
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

NETWORK SERVICE DIAGNOSTICS BASED
ON PACKET ANALYSIS
DIAGNOSTIKA SÍŤOVÝCH SLUŽEB ZALOŽENÁ NA ANALÝZE PAKETŮ

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR Ing. MARTIN HOLKOVIČ
AUTOR PRÁCE

SUPERVISOR doc. Ing. ONDŘEJ RYŠAVÝ, Ph.D.
ŠKOLITEL

BRNO 2023

Abstract
This dissertation is a compilation of peer-reviewed papers published during the doctoral
study. The papers, as well as the thesis itself, focus on the problem of fault diagnosis in
computer networks. Network faults can significantly affect the performance, availability,
and security of networks, resulting in significant financial losses and degradation of user
experience. To mitigate these problems, network diagnostics has become a critical area
that focuses on identifying, locating, and resolving network faults. Although computer
network diagnostics is not a new field and there are several tools and publications available,
it is still an unsolved problem.

The goal of this work was the development of new diagnostic methods, each of which is
focused on a different type of error, and in the whole the individual methods are comple-
mentary to each other. The developed methods aim at automating the diagnostic process,
which is time-consuming in case of manual execution and requires good knowledge of net-
work protocols and technologies. Network packets saved in PCAP format are used as a
data source for diagnostics, which allows to detect errors without the need to interact
with the network. Another advantage of the developed methods is their wide applicability,
as the solution is not limited to a small number of network protocols, and at the same
time the methods can be used by network administrators and not only by researchers or
programmers.

An integral part of the thesis is a description of the contribution of the dissertation and
the results achieved during the study. In addition to the acceptance of the published articles,
the successful commercialization of the product Flowmon Packet Investigator proves the
correctness of the chosen approach. Finally, the research areas are summarized and further
steps to improve the integration of the results into practice are presented.

Keywords
computer networks diagnostics, troubleshooting network errors, diagnostic methods

Reference
HOLKOVIČ, Martin. Network Service Diagnostics based
on Packet Analysis. Brno, 2023. PhD thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor doc. Ing. Ondřej Ryšavý, Ph.D.

Rozšířený abstrakt
V dnešním propojeném světě hrají počítačové sítě klíčovou roli při usnadňování bezprob-
lémové komunikace a výměny informací. Chyby a narušení sítě však mohou významně
ovlivnit výkon, dostupnost a bezpečnost těchto sítí, což vede ke značným finančním ztrátám
a zhoršení uživatelských zkušeností. Pro zmírnění těchto problémů se diagnostika sítě stala
kritickou oblastí, která se zaměřuje na identifikaci, lokalizaci a řešení síťových chyb. Tato
práce zkoumá základní aspekty síťové diagnostiky a zdůrazňuje její význam pro zajištění
spolehlivých síťových operací. Začíná stručným popisem samotných sítí, možností jejich
monitorování a způsoby zpracování síťových paketů. Následně práce popisuje důležitost
diagnostiky chyb, popisuje různé typy síťových chyb a možnosti automatických nástrojů
pro diagnostiku.

Hlavní kapitolou této práce je shrnutí výzkumu, která obsahuje šest rozličných diagno-
stických metod, které byli publikovány v osmi článcích. Všechny tyto články a metody se
zaměřují na pasivní diagnostiku ze zachycených síťových dat ve formátu PCAP. Pro zpra-
cování dat v tomto formátu je využit nástroj TShark, který je verzí aplikace WireShark
pro příkazový řádek. Výhodou využití nástroje TShark je obrovská podpora síťových pro-
tokolů. Při tvorbě metod byl kladen důraz na přesnost a vysvětlitenost výsledků. Metody
pro nasazení nevyžadují žádné, nebo jen velmi malé množství, trénovacích dat. Dále metody
umožňují rozšiřovat znalostní bázi, kterou je následně možné aplikovat na libovolný protokol
podporovaný nástrojem TShark.

První diagnostická metoda pojednává o použití algoritmu rozhodovacího stromu pro
diagnostiku síťových problémů. Přístup rozhodovacího stromu umožňuje simulaci akcí
skutečných správců sítě pomocí snadno srozumitelných pravidel. Metoda je však omezena
na předem definované chyby a může vést k nepřesným závěrům pro neznámé chyby. Rozho-
dovací strom je rozdělen na vnitřní uzly, které vyhledávají konkrétní události v datech,
listové uzly, které identifikují příčinu problémů, a systém, který spojuje jednotlivé uzly
pro umožnění průchodu stromem. Každý uzel stromu je spojen s pravidlem a nové prob-
lémy lze pokrýt vytvořením dalších pravidel. Rozhodovací strom je rozdělen na podstromy,
z nichž každý představuje jeden protokol. Doba zpracování u větších vstupů je problémem
a jsou diskutovány optimalizační techniky. Použití indexace vstupních dat, kromě zvýšení
výkonu, umožňuje integraci s analýzou logovacích souborů. Navzdory vzestupu přístupů
strojového učení prokázal přístup založený na pravidlech svou použitelnost a byl integrován
do komerčního produktu Flowmon Packet Investigator.

Druhá metoda popisuje aplikaci bezpečnostní analýzy při diagnostice chyb souvisejících
se síťovými útoky. Vytvořená metoda dokáže detekovat útoky napříč různými toky bez
omezení na vybrané pakety nebo protokoly. Detekční algoritmus rozděluje pakety do skupin
na základě atributů paketů a následně aplikuje operace a podmínky pro hledání specifických
atributů. Když jsou podmínky v rámci skupiny splněny, počítadlo se zvýší, a pokud dosáhne
předem definované hodnoty, je detekována požadovaná událost. V porovnání s klasick-
ými IDS řešeními umožňuje metoda flexibilní vyhledávání událostí napříč více toky, ale za
cenu pomalejší rychlosti zpracování. Výsledek je tak určen spíše k doplnění, než nahrazení
stávajících řešení IDS. Tato metoda také nabízí uživatelsky přívětivý jazyk pravidel pro
administrátory pro rozšíření seznamu událostí, které mají být detekovány. Pro zvýšení
využitelnosti pro diagnostické účely je součástí výstupu nástroje seznam paketů přispíva-
jících k detekované události. Funkčnost metody pro diagnostické účely byla otestována
vytvořením 35 pravidel různé složitosti.

Třetí metoda je založena na pravidlech pro detekci a identifikaci síťových problémů po-
mocí analýzy vizuálních reprezentací síťových dat. Metoda se zaměřuje na identifikaci vzorů

v datech, jako jsou špičky nebo křížení linek v grafu, které indikují anomálie nebo chyby
v síťové komunikaci. Tento přístup automatizuje manuální analýzu prováděnou správci
sítě pomocí vizuálních reprezentací síťových aktivit. Využívá jednoduché popisy změn
hodnot a nespoléhá se na algoritmy zpracování obrazu. Proces zahrnuje přiřazení paketů
k časovým intervalům, použití agregačních funkcí a vytvoření řetězcových reprezentací dat
grafu. Vzory jsou pak identifikovány vyhodnocením regulárních výrazů nad těmito řetězci.
Funkčnost tohoto nástroje je demonstrována na příkladu výstupu, který ukazuje detekci
vzoru skokových skoků souvisejících s QoS řazením do fronty a nastavením ukládání do vy-
rovnávací paměti, které může ovlivnit uživatelskou zkušenost v multimediálních aplikacích.

Čtvrtá metoda je zaměřena na využití předchozích diagnostických výsledků s cílem
odhalit a diagnostikovat opakující se chyby. Tento přístup zahrnuje vytvoření specifického
modelu pro každý aplikační protokol, zachycení správného chování protokolu pomocí dvojic
zpráv žádost-odpověď. Model je rozšířen o chybné přechody a popisy chyb poskytnuté ad-
ministrátorem. Během diagnostiky model identifikuje neznámé chyby, když narazí na stav
bez odpovídajícího dalšího přechodu. Součástí metody je také použití modelů časovaných
automatů, které u přechodů navíc zahrnují časové informace k pokrytí více situací a prob-
lémů. Metoda byla testována na různých protokolech s dosahováním přesnosti od 63 % do
100 %. Zatímco model může vyžadovat neustálé učení, aby pokryl všechny možné situace,
pomáhá diagnostikovat opakující se chyby a šetří čas zkušeným správcům. Naučené modely
lze sdílet, což umožňuje méně zkušeným správcům těžit z odborných znalostí ostatních.

Cílem páté metody je identifikovat typografické chyby v uživatelsky zada-ných dat-
ech, jako jsou například názvy serverů, čísla portů nebo přihlašovací jména. K odhadu
zamýšleného slova využívá metoda heuristiku založenou na minimální vzdálenosti úprav
a běžných typech typografických chyb. Metoda detekuje chybně napsaná slova, vygeneruje
sadu možných správných slov a vyhodnotí každého kandidáta pomocí vytvořené heuristiky.
Slovo s nejvyšším skóre určujícím pravděpodobnost je vybráno a nahlášeno administrá-
torovi. Metoda se opírá o slovník správných slov a nebere v úvahu gramatiku jazyka ani
kontext okolního textu. Vyhodnocení ukázalo, že tento přístup je účinný pro data aplikační
vrstvy, ale méně vhodný pro data nižší vrstvy, jako jsou IP adresy a transportní porty.

Šestá metoda se zaměřuje na omezeních současných nástrojů pro analýzu sítě a navrhuje
nový přístup pro analýzu na agregované úrovni dat. Stávající nástroje postrádají dostatečné
informační a vizualizační možnosti. Navrhovaný přístup využívá metaforu filtračního trych-
týře, kde je aplikováno více vrstev filtrů, aby se snížilo množství dat pro analýzu. Fil-
trovací filtrační vrstvy jsou navzájem zcela nezávislé a je možné je aplikovat na libovolné
síťové data, jako například IP adresy, čísla protokolů, nebo čísla portů. Nástroj podporuje
úlohy, jako je identifikace zdrojů komunikace, detekce neobvyklých vzorců, identifikace uzlů
a služeb a sdílení parametrů analýzy. Tento nástroj byl navržen pro podporu manuální
vizuální analýzu ze strany správců sítě. Byl vyhodnocen zapojením skutečných správců
sítě, kteří pomocí tohoto nástroje prováděli úkoly, a jejich zpětná vazba byla většinou pozi-
tivní, zdůrazňující jeho flexibilitu a podporu během počáteční analýzy zachycování paketů.

Kromě recenzovaných článků byli některé nástroje vydány jako software. První metoda,
založena na principu rozhodovacích stromů byla úspěšně komercializována společností Flow-
mon Networks do produktu Flowmon Packet Investigator, který je ve formě placených li-
cencí poskytován zákazníkům uvedené společnosti. Kromě toho vznikl na základě metody
zaměřenej na vizuální analýzu síťového provozu na agregované úrovni výzkumný projekt
s označením SECURIAN (TAČR FW06010009), kterého cílem je kromě jiného integrovat
poslední popisovanou metodu do analytického nástroje Flowmon Monitoring Center.

Network Service Diagnostics based
on Packet Analysis

Declaration
I hereby declare that this PhD thesis was prepared as an original work by the author under
the supervision of doc. Ing. Onřej Ryšavý, Ph.D. I have listed all the literary sources,
publications, and other sources used during this thesis’s preparation.

. .
Martin Holkovič

July 17, 2023

Acknowledgements
At first, I wanted to skip this part, but then I realized that I actually deeply thank my
supervisor and respected leader Ondra for the effort and trust he put in me and for his time
that he could have used for better purposes.

Contents

1 Introduction 3
1.1 Research Goal and Objectives . 5
1.2 Assumptions and Requirements . 5

1.2.1 Environment . 5
1.2.2 Network Protocols . 6
1.2.3 Traffic Analysis . 6
1.2.4 Automation . 6
1.2.5 Explainability . 6

1.3 Thesis Outline . 7

2 State of the Art 8
2.1 Computer Networks . 8

2.1.1 TCP/IP Model . 9
2.2 Network Monitoring . 10
2.3 Analyzing Network Packets . 14

2.3.1 Network Packets . 14
2.3.2 Network Packets Analysis . 17

2.4 Network Diagnostics . 19
2.4.1 Importance of Network Diagnostic 19
2.4.2 Errors in Computer Networks . 20
2.4.3 Steps of Network Diagnostics . 22
2.4.4 Automatic Diagnostic Tool . 24
2.4.5 Classification of Diagnostic Techniques 25

3 Research Summary 33
3.1 Rule-based Diagnostic Decision Tree . 34
3.2 Security Analysis Based on Rule-based Packets Grouping and Searching . . 37
3.3 Using Pattern-Based Analysis for Diagnosis 38
3.4 Creating Automata Models for Diagnostics of Repetitive Problems 40
3.5 Correcting User’s Data According to Typographical Errors Analysis 42
3.6 Top-Level Visual Analysis of Network Traffic 45
3.7 List of Outcomes . 50

3.7.1 Papers Included in Thesis . 50
3.7.2 Other Relevant Papers . 51
3.7.3 Research Projects and Grants . 51
3.7.4 Software . 52
3.7.5 Supervised Theses . 53

1

4 Conclusions 55
4.1 Research Areas . 55
4.2 Summary of Research Objectives . 57
4.3 Software Outcome . 58
4.4 Towards a Practical Solution . 59

Bibliography 60

A Included Papers 71
A.1 Network Diagnostics Using Passive Network Monitoring and Packet Analysis 71
A.2 Using Rule-Based Decision Trees for Automatic Passive Diagnostics of the

Network Problems . 77
A.3 Automating Network Security Analysis at Packet-level by using Rule-based

Engine . 89
A.4 Pattern Detection Based Network Diagnostics 98
A.5 Using Network Traces to Generate Models for Automatic Network Applica-

tion Protocols Diagnostics . 107
A.6 Application Error Detection in Networks by Protocol Behavior Model . . . 118
A.7 Network Problem Diagnostics using Typographic Error Correction 144
A.8 PCAPFunnel: A Tool for Rapid Exploration of Packet Capture Files 154

2

Chapter 1

Introduction

Computer networks are complex systems consisting of a large number and variety of devices
and applications that communicate together by using different communication protocols.
The complexity of networks rapidly rises by introducing new types of technologies, such
as Software-defined networks, the Internet of Things, or computer network virtualization.
In such a complicated environment, it is just a matter of time before an error occurs that
can negatively affect the network’s functionality [62]. For example, errors can be caused
by a hardware failure, a misconfiguration, or a software bug [54].

Due to an error, a network service may become unavailable, network performance may
degrade, the user experience may decrease, or an error can cause a financial loss in the
case of business networks [122]. In huge networks like YouTube, CloudFlare, or Paypal,
the downtime is worth hundreds of thousands of dollars per hour [38]. Even after users
report a problem inside the network and administrators start working on it, it takes some
time to solve it. According to an administrator survey, over 50% of administrators say that
the average time required to solve a single problem is more than 30 minutes [139].

The process of searching for network errors, finding causes of errors, and fixing errors
are called network troubleshooting or diagnostics. Usually, end users need help to solve
problems. It is the role of network administrators to diagnose errors, and administrators
spend a significant amount of time on it. Because computer networks are complex systems,
diagnostics require in-depth knowledge of individual network parts and technologies. Even
if an administrator has enough knowledge of all the necessary technologies, it is time-
consuming and requires much effort [106].

Existing tools usually only detect the problem’s symptoms, and it is up to the admin-
istrator to understand and fix the problems. Another complication is that several data
sources need to be checked to find a real source of the problem. It amounts to log files,
NetFlow records, or captured packets. According to a short survey [106], network admin-
istrators would like to have an automated monitoring tool to diagnose network errors that
would be able to identify such problems. Previous researchers have developed methods
that help network administrators to diagnose faults and performance problems. However,
they require installing agents to hosts, providing rich information about the environment,
or an active monitoring approach [69].

Even with the help of the current network monitoring tools and published techniques,
network diagnostics is a primarily manual activity [107]. A common way of manual diagnos-
tics is using a network packet analyzer (e.g., Wireshark). The analyzer processes captured
network traffic and decode individual packets. The administrator analyzes available infor-
mation and compares the data with expected values (e.g., based on RFC standards). This

3

manual process is time-consuming and requires a good knowledge of network protocols
and technologies.

This work’s motivation is based on a research project between the CESNET organization
and the Flowmon Networks company, which provides a solution for monitoring computer
networks. The project aimed to create an automated diagnostic tool that Flowmon Net-
works could deploy to its customers. The company’s primary customers are companies
with about 100-1000 users. The monitoring is based on special probes that process the
copy of the network traffic. An example of a monitored network is shown in Figure 1.1.

analytic tool

network tap

Figure 1.1: The Network monitoring architecture in which the traffic is copied from
the network into the monitoring station.

Using monitoring probes deployed inside a network gives a network administrator full
access to the transferred data. By correctly placing the probes inside the network, an admin-
istrator can monitor any location inside the network, e.g., web server or end-user network
segment [70]. Network traffic is usually not analyzed inside those probes directly, but the
traffic is sent to a central server. The administrator can use this access to capture and
analyze network traffic in the case of a network problem. By analyzing the traffic cap-
tured in this way, network administrators can diagnose network problems and ensure the
functionality of a network [30].

The goal and the contribution of this work are to design and validate diagnostic meth-
ods capable of root cause identification of network-related errors. These methods would
require only captured network traffic and not send any additional traffic into the monitored
networks. The methods are focused on the following:

• simulating the steps of a real administrator,

• the way how to detect complex security events,

• simulating pattern search in chart data,

• how to reuse the previous diagnostic results,

• how to detect typing errors in end-user data,

• improving the flexibility of visual top-level analysis.

4

1.1 Research Goal and Objectives
This thesis aims to advance the network troubleshooting field by designing and experimen-
tally developing an automated computer network diagnostic system. The system should
cover major Internet protocols and be able to detect different types of errors by providing
only a tiny amount (hundreds to thousands of packets) of captured network communica-
tion. The passive detection approach is considered not to interfere with regular network
operations. The following research objectives can refine the goal:

1. Accurate. Results of all created methods must be correct and accurate. Only in that
situation, the methods can be trusted by network administrators and deployed in their
networks.

2. Extensible. The system can be updated to extend the set of detectable errors using
a simple (declarative) language. Using the domain-specific language enables users
to define new rules of the system, thus enabling them to extend the system with
errors specific to various environments.

3. Protocol support. Each well-known and commonly used protocol must be sup-
ported regardless of the network topology. There should also be no difference between
binary or text protocols.

4. No need for a huge dataset. The created methods can only expect a small amount
of network traffic for analysis. It should be expected that the capture filter was applied
to record the traffic. This may lead to incomplete information.

5. Passive method. No traffic should be sent to the monitored network during the
diagnostic process. The methods need to work only with the provided data.

1.2 Assumptions and Requirements
This thesis focuses on new diagnostic methods for detecting errors by analyzing computer
network communication. These new methods aim to provide valuable information to net-
work operators and administrators by identifying the error and providing the probable
cause of failure. Therefore the amount of effort and time required to correctly find the root
cause of a problem can be reduced. There are several assumptions, requirements, and prac-
tical considerations that should be taken into consideration for the system design. Designing
a general diagnostic method for computer communication requires us to assume different
technologies, environments, devices, and applications. To make this problem tractable, this
section specifies assumptions made and explicitly defines requirements to be met by the
target methods.

1.2.1 Environment

The Internet consists of many interconnected networks built on top of the TCP/IP protocol
suite. However, the technology that they are made of may vary. Several research works
aim to detect errors in these network technologies, which can often be solved by providing
a specialized tool that implements domain knowledge to identify the anomaly situation and
explain it. The aim of the present work is different. The focus of the proposed diagnostic
methods is on Internet communication in enterprise or SOHO networks. These networks

5

provide connectivity for end users and Internet services. This requires analyzing the entire
TCP/IP stack and seeking non-standard or erroneous data exchanges to identify possible
malfunctioning and errors.

1.2.2 Network Protocols

The main source of information for the proposed diagnostic methods is the information
extracted from network packets. Network protocols control network communication. One
needs to understand the network protocol to extract relevant information from the commu-
nication. It is necessary to choose such a way of processing network data that will support
a huge number of protocols. Two main approaches exist: create a custom solution for
processing data or use an existing solution. Both approaches have advantages and disad-
vantages. For example, tools highly oriented to a processing speed instead of flexibility and
usability usually implement their own network data parsers. The reason is that they can
optimize the whole processing unit according to future data processing. On the other hand,
an approach that uses existing processing tools can implement only a few protocol parsers.

1.2.3 Traffic Analysis

The diagnostic methods primarily use PCAP files that contain captured packets as the data
source. Processing of the captured traffic has the benefit that the processing can not affect
the monitored (production) network, and the analysis can be executed in any location at any
time. The created methodology must work regardless of the network topology, technologies,
and protocols inside the network. Most notably, it is necessary to process data even if they
are tunneled or segmented correctly.

To use the created methods in real-world scenarios, the methods must only require
a little traffic to find the error’s root cause properly. This limitation arises from several
reasons: privacy - because one user has a problem, it is not possible to capture traffic
of all network users; practicality - the simplest way of capturing traffic is to place a capture
probe on the edge of the network (end users or servers segment) and capturing traffic
from multiple places would require multiple capturing probes; performance - by capturing
a specific subset of traffic (e.g., communication between one user and one server), amount
of processed traffic is significantly decreased that allows using complex algorithms.

1.2.4 Automation

The proposed methods’ primary purpose is to speed up the diagnostic process by allowing
automated execution. With algorithmic diagnostics, each captured network traffic can be
processed by multiple parallel methods, so the administrator does not need to figure out
which method should be executed to diagnose the currently analyzed problem.

1.2.5 Explainability

It is essential to create new diagnostics methods that real administrators would use, not just
the researchers. Creating methods must be easily extendable even without programming
skills to achieve this. For example, an administrator would instead work with a rule-based
system that uses a simple language instead of reimplementing neural networks created
by a machine learning algorithm.

6

The created methods need to produce results that are explainable to an administrator
and can be traced back to know why the system produced such results. The methods
must be deterministic, and if a diagnostic result is provided, the administrator needs to
know how and why the system deduced such a result. Another benefit of the deterministic
approach is that the system ends with the same input data with the same results. If multiple
administrators are working on the same problem in parallel, they can collaborate.

1.3 Thesis Outline
The presented thesis has form of a collection of seven peer-reviewed papers written by the
author as the major contributor. The thesis is organized as follows. Chapter 2 provides
a summary of state of the art and presents the necessary background information in the
area of network monitoring, network troubleshooting and error diagnostics. Chapter 3
summarizes the research contribution that consist of six different methods, and lists the
outcomes made during the doctoral study. Chapter 4 concludes the thesis by discussing
the contributions, comparing the proposed methods, and listing the outcomes.

7

Chapter 2

State of the Art

This chapter describes the state of the art that covers the basics of computer networks and
how they are monitored and diagnosed. The chapter starts by describing computer networks
and how they are monitored. From the diagnostic perspective, it is essential to understand
methods used for monitoring as it lately affects the diagnostics process. The chapter focuses
on analyzing the network packets as all the new proposed detection methods described in
the next chapter use network packets as data sources. The last part of the chapter describes
the diagnostic process and talks about the various implementations of the current solutions.

The state of the art has been created based on research papers that were found from
the IEEE Xplore, ACM Digital Library, and Google Scholar libraries. Only papers that
were found by searching the keyword “network diagnostics” or “network troubleshooting”
and that were published after the 2010 (including) have been analyzed. In addition to all
these papers, in some cases a cross reference lookup has been used - a paper cited by the
analyzed paper or a paper that cited the analyzed paper.

2.1 Computer Networks
A computer network is a set of interconnected devices that can communicate between
themselves. In addition to most typical devices like personal computers or servers, computer
networks may connect printers, phones, network devices, industrial devices, cameras, light
bulbs, and many others. The primary purpose of computer networks is to allow all these
heterogeneous devices to communicate with each other, no matter the distance or the
technology being used. Since the emergence of the WWW protocol in the 1990s [13], which
has massively spread computer networks among ordinary people, much time has passed.
Nowadays, computer networks are inseparable parts of our society, and many aspects of our
daily lives depend on the functionality of those networks. For example, computer networks
are necessary for electronic payments, online meetings, cloud computing, and social media.
Figure 2.1 shows the number of IoT devices connected to computer networks in billions
according to Statista1. If we use the number of devices in the year 2023 and 8 billion people
as the assumed number of people on Earth in the year 2023, we get that, on average, there
are over six devices (just IoT) for one person.

1S. R. Department, “Internet of Things - number of connected devices worldwide 2015-2025,” 2016,
(Accessed: 2021, Feb 2). [Online]. Available: https://www.statista.com/statistics/471264/iot-number-of-
connected-devices-worldwide/

8

15,4117,68
20,35

23,14
26,66

30,73
35,82

42,62

51,11

62,12

75,44

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

N
u

m
b

er
 in

 B
ill

io
n

s

IoT Connected Devices

Figure 2.1: The number of IoT devices according to the survey conducted by Statista.

Adding new and new technologies and use cases to the networks caused the complexity
of networks rapidly increase [88]. At the same time, other requirements have been intro-
duced. More than being able to communicate with other devices is required nowadays.
Users expect low latency and high speeds of data transfers, safety and privacy for the users,
and no outages and high availably. The combination of higher requirements with the higher
complexity of the networks leads to higher requirements placed on network administrators,
which ensure that the networks are working as expected.

There are many ways to categorize networks into categories. The most common classifi-
cation is based on the size of the network: Local Area Network (LAN) is for networks within
a limited area, such as a building or a campus, and Wide Area Network (WAN) that con-
nects multiple LANs into a large network that spans a large geographic area such as country
or even the world, and Metropolitan Area Network (MAN) that covers a geographic area
larger than a LAN but smaller than a WAN, such as a city. Another classification can be
based on used link technologies: wired like metallic, optic, or wireless like WLAN or 5G
networks. Some networks can even be classified based on their usage, resp. the used proto-
cols. For example, Industrial Control System (ICS) networks, Software-Defined Networks
(SDN), or networks for the Internet of Things (IoT). This thesis is not specific to any
of these categories, and therefore when talking about computer networks, the thesis talks
about all of these.

2.1.1 TCP/IP Model

To provide a standardized approach to network communication that could work across dif-
ferent types of devices and technologies, a TCP/IP model has been created. The TCP/IP
model is based on the concept of layering, where each layer is strictly defined and provides
a different set of functions to the higher layer. This layered approach allows for the indepen-
dent development of network protocols as well as better scalability in computer networks.
The TCP/IP model consists of four layers:

1. Application layer: This is the highest layer and contains protocols used by ap-
plications that provide services to end-users and other applications. Because of the
protocols on this layer, a device can understand data from other devices that use

9

the same protocol. For example, one of the most common protocols is the HTTP
protocol, used by web browsers to allow users to display content on web servers.

2. Transport layer: Protocols on this layer are responsible for transporting data from
one application to another. As each machine can use hundreds of applications that
communicate over the network simultaneously, it is necessary to deliver data to proper
applications. The most commonly used protocols are TCP and UDP. In the case
of TCP, the protocol can ensure that all data sent from one application is delivered
in the same form - no errors, gaps, no duplicates, and in the same order.

3. Internet layer (sometimes called Network layer): The layer is responsible for trans-
porting data from one device to another. Precisely, this problem consists of addressing
and routing between devices and networks. The most common protocol of this layer
is the IP protocol.

4. Network access layer (sometimes called Physical layer): The lowest layer that is
responsible for providing physical connectivity between two different devices. The
most crucial problem the layer deals with is addressing devices within the same net-
work and hardware standards that specify how to transmit data over various physical
link technologies.

Each computer network layer has a distinct set of functions to perform. For the network
to operate effectively, all four layers must work in conjunction with each other. If a single
layer fails, it can adversely affect all the layers above it. Therefore, it is essential to ensure
the proper functioning of each layer for optimal network performance.

2.2 Network Monitoring
Monitoring computer networks is an essential activity used by network administrators to see
the current status of computer networks and ensure that networks work according to the
defined policies. With network monitoring, administrators can detect and diagnose issues
such as bottlenecks, packet loss, network congestion, security threats, and other anomalies
affecting network performance. Additionally, network monitoring can help organizations
to comply with regulatory requirements related to data privacy and security by detecting
and reporting any unauthorized access or activity on the network. Overall, computer
network monitoring is a crucial aspect of network management and requires a combination
of techniques and tools to effectively monitor and maintain the performance and security
of network infrastructures [111, 46, 32].

Network monitoring involves collecting and analyzing data from various sources to gain
insights into a computer network. The sources can be classified into one of three different
approaches [144, 68, 117]:

1. Passive monitoring: This approach contains techniques that are non-intrusive and
do not interfere with the network devices and their network traffic. The most common
data sources used in passive network monitoring are:

(a) Network devices: When an administrator connects to the network device, such
as a router, switch, or firewall, the administrator can get information directly
from the devices [1, 132]. For example, the routing table from the router can
be used to check how the traffic is being forwarded. In addition to connecting

10

a user to the device, retrieving data from devices remotely using a network
protocol such as SNMP is possible. SNMP can retrieve information such as the
number of transferred bytes for all network interfaces [4, 79].

(b) Network traffic: Another common data source is working with data being
transferred inside the network [27, 103, 58, 2, 6, 77, 74, 19, 64, 36, 104]. In the ba-
sic form, it means capturing and analyzing packets by duplicating data from the
physical links or inside the network devices. Because of the enormous amount
of data, it is more common to work with aggregated data formats such as Net-
Flow/IPFIX records [45, 89, 90, 143].

(c) System logs [21, 51, 37, 55, 54, 84, 137, 83, 142, 96, 24, 145, 146, 79]: This data
source is mainly used on the end stations (including the servers). Most appli-
cations record (or can be configured to record) all the activities the application
is doing, including the interaction with computer networks. These records are
called log files or just logs and are usually used by administrators when the ap-
plication is not working as expected. It is also a common practice to send logs
to a central location with a protocol called Syslog.

2. Active monitoring: Active network monitoring is an intrusive approach that in-
volves sending test traffic across the network to the end stations to measure its per-
formance and identify any issues [93, 73]. Examples of such data sources are:

(a) ICMP protocol [105, 49, 3, 78]: ICMP is a network protocol used by network
devices to communicate error messages about network conditions. The most
common tool using this protocol is ping which checks if there is a connection
between two devices.

(b) TCP protocol [85, 102]: By analyzing the TCP protocol, metrics such as th-
roughput, packet loss, and latency can be obtained.

(c) Application protocol [43, 49]: By sending a predefined set of packets, it is
possible to imitate a real user interaction with any application and measure the
interaction’s performance and result. For example, it is possible to simulate
a user trying to browse the content of the HTTP server.

(d) Security scanners [123, 66]: Similar to the previous data source, however,
in this case, the goal is not to simulate just the user’s application data but
to check the security (or vulnerabilities) of the devices. By comparing which ser-
vices should be available and which the security scanner can reach, it is possible
to verify the correctness of the applied security rules.

3. Hybrid monitoring [48, 115, 39]: Hybrid network monitoring combines passive and
active approaches to provide a more comprehensive view of network activity. This
approach captures and analyzes passive data sources and sends test traffic inside the
network. An example of such an approach can be to send test traffic only in case
the passive monitoring detects an unusual situation inside the network.

Generally, it is impossible to tell which data source is the best and which is the worst.
The choice depends on many factors, such as the network size, law regulations, the organiza-
tion’s needs, and the network type. For example, passively monitoring transferred data may
be more appropriate for security monitoring, while active monitoring may be more appro-
priate for performance monitoring. Of course, in real situations, multiple approaches and

11

data sources are used simultaneously. With information from all these sources, network ad-
ministrators can identify network issues, take steps to optimize the network’s performance,
enhance security, and improve the user experience.

When network monitoring involves capturing packets or logs for extended periods of ti-
me, it can generate a significant amount of data. To minimize the amount of data generated
by network monitoring, various techniques can be utilized:

1. Filtering: One of the most effective ways to reduce the amount of data is to filter
out data irrelevant to the specific use case. For example, to monitor a web server, it
may be enough to monitor just the HTTP traffic to or from the specific server, and
all other communications can be dropped.

2. Sampling: Sampling involves capturing only a subset of the packets. When moni-
toring a web server, monitoring only every nth connection may be enough.

3. Truncation: This involves capturing only the first few bytes of each packet or the first
few packets of each connection, which can be enough to analyze what is happening.
When monitoring a web server and a user starts downloading a file with the size
of 1GB, it is not necessary to store all the data. Only the first few packets containing
all the headers can be enough.

4. Aggregation: Aggregation involves combining multiple entries into a single entry.
This can be useful for reducing the number of entries generated while still providing
helpful information. In network monitoring, the most common aggregation is the Net-
Flow monitoring approach which aggregates all packets from a connection into one
single entry. When monitoring a web server, each HTTP request would be represented
by one data record instead of many network packets.

