for the 1D model followed by Section 4.3 in which the parameters of
the model will be fitted for different types of porous media. In Section 4.4 we
will show capability of the model to reproduce experimental observations. The
chapter will be again closed with discussion in Section 4.5. Sections 4.1, 4.4
(except Section 4.4.5) and 4.5 are taken from Kmec et al. [66], and are slightly
extended here.

4.1. Model derivation

We extend the model to two spatial dimensions because in 2D there are many
more features of the finger flow that can be tested. A 2D model aims to capture
experiments in a vertical Hele-Shaw cell filled with sand used for experiments e.g.
by DiCarlo [23]. The distance between the two parallel plates is small and thus
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the dependence of the quantities of interest on this coordinate can be neglected;
hence the notion of 2D porous media flow.

The model is again based only on well-established physics, measurable param-
eters, and material characteristics. The porous medium is modelled as a regular
rectangular grid of N ×M small square blocks of uniform size dx × dx. Each
block of the material is assumed to retain the characteristics of a porous medium
and so each block is fully characterized by two material functions – the pressure-
saturation dependence in the wetting phase (known as the retention curve) and
the dependence of hydraulic conductivity on saturation. The amount of the wet-
ting fluid (water in our case) in each block is captured by the moisture content
(saturation) and the pressure. Both these quantities are assumed to be uniform
inside each block but continuously changing with time. For simplicity, the non-
wetting phase (air in our case) is assumed to have zero pressure everywhere.

Each block is denoted by its row and column indices [i, j]. The model simulates
the motion of the wetting fluid inside the 2D porous medium by tracking the
following three quantities:

• the saturation St(i, j) [-] of the wetting phase in each block at time t.
Saturation is assumed to be uniform throughout each block but varying
continuously in time;

• the pressure Pt(i, j) [Pa] of the wetting phase in each block at time t.
Pressure is assumed to be uniform throughout each block but varying con-
tinuously in time;

• the fluxes qt[(i1, j1) → (i2, j2)] [ms−1] of the wetting phase between blocks
(i1, j1) and (i2, j2) at time t. The fluxes are assumed to be continuous in
time.

The evolution of these three quantities is modeled by the following three rules.

4.1.1. Saturation update

The update of saturation in each block is based on simple mass balance.

θ∂tS(t, x) + div(q(t, x)) = 0,
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where θ [-] denotes the porosity of the material. This mass balance is implemented
by the following discrete scheme

θ

dt
[St+dt(i, j)− St(i, j)] = (4.1)

=
1

dx

[
qt[(i− 1, j)→ (i, j)]− qt[(i, j)→ (i+ 1, j)]

]
+

+
1

dx

[
qt[(i, j − 1)→ (i, j)]− qt[(i, j)→ (i, j + 1)]

]
.

4.1.2. Pressure update

Next, the pressure in each block is updated according to the retention curve.
Here we assume that all the blocks share the same retention curve. The standard
retention curve consists of the main wetting and draining branches, which are
both assumed to be non-decreasing [128]. It is well known that the retention
curve exhibits substantial hysteresis, i.e. the pressure-saturation relation also
depends on the history of the system. The main wetting and draining branches
are modelled by the standard van Genuchten relation [128];

P = − 1

α

((
S

−1
m

)
− 1
) 1

n
, (4.2)

where α ∈ R+ and n ∈ R+ are free parameters and m = 1− 1
n
. Parameters α, n

corresponding to the main wetting branch are usually denoted by index w and
parameters α, n corresponding to the main draining branch are usually denoted
by index d.

We adopt again same approach of hysteresis modelling as for 1D model. Thus,
we assume that all the scanning curves are almost vertical line segments. If a
block is transitioning between the main wetting and draining branch, it follows
a straight line given by

dP

dS
= KPS, (4.3)

where KPS is a large constant. This enables the pressure to change rapidly while
keeping the saturation almost constant. If a block undergoes wetting along a
scanning line and reaches the main wetting branch, it sticks to it and further
wetting proceeds along the main wetting branch. A similar principle applies in
the draining mode: once a block reaches the main draining branch, it sticks to it.

Following a change in saturation, the pressure in each block is updated in this
way. The pressure-saturation curve is assumed to be satisfied at all times, i.e.
there is no relaxation time involved.
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4.1.3. Flux update

Once the pressure in each block is updated, new values of the fluxes among the
blocks are calculated. The flux is modeled by the standard Darcy-Buckingham
law [5], which takes the following form:

q =
κ

µ
k(S) (ρg −∇P ) , (4.4)

where κ [m2] denotes the intrinsic permeability of the medium, µ [Pa s] denotes the
dynamic viscosity of the fluid, ρ [kgm−3] denotes the density of the wetting fluid,
g [ms−2] denotes the acceleration resulting from gravity, and P [Pa] denotes the
pressure in the wetting fluid given by the retention curve. The function k(S) [−]

stands for the relative permeability, i.e. the ratio of the effective permeability at
a particular saturation to the intrinsic permeability. The relative permeability is
usually modelled by a power law. Here we adopt the form derived in [86, 87, 128]:

k(S) = Sλ
[
1−

(
1− S

1
m

)m]2
, (4.5)

where λ is a free parameter and m = 1 − 1
n

are the parameters of the retention
curve given by Equation (4.2). Because we are especially interested in the fin-
gertip behaviour (which is in the imbibition mode), we always use the value m
corresponding to the main wetting branch. Let us denote the effective perme-
ability of the porous medium γ(S) = κk(S).

The flux update is the only step where we slightly depart from the stan-
dard implementation of the Darcy-Buckingham law. We proposed the following
discrete implementation

q[(i1, j1)→ (i2, j2)] =



1
µ

√
γ(S(i1, j1)γ(S(i2, j2)

(
ρg − P (i2,j2)−P (i1,j1)

dx

)
for j1 = j2, i2 = i1 + 1

1
µ

√
γ(S(i1, j1)γ(S(i2, j2)

(
0− P (i2,j2)−P (i1,j1)

dx

)
for i1 = i2, j2 = j1 + 1

0 otherwise

(4.6)

Thus, the lateral fluxes (i1 = i2) do not include the force of gravity and the
vertical fluxes do (j1 = j2) include the force of gravity. Each block is assumed to
have four neighbours; diagonal fluxes are not included. The geometric mean of
the permeability of the neighbouring blocks is used. This is crucial because the
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effective permeability becomes small if at least one of the blocks is dry enough to
have low permeability. This does not hold for the more typical arithmetic mean,
so the use of the geometric mean proves essential for correctly capturing the
behaviour of the finger tips. Further justification for using this type of averaging
comes from [61], where the authors show that the geometric mean is appropriate
by means of numerical experiments in random pore networks.

By setting the fluxes among the blocks, we can update the time to t+ dt and
proceed back to the saturation update step (4.1). This closes the modelling loop.