5. Retention policy: This policy defines how long to retain the captured data. As com-
puter networks change constantly, the value of data used for monitoring the current
state decreases as they age. For example, to analyze the current performance of a web
server, it is irrelevant to have one year old data.

Using these techniques can reduce the amount of data generated by network monitoring
while providing helpful information for network troubleshooting, security monitoring, or
other purposes. However, balancing between reducing data and maintaining sufficient data
to provide valuable insights is important.

Administrators can monitor networks at various points in the network, depending on the
goals and requirements of the monitoring process. Figure 2.2 and the following lists include
the most common locations:

1. End stations: This includes users’ computers, servers, printers, or IoT devices.

2. Core network: The core of the network is the central part of a network that facili-
tates data exchange between multiple parts of the network.

3. Datacenter: Not all traffic must go through the network’s core. Communications
between servers usually stay inside the data center part of the network. As these
communications are usually essential, monitoring this part of the network makes
sense.

12

4. Network perimeter: It is the border where one network ends and another begins.
A typical example is the connection to the Internet service provider.

5. Cloud services: Nowadays, the trend is to move from on-premise deployment of ap-
plications to cloud deployment when external companies host applications. Monitor-
ing on this point makes it possible to monitor how users communicate with service
providers and work with the hosted applications.

1) end stations 2) core network 3) data center 4) network perimeter 5) cloud services

Figure 2.2: Visualization of various monitoring points in a network.

While network monitoring is an important part of network management and security,
several challenges and potential problems are associated with it [68]:

1. Data overload: Monitoring tools can generate a large amount of data, which may
overload network administrators and may even be impossible to analyze all of it.

2. Inaccuracy: Tools can misunderstand the data, which may cause wrong results.
Relying too much on results from monitoring tools may create an inaccurate view
of the network.

3. Complexity: Network monitoring can be complex, and even with specialized tools,
it may require a lot of time and knowledge to do it properly.

4. Security risks: Monitoring tools gather information along the whole network and
store it in one place. This data gathering may create a security risk if not appropriately
secured. An attacker can gain access to sensitive data by compromising the monitoring
solution.

Several factors can cause problems with network monitoring. Some of the common
issues that can impact network monitoring include:

1. Network congestion: When a connection link or a network device is saturated, some
packets may be delayed, dropped, or retransmitted. In the same way, as congestion
can appear in the monitored network, it may also appear in the monitoring network.
Congestion can lead to gaps in monitoring data.

13

2. Malicious activities: Malware applications can generate artificial data to confuse,
overload or manipulate monitoring tools.

3. Missing data: Inadequate monitoring settings can lead to a situation when an im-
portant part of the network is hidden from an administrator. Incomplete or ineffective
monitoring can limit the ability of network administrators’ ability to see what is hap-
pening in the network.

4. Asymmetric routing: With asymmetric routing, not all packets between the source
and the destination are transmitted over the same route. This may make some packets
visible in a different monitoring point than others within the same communication.

To mitigate problems with network monitoring, network administrators should carefully
plan their network monitoring strategy and use the right tools and techniques while mini-
mizing overloading and complexity. Regularly reviewing and updating network monitoring
policies is also important to ensure they remain effective.

Each technology for network monitoring has its strengths and weaknesses, and the choice
of which technology to use will depend on the specific needs and goals of the organization.
Some factors that may be considered when choosing a network monitoring technology in-
clude the size and complexity of the network, whether the monitoring infrastructure may
interact with the monitored network, the types of devices and protocols being used, the level
of detail required for monitoring and analysis, and the budget available for monitoring tools
and resources.

2.3 Analyzing Network Packets
As mentioned in the previous section, multiple data sources are used for network moni-
toring. However, this thesis focuses on methods specific to analyzing the network packets.
For this reason, only the processing of network packets is described more deeply in this
section. The network packets have been chosen because this data source does not require
any changes to the end stations and only minimal changes to the monitored networks -
duplicating traffic to monitoring points. There is also no need to inject artificial traffic
into the monitored network, meaning this approach can not negatively affect end users or
network applications. By analyzing every packet that is transmitted through the network,
a highly detailed view of network activities is created. The limitation is that the methods
cannot access information located in end-stations or network devices.

2.3.1 Network Packets

Network monitoring from packets involves capturing and analyzing packets to gain insights
into network activities. In addition to application data, network packets contain protocols
from the lower network layers, which may contain important information - e.g., source
and destination IP address. To analyze network packets, administrators typically use one
of the three following approaches:

1. Manual or in-depth analysis of packets with packet capture and analysis tools,
also known as packet sniffers. These tools allow administrators to inspect each packet,
decompose the packet’s data into used protocols and display the value of each packet’s
byte in a human-readable format [8]. Administrators use these tools to troubleshoot

14

network issues, analyze network protocols, and identify potential security threats.
The most popular tool for packet analysis used nowadays is Wireshark, shown in Fig-
ure 2.3. Wireshark is an open-source tool with a huge community that supports over
3,000 protocols, making it the most powerful analysis tool.

Figure 2.3: The GUI of the Wireshark tool showing the content of the selected packet.

The main disadvantage of manual analysis is that it is a very time-consuming activ-
ity [142]. It is only possible to investigate some things happening inside the network
with this approach. It is mainly used when all other approaches fail. Another dis-
advantage is that this activity requires a deep understanding of computer networks.
On the other hand, with proper knowledge and enough time, it is the most powerful
option.

2. Exploration or top-level analysis of network traffic means that instead of focusing
on individual packets, only statistical information from network packets is presented to
an administrator [116, 44]. For example, the number of transferred bytes or top talkers
inside the network. Even though this kind of analysis is often possible to do with
packet sniffer tools, those tools are missing automation and integration features [89].
One example of such a tool is the SolarWinds company’s Network Packet Analyzer,
as shown in Figure 2.4.

15

Figure 2.4: The GUI of the Network Packet Analyzer that shows the 10 worst
applications based on their network performance statistics.

The primary advantage of this approach is the administrator’s ability to obtain a quick
overview of the network’s activity. Instead of presenting administrators with excessive
details, only summarized information is provided. This approach enables continuous
monitoring of networks of various sizes, but it comes at the expense of reduced granu-
larity. Typically, an administrator can identify an issue through exploratory analysis,
but additional manual investigation is necessary to determine the cause. The disad-
vantage of this method is that since it relies solely on aggregated data, it is critical
to identify problems that can only be discovered through detailed analysis.

3. Automatic analysis analyzes all the packets and, based on decision algorithms,
automatically reports to administrators what is happening inside the network [103].
These reports include decreasing performance, detecting security policy violations, or
identifying a potential problem. An example of an automatic analysis tool is Suricata,
an intrusion detection system (IDS) that can detect security incidents. In Figure 2.5,
it is possible to see a list of security events.

Figure 2.5: List of detected security events from the Suricata tool.

16

Compared to previous approaches, the result of the automatic analysis is only in-
formation that fulfills some criteria. On the other hand, previous approaches give
administrators much data, and it is up to the administrator to filter out what is im-
portant and what is not. This automatic processing saves a lot of time and effort for
network administrators. Because the analysis capability is included inside the tools,
administrators also have lower knowledge requirements. The most significant bene-
fit of this approach is that it is possible to permanently monitor huge networks with
many devices and connections. However, the tools may falsely assume that everything
works as expected when nothing is detected. The problem is that tools can detect
only situations they were made for, and everything else is undetectable.

2.3.2 Network Packets Analysis

Before it is possible to make an analysis and come to a conclusion from network packets,
it is necessary to have access to the packets, capture them, extract information from them,
and then it is possible to analyze them. All these actions are shortly described in this
subsection.

Getting Access to Data

There are several common ways to access network packets [111], as shown in Figure 2.6.
Software tapping is the easiest one that does not require any additional hardware in the
network. With software tapping, packets are copied inside the end devices to applications
using software means. Even though it is the easiest way, with this approach, only packets
sent from or to the device where the software tapping is happening are available. Another
approach is to create copies of network packets on network devices (switches and routers)
and send those copies to a special monitoring device. This activity is called port mirroring.
With this approach, all traffic going through the network device is copied, and it is possible
to access a large portion of network traffic. The port mirroring must be supported on
network devices. Even with full support, the port mirroring is unreliable as copying the
traffic has very low priority on devices. When the device is highly loaded, many packets
are not copied. Therefore it is impossible to analyze them. The last common way of
accessing network packets is by using a special network device called a tap. This device
is placed on the network link (no matter the physical technology used) and copies all the
packets to the special device. With this approach, copying the traffic does not affect the
monitored network itself; accessing all packets transferred over the tapped links is possible.
The disadvantage is that special tapping devices must be put inside the network.

Capturing the Data

After having access to network packets gathered either by software or hardware copying,
it is necessary to capture the data [144]. The most popular library used to capture and
process packets from the network is libpcap2. It provides a platform-independent API
for capturing and filtering packets and can be used with various programming languages,
including C, C++, and Python. Libpcap also allows storing data for future processing by
using the PCAP format. PCAP (short for packet capture) is a binary format that stores
all packet data together with arrival timestamps and the length of each packet.

2https://www.tcpdump.org/

17

port mirroring hardware tap software tapping

Figure 2.6: Three most common ways of accessing the network packets. With software
tapping, it is possible to access packets on end devices. With port mirroring, the packets
are copied on network devices, and with hardware taps, packets are copied directly from

the physical links.

Parsing the Packets

To understand packets that are stored in a binary format, it is necessary to recognize the
structure of the packets and extract relevant information. For packet recognition, a protocol
parser is used. A protocol parser is a software module that analyzes the contents of a packet
based on its protocol. It extracts data from the packet header and payload and interprets it
according to the protocol specification, allowing for the meaningful analysis of the packet.
As the packets consist of multiple encapsulated protocols, the parser needs to parse all of
them. Because each protocol differs, the protocol parser must contain specifications for
hundreds or thousands of protocols to support all the protocol packets. Many research
activities also focus on the problem of creating new protocol parsers, so if the parser for
the required protocol is not available, it is possible to create a new one [42, 40, 11, 126].

Packets Data Analysis

After analyzing the packets, the data can be used for various purposes, such as troubleshoot-
ing network issues, optimizing network performance, or detecting network security threats.
For example, packet analysis can help identify network bottlenecks or configuration errors,
improving network performance. It can also help detect and isolate malicious traffic or
unusual network activity, allowing faster response to potential security incidents. Addition-
ally, packet analysis can assist in compliance monitoring and audits and provide insights
into network usage and application behavior.

Wireshark is an example of a tool that can capture, parse and analyze data. Wire-
shark provides a user-friendly interface for viewing and filtering packet captures and sup-
ports many protocols and network interfaces. A command-line version of Wireshark called
TShark exists that provides the same functionality and is more suitable for pipelines with
automatic processing. Although Wireshark understands application error codes and some
TCP errors, Wireshark is not a perfect tool for diagnostics as it is missing complex diag-
nostics functions [89].

18

2.4 Network Diagnostics
Computer network diagnostics is a central aspect of network management [69]. It is a pro-
cess of identifying and resolving problems within a computer network. An example of such
a problem can be slow connectivity, unavailable service, or malware inside a network. Net-
work diagnostics history started in 1967 when a Mechanical Failure Prevention Group was
formed that focused on hardware errors on network devices [94]. Network diagnostics aims
to ensure that the network is functioning optimally. When there is a problem, the diagnos-
tics must resolve it quickly and efficiently. Because the correct functionality of computer
networks is critical, administrators must pay adequate attention to network diagnostics.
Diagnostic is used in various areas where computer networks are utilized: IoT [73, 47, 89,
112, 56], automotive industry [9], mobile networks [98, 20], data centers [141, 125, 81, 145,
119], home networks [58, 19, 109], Internet sites [21, 59], virtual machines [131], application
microservices [120, 17], software errors [14, 35, 146, 138], network links [93, 108, 52, 71,
78], IPTV [75, 80], transportation [91], or security [72, 29, 90]. Several types of people do
network diagnostics: technical support operators, engineers managing servers and services,
and network designers [68]. In this work, we do not distinguish these roles; when using the
term administrator, we mean any of these roles.

Before continuing with describing the network diagnostics, it is essential to understand
the basic terminology [69, 33, 106]:

• Event - An exceptional condition that occurred within the managed network.

• Faults (or root causes) - The type of events that can cause other events.

• Error (or failure) - consequence of a fault. However, not each fault needs to cause
an error. The error refers to a problem in the network that affects its performance,
reliability, or availability.

• Symptom - A symptom refers to the external manifestations of errors, which can
either be directly observed as the errors themselves or be indicated by externally
visible signals that an error has occurred. The latter can, for example, include alarms
raised by anomaly detectors.

• Root Cause Analysis - Also used by the abbreviation RCA is a process used to iden-
tify an error’s underlying cause(s).

2.4.1 Importance of Network Diagnostic

Network diagnostics is important because network errors are inevitable [69, 118]. From the
downtime statistics of several cloud services [38], we can see that one hour of an outage
caused by an error can cost up to 336,000 USD. Of course, this cost is valid for large
service providers with many customers, and therefore, the cost of downtime for smaller and
more common networks would be much lower. At the same time as having costly errors,
more organizations in all industry sectors recognize they are evolving into technology and
data companies [106]. By identifying and addressing issues early on, network diagnostics
can prevent more severe and costly problems from occurring later. Additionally, network
diagnostics can also help optimize network performance, resulting in cost savings through
more efficient use of network resources. These facts lead to the fact that network diagnostics
cannot be underestimated.

19

Network diagnostics is not an easy task to do [7, 69]. As mentioned in previous sections,
a huge variety of errors may happen inside the networks. As networks become more complex
and diverse with the advent of new technologies and types of devices, diagnosing and
fixing issues becomes more challenging. Additionally, the increasing use of cloud-based
and virtualized infrastructures further complicates the diagnostic process, as it becomes
harder to determine the root cause of issues across disparate systems and environments.
Furthermore, the large volume of data generated by modern networks makes it difficult
to identify patterns and trends that could indicate underlying issues. All these factors
make network diagnostics a continually evolving and challenging field. Figure 2.7 shows
a chart representing the time required to solve one error by an administrator. The chart
was made based on a survey in which 58 administrators of various network sizes were
included [139].

<5 min
2%

5-30 min
3%

30 min-1 h
23%

1-5 h
32%

> 5h
40%

<5 min 5-30 min 30 min-1 h 1-5 h > 5h

Figure 2.7: Time consumed to solve one error by an administrator.

Performing diagnostics requires a deep understanding of network protocols, tools, and
technologies. It involves analyzing and interpreting various data to find the source of errors.
Additionally, errors may not constantly occur in the same place, making it challenging
to find the exact location and source of the fault. In some cases, the error may result from
a combination of factors, making it even more challenging to isolate the problem. Without
sufficient knowledge and experience, diagnosing and resolving network problems can be
challenging. The complexity of networks, the advent of new technologies, and even other
problems not mentioned here lead to a situation where network diagnostics is still an open
research problem.

2.4.2 Errors in Computer Networks

The network diagnostics focus on errors, primarily trying to find a way to eliminate them.
Therefore, it is necessary to understand what those errors are, what they may cause, and
what sources of errors exist. Several types of errors can occur in computer networks [7]:

1. Availability errors - These errors occur when a resource, like a device, service,
or link, is unavailable or has inconsistent behavior (e.g., frequent disconnections or
dropouts) [108, 57, 146, 28]. These errors prevent users from accessing and using the
services of those resources. An example can be when a user cannot visit a specific
web page.

20

2. Performance errors – Network resources are not just up and down but also can
have performance issues [12, 10, 19, 78, 109]. The performance issue means a resource
is overutilized or experiencing bottlenecks, resulting in slow or degraded performance.

3. Security errors – In this case, users can typically access the resources with an ex-
pected performance (although some security errors can co-occur with other availability
or performance errors). However, the resources may be compromised or attacked, re-
sulting in data breaches [103, 104, 25, 101]. An example of such an error is malware
infection spreading inside the network [90].

All these types of errors can cause a variety of damages. When a service is unavailable
or has decreased performance, it may lead to a loss of productivity or revenue. Some errors
can create vulnerabilities that hackers can exploit to gain unauthorized access to a system
or network. This may lead to data leaks, espionage, or loss of data.

device
malfunction

congestion
hardware

link
bit error

collision

attack

misbehavior
high load

user

bug

configurationsoftware

compatibility

code

deployment

source of
an error

protocol

Figure 2.8: Classification of errors based on their sources.

Network diagnostic is challenging because an error may appear from many sources.
The error can be created by pulling out the wrong cable, applying a new configuration
to the network firewall, or with a bug in the application code. The following text describes
the complete classification that can also be seen in Figure 2.8:

1. Software – These errors are caused by software, like user applications or network
device operating systems.

(a) Bug – These errors are related to an application not being implemented as ex-
pected (by users or standards). It is often hard to fix these errors as applications
are usually not developed by companies running them.

i. Code – Even if an application is well designed and tested, a bug may hap-
pen anytime, resulting in an application crash or unpredictable behavior.
For example, there can be a segmentation fault when processing input data
or an unexpected sequence of valid requests.

ii. Protocol – When two different applications communicate, they must use
a network protocol to understand each other. They are usually well-defined
and implemented, but with new protocols, some misunderstanding may ap-
pear as each application can understand some protocol details differently,
resulting in communication failures between devices.

21

(b) Deployment – Besides a correct implementation, an application must be set
up to work correctly. However, many applications have a lot of parameters and
complicated configurations, which can be hard to manage.

i. Configuration – These errors occur when there is a problem with the net-
work or application configuration problem, such as incorrect IP addresses or
DNS configuration. An application or network device may not work as ex-
pected with an incorrect configuration. For example, the user may not access
a specific website.

ii. Compatibility – These errors occur with applications that have been used
for a very long time, and during that time, new versions have been released.
As new versions bring new features and replace the old ones, the new versions
may not correctly handle requests made initially for older versions.

2. Hardware – These errors are caused by elements not caused by the wrong software.

(a) Device – These include end-user devices like computers, servers, or phones,
network devices such as routers or switches, and middleboxes like firewalls or
load balancers.

i. Malfunction - A malfunction of a network device can occur due to various
reasons such as high temperature, high humidity, power fluctuations, and
physical damage to the device.

ii. Congestion - Congestion occurs when the network becomes saturated with
traffic, causing delays, packet loss, and degraded network performance.

(b) Link - These errors occur when data is transmitted over the network links (both
wired and wireless).

i. Collision - Collisions occur when two or more devices simultaneously at-
tempt to transmit data over the same link. This can result in the loss of data
packets.

ii. Bit error – These errors occur when a bit in a data packet is corrupted
during transmission. Issues with the transmission medium, interference,
signal attenuation, or loss of synchronization can cause this.

3. User – Errors in this section are caused not by technical elements but by humans.

(a) Attack – This includes errors when someone tries to attack network resources
on purpose. Attacks include both manual and automatic attacks made by mal-
ware, for example.

(b) Misbehavior – Users can inadvertently cause errors by performing actions that
are not allowed or failing to follow proper procedures, such as running warez
software that causes a DoS attack on an internal server.

(c) High load – Even when users use everything as they should, an error may occur.
When many users download huge files simultaneously, the network traffic may
exceed its capacity and cause delays, packet loss, or other errors.

2.4.3 Steps of Network Diagnostics

Network diagnostics can be performed manually or using automated tools and involve both
hardware and software components of the network. All these approaches involve using vari-
ous techniques to identify and troubleshoot network issues. Identifying and troubleshooting

22

issues helps administrators find the underlying causes of problems, determine what factors
are contributing to the problem, and help fix the issues and restore the network’s func-
tionality. Additionally, diagnostics can help administrators to identify potential risks and
vulnerabilities in the network, enabling them to proactively address these issues and prevent
them from causing future problems.

Both manually and automatically performed diagnostics involves detecting and ana-
lyzing errors in a network to determine the cause and location of the issue and then
implementing corrective measures to resolve the problem. During the whole process, it
is necessary to define how the diagnostics should have access to the data it will analyze.
The options and techniques for collecting the data were already described in the previ-
ous section, “Network Monitoring”. The process is usually defined as three independent
steps [99, 69]:

1. Error detection – The first step identifies whether an error has occurred. This
process involves recognizing an issue with the network or application performance.
Many times, errors are detected directly by end-users.

2. Error localization (or root cause analysis) - Once an error is detected, error local-
ization is used to find the location or source of an error, such as a network segment,
specific device, or application. The goal of error localization is to narrow down the
scope of the problem so that corrective action can be taken more quickly and effec-
tively.

3. Error correction – The correction tries to fix the detected error to restore the ex-
pected functionality. Fixing can involve various actions, such as reconfiguring network
settings, replacing faulty hardware components, updating software or firmware, or ap-
plying patches or security fixes. The goal is to eliminate the underlying cause of the
error and ensure that the network is functioning correctly.

This dissertation thesis focuses on the first two diagnostic steps – error detection and
localization. These two steps can further be executed in the following substeps (the de-
scription is similar to description of analyzing network packets in the subsection 2.3.1):

1. Top-level analysis: This involves looking at the network as a whole and identifying
any significant issues or areas that require further investigation.

2. Automatic tools: Once the top-level analysis is complete, automatic tools can
gather more detailed information about specific areas of the network. These tools
can help to identify specific problems and provide detailed data for further analy-
sis. For example, by analyzing all SNMP messages, the tool may conclude that the
problem is with the user’s authentication.

3. In-depth analysis: Network diagnostics often involve a more in-depth analysis of the
data collected in the previous steps. This analysis can involve manual analysis of log
files, packet captures, or other data sources to identify the root cause of the problem
and develop a plan for correction.

Usually, the root cause analysis starts with step one (top-level analysis) and continues
with the next steps. However, each of these steps is optional. Based on the administrator’s
experience, some steps can be avoided or repeated multiple times until errors are fully
diagnosed and resolved.

23

2.4.4 Automatic Diagnostic Tool

With the current complexity of network diagnostics, it is no longer possible to do the diag-
nostics manually, but it requires a higher level of automation [106]. Automatic diagnostic
tools can support the administrator with the knowledge that he or she may not know.
Because the complexity of networks is very high, the administrator may not have enough
knowledge to locate the problem. Another benefit is speeding up the whole diagnostic
process [142]. Even if the administrator has the required knowledge, sometimes finding
the correct cause of the error is very time-consuming. Therefore, even if the administrator
is not reliant on such a tool, it is still helpful because the administrator spends less time
diagnosing the problem. Reducing the time and the knowledge required by administrators
helps organizations with operational costs [99].

An automatic diagnostic tool is designed to help network administrators and technicians
identify errors affecting network performance, availability, and security. The tools usually do
not cover all steps of the diagnostic process. The goal of tools that focus on error detection
is to find unusual activities or states inside the network [100, 120, 64, 79, 18, 83, 54, 63,
109]. These tools are often called anomaly detection systems [83, 24, 16, 72, 82]. Another
set of tools focuses on error localization. These tools aim to provide a comprehensive view
of network errors so that administrators can resolve errors quickly and effectively. The error
correction tools are focused tools that can directly interact with monitored infrastructure
and fix errors so the administrator can only verify the results [127, 50]. This dissertation
thesis focuses on automatic tools that deal with error localization, and the rest of this
chapter covers only these types of tools.

As already mentioned, automatic tools aim to provide important and valuable informa-
tion to administrators to help them diagnose errors [100, 69]. To be able to do this, the
knowledge that imitates the knowledge of a human required to do the analysis needs to be
integrated into the automatic tools. The knowledge can be either surface (from experience)
or deep (from understanding the system behavior) [69]. In addition to the knowledge base,
the tools also require access to the input data and sometimes additional input information
(or parameters) from administrators. The existing solutions are not ideal because they
often do not fulfill all the requirements expected by administrators.

There are several types of requirements placed for a diagnostic system:

1. Capabilities – The ideal system should be able to detect, identify and correct each
error. However, this is not always possible as a passive-based system cannot interact
with monitored networks, and therefore, it is impossible to execute correction steps
to fix errors. The system should be able to work with known and unknown errors,
as it is not always easy to specify all possible errors while building the system [64,
34, 72]. The last important capability is that in addition to modeling the knowledge
required for diagnostics, the system must specify how to work and process the input
data, as this aspect is sometimes ignored [133, 34].

2. Maximum autonomy – Another aspect of the diagnostic system is automatically
diagnosing errors with minimum user interactions [100, 32, 105] and changes made
to the monitored networks [4, 115, 48]. The system should only work with provided
data without having access to historical (training) data [6, 113, 89, 54] and access
to active actions [1, 12, 3, 39]. The system should also work without the necessity
of implementing new protocols [141], new applications for the monitored devices [1],

24

or without needed access to other devices and networks to perform the diagnostics [31,
58, 131, 57].

3. Variety types of errors – A diagnostic system must not focus on a single type
of error [106, 127, 65, 130]. Ideally, all types of errors must be supported, no matter
where they are located (like end stations, middleboxes, or network devices) [92, 67],
and all TCP layers must be covered [142, 69]. The system should be able to distinguish
unusual situations but does not need to be a problem [58]. Diagnosing techniques
must not be focused on a single type of network [54]. All types of networks must be
supported, for example, Internet service providers, data centers [141, 125, 81, 145,
119], industrial networks [22, 74, 5, 89, 112], home networks [58, 19], or enterprise.

4. Good knowledge representation – In a real-world environment, diagnostic sys-
tems often fail with how the system works with the knowledge base and how the
outputs are linked to this knowledge [15]. For example, no matter what the result
of the system is, results always need to be justifiable. Administrators need to know
how the system came to such a result, what it means, and how to use that informa-
tion [106]. If the knowledge base is incomplete, administrators must be able to update
it easily – add support for new errors or replace descriptions of inaccurate errors. It
is also essential that the system produces the same results for the same errors and
input data and that the behavior is not random.

2.4.5 Classification of Diagnostic Techniques

Network diagnostics lacks a single universal technique due to the variety of network environ-
ments and the complexity involved. The choice of diagnostic technique depends on the spe-
cific requirements, the complexity of the network, the resources available, and the desired
level of accuracy in diagnosing and resolving network problems. For example, sometimes it
is impossible to use an active approach, and only passive methods are available. Another
example is when diagnostics are only possible from application log files. In this section, we
provide a classification of diagnostic techniques based on several criteria. It is important to
note that even though some techniques may be used more than others, the best technique
is never in any of these selected criteria. In reality, diagnostic tools often combine several
techniques, such as working with multiple data types simultaneously.

Troubleshooting
methods

Active methods Hybrid methods Passive methods

Traditional tool-based
methods

Methods without
traditional tool

utilization

Rule-based methods Machine learning-
based methods

Coefficient-based
methods

Figure 2.9: Classification of troubleshooting approaches as given in [117].

Several papers put some hierarchy into the classification criteria [69, 117]. Figure 2.9
shows an example of such a hierarchy. In most cases, however, these hierarchies do not
make sense. The figure shows that passive methods can be further classified into rule-based
methods. However, active and hybrid methods can also be rule-based. For this reason,

25

the criteria in this section are not organized hierarchically as in other papers. Instead,
the N-dimensional approach is used, where one class is assigned from each dimension,
resulting in N independent classes. The classification criteria for network diagnosis and
troubleshooting methods include various factors such as knowledge base, extensibility, data
sources, working with training data, impact on the monitored network, automation capa-
bilities, execution location, error types, implementation algorithms, use cases, cooperation,
diagnosis time, and diagnosis steps. Few existing techniques are then evaluated against
these criteria.

Data Sources

The most important factor distinguishing different diagnostic methods is the type of data
they are working with. The most common data types are log files and network packets. It is
also widespread that the methods are doing a fusion of information - combining information
of different types to perform diagnostics. The following Table 2.1 shows which data types
are papers that were analyzed in this thesis using.

Log files

Network packets

Network flows

Alarm
s

Syslog m
essages

SNMP

Resource utilization

System
 traces

Routing protocols

Device configuration

Perform
ance infopapers (references)

1, 20, 23, 39, 44,
47, 56, 77, 106, 115

x

10
29
30
41

48, 67
54, 72

75
83

84, 102
87
93

96, 136
101
135

x x x
x x

x
x

x
x

xx
x

x
xx
xxxxx

xx x
x x x x

x

x x

Source codes

120 x x

Table 2.1: Classification of analyzed papers based on data sources the papers are using.

Implementation Algorithms

The second most important attribute that categorizes each diagnostic method is the used
implementation for the inference model. A previously published paper by Solé Marc et al.
titled ”Survey on models and techniques for root-cause analysis“ [106] provides an exem-
plary analysis of different diagnostic models, categorizes them, elucidates the learning algo-
rithms employed, and presents an assessment of their complexity. Given the thoroughness
and quality of their work, the reference to their paper is used for the classification of re-
lated work in this category. Figure 2.10, sourced from their publication, visually presents
a selection of widely recognized models in this field.

26

4

D
e
te

rm
in

is
ti

c

Logic

P
ro

b
a
b
il

is
ti

c

Compiled

Classifier

Bayesian

Process Model

Propositional
Logic

First Order
Logic

Abductive
Logic

Program

Fault Tree

Fuzzy Logic

Non-axiomatic
Logic

Possibilistic
Logic

Dempster-
Shafer
Theory

Fuzzy
Fault
Tree

Codebook

Decision
Tree

SVM

Neural Net

Bayesian
Network

Probabilistic
Relational
Model

Markov
Logic

Network Arithmetic
Circuit

Bayesian
Abductive

Logic
Program

Sum-Product
Network

Relational
Sum-Product
Network

Hidden
Markov
Model

Dynamic
Bayesian
Network

Automaton

Petri Net

Stochastic
DES

Stochastic
Petri Net

Fig. 2. Classification of RCA models. Directed edges indicate possible conversions between models.

Naı̈ve Bayes Bipartite Polytrees General

Fig. 3. Hierarchy of Bayesian Network models with an example of each
class. Black nodes represent causes, white nodes are symptoms and grey nodes
represent nodes that are neither causes or symptoms. These subclasses have
been historically important for diagnosis, for instance, a bipartite BN, the
QMR-DT [21] network, was used as expert system for medical diagnosis. Note
that, for clarity, not all BN subtypes relevant for diagnosis are represented, for
instance BN3M networks [22] are general BN with three layers and BN2O
[23] are Bipartite BN in which cause-symptom relations are modeled using a
noisy-OR canonical model.

Although classifiers are attractive specially because their

automatic generation has been one of the key researched topics

in Machine Learning, they do not dominate the RCA area.

Some of the reasons that can help explain this effect are that

the majority of the most advanced classifiers, like Neural Nets,

(i) only return a predicted root cause and it is difficult to obtain

an explanation from them. (ii) Do not yield logical rules, and

such approaches are difficult to combine with available domain

knowledge, although not impossible [67]. (iii) They are usually

tailored for single label classification, which would correspond

to a single fault diagnosis task. If multiple-fault diagnosis has

to be achieved, then a selection strategy has to be implemented

to generate the set of faults out of a multi-class classifier (e.g.,

like taking all labels above a defined threshold) or work with

multi-label classifiers (see [68] for a good survey on the area).

Using a table to create a taxonomy of RCA models is helpful

to mentally order the landscape of available models, but hides

the fact that relationships between models are not as clean

as they might seem. For instance, codebooks [33], [34] can

be seen as a particular implementation of propositional logic,

TABLE I
MODELS FOR RCA

Family Technique Implementation Used for
diagnosis

Deterministic Logic Propositional Logic (rule sets) [24], [25]
First-order Logic [26], [27]
Fault Tree [28], [29]
Abductive Logic Programs [30]–[32]

Compiled Codebooks [33], [34]
Classifier Decision Tree [35]

SVM [36], [37]
Neural Net [38], [39]

Process Automata/FSM [40]
Model Petri Nets [41], [42]

Probabilistic Logic Fuzzy Logic [43], [44]
Dempster-Shafer theory [45]
Fuzzy Fault Tree [46], [47]
Possibilistic Logic [48] [49]
Non-axiomatic Logic [50]

Bayesian Bayesian Networks
Naı̈ve Bayes [51]
Bipartite [21]
Polytree ?
General [39], [52]

Probabilistic Relational Models [53]
Bayesian Abductive Logic Programs [29]
Markov Logic Networks [32], [54]
Sum-Product Networks ?
Relational Sum-Product Networks [55]
Dynamic Bayesian Networks [56], [57]
Hidden Markov Models [58], [59]

Compiled Arithmetic Circuits [60]
Classifier Bayesian MSVM [61], LS-WSVM [62]

Probabilistic Neural Net [63], [64]
Process Stochastic DES [65]
Model Stochastic Petri Nets [66]

as they are basically a way to precompute the inference on

top of a graph by generating sets of rules that can be quickly

checked using a mechanism such as hash tables. Similarly, we

have established a distinction between models able to diagnose

situations in which time of observation of symptoms is not

relevant for inference, and process models which explicitly

consider the sequence of observations. However, there are

process models that are Bayesian approaches as well, like

Dynamic Bayesian Networks or Hidden Markov Models.

These relationships can be better appreciated in the diagram

of Figure 2.

If domain knowledge is provided in a given model, but

Figure 2.10: Classification of interference models used for diagnostics [106].

It is very important to notice that even when machine learning classifiers are an at-
tractive topic (both in research and among administrators), they do not dominate the area
of diagnostic errors. As correctly stated in the mentioned paper, machine learning algo-
rithms only return a result (for example, what is wrong) without any additional explanation.
Another problem is that because these techniques are not based on logical rules, it is very
hard to integrate the domain knowledge of expert users into the final models.

Affecting Monitored Network

Another important criterion for differentiating diagnostic methods lies in determining whe-
ther the method imposes additional traffic on the network being monitored. This criterion
serves as a crucial factor in evaluating the impact and feasibility of various diagnostic
approaches.

The following options are available:

1. Passive - These methods do not create additional traffic and work only with already
available data [129, 140, 87, 23].

2. Active - The methods send artificial traffic into the network to gather diagnostics
data. This traffic is then either captured and analyzed in different network locations,
or the traffic causes network devices to send answers that can be later analyzed. In
addition to the complex diagnostic methods [73, 43, 105, 4, 93, 12, 3, 71, 114], this
category includes traditional tools like ping, traceroute, or tcpdump.

3. Hybrid - This category contains methods that combine passive and active approaches
into one solution. The benefit of the combination can either be the possibility to ex-
tend the information available from the passive approach by actively gathering ad-
ditional information [105, 115, 49], or the benefit can be that the errors that are
detected by the passive approach can be localized with active traffic [48, 39].

27

Knowledge Base

In order to diagnose network errors, diagnostic methods utilize a knowledge base that
outlines troubleshooting procedures for specific errors. The depth of this knowledge base
can vary. Methods with a deep knowledge base possess a comprehensive understanding
of network protocols and operations [76, 105, 65]. In the event of an error, they can
dive into the complexities and identify the root cause for effective resolution. On the
contrary, methods with a shallow knowledge base lack the underlying understanding of
why errors occur. Their knowledge is primarily based on past experiences [22, 74, 77, 99,
87, 136]. For instance, if the method determines that a specific error with a DNS server is
due to misconfiguration, it will consistently provide this solution for similar errors in the
future. Building knowledge bases from past experiences is relatively simpler, as it involves
providing solved examples rather than comprehending the underlying details. However,
methods relying on shallow knowledge may yield inaccurate results as they lack a deep
understanding. Additionally, models based on past experiences may struggle to effectively
address new, previously unseen errors.

Extendability

Some methods have a closed knowledge base that is very hard to extend, usually only
by changing the source code. This closed approach has a disadvantage that an administrator
is unable to extend, as a typical network administrator is usually not a programmer [75,
60, 61, 80]. The second method category has an open knowledge base that can be easily
extendable to cover new errors. The extensibility can have the form of allowing a new set
of rules in a user-friendly format [20, 76] or the form of providing sample traces [90].

Working with Training Data

Another classification criterion is whether or not training data that contains errors that
will be diagnosed in the future will need to be provided. Providing this data can often
be problematic or impossible. For example, some failures may be difficult to simulate in
order to create a training data snapshot for learning diagnostic methods. Three categories
exist:

• No data at all - Methods like static rule sets are created manually by experts with
domain knowledge [134, 32]. To cover a specific error, an expert needs only to describe
how the problem will be detected and diagnosed. The benefit is that diagnosing
errors that have never happened before is possible. The disadvantage is that domain
expertise is required.

• Using data during development - Methods of this type require data only once when
the methods are being developed [110, 63, 53]. The result of the deployment phase
is a generic model, which is then deployed in different network configurations. The
disadvantage of the generic and universal models is that models do not respect and
adapt to individual networks. The advantage is that there are lower requirements for
domain knowledge, however, at the cost that data samples must be provided.

• Using data during deployment - Sometimes, using a pre-created generic model is
impossible. Instead, the model must be created after the diagnostic method has been

28

deployed into the monitored network [74, 64, 72]. For example, when detecting a per-
formance issue, it is necessary to know the typical performance in the network. The
advantage is that the detections are made based on specific network configurations.
However, at the cost of some time before the diagnostic method can start work - either
a specific situation must occur inside the monitored network, or a minimum amount
of data must be processed.

Automation

From the user’s perspective, a very important classification criterion is the level of automa-
tion. Some of the methods are fully automatic. They have been developed so that during
the monitoring network deployment, administrators are just getting the results without any
user input [131, 97]. Other methods are semi-automatic and require some degree of user
interaction. The word semi means that the methods are mainly fully automatic. However,
there are some moments when they require manual user input. For example, methods
may require the user to manually mark the input data, so the method can learn how
to analyze the network [2, 55, 21, 89, 1, 53]. Another possibility is that the method asks
users to answer questions either during the learning phase [34] or during the diagnostic
process [100, 32, 105, 58].

Location of Execution

Network diagnostics can be executed at various points within a computer network. Here
are some typical locations where network diagnostics can be performed:

1. Central server - Data required for diagnostics (e.g., log files or NetFlow records)
are sent to a separate machine where the diagnostic process is executed [57, 95, 79].
This is the most common variant because the process is not affecting the monitored
network, and it is easy to gather the data from multiple locations.

2. Cloud - Similar to the previous variant, but in this case, the diagnostic process
is executed outside the monitored network in the external cloud environment [131,
41, 128]. Because the cloud can have more resources, implementing the diagnostic
process can have higher performance demand. The most significant disadvantage is
that sending data outside of the monitored network can lead to a leakage of sensitive
information.

3. Network device - Some diagnostic activities can be directly executed on network
devices, e.g., routers [109]. In reality, performing the diagnostic process directly on
network devices can negatively affect the performance of the primary device activities
like routing packets. Therefore, this option is barely deployed in real networks.

4. End device - The benefit of diagnosing directly on end devices is that transferring
data for diagnostics to any other device is unnecessary as they are already available
where the diagnostic is happening. In addition to regular computers [58], methods
can also work on mobile phones [135].

Error Types

Diagnostic methods can be categorized according to the specific types of errors they are
designed to detect [117]. Depending on their focus, certain methods specialize in diag-

29

nosing availability errors [7], and performance errors [86], while others target security
issues [103, 104] or application errors [55]. This classification allows for more targeted and
efficient troubleshooting, as different diagnostic methods address distinct aspects of network
functionality and can provide valuable insights into specific error types. By tailoring the di-
agnostic approach to the specific error domain, methods can effectively pinpoint and resolve
issues, ensuring optimal network performance, security, and application functionality.

Use-cases

Diagnostic methods can be specialized, targeting single specific use-cases such as de-
tecting changes in Internet paths using BGP protocol [49], detecting problems in IoT net-
works [47, 22, 74], or identifying congestion issues within TCP protocol [102, 85, 124, 65].
Conversely, there are also versatile methods that serve multiple purposes and ex-
hibit adaptability across various scenarios [76, 133, 96]. These multifunctional diagnostic
approaches possess the flexibility to address a wide range of network challenges, provid-
ing comprehensive insights and actionable information for diverse network conditions and
requirements.

Cooperation

Diagnostic methods can operate individually in isolation [121, 26, 91] or in collabora-
tion. The collaboration can be based on the communication between multiple instances of
the method or on the communication with a central server. Collaboration can expand the
knowledge base by merging knowledge from diverse sources [1], or it is possible to use com-
munication channels for detecting anomalies and problems [60, 19, 57]. However comparing
with methods that work in isolation, the collaboration requires functional communication
with others even when an error occurs.

Time of Diagnostics

Usually, the diagnostic process starts when an error is detected. The error is then analyzed
and solved to restore the standard network functionality. Methods that work this way are
reactive [72, 80, 10]. On the other hand, there are some scenarios when it is possible
to troubleshoot a problem before it leads to an error causing availability or performance
issues. For example, when the translation time of the DNS server starts to increase, it is
possible to check the server’s utilization or utilization of network links and devices even be-
fore the users notice a worse user experience. The methods that can diagnose a problem
before it starts to cause errors are called proactive [52, 3, 61].

Diagnostic Steps

Diagnostic methods typically do not include all the diagnostic steps (outlined in sec-
tion 2.4.3) but focus only on the first one or first two of the three steps:

1. Detection: These methods primarily focus on detecting errors within a network.
Their main objective is to identify the presence of any anomalies, deviations, or issues
that might be affecting the network’s performance or functionality. By monitoring
various network parameters, traffic patterns, or system behavior, these methods can
recognize the existence of errors [100, 129, 120, 109].

30

2. Localization: In addition to error detection, certain diagnostic methods go a step
further and aim to localize the source of the detected errors. By leveraging advanced
techniques such as packet analysis, path tracing, or network topology mapping, these
methods are trying to find a location or component within the network infrastructure
where the errors originate. This localization helps narrow down the troubleshooting
process and facilitates targeted corrective actions [73, 81].

3. Correction: Error recovery represents the most difficult phase of the diagnostic pro-
cess. While many diagnostic methods excel at error detection and localization, only
a select few can calculate and suggest recovery options to rectify the localized errors.
These advanced methods identify the source of the errors and propose potential solu-
tions or mitigation strategies to restore the network’s normal operation. This involves
evaluating alternative configurations, rerouting network traffic, adjusting settings, or
implementing corrective measures at the identified error source [127, 50].

Focusing only on a subset of steps allows us to use more specialized approaches and
algorithms that, for example, may work great for error detection but not very well for error
correction. In some cases, it makes sense to combine several independent works into one
larger solution in which one work is focused on error detection, and the detected errors are
then sent to another work that will try to localize those errors.

Assigning top 5 cited papers from this thesis according to the specified criteria

To demonstrate how the N-dimensional approach can be used, the top 5 cited papers used
in this thesis have been selected and classified in Table 2.2.

31

Paper Towards
Highly
Reliable
Enterprise
Network
Services [10]

Failure Di-
agnosis Us-
ing Decision
Trees [21]

SherLog:
Error Di-
agnosis by
Connecting
Clues from
Run-time
Logs [138]

Event-Tree
Analy-
sis Using
Binary De-
cision Dia-
grams [5]

NEVER-
MIND, the
Problem
Is Already
Fixed [52]

Data
sources

packets,
traceroute
measure-
ments,
configura-
tion files

log files log files,
source code

(paper do
not focus
on this)

resource
utilization

Implemen-
tation

probabilis-
tic inference
graph

determinis-
tic, decision
trees

determinis-
tic, infer-
ence model

determinis-
tic, decision
tree

determinis-
tic, infer-
ence model

Affecting
monitored
network

yes, hybrid no no no no

Knowledge
base

shallow shallow shallow deep shallow

Extendible no no yes yes yes
Using train-
ing data

yes yes no no yes

Automation fully auto-
matic

semi, user
needs to
label input
data

fully au-
tomatic or
semi auto-
matic

fully auto-
matic

fully auto-
matic

Location
of execution

central
server

central
server

end devices (paper do
not focus
on this)

central
server

Error types availability
and perfor-
mance

availability
and appli-
cation

application any perfor-
mance

Use-cases single, en-
terprise net-
works

single, in-
ternet sites

single, soft-
ware

multiple,
universal
approach

single, DSL
lines

Cooperation no no no no no
Time of di-
agnostics

reactive reactive reactive reactive proactive

Diagnostic
steps

detection
and local-
ization

localization localization detection
and local-
ization

detection
and local-
ization

Table 2.2: Classification of top 5 cited papers used in this thesis according to the
N-dimensinal approach.

32

Chapter 3

Research Summary

This chapter summarizes the research contribution of the thesis. Six different methods
for network error detection are presented. While each method focuses on detecting ap-
plications and network errors by analyzing network communication, they differ by theory
applied, complexity, and outcomes. In a system-wide view, these methods can be consid-
ered complementary. However, they overlap in the set of possible diagnosed types of errors,
which can be used to collaborate evidence found and provide richer information about the
error detected. Figure 3.1 shows all methods described in this work, that are grouped based
on the approach.

research areas

rule-based

automata-based

typo errors

funnel visual filtering

3.4 Reusing previous diagnostics

3.5 End-users data errors

3.6 Top-Level visual analysis

3.1 Simulating administrator's steps

3.2 Looking for security events

3.3 Simulating chart analysis

Figure 3.1: Research areas and diagnostic methods on which this dissertation thesis
focuses. Numbers in front of methods represent the numbering of sections.

The first three methods are rule-based, requiring one to specify or infer these rules
in advance. While this requires a substantial manual effort to define and refine the rules,
the advantage is the explainability of this approach. Providing a comprehensive descrip-
tion of the problem found is valuable for network operators. Moreover, in many cases,
the description may also contain evidence, particularly a trace of network communication
for further analysis or reproduction of the problem.

The fourth method can learn automatically from examples to construct expected and
erroneous communication models. The method employs finite automata to describe correct
and wrong communication traces from provided communication samples. The long process
of manual rule definition is replaced by automatic model construction. The experiments
suggest that only a few samples are required for a reliable model.

The fifth method uses a dictionary with all the identifiers (such as email addresses)
used inside the monitored network. Based on this dictionary, the method can recognize
a typographical error (or just typo) that the network’s end-users have made. In addition
to just detecting a typo error, the method also proposes a correction candidate. The pro-

33

posed algorithm uses a heuristic to score possible candidates based on probability. The
evaluation shows that this approach is helpful for identifiers from the application layer.

Despite the immense efforts in workflow automation, most of the work still relies on man-
ual data exploration and analytical insights by domain specialists. The last, sixth method
describes the tool that supports the analytical work of network and security operators. We
present the filtering funnel metaphor for exploring packet capture (PCAP) files by visu-
alizing linked filter steps. We have created PCAPFunnel, a novel tool that improves the
user experience and speeds up packet capture data analysis. The tool provides an overview
of communication, intuitive data filtering, and details of individual network nodes and
connections between them.

The following sections describe all the new proposed diagnostic methods. All the meth-
ods were implemented as software prototypes. Several experiments with artificial traffic and
real captured traffic have been performed. Using the created prototypes makes it possible
to identify several non-trivial errors. In addition to software prototypes, the first method
was implemented inside the commercial network monitoring solution.

3.1 Rule-based Diagnostic Decision Tree
The first method was designed to create an easily maintainable database of network prob-
lems that can be used to simulate real network administrators’ actions. The database must
be specified by rules that are easily understandable by administrators and at the same time,
the set of rules can be extended to cover new errors. Part of simulating real administrators
is the requirement that the outputs from such a system can be easily trackable.

The decision tree algorithm with a newly developed form of rules has been chosen.
By using the decision trees, it is possible to have if-then-else rules that can be understood
even by people without deep programming skills. The disadvantage is that only predefined
errors can be diagnosed. The decision tree can produce inaccurate conclusions when there
is a new and unknown error. The principles of the method and overview of the system built
from these principles are described in this section.

Using decision trees to detect problems is done by evaluating the predefined conditions
for actual network data until reaching the tree leaf that contains the error, or there are
no more tree nodes to continue with the diagnostic process. The decision tree imitates the
diagnostic process that is done manually by internally answering simple questions, as shown
in Figure 3.2. An administrator tries to find answers to these questions in a predefined order
based on the previous results. In addition to a final conclusion, the tree can also produce
diagnostic output during the tree traversal.

Administrator

Does the PCAP
contain an

SMTP protocol?

Did the user try
to authenticate?Did the server

successfully
welcome the

client? Did the server
return an error

code?NO
...

YES

YES

NO ...

...

Figure 3.2: A simple illustration of a binary decision tree. The administrator diagnoses
a problem by checking questions in the predefined order.

34

The decision tree consists of the following parts:

1. branch nodes describing the search for specific events in the data (for example, user
authentication to the server),

2. leaf nodes describing the root causes of individual problems (for example, incorrect
name or password),

3. a system that connects individual nodes and, based on whether the specific events
were found, continues to pass through the tree.

Each tree node is associated with a rule with a configuration that is easily understand-
able even by administrators without programming skills. If an administrator wants to cover
new problems by a tree, it is only necessary to create appropriate new rules and link them
to existing ones. To make the decision tree more understandable, the tree is split into
several subtrees executed independently. Each subtree represents one protocol for which
the tree contains all the necessary rules. Table 3.1 shows for which protocols the decision
trees were implemented. The table also contains the complexity of the trees represented by
the number of tree nodes and detectable events. A detectable event is a particular situation
that has been detected that can help an administrator with diagnostics.

Protocol Tree nodes Fact finders Events
Success Warning Error

DHCP 24 22 10 9 4
DNS 12 12 8 4 5
FTP 24 10 15 6 7
HTTP 3 3 2 1 1
ICMP 4 2 0 0 4
IMAP 15 8 7 3 9
POP 21 7 5 10 7
SIP 38 22 15 1 8
SLAAC 8 7 1 6 1
SMB 27 25 20 3 5
SMTP 17 13 9 6 9
SSL 2 2 2 0 1
TCP 10 10 0 7 2

Table 3.1: Supported protocols and amount of rules and success, warning, and error
events that describe various protocol behavior situations.

As can be seen from Table 3.1, an event can represent a successful, warning, or error sit-
uation. An example of a successful event is when a client creates a connection with a server.
A warning event can describe a situation that does not need to be problematic, but the
administrator should check it anyway. For example, after the client established the connec-
tion with the server, the client skipped the authentication part and started transferring the
data from the server. Moreover, an error event can represent the situation when the server
refuses to send some data to the client.

When applying the created method to real data, it turned out that the processing takes
a very long time for larger and more complicated inputs and is necessary to optimize this

35

process. This problem was focused on in the paper Using Rule-Based Decision Trees for
Automatic Passive Diagnostics of the Network Problems by creating indexes from input
data and storing them in a separate database. This solution does not affect further data
processing and can be applied to any diagnostic method based on data from TShark.

Another advantage of using an indexed data database is that it allows other data sources
to be involved in the diagnostic process. Specifically, the paper describes the integration
of log file analysis. All log data suitable for diagnostics were indexed and stored in the
database, like data from TShark. Within the decision tree, which was used as a model
describing the diagnostic process, it is possible to make decisions based on data from log
files in the same way as from captured network traffic. However, the article did not cover
the deep analysis of diagnostics from additional data sources because the primary goal
of this dissertation is diagnostics based on captured network traffic.

Figure 3.3: The figure shows a screenshot from the Flowmon Packet Investigator that
contains a list of detected events.

Even if the rule-based approach may look outdated these days when the majority of re-
searchers focus on machine-learning approaches, it was demonstrated that this approach is
usable in real-world scenarios. The tool was integrated into a business product, Flowmon
Packet Investigator, which focuses on diagnosing errors from captured network packets.
The screenshot from the actual product can be seen in Figure 3.3 and Figure 3.4. This idea
with results was also published in two papers:

• Holkovič Martin a Ryšavý Ondřej. Network Diagnostics Using Passive Network Mon-
itoring and Packet Analysis. In: ICNS 2019. The Fifteenth International Conference
on Networking and Services. Athens: The International Academy, Research and In-
dustry Association, 2019, s. 47-51. ISBN 978-1-61208-711-5.

• Holkovič Martin a Ryšavý Ondřej. Using Rule-Based Decision Trees for Automatic
Passive Diagnostics of the Network Problems. International Journal on Advances in
Networks and Services, roč. 2020, č. 1, s. 1-10. ISSN 1942-2644.

36

Figure 3.4: The screenshot from the Flowmon Packet Investigator that shows a suggestion
for a detected event.

3.2 Security Analysis Based on Rule-based Packets Group-
ing and Searching

The second research domain was centered on diagnosing errors by applying security anal-
ysis. Sometimes, service failure can be linked to a present attack on the network, and by
identifying the attack, it becomes possible to uncover the root cause of the issue. Cur-
rently, solutions such as firewalls or IDS can reliably detect most attacks. However, these
systems operate on a per-flow or per-packet basis due to the detection speed. This subsec-
tion presents a method that can detect attacks despite different flows without restrictions
on selected packets or protocols.

The principle of the detection algorithm is shown in Figure 3.5. The system divides
packets into several disjunctive groups according to any packet attribute. Within each
group, packets with specific attributes are then searched. Various operations and conditions
are then applied to the found packets, which must be met in order for the searched event
to be marked as seen. Each group that fulfills all assert conditions increases a counter. If
the counter reaches a predefined value, the event the system looks for is detected.

The created method can search for events across multiple flows, making the search
process more flexible. Because the search is not limited to a per-flow or single-packet
analysis, the processing is more complex, and the speed is significantly lower than existing
IDS solutions. Therefore, the proposed method should not replace the existing solutions
but should be used in addition to existing IDS solutions. Another benefit of the created

37

method is that an administrator can use a user-friendly rule language to extend the list
of events the system seeks.

}group
icmpv6.nd.ns.target_address

icmpv6.nd.na.target_address

2001:abcd:: ... :921f

2001:abcd:: ... :3bb0

None

(, ,)

(, ,)

packets

...
ns:
icmpv6.type == 135 and
ipv6.src == "::"

na:
icmpv6.type == 136 and
ipv6.dst == "::"

()

(,) }asserts
count(ns) > 0 and
count(na) > 0

}threshold
>= 5

report
packets

Figure 3.5: The main idea of detecting security events is based on the flexible way
of grouping packets into groups and searching inside those groups.

For demonstration purposes and to evaluate the method, we have created 35 rules for
different kinds of events, e.g., MitM ARP attack, HSRP protocol configuration with nonop-
timal configuration, network scanning, using old-unsecured TLS version. The method’s
functionality for the created tools demonstrates that the method can properly detect events
that may be related to a diagnostic process. The output of the tool is shown in Figure 3.6.
It can be seen that part of the detected event is a list of packets that contributed to the
event detection. More information about the proposed method can be found in the paper:

• Holkovič Martin, Ryšavý Ondřej a Dudek Jindřich. Automating Network Security
Analysis at Packet-level by using Rule-based Engine. In: Proceedings of the Sixth
European Conference on the Engineering of Computer-Based Systems. Bucharest:
Association for Computing Machinery, 2019, s. 1-8. ISBN 978-1-4503-7636-5.

<?xml version="1.0" encoding="UTF-8"?>
<report file="test.pcap">
 <event name="SLAAC DAD" desc="..." value="7" threshold="5">
 <group value="[2001:abcd::6064:dec3:35e8:3bb0]">
 <packet name="NS">1</packet>
 <packet name="NA">2</packet>
 </group>
 ...
 </event>
</report>

event
groups
packets

detail of report}
Figure 3.6: The output from the tool that has implemented the proposed method.

3.3 Using Pattern-Based Analysis for Diagnosis
The next research area is similar to the first one in a way that the created method tries
to simulate the manual analysis of a real administrator. However, in this case, the method
analyzes data usually displayed in charts, and administrators look for specific patterns

38

inside those data. An example of such a pattern can be a peak in a data series or a crossing
of the lines from multiple data series.

We have presented a new rule-based approach to detecting and identifying network is-
sues. The rules employ patterns that consist of a sequence of value changes to identify
a sequence in network communication that represents an anomaly. This new approach
automates the labor activity conducted by network administrators that use the visual rep-
resentation of network activities to identify non-standard situations.

The main idea of this approach can be seen in Figure 3.7, where an error with the
DNS server is indicated by a decreased amount of correct replies and an increased amount
of replies with an error. An administrator can diagnose the problem more easily and quickly
by detecting such an anomaly inside the network.

normal state error state

amount of correct and error DNS replies

Figure 3.7: Visualization of DNS replies during the normal and error state. The green line
represents the number of normal replies and the red line replies with an error.

The proposed method is not using any image processing algorithm. The pattern search
system uses simple descriptions of value changes, which are easily understandable by net-
work administrators. An example of a pattern is a rapid drop followed by a sharp increase,
which can be seen as a V-shape in the traffic graph. Administrators mostly use this form
of visual analysis to get an overview of network status or to observe specific host behavior.

The process of pattern lookup starts with assigning all the packets into time intervals
based on the arrival time. In the next step, the system will apply the aggregation function
on multiple packets within the same time interval. An example of such a function is the
counting of replies with an error code. An alphabet character abstracts the numbers that are
output from the aggregation functions according to the previous and current values. After
concatenating all the characters together, a string value is created that represents the chart
data. The pattern lookup process looks for patterns by evaluating regular expressions
over those strings. This process is visualized in Figure 3.8, in which data is represented
by a string with arrows, where one arrow is one data point.

tooth pattern

Figure 3.8: The process of pattern lookup is implemented as a search by regular
expressions.

39

To demonstrate the tool’s functionality, we have tested the tool over a small amount
of network data. One such output can be seen in Figure 3.9. Even though the tool can detect
complex situations, the figure shows only a very simple example to illustrate the idea. The
diagnostic method has detected the drop jump pattern, which means that the QoS queuing
and buffering settings are applied to the application. In the case of multimedia applications,
these settings can negatively affect the user’s quality of experience.

Figure 3.9: Analysis of the transfer speed of the selected application. The chart shows the
number of transferred packets in 20 ms time intervals.

The proposed method was published in the paper:

• Holkovič Martin, Bohuš Michal a Ryšavý Ondřej. Pattern Detection Based Network
Diagnostics. In: Proceedings of the 17th International Joint Conference on e-Business
and Telecommunications. Setubal: SciTePress - Science and Technology Publications,
2020, s. 35-42. ISBN 978-989-758-445-9.

3.4 Creating Automata Models for Diagnostics of Repetitive
Problems

Computer network errors can be repetitive in nature, occurring periodically or consistently
over time. These repetitive errors can have various causes, such as hardware or software
issues, configuration problems, or network congestion. The next research effort was focus-
ing on these errors. The research goal was to learn from previous diagnostic results and
reuse the learned knowledge in the future. Suppose an administrator finds and diagnoses
a network error (manually or using another method). In that case, saving the error traffic
and the diagnostic description is possible.

The proposed approach creates one model per application protocol valid only for the
networks that produce similar traces as traces in the training data. When providing generic
traces, the model will also be generic and, therefore, usable for more networks. On the other
hand, if specific training data are provided that capture the uniqueness of the network
configuration, the created model will work only for that specific configuration. With these
specific models, it is possible to detect extraordinary situations that could be problematic
in one network, even if the same situation can be expected in another network.

A finite-state automaton model was used to learn from the previous diagnostics. The
model describe all the possible behaviors of the selected protocol. Pairs of request-reply
messages represent the behavior and are saved as the automaton states and edges. One pass
of the automaton represents one communication consisting of requests and paired replies to

40

them. For this reason, the created method is suitable only for application protocols using
the request-reply communication pattern. An example of a protocol model is in Figure 3.10.

error
description

CAPA,
+OK

QUIT,
+OK

STAT,
+OK

LIST,
+OK

STAT, -
ERR

CAPA,
+OK

QUIT,
+OK

QUIT,
+OK

LIST,
+OK

STAT,
-ERR

STAT,
+OK

Figure 3.10: An automaton model that describes the small part of the POP protocol
model. Labels above the edges correspond to the “request, reply” values.

Creating a model consists of two steps:

1. The administrator will provide a list of PCAP files containing error-free communica-
tion of the protocol. The aim is to provide as much variability of these communica-
tions as possible so that the model covers even less frequent situations. The result is
a model that describes the correct behavior of the selected protocol.

2. In the second step, the administrator extends the created model with new communica-
tions, but this time it needs to be fixed, for which the administrator needs to provide
an adequate description. The result is a model extended by erroneous transitions
to which individual descriptions of errors are noted.

During diagnostics, the model may find itself in a state where it does not know how
to proceed because it lacks a transition. In this case, the diagnostics end with an unknown
error. Such a result informs the administrator that communication does not correspond
to the expected model.

The research on this topic has been split into two parts. The first part uses the automata
model described in the previous text. However, based on the experience with the model,
the model had made changes to the form of timed automata. That was the focus of the
second part. In addition to a “request-reply” value, the model based on timed automata
also contains a time delta that represents seconds since the previous “request-reply” was
received. With transitions recognizing the time information, it is possible to cover more
situations. For example, it is possible to catch performance issues. An example of a timed
automata model is shown in Figure 3.11.

EHLO,
250

AUTH,
235

AUTH,
334

AUTH, 334
<0;∞>

AUTH, 235
<0;∞>

AUTH, 235
<0;∞>

AUTH, 235
<0;∞>

overloaded auth server

AUTH, 235
<0;∞>

overloaded auth server

Figure 3.11: A subset from the model describing the SMTP finite automata model.

41

The method was tested on four protocols of various complexity: DNS, SMTP, POP,
and FTP. The results from testing are shown in Table 3.2. The accuracy depends on the
protocol and it ranges from 63% to 100%. All situations in which the method incorrectly
diagnosed the analyzed errors were caused by the fact that the model was not sufficiently
trained from enough unique input communications. When deployed in a real network, it
can be expected that the model will be incomplete from the beginning and require learning
new situations. Although the model does not cover all possible situations, it helps diagnose
repetitive errors. As the model can learn errors during deployment, an administrator must
not deal with the same errors again.

Protocol Testing scenarios Testing results
Successful Failed TN TP FN FP Accuracy

DNS 6 2 4 1 1 2 63 %
SMTP 2 1 2 1 0 0 100 %
POP 6 2 6 2 0 0 100 %
FTP 18 6 18 5 1 0 96 %

Table 3.2: The correct results are shown in the true negative (TN) and true positive (TP)
columns. The columns false positive (FP) and false negative (FN) on the other side

contain the number of wrong test results. The ratio of correct results is calculated as
a true/false ratio (Accuracy).

The proposed method can save time for experienced administrators because they can
create a model containing frequent errors on the network that can be automatically checked
when diagnosing a new problem. One benefit is that having a trained model will repre-
sent the protocol in a configuration specific to the monitored network and will not accept
situations that may be valid only for other networks. Because the trained models can
be easily shared, the method allows less experienced administrators to use models created
by experienced administrators. The proposed method was published in two papers:

• Holkovič Martin, Ryšavý Ondřej and Polčák Libor. Using Network Traces to Generate
Models for Automatic Network Application Protocols Diagnostics. In: Proceedings
of the 16th International Joint Conference on e-Business and Telecommunications
Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS. Praha: SciTePress -
Science and Technology Publications, 2019, pp. 37-47. ISBN 978-989-758-378-0.

• Holkovič Martin, Polčák Libor and Ryšavý Ondřej. Application Error Detection in
Networks by Protocol Behavior Model. In: Communications in Computer and Infor-
mation Science. Praha: Springer Verlag, 2020, pp. 3-28. ISBN 978-3-030-52685-6.

3.5 Correcting User’s Data According to Typographical Er-
rors Analysis

The possibility of diagnosing network issues by analyzing end-user input stands for com-
plementary approaches to previously presented techniques. For example, when configuring
an email client application on a smartphone, an end-user must specify several parameters,
such as server name, port number, or login name. The email application would not work
correctly if any of these parameters were misconfigured. This research area aims to detect
these types of errors (we call them typo errors) and report them to an administrator.

42

Score Wrong word Operation
25.0 GOOGLE.COM Capitalization
23.9 g0ogle.com Substitution for a similar symbol
23.6 ggogle.com Substitution with a duplicated symbol
23.6 giogle.com Substitution in a fat finger distance
23.3 gwogle.com Substitution
22.0 gogle.com Deletion of the repeated symbol
21.8 gooogle.com Insertion of a repeated symbol
21.5 goole.com Deletion
21.2 giigle.com Substitution in a fat finger distance
21.2 google.comp Insertion at the end of the word
20.6 gooqgle.com Insertion
19.7 ogogle.com Transposition
18.5 gopople.com Insertion in a fat finger distance
17.0 ggle.com Deletion
15.2 goqoqgle.com Insertion

Table 3.3: A list of misspelled words originated from the word google.com and their score
representing the probability of errors that caused the misspelled word.

Before detecting typo errors, it was necessary to determine in which data the created
algorithm would be looking for errors. Since this is an analysis of typographical errors, it
does not make sense to analyze data that is not entered directly by the user but is created
by the machine. This data can be divided into application data (according to the TCP/IP
model) and lower-layer data. Examples of application data are a login name, email address,
or domain, and for lower layer data, it is an IP address or transport port. Lower layer data
can also be entered by the user, for example, when configuring some applications.

In addition to detecting typo errors in user data, the method should estimate which
word the user meant. During the diagnostics, the administrator can provide the user with
the exact description of solving the problem. A heuristic was created to estimate the word
that the user thought. The basis of this heuristics is the minimum edit distance, but it also
tries to take into account the most common types of errors that can occur. An example
of such an error is pressing the wrong key on a keyboard (also called a fat finger) or typing
a letter with a similar phonetic. The most significant difference of this method compared
to classical spellcheckers is that the analyzed words are not based on any language grammar.
At the same time, using the context from the surrounding text is not possible.