4.1.4. Initial and boundary conditions

The two dimensional Hele-Shaw cell of a porous medium is modelled by an
N ×M grid of blocks. For the model to be specified fully, initial and boundary
conditions must be set. The initial condition can be defined either by prescribing
the initial saturation Sin(i, j) in each block or by prescribing the initial pressure
value Pin(i, j) in each block. At the beginning, all blocks are set to start on
the main wetting branch. A constant flux qB is prescribed across the top edge
of each of the blocks in the top row. In experiments, a layer of very fine sand
[46, 50, 45, 103] is usually used instead. This layer smooths out any heterogeneity
in the influx, and so it simulates a constant flux across the top boundary. The
lateral boundaries are assumed to be impenetrable and so zero lateral flux is
prescribed there. Finally, a free discharge is set at the bottom boundary by the
relation

q[(N, j)→ out] =
1

µ
γ(S)

(
ρg +

P (N, j)

dx

)
, S(N, j) ≥ Srs,

q[(N, j)→ out] = 0, S(N, j) < Srs,

(4.7)

where N stands for the bottom row index and Srs stands for a residual satu-
ration. That means, that the flux from the bottom boundary is set to zero if
the saturation of the respective block does not exceed a residual saturation Srs.
This implementation of initial and boundary conditions is standard and similar
to models based on the Richards’ equation [133].

4.2. Limit of 2D semi-continuum model

The scaling of the retention curve described in Section 3.3 works equally
well for the 2D version of the semi-continuum model. The idea of the 2D limit is
same as for the 1D model; hence a mathematical limit will not be performed here.
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Since we use different retention curve for the 2D simulations, let us propose the
following scaling of the van Genuchten retention curve. Van Genuchten equation
(4.2) is dependent on the size of the block dx in the following way:

P = −dxpar
dx

α

(
S

−1
m − 1

) 1
n

+ (Pbasic − Pdx), (4.8)

where dxpar is a fixed discretization parameter. Values Pbasic and Pdx are given
by relations

Pbasic = −dxpar
1

α

(
0.5

−1
m − 1

) 1
n
,

Pdx = −dxpar
dx

α

(
0.5

−1
m − 1

) 1
n
.

Thus, the retention curve converges to the value P (S) for S = 0.5. The reason
why the values Pbasic and Pdx are used in Equation (4.8) is that we want to keep
the constant distance between the two main branches. The idea is the same as
for the logistic retention curve (see Figure 3.16). The reference size of the block
dxref (the size of the block for which we use the reference retention curve given by
relation (4.2)) can be obtaint as an inverse value of the discretization parameter
dxpar, i.e:

dxref =
1

dxpar
. (4.9)

Figure 4.1 illustrates the scaling of the retention curve as dx goes to zero for
20/30 sand. The reference retention curve is given for dxref = 1.00 cm, thus
dxpar = 1.00 cm.

Let us now present the predicted moisture profile for 2D simulations for a
decreasing sequence of block size values. Figure 4.2 shows the predicted moisture
profile for 2D simulation for a decreasing sequence of block size values. Notice
analogous behaviour to the 1D case: the saturation in the fingertip increases
slightly with decreasing block size but the oversaturated zone remains roughly
the same. However, due to numerical error that are not present in 1D, the
fingers become more narrow and consequently slightly faster. Let us note, that we
selected an example of the convergence, such that we received “nice” convergence
solution. The limiting process in 2D requires more attention because the variance
and spatial correlation of material parameters has to be addressed. Thus, more
thorough research is needed.
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Figure 4.1: The scaling of the retention curve with the block size dx for 20/30
sand for a discretization parameter dxpar = 1.00 cm. The solid line denotes the
main wetting branch and the dashed line denotes the main draining branch.

Figure 4.2: Convergence of the moisture profile in 2D at time t = 14.5 minutes
for dx = 0.500 cm, 0.250 cm, 0.125 cm and 0.0625 cm from the left to the right
for initial saturation Sin = 0.002. The moisture profile converges and retains the
overshoot pattern. Saturation values are colour-coded according to the colour
bar on the right.
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4.3. Fitting of parameters

In Sections 3.3 and 4.2, we explained that in performing the limit, the reten-
tion curve has to be more flatten. However, we still do not know, what is the
block size for the reference retention curve; hence dxpar is clearly a parameter
of the semi-continuum model and has to be fitted for the simulation. In this
Section, we will set two parameters of the model:

• Discretization parameter dxpar (see Equation (4.8)) – indicates the size of
the block for the reference retention curve. The reference size of the block
dxref is then given by Equation (4.9).

• Relative permeability exponent λ (given by Equation (4.5)) – indicates the
relative permeability of the porous medium.

It is important to find a combination of discretization parameter dxpar and
relative permeability exponent λ, such that we obtain good agreement with ex-
perimental results (e.g with [3, 103]). Adjustment of both parameters is a crucial
part of the model and should be done separately for each type of a porous mate-
rial. Both parameters are in principal physical parameters.

Let us note, that we cannot combine both parameters arbitrary. If the param-
eter dxpar is chosen too small, pressure gradients will be very small (see Equation
(4.8)) and thus only gravitational force will take a role instead of the retention
curve. Consequently, the fingers will be too narrow as water will flow only down-
wards.

4.3.1. Adjustment of parameters for 20/30 sand

In this section, we will do a thorough analysis for 20/30 sand (used e.g in
experiments by DiCarlo [23] and Bauters et al. [3]). A fitting is done in such
way, that we want to obtain consistent results with experiments provided by
Bauters et al. [3]. The authors showed that with increasing initial saturation,
the finger is first more narrow and then wider (this complex behavior is simulated
in Section 4.4.5). Therefore, for each combination of dxpar and λ we simulate the
finger flow for three different initial saturation: a dry, a medium dry and a wet
porous medium.

Let us now analyze a possible combinations of parameters [dxpar, λ] for 20/30

sand. Initial saturation Sin equals 0.001, 0.01 and 0.05 for a dry, medium dry and
wet porous medium respectively. The parameters used for the fitting are given in
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Table 4.1. A constant flux qB is prescribed across one centimeter in the middle
at the top edge.

Parameter Symbol Value

Horizontal width of the chamber A 17 cm
Vertical length of the chamber B 50 cm
Block size dx 0.50 cm
Porosity θ 0.35
Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pa s
Intrinsic permeability κ 2.294× 10−10 m2

Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.177 Pa−1

Wetting curve parameter nw 6.23
Draining curve parameter αd 0.0744 Pa−1

Draining curve parameter nd 8.47
Slope of scanning curves KPS 105 Pa
Boundary flux qB 8× 10−5 ms−1

Table 4.1: Parameters used for fitting dxpar and λ. Parameters for 20/30 sand
were adopted from Schroth et al. [110] and DiCarlo [23].

In Figure 4.3, six different variants of parameters [dxpar, λ] are shown at time
30 minutes. It is crucial to choose parameters [dxpar, λ] carefully as we want
to have sufficiently wide fingers for initially dry porous medium and a diffusion-
like behavior for initially wet porous medium. It is observed, that for λ too
small, the fingers are thin and conductive for initially dry porous material. On
the other hand, for λ too large, a diffusion-like behavior disappears for high
initial saturation. This effect is well observed for [dxpar = 1.00, λ = 0.5] and
[dxpar = 1.00, λ = 1.2]. The parameter dxpar has a similar behavior. If the
parameter dxpar is chosen too small, the fingers will be very narrow due to smaller
pressure gradients. On the other hand, with increasing dxpar, pressure gradients
become much larger and thus the fingers are more wider for all initial saturations
(see simulation for [dxpar = 1.40, λ = 1.2]). The most optimal combinations are
[dxpar = 1.20, λ = 0.8] and [dxpar = 1.20, λ = 1.0]. It seems, that dxpar = 1.40

for λ = 1.0, 1.2 is also possible, however physically irrelevant flow appears for
very low initial saturation due to inappropriate choice of the relative permeability
function (this will be explained in Section 4.3.2).