Table 3.3 shows some misspelled words caused by misspelling the word ”google.com“.
For all these misspelled words, a list of operations was determined that had to be applied
in order for the correct word to become a given misspelled word. Subsequently, according
to this list of operations, a score is calculated that considers the probability of the opera-
tions. The table is sorted from the word with the highest (probability) score to the lowest.

The main idea of this diagnostic approach is shown in Figure 3.12. In the first part,
the tool detects misspelled words in the input data, creating a set of candidates of possible
correct words. Each candidate is then evaluated with the created heuristics. Of all the
candidates, the one with the highest score (probability) is selected and reported to an ad-
ministrator.

43

{
"domain": [
"facebook.com",
"amzon.com",
"google.com"]
}

amzon.com

amzn.com
aaszon.com

amzmin.com
amazon.com

anion.com
azom.com

amazon.com - 23.5
anion.com - 22.9
amzn.com - 22.6

amzmln.com - 21.1
azom.com - 20.2

aaszon - 18.3

amzon.com
🡻

amazon.com

data from
convertor

detected
typo candidates

ranked
candidates

result

Figure 3.12: The principle of the diagnostic method based on detecting the user typo
errors.

One basic problem is determining which words are correct and which contain a typo.
A dictionary of words is used for this, while only the words in the dictionary are consid-
ered correct. The same dictionary is also used to create candidates to suggest the correct
word. This research was not focused on analyzing how dictionaries containing the cor-
rect words can be created (or filled). One of the possible assumptions is that dictionaries
can be created manually (for example, by exporting all email addresses used within the com-
pany) or by using an external tool that can learn the correct words on its own. One of the
possible tools for automatic learning is the tool described in section 3.4, which uses finite
automata to distinguish correct communication from erroneous one. If the communication
is correct, it is possible to mark all used words as correct.

To test and evaluate the proposed method, we have applied most common typo errors
to the most visited websites and usernames used in our faculty. Most of the errors were
correctly fixed, for example domain “chasr.com” was fixed to “chase.com”. However, a few
errors were fixed to wrong values, for example username “ikuceran” was fixed to “ikuceraj”
instead of “ikucura”. Table 3.4 shows the accuracy of corrections.

Data type domains usernames
Word count 1000 100
Detected as error 991 100
Detected as correct word 9 0
Correct best candidate 967 99
Multiple best candidates 4 0
Wrongly repaired 20 1
Success rate 97.5% (967 of 991) 99% (99 of 100)

Table 3.4: Results from testing the correction of typo errors in domain names
and usernames.

As can be seen from Table 3.4, the tool found errors with high accuracy in the words
from the application TCP/IP layer (domains and login names). Specifically, the accuracy
was 96.5% and 99%. However, when we tried to evaluate the methodology for words
from the lower layers (IP addresses, transport ports), the accuracy was very low. The
reason is that the words from application layers are optimized for use by end-users and
are easily distinguishable, which makes it easier to apply typo errors correction techniques.
Conversely, the words from the lower layers are optimized for the best possible computer
processing and many times it is hard to fix, or even detect, the typo errors. For example,

44

login names within our faculty are words like ”vecerav”, ”polcak” or ”iletavay”. On the
other hand, IP addresses inside of our faculty were ”147.229.176.14”, ”147.229.176.19,” or
”147.229.176.8”. Therefore, the evaluation showed that the developed methodology is only
suitable for some data types. More detailed information can be found in the following
paper:

• Holkovič Martin, Bohuš Michal a Ryšavý Ondřej. Network Problem Diagnostics using
Typographic Error Correction. 17th International Conference on Network and Service
Management (CNSM). IEEE, 2021. ISBN 978-3-903176-36-2.

3.6 Top-Level Visual Analysis of Network Traffic
All the previous works have been focused on automatic computer errors diagnostics. How-
ever, during the process of experimenting with new methods of diagnostics on real networks,
we have found out that even if some methodology detects some problem, it usually doesn’t
provide enough information for network administrators. For each detection, an adminis-
trator wants to know whether the detection is false positive, what’s the impact on the
whole network and many other details that can not be easily extracted from the input file
automatically.

The usual diagnostic pipeline consists of three steps executed in this order:

1. Executing automatic tools that can automatically detect and ideally also find the
root cause of network problems.

2. After a problem is detected, the administrator performs a manual top-level analy-
sis over a larger amount of (usually aggregated) traffic. This analysis can bring more
light into the problem, for example, what’s the impact on the whole network.

3. If the previous two steps do not provide sufficient information, administrators con-
tinue with manual in-depth traffic inspections . In-depth analysis of network
traffic is allowing the administrators to explore the detailed information and content
of individual packets. Because it is very time consuming, administrators try to avoid
this analysis.

This part of my research was focused on the second step of the pipeline - top-level
analysis. Problem with the current analysis tools is that they have a steep learning curve
and only limited visualization capabilities. I have together with other co-authors discussed
several experienced network administrators (from both business and academia) and we have
identified five common tasks that the tool needs to easily handle:

1. identify the top N communication sources, based on given criteria,

2. discover unusual patterns in the network traffic (e.g., peaks),

3. identify nodes with which the particular station communicated,

4. identify nodes providing specific services to a network (e.g., DNS server),

5. share the analysis parameters with coworkers.

45

Our new approach is based on the filtering funnel metaphor to support filtering and data
analysis based on linking several independent filter steps. The filtering funnel metaphor is
based on several layers of filters, where output from one layer is an input of another layer.
Applying several filters in this metaphor reduces the amount of data in each layer. The
amount of data then looks similar to a funnel. All the filter steps are permanently visible
to the user, who can interactively modify filters’ parameters. With this new approach,
a domain expert can quickly check the data’s content, determine its structure, analyze
network actors’ behavior, or reveal the cause of network issues. The user interface leverages
linked views and conventional visualizations, so it is also suitable for novice users. The main
idea of our funneling metaphor is displayed in Figure 3.13.

PCAP

Entire Dataset

Show time distribution

Show protocol distribution

Show port distribution
Visualize and Explore

Filter: time

Filter: protocol

Filter: port

Load data

Data volume

Fi
lte

rin
g

Fu
nn

el

Figure 3.13: The filtering funnel metaphor illustration.

We have created a web implementation that takes captured network traffic in PCAP
file format. However, we think that the same approach can be applied to other data sources
as well, such as NetFlow records or log files. The tool allows the administrator to either
create any filter layers in any order or just to use one of the predefined filters combinations.
Another very useful feature is that when the analysis is finished, it is possible to export all
the used settings and use them later or just share them with another administrator.

Each analysis always starts by visualizing the amount of transferred traffic over time.
In this visualization, it is possible to see some unexpected patterns, outliers or anomalies
in general. The tool’s user can select only the subinterval of the data that will be further
analysed. Example of this visualization is shown in Figure 3.14.

Figure 3.14: Filtering the data based on the time interval.

46

After selecting the interval that should be analyzed, several independent filtration layers
are used. Each layer can filter the data according to IP addresses, network protocols,
transport port numbers, transport protocols, or application names. The layer consists
of two parts, a table and a mini chart. The table is showing the connections order based
on the filtration criteria. In the case of filtering according to the IP addresses, the table
contains IP addresses ordered according to the amount of transferred traffic. Transferred
traffic can be calculated in bytes, packets, connections or two way connections. In the table
it is possible to select rows that should be analyzed further. Also the selected rows are
visualized in the second part of this layer, the mini chart. Similarly to the previous step,
the chart shows the amount of transferred data in time. However in this case, the colors
differentiate the selected rows from the rest of the traffic. Example of a filtration layer is
shown in Figure 3.15.

Figure 3.15: Example of a filtering layer that filters the data based on the selected IP
addresses.

When the data passes through all the filtration layers, the network graph is shown.
Inside the network graph, it is possible to click on any node which represents one com-
munication entity or on any link between two communication entities. After the click
an additional subpage is shown that consists of communication profile, network profile,
packets property statistics and even raw packets. The preview of a page with all these
sections is shown in Figure 3.16.

47

Figure 3.16: Detailed view on the network node.

48

This tool is different from the previous tools described in this chapter, that the tool’s goal
is not to automatically detect network errors but this tool is aimed to support administrators
during their manual analysis. Because of this difference, the evaluation is also different
from the previous tools. We have contacted nine domain experts and asked them to solve
five different tasks with provided PCAP files. Their goal was to find answers for several
questions related to network or security network operations. Overall, the participants
engaged well with the tasks and their feedback was mostly positive.

Because this method does not contain any built in knowledge, the evaluation was done
differently. Instead of testing the created prototype on selected errors, the evaluation was
done by engaging real network administrators and asking them for feedback. We were able
to connect with nine domain experts from both academia and the private sector. After we
gave them all the instructions and short tutorial, they needed to use the tool to perform five
tasks, such as identifying the application with the most significant number of connections
or identifying nodes providing DNS server capability on non standard ports. We ask the
domain experts to fill a post-study questionnaire to rate the usability of the tool. All answers
can be seen in Figure 3.17 however, the result in the short term is that the tool, and the
methodology, is very flexible and supportive during the initial packet capture analysis.

0 1 2 3 4 5 6 7 8 9

PCAPFunnel is easy to learn

It is easy to use

It saves me time

I would use it frequently

It provides enough information

I felt confident

Its features are well-integrated

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 3.17: Answers from the domain experts from the post-study questionnaire
regarding the usability of the tool.

More information about the research topic can be found in the published paper:

• Uhlár Juraj, Holkovič Martin a Rusňák Vít. PCAPFunnel: A Tool for Rapid Explo-
ration of Packet Capture Files. In 2021 25th International Conference Information
Visualisation (IV). To appear. United States of America: The Institute of Electrical
and Electronics Engineers, Inc., 2021. s. 69-76. ISBN 978-1-6654-3827-8.

49

3.7 List of Outcomes
This section contains a list of all my publications - both included (Subsection 3.7.1) and
not included in this thesis (Subsection 3.7.2), a list of research projects in which I was
a contributing member (Subsection 3.7.3), a list of created software (Subsection 3.7.4),
and a list of students theses I have supervised (Subsection 3.7.5). The full versions of the
included papers are located in Appendix A.

3.7.1 Papers Included in Thesis

1. Holkovič Martin and Ryšavý Ondřej. Network Diagnostics Using Passive Net-
work Monitoring and Packet Analysis. In: ICNS 2019. The Fifteenth Interna-
tional Conference on Networking and Services. Athens: The International Academy,
Research and Industry Association, 2019, pp. 47-51. ISBN 978-1-61208-711-5.
Author’s participation: 80%

2. Holkovič Martin, Ryšavý Ondřej and Polčák Libor. Using Network Tra-ces to
Generate Models for Automatic Network Application Protocols Diagnos-
tics. In: Proceedings of the 16th International Joint Conference on e-Business and
Telecommunications Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS.
Praha: SciTePress - Science and Technology Publications, 2019, pp. 37-47. ISBN
978-989-758-378-0.
Author’s participation: 70%

3. Holkovič Martin, Ryšavý Ondřej and Dudek Jindřich. Automating Network Se-
curity Analysis at Packet-level by using Rule-based Engine. In: Proceedings
of the Sixth European Conference on the Engineering of Computer-Based Systems.
Bucharest: Association for Computing Machinery, 2019, pp. 1-8. ISBN 978-1-4503-
7636-5.
Author’s participation: 85%

4. Holkovič Martin, Bohuš Michal and Ryšavý Ondřej. Pattern Detection Based
Network Diagnostics. In: Proceedings of the 17th International Joint Conference
on e-Business and Telecommunications. Setubal: SciTePress - Science and Technology
Publications, 2020, pp. 35-42. ISBN 978-989-758-445-9.
Author’s participation: 50%

5. Holkovič Martin and Ryšavý Ondřej. Using Rule-Based Decision Trees for Au-
tomatic Passive Diagnostics of the Network Problems. International Journal
on Advances in Networks and Services, vol. 2020, no. 1, pp. 1-10. ISSN 1942-2644.
Author’s participation: 90%

6. Holkovič Martin, Polčák Libor and Ryšavý Ondřej. Application Error Detection
in Networks by Protocol Behavior Model. In: Communications in Computer
and Information Science. Praha: Springer Verlag, 2020, pp. 3-28. ISBN 978-3-030-
52685-6. ISSN 1865-0929.
Author’s participation: 70%

7. Holkovič Martin, Bohuš Michal and Ryšavý Ondřej. Network Problem Diagnos-
tics using Typographic Error Correction. In: Proceedings of the 17th Inter-
national Conference on Network Service Management (CNSM 2021). Izmir: Institute

50

of Electrical and Electronics Engineers, 2021, pp. 482-490. ISBN 978-3-903176-36-2.
Author’s participation: 60%

8. Uhlár Juraj, Holkovič Martin and Rusňák Vít. PCAPFunnel: A Tool for Rapid
Exploration of Packet Capture Files. In: 2021 25th International Conference
Information Visualisation (IV). Sydney: IEEE Biometric Council, 2021, pp. 69-76.
ISBN 978-1-6654-3827-8.
Author’s participation: 30%

3.7.2 Other Relevant Papers

1. Hranický Radek, Holkovič Martin, Matoušek Petr and Ryšavý Ondřej. On Effi-
ciency of Distributed Password Recovery. The Journal of Digital Forensics,
Security and Law, vol. 11, no. 2, 2016, pp. 79-95. ISSN 1558-7215.
Author’s participation: 30%

2. Polčák Libor, Caldarola Leo, Cuda Davide, Dondero Marco, Ficara Domenico, Fran-
ková Barbora, Holkovič Martin, Choukir Amine, Muccifora Roberto and Trifilo An-
tonio. High Level Policies in SDN. In: Communications in Computer and Infor-
mation Science. Berlin: Springer International Publishing, 2016, pp. 39-57. ISBN
978-3-319-30221-8. ISSN 1865-0929.
Author’s participation: 7%

3. Polčák Libor, Holkovič Martin and Matoušek Petr. Host Identity Detection in
IPv6 Networks. In: E-Business and Telecommunications. Berlin: Springer Verlag,
2014, pp. 74-89. ISBN 978-3-662-44787-1. ISSN 1865-0929.
Author’s participation: 20%

4. Polčák Libor, Holkovič Martin and Matoušek Petr. A New Approach for Detec-
tion of Host Identity in IPv6 Networks. In: Proceedings of the 4th International
Conference on Data Communication Networking, 10th International Conference on
e-Business and 4th International Conference on Optical Communication Systems.
Reykjavík: SciTePress - Science and Technology Publications, 2013, pp. 57-63. ISBN
978-989-8565-72-3.
Author’s participation: 20%

5. Špaček Stanislav, Velan Petr, Holkovič Martin and Plesník Tomáš. Event-Flow
Correlation for Anomaly Detection in HTTP/3 Web Traffic. In: 2023
IEEE/IFIP Network Operations and Management Symposium (NOMS 2023). Miami,
Florida, USA: IEEE Xplore Digital Library, 2023, pp. 1-6. ISBN 978-1-6654-7717-8.
ISSN 1542-1201.
Author’s participation: 10%

3.7.3 Research Projects and Grants

1. SECURIAN - Streamlining cybersecurity incident analyses, Technology A-
gency of the Czech Republic, FW06010009, 2023-2025

2. ETA - Context-based Encrypted Traffic Analysis Using Flow Data, Tech-
nology Agency of the Czech Republic, FW03010099, 2021-2023

51

3. CONCORDIA - Cyber security cOmpeteNCe fOr Research anD InnovA-
tion, Horizon 2020 Framework Programme, 830927, 2019-2023

4. BONNET - Security monitoring of ICS communication in the smart grid,
Ministry of the interior of the Czech Republic, VI20192022138, 2019-2022

5. Smart ADS, Technology Agency of the Czech Republic, TH04010073, 2019-2021

6. AMANDA: Asset Management ANd DiAgnostics, Technology Agency of the
Czech Republic, TN01000077/05, 2019-2020

7. DISTANCE - Packet analysis based network diagnostics, Technology Agency
of the Czech Republic, TH02010186, 2017-2019

8. ICT tools, methods and technologies for smart cities, Brno University of Tech-
nology, FIT-S-17-3964, 2017-2019

9. Modern Tools for Detection and Mitigation of Cyber Criminality on the
New Generation Internet, Ministry of the interior of the Czech Republic, VG2010-
2015022, 2010-2015

3.7.4 Software

1. Ryšavý Ondřej, Holkovič Martin, Matoušek Petr, Minařík Pavel, Aleš Šnupárek, Jan
Střítežský. A system for discovering relationships between network flows
(NetFlow/IPFIX), Computer Software, 2022

2. Jeřábek Kamil, Minařík Pavel, Holkovič Martin. System for detecting encrypted
DNS communication, Computer Software, 2021

3. Holkovič Martin. Semi-automatic Network Application Protocols Diagnos-
tics by Using Network Traces, Computer Software, 2019

4. Januš Filip, Holkovič Martin. Application data extractor from network pro-
tocols, Computer Software, 2018

5. Šuhaj Peter, Holkovič Martin. Computer networks vulnerability detector,
Computer Software, 2018

6. Nahálka Roman, Holkovič Martin. Extractor of tunneled data into separate
flows, Computer Software, 2018

7. Dudek Jindřich, Holkovič Martin. Networks attacks detector, Computer Software,
2018

8. Svoboda Ondřej, Holkovič Martin. Tool for network protocols semiautomatic
diagnostics, Computer Software, 2018

9. Hranický Radek, Holkovič Martin, Zobal Lukáš, Večeřa Vojtěch, Mikuš Dávid. Fit-
crack - a distributed password recovery tool, Computer Software, 2016

10. Holkovič Martin. SDN Identity Manager, Computer Software, 2015

52

11. Polčák Libor, Martínek Tomáš, Hranický Radek, Bárta Stanislav, Holkovič Martin,
Franková Barbora, Kramoliš Petr. Sec6Net Identity Management System, Com-
puter Software, 2014

12. Polčák Libor, Martínek Tomáš, Hranický Radek, Bárta Stanislav, Holkovič Martin,
Franková Barbora, Kramoliš Petr. Sec6Net Lawful Interception System, Com-
puter Software, 2014

13. Holkovič Martin, Polčák Libor. ndtrack, Computer Software, 2013

3.7.5 Supervised Theses

1. Navrátil Petr. Anonymization of PCAP Files. Master’s thesis. Brno, CZ: Brno
University of Technology, Faculty of Information Technology, 2019.

2. Šuhaj Peter. Extending NetFlow Records for Increasing Encrypted Traf-
fic Classification Capabilities. Master’s thesis. Brno, CZ: Brno University of
Technology, Faculty of Information Technology, 2019.

3. Bohuš Michal. Diagnosing Errors inside Computer Networks Based on the
Typo Errors. Master’s thesis. Brno, CZ: Brno University of Technology, Faculty of
Information Technology, 2019.

4. Beňo Marek. Phishing Detection in Web Pages. Master’s thesis. Brno, CZ:
Brno University of Technology, Faculty of Information Technology, 2018.

5. Škápik Anton. Detection of Volumetric DoS and DDoS Attacks in Real
Time on the L3 Network Layer. Bachelor’s thesis. Brno, CZ: Brno University of
Technology, Faculty of Information Technology, 2017.

6. Nahálka Roman. Tunneled Data Extraction into Separate Flows. Bachelor’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2017.

7. Šuhaj Peter. Vulnerability Detection in Computer Network. Bachelor’s thesis.
Brno, CZ: Brno University of Technology, Faculty of Information Technology, 2017.

8. Januš Filip. Application Data Extraction from Network Protocols. Bachelor’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2017.

9. Bohuš Michal. Server Data Monitoring with Android Notification. Bachelor’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2017.

10. Dudek Jindřich. Detection of Network Attacks Using Tshark. Master’s thesis.
Brno, CZ: Brno University of Technology, Faculty of Information Technology, 2017.

11. Svoboda Ondřej. Network Protocols Semiautomatic Diagnostics. Master’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2017.

53

12. Šťastný Filip. Building Trading System Based on Time Range Breakout.
Bachelor’s thesis. Brno, CZ: Brno University of Technology, Faculty of Information
Technology, 2016.

13. Klhůfek Michal. Use Machine Learning to Predict Future Market Prices.
Bachelor’s thesis. Brno, CZ: Brno University of Technology, Faculty of Information
Technology, 2016.

14. Gavryliuk Olga. SDN Routing According to Transmitted Content. Bachelor’s
thesis. Brno, CZ: Brno University of Technology, Faculty of Information Technology,
2015.

54

Chapter 4

Conclusions

Computer network diagnostics is a difficult task requiring a lot of knowledge and time to do
it properly. Although computer network diagnostics is not a new area and there are already
several available tools and published papers, it is still not a solved problem. The goal of this
thesis was to create a system for the automatic diagnostics of network errors which would
provide a root cause analysis even for a less experienced network administrator.

This work is a compilation thesis that has presented six newly created diagnostics meth-
ods. Each method was focused on a different type of error, and overall, the individual meth-
ods complemented each other. However, each method’s basic idea was to take the input
data in PCAP format, use the TShark tool to convert the data, and then look for error
states in the data. Methods are not limited to a small set of network protocols, and methods
should be usable by network administrators and not just researchers or programmers.

4.1 Research Areas
The first area was aimed at automating manual diagnostics done by the Wireshark tool. For
this purpose, decision trees were used in which the knowledge database is stored. According
to the specified criteria, specific events are searched for in the source data when traversing
the tree. Based on whether these events are found, the process continues with the next
tree node. This process is repeated until a tree’s leaf node containing the description of the
problem is found.

The second area was focused on the fact that some services may be unavailable to users
due to an ongoing network attack. Unlike the existing IDS tool, the created method does
not work on a packet or flow basis but can search for events in groups of packets defined
by any value. This flexible grouping makes it possible to detect even very complex attacks.

The next area’s goal was to create a mechanism that would look for specific events in the
graphical data just as the administrator would look for them manually. However, instead
of using image algorithms, chart data is converted into strings. The method is using regular
expressions to search inside these strings. In contrast to existing solutions, a method based
not only on the detection of outlier values is created but seeks out specific patterns having
a specific meaning.

Another area deals with the possibility of learning previous diagnostic results and re-
peating them for the problems with the same behavior in the future. To learn the previous
results, automata were used that describe the behavior of individual application protocols.
If the administrator detects and diagnoses a new error, it is possible to extend the protocol

55

model by this error. If the same error occurs again, the administrator can quickly use the
learned model instead of a complex diagnosis.

The last but one area focused on the data that is entered by the end-users of the
computer network. If a user configures a network service, he types some configuration
data on the keyboard. During the typing process, a typo error can occur inside the data.
By using natural language processing techniques, it is possible to detect such an error and
propose an adequate correction.

The last research area was different from the previous areas. In this case, the research
was not focused on a new automatic diagnostic method, but on a visualization of net-
work data. The goal was to allow quick top-level analysis of network data that can help
administrators to understand what is happening in the network.

The list of research areas with belonging papers to these areas is shown in Table 4.1. All
proposed methods were implemented in the form of proof-of-concept software and tested
on a sample of test data. Together with the results, these methods were published in the
form of reviewed research papers.

Research
area

Method description Paper number and title

Simulating
real
administrator
diagnostic
steps

Using decision trees that
simulate manual diagnostic
steps of the administrator by
searching for specific events in
a predefined order

I. Network Diagnostics Using Pas-
sive Network Monitoring and Packet
Analysis
II. Using Rule-Based Decision Trees
for Automatic Passive Diagnostics of
the Network Problems

Looking for se-
curity events

Searching for specific values
and counting occurrences in
customizable groups of packets

III. Automating Network Security
Analysis at Packet-level by using
Rule-based Engine

Simulating
chart analysis
of a real ad-
ministrator

Converting data into string
representation in which the vi-
sual patterns are searched for

IV. Pattern Detection Based Net-
work Diagnostics

Diagnostic
based on
previous
analysis

Learning automata from the
previous analysis that
describes protocols behavior
and are used for future
diagnostics

V. Using Network Traces to Gener-
ate Models for Automatic Network
Application Protocols Diagnostics
VI. Application Error Detection
in Networks by Protocol Behavior
Model

Looking for er-
rors inside end-
user data

Using algorithms from natu-
ral language processing to find
typo errors and propose the
correction candidate

VII. Network Problem Diagnostics
using Typographic Error Correction

Network Traf-
fic Top-Level
Visual Analy-
sis

Using a funnel filtering ap-
proach for flexible top-level
data analysis.

VIII. PCAPFunnel: A Tool for
Rapid Exploration of Packet Cap-
ture Files

Table 4.1: Summary of the research areas and papers that belong to those areas.

56

4.2 Summary of Research Objectives
This section summarizes the contribution by discussing on meeting research objectives that
were introduced in Chapter 1 given by ultimate research goal, which was to create an easy-
to-use extensible computer network error diagnosing system not limited to a small protocol
set or a single error type, that requires only a small amount of captured network data
without affecting the monitored networks. Based on the results, it may be concluded that
the initial research goal was fulfilled.

Objective1: Results of all created methods must be correct and accurate. Only in that
situation, the methods can be trusted by network administrators and deployed in their net-
works.

All presented diagnostic methods have been published in attached research papers.
These papers contain an evaluation of those methods which vary from testing of simple
errors inside the testing environment up to testing complex errors in a successful interna-
tional commercial product.

Objective2: The user of the system, a network administrator, needs to be able to easily
extend the set of detectable errors. Because the usual administrator is not a programmer,
the extension can not be based on source code updates.

Easy extensibility is provided by using a set of configuration files by each diagnostic
method. The methods are reading and executing instructions written inside those files.
The configurations have a declarative format based on the Wireshark display language and
can be added or updated without any change of tool implementation. Network applica-
tions commonly use the declarative format, and therefore the administrators are used to it.
The Wireshark display language makes the configuration even more comfortable as they
use the same language within the Wireshark and can specify what they want to do based
on the previous knowledge with Wireshark.

Objective3: Each well known and commonly used protocol needs to be supported. There
should also be no difference between binary or text protocols.

By using the TShark tool for processing and converting the network data, hundreds
of network protocols are supported. As the TShark uses the same dissectors as the Wire-
shark, support of new protocols is added very quickly by the developers or the community.

Objective4: The created methods can not expect a huge amount of network traffic,
which they can analyze. Methods should expect the files within the tens of megabytes.

None of the proposed methods uses a huge amount of data to create a baseline to diag-
nose possible errors. As described in each included paper, the methods expect only a small
amount of network traffic containing only a subset of network traffic, e.g., traffic to the
SMTP server.

57

Objective5: During the diagnostic process, no traffic can be sent inside the monitored
network. The methods need to work only with the provided data.

All the proposed methods are using the passive approach to diagnose the problem. The
main data source is the captured network traffic. However, as was stated inside the papers,
the same approach can be used to diagnose from other passive sources such as log files or
NetFlow records.

4.3 Software Outcome
One of the main achievements of this work is that the primary method of diagnostics
based on decision trees has already been successfully integrated into a globally available
commercial product called Flowmon Packet Investigator1 (FPI), developed and managed
by Flowmon Networks. Figure 4.1 shows the output from the product. Work is currently
underway to integrate a method for data security analysis, and integration of other methods
is expected in the future.

Figure 4.1: The output from the Flowmon Packet Investigator that describes detected
error.

The FPI allows network administrators to upload a PCAP file, manually start capturing
data on the probes placed inside the network, or automatically capture data inside the
network based on the detection from the anomaly detection system. All these three options
together create a powerful utility able to diagnose network problems based on different
circumstances. The FPI has a modular structure that allows the execution of several
diagnostic methods simultaneously and displays the results inside the one webpage window.

Currently, when writing this thesis, there is an ongoing project called Streamlining
cybersecurity incident analyses (SECURIAN) supported by Technology Agency of the Czech

1https://www.flowmon.com/en/products/software-modules/packet-investigator

58

Republic that, in addition to other project goals, aims to integrate the results from the
research area “Network Traffic Top-Level Visual Analysis” to the Flowmon Collector2.

4.4 Towards a Practical Solution
The currently planned further work consists of the continuous integration of each devel-
oped method into the already mentioned Flowmon Packet Investigator tool. Also, several
improvements and possible sequels have been identified:

• Accelerate processing of the data by the TShark tool. TShark itself cannot be run
in parallel because packet processing may depend on any previous packet. By creating
proper heuristics, it would be possible to split the input data into several independent
smaller ones, each of which would be processed by an independent TShark process.

• All created methods are based on a deterministic approach, where events are detected
based on exact rules. In some cases, however, it is not easy to determine for 100%
that something is true or not. Therefore it makes sense to create methods using
probabilistic techniques, such as fuzzy logic.

• The quality of the input data affects the quality of the diagnostic results. In the ac-
tual implementation, if some packets are missing inside the data, the general warning
message that the results may not be accurate is being generated. However, the ac-
tual detection only works with missing TCP segments, and it is not inspected which
data are missing and whether it affects the results. This detection can be improved
by involving some machine learning techniques to ignore packet losses, which are not
affecting the diagnostic results and also to be able to detect missing data in non-TCP
data as well.

• In the current architecture, it is assumed that the administrator will ensure that the
data are combined into one data set in the case of multiple sources. However, it might
make sense to analyze the data distributively and only centralize the results from the
individual locations.

• The implemented methods do not allow adaptation to a specific user (administrator).
By analyzing the behavior of the users of the created tools, it would be possible to give
more priority to some results or to hide some worthless results.

In addition to the mentioned items, it is always possible to continue with research by
developing new diagnostic methods as new technologies and protocols evolve.

2https://www.flowmon.com/en/products/appliances/netflow-collector

59

Bibliography

[1] Bhavish Agarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran, Venkata
N Padmanabhan, and Geoffrey M Voelker. “NetPrints: Diagnosing Home Network
Misconfigurations Using Shared Knowledge.” In: NSDI. Vol. 9. 2009, pp. 349–364.

[2] Bhavish Aggarwal, Ranjita Bhagwan, Lorenzo De Carli, Venkat Padmanabhan, and
Krishna Puttaswamy. “Deja vu: fingerprinting network problems”. In: Proceedings
of the Seventh Conference on Emerging Networking Experiments and Technologies.
2011, pp. 1–12.

[3] Dmytro Alekseev and Vladimir Sayenko. “Proactive fault detection in computer
networks”. In: 2014 First International Scientific-Practical Conference Problems of
Infocommunications Science and Technology. IEEE. 2014, pp. 90–91.

[4] Essam S Ali and MG Darwish. “Diagnosing network faults using bayesian and case-
based reasoning techniques”. In: 2007 International Conference on Computer Engi-
neering & Systems. IEEE. 2007, pp. 145–150.

[5] John D Andrews and Sarah J Dunnett. “Event-tree analysis using binary decision
diagrams”. In: IEEE Transactions on Reliability 49.2 (2000), pp. 230–238.

[6] João Antunes and Nuno Neves. “Automatically complementing protocol specifica-
tions from network traces”. In: Proceedings of the 13th European workshop on de-
pendable computing. 2011, pp. 87–92.

[7] Tanapat Anusas-Amornkul. “A network root cause analysis and repair system”.
In: 2018 6th International symposium on computational and business intelligence
(ISCBI). IEEE. 2018, pp. 69–73.

[8] Pallavi Asrodia and Hemlata Patel. “Analysis of various packet sniffing tools for
network monitoring and analysis”. In: International Journal of Electrical, Electronics
and Computer Engineering 1.1 (2012), pp. 55–58.

[9] Tariq Assaf and Joanne Bechta Dugan. “Build better diagnostic decision trees”. In:
IEEE instrumentation & measurement magazine 8.3 (2005), pp. 48–53.

[10] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A
Maltz, and Ming Zhang. “Towards highly reliable enterprise network services via
inference of multi-level dependencies”. In: ACM SIGCOMM Computer Communica-
tion Review 37.4 (2007), pp. 13–24.

[11] Julian Bangert and Nickolai Zeldovich. “Nail: A practical interface generator for data
formats”. In: 2014 IEEE Security and Privacy Workshops. IEEE. 2014, pp. 158–166.

[12] Paul Barford, Nick Duffield, Amos Ron, and Joel Sommers. “Network performance
anomaly detection and localization”. In: IEEE INFOCOM 2009. IEEE. 2009, pp. 1377–
1385.

60

[13] Timothy J Berners-Lee. Information management: A proposal. Tech. rep. 1989.
[14] Arpád Beszédes. “Investigating Fault Localization Techniques from Other Disciplines

for Software Engineering”. In: (2019).
[15] Alina Beygelzimer, Mark Brodie, Sheng Ma, and Irina Rish. “Test-based diagnosis:

Tree and matrix representations”. In: 2005 9th IFIP/IEEE International Symposium
on Integrated Network Management, 2005. IM 2005. IEEE. 2005, pp. 529–542.

[16] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. “Network
anomaly detection: methods, systems and tools”. In: Ieee communications surveys
& tutorials 16.1 (2013), pp. 303–336.

[17] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, Maria S Pérez, and
Victor Muntés-Mulero. “Graph-based root cause analysis for service-oriented and mi-
croservice architectures”. In: Journal of Systems and Software 159 (2020), p. 110432.

[18] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner, and Kavè Salamatian.
“Anomaly extraction in backbone networks using association rules”. In: Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement. 2009, pp. 28–34.

[19] Kenneth L Calvert, W Keith Edwards, Nick Feamster, Rebecca E Grinter, Ye Deng,
and Xuzi Zhou. “Instrumenting home networks”. In: ACM SIGCOMM Computer
Communication Review 41.1 (2011), pp. 84–89.

[20] Dinis Canastro, Ricardo Rocha, Mário Antunes, Diogo Gomes, and Rui L Aguiar.
“Root Cause Analysis in 5G/6G Networks”. In: 2021 8th International Conference
on Future Internet of Things and Cloud (FiCloud). IEEE. 2021, pp. 217–224.

[21] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. “Failure
diagnosis using decision trees”. In: International Conference on Autonomic Comput-
ing, 2004. Proceedings. IEEE. 2004, pp. 36–43.

[22] Ming Chen, Runqing Zhou, Rui Zhang, and Xianzhong Zhu. “Application of artificial
neural network to failure diagnosis on process industry equipments”. In: 2010 Sixth
International Conference on Natural Computation. Vol. 3. IEEE. 2010, pp. 1190–
1193.

[23] Maggie X Cheng and Wei Biao Wu. “Data analytics for fault localization in complex
networks”. In: IEEE Internet of Things Journal 3.5 (2015), pp. 701–708.

[24] Edward Chuah, Arshad Jhumka, Sai Narasimhamurthy, John Hammond, James C
Browne, and Bill Barth. “Linking resource usage anomalies with system failures
from cluster log data”. In: 2013 IEEE 32nd International Symposium on Reliable
Distributed Systems. IEEE. 2013, pp. 111–120.

[25] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda.
“Prospex: Protocol specification extraction”. In: 2009 30th IEEE Symposium on Se-
curity and Privacy. IEEE. 2009, pp. 110–125.

[26] Arantxa Contreras-Valdes, Juan P Amezquita-Sanchez, David Granados-Lieberman,
and Martin Valtierra-Rodriguez. “Predictive data mining techniques for fault diag-
nosis of electric equipment: A review”. In: Applied Sciences 10.3 (2020), p. 950.

[27] Weidong Cui, Jayanthkumar Kannan, and Helen J Wang. “Discoverer: Automatic
Protocol Reverse Engineering from Network Traces.” In: USENIX Security Sympo-
sium. 2007, pp. 1–14.

61

[28] Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and Christophe Diot.
“NetDiagnoser: Troubleshooting network unreachabilities using end-to-end probes
and routing data”. In: Proceedings of the 2007 ACM CoNEXT conference. 2007,
pp. 1–12.

[29] Akalanka Mailewa Dissanayaka, Susan Mengel, Lisa Gittner, and Hafiz Khan. “Vul-
nerability prioritization, root cause analysis, and mitigation of secure data analytic
framework implemented with mongodb on singularity linux containers”. In: Proceed-
ings of the 2020 the 4th International Conference on Compute and Data Analysis.
2020, pp. 58–66.

[30] Ibrahim Ali Ibrahim Diyeb, Anwar Saif, and Nagi Ali Al-Shaibany. “Ethical net-
work surveillance using packet sniffing tools: A comparative study”. In: International
Journal of Computer Network and Information Security 11.7 (2018), p. 12.

[31] Mentari Djatmiko, Dominik Schatzmann, Arik Friedman, Xenofontas Dimitropoulos,
and Roksana Boreli. “Privacy preserving distributed network outage monitoring”.
In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE. 2013, pp. 69–70.

[32] Changyu Dong and Naranker Dulay. “Argumentation-based fault diagnosis for home
networks”. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Home Net-
works. 2011, pp. 37–42.

[33] Ayush Dusia and Adarshpal S Sethi. “Recent advances in fault localization in com-
puter networks”. In: IEEE Communications Surveys & Tutorials 18.4 (2016), pp. 3030–
3051.

[34] Amanuel Ayde Ergado. “Self learning computer troubleshooting expert system”. In:
International Journal of Artificial Intelligence & Applications (IJAIA) 7.1 (2016),
pp. 45–58.

[35] Min Feng and Rajiv Gupta. “Learning universal probabilistic models for fault local-
ization”. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. 2010, pp. 81–88.

[36] Zhe Feng and Alban Grastien. “Model Based Diagnosis of Timed Automata with
Model Checkers”. In: ().

[37] Xiaoyu Fu, Rui Ren, Sally A McKee, Jianfeng Zhan, and Ninghui Sun. “Digging
deeper into cluster system logs for failure prediction and root cause diagnosis”. In:
2014 IEEE International Conference on Cluster Computing (CLUSTER). IEEE.
2014, pp. 103–112.

[38] Maurice Gagnaire, Felipe Diaz, Camille Coti, Christophe Cerin, Kazuhiko Shiozaki,
Yingjie Xu, Pierre Delort, Jean-Paul Smets, Jonathan Le Lous, Stephen Lubiarz,
et al. “Downtime statistics of current cloud solutions”. In: International Working
Group on Cloud Computing Resiliency, Tech. Rep (2012).

[39] Mohammad Sadeq Garshasbi. “Fault localization based on combines active and pas-
sive measurements in computer networks by ant colony optimization”. In: Reliability
Engineering & System Safety 152 (2016), pp. 205–212.

[40] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. “Design principles
for packet parsers”. In: Architectures for Networking and Communications Systems.
IEEE. 2013, pp. 13–24.

62

[41] Christos Gkantsidis and Hitesh Ballani. Network management as a service. Tech.
rep. Microsoft Research, Technical Report MSR-TR-2010-83, 2010.

[42] Eric Golden and John W Coffey. “A tool to automate generation of wireshark dissec-
tors for a proprietary communication protocol”. In: The 6th International Conference
on Complexity, Informatics and Cybernetics, IMCIC. 2015.

[43] Salah Gontara, Amine Boufaied, and Ouajdi Korbaa. “A unified approach for se-
lecting probes and probing stations for fault detection and localization in computer
networks”. In: 2019 IEEE International Conference on Systems, Man and Cybernet-
ics (SMC). IEEE. 2019, pp. 2071–2076.

[44] Tang Haina, Han Chunjing, and Ge Jingguo. “Applications of visualization tech-
nology for network security”. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE.
2017, pp. 1038–1042.

[45] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix”. In: IEEE Communications Surveys & Tutorials 16.4
(2014), pp. 2037–2064.

[46] Demetris Hoplaros, Zahir Tari, and Ibrahim Khalil. “Data summarization for net-
work traffic monitoring”. In: Journal of network and computer applications 37 (2014),
pp. 194–205.

[47] Wei Huang. “A practical guide of troubleshooting IEC 61850 GOOSE communi-
cation”. In: 2017 70th Annual Conference for Protective Relay Engineers (CPRE).
IEEE. 2017, pp. 1–8.

[48] Shahram Jamali and Mohammad Sadeq Garshasbi. “Fault localization algorithm in
computer networks by employing a genetic algorithm”. In: Journal of ExpErimEntal
& thEorEtical artificial intElligEncE 29.1 (2017), pp. 157–174.

[49] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas Anderson,
and Arvind Krishnamurthy. “PoiRoot: Investigating the root cause of interdomain
path changes”. In: ACM SIGCOMM Computer Communication Review 43.4 (2013),
pp. 183–194.

[50] Rui Jia, Sherif Abdelwahed, and Abdelkarim Erradi. “Towards proactive fault man-
agement of enterprise systems”. In: 2015 International Conference on Cloud and
Autonomic Computing. IEEE. 2015, pp. 21–32.

[51] Cheng Jiang, Weilin Deng, and Daowen Qiu. “Fault Diagnosis in Unknown Discrete
Event Systems via Critical Tree”. In: 2019 Chinese Control And Decision Conference
(CCDC). IEEE. 2019, pp. 1846–1851.

[52] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Subhabrata Sen, and
Zhi-Li Zhang. “Nevermind, the problem is already fixed: proactively detecting and
troubleshooting customer dsl problems”. In: Proceedings of the 6th International
COnference. 2010, pp. 1–12.

[53] Diana Joumblatt, Jaideep Chandrashekar, Branislav Kveton, Nina Taft, and Renata
Teixeira. “Predicting user dissatisfaction with internet application performance at
end-hosts”. In: 2013 Proceedings IEEE INFOCOM. IEEE. 2013, pp. 235–239.

63

[54] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Pad-
hye, and Paramvir Bahl. “Detailed diagnosis in enterprise networks”. In: Proceedings
of the ACM SIGCOMM 2009 conference on Data communication. 2009, pp. 243–254.

[55] Soila P Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev Gandhi,
and Priya Narasimhan. “Draco: Statistical diagnosis of chronic problems in large dis-
tributed systems”. In: IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2012). IEEE. 2012, pp. 1–12.

[56] Marie Kiermeier, Sebastian Feld, and Claudia Linnhoff-Popien. “Root cause analysis
for global anomalous events in self-organizing industrial systems”. In: 2017 IEEE
21st International Conference on Intelligent Engineering Systems (INES). IEEE.
2017, pp. 000163–000168.

[57] Kyung-Hwa Kim, Hyunwoo Nam, Jin-Hyung Park, and Henning Schulzrinne. “MoT:
a collaborative network troubleshooting platform for the internet of things”. In: 2014
IEEE Wireless Communications and Networking Conference (WCNC). IEEE. 2014,
pp. 3438–3443.

[58] Kyung-Hwa Kim, Hyunwoo Nam, Vishal Singh, Daniel Song, and Henning Schulzrinne.
“DYSWIS: Crowdsourcing a home network diagnosis”. In: 2014 23rd International
conference on computer communication and networks (ICCCN). IEEE. 2014, pp. 1–
10.

[59] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. “Root cause detection in a
service-oriented architecture”. In: ACM SIGMETRICS Performance Evaluation Re-
view 41.1 (2013), pp. 93–104.

[60] Siheung Kim, Seong jin Ahn, Jinwok Chung, Ilsung Hwang, Sunghe Kim, Minki No,
and Seungchung Sin. “A rule based approach to network fault and security diagnosis
with agent collaboration”. In: Artificial Intelligence and Simulation: 13th Interna-
tional Conference on AI, Simulation, Planning in High Autonomy Systems, AIS
2004, Jeju Island, Korea, October 4-6, 2004, Revised Selected Papers 13. Springer.
2005, pp. 597–606.

[61] Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke Ishibashi. “Proac-
tive failure detection learning generation patterns of large-scale network logs”. In:
IEICE Transactions on Communications 102.2 (2019), pp. 306–316.

[62] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C Snoeren.
“Fault localization via risk modeling”. In: IEEE Transactions on Dependable and
Secure Computing 7.4 (2009), pp. 396–409.

[63] Inès Ben Kraiem, Faiza Ghozzi, André Péninou, Geoffrey Roman-Jimenez, and
Olivier Teste. “Human-interpretable rules for anomaly detection in time-series”. In:
INTERNATIONAL CONFERENCE ON EXTENDING DATABASE TECHNOL-
OGY. OpenProceedings. org. 2021, pp. 457–462.

[64] Tammo Krueger, Hugo Gascon, Nicole Krämer, and Konrad Rieck. “Learning state-
ful models for network honeypots”. In: Proceedings of the 5th ACM workshop on
Security and artificial intelligence. 2012, pp. 37–48.

[65] Dmitriy Kuptsov, Boris Nechaev, Prabhu Patil, and Andrey Khurri. “ORCE: Online
Root Cause Estimator for TCP”. In: (2009).

64

[66] Martin Laštovička, Martin Husák, and Lukáš Sadlek. “Network monitoring and
enumerating vulnerabilities in large heterogeneous networks”. In: NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. IEEE. 2020, pp. 1–6.

[67] Sihyung Lee and Hyong S Kim. “End-user perspectives of Internet connectivity
problems”. In: Computer Networks 56.6 (2012), pp. 1710–1722.

[68] Sihyung Lee, Kyriaki Levanti, and Hyong S Kim. “Network monitoring: Present and
future”. In: Computer Networks 65 (2014), pp. 84–98.

[69] Ma łgorzata Steinder and Adarshpal S Sethi. “A survey of fault localization tech-
niques in computer networks”. In: Science of computer programming 53.2 (2004),
pp. 165–194.

[70] Bingdong Li, Jeff Springer, George Bebis, and Mehmet Hadi Gunes. “A survey of
network flow applications”. In: Journal of Network and Computer Applications 36.2
(2013), pp. 567–581.

[71] Yuxing Li, Hu Zheng, Chengqiang Huang, Ke Pei, Jinghui Li, and Longbo Huang.
“Terminator: An Efficient and Light-weight Fault Localization Framework”. In: IEEE
INFOCOM 2020-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE. 2020, pp. 580–585.

[72] Lei Liu, Xiaolong Jin, Geyong Min, and Li Xu. “Real-time diagnosis of network
anomaly based on statistical traffic analysis”. In: 2012 IEEE 11th International Con-
ference on Trust, Security and Privacy in Computing and Communications. IEEE.
2012, pp. 264–270.

[73] Lu Lu, Zhengguo Xu, Wenhai Wang, and Youxian Sun. “A new fault detection
method for computer networks”. In: Reliability Engineering & System Safety 114
(2013), pp. 45–51.

[74] J Lunze and P Supavatanakul. “Application of timed automata to the diagnosis of
the DAMADICS benchmark problem”. In: IFAC Proceedings Volumes 36.5 (2003),
pp. 1083–1088.

[75] Chuanfei Luo, Jun Sun, and Hongkai Xiong. “Monitoring and troubleshooting in
operational IP-TV system”. In: IEEE Transactions on Broadcasting 53.3 (2007),
pp. 711–718.

[76] Ming Luo, Danhong Zhang, GeokHong Phua, Lihui Chen, and Danwei Wang. “An in-
teractive rule based event management system for effective equipment troubleshoot-
ing”. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics
Society. IEEE. 2011, pp. 2329–2334.

[77] Mohammed Madi, Fidaa Jarghon, Yousef Fazea, Omar Almomani, and Adeeb Saaidah.
“Comparative analysis of classification techniques for network fault management”.
In: Turkish Journal of Electrical Engineering and Computer Sciences 28.3 (2020),
pp. 1442–1457.

[78] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson. “User-level
Internet path diagnosis”. In: ACM SIGOPS Operating Systems Review 37.5 (2003),
pp. 106–119.

[79] Ajay Mahimkar, Jennifer Yates, Yin Zhang, Aman Shaikh, Jia Wang, Zihui Ge,
and Cheng Tien Ee. “Troubleshooting chronic conditions in large IP networks”. In:
Proceedings of the 2008 ACM CoNEXT Conference. 2008, pp. 1–12.

65

[80] Ajay Anil Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin Zhang,
and Qi Zhao. “Towards automated performance diagnosis in a large IPTV network”.
In: ACM SIGCOMM Computer Communication Review 39.4 (2009), pp. 231–242.

[81] Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui Xin.
“Localizing faults in cloud systems”. In: 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST). IEEE. 2018, pp. 262–273.

[82] Angelos K Marnerides, Alberto Schaeffer-Filho, and Andreas Mauthe. “Traffic anomaly
diagnosis in Internet backbone networks: A survey”. In: Computer Networks 73
(2014), pp. 224–243.

[83] Eloy Martinez, Enda Fallon, Sheila Fallon, and MingXue Wang. “Cadmant: Context
anomaly detection for maintenance and network troubleshooting”. In: 2015 Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC).
IEEE. 2015, pp. 1017–1022.

[84] Maha Mdini, Gwendal Simon, Alberto Blanc, and Julien Lecoeuvre. “ARCD: a so-
lution for root cause diagnosis in mobile networks”. In: 2018 14th International
Conference on Network and Service Management (CNSM). IEEE. 2018, pp. 280–
284.

[85] Venkat Mohan, YR Janardhan Reddy, and Kulshrestha Kalpana. “Active and pas-
sive network measurements: a survey”. In: International Journal of Computer Sci-
ence and Information Technologies 2.4 (2011), pp. 1372–1385.

[86] Karthik Nagaraj, Charles Edwin Killian, and Jennifer Neville. “Structured compar-
ative analysis of systems logs to diagnose performance problems.” In: NSDI. 1. 2012,
p. 353.

[87] Mehdi Namdari, Hooshang Jazayeri-Rad, and Nader Nabhani. “Comparing the per-
formance of two neural network methods in a process fault diagnosis system”. In: J.
Basic Appl. Sci. Res. 3.2 (2013), pp. 942–947.

[88] Stefano Nicastro. “Complexity and emergence in data networks”. In: (2021).
[89] Byungchul Park, Young J Won, Hwanjo Yu, James Won-Ki Hong, Hong-Sun Noh,

and Jang Jin Lee. “Fault detection in IP-based process control networks using data
mining”. In: 2009 IFIP/IEEE International Symposium on Integrated Network Man-
agement. IEEE. 2009, pp. 211–217.

[90] Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. “Learn-
ing behavioral fingerprints from netflows using timed automata”. In: 2017 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE. 2017, pp. 308–
316.

[91] Sylvain Piechowiak and Joaquin Rodriguez. “The localization and correction of er-
rors in models: A constraint-based approach”. In: Applied Intelligence 23 (2005),
pp. 153–164.

[92] Rahul Potharaju and Navendu Jain. “Demystifying the dark side of the middle: A
field study of middlebox failures in datacenters”. In: Proceedings of the 2013 confer-
ence on Internet measurement conference. 2013, pp. 9–22.

[93] M Procházka, D Macko, and K Jelemenská. “IP networks diagnostic communication
generator”. In: 2017 15th International Conference on Emerging eLearning Tech-
nologies and Applications (ICETA). IEEE. 2017, pp. 1–6.

66

[94] Henry C Pusey and Paul L Howard. “An historical view of mechanical failure pre-
vention technology”. In: Sound and Vibration (2008), p. 11.

[95] Tongqing Qiu, Zihui Ge, Dan Pei, Jia Wang, and Jun Xu. “What happened in my
network: mining network events from router syslogs”. In: Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. 2010, pp. 472–484.

[96] Xiang Rao, Huaimin Wang, Dianxi Shi, Zhenbang Chen, Hua Cai, Qi Zhou, and
Tingtao Sun. “Identifying faults in large-scale distributed systems by filtering noisy
error logs”. In: 2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems and Networks Workshops (DSN-W). IEEE. 2011, pp. 140–145.

[97] Gianluca Reali, Mauro Femminella, and Luca Monacelli. “Probabilistic codebook-
based fault localization in data networks”. In: IEEE Transactions on Network and
Service Management 15.2 (2018), pp. 567–581.

[98] Eleni Rozaki. “Design and implementation for automated network troubleshooting
using data mining”. In: arXiv preprint arXiv:1506.00108 (2015).

[99] A Samhat, R Skehill, and Z Altman. “Automated troubleshooting in WLAN net-
works”. In: 2007 16th IST Mobile and Wireless Communications Summit. IEEE.
2007, pp. 1–4.

[100] Ricardo L dos Santos, Juliano A Wickboldt, Roben C Lunardi, Bruno L Dalmazo,
Lisandro Z Granville, Luciano P Gaspary, Claudio Bartolini, and Marianne Hickey.
“A solution for identifying the root cause of problems in it change management”. In:
12th IFIP/IEEE International Symposium on Integrated Network Management (IM
2011) and Workshops. IEEE. 2011, pp. 586–593.

[101] Eunsoo Seo, Gulustan Dogan, Tarek Abdelzaher, and Theodore Brown. “Root cause
diagnosis in error-propagating networks”. In: Security and Communication Networks
9.11 (2016), pp. 1297–1308.

[102] Matti Siekkinen, Guillaume Urvoy-Keller, Ernst W Biersack, and Denis Collange. “A
root cause analysis toolkit for TCP”. In: Computer Networks 52.9 (2008), pp. 1846–
1858.

[103] Leslie F Sikos. “Packet analysis for network forensics: A comprehensive survey”. In:
Forensic Science International: Digital Investigation 32 (2020), p. 200892.

[104] Leslie F Sikos. “Packet analysis for network forensics: A comprehensive survey”. In:
Forensic Science International: Digital Investigation 32 (2020), p. 200892.

[105] Su Myat Marlar Soe and May Paing Paing Zaw. “Design and implementation of rule-
based expert system for fault management”. In: International Journal of Computer
and Information Engineering 2.12 (2008), pp. 4022–4027.

[106] Marc Solé, Victor Muntés-Mulero, Annie Ibrahim Rana, and Giovani Estrada. “Sur-
vey on models and techniques for root-cause analysis”. In: arXiv preprint arXiv:1701.08546
(2017).

[107] Anna Cinzia Squicciarini, Giuseppe Petracca, William G Horne, and Aurnob Nath.
“Situational awareness through reasoning on network incidents”. In: Proceedings of
the 4th ACM conference on Data and application security and privacy. 2014, pp. 111–
122.

67

[108] Srinikethan Madapuzi Srinivasan, Tram Truong-Huu, and Mohan Gurusamy. “Ma-
chine learning-based link fault identification and localization in complex networks”.
In: IEEE Internet of Things Journal 6.4 (2019), pp. 6556–6566.

[109] Srikanth Sundaresan, Yan Grunenberger, Nick Feamster, Dina Papagiannaki, Dave
Levin, and Renata Teixeira. WTF? Locating performance problems in home net-
works. Tech. rep. Georgia Institute of Technology, 2013.

[110] P Supavatanakul, J Lunze, V Puig, and J Quevedo. “Diagnosis of timed automata:
Theory and application to the DAMADICS actuator benchmark problem”. In: Con-
trol Engineering Practice 14.6 (2006), pp. 609–619.

[111] Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil, et al. “Network monitoring ap-
proaches: An overview”. In: Int J Adv Comput Netw Secur 5.2 (2015), pp. 88–93.

[112] Masatoshi Takano. “ICS Cybersecurity incident response and the troubleshooting
process”. In: 2014 Proceedings of the SICE Annual Conference (SICE). IEEE. 2014,
pp. 827–832.

[113] Chung-hao Tan. “Failure Diagnosis for Configuration Problem in Storage System”.
In: IBM Almaden Reseach Center ().

[114] Anuja Tayal, Neha Sharma, Neminath Hubballi, and Maitreya Natu. “Traffic dynamics-
aware probe selection for fault detection in networks”. In: Journal of Network and
Systems Management 28 (2020), pp. 1055–1084.

[115] Stefano Traverso, Edion Tego, Eike Kowallik, Stefano Raffaglio, Andrea Fregosi,
Marco Mellia, and Francesco Matera. “Exploiting hybrid measurements for network
troubleshooting”. In: 2014 16th International Telecommunications Network Strategy
and Planning Symposium (Networks). IEEE. 2014, pp. 1–6.

[116] Alex Ulmer, David Sessler, and Jörn Kohlhammer. “Netcapvis: Web-based progres-
sive visual analytics for network packet captures”. In: 2019 IEEE Symposium on
Visualization for Cyber Security (VizSec). IEEE. 2019, pp. 1–10.

[117] Tong Van, Hai Anh Tran, Sami Souihi, and Abdelhamid MELLOUK. “Network
troubleshooting: survey, taxonomy and challenges”. In: 2018 International Confer-
ence on Smart Communications in Network Technologies (SaCoNeT). IEEE. 2018,
pp. 165–170.

[118] Angela M Vargas-Arcila, Juan Carlos Corrales, Araceli Sanchis, and Álvaro Rendón
Gallón. “Peripheral diagnosis for propagated network faults”. In: Journal of Network
and Systems Management 29.2 (2021), p. 14.

[119] Chengwel Wang, Soila P Kavulya, Jiaqi Tan, Liting Hu, Mahendra Kutare, Mike
Kasick, Karsten Schwan, Priya Narasimhan, and Rajeev Gandhi. “Performance trou-
bleshooting in data centers: an annotated bibliography?” In: ACM SIGOPS Oper-
ating Systems Review 47.3 (2013), pp. 50–62.

[120] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. “Groot: An event-graph-based approach for root cause anal-
ysis in industrial settings”. In: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2021, pp. 419–429.

[121] RiXin Wang, Yang Jin, and MinQiang Xu. “Approach of fault diagnosis based on
similarity degree matching distance function”. In: Science China Technological Sci-
ences 56 (2013), pp. 2709–2720.

68

[122] Ruyan Wang, Dapeng Wu, Yang Li, Xiong Yu, Zhao Hui, and Keping Long. “Knight’s
tour-based fast fault localization mechanism in mesh optical communication net-
works”. In: Photonic Network Communications 23 (2012), pp. 123–129.

[123] Yien Wang and Jianhua Yang. “Ethical hacking and network defense: choose your
best network vulnerability scanning tool”. In: 2017 31st International Conference
on Advanced Information Networking and Applications Workshops (WAINA). IEEE.
2017, pp. 110–113.

[124] Marco Weiss, Simon Bauer, and Benedikt Jaeger. “Optimization of Decision Trees
for TCP Performance Root Cause Analysis”. In: Network 67 (2019).

[125] Chathuranga Widanapathirana, Jonathan Li, Y Ahmet Sekercioglu, Milosh Ivanovich,
and Paul Fitzpatrick. “Intelligent automated diagnosis of client device bottlenecks
in private clouds”. In: 2011 Fourth IEEE International Conference on Utility and
Cloud Computing. IEEE. 2011, pp. 261–266.

[126] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
and Scuola Superiore S Anna. “Automatic Network Protocol Analysis.” In: NDSS.
Vol. 8. Citeseer. 2008, pp. 1–14.

[127] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Lihua
Yuan, and Ming Zhang. “NetPilot: Automating datacenter network failure mitiga-
tion”. In: Proceedings of the ACM SIGCOMM 2012 conference on Applications, tech-
nologies, architectures, and protocols for computer communication. 2012, pp. 419–
430.

[128] Andreas Wundsam, Amir Mehmood, Anja Feldmann, and Olaf Maennel. “Network
troubleshooting with mirror VNets”. In: 2010 IEEE Globecom Workshops. IEEE.
2010, pp. 283–287.

[129] Ming-Ming Xiao, Shun-Zheng Yu, and Yu Wang. “Automatic network protocol au-
tomaton extraction”. In: 2009 Third International Conference on Network and Sys-
tem Security. IEEE. 2009, pp. 336–343.

[130] Chunmei Xu, Hao Zhang, Conghua Huang, and Daogang Peng. “Study of fault
diagnosis based on probabilistic neural network for turbine generator unit”. In: 2010
International Conference on Artificial Intelligence and Computational Intelligence.
Vol. 1. IEEE. 2010, pp. 275–279.

[131] Tao Xu, Dian Shen, Huanhuan Zhang, Runqun Xiong, and Jiahui Jin. “Fault di-
agnosis for the virtualized network in the cloud environment using reinforcement
learning”. In: 2019 IEEE International Conference on Smart Cloud (SmartCloud).
IEEE. 2019, pp. 231–236.

[132] Tianyin Xu and Yuanyuan Zhou. “Systems approaches to tackling configuration
errors: A survey”. In: ACM Computing Surveys (CSUR) 47.4 (2015), pp. 1–41.

[133] He Yan, Lee Breslau, Zihui Ge, Dan Massey, Dan Pei, and Jennifer Yates. “G-rca:
a generic root cause analysis platform for service quality management in large ip
networks”. In: Proceedings of the 6th International COnference. 2010, pp. 1–12.

[134] Yi Yang, Kieran McLaughlin, Tim Littler, Sakir Sezer, and HF Wang. “Rule-based
intrusion detection system for SCADA networks”. In: (2013).

69

[135] Xu Ye, Bo Yan, and Guanling Chen. “Providing diagnostic network feedback to end
users on smartphones”. In: 2013 IEEE 32nd International Performance Computing
and Communications Conference (IPCCC). IEEE. 2013, pp. 1–9.

[136] Mao Yi. “Computer Fault Diagnosis System Based on Artificial Intelligence”. In:
Revista Ibérica de Sistemas e Tecnologias de Informação 16B (2015), p. 338.

[137] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, and
Wei-Ying Ma. “Automated known problem diagnosis with event traces”. In: ACM
SIGOPS Operating Systems Review 40.4 (2006), pp. 375–388.

[138] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. “Sherlog: error diagnosis by connecting clues from run-time logs”. In:
Proceedings of the fifteenth International Conference on Architectural support for
programming languages and operating systems. 2010, pp. 143–154.

[139] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. “A survey
on network troubleshooting”. In: Technical Report Stanford/TR12-HPNG-061012,
Stanford University, Tech. Rep. (2012).

[140] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. “Auto-
matic test packet generation”. In: Proceedings of the 8th international conference on
Emerging networking experiments and technologies. 2012, pp. 241–252.

[141] Xin Zhang, Fanfu Zhou, Xinyu Zhu, Haiyang Sun, Adrian Perrig, Athanasios V Vasi-
lakos, and Haibing Guan. “DFL: Secure and practical fault localization for datacenter
networks”. In: IEEE/ACM Transactions on Networking 22.4 (2013), pp. 1218–1231.

[142] Ziming Zheng, Li Yu, Zhiling Lan, and Terry Jones. “3-dimensional root cause di-
agnosis via co-analysis”. In: Proceedings of the 9th international conference on Au-
tonomic computing. 2012, pp. 181–190.

[143] Wang Zhenqi and Wang Xinyu. “Netflow based intrusion detection system”. In: 2008
International conference on multimedia and information technology. IEEE. 2008,
pp. 825–828.

[144] Donghao Zhou, Zheng Yan, Yulong Fu, and Zhen Yao. “A survey on network data
collection”. In: Journal of Network and Computer Applications 116 (2018), pp. 9–23.

[145] Pengpeng Zhou, Yang Wang, Zhenyu Li, Gareth Tyson, Hongtao Guan, and Gaogang
Xie. “Logchain: Cloud workflow reconstruction & troubleshooting with unstructured
logs”. In: Computer Networks 175 (2020), p. 107279.

[146] Yanyan Zhuang, Eleni Gessiou, Steven Portzer, Fraida Fund, Monzur Muhammad,
Ivan Beschastnikh, and Justin Cappos. “Netcheck: Network diagnoses from blackbox
traces”. In: 11th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 14). 2014, pp. 115–128.

70

Appendix A

Included Papers

A.1 Network Diagnostics Using Passive Network Monitoring
and Packet Analysis

Authors: Holkovič Martin, Ing. (80%), Ryšavý Ondřej, doc. Ing., Ph.D. (20%)
Abstract: Finding a problem cause in network infrastructure is a complex task because
a fault node may impair seemingly independent components. On the other hand, most
communication protocols have built-in error detection mechanisms. In this paper, we pro-
pose to build a system that automatically diagnoses network services and applications by
inspecting the network communication automatically. We model the diagnostic problem
using a fault tree method and generate a set of rules that identify the symptoms and link
them with possible causes. The administrators can extend these rules based on their ex-
periences and the network configuration to automatize their routine tasks. We successfully
deployed the proof-of-concept tool and found interesting future research topics.
Keywords: Network diagnostics, passive network monitoring, rule-based diagnostics, fault
tree analysis, event-based diagnostics.
Published in: The Fifteenth International Conference on Networking and Services (ICNS-
2019), Athens, Greece
Conference rating: N/A (Core), B4 (Qualis)
ISSN: 2308-4006
ISBN: 978-1-61208-711-5

71

Network Diagnostics Using Passive Network
Monitoring and Packet Analysis

Martin Holkovič

CESNET a.l.e.
Zikova 1903/4

Prague 16000, CZ
Email: holkovic@cesnet.cz

Ondřej Ryšavý

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: rysavy@fit.vutbr.cz

Abstract—Finding a problem cause in network infrastructure
is a complex task because a fault node may impair seemingly in-
dependent components. On the other hand, most communication
protocols have built-in error detection mechanisms. In this paper,
we propose to build a system that automatically diagnoses
network services and applications by inspecting the network
communication automatically. We model the diagnostic problem
using a fault tree method and generate a set of rules that identify
the symptoms and link them with possible causes. The adminis-
trators can extend these rules based on their experiences and
the network configuration to automatize their routine tasks.
We successfully deployed the proof-of-concept tool and found
interesting future research topics.

Keywords–Network diagnostics; passive network monitoring;
rule-based diagnostics; fault tree analysis; event-based diagnostics.

I. INTRODUCTION

Network infrastructure and applications are complex, prone
to cyber attacks, outages, performance problems, misconfigu-
ration errors, and problems caused by software or hardware
incompatibility. All these problems may affect network perfor-
mance and user experience [1] which may cause fatal problems
in critical networks (e.g., E-health, Vanet, Industrial IoT).