Moreover, it can be seen for some variants that the width of the finger is not
constant for a dry porous medium, although it is experimentally observed [3].
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It is important to mention, that this artificial behavior will disappear, if more
realistic porous matrix is used for the simulation. Let us explain it more properly.
The porous medium is assumed to be homogeneous, i.e. there are no preferential
pathways “hard-wired” in the porous matrix structure. This, however, does not
mean that it is sensible to assume the characteristics of all the blocks are the same.
Such a model would resemble an artificial medium (e.g. uniformly packed glass
beads) rather than realistic porous matrix. If a narrow and spatially correlated
distribution of the intrinsic permeability of blocks is introduced, the finger width
will be constant for a dry porous medium and thus artificial fingers will not arise
anymore (see the Results section).

Figure 4.3: Snapshot of the saturation field at 30 minutes for six different com-
binations of parameters [dxpar, λ] for initially dry (Sin = 0.001), a medium dry
(Sin = 0.01) and a wet (Sin = 0.05) porous material. Saturation values are
colour-coded according to the colour bar on the right.

Let us note, that a similar thorough analysis can be provided for 30/40 sand.
However, only 20/30 sand was used in the experiments of Bauters et al [3]. Thus,
we propose to use the same value λ for 30/40 sand as for 20/30 sand. The
parameter dxpar is then chosen such that the simulations are consistent with
experimental results of Glass et al. [46, 47, 50, 48, 49, 45] and Rezanezhad et al.
[103] (see the Results section).
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4.3.2. Inappropriate choice of the relative permeability

We observed that the finger would not be able to spread sideways for dry
initial saturation, if the relative permeability exponent was chosen too large. See
Figure 4.4, where the finger at various simulation times is plotted for a combi-
nation [dxpar = 1.40, λ = 1.2] for Sin = 0.0003. Let us stress, that this behavior
is not a drawback of the semi-continuum model. The lateral fluxes are negligi-
ble and thus the flow proceeds only downwards. This is due to inappropriate
choice of the relative permeability function as a total permeability of the dry
block is approximately 4× 10−23. We conjecture, that this issue is caused due to
insufficient precision of numerical calculations (double precision was used). The
resulting flux into the lateral block is such small, that is already treated as zero
for a calculation. At time 30 minutes, the finger finally spread sideways, because
the lateral fluxes where high enough. Let us also note, that a similar behavior is
observed for the relative permeability function Sm.

Figure 4.4: Fingering pattern at various simulation times for the combination
[dxpar = 1.40, λ = 1.2] for Sin = 0.0003. Saturation values are colour-coded
according to the colour bar on the right.

To verify this explanation, a precision of numeric calculations has to be in-
creased, however it would be difficult to implement this into the existing code
written in MatLab. Moreover, the built-in function vpa, which is used for higher
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precision in MatLab is very time demanding and is not possible to use it in our
case. There are two another solutions to avoid this possible numerical issue. Mod-
ify relative permeability function for very low saturation or use a combination
of fitting parameters with smaller exponent λ. We conjecture, that the second
solution is more appropriate.

4.4. Results

In this section, we demonstrate the capability of the model to reproduce
experiments by Glass et al. [46, 47, 50, 48, 49, 45], Rezanezhad et al. [103] and
Bauters et al. [3]. The experiments were concerned with the persistence of the
fingers, their structure, and the dependence of the fingers on initial saturation
and boundary influx.

The porous medium is assumed to be homogeneous. However, as was already
explained in Section 4.3.1, there is no reason to assume, that the intrinsic perme-
ability of all the blocks is the same. Thus, we introduce a narrow and spatially
correlated distribution of the intrinsic permeability of the blocks. First, let us
explain how the distribution of the intrinsic permeability is provided (without
any correlation between blocks):

• Assume, that a vertical Hele-Shaw cell consists of N ×M square blocks of
size dx.

• First, for each block (i, j) we generate a random number r(i, j) from the
normal distribution with mean parameter 0 and standard deviation param-
eter σ.

• A permeability of each block κ(i, j) is then equaled:

κ(i, j) = R(i, j)κ,

where κ denotes the default intrinsic permeability and R(i, j) is a multipli-
cation factor such that:

R(i, j) = 1 + r(i, j), for r(i, j) ≥ 0,

R(i, j) =
1

1− r(i, j)
, for r(i, j) < 0,

(4.10)

so thus, values R(i, j) are always positive. By this approach, we can simply
distribute the intrinsic permeability of each block. Moreover, the probability of
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being n times smaller is the same as the probability of being n times larger.
In Figure 4.5, the histograms for r(i, j) and R(i, j) are plotted, such that we
generated field r(i, j) of size 108.
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Figure 4.5: Histograms for r(i, j) and R(i, j). Field r(i, j) of size 108 was ran-
domly generated from the normal distribution N(0, 1). Values R(i, j) are given
by Equation (4.10).

However, a correlation between blocks is still not included. We used two
different methods, which are usually used in image processing [15]; let us call
these methods as filter method and interpolation method. The first method is
provided such that we apply a two-dimensional averaging filter of size dxL1 on
the intrinsic permeability field. The MatLab function imfilter is used in this
case. The second method is slightly different. First, we do not generate intrinsic
permeability for N × M blocks of size dx. Instead, the intrinsic permeability
is generated for larger blocks of size dxL2. Then, we use bicubic interpolation
to interpolate the intrinsic permeability of larger blocks on N ×M grid. The
MatLab function imresize is used in this case. The advantage of this method is
that we obtain more smooth field of the distribution of the intrinsic permeability.
Let us note, that the intrinsic permeability is the only parameter that is assumed
to have a distribution; otherwise the blocks are identical.

4.4.1. Finger persistence

First, we wish to demonstrate the instability of the wetting front – the forma-
tion of macroscopic fingers – and their persistence in time. The parameters used
for the simulations are given in Table 4.2. The choice of the block size dx was
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inspired by the Macro Modified Invasion Percolation model developed by Glass
et al. [43, 52]. A constant flux qB is prescribed across the top edge of each of the
blocks in the top row. In experiments, a layer of very fine sand [46, 50, 45, 103] is
usually used instead. This layer smooths out any heterogeneity in the influx, and
so it simulates a constant flux across the top boundary. The reference retention
curve of a 30/40 sand [110, 23] used for this simulation is shown in Figure 4.6
(see Equation (4.2)).