Many network administrators do not have the proper
tools or knowledge to diagnose and fix network problems
effectively, and they require an automated tool to diagnose
these errors [2]. Zeng et al. [3] provide a short survey
on network troubleshooting from the administrators’ viewpoint
identifying the most common network problems: reachability
problems, degraded throughput, high latency, and intermittent
connectivity. The consulted network administrators expressed
the need for a network monitoring tool that would be able
to identify such problems.

This paper proposes a system which creates diagnostic
information only by performing passive network traffic moni-
toring and packet-level analysis. Previous research and devel-
opment provided tools for helping administrators to diagnose
faults [4] and performance problems [5]. However, these tools
either require installation of agents on hosts, active monitoring,
or providing rich information about the environment.

One of the most common ways of analyzing network
traffic is by using a network packet analyzer (e.g., Wireshark).
The analyzer works with captured network traffic (PCAP
files) and displays structured information of layered protocols

contained in every packet (encapsulated protocols, protocol
fields). Administrators work with this information, check trans-
ferred content and compare the data with expected values.
This process, done manually, is time-consuming and requires
a good knowledge of network protocols and technologies.

The main contribution of this paper is a proposal of a tool
for automatic diagnoses of network related problems from
network communication only. Our approach tries to imitate
a diagnostic process of a real administrator using the fault tree
method and a popular packet parsing tool tshark. We have also
implemented a proof-of-concept implementation to confirm
the viability of the approach.

The paper is organized as follows. Section 2 defines
the problem statement and research questions. Section 3
discusses related work and describes diagnostic approaches.
Our solution consists of three stages and is introduced in Sec-
tion 4. Section 5 instructs network administrators how to use
our system (proof-of-concept) and shows how we model diag-
nostic knowledge. Finally, Section 6 is the conclusion which
summarizes the current state and proposes future works.

II. RESEARCH QUESTIONS

Our primary goal is to design a system that infers possible
causes accountable for network related problems, such as ser-
vice unreachability or application errors. Offering a list of ac-
tions for fixing the errors’ cause is the secondary and optional
goal. All this information is gathered only from captured
network communication.

In our work, we focus on enterprise networks that have
complex networking topologies, usually consisting of hetero-
geneous devices. We expect that the administrators will collect
network communication on appropriate places and validate its
consistency before the analysis.

To achieve our goal, we need to find answers
to the following research questions:

1) How to model different network faults in a suitable way
for implementation in a diagnostic system? Reachability,
application specific, and device malfunctioning problems
can cause various networking issues. We need to have
a unified approach for modeling these problems to iden-
tify the symptoms and link them with root causes.

2) What information should be extracted from the captured
network communication to identify symptoms of failures?

72

In our case, we can passively access the communica-
tion in the monitored network and extract the necessary
data to detect possible symptoms. An approach that can
efficiently detect the symptoms in terms of precision and
performance is needed.

3) How to identify the root cause of the problem, if we have
a set of identified symptoms? The core part of the diag-
nostic engine is to apply knowledge gathered from
observed symptoms to infer the possible root cause
of the observed problem. The result should provide the in-
formation in sufficient detail. For instance, if the process
on server crashed, then we would like to know this spe-
cific information instead of a more general explanation
(e.g., a host failure has occurred).

4) What list of actions can we give to the administrator
to fix the problems? Based on the observed symptoms and
the root cause, the system should be able to provide fixing
guidelines. These guidelines are supposed to be easy
to understand even for an inexperienced administrator.

III. RELATED WORK

A lot of research activities were dedicated to the diagnoses
of network faults. Various methods were proposed for different
network environments [4], in particular, home networks [6],
enterprise networks [7]–[10], data centers [5], backbone and
telecommunications networks [11], mobile networks [12], In-
ternet of Things [13], Internet routing [14] and host reach-
ability. Methods of network troubleshooting can be roughly
divided into the following classes:
Active methods use traffic generators to send probe packets

that can detect the availability of services or check
the status of applications [15]. Usually, generators create
diagnostic communication according to the test plan [7].
The responses are evaluated and provide diagnostic infor-
mation that may help to reveal device misconfiguration
or transient fail network states. Diagnostic probes intro-
duce extra traffic, which may pose a problem for large in-
stallations [10]. Also, active methods may rely on the de-
ployment of an agent within the environment to get
information about the individual nodes [8].

Passive methods detect symptoms from existing data sources,
e.g., traffic metadata [11], traffic capture files, network
log files [14], performance counters. Passive methods can
utilize the data provided by network monitoring systems.

Of course, the proposed systems also combine passive traf-
fic monitoring to detect faults with active probing to determine
the cause of failure. Identifying anomalies related to network
faults and linking them with possible causes can be done
by using one of the following approaches:
Inference-based approach uses a model to identify the depen-

dence among components and to infer the faults using
a collection of facts about the individual components [8],
[16].

Rule-based approach uses predefined rules to diagnose
faults [9]. The rules identify symptoms and determine
how these contribute to the cause. The rules may be orga-
nized in a collaborative environment for sharing knowl-
edge between administrators [6].

Classifier-based approach requires training data to learn
the normal and faulty states. The classifier can identify
a fault and its likely cause [17].

Network diagnostics based on traffic analysis can also
use methods proposed for anomaly detection as some types
of faults result in network communication anomalies.

Main contributions of our solution:

• automation of the tool Wireshark - Wireshark is a well-
known protocol analyzer but lacks any task automation;
• the result is well understandable - the result contains steps

which a real administrator would execute;
• easily extendable list of rules - the rules use Wireshark

display filter language [18].

IV. PROPOSED SYSTEM ARCHITECTURE

We have built a proof-of-concept expert system to ana-
lyze network traffic. The system combines rule-based
and inference-based approaches. We will not use a classifier-
based approach [19], because it requires too much training data
and only returns the root cause of the problem and not how it
relates to the detected symptoms. Another benefit of the rule-
based approach is that we can cover very specific situations
for which getting training data could be very problematic.

We are focusing purely on passive methods because ac-
tive methods are generating additional traffic into diagnosed
networks (which is not acceptable for us) and also because
this way, an administrator can perform an offline analysis
on a computer not connected to the diagnosed network.

The proposed system processes the input data in several
stages as shown in Figure 1. The first stage labeled as Protocols
Analyzer filters and decodes input packets using an external
tool. The second stage named Events Finder executes simple
rules to identify events significant from the diagnostics point
of view. In the third stage (Tree Engine), decision trees identify
the possible problem cause and create a diagnostic output. All
stages are easily extendable by the administrator who can add
new rules and definitions.

Our proposed approach can also use different data sources
(e.g., log files) as shown in Figure 1. Events Finder searches
through data using analyzers specific to each data source.
Additional analyzers could increase the diagnostic capability,
however in our research, we are focusing only on network data,
and we leave other possibilities for future research.

Events
Finder

Tree
Engine

Protocols
Analyzer

diagnostics
data

PCAP
file

log files
analyzer

log files

additional data sources

 (eg. log files)

Figure 1. Top level architecture design of all the proposed system stages.
The gray area represents optional extensions — additional data sources.

A. Protocols Analyzer
The first step in the processing pipeline is decoding cap-

tured network traffic in the PCAP format into a readable JSON
format. We employ the tool tshark, which is a command

73

line version of the widely-used network protocol analyzer
Wireshark. Because tshark follows the field naming convention
used by Wireshark, we can use Wireshark Display Filter
Expressions to select packet attributes. Tshark supports all
packet dissectors available in Wireshark. Using tshark brings
the following benefits:

• huge support of network protocols and when a new
protocol is created, community can implement parsers
very quickly and for free;

• adds tunneled, segmented and reassembled data support;
• tshark marks extracted data with the same names as dis-

played inside the Wireshark GUI. This allows a creation
of easy-to-read API for diagnostics;

B. Events Finder
Events finder aims to identify events useful for network

diagnosis (for example, a successful SMTP authentication
event). An event rule consists of two parts: a list of packet
filters and a list of assertions to express additional constraints.
Both filter expressions and assertions use Wireshark’s display
filter language. Using this language, the expressions can be first
tested in Wireshark before we use them in event finder rules.

The system evaluates the event rule as follows: (i) Each
packet filter returns a list of packets matching the filter.
(ii) Assertions are evaluated to select pairs of packets satisfying
the constraints. A result has the form of a collection of pairs
of packets, e.g., a rule that identifies DNS request-response
pairs asserts that the transaction ID in both the request and
response packets match. Assertion expressions use the display
filter language extended with basic mathematical operations.

The event rules have the declarative specification written
in YAML format. This format is described in subsection V-B.
Rules are organized into modules. New modules can be easily
added extending the rule database.

C. Tree Engine
The tree engine infers the possible error cause by evaluating

a decision tree that contains expert knowledge about supported
network protocols and services. Each node of the tree contains
a diagnostic question. Questions refer to events identified
by the Event Finder. Paths in the tree represent gathered knowl-
edge and lead to the possible cause of the problem. Along
the path, a diagnostic report is created to provide additional
information for experienced users. The diagnostic report is pro-
duced in a human-readable format, as well as in a machine
format useful for further processing or visualization.

The decision tree is comprised of the declarative specifica-
tion of tree nodes enriched by Python code. Injection of Python
code into the tree node definitions enables us to do complex
knowledge processing. The idea is to keep the declarative part
simple enough for most of the use-cases. The Python code
is needed for specific use-cases, where a custom processing
logic is necessary. The tree is defined using the YAML format
rules, and subsection V-A describe its syntax.

V. RULE SPECIFICATION

Diagnostic engine defines each protocol as a decision tree.
The tree consists of nodes representing administrator questions,
and edges representing answers to these questions. The edge

Administrator

Does the PCAP
contain an

SMTP protocol?

Did the user try
to authenticate?Did the server

successfully
welcome the

client? Did the server
return an error

code?NO
...

YES

YES

NO ...

...

Figure 2. A simple illustration of a binary decision tree. Administrator
diagnoses SMTP problem by checking questions in the predefined order.

can move the diagnostic process from one question to another
or finish the process with the discovered result.

The questions simulate thinking of a real administrator.
Typically, an administrator starts to search for certain net-
work packet values and after the search for them is finished,
the administrator searches for next values based on the result.
In our solution, each question can only have two answers:
success or fail. This yields a binary decision tree. Figure 2
shows an example of a small portion of the SMTP tree.

We need to convert the decision tree to a format under-
standable by our system. This conversion is split into two
steps: 1) defining tree nodes (Tree node rules) and 2) defining
conditions for choosing tree nodes (Event condition rules). The
following subsection describes the syntax for both tree node
rule and event condition rule. The reason why a node rule
does not contain a condition code directly is that multiple rules
would not be able to use the same condition code (reusability).

Conversion assigns a name to each node (label id). We
use the node names as labels for switching from one node
to another. Each node has a condition (condition rule id),
defined as an Event condition rule, used for choosing the next
diagnostic step. Each rule can have one or none success
and fail branch (branch code). Branches contain executable
Python code and the next node rule name. After the execution
of the Python code, the analysis switches to the next node.
Figure 3 shows the pseudocode for writing tree nodes.

1 label_id:
2 if (condition_rule_id):
3 success branch_code
4 else:
5 fail branch_code

Figure 3. Pseudocode for writing a tree node. Each node should have
a unique id, condition, and branch codes.

A. Tree Node Rules
Each rule consists of an event condition rule name which

should be executed, next states and blocks of Python code.
The Python code can process packet data, make logical deci-
sions and most importantly, generate diagnostic output. Instead
of writing the whole output inside these rules, the rule contains
only the name of the event. Each rule can switch to another
protocol rule to diagnose problems across several protocols,
e.g., if an SMTP communication is not detected, we will
check if there are any ICMP unreachable messages, failed TCP
connection attempts or incorrect DNS resolutions. Figure 4
shows an example of one rule defying the middle node from
the tree in Figure 2.

74

1 id : smtp d e t e c t e d # name of the rule
2 query : welcome ok ? # Events Finder rule
3 s u c c e s s :
4 s t a t e : c l i e n t welcomed # next state
5 code : | # Python code follows
6 event ("client_welcomed")
7 f a i l :
8 s t a t e : check e r r o r # next state
9 code : | # Python code follows

10 event ("client_not_welcomed")
Figure 4. Simple Tree Engine rule showing what should be done

if SMTP server welcomed the client or not.

B. Event Condition Rules
Rules in this section describe how the question is converted

into packet lookup functions. Each rule may look for several
independent packets, which are combined and checked if their
relation fulfills the assert condition. Each question returns
a list of tuples, where a tuple represents packets fulfilling
the assert condition. Figure 5 shows an example of a simple
rule for the question Did the server successfully welcome
the client? Section facts looks for any hello commands and
OK responses. The system puts founded packets which belong
together into touples based on the asserts section.

1 id : welcome ok ? # name of the rule
2 f a c t s : # which packets we are looking for
3 command: smtp . r e q . command i n {"HELO"
4 "EHLO"}
5 r e p l y : smtp . r e s p o n s e . code == "250"
6 a s s e r t s : # packets relation constrain
7 −command [tcp . stream]== r e p l y [tcp . stream]
8 −command [tcp . ack]== r e p l y [tcp . seq]
Figure 5. Example of SMTP rule for checking if the server welcomed

the client or not.

Figure 6. An example of diagnostic output for an SMTP error. After an error
552 is detected and translated into human-readable error description, the

system proposes a list of actions for fixing the error.

Before executing the diagnostic process, it is necessary
to define event names from the Tree engine rules. A defi-
nition is just a simple dictionary which contains a severity
and a description message. Part of the event description can
be a pointer to another dictionary, which translates error codes
to a human readable format. For example, instead of SMTP
error code 552, the message ”Requested mail actions aborted

Table 1. Supported protocols and amount of rules and success, warning,
error events which describe various protocol behavior situations.

Protocol Node rules Condition rules Events
Success Warning Error

DHCP 25 23 10 9 4
DNS 12 12 8 2 6
FTP 24 10 17 5 6
ICMP 4 2 0 0 4
IMAP 15 8 7 0 11
POP 21 7 8 5 10
SIP 38 22 15 1 8
SLAAC 8 7 1 5 2
SMB 27 25 20 4 5
SMTP 17 13 10 5 9
SSL 1 1 1 0 1
TCP 11 11 0 8 3

- Exceeded storage allocation” is displayed. After all rules
and events are defined, it is possible to execute the diagnostic
process. Figure 6 shows an example of one diagnostic output.

VI. CONCLUSION

This paper presents a proposal of a system intended
for troubleshooting network problems based on a passive
network traffic analysis. The primary goal is to automate
network diagnostics to help network administrators find causes
of problems. The core of the presented approach is a multistage
processing pipeline combining rule-based and inference-based
methods. We have completed the implementation of a proof-
of-concept system that we will use for preliminary evaluation
and experiments.

We have implemented diagnostic rules for several app-
lication and service protocols. Table 1 shows the current
list of supported protocols and their complexity in term
of Node and Condition rule count, and their capabilities in term
of Event count. After an evaluation of our solution by our part-
ner — a monitoring vendor company, we have concluded,
that the system must mark all reports which our tool may
have incorrectly detected because of low-quality input data.
For example, packet loss can drastically decrease the quality
and accuracy of diagnostic results. In the current system, all
reports from TCP flows with missing segments are marked
as possibly incorrect.

Future work will focus on:
• evaluating the solution (accuracy and performance)

and comparing the results with similar monitoring tools;
• analyzing each protocol’s rules and based on used proto-

cols and their field names create a filtering unit to reduce
the amount of data processed by Protocol Analyzer;

• optimizing the performance. The current Events Finder
combines all packets to check whether they are fulfilling
the assert conditions or not. This all-to-all packet check
has exponential time complexity (2O(n)), which is un-
acceptable for large PCAP files. We want to optimize
checking the asserts to decrease the complexity.

ACKNOWLEDGMENT

This work was supported by project ”Network Diag-
nostics from Intercepted Communication” (2017-2019),
no. TH02010186, funded by the Tech-nological Agency
of the Czech Republic and by BUT project ”ICT Tools,
Methods and Technologies for Smart Cities” (2017-2019),
no. FIT-S-17-3964.

75

REFERENCES
[1] R. Wang, D. Wu, Y. Li, X. Yu, Z. Hui, and K. Long, “Knights tour-

based fast fault localization mechanism in mesh optical communication
networks,” Photonic Network Communications, vol. 23, no. 2, 2012,
pp. 123–129.

[2] M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

[3] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey
on network troubleshooting,” Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep., 2012.

[4] M. łgorzata Steinder and A. S. Sethi, “A survey of fault localization
techniques in computer networks,” Science of computer programming,
vol. 53, no. 2, 2004, pp. 165–194.

[5] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 139–152.

[6] B. Agarwal et al., “Netprints: Diagnosing home network misconfigu-
rations using shared knowledge,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, ser.
NSDI’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 349–
364.

[7] L. Lu, Z. Xu, W. Wang, and Y. Sun, “A new fault detection method
for computer networks,” Reliability Engineering & System Safety, vol.
114, 2013, pp. 45–51.

[8] S. Kandula et al., “Detailed diagnosis in enterprise networks,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 4, 2009,
pp. 243–254.

[9] M. Luo, D. Zhang, G. Phua, L. Chen, and D. Wang, “An interactive rule
based event management system for effective equipment troubleshoot-
ing,” in IECON 2011-37th Annual Conference on IEEE Industrial
Electronics Society. IEEE, 2011, pp. 2329–2334.

[10] A. Mohamed, “Fault detection and identification in computer networks:
A soft computing approach,” Ph.D. dissertation, University of Waterloo,
2010.

[11] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly extraction in backbone networks using association rules,”
in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement. ACM, 2009, pp. 28–34.

[12] L. Benetazzo, C. Narduzzi, P. A. Pegoraro, and R. Tittoto, “Passive
measurement tool for monitoring mobile packet network performances,”
IEEE transactions on instrumentation and measurement, vol. 55, no. 2,
2006, pp. 449–455.

[13] K.-H. Kim, H. Nam, J.-H. Park, and H. Schulzrinne, “Mot: a collabo-
rative network troubleshooting platform for the internet of things,” in
Wireless Communications and Networking Conference (WCNC), 2014
IEEE. IEEE, 2014, pp. 3438–3443.

[14] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: mining network events from router syslogs,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement. ACM,
2010, pp. 472–484.

[15] M. Vásquez-Bermúdez, J. Hidalgo, M. del Pilar Avilés-Vera, J. Sánchez-
Cercado, and C. R. Antón-Cedeño, “Analysis of a network fault detec-
tion system to support decision making,” in International Conference
on Technologies and Innovation. Springer, 2017, pp. 72–83.

[16] S. Jamali and M. S. Garshasbi, “Fault localization algorithm in computer
networks by employing a genetic algorithm,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 29, no. 1, 2017, pp. 157–174.

[17] E. S. Ali and M. Darwish, “Diagnosing network faults using bayesian
and case-based reasoning techniques,” in Computer Engineering &
Systems, 2007. ICCES’07. International Conference on. IEEE, 2007,
pp. 145–150.

[18] The Wireshark Wiki, “Displayfilters,” [Online; accessed 20-April-
2019]. [Online]. Available: https://wiki.wireshark.org/DisplayFilters

[19] C. Xu, H. Zhang, C. Huang, and D. Peng, “Study of fault diagnosis
based on probabilistic neural network for turbine generator unit,” in
2010 International Conference on Artificial Intelligence and Computa-
tional Intelligence, vol. 1. IEEE, 2010, pp. 275–279.

76

A.2 Using Rule-Based Decision Trees for Automatic Passive
Diagnostics of the Network Problems

Authors: Holkovič Martin, Ing. (90%), Ryšavý Ondřej, doc. Ing., Ph.D. (10%)
Abstract: Network troubleshooting often requires a detailed analysis that may involve
network packet capturing and a manual analysis using tools such as Wireshark. This is
time-consuming and requires deep knowledge of communication protocols. Therefore this
domain is a suitable candidate for the deployment of an expert system. In this paper, we
consider a rule-based system integrating the expert knowledge that performs an automatic
root cause analysis of network problems identifiable from network communications. The
system is open, thus it is possible to add new rules as needed, e.g., for specific and recur-
ring cases of a target environment. The rules are evaluated in a tree-based fashion, which
enables us to collect additional information during the problem search to better explain the
possible causes. We successfully deployed the tool as part of a commercial tool for network
monitoring.
Keywords: Using Rule-Based Decision Trees for Automatic Passive Diagnostics of the
Network Problems.
Published in: International Journal On Advances in Networks and Services
Impact Factor: 0.546
ISSN: 1942-2644

77

Using Network Traces to Generate Models for Automatic Network
Application Protocols Diagnostics

Martin Holkovič1, Ondřej Ryšavý2 and Libor Polčák2

1CESNET a.l.e., Zikova 1903/4, 160 00 Prague, Czech Republic
2Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, 612 66 Brno, Czech Republic

holkovic@cesnet.cz, rysavy@fit.vutbr.cz and polcak@fit.vutbr.cz

Keywords: Network diagnostics, automatic diagnostics, protocol model from traces.

Abstract: Network diagnostics is a time-consuming activity that requires an administrator with good knowledge of net-
work principles and technologies. Even if some network errors have been resolved in the past, the administra-
tor must spend considerable time removing these errors when they reoccur. This article presents an automated
tool to learn the expected behavior of network protocols and possible variations. The created model can be
used to automate the diagnostic process. The model presents a finite automaton containing protocol behav-
ior for different situations. Diagnostics of unknown communication is performed by checking the created
model and searching for error states and their descriptions. We have also created a proof-of-concept tool that
demonstrates the practical potential of this approach.

1 INTRODUCTION

Computer networks consist of a large number of de-
vices and applications that communicate with each
other. Due to the complexity of the network, er-
rors occurred on a single device can negatively af-
fect the network services and thus the user experience.
There are various sources of error, such as miscon-
figuration, poor connectivity, hardware error, or even
user misbehavior. End users are often unable to solve
these problems and seek help from a network admin-
istrator. The administrator must diagnose the current
situation, find the cause of the problem, and correct it
to provide the service again.

The administrator diagnoses problems by check-
ing communication and finding possible causes
for these errors. Troubleshooting can be a rather
complex activity requiring good technical knowl-
edge of each network entity. Another complication
is that the administrator often has to check the number
of possible causes to find the true source of the prob-
lem, which requires some time. Network problems
reappear even after the administrator detects and re-
solves these issues, such as repeating the same user
error or when the application update on the server
changes the expected behavior. All these problems
make the diagnostic process a time-consuming and
challenging activity that requires much administrator
attention.

(Zeng et al., 2012) provides a short survey that
shows that network diagnostics is time-consuming,
and administrators wish to have a more sophisticated
diagnostic tool available. Since each environment
is different, the use of universal tools is difficult.
It would be useful to have a tool that adapts to be-
havior on a particular network. The tool should learn
the behavior of the network itself without the need
to program or specify rules on the behavior of indi-
vidual communicating applications and services.

Our goal is to develop a tool that automatically
creates a protocol behavior model. We are not aiming
at creating a general model for use in all networks, but
the model should describe diagnosed network only.
Instead of writing the model manually, the adminis-
trator provides examples (traces) of the protocol con-
versations in the form of PCAP files. The adminis-
trator provides two groups of files. The first group
contains traces of normal behavior, while the second
group consists of known, previously identified error
traces. Based on these groups, the tool creates a proto-
col model. When the model is created, it can be used
for detection and diagnosis of issues in the observed
network communication. Once the model is created,
additional traces may be used to improve the model
gradually.

Our focus is on detecting application layer errors
in enterprise networks. Thus, in the presented work,
we do not consider errors occurred on other layers,

78

e.g., wireless communication (Samhat et al., 2007),
routing errors (Dhamdhere et al., 2007), or perfor-
mance issue on the network layer (Ming Luo, 2011).
Because we are focusing on enterprise networks, we
make some assumption on the availability of required
source data. We expect that administrators using this
approach have access to network traffic as the same
administrators operate the network infrastructure, and
it is possible to provide enough visibility to data
communication. Even the communication outside
the company’s network is encrypted, the traffic be-
tween the company’s servers and inside the network is
many times unencrypted, or the data can be decrypted
by providing server’s private key or logging the sym-
metric session key 1. Also, the source capture files
have no or minimal packet loss. An administrator can
recapture the traffic if necessary.

When designing the system, we assumed some
practical considerations:

• no need to implement custom application protocol
dissectors;

• application error diagnostics cannot be affected
by lower protocols (e.g., version of IP protocol,
data tunneling protocol);

• easily readable protocol model - the created model
can be used for other activities too (e.g., security
analysis).

To demonstrate the potential of our approach,
we have created and evaluated a proof-of-concept im-
plementation available as a command line tool.

The main contribution of this paper is a new au-
tomatic diagnostic method for error detection in net-
work communication of commonly used application
protocols. The method creates a protocol behavior
model from packets traces that contain both correct
and error communication patterns. The administra-
tor can also use the created model for documentation
purposes and as part of a more detailed analysis,e.g.,
performance or security analysis.

This paper is organized as follows: Section 2 de-
scribes existing work comparable to the presented ap-
proach. Section 3 overviews the system architecture.
Section 4 provides details on the method, including
algorithms used to create and use a protocol model.
Section 5 presents the evaluation of the tool imple-
menting the proposed system. Finally, Section 6 sum-
marizes the paper and identifies possible future work.

1http://www.root9.net/2012/11/ssl-decryption-with-
wireshark-private.html

2 RELATED WORK

Recently published survey paper (Tong et al., 2018)
divides issues related to network systems as either
application-related or network-related problems. No-
table attention in troubleshooting of network appli-
cations was concentrated on networked multimedia
systems, e.g., (Leaden, 2007), (Shiva Shankar and
Malathi Latha, 2007), (Luo et al., 2007). Multimedia
systems require that certain quality of service (QoS)
is provided by the networking environment otherwise
various types of issues can occur. Network issues
comprise network reachability problems, congestion,
excessive packet loss, link failures, security policy vi-
olation, and router misconfiguration.

Traditionally, network troubleshooting is a mostly
manual process that uses several tools to gather
and analyze relevant information. The ultimate tool
for manual network traffic analysis and troubleshoot-
ing is Wireshark (Orzach, 2013). It is equipped with
a rich set of protocol dissectors that enables to view
details on the communication at different network
layers. An administrator has to manually analyze
the traffic and decide which communication is abnor-
mal, possibly contributing to the observed problem.
Though Wireshark offers advanced filtering mecha-
nism, it lacks any automation (El Sheikh, 2018).

Network troubleshooting employs active, passive,
or hybrid methods (Traverso et al., 2014). Ac-
tive methods rely on the tools that generate probing
packets to locate network issues (Anand and Akella,
2010). Specialized tools using generated diagnostic
communication were also developed for testing net-
work devices (Procházka et al., 2017). Contrary
to active methods, the passive approach relies only
on the observed information. Various data sources
can be mined to obtain enough evidence to identify
the problem. The collected information is then eval-
uated by the troubleshooting engine. The engine can
use different techniques of fault localization.

Rule-based systems describe normal and abnor-
mal states of the system. The set of rules is typic-
ally created by an expert and represents the domain
knowledge for the target environment. Rule-based
systems often do not directly learn from experience.
They are also unable to deal with new previously un-
seen situations, and it is hard to maintain the repre-
sented knowledge consistently (łgorzata Steinder and
Sethi, 2004).

Statistical and machine learning methods were
considered for troubleshooting misconfigurations
in home networks (Aggarwal et al., 2009) and diag-
nosis of failures in large Internet sites (Chen et al.,
2004). Tranalyzer (Burschka and Dupasquier, 2017)

79

Packets parser

Model training

Diagnostics

Data filtering Data pairing

Input data processing

Protocol model PCAP file

Figure 1: After the system processes the input PCAP files (the first yellow stage), it uses the data to create the protocol
behavior model (the second green stage) or to diagnose an unknown protocol communication using the created protocol
model (the-third purple stage).

is a flow-based traffic analyzer that performs traffic
mining and statistical analysis enabling troubleshoot-
ing and anomaly detection for large-scale networks.
Big-DAMA (Casas et al., 2016) is another framework
for scalable online and offline data mining and ma-
chine learning supposed to monitor and characterize
extremely large network traffic datasets.

Protocol analysis approach attempts to infer
a model of normal communication from data sam-
ples. Often, the model has the form of a finite automa-
ton representing the valid protocol communication.
An automatic protocol reverse engineering that stores
the communication patterns into regular expressions
was suggested in (Xiao et al., 2009). Tool ReverX
(Antunes et al., 2011) automatically infers a specifi-
cation of a protocol from network traces and generates
corresponding automaton. Recently, reverse engi-
neering of protocol specification only from recorded
network traffic was proposed to infer protocol mes-
sage formats as well as certain field semantics for bi-
nary protocols (Lodi et al., 2018).

3 SYSTEM ARCHITECTURE

This section describes the architecture of the proposed
system which learns from communication examples
and diagnoses unknown communications. The sys-
tem takes PCAP files as input data, where one PCAP
file contains only one complete protocol communi-
cation. An administrator marks PCAP files as cor-
rect or faulty communication examples before model
training. The administrator marks faulty PCAP files
with error description and a hint on how to fix
the problem. The system output is a model describing
the protocol behavior and providing an interface for
using this model for the diagnostic process. The diag-
nostic process takes a PCAP file with unknown com-
munication and checks whether this communication
contains an error and if yes, returns a list of possible
errors and fixes.

The architecture, shown in Figure 1, consists
of multiple components, each implementing a stage
in the processing pipeline. The processing is staged
as follows:

• Input data processing - Preprocessing is respon-
sible for converting PCAP files into a format suit-
able for the next stages. Within this stage, the in-
put packets are decoded using protocol parser.
Next, the filter is applied to select only relevant
packets. Finally, the packets are grouped to pair
request to their corresponding responses.

• Model training - The training processes several
PCAP files and creates a model characterizing
the behavior of the analyzed protocol. The out-
put of this phase is a protocol model.

• Diagnostics - In the diagnostic component, an un-
known communication is analyzed and compared
to available protocol models. The result is a report
listing detected errors and possible hints on how
to correct them.
In the rest of the section, the individual compo-

nents are described in detail. Illustrative examples are
provided for the sake of better understanding.

3.1 Input Data Processing

This stage works directly with PCAP files provided
by the administrator. Each file is parsed by TShark 2

which exports decoded packets to JSON format.
The system further processes the JSON data by filter-
ing irrelevant records and pairs request packets with
their replies. The output of this stage is a list of tuples
representing atomic transactions.

3.1.1 Packets parser

Instead of writing our packet decoders, we use
the existing implementation provided by TShark.
TShark is the console version of the well-known
Wireshark protocol analyzer which supports many
network protocols and can also analyze tunneled and
fragmented packets. In the case the Wireshark does
not support some protocol, e.g., proprietary, it is pos-
sible to use a tool which generates dissectors from
XML files (Golden and Coffey, 2015). The system
converts each input PCAP file into the JSON for-
mat (TShark supports multiple formats). The JSON

2https://www.wireshark.org/docs/man-
pages/tshark.html

80

...
"eth": {
 "eth.dst": "f0:79:59:72:7c:30",
 "eth.type": "0x00000800",
 ...
},
...
"dns": {
 "dns.id": "0x00007956",
 "dns.flags.response": "0",
 "dns.flags.opcode": "0",
 "dns.qry.name": "mail.patriots.in",
 ...
},
...

Figure 2: Excerpt from the TShark output into JSON for-
mat. The JSON represents POP3 packet values from all
network protocols in a key-value data format.

format represents data as a key-value structure (see
Figure 2), where the key is the name of the proto-
col field according to Wireshark definition 3, e.g.,
pop.request.command.

3.1.2 Data filtering

The JSON format from the TShark output is still pro-
tocol dependent because the field names are protocol-
dependent, and we have to know which key names
each protocol uses. The system converts the data
into a more generic format to make the next pro-
cessing protocol independent. We have found out,
that most of the application protocols use a request-
reply communication pattern. The system filters re-
quests and replies from each protocol and removes
the rest of the data. Even though the protocols use
the same communication pattern, they use a differ-
ent naming convention to mark the reply and response
values (see Table 1).

The problem is how to find the requests and
replies in the JSON data. In our solution, we have
created a database of protocols and their processed
field names. In the case the protocol is not yet in
the database, we require the administrator to add these
two field names to the database. The administrator
can get the field names from the Wireshark tool easily
by clicking on the appropriate protocol field.

Messages can also contain additional informa-
tion and parameters, e.g., server welcome message.
The system also removes this additional information
to allow generalization of otherwise different mes-
sages during the protocol model creation. For exam-
ple, the welcome server message often contains

3https://www.wireshark.org/docs/dfref/

Table 1: Several application protocols with their request and
reply field names with example values. The system takes
only data from these fields and drops the rest.

Name Type Field name E.g.

SMTP Request smtp.req.command MAIL
Reply smtp.response.code 354

FTP Request ftp.request.command RETR
Reply ftp.response.code 150

POP Request pop.request.command STAT
Reply pop.response.indicator +OK

DNS Request dns.flags.opcode 0
Reply dns.flags.rcode 0

the current date and time, which is always different,
and these different messages would create a lot of un-
repeatable protocol states. The Figure 3 shows the re-
sulting format from the Data filtering step.

Unfortunately, TShark marks some unpredictable
data (e.g., authentication data) in some protocols as
regular requests and does not clearly distinguish it.
These values are a problem in later processing be-
cause these unpredictable values create ungeneraliz-
able states during the protocol model learning phase.
In our tests, we have observed that regular requests
have a maximal length of 6 characters, and unpre-
dictable requests have a much longer length. Based
on our finding, the system drops all requests that are
longer than six characters, and if necessary, the net-
work administrator can change this value. Distin-
guishing of these unpredictable requests also for other
protocols should be more focused in future research.

3.1.3 Data pairing

To avoid pairing requests and replies during the pro-
tocol model learning process, the system pairs each
reply to its request in the data processing stage. After
this pairing process, the system represents each pro-
tocol with a list of pairs, each pair containing one
request and one reply. This pairing also simpli-
fies the model learning process because some proto-
cols use the same reply value for multiple commands
(e.g., POP3 reply ”+OK” for all correct replies)
and the model could improperly merge several inde-
pendent reply values into one state (e.g., all POP3 suc-
cess replies jumps into one state).

The pairing algorithm iteratively takes requests
one by one and chooses the first reply it finds.
If no reply follows, the system pairs the request with
a ”NONE” reply. In some protocols, the server sends
a reply to the client immediately after they connect
to the server. E.g., the POP server informs the clients
if it can process their requests or not. We have solved
this problem by pairing these replies with the empty
request ”NONE”. The result of the pairing process

81

is a sequence of pairs, where each pair consists of one
request and one reply. The Figure 3 shows an example
of this pairing process.

Data filtering output Data pairing output

Reply: "220"
Request: "EHLO"

Reply: "250"
Reply: "250"
Reply: "250"

Request: "AUTH"
Reply: "334"
Reply: "334"
Reply: "235"

Request: "MAIL"
Reply: "250"

Request: "QUIT"

(None, "220")

("EHLO", "250")
("EHLO", "250")
("EHLO", "250")

("AUTH", "334")
("AUTH", "334")
("AUTH", "235")

 ("MAIL", "250")

("QUIT", None)

Figure 3: Example of an SMTP communication in which
the client authenticates, sends an email and quits the com-
munication. The left part of the example shows output from
the Data filtering stage containing a list of requests and
replies in the protocol-independent format. The right part
shows a sequence of paired queries with replies, which are
the output of the Data pairing stage. The system pairs one
request and one reply with the special None value.

3.2 Model Training

After the Input Data Processing stage transformed in-
put PCAP files into a list of request-response pairs,
the Model Training phase creates a model of the pro-
tocol. The model has the form of a finite state
machine describing the behavior of the protocol.
The system creates the model from provided com-
munication traces. For example, for POP3 protocol,
we can consider regular communication traces that
represent typical operations, e.g., the client is check-
ing a mail-box on the server, downloading a message
from the server or deleting a message on the server.
The model is first created for regular communication
and later extended with error behavior.

Learning from traces with expected behavior

The model creation process begins by learning
the protocol behavior from input data representing
regular communication. The result of this training
phase is a description of the protocol that represents
a subset of correct behavior. The model is created
from a collection of individual communication traces.
When a new trace is to be added, the tool identi-
fies the longest prefix of the trace that is accepted
by the current model. The remaining of the trace
is then used to enrich the model. The Figure 4 shows
a simple example of creating a model from two cor-
rect communication traces (drawn in black ink).

1) CAPA, OK → STAT, OK → QUIT, OK
2) CAPA, OK → LIST, OK → QUIT, OK
3) CAPA, OK → STAT, ERR → QUIT, OK

error
description

CAPA,
+OK

QUIT,
+OK

STAT,
+OK

LIST,
+OK

STAT, -
ERR

CAPA,
+OK

QUIT,
+OK

QUIT,
+OK

LIST,
+OK

STAT,
-ERR

STAT,
+OK

Figure 4: An example of communication traces and the cor-
responding protocol model. The first two sequences rep-
resent correct communication, while the third sequence
is communication with an error.

Learning the errors

After the system learns the protocol from regular
communication, the model can be extended with
error traces. In Figure 4, red arrow stands for a sin-
gle error transition in the model that corresponds
to the added error trace. The system expects that
the administrator prepares that error trace as the re-
sult of previous (manual) troubleshooting activities.
The administrator should also provide error descrip-
tion and information about how to fix the error.

When extending the model with error traces,
the procedure is similar to when processing correct
traces. Automaton attempts to consume as long prefix
of input trace as possible ending in state s. The fol-
lowing cases are possible:

• Remaining input trace is not empty: The system
creates a new state s′ and links it with from state s.
It marks the new state as an error state and labels
it with a provided error description.

• Remaining input trace is empty:

– State s is error state: The system adds the new
error description to existing labeling of an exis-
ting state s.

– State s is correct state: The system marks
the state as possible error and adds the error
description.

When extending the automaton with error traces,
it is possible that previously correct state is changed
to a possible error state. For consistent application
protocols, this ambiguity is usually caused by the ab-
straction made when describing application protocol
behavior.

82

3.3 Diagnostics

After the system creates a behavioral model that is ex-
tended by error states, it is possible to use the model
to diagnose unknown communication tracks. The sys-
tem runs diagnostics by processing a PCAP file
in the same way as in the learning process and checks
the request/response sequence against the automaton.
Diagnostics distinguishes between these classes:
• Normal: the automaton accepts the entire input

trace and ends in the correct state.

• Error: the automaton accepts the entire input
trace and ends in the error state.

• Possible error: the automaton accepts the en-
tire input trace and ends in the possible error
state. In this case, the system cannot distinguish
if the communication is correct or not. There-
fore, the system reports an error description from
the state and leaves the final decision on the user.

• Unknown: the automaton does not accept en-
tire the input trace, which may indicate that
the trace represents a behavior not fully recog-
nized by the underlying automaton.
If the diagnostic process detects an unknown error

or result is not expected, the administrator must man-
ually analyze the PCAP file. After the administra-
tor decides whether the file contains an error or not,
the administrator should assign a file to a par-
ticular group of files (correct or error) and repeat
the learning process. This re-learning process in-
creases the model’s ability, and next time the sys-
tem sees the same situation, it reports the correct re-
sult. By gradually expanding, the model covers most
of the possible options.

4 ALGORITHMS

This section provides algorithms for (i) creating
a model from normal traces, (ii) updating the model
from error traces and (iii) evaluating a trace if it con-
tains an error. All three presented algorithms work
with a model that uses a deterministic finite automa-
ton (DFA) as its underlying representation.

The protocol behavior is an automaton
(Q,Σ,δ,q0,F). The set of states Q is represented
by all query/response pairs identified for the modeled
application protocol. As Q ⊆ Σ, the transition
relation δ : Q×Σ→ Q is restricted as follows:

δ⊆ {((qs,rs),(qi,ri),(qi,ri))|(qs,rs),(qi,ri) ∈ Q}
Each state can be a finite state because the input

of the respective input is an indication of the state

reached and a list of error descriptions obtained when
processing the input data.

4.1 Adding Correct Traces

Algorithm 1 takes the current model (input variable
DFA) and adds missing transitions and states based
on the input sequence (input variable P). The al-
gorithm starts with the init state and saves it into
the previous state variable. The previous state vari-
able is used to create a transition from one state
to the next. In each loop of the while loop
section, the algorithm assigns the next pair into
the current state variable until there is no next
pair in the input. From the previous state and
the current state, the transition variable is created,
and the system checks if the DFA contains this tran-
sition. If the DFA does not contain the transition,
the transition is added to the DFA. Before continuing
with the next loop, the current state variable is as-
signed to the previous state variable. The updated
model will be used as the input for the next unpro-
cessed input sequence. After processing all the input
sequences, which represent normal behavior, the re-
sulting automaton is a model of normal behavior.

Algorithm 1 Updating model from the correct traces
Inputs: P = sequence of query-reply pairs

DFA = set of the transitions
Output: DFA = set of the transitions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA does not contain Transition then

add Transition to DFA
Previous state = Current state

end
return DFA

4.2 Adding Error Traces

The Algorithm 2 has one more input (Error), which
is a text string describing a user-defined error.
The start of the algorithm is the same as in the previ-
ous case. The difference is in testing whether the au-
tomaton contains the transition specified in the input
sequence. If so, the system checks to see if the saved
transition also contains errors. In this case, the al-
gorithm updates the error list by adding a new error.
Otherwise, the algorithm continues to process the in-
put string to find a suitable place to indicate the error.
If the transition does not exist, i is created and marked
with the specified error.

83

Algorithm 2 Extending the model with error traces
Inputs: P = sequence of query-reply pairs

DFA = set of transitions
Error = description of the error

Output: DFA = set of transitions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA contains Transition then

if Transition contains error then
append Error to Transition in DFA
return DFA

else
Previous state = Current state

else
add transition Transition to DFA
mark Transition in DFA with Error
return DFA

end
return DFA

4.3 Testing Unknown Trace

The Algorithm 3 uses previously created automa-
ton (DFA variable) to check the input sequence P.
According to the input sequence, the algorithm tra-
verses the automaton and collects the errors listed
in the transitions taken. If the required transition was
not found, the algorithm returns an error. In this case,
it is up to the user to analyze the situation and possibly
extend the automaton for this input.

5 EVALUATION

We have implemented a proof-of-concept tool which
implements the Algorithm 1, 2, and 3 specified
in the previous section. In this section, we pro-
vide the evaluation of our proof-of-concept tool
to demonstrate that the proposed solution is suit-
able for diagnosing application protocols. Another
goal of the evaluation is to show how the created
model changes by adding new input data to the model.
We have chosen four application protocols with dif-
ferent behavioral patterns for evaluation.

5.1 Reference Set Preparation

Our algorithms create the automata states and transi-
tions based on the sequence of pairs. The implica-
tion is that repeating the same input sequence does
not modify the learned behavior model. Therefore,

Algorithm 3 Checking an unknown trace
Inputs: P = sequence of query-reply pairs

DFA = set of transitions
Output: Errors = one or more error descriptions
Previous state = init state
while not at end of input P do

Current state = get next pair from P
Transition = Previous state→Current state
if DFA contains Transition then

if Transition contains error then
return Errors from Transition

else
Previous state = Current state

else
return ”unknown error”

end
return ”no error detected”

it is not important to provide a huge amount of in-
put files (traces) but to provide unique traces (se-
quences of query-reply pairs). We created our ref-
erence datasets by capturing data from the network,
removing unrelated communications, and calculating
the hash value for each trace to avoid duplicate pat-
terns. Instead of a correlation between the amount
of protocols in the network and the amount of saved
traces, the amount of files correlates with the com-
plexity of the analyzed protocol. For example,
hundreds of DNS query-reply traces captured from
the network can be represented by the same sequence
(dns query,dns reply).

After capturing the communication, all the traces
were manually checked and divided into two groups:
(i) traces representing normal behavior and (ii) traces
containing some error. In case the trace contains
an error, we also identified the error and added
the corresponding description to the trace. We split
both groups of traces (with and without error) into
the training set and the testing set.

It is also important to notice that the tool uses
these traces to create a model for one specific (or sev-
eral) network configuration and not for all possible
configurations. Focus on a single configuration re-
sults in a smaller set of unique traces and smaller cre-
ated models. This focus allows an administrator to
detect situations which may be correct for some net-
work, but it is not correct for a diagnosed network,
e.g., missing authentication.

5.2 Model Creation

We have chosen the following four request-reply ap-
plication protocols with different complexity for eval-
uation:

84

Table 2: For each protocol, the amount of total and training traces is shown. These traces are separated into successful
(without error) and failed (with error) groups. The training traces are used to create two models, the first without errors and
the second with errors. The states and transitions columns indicate the complexity of the created models.

Protocol Total traces Training traces Model without
error states

Model with
error states

Successful Failed Successful Failed States Transitions States Transitions
DNS 16 8 10 6 18 28 21 34
SMTP 8 4 6 3 11 18 14 21
POP 24 9 18 7 16 44 19 49
FTP 106 20 88 14 33 126 39 137

• DNS: Simple stateless protocol with simple com-
munication pattern - domain name query (type A,
AAAA, MX, ...) and reply (no error, no such
name, ...).

• SMTP: Simple state protocol in which the client
has to authenticate, specify email sender and re-
cipients, and transfer the email message. The pro-
tocol has a large predefined set of reply codes re-
sulting in many possible states in DFA created
by Algorithm 1 and 2.

• POP: In comparison with SMTP, from one point
of view, the protocol is more complicated be-
cause it allows clients to do more actions with
email messages (e.g., download, delete). How-
ever, the POP protocol replies only with two pos-
sible replies (+OK, -ERR), which reduce the num-
ber of possible states.

• FTP: It is stateful protocol usually requires
authentication, then allows the client to do mul-
tiple actions with files and directories, and also
the protocol defines many reply codes.

The proof-of-concept tool took input data of se-
lected application protocols and created models
of the behavior without errors and a model with er-
rors. The Table 2 shows the distribution of the input
data into a group of correct training traces and a group
of traces with errors. Remaining traces will be later
used for testing the model. The right part of the ta-
ble shows the complexity of the generated models
in the format of states and transitions count.

Based on the statistics of models, we have made
the following conclusions:
• transitions count represents the complexity

of the model better than the state’s count;

• there is no direct correlation between the com-
plexity of the protocol and the complexity
of the learned model. As can be seen with pro-
tocols DNS and SMTP, even though the model
SMTP is more complicated than DNS protocol,
there were about 50% fewer unique traces result-
ing in a model with 21 transitions, while the DNS

model consists of 34 transitions. The reason
for this situation is that one DNS connection can
contain more than one query-reply and because
the protocol is stateless, any query-reply can fol-
low the previous query-reply value.

Figure 5 shows four charts of four protocols
that show the complexity of the models in terms
of the number of states, transitions, and testing traces
with error results. Each chart consists of two parts.
The first part marked as training from correct traces
creates the model only from traces without errors.
To check the correctness of the model, we used testing
traces with and without errors. The second part learn-
ing the errors takes the model created from all the suc-
cessful traces and extends it with training traces with
known errors. To mark the testing trace without
error as a correct result, the model has to return that
the trace is without error. Testing traces with an error
are marked as correct when an error was detected, and
the model found the correct error description.

The charts in Figure 5 shows the progress
of changing the model size when new traces are added
to the model. We have created these values from
25 tests, and the charts show a range of the values
from these tests with their median. Each test be-
gan by randomizing the order of the trace files, re-
sulting in a different trace order in each test. Based
on the deviation of values from the median, we can
see that during the learning process, the model is de-
pendent on the order of the traces. However, after
we have added all the traces, the created model has
the same amount of states and transitions (zero de-
viation). The zero deviation can be seen at the end
of training from correct trace states and also at the end
of learning the error states. We have also used
a diff tool to compare the final models between them-
selves to confirm that all the models were the same,
and the final model does not depend on the order
of the input traces.

Figure 5 shows that by adding new traces, the size
of the model is increasing. With the increasing
size of the model, the model is more accurate, and

85

learning
the errorstraining from correct tracestraining from correct traces learning the errors

training from correct traces learning the errors
learning the errorstraining from correct traces

traces traces

traces traces

18

28

4

34

21

3

18

11

1

21

14

0

44

16

2

49

19

0

126

33

6

137

39

1

Figure 5: The figure shows the count of transitions, states, and errors in the four analyzed protocols. An error is an incorrect
diagnostic result. The values are extracted from 25 random tests, and the median of their values is represented by intercon-
nection lines. The learning process is split into two parts: i) training the model only from traces without any error and after
all correct traces have been learned, in section ii) model is extended with the knowledge of known errors.

the amount of diagnostic error results decreases.
However, after some amount of traces, the model ex-
pansion will slow down until it stops after the tool has
observed all valid traces. Stopping the expansion may
seem like the point when the model is fully trained,
however from our experience, it is not possible to de-
termine when the model is fully learned or at least
learned from X%. Even if the model does not grow
for a long time, it can suddenly expand by processing
a new trace (new extensions, programs with specific
behavior, program updates).

Another way of specifying how much percent
the model is trained is by calculating all possi-
ble transitions. The calculation is (requests count ∗
replies count)2. Of course, many combinations
of requests and replies would not make any sense,
but the algorithm can never be sure which combina-
tions are valid and which are not. The problem with
counting all possible combinations is that without pre-
defined knowledge of diagnosed protocol the tool can
never be sure if all possible requests and replies (no
matter the combinations) have already be seen or not.

5.3 Evaluation of Test Traces

Table 3 shows the amount of successful and failed
testing traces; the right part of Table 3 shows testing
results for these data. All tests check whether:

1. a successful trace is marked as correct (TN);
2. a failed trace is detected as an error trace with cor-

rect error description (TP);
3. a failed trace is marked as correct (FN);
4. a successful trace is detected as an error or failed

trace is detected as an error but with an incorrect
error description (FP);

5. true/false (T/F) ratios which are calculated
as (T N +T P)/(FN +FP). T/F ratios represents
how many traces the model diagnosed correctly.
As the columns T/F ratio in Table 3 shows, most

of the testing data was diagnosed correctly. We have
analyzed the incorrect results and made the following
conclusions:
• DNS: False positive - One application has made

a connection with the DNS server and keeps
the connection up for a long time. Over
time several queries were transferred. Even
though the model contains these queries, the or-
der in which they came is new to the model.
The model returned an error result even when
the communication ended correctly. An incom-
plete model causes this misbehavior. To correctly
diagnose all query combinations, the model has
to be created from more unique training traces.

• DNS: False positive - The model received a new
SOA update query. Even if the communication

86

Table 3: The created models have been tested by using testing traces, which are split into successful (without error) and
failed (with error) groups. The correct results are shown in the true negative and true positive columns. The columns false
positive and false negative on the other side contain the number of wrong test results. The ratio of correct results is calculated
as a true/false ratio. This ratio represents how many testing traces were diagnosed correctly.

Protocol Testing traces Testing against model
without error states

Testing against model
with error states

Successful Failed TN TP FN FP T/F ratio TN TP FN FP T/F ratio
DNS 6 2 4 2 0 2 75 % 4 1 1 2 63 %
SMTP 2 1 2 1 0 0 100 % 2 1 0 0 100 %
POP 6 2 6 2 0 0 100 % 6 2 0 0 100 %
FTP 18 6 18 6 0 0 100 % 18 5 1 0 96 %
TN - true negative, TP - true positive, FN - false negative, FP - false positive, T/F ratio - true/false ratio

did not contain the error by itself, it is an indica-
tion of a possible anomaly in the network. There-
fore, we consider this as the expected behavior.

• DNS: False negative - The situation was the same
as with the first DNS False positive mistake -
the order of packets was unexpected. Unex-
pected order resulted in an unknown error instead
of an already learned error.

• FTP: False negative - The client sent a PASS
command before the USER command. This
resulted in an unexpected order of commands,
and the model detected an unknown error. We are
not sure how this situation has happened, but be-
cause it is nonstandard behavior, we are inter-
preting this as an anomaly. Hence, the proof-of-
concept tool provided the expected outcome.

All the incorrect results are related to the incom-
plete model. In the real application, it is almost im-
possible to create a complete model even with many
input data. In the stateless protocols (like DNS),
it is necessary to capture traces with all combinations
of query-reply states. For example, if the protocol de-
fines 10 types of queries, 3 types of replies, the to-
tal amount of possible transitions is (10 ∗ 3)2 = 900.
Another challenge is a protocol which defines many
error reply codes. To create a complete model, all
error codes in all possible states need to be learned
from the traces.

We have created the tested tool as a prototype
in Python language. We have not aimed at testing
the performance, but to get at least an idea of how us-
able our solution is, we gathered basic time statistics.
The processing time of converting one PCAP file (one
trace) into a sequence of query-replies and adding it
to the model took on average 0.4s. This time had only
small deviations because most of the time took ini-
tialization of the TShark. The total amount of time
required to learn a model depends on the amount
of PCAPs. The average time required to create
a model from 100 PCAPs was 30 seconds.

6 CONCLUSIONS

This paper suggested a method for automatic error
diagnostics in network application protocols by cre-
ating models for these applications. There are two
use-cases for when administrators should use this ap-
proach: (i) if an administrator is experienced, the ad-
ministrator can learn the model to speed-up the diag-
nostic process; (ii) if an administrator is inexperi-
enced, the administrator can use the model created by
an experienced administrator to diagnose the network.

The already existing diagnostic solutions do not
have any automation capabilities, require an adminis-
trator to create rules describing the normal and error
states or the automatically created protocol models
are not used for diagnostic purposes.

Our method uses network traces prepared by ad-
ministrators to create a model representing proto-
col behavior. The administrator has to separate the
correct from the error traces and annotate the error
ones. The model is created based on the query-
response sequences extracted from the analyzed pro-
tocol. For this reason, the model is applicable only
for a protocol with a query-reply pattern. The model
represents the correct and incorrect protocol behavior,
which is used for unknown network trace diagnostics.

The main benefit of having an own trained model
is that the model will represent the protocol in a spe-
cific configuration and will not accept situations
which may be valid only for other networks. The ad-
ministrator can use the model to speed up the work
by automating unknown communication diagnostics.
Our solution uses the well-known tool TShark, which
supports many network protocols and allows us to use
the Wireshark display language to mark the data.

We have implemented the proposed method
as a proof-of-concept tool 4 to demonstrate its capa-
bilities. The tool has been tested on four application
protocols that exhibit different behavior. Experiments

4https://github.com/marhoSVK/semiauto-diagnostics

87

have shown that it is not easy to determine when
a model is sufficiently taught. Even knowing the pro-
tocol complexity is not a reliable indication. Because
even the simplest protocol we tested needed a larger
model than a more complex protocol. Although the
model seldom covers all possible situations, it is use-
ful for administrators to diagnose repetitive and typi-
cal protocol behavior and find possible errors.

Future work will focus on: (i) finding other au-
tomation cases for the created protocol model ; (ii) de-
signing and implementing additional communication
modeling algorithms to support other useful commu-
nication features ; (iii) a study on possibility of com-
bining different models from multiple algorithms into
one complex model; (iv) integrating timing informa-
tion into DFA edges.

ACKNOWLEDGEMENTS

This work was supported by project ”Network Diag-
nostics from Intercepted Communication” (2017-
2019), no. TH02010186, funded by the Tech-
nological Agency of the Czech Republic and by BUT
project ”ICT Tools, Methods and Technologies for
Smart Cities” (2017-2019), no. FIT-S-17-3964.

REFERENCES

Aggarwal, B., Bhagwan, R., Das, T., Eswaran, S., Padman-
abhan, V. N., and Voelker, G. M. (2009). NetPrints:
Diagnosing home network misconfigurations using
shared knowledge. Proceedings of the 6th USENIX
symposium on Networked systems design and imple-
mentation, Di(July):349–364.

Anand, A. and Akella, A. (2010). {NetReplay}: a new
network primitive. ACM SIGMETRICS Performance
Evaluation Review.

Antunes, J., Neves, N., and Verissimo, P. (2011). Reverx:
Reverse engineering of protocols. Technical Report
2011-01, Department of Informatics, School of Sci-
ences, University of Lisbon.

Burschka, S. and Dupasquier, B. (2017). Tranalyzer: Ver-
satile high performance network traffic analyser. In
2016 IEEE Symposium Series on Computational In-
telligence, SSCI 2016.

Casas, P., Zseby, T., and Mellia, M. (2016). Big-DAMA:
Big Data Analytics for Network Traffic Monitoring
and Analysis. Proceedings of the 2016 Workshop on
Fostering Latin-American Research in Data Commu-
nication Networks (ACM LANCOMM’16).

Chen, M., Zheng, A., Lloyd, J., Jordan, M., and Brewer, E.
(2004). Failure diagnosis using decision trees. Inter-
national Conference on Autonomic Computing, 2004.
Proceedings., pages 36–43.

Dhamdhere, A., Teixeira, R., Dovrolis, C., and Diot, C.
(2007). NetDiagnoser: Troubleshooting network un-
reachabilities using end-to-end probes and routing
data. Proceedings of the 2007 ACM CoNEXT.

El Sheikh, A. Y. (2018). Evaluation of the capabilities of
wireshark as network intrusion system. Journal of
Global Research in Computer Science, 9(8):01–08.

Golden, E. and Coffey, J. W. (2015). A tool to automate
generation of wireshark dissectors for a proprietary
communication protocol. The 6th International Con-
ference on Complexity, Informatics and Cybernetics,
IMCIC 2015.

Leaden, S. (2007). The Art Of VOIP Troubleshooting. Busi-
ness Communications Review, 37(2):40–44.

łgorzata Steinder, M. and Sethi, A. S. (2004). A survey
of fault localization techniques in computer networks.
Science of computer programming, 53(2):165–194.

Lodi, G., Buttyon, L., and Holczer, T. (2018). Message
Format and Field Semantics Inference for Binary Pro-
tocols Using Recorded Network Traffic. In 2018 26th
International Conference on Software, Telecommuni-
cations and Computer Networks, SoftCOM 2018.

Luo, C., Sun, J., and Xiong, H. (2007). Monitoring and
troubleshooting in operational IP-TV system. IEEE
Transactions on Broadcasting, 53(3):711–718.

Ming Luo, Danhong Zhang, G. P. L. C. (2011). An in-
teractive rule based event management system for
effective equipment troubleshooting. Proceedings
of the IEEE Conference on Decision and Control,
8(3):2329–2334.

Orzach, Y. (2013). Network Analysis Using Wireshark
Cookbook. Packt Publishing Ltd.

Procházka, M., Macko, D., and Jelemenská, K. (2017). IP
Networks Diagnostic Communication Generator. In
Emerging eLearning Technologies and Applications
(ICETA), pages 1–6.

Samhat, A., Skehill, R., and Altman, Z. (2007). Automated
troubleshooting in WLAN networks. In 2007 16th IST
Mobile and Wireless Communications Summit.

Shiva Shankar, J. and Malathi Latha, M. (2007). Trou-
bleshooting SIP environments. In 10th IFIP/IEEE In-
ternational Symposium on Integrated Network Man-
agement 2007, IM ’07.

Tong, V., Tran, H. A., Souihi, S., and Mellouk, A. (2018).
Network troubleshooting: Survey, Taxonomy and
Challenges. 2018 International Conference on Smart
Communications in Network Technologies, SaCoNeT
2018, pages 165–170.

Traverso, S., Tego, E., Kowallik, E., Raffaglio, S., Fregosi,
A., Mellia, M., and Matera, F. (2014). Exploiting hy-
brid measurements for network troubleshooting. In
2014 16th International Telecommunications Network
Strategy and Planning Symposium, Networks 2014.

Xiao, M. M., Yu, S. Z., and Wang, Y. (2009). Automatic
network protocol automaton extraction. In NSS 2009
- Network and System Security.

Zeng, H., Kazemian, P., Varghese, G., and McKeown, N.
(2012). A survey on network troubleshooting. Tech-
nical Report Stanford/TR12-HPNG-061012, Stanford
University, Tech. Rep.

88

A.3 Automating Network Security Analysis at Packet-level
by using Rule-based Engine

Authors: Holkovič Martin, Ing. (85%), Ryšavý Ondřej, doc. Ing., Ph.D. (13%), Dudek
Jindřich, Ing. (2%)
Abstract: When a network incident is detected, a network administrator has to manu-
ally verify the incident and provide a solution to stop the incident from continuing and
prevent similar incidents in the future. The network analysis is a time-consuming and
labor-intensive activity which requires good network knowledge. Creating a solution which
automates the administrator’s work can dramatically speed up the analysis process and
can make the whole process easier for less experienced administrators. In this paper, we
describe a method that uses a predefined set of rules to identify incident patterns. Though
this principle is used by many security tools, the new aspect is that the presented approach
uses the Wireshark tool which is well known among the administrators, and it is expressive
enough to specify complex relations among source data thus being able to detect quite
sophisticated attacks. The created rule’s format uses the same language as the Wireshark
filters.
Keywords: Network security, network monitoring, anomaly detection, threat detection,
network forensics.
Published in: 6th Conference on the Engineering of Computer Based Systems (ECBS
2019), Bucharest, Romania
Conference rating: B (Core), B1 (Qualis)
ISBN: 978-1-4503-7636-5

89

Automating Network Security Analysis at Packet-level by using
Rule-based Engine

Martin Holkovič
Brno University of Technology

Brno, Czech Republic
iholkovic@fit.vutbr.cz

Ondřej Ryšavý
Brno University of Technology

Brno, Czech Republic
rysavy@fit.vutbr.cz

Jindřich Dudek
Brno University of Technology

Brno, Czech Republic
xdudek04@fit.vutbr.cz

ABSTRACT
When a network incident is detected, a network administrator
has to manually verify the incident and provide a solution to stop
the incident from continuing and prevent similar incidents in the fu-
ture. The network analysis is a time-consuming and labor-intensive
activity which requires good network knowledge. Creating a solu-
tion which automates the administrator’s work can dramatically
speed up the analysis process and can make the whole process eas-
ier for less experienced administrators. In this paper, we describe
a method that uses a predefined set of rules to identify incident
patterns. Though this principle is used by many security tools,
the new aspect is that the presented approach uses the Wireshark
tool which is well known among the administrators, and it is ex-
pressive enough to specify complex relations among source data
thus being able to detect quite sophisticated attacks. The created
rule’s format uses the same language as the Wireshark filters.

CCS CONCEPTS
•Networks→ Error detection and error correction;Network
monitoring; Network security; • Security and privacy → Intru-
sion detection systems.

KEYWORDS
Network security, network monitoring, anomaly detection, threat
detection, network forensics

ACM Reference Format:
Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek. 2019. Automating
Network Security Analysis at Packet-level by using Rule-based Engine. In
6th Conference on the Engineering of Computer Based Systems (ECBS ’19),
September 2–3, 2019, Bucharest, Romania. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3352700.3352714

1 INTRODUCTION
Nowadays, one of the most important responsibilities of a net-
work administrator is to secure a computer network against cyber
threats. A threat can have a lot of different formats: brute-force
login attempt, DDoS attack, phishing attack, data breach, and many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ECBS ’19, September 2–3, 2019, Bucharest, Romania
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7636-5/19/09. . . $15.00
https://doi.org/10.1145/3352700.3352714

others. Most of the protective actions are done proactively to pre-
vent threats realization, but despite all the effort and implemented
measures, some incident can occur in the network anyway. Then
a network administrator has to identify, locate and stop incidents
inside the network [23]. In this paper, we will use an example
of a user who cannot access the Internet. The administrator has
to investigate this problem and fix the user’s Internet connection.

A very common way of network traffic analysis is using some
network packet analyzer, e.g., Wireshark [18]. The analyzer pro-
cess captured network traffic (PCAP files) and decodes individual
packets. The administrator analyzes available information, checks
the transferred data and compares it with expected values (e.g.,
from RFC standards). This manual process is time-consuming and
requires a good knowledge of network protocol and various net-
work technology. This paper aims to propose a method to automate
this process.

1.1 Contribution
This paper describes a solution for automating the time-consuming
and labor-intensive network analysis usually done manually by net-
work administrators [24]. This automation will dramatically de-
crease the time required for analyzing PCAP files and allows less
experienced administrators to check the files in the same way
as a more experienced administrator would do.

To create a solution that can be easily used by network adminis-
trators, one needs to consider the following assumptions:

• Administrators often do not have enough programming
skills;

• Adding support for new protocols should not require to cre-
ate new protocol dissectors;

• Extending the tool with new detection capabilities must
be straightforward for administrators;

• Administrators can work with packets as they are used
to with manual analysis.

The presented solution can be compared to existing tools and
other alternative approaches:

• Use an existing IDS or forensic tools: These tools are not
made to work with network data which administrators usu-
ally work with. Adding new incident detection requires pro-
gramming skills or understanding the nontrivial definition
language. These tools usually have limited support of net-
work protocols and protocol fields (even if the protocol is
supported, not all fields are available). The usual workflow
is to process each network flow individually to speed up
the process which makes detection across multiple protocols

90

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

and flows more complicated. More details about existing
solutions are in Section 3;

• Implement a new analysis tool from scratch: Creating a com-
plete tool would require a lot of effort (time, people, money)
and even after the tool would have been created, it would
require additional human resources to add support for new
protocols or new protocol versions;

• Use the machine learning approach [17]: This approach
would require programming skills from administrators while
extending the tool and the approach would be more like
a magic black box instead of a straightforward approach.