Parameter Symbol Value

Horizontal width of the chamber A 100 cm
Vertical length of the chamber B 50 cm
Discretization parameter dxpar 2.0 cm
Block size dx 0.5 cm
Porosity θ 0.35
Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pa s
Intrinsic permeability κ 1.376× 10−10 m2

Relative permeability exponent λ 0.8
Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.173 Pa−1

Wetting curve parameter nw 10.00
Draining curve parameter αd 0.067 Pa−1

Draining curve parameter nd 13.10
Slope of scanning curves KPS 105 Pa
Residual saturation Srs 0.05
Boundary flux qB 8× 10−5 ms−1

Table 4.2: Parameters used for reproducing the wetting front instability exper-
iments. The parameters for 30/40 sand were adopted from Schroth et al. [110]
and DiCarlo [23].

The distribution of the intrinsic permeability was provided by interpolation
method with standard deviation σ = 0.3 and dxL2 = 2.5 cm (see Equation
(4.10)). The distribution satisfies κmax/κmin ≈ 4 and the mean of the intrinsic
permeability approximately equals κ. The distribution of the values of intrinsic
permeability is shown in Figure 4.7. A similar spatially correlated permeability
field was also used in [21, 53].

In experiments, the wetting front instability is observed for low initial satu-
ration of the matrix [112, 46], and thus we set Sin = 0.01. Figure 4.8 shows six
snapshots of the saturation field at various simulation times. The wetting front

77



Figure 4.6: The reference retention curve a 30/40 sand [110, 23] used for two
dimensional simulations. The reference size of block dxref = 0.50 cm (thus
dxpar = 2.0 cm, see Section 4.3).

Figure 4.7: The distribution of the intrinsic permeability generated by interpola-
tion method with standard deviation σ = 0.3 and dxL2 = 2.5 cm (see Equation
(4.10)). Intrinsic permeability values are colour-coded according to the colour
bar on the right.

becomes unstable and produces fingers that are very typical of an initially almost
dry porous medium – a spatial structure of the fingers is reproduced correctly [95].
Note that the flux across the top boundary is constant and no perturbation is used
to initialize any instability. This is in contrast with e.g. [21, 53] who produced
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fingers by introducing a perturbation directly into the wetting front at the be-
ginning of the simulation. The fingers are fully developed after approximately 10

minutes and then they proceed downward until they reach the bottom boundary.
The saturation in the fingers exhibits the typical overshoot pattern – the bottom
part of the finger is close to full saturation while the finger tail is much drier.
The length of the oversaturated zone is approximately 17 cm, which matches well
with the experiments [47]. One may observe the long persistence of the fingers
(the numerical experiment ran for 12 hours), which was experimentally observed
e.g. in [46, 47, 48, 103]. Moreover, Glass et al. [46, 47, 48] and DiCarlo et al.
[31] reported that after hours or days of steady infiltration, the chamber was fully
wet; however, most of the flow was confined to the original finger cores and the
saturation was much lower around the fingers. This is exactly what can be seen
in the last snapshot shown in Figure 4.8 after 12 hours of simulation.

Figure 4.8: Fingering pattern at various simulation times. Constant flux over
the top boundary into an almost dry isotropic porous medium. See Table 4.2 for
the simulation parameters. For details, refer to the text. Saturation values are
colour-coded according to the colour bar on the right.

79



The persistence of fingers was explained e.g. by Rezanezhad et al. [103] and
Glass et al. [46]. Using a dye tracer, the authors showed that the flow is dominant
in the centre of the fingers (the finger core) and water stagnates at the periphery
(the finger fringe). Therefore, each finger is separated into a mobile core and
an immobile fringe. Figure 4.9 shows the velocity field in the left-most finger
at the time 10 minutes. For better visualization, each arrow was produced by
averaging the flux vector over four neighbouring blocks. It is observed that the
magnitude of the flow decreases rapidly toward the boundary of the finger and
becomes negligible at the fringe.

Figure 4.9: A manifestation of the mobile core and immobile fringe of a finger.
Detail of the left-most finger in Figure 4.8 at time 10 minutes. Each arrow was
produced by averaging the flux over four neighbouring blocks. Saturation values
are colour-coded according to the colour bar on the right.

Understanding the stability of such a flow structure is crucial and it can be
explained by tracking the pressure-saturation states of the blocks on the retention
curve during the passage of the finger [47, 103]. Figure 4.10 tracks the pressure-
saturation states of three points inside the finger. Point x0 lies at the centre of
the core (see Figure 4.9), point x1 lies between the core and the fringe, and point
x2 lies at the outer edge of the fringe. At the beginning, the porous medium was
almost dry and so the pressure was negative and quite high at all three points.
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All three points started at the wetting branch (the top curve in Figure 4.10) of
the retention curve, close to its left-most point. When the finger tip was passing
through x0, the saturation increased quickly and the block followed the main
wetting branch of the retention curve. Behind the finger tip, saturation started
to decrease and the block jumped down to the main draining branch (the almost
vertical red line segment) and then moved to the left along the draining branch.
During the same time, the saturation first increased at x1 (the top part of the
green curve) and then it decreased somewhat so that this point stayed between
the main branches of the retention curve and reached almost the same pressure
as the point x0. Thus, the pressure difference between the points x0 and x1 is
negligible and no flow is induced between them. This means that the structure
becomes stable although the difference in saturation is large. At the point x2 the
evolution of pressure and saturation is similar to the point x1. The finger does
not expand laterally, because the pressure at x2 is less negative than the pressure
at x1. This is due to the chosen shape of the retention curve – the pressure at the
finger tail (given by the middle part of the draining curve) is always more negative
than the initial pressure (given by the left-most point of the wetting curve). This
is in contradiction with Rezanezhad et al. [103] where the authors claim that the
pressure at x2 is much more negative than at x1, and hence the finger expands
slowly. Moreover, this lateral finger expansion was also experimentally observed
[46, 47, 48].
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Figure 4.10: Evolution of the pressure-saturation states of three blocks x0 (core),
x1 (between the core and the fringe), and x2 (outer block of the fringe) during
the first 12 minutes of the simulation. All three points started at the location
denoted by a black pentagram. See the text for details.
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We suggest that the model presented here may help to explain the question of
the later expansion of the fingers. In the previous paragraph, we explained that
our choice of the retention curve led to fingers that do not expand laterally. How-
ever, a different choice of the retention curve shape allows for lateral expansion.
Let us assume a retention curve with larger gradients in the left part (i.e. steeper
dependence of pressure on saturation in a dry medium). Since it is difficult to
obtain such a retention curve by the van Genuchten model [128], we modified
the wetting branch by means of a cubic spline. Figure 4.11 shows the modified
wetting branch (dotted red line) compared to the original van Genuchten model
(full red line). The main draining branch (full black line) was not modified. This
modification allows blocks in the wetting branch at initial saturation to attain
more negative pressure compared to the finger tail.
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Figure 4.11: The modified retention curve of 30/40 sand. Original van Genuchten
wetting curve (full red line) and its modification by a cubic spline (dotted red
line). The draining branch (full black line) was not modified.

Let us repeat the simulation shown in Figure 4.8 with this modified retention
curve. As a result of the high gradients of the retention curve for low saturations,
it was necessary to increase the parameter λ in the relative permeability Equa-
tion (3.4). Here, we set λ = 1.5. All the remaining parameters of the simulation
remained the same. The evolution of the saturation field is shown in Figure 4.12.
At first, the character of the flow is almost identical to the model using the van
Genuchten retention curve (cf. Figure 4.8). This shows that the fingering regime
is very robust – a rather dramatic change in the retention curve has little effect
on the finger formation process. However, in this case, gradual lateral expansion
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of the fingers may be observed (the difference is already visible after 30 minutes
of simulation). The speed of the expansion of the fingers is comparable to the
experiments reported in [46], but it is faster than in the experiments reported in
[47]. After 12 hours of simulation, the matrix is fully wet, and yet most of the
flow proceeds through the cores of the original fingers. The speed of the lateral
expansion of the fingers can be altered by modification of the retention curve
and/or the relative permeability.

Figure 4.12: Fingering pattern at various simulation times for the modified re-
tention curve. Constant flux over the top boundary into an almost dry isotropic
porous medium. For details, refer to the text. Saturation values are colour-coded
according to the colour bar on the right.

Figure 4.13 shows the velocity field in the left-most finger in Figure 4.12
10 minutes after the start of the simulation. The modification of the retention
curve did not affect the flow magnitude in the core and at the fringe of the fingers.
Still, most of the flow happened through the mobile core of the finger, while the
fringe remained almost stationary.

To understand the difference between the original (van Genuchten) and modi-
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Figure 4.13: A manifestation of the mobile core and immobile fringe of a finger
for the modified retention curve. Detail of the left-most finger in Figure 4.12
at time 10 minutes. Each arrow was produced by averaging the flux over four
neighbouring blocks. Saturation values colour-coded according to the colour bar
on the right.

fied retention curve, we again demonstrate the evolution of the pressure-saturation
hydraulic states for three locations, x0, x1, and x2 in Figure 4.14. Analogously to
Figure 4.10, the pressure difference between the points x0 and x1 was negligible
after the first 20 minutes of the simulation and so the flux between the points
was also negligible. The saturation at the point x2 increased slightly from its
initial value and so the pressure moved along the main wetting branch. But be-
cause of the modified retention curve, the pressure at x2 was still lower than the
pressure at the fringe, and so there was outward lateral flux from the fringe of
the finger. This is in agreement with the observation of Rezanezhad et al. [103].
This explains the slow lateral expansion of the fingers in Figure 4.12.
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Figure 4.14: Evolution of the pressure-saturation states of three blocks x0 (core),
x1 (between the core and the fringe), and x2 (outer block of the fringe) during
the first 20 minutes of the simulation. All three points started at the location
denoted by a black pentagram. See the text for details.

4.4.2. The effect of initial saturation

Let us now examine the effect of the initial saturation Sin on the evolution of
the flow patterns. The parameters used for the simulations are given in Table 4.2
and the distribution of intrinsic permeability is shown in Figure 4.7.

In experiments, the dependence on initial saturation is observed to exhibit
very interesting qualitative and quantitative features [3, 28]. Most interestingly,
as the initial saturation increases from dry to fully saturated, the flow pattern
changes qualitatively from the fingering regime (a complex network of preferential
pathways, each with the saturation overshoot effect) to a diffusion-like wave water
front travelling uniformly (without any overshoot). Moreover, the transition from
the fingering regime to the diffusion regime is not monotonic. With increasing
initial saturation, the fingers first become faster and narrower, but then they
become slower and wider again before disappearing completely into the diffusion-
like regime. The model presented here correctly captures both the qualitative
and quantitative aspects of this wonderful transition. We again wish to stress
that the model does not introduce any artificial or non-measurable parameters
to do so.

Figure 4.15 shows a snapshot of the saturation field at 10 minutes for six
different values of the initial saturation. See the Supplementary Material for
full videos. The model seems to be in complete agreement with the observed
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transition from the fingering regime to the diffusion-like regime.

Figure 4.15: Snapshot of the saturation field at 10 minutes for six different val-
ues of the initial saturation. See the Supplementary Material for full videos.
Saturation values are colour-coded according to the colour bar on the right.

4.4.3. Flow across layers of porous media with different
characteristics

The experiments of Rezanezhad et al. [103] provide us with an opportunity
to test the model in the situation when a layered porous medium is subject to
a constant influx of water across the top boundary. Rezanezhad et al. [103] use
a Hele-Shaw cell (160 × 60 × 0.3 cm) filled with four layers of porous material
with different characteristics. The top layer (5 cm deep) was composed of fine
sand with a grain size diameter between 0.063 mm and 0.25 mm, the second
and the bottom layers (both 50 cm deep) consisted of sand with a grain size
0.63− 1.25 mm (called homogeneous sand), and these two layers were separated
by a layer of horizontally arranged sand (also 50 cm deep) with a grain size
between 0.25 mm and 1.25 mm (called heterogeneous sand).
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Thus, the separating layer (heterogeneous sand) has smaller grains on average,
and therefore its retention curve should be steeper compared to the homogeneous
layers. The saturated hydraulic conductivity of the heterogeneous layer was ap-
proximately three times lower than that of the homogeneous layers. For details,
see Rezanezhad et al. [103].

In the experiment, the top 5 cm layer served as a ”randomizer” to smooth
out any heterogeneity in the influx. In the model, it is not a problem to keep the
influx exactly homogeneous, and thus we do not simulate the top layer. For the
simulation of the three 50 cm layers beneath, we used the parameters shown in
Table 4.3. All the other parameters of the simulation were identical to the previ-
ous two runs of the model. Both the retention curves and the spatial distribution
of intrinsic permeability are shown in Figure 4.16. The horizontal arrangement
of the heterogeneous layer was ignored in the simulation.
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Figure 4.16: Reproducing the flow across layers of porous media with different
characteristics. Left panel: The distribution of the intrinsic permeability gener-
ated by interpolation method with standard deviation σ = 0.3 and dxL2 = 2.5 cm
(see Equation (4.10)) The values of intrinsic permeability are colour-coded ac-
cording to the colour bar on the right. Right panel: The retention curves of the
respective layers.
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Parameter Symbol Value

Intrinsic permeability (homogeneous): κ 1.376× 10−10 m2

Retention curve parameters (homogeneous): αw 0.173 Pa−1

nw 10.00
αd 0.067 Pa−1

nd 13.10
Intrinsic permeability (heterogeneous): κ 4.587× 10−11 m2

Retention curve parameters (heterogeneous): αw 0.1471 Pa−1

nw 7.00
αd 0.0623 Pa−1

nd 9.17
Width of the chamber A 50 cm
Depth of the chamber B 150 cm

Table 4.3: Parameters used for reproducing the flow across layers of porous media
with different characteristics. Parameters not included in this table were the same
as in Table 4.2.

Rezanezhad et al. [103] showed that stronger capillary forces in the hetero-
geneous layer (because of the smaller grains) were sufficient to disturb the finger
flow. However, the fingering pattern re-appeared immediately in the bottom layer
(see Figure 5 in Rezanezhad et al. [103] or the supplementary video therein). We
reproduce this behaviour in Figure 4.17, which shows six successive snapshots of
the saturation field produced by the model. Observe that the second layer wiped
out the typical fingering pattern and a more diffusive regime appeared. When the
fingers re-appeared in the bottom layer, there were fewer of them compared to
the top layer. This is also consistent with the experimental findings [103]. If we
introduced stronger horizontal spatial correlation of the intrinsic permeability in
the middle layer (corresponding to the horizontal arrangement), the flow pattern
would be disturbed even more. Here, we only wanted to show that this effect can
be reproduced by a small change in the retention curve.
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Figure 4.17: Simulated flow across layers of porous media with different char-
acteristics. Snapshots of the saturation field for several successive time points.
Saturation values are colour-coded according to the colour bar on the right.

4.4.4. The fingers merging

Experiments show that fingers can merge or bifurcate [47, 49, 103], which is
well reproduced by the semi-continuum model. A close look at the simulations
performed in Sections 4.4.1-4.4.3 (see also videos in the Supplementary Material)
reveals two different scenarios of finger conjunction: the fingers either merge (usu-
ally by coalescence of their tips) or they converge and flow side by side without
merging. In the first case, the saturation at the finger tip is high enough to break
through the immobile fringes. Fingers also merge if the hydraulic conductance
below the finger tip is low enough to force lateral expansion of the finger. On the
other hand, sometimes two fingers converge without merging. This happened e.g.
to the second and the third fingers from the left in Figure 4.8. In this case, neither
of the fingers was able to penetrate the fringe of the other. Let us also note, that
the fingers finally merged at around 16 minutes (see video SatIni 0,010.avi in the
Supplementary Material). To understand this phenomenon more thoroughly, see
Figure 4.18.
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Figure 4.18: A snapshot of the pressure [Pa] and saturation [−] fields 13 minutes
after the start of the simulation. The second and third fingers did not merge
because the gradient between the fingers was equal to zero (as a result of the
equality of pressure at the fringes) and thus the flux between them was negligible.
The situation was different for the first and second fingers, as the slower finger
collided with the tail of the faster finger. In this case, the gradient was high, but
still not sufficient to break through the immobile parts of both fingers. Neither
of the effects – merging of the fingers and side-by-side flow – is affected by the
modification of the retention curve described above. Pressure and saturation
values are colour-coded according to the colour bar on the right for each snapshot.

4.4.5. Point source infiltration

We showed in Section 4.4.2, that the model captured the dependence on ini-
tial saturation well. However, a constant flux qB was prescribed across the top
boundary instead of the point source influx, which was experimentally used by
Bauters et al. [3]. In this section, we want to thoroughly reproduce experiments
provided in [3]. The authors use a Hele-Shaw cell (50× 30× 0.94 cm) filled with
homogeneous 20/30 sand. Both water content and matric potential were mea-
sured. Water content was measured with Synchrotron X-rays at the Cornell High
Energy Synchrotron Source and matric potential with fast responding tensiome-
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ters. Unfortunately, it is not clear what a top boundary condition was used in
experiments. The authors claim that water was injected at a rate of 2 cm3 min−1

through a hypodermic needle located near the sand surface. However, it is not
possible to derive Darcy’s flux qB (which is in units ms−1) due to lack of informa-
tion of the experiment (we do not know the affected area by a needle at the top
sand surface). Thus, a point source infiltration is modeled such that a constant
flux is prescribed across one centimeter at the top edge (in the middle). Zero
discharge at the bottom boundary is prescribed. The reference retention curve of
a 20/30 sand [110, 23] used for simulations is shown in Figure 4.19 (see Equation
(4.2)). The parameters used for the simulations are given in Table 4.4.

Parameter Symbol Value

Horizontal width of the chamber A 31 cm
Vertical length of the chamber B 50 cm
Discretization parameter dxpar 1.2 cm
Block size dx 0.25 cm
Porosity θ 0.35
Density of water ρ 1000 kgm−3

Dynamic viscosity of water µ 9× 10−4 Pa s
Intrinsic permeability κ 2.294× 10−10 m2

Relative permeability exponent λ 0.8
Acceleration due to gravity g 9.81 ms−2

Wetting curve parameter αw 0.177 Pa−1

Wetting curve parameter nw 6.23
Draining curve parameter αd 0.0744 Pa−1

Draining curve parameter nd 8.47
Slope of scanning curves KPS 105 Pa
Boundary flux qB 8× 10−5 ms−1

Table 4.4: Parameters used for reproducing the experiments of Bauters et al.
[3]. Parameters for 20/30 sand were adopted from Schroth et al. [110] and
DiCarlo [23].

The distribution of the intrinsic permeability was provided by interpolation
method with standard deviation σ = 0.3 and dxL2 = 2.5 cm (see Equation
(4.10)). The distribution satisfies κmax/κmin ≈ 3.75 and the mean of the intrinsic
permeability approximately equals κ. The distribution of the values of intrinsic
permeability is shown in Figure 4.20.

In experiments, it is observed that with increasing initial saturation, the wet-
ting front changes gradually from unstable to a stable Richards’ flow. However,
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Figure 4.19: The reference retention curve of a 20/30 sand [110, 23] used for the
two dimensional simulations. The reference retention curve is given by parameter
dxpar = 1.20 cm, thus the reference size of the block dxref is approximately
0.83 cm (see Section 4.3.1 for more information).

Figure 4.20: The distribution of the intrinsic permeability generated by interpo-
lation method with standard deviation σ = 0.3 and dxL2 = 2.5 cm (see Equation
(4.10)). The distribution satisfies κmax/κmin ≈ 3.75. Intrinsic permeability values
are colour-coded according to the colour bar on the right.
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this transition is very complex and not monotonic [3]. With increasing initial sat-
uration, first the width of the finger is decreasing and then is increasing. More-
over, the fingers become faster with increasing initial saturation, but then the
fingers slow down again and finally the diffusion-like behavior dominates (see
Figure 3 in [3]). This very interesting behavior is captured well by the semi-
continuum model. Let us note, that the authors only recorded the wetting front
patterns 15 cm from the top. Therefore, we are not able to compare wetting
fronts at the upper part of the chamber.

Figure 4.21 shows a snapshot of the saturation field at 25 minutes for seven
different initial saturations.

Figure 4.21: Snapshot of the saturation field at 25 minutes for seven different
values of the initial saturation. Saturation values are colour-coded according to
the colour bar on the right.

The transition between unstable and stable flow is in good agreement with
experimental observation: the non-monotonic behavior of the finger width and
velocity is captured correctly as well as the shape of the wetting front. Moreover,
a stable wetting front appears for initial saturation higher than 0.03, which is also
consistent with experiments. However, there is still a small discrepancy compared
with the experiments of Bauters et al. [3]. The authors observed that for initial
saturation high enough (Sin = 0.047), water filled the whole chamber. We can
clearly see the diffusion-like behavior for Sin = 0.05 in our simulation, however
the chamber is not fully wet. One possible explanation might be followed: the
flux used in experiments is very high and thus the porous medium is not able
to conduct all the water infiltrated from the point at the upper boundary. The
affected area by a needle then slightly increases as the initial saturation is higher.
This does not happen for dryer porous medium, because the gradients are much
larger and thus the water does not spill at the top boundary. Since the authors
did not record the upper part of the chamber (the first 15 centimeters), it is not
able to experimentally verify whether the affected area slightly increased or not.
Thus we are not able to reproduce properly the behavior of the wetting front for
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a residual initial saturation. Moreover, more pronounced diffusion can be obtaint
by introducing the space distribution in the retention curve. We conjecture, that
the model should be as simple as possible and thus it was not included in the
simulation. Another possibility how to increase the diffusion-like behavior can
be done by a change in the retention curve or/and relative permeability or/and
other parameters of the model. Here, still a good qualitative agreement with
experiments is provided without any “fitting” of the parameters. Let us also
note that the latter expansion of the finger is not allowed due to the chosen
shape of the retention curve because the pressure at the finger tail is always
lower than the initial pressure (see Figure 4.10 in Section 4.4.1).

Let us now investigate the effect of the distribution of the intrinsic perme-
ability. Both, filter method and interpolation method, were used to generate
seven different distributions (see Figure 4.22) for repeating the same simulations
as above.

Figure 4.22: The distribution of the intrinsic permeability generated by either
filter or interpolation method. The first column: Filter method with standard
deviation σ = 0.9 and dxL1 = 1.5 cm. The second column: Filter method
with standard deviation σ = 1.4 and dxL1 = 2.5 cm. The third column: Inter-
polation method with standard deviation σ = 0.3 and dxL2 = 1.5 cm. The
fourth column: Interpolation method with standard deviation σ = 0.3 and
dxL2 = 2.5 cm. From the left up to the right bottom the distributions satisfy
respectively: κmax/κmin ≈ 2.60, 2.50, 3.40, 2.45, 2.35, 3.90, 3.50. Intrinsic perme-
ability values are colour-coded according to the colour bar on the right.
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Figures 4.23-4.29 show a snapshot of the saturation field at 25 minutes for
seven different distributions of the intrinsic permeability given by Figure 4.22.
The character of the flow remains the same for all types of the distributions.
With increasing initial saturation, the fingers are first more narrow and faster
and then they are more wider and slower. Thus, the distribution of the intrinsic
permeability does not affect this complex transition from the finger flow to the
diffusion-like behavior.

Figure 4.23: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 2.60
(the first top distribution in Figure 4.22). Saturation values are colour-coded
according to the colour bar on the right.

Figure 4.24: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 2.50
(the second top distribution in Figure 4.22). Saturation values are colour-coded
according to the colour bar on the right.
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Figure 4.25: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 3.40
(the third top distribution in Figure 4.22). Saturation values are colour-coded
according to the colour bar on the right.

Figure 4.26: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 2.45
(the first bottom distribution in Figure 4.22). Saturation values are colour-coded
according to the colour bar on the right.

Figure 4.27: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 2.35
(the second bottom distribution in Figure 4.22). Saturation values are colour-
coded according to the colour bar on the right.
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Figure 4.28: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 3.90
(the third bottom distribution in Figure 4.22). Saturation values are colour-coded
according to the colour bar on the right.

Figure 4.29: Snapshot of the saturation field at 25 minutes for seven different val-
ues of the initial saturation for the distribution which satisfies κmax/κmin ≈ 3.50
(the fourth bottom distribution in Figure 4.22). Saturation values are colour-
coded according to the colour bar on the right.

Figure 4.30 (left) shows the width of fingers for the simulation given by Figure
4.21 (wetting profiles for Sin = 0.0005, 0.002, 0.04 are not included). The width
of each finger is calculated in the following way: first, we calculate the width of
each row, which equals nrow × dx, where nrow is a number of blocks for which
saturation is higher than 0.06. The finger width is then calculated as an average
width of all the rows. We can clearly see that the finger width first slightly
decreases and then increases. The most narrow finger is for Sin = 0.01 (2.71 cm)
which is consistent with experiments (see Figure 5 in [3]). Moreover, the width
for unstable flow is also captured well. However, the finger width for Sin = 0.0003

(3.76 cm) is a little bit smaller than for Sin = 0.0005 (3.85 cm). This is due to the
distribution of the intrinsic permeability. In Figure 4.31 (left), the average finger
width for all simulations given by eight different distributions of the intrinsic
permeability (see Figures 4.20 and 4.22) is depicted. It is observed, that in
average, the finger width for the lowest initial saturation used in simulation is
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higher than for Sin = 0.0005. Let us also note, that the average width for a
stable wetting fronts is always lower than the maximum width due to the finger
expansion. For instance, the average width for Sin = 0.05 in Figure 4.30 (left)
equals 9.27 cm, however the maximum width in the middle of the wetting front
equals 12.25 cm.
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Figure 4.30: The width and the velocity of the wetting front is plotted against
the initial saturation for the simulation given by Figure 4.21.

The wetting front velocity for the simulation given by Figure 4.21 is summa-
rized in Figure 4.30 (right). The advance of the wetting front was slower for the
diffusion-like behavior compared to the lower initial saturation (but higher than
Sin = 0.002). This is very counterintuitive, since the classical Richards’ based
theory predicts increase in velocity with increasing initial saturation. The highest
finger velocity is observed for Sin = 0.02, and is approximately five times lower
than the highest finger velocity experimentally observed in [3] (for Sin = 0.01).
This is a consequence of mass balance law; we used four times lower influx in our
simulations compared with experiments. We observed that the character of the
flow remains again the same for different distributions of the intrinsic permeabil-
ity (see Figure 4.31).

Bauters et al. [3] report a hyperbolic relationship between the initial sat-
uration and the saturation overshoot magnitude. The overshoot magnitude is
measured as the difference between saturation at the tip and the tail. We showed
that this observation is very well replicated by the 1D semi-continuum model
(see Figure 3.6 in Section 3.2). A hyperbolic decay relationship is also observed
for two-dimensional simulations as can be seen in Figure 4.32 (R2 = 0.952). The
fit is clearly not such accurate as for the 1D model (R2 = 0.995), however this
is obviously caused by the distribution of the intrinsic permeability. Moreover,
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there is a minor saturation overshoot for Sin = 0.02, which is not seen in Fig-
ure 4.21. This is very well consistent with experiments from Bauters et al. [3],
where the authors observed saturation overshoot for Sin = 0.02 but no overshoot
for Sin = 0.03.
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Figure 4.31: The average width and the average velocity of the wetting fronts
is plotted against the initial saturation for the all simulations given by eight
different distributions of the intrinsic permeability (see Figures 4.20 and 4.22).
The standard deviations are also plotted on the graph.
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Figure 4.32: Dependence of the overshoot magnitude on initial saturation. A hy-
perbolic relation fitted to the simulated data has a R2 value of 0.952.
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4.5. Discussion

The difficulty of modelling unsaturated porous media flow can be best under-
stood by studying the effect of the initial saturation of the matrix on the flow
pattern. As the initial saturation increases, the flow pattern changes qualitatively
from the fingering regime to the diffusion-like regime. During this transition, the
saturation overshoot gradually disappears and the finger width depends non-
monotonically on the initial saturation (see the Results section). Macro Modified
Invasion Percolation models [51, 52] are moderately successful in reproducing the
finger-like regime; however, the diffusion-like behaviour is beyond their capacity
because there is no way to recover continuous saturation levels and physically
meaningful time. At the other end, the Richards’ equation is known to repro-
duce the diffusion-like behaviour but the fingering regime is beyond its power
as a result of impossibility of its producing the saturation overshoot [40]. Other
models capture some features of the flow in the diffusion like regime or in the fin-
gering regime, but there is usually a price – new parameters that are impossible
to measure [54, 142, 21], and/or artificial boundary conditions [109, 115] and/or
disagreement with the experiments in other flow regimes except for the one that
the model was tuned to [75]. The model presented here correctly captures both
the qualitative and quantitative aspects of unsaturated porous media flow both in
the fingering regime and in the diffusion regime. The model is based on standard
and century-old physics and its only departure is the use of the geometric mean
for the flux update.

Let us note again that the typical shape of the retention curve [110, 23] may
not always be appropriate, especially for long simulations. This retention curve
seems to underestimate the gradient of the wetting branch for small saturations
which makes slow lateral expansion of fingers impossible. However, such lateral
expansion is often observed in experiments [46, 47, 48]. We conjecture that under
certain circumstances, the left-most part of the wetting branch of the retention
curve has to be modified to allow for the reproduction of experimental obser-
vations. It is exactly this insight that should be expected from a mathematical
model.
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Chapter 5

Conclusion

The following text was published in [65, 66], and is slightly extended and
modificated here.

In this thesis, we propose combining the virtues of continuum and discrete
modelling of fluid flow through an unsaturated porous medium. Continuum mod-
els work well for diffusion-like regimes but fail to capture preferential flow (finger
flow) and its characteristics, especially the saturation overshoot phenomenon.
Invasion percolation models and their modifications, on the other hand, capture
some features of finger flow but usually describe saturation as a binary variable
thus missing a large part of the physical reality. The proposed semi-continuum
model describes pressure and saturation as fields that are continuous in time but
piecewise constant in space. The model fully rests on well-known theoretical and
experimental concepts developed in soil physics [5] and soil hydrology [67]. From
mathematical point of view, the model is not a partial differential equation and is
based on the Macro Modified Invasion Percolation concept of dividing the porous
medium into blocks which are not infinitesimal and are assumed to retain the
characteristics of a porous medium. In discrete time steps (which are considered
infinitesimal), the semi-continuum model repeats three successive rules: (1) sat-
uration update in each block based on known fluxes between the neighboring
blocks, (2) pressure update in each block based on saturation known from the
previous step and the retention characteristics of the material, (3) flux update
between neighboring blocks based on the Darcy-Buckingham law and a geometric
mean of the hydraulic conductivity of the two blocks.

The model captures well all the features of one dimensional unsaturated
porous media flow (i.e. three dimensional flow in a thin tube), especially fin-
ger flow, including the saturation overshoot, capillary pressure overshoot and
their dependence on initial saturation of the medium and influx intensity. The
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shape of the saturation overshoot profile and it’s evolution in time and space also
agrees with observations.

Moreover, the 2D semi-continuum model is able to reproduce (1) gravity-
induced preferential flow with a spatially rich system of rivulets (fingers) charac-
terized by saturation overshoot, (2) diffusion-like flow with a monotonic satura-
tion profile, (3) the transition between the two. The model helps to explain the
formation of the preferential pathways, their persistence and structure (the core
and fringe of the fingers), the slow lateral expansion of the fingers, the effect of
the initial saturation of the matrix, and the saturation overshoot phenomenon.
Moreover, well known experiments from Bauters et al. [3] are also reproduced
well.

The limit of the proposed model for the block size going to zero is a subtle
issue. In performing the limit, the retention curve has to become simpler, so
that it collapses to a horizontal line. Let us stress again, that this idea is not
compatible with continuum mechanics. We conjecture that the semi-continuum
approach may also be applicable outside the scope of porous media flow modelling.
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Notation

t, x time and space variables.
S(t, x) relative moisture content (saturation).
Pc(S) capillary pressure.
q flux.
Sin initial saturation.
Pin initial pressure.
h(S) capillary height.
θ porosity of the material.
κ intrinsic permeability of the material.
k(S) relative permeability of the material.
γ(S) effective permeability of the material.
µ dynamic viscosity of fluid.
ρ density of fluid.
σ surface tension between fluid and gas.
K(S) hydraulic conductivity.
g acceleration due to gravity.
αw, nw wetting curve parameters.
αd, nd draining curve parameters.
λ relative permeability coefficient.
Srs residual saturation.
Si(t) saturation in block i at time t for 1D simulations.
Pi(t) capillary pressure in block i at time t for 1D simula-

tions.
St(i, j) saturation in block [i, j] at time t for 2D simulations.
Pt(i, j) capillary pressure in block [i, j] at time t for 2D sim-

ulations.
qi,j(t) fluxes between the blocks i and j at time t for 1D

simulations.
qt[(i1, j1)→ (i2, j2)] fluxes between the blocks (i1, j1) and (i2, j2) at time

t for 2D simulations.
qB influx at the top boundary.
dx size of the block.
dxpar discretization parameter.
dxref reference size of the block.
KPS a slope of scanning curves.
Pstat(S) equilibrium pressure-saturation curve.
Pdyn(S) dynamic pressure-saturation curve.
τ(S) saturation dependent coefficient.
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φ contact angle.
Ψwe water-entry pressure.
Pw the pressure needed for the invading phase to fully

percolate the block.
Pd the pressure needed for the defending (retreating)

phase to reinvade the block.
Rw critical wetting radius.
Rd critical draining radius.
div divergence operator.
∇ gradient operator.

Abbreviations

CFJ Cueto-Felgueroso and Juanes Model
IP Invasion Percolation
MIP Modified Invasion Percolation
MMIP Macro Modified Invasion Percolation
RE Richards’ Equation
REV Representative Elementary Volume
UHPM Unsaturated Homogeneous Porous Media
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Data availability

No experimental data were generated or analysed during the current study.
The codes of 1D semi-continuum model and 2D semi-continuum model written
in MatLab are available in the Supplementary material.
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Supplementary material

Here, complete videos are provided for some simulations presented in this
thesis. All videos were published in [66]. The MatLab code used to generate
the videos is available upon request from the author. A brief description of the
videos follows:

• Supplementary Video 1.avi : Simulation of the first 20 minutes of the evo-
lution of the saturation field, Sin = 0.010 (see subsection 4.4.1 “Finger
persistence” in the thesis).

• Supplementary Video 2.avi : Simulation of the first 20 minutes of the evo-
lution of the saturation field for the modified retention curve, Sin = 0.010

(see subsection 4.4.1 “Finger persistence” in the thesis).

• Supplementary Video 3.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.002 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 4.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.005 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 5.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.020 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 6.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.030 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 7.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.040 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).
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• Supplementary Video 8.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.050 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 9.avi : Simulation of the first 10 minutes of the evo-
lution of the saturation field, Sin = 0.060 (see subsection 4.4.2 “The effect
of initial saturation” in the thesis).

• Supplementary Video 10.avi : Simulation of the first 60 minutes of the evo-
lution of the saturation field for flow across layers of porous media with
different characteristics, Sin = 0.010 (see subsection 4.4.3 “Flow across lay-
ers of porous media with different characteristics” in the thesis).
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