It is really important to clarify that our goal is not to create an-
other IDS tool or to create an alternative to existing IDS tools (these
tools are more described in Section 3). IDS tools already contain
a huge amount of predefined rules to detect well-known attacks
and are highly optimized to maximize performance. Our goal is
to create a complementary tool which would be used alongside
existing IDS tools. This tool would allow administrators to auto-
mate their manual incident analysis by specifying incidents using
an easy to understand and use threat specification language.

2 SECURITY ANALYSIS OF NETWORK
COMMUNICATION

The goal of the network security analysis is to detect security inci-
dents inside the network and provide as much information about
these incidents as possible [11]. Example of such information can
be the source, progress, and consequences of the incident. Finding
evidence for an incident is also called a forensic analysis.

In our example, the Internet is not working because the vic-
tim’s computer cannot be assigned an IPv6 address. Some other
device is blocking the address assignment, and after several at-
tempts, the victim’s computer gives up. As illustrated in Figure 1,
the reason for this is that an attacker applies a denial of service
attack by misusing the Duplicate address detection mechanism.

Figure 1: The output from the Wireshark tool. The client is
trying to assign a unique address, but each time the client
checks the availability of the address with the Neighbor
Solicitation message, the attacker blocks its assignment
by sending the Neighbor Advertisement message.

The primary purpose of the gathering information about the inci-
dents is to reduce damage to the affected company owning the net-
work infrastructure and services [10]. The harm can be caused
by interrupting normal business processes, data breach, wasting
resources exploited by a botnet. After the incident is solved, it is
very important to prevent similar incidents from happening again.

Each analysis should consist of several actions. It is necessary
to find out who or what is the source and destination of the at-
tack (or generally incident) [11]. The source can be a corrupted
device inside the network or person on the other side of the globe.
Another action is identifying exploited vulnerabilities and finding
the solution for fixing them. It is also necessary to identify which
parts of the network were exposed by the attack and can potentially
be abused.

Figure 2: In our example, we can see that for each Network
Solicitation (NS) message an adequate Network Advertise-
ment (NA) message is received. All NA messages have a dif-
ferent source IPv6 address. The administrator should find
the location of this device and continue with the investiga-
tion by further analysis of the device’s activities.

From a technological point of view, the security analysis is prob-
lematic because it requires information about transferred data in-
side the network. One possible approach is to capture all packets
and perform full stack analysis. The problem is that networks usu-
ally transfer a lot of data and it is impossible to analyze all data
in necessary detail. Another approach is to ignore layer 7 informa-
tion completely and use only data from lower layers, for example,
Netflow data [9]. With this approach, it is possible to process a huge
amount of data traffic, but the analysis is limited only to data from
lower layers.

The analysis is problematic from a personal point of view too.
Computer networks consist of many network devices, protocols, ap-
plications, and the analysis process requires good knowledge for all
of these elements. Even if an analyst has the necessary knowledge,
she must understand the analyzed network very well, because each
network environment is different and has some specific properties.
Another problem is that the analysis can be a very time-consuming
activity even for a skilled administrator. On the other hand, the ana-
lysis should be finished as soon as possible to prevent the incident
from doing more damage [10]. This puts an administrator under
time pressure which can lead to mistakes.

From our point of view, the network analysis process should
be split into two parts:

• Detect possible incident - By using less complex analysis,
it is possible to constantly analyze all the transferred traf-
fic and search for an anomaly. E.g., anomaly detection over
Netflow data, IDS system over transferred data payloads or
keywords detection inside the server log files [26]. Usually,
most of the anomalies will not be a security incident, but

91

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

just a false-positive detection. Based on the anomaly param-
eters, like IP addresses, a small portion of network traffic is
captured and saved into a PCAP file for further analysis.

• Execute complex analysis - Captured PCAP file is ana-
lyzed in detail to determine if the anomaly is a network
security incident or not. This process is usually done man-
ually by an administrator, and it is very time- and labor-
consuming. The result of this step is a report of a security
incident with as much information as possible. Emphasis is
on accurate results, not quick results.

3 RELATEDWORK
Intrusion detection systems (IDS) employ different mechanisms to
detect potentially harmful communication. Rule-based IDS systems
use predefined patterns (signatures) that match suspicious pack-
ets in network communication. The signature is a structured set
of rules that is used to identify an attack [14]. Attacks are detected
by searching for these signatures in packets. Anomaly-based sys-
tems are based on a creation of long-term network traffic statistics,
or the use of artificial intelligence to obtain a common network
traffic model [6]. When the deviation of the actual communication
from the created profile is detected a system reports an attack alert.
IDS are optimized to perform a real-time detection; thus the com-
plexity and expressive power of the detection rules are limited.
While IDS produces an alert for a detected attack or abuse, the bur-
den of further work falls on the analysts who must collect evidence
within the network traffic data. This is usually a series of manual
activities during which the analyst filters captured traffic, decodes
the packets and collects relevant information from the packet’s
header and payload. Research has been done towards providing au-
tomated analysis procedures or aiding the process by visual analysis
methods.

3.1 Intrusion Detection Systems
One of the most widespread IDS tools is Snort 1. The system allows
administrators to search by string, binary data or regular expression.
The search is performed either in data within the same transport
streams or on a per-packet basis. Snort does not deal with the struc-
ture and semantics of application protocols. With Snort, we are not
able to find if there is an LDAP packet with the resulting code 90
that represents memory problems. If the system tries to find just
a value of 90 (or hexadecimal 0x5A), the result would contain many
false positives.

TheSuricata tool 2 has support for application protocol decoding,
although the list of supported protocols is quite small (around 13
protocols). Also, for the supported protocols, the tool defines only
very few fields. For example, only four fields are defined for protocol
ICMP, and for DNS protocol only one field is defined. On the other
hand, Wireshark defines up to 79 ICMP fields and 298 DNS fields.

The Bro tool [21] (currently known as Zeek 3) performs a deep
packet inspection of the traffic to detect known security threats.
Zeek performs an in-depth analysis of network communication
keeping an application-layer state which enables it to perform

1http://www.snort.org
2https://suricata-ids.org/
3https://www.zeek.org/

a more advanced analysis in comparison to traditional signature-
based IDSs. An event-driven scripting language makes it possible
to customize the system to one’s specific needs. The idea behind
Bro/Zeek is similar to the proposed system, but it differs in several
aspects. Firstly, extending the system with a new application pro-
tocol requires writing a new dissector, thus, similarly to Suricata,
Bro/Zeek supports just around 50 protocols, and not all protocol
fields are supported. Secondly, writing Bro scripts requires advanced
programming skills often not had by average network administra-
tors. Thirdly, while the scripting language is very powerful, to write
rules for non-trivial cases is not straightforward.

3.2 Network Traffic Analysis
Network traffic analysis corresponds to the examination of network
communication for the purpose of computer security, troubleshoot-
ing and system debugging. The most commonly used tool for man-
ual network traffic analysis is Wireshark 4 [2, 18, 19]. Wireshark
supports decoding of all standardized and widely used network pro-
tocols. The shortcoming of theWireshark tool is that it lacks any
advanced automation [5]. Also, the tool cannot provide a big pic-
ture view of the data without cognitive overloading of the user [8].
To overcome tedious work of network traffic analysis the analysts
and operators rely on automation scripts that reduce cost and cut
down the time required to complete the investigation. Information
visualization aids security analysts in detecting anomalous events
by increasing their situational awareness through the visual rep-
resentation of network flow [13]. Another tool, VisAlert, provides
an extensible visualization that can accept multiple data sources,
including IDS alerts and system log files [15]. Krasser et al [12] pro-
posed a tool that uses 3D animation to provide rich visualization
information on network communication.

When the traffic is encrypted the analyst cannot apply the tradi-
tional approach based on decoding and examination of individual
packets. In such a situation, traffic characterization is often the
only viable option. Encrypted traffic is characterized into different
categories, according to the type of traffic e.g., browsing, stream-
ing, etc. To do this, statistical or machine learning methods are
often used [4]. This approach is also effective for identification
of malware from the network behavior [22].

3.3 Rule-based Methods
There are also other network domains where administrators use
rule-based systems, for example in SCADA networks manage-
ment [25] or troubleshooting [16]. Also, these systems share the
same limitations: per-flow or per-packet analysis, they are not eas-
ily extendible, or they are using a language unknown to a typical
administrator. The rule-based approach is, of course, practicable
also outside the domain of computer network security. The pri-
mary purpose of the tool Yara 5 is the detection and classification
of malware samples in various sources (e.g., files, folders, processes).
Analysts can create rule sets based on the textual or binary pat-
terns that are transformed into a compiled form and then used
for the search in the specified entities. Yara can detect predefined
patterns in the files, but it does not provide a way how to more

4https://www.wireshark.org/
5https://virustotal.github.io/yara/

92

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

comprehensively describe the relations between the data, and it
does not involve its structure and semantics. The Yara tool was
used for file system analysis as well as for memory analysis [3].

The proposed system is similar to the signature-based IDS but
has some significant differences. Signatures for IDS systems are
typically generated by the system creator or the community around
that system. To create a new signature, a significant effort is re-
quired [7]. Another limitation of IDS systems is that they work
on the flow-level [20]. Systems process each flow independently,
and therefore they usually search for events within an individ-
ual stream. However, it is very also necessary to be able to look
for the data across streams, because there are threats which distrib-
ute the traffic across multiple streams, e.g., malware which uses
a multi-band technique to hide from the detection [1]. Our proposed
system, however, can easily detect events spread across multiple
streams.

4 RULE-BASED NETWORK EVENTS FINDER
The proposed tool performs automatic analysis of packet traces
of network communication. The tool is driven by the collection
of rules that when evaluated are able to identify if a certain event
happened. As described in Section 2, we focus primarily on network
incidents, thus any identified event stands for the identified security
incident. However, the tool can also be used in other areas, such
as Network Diagnostics or PerformanceMonitoring. For this reason,
instead of referring to incidents, we use the more general term event
to describe the information we are looking for inside the captured
network packets.

The overall architecture of the system is illustrated in Figure 3.
With this architecture, an administrator will write event descrip-
tions in human-readable configuration files which the tool will
convert into an executable format (step 1). An administrator can
easily add, modify and delete event descriptions. After the tool
converts all configuration files, an external tool is used to convert
captured packets into the format suitable for further processing and
searching in them (step 2). Lastly, the tool takes converted event
descriptions one by one and tries to search for them inside the con-
verted packets (step 3). Based on the findings, the tool generates
an appropriate report.

Figure 3: An architecture andworkflowof the proposed tool.

The rest of this section (i) describes the format and language
of the event description files, (ii) discusses parsing of the input
PCAP files, and (iii) explains how the tool searches for events inside
the input data.

4.1 Rules language
The rule language is used by users to specify the matching condi-
tions and actions related to identified events. The rule language
represents a compromise between easy to use representation and
expressivity. Also, for expressions, the Wireshark’s display filter
language is utilized 6. It has two fold reasons. Firstly, the display
filter language is expressive enough to represent simple queries
to a collection of packets. Secondly, language is well-known and
easy to understand among network administrators.

Each event rule consists of a name, description, and the body
consisting of five attributes: group, packets, asserts, threshold and
report. Figure 4 shows an example of a rule, which describes how
to detect the SLAAC Duplicate Address Detection (DAD) attack.
The details and explanation of the meaning for each attribute is
given in the next subsection.

1 name: SLAAC DAD
2 descr ipt ion : P o s s i b l e Dup l i c a t e Address

De t e c t i on a t t a ck , f i n d a t t a c k e r from
NA sour ce MAC add r e s s .

3 group:
4 - icmpv6 . nd . ns . target_address icmpv6 . nd .

na . target_address
5 packets :
6 −NS: icmpv6 . type ==135 and ipv6 . s r c =="::"
7 −NA: icmpv6 . type ==136 and ipv6 . d s t =="::"
8 a s s e r t s :
9 - count (NS) > 0 and count (NA) > 0
10 threshold : 5
11 report : p a c k e t s

Figure 4: Event description for detection of the SLAAC
DAD attack.

4.1.1 Name and description. Name is an identification of the rule
which needs to be unique. A description is used to describe the event
in a human-understandable format. Both the name and the descrip-
tion are part of the created report.

4.1.2 Groups. The section group specify how the packets are split
into several disjunctive groups. The tool assigns packets into groups
based on the value of specified protocol fields. For example, when
the administrator specifies the source IP address (ip.src) as a pro-
tocol field, each IP address will have a separated group containing
packets which that IP address sent.

Figure 5 shows the format of the rule part group. If more than one
protocol field is specified on a single line, the tool takes protocol
fields one by one in the same order as specified and tries to find
the values for these fields. This process stops when the value is
found or when the packet does not contain any protocol value
from the line. If more than one line is specified, a packet must have

6https://www.wireshark.org/docs/dfref/

93

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

at least one value for each line, and in that case, the tool marks
the group as a list of values (one line = one list element). Otherwise,
the packet will be ignored in future processing, because it does
not belong to any group. One exception is when the rule does not
contain any line and any protocol field. In that case, the tool assigns
all packets into a single “default“ group.

group:
- f i e ld_1 f i e ld_2 . . . f ie ld_N
- . . .

__

field_X - any Wireshark 's protocol field
name

Figure 5: Format of the event’s group section

4.1.3 Packets. Inside each group of packets, the tool tries to find
predefined packets. These predefined packets have a special mean-
ing for the event detection (e.g., special protocol field value or
amount of these packets). Each packet has its name and filter defi-
nition. The result is a list of packets fulfilling the filter.

Figure 6 shows the format of the rule part packets. Each packet is
defined by its unique name and by theWireshark’s display filter lan-
guage. This is the same filter which a network administrator would
use during a manual analysis using the toolWireshark. Therefore,
these filters can be copied from Wireshark or vice versa.

packets :
- name_1: f i l t e r _ 1
- . . .

__

name_X - the name will be used as a label
for packets in section 'asserts '.

Possible values: [a-zA -Z0 -9_-]+
filter_X - Wireshark 's display filter

Figure 6: Format of the event’s packets section.

4.1.4 Asserts. After the tool finished the search for the specified
packets, the tool evaluates the assert conditions. These conditions
define if the expected state (e.g., too many packets) was detected in-
side the group of packets. The assert language is based on theWire-
shark’s display filter language, but contains three improvements:

(1) possibility to get the number of detected packets. This is
implemented with function count() which takes the name
of the specified packet (from the Section 4.1.3) as the param-
eter. E.g., count(DNS) > 100;

(2) it is possible to use basic mathematical operations (+, -, *, /).
E.g., count(DNS)/count(all) > 0.5;

(3) searching for a specific field name can be limited only on spec-
ified packets from the section packets. E.g., DNS[udp.port]
== 53 will try to find value udp.port only inside detected
packets with name DNS. If no packet name is specified,
the search is focused on all packets in the group.

Figure 7 shows the format of the event’s asserts part together
with the three improvements. Name ’count’ is the name of the func-
tion, packets_name is the name of the defined packets from the
event packets section, and f ield_name is the name of the protocol
field from the Wireshark’s display filter language.

a s s e r t s :
- condition_1
- . . .

__

condition_X - Wireshark 's display filter
with possible extensions:

1) count(packets_name) - used as a
constant

2) math_sign - used as a operator
3) packets_name[field] - used as a

variable
count() - name of the function.
packet_name - name from part 'packets '.
math_sign - one of the following

mathematical signs: +, -, *, /
field - Wireshark 's protocol field name

Figure 7: Format of the event’s asserts section.

4.1.5 Threshold. Each group which fulfills all assert conditions
increases a counter designated to count all fulfilling groups. This
counter is compared with a threshold and based on whether it is
equal or greater than the threshold, the tool generates a report.

Figure 8 shows a very simple format of the threshold. Only one
integer value is specified.

threshold : v a l u e
__

value - Numeric contant. Possible values:
[0-9]+

Figure 8: Format of the event’s threshold section.

4.1.6 Report. Section report specifies how detailed the generated
report will be. For example, it is not useful to export all packets
which are part of a large DDoS attack. Three levels are defined: event
- only data from the section threshold are used, groups - all group
values which contribute to the final report are added and packets -
each group reported will also contain a list of all the packets inside
that group.

Figure 9 shows the format of the report section. Only one string
with one of the three predefined values is defined.

report : l e v e l
__

level - Specifies the detail of generated
report. Possible values: event , groups ,
packets

Figure 9: Format of the event’s report section.

94

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

4.2 Packets parser
The external tool called TShark 7 (command line version of theWire-
shark tool) is used to parse captured network communications. We
use an existing tool to avoid the necessity of creating parsers (or dis-
sectors) for individual protocols. As TShark provides the same set
of dissectors as Wireshark, we can immediately support almost
all current network protocols in the rules. Using TShark approach
comes with several pros and cons:

+ using an external well-maintained tool decreases the require-
ments for the created tool;

+ tunnel data can also be processed as if the tunnels were not
used at all;

+ supports a large number of protocols (over 3000) as well
as the number of fields that can be obtained from the proto-
cols (over 227000) - valid for version 2.6.3.

+ processed data can be exported into the JSON format so that
later processing can directly access the values of the protocol
fields;

+ the fields of the individual protocols are labeled in the same
way as inWireshark, so the administrator does not need any
special documentation to find the names of the fields;

+ TShark does not just parse the data, it also analyses it. For ex-
ample, it detects packet retransmission or calculates appli-
cation statistics;

- if some protocol is not supported by TShark (usually a pro-
prietary protocol), adding support for it requires very good
programming skills;

- TShark is not fast at analyzing large PCAP files (gigabytes
and more).

The description and options of TShark can be found in its docu-
mentation. Just for clarification of how the JSON from the TShark
looks like, Figure 10 shows an example of the output. The JSON
contains protocol field values from all network protocols in a key-
value data format. Hierarchy of the JSON data attributes directly
represents the structure of the packet protocols.

Figure 10: Excerpt from the TShark example output.

7https://www.wireshark.org/docs/man-pages/tshark.html

4.3 Rule checker
When the tool converts PCAP file and all rules into a format suitable
for further processing, the tool starts searching for the events with
the last part of the architecture - interpreter engine. The interpreter
engine takes the rules one by one and tries to find whether some
rule is matched inside the data or not. Based on the rule definition,
the engine creates an adequate report. The engine consists of five
parts as shown in Figure 11. Each part corresponds to one section
from the event rule definition (Section 4.1). This is illustrated us-
ing boxes in the Figure together with rule lines which are copied
from the rule definition example in Figure 4. Following subsections
describe these five engine parts.

4.3.1 Grouping packets. The goal of the packet grouping part is
to separate packets into groups according to the specified attributes
(see Section 4.1.2). If the packet has multiple values for the de-
fined attribute, the same packet will be placed into multiple groups.
This separation into groups allows processing of packets from one
group independently from packets in other groups. The attribute
can be any field name whichWireshark defines. Example of such
an attribute is a source IP address (ip.src) or TCP stream index
(tcp.stream). In the case the packet does not contain a specified
attribute, the tool ignores it during further processing. There is one
exception to this rule, the situation when an administrator does
not specify any attribute at all. In that situation, all packets are part
of the same “empty“ group.

It is possible to specify more than one attribute for dividing
packets into groups. There are twomodes in which an administrator
can specify multiple attributes - AND and OR and these modes can
be combined. In the OR mode, the tool is trying to find the first
attribute inside the data and continues looking for other attributes
only if there is no match. To continue the processing of the packet,
the tool must find at least one attribute. With the AND mode,
the tool must find all specified attributes. Another difference is that
the tool will identify these groups using a list of values instead
of one value.

Figure 11 shows an example with two attributes in OR mode
(both are specified in the single row as can be seen in Figure 4):
icmpv6.nd .ns .tarдet_address and icmpv6.nd .na.tarдet_address .
These attributes group SLAAC Neighbor Solicitation (NS) messages
with Neighbor Advertisement (NA) messages according to the re-
quested address. Example of group identification is value 2001 :
abcd :: 6064 : dec3 : 35e8 : 3bb0.

4.3.2 Searching specific packets inside groups. After the tool assigns
each packet into the appropriate group, the tool tries to search
for specific packets inside them. All packets fulfilling the search
condition are returned. As described in Section 4.1.3, packets are
specified using the Wireshark’s display filter language, and their
evaluation is the same as in Wireshark.

In the example from Figure 11, the tool tries to find two sets
of packets (NS and NA) specified by conditions NS = ... and NA =
..., For the group 2001 : abcd :: 6064 : dec3 : 35e8 : 3bb0, the NS
will contain all NS messages which check the availability of address
2001 : abcd :: 6064 : dec3 : 35e8 : 3bb0 and NS will contain replies
for NS messages.

95

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

}group
icmpv6.nd.ns.target_address

icmpv6.nd.na.target_address

2001:abcd:: ... :921f

2001:abcd:: ... :3bb0

None

(, ,)

(, ,)

packets

...
ns:
icmpv6.type == 135 and
ipv6.src == "::"

na:
icmpv6.type == 136 and
ipv6.dst == "::"

()

(,) }asserts
count(ns) > 0 and
count(na) > 0

}threshold
>= 5

report
packets

Figure 11: The rules evaluation engine which consists of five parts. On the left side are parsed packets which are the input of
the engine and the output is report placed on the right side. Bellow each part are lines from the example code in Figure 4.

4.3.3 Checking asserts for each group. The event can contain sev-
eral assert rules. All of the assert rules must be valid to consider
a group as the group which fulfills the assert rules. Checking
whether assert rules are valid or not is very similar to searching
packets in groups. As was described in Section 4.1.4, asserts use
an extended the Wireshark’s display filter language. This language
extension modifies how the tool evaluates the assert filter. There
are three language extensions:

(1) It is possible to work with information about how many
packets the tool detected inside a group. This information
is calculated using the function count(packet_name). Before
the evaluation of the assert conditions, all these functions are
executed and replaced by their results (numeric constant).

(2) When looking for a specific field inside the packets, Wire-
shark uses just the name of the protocol field (e.g., ip.src =
8.8.8.8). When this code is placed in the assert condition,
the tool will check only packets from the group. However, it
is also possible to limit these searches for values only to pack-
ets which the tool found in the packets section. For example,
during the asserts evaluation with the code query[ip.src] =
8.8.8.8, the tool will supplement only packets fulfilling the
query filter.

(3) An administrator can use basicmathematical operationswith
theWireshark fields, functions and constants. For example,
an administrator can use them for calculating the ratio be-
tween two sets of packets. With the code count(X)/count(Y)
> 2, the tool evaluates the condition as true only if the
amount of packets fulfilling the packet filter X is at least
twice as many as packets fulfilling the packet filter Y.

In the example in Figure 11, the assert rule is count(NS) > 0 and
count(NA) > 0, which specifies, that there must be at least one NS
message and one NA message for the same queried IPv6 address.

4.3.4 Counting the group matches. After the tool evaluates each as-
serts condition for each group, the tool checks the amount of the ful-
filling groups. The result is a single numeric value which the tool
compares with a defined threshold. If the threshold condition is met,
the tool located the event in the input data and starts the generating
report process.

In the example from Figure 11, we are counting how many ver-
ified addresses ended as duplicated. If this number is equal to 5
or higher, the tool detects the DAD attack.

4.3.5 Generating report. If the tool detects an event, it generates
an appropriate report. The report can have three levels of detail
(as described in Section 4.1.6): event (minimum details), group,
and packets (maximum details).

Figure 12 shows a report from our DAD attack example with
three vertical lines which illustrate, which lines the report would
contain with a different level of detail. This is also a result of the ex-
ample introduced in Figure 1; the tool detected SLAAC DAD attack.

Figure 12: The output of the tool which contains a detected
DAD attack. The vertical lines represent how the report
would look with different requested detail.

5 CONCLUSION
Packet-level network analysis is a very time-consuming activity
requiring good knowledge of network protocols. An administrator
usually uses the packet analyzer which performs capturing net-
work data, dissecting network packets and providing other related
information. This paper describes an approach to automating this
process.

Signature-based IDS tools provide similar functionality to our
tool. The problems with IDS systems are that they usually require

96

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

programming knowledge for extending their capabilities, they sup-
port only a limited number of protocols and their detection capa-
bilities are limited to flow-scope or packet-scope analysis.

We have proposed an interpreter architecture, which uses a rule-
based approach for defining security events. We are using TShark
to parse the input data, which removes the necessity of writing
custom protocol parsers. The tool uses a format which was inspired
by theWireshark’s display filter language. This format allows ad-
ministrators to create or modify a rule without any programming
skills with the knowledge they already have. The tool is supposed
to fill in a missing spot for automation framework for security ana-
lysts that must analyze packet traces related to the incident based
on alerts generated by IDS tools. The presented tool automatically
performs the analysis using defined rules and identifies the location
using evidentiary material.

Most of the currently used tools search for data on a per-packet
or per-flow basis. Our tool is capable of searching for events across
multiple flows without any limitations which makes the searching
process more flexible. Because searching without these limitations
is very expensive, the tool is not designed to fully replace already
existing IDS solutions which are less flexible, but capable of pro-
cessing much more data.

We have created a proof-of-concept implementation, which cov-
ers the entire analysis process. The event rule files are transformed
into a format suitable for further processing. After that, the tool uses
the external tool TShark (command line version of theWireshark
tool) to parse the input PCAP file and to save them into the JSON
format. The final stage of the tool takes this JSON file and applies
available rules to identify the security threats in the input data.
At the end of the analysis, the tool generates a report.

To demonstrate the functionality of the implemented prototype,
we have created a specification of 35 different security events, e.g.,
MitM ARP attack, HSRP protocol configuration with nonoptimal
configuration, network scanning, using old-unsecured TLS version
and so on.

The future work will focus on enriching generated output. For ex-
ample, the output should contain a Wireshark’s display filter ex-
pression which can be used by an administrator for manually con-
firming the detected event in Wireshark. Also, the language should
be enriched with new features, for example, usual statistical and
aggregation functions. To be practically usable, optimizing the per-
formance of the tool is necessary.

ACKNOWLEDGMENTS
This work was partially supported by the BUT FIT grant FIT-S-17-
3964, "ICT tools, methods and technologies for smart cities".

REFERENCES
[1] MITRE ATT&CK. 2019. Technique: Multiband Communication. https://attack.

mitre.org/techniques/T1026/
[2] Laura Chappell. 2017. Wireshark 101: Essential Skills for Network Analysis-

Wireshark Solution Series. Laura Chappell University, USA.
[3] Michael Cohen. 2017. Scanning memory with Yara. Digital Investigation (2017).

https://doi.org/10.1016/j.diin.2017.02.005
[4] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,

and Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic
using Time-related Features. In Proceedings of the 2nd International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP. 407–414. https:
//doi.org/10.5220/0005740704070414

[5] Alia Yahia El Sheikh. 2018. Evaluation of the capabilities of Wireshark as network
intrusion system. Journal of Global Research in Computer Science 9, 8 (2018), 01–
08.

[6] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems
and challenges. computers & security 28, 1-2 (2009), 18–28.

[7] Ibrahim Ghafir, Vaclav Prenosil, Jakub Svoboda, and Mohammad Hammoudeh.
2016. A survey on network security monitoring systems. In 2016 IEEE 4th Inter-
national Conference on Future Internet of Things and Cloud Workshops (FiCloudW).
IEEE, 77–82.

[8] John R Goodall, Wayne G Lutters, Penny Rheingans, and Anita Komlodi. 2006.
Focusing on Context in Network. Security April (2006), 72–80.

[9] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys & Tutorials
16, 4 (2014), 2037–2064.

[10] Computer Economics Inc. 2007. 2007 malware report: The economic impact
of viruses, spyware, adware, botnets, and other malicious code. http://www.
computereconomics.com

[11] Karen Kent, Suzanne Chevalier, Tim Grance, and Hung Dang. 2006. Guide to
integrating forensic techniques into incident response. NIST Special Publication
10, 14 (2006), 800–86.

[12] Sven Krasser, Gregory Conti, Julian Grizzard, Jeff Gribschaw, and Henry Owen.
2005. Real-time and forensic network data analysis using animated and coordi-
nated visualization. In Proceedings from the 6th Annual IEEE System, Man and
Cybernetics Information Assurance Workshop, SMC 2005. https://doi.org/10.1109/
IAW.2005.1495932

[13] Kiran Lakkaraju, William Yurcik, and Adam J Lee. 2004. NVisionIP: NetFlow
Visualizations of System State for Security Situational Awareness. Proceedings of
the 2004 ACM workshop on Visualization and data mining for computer security -
VizSEC/DMSEC ’04 (2004). https://doi.org/10.1145/1029208.1029219

[14] Hao Li, Guangjie Liu, Weiwei Jiang, and Yuewei Dai. 2015. Designing snort
rules to detect abnormal dnp3 network data. In 2015 International Conference on
Control, Automation and Information Sciences (ICCAIS). IEEE, 343–348.

[15] Yarden Livnat, Jim Agutter, Shaun Moon, Robert F. Erbacher, and Stefano Foresti.
2005. A visualization paradigm for network intrusion detection. In Proceedings
from the 6th Annual IEEE System, Man and Cybernetics Information Assurance
Workshop, SMC 2005. https://doi.org/10.1109/IAW.2005.1495939

[16] GeokHong Phua Lihui Chen Ming Luo, Danhong Zhang. 2011. An interactive
rule based event management system for effective equipment troubleshooting.
Proceedings of the IEEE Conference on Decision and Control 8, 3 (2011), 2329–2334.
https://doi.org/10.1007/s10489-005-4605-0

[17] Srinivas Mukkamala and Andrew H Sung. 2003. Identifying significant features
for network forensic analysis using artificial intelligent techniques. International
Journal of digital evidence 1, 4 (2003), 1–17.

[18] Vivens Ndatinya, Zhifeng Xiao, Vasudeva Rao Manepalli, Ke Meng, and Yang
Xiao. 2015. Network forensics analysis using Wireshark. International Journal of
Security and Networks 10, 2 (2015), 91–106.

[19] Yoram Orzach. 2013. Network Analysis Using Wireshark Cookbook. Packt Publish-
ing Ltd.

[20] Samuel Patton, William Yurcik, and David Doss. 2001. An AchillesâĂŹ heel in
signature-based IDS: Squealing false positives in SNORT. In Proceedings of RAID,
Vol. 2001. Citeseer.

[21] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23-24 (1999), 2435–2463.

[22] Christian Rossow, Cj Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten Van
Steen, Felix C. Freiling, and Norbert Pohlmann. 2011. Sandnet: Network Traffic
Analysis of Malicious Software. Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS ’11)
(2011), 78–88. https://doi.org/10.1145/1978672.1978682

[23] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,
and Qishi Wu. 2010. A survey of game theory as applied to network security. In
2010 43rd Hawaii International Conference on System Sciences. IEEE, 1–10.

[24] Anna Cinzia Squicciarini, Giuseppe Petracca, William G Horne, and Aurnob
Nath. 2014. Situational awareness through reasoning on network incidents. In
Proceedings of the 4th ACM conference on Data and application security and privacy.
ACM, 111–122.

[25] Yi Yang, Keiran McLaughlin, Tim Littler, Sakir Sezer, and HF Wang. 2013. Rule-
based intrusion detection system for SCADA networks. (2013).

[26] Wang Zhenqi and Wang Xinyu. 2008. Netflow based intrusion detection system.
In 2008 International conference on multimedia and information technology. IEEE,
825–828.

97

A.4 Pattern Detection Based Network Diagnostics
Authors: Holkovič Martin, Ing. (50%), Bohuš Michal, Ing. (40%), Ryšavý Ondřej, doc.
Ing., Ph.D. (10%)
Abstract: One of the most important parts of the network administrators’ work is de-
tecting and correcting errors inside computer networks. This part is also called network
diagnostics. The problem is that computer networks are very complex, and there is no sin-
gle universal approach for diagnosing the errors. In this paper, we propose a new method of
diagnostics which utilizes looking for specific patterns inside captured network data. This
approach automatically checks for all predefined patterns and generates a report with error
descriptions for any detected errors. We have created a proof-of-concept tool and demon-
strated its functionality.
Keywords: Network diagnostics, passive diagnostics, rule-based diagnostics, patterns
lookup, patterns diagnostics, anomaly-based diagnostics.
Published in: 11th International Conference on Data Communication Networking (DC-
NET 2020), Setubal, Portugal
Conference rating: C(Core), B4 (Qualis)
ISBN: 978-989-758-445-9

98

Pattern Detection Based Network Diagnostics

Martin Holkovič, Michal Bohuš and Ondřej Ryšavý
Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, 612 66 Brno, Czech Republic

iholkovic@fit.vutbr.cz, xbohus01@stud.fit.vutbr.cz and rysavy@fit.vutbr.cz

Keywords: Network diagnostics, passive diagnostics, rule-based diagnostics, patterns lookup, patterns diagnostics,
anomaly-based diagnostics.

Abstract: One of the most important parts of the network administrators’ work is detecting and correcting errors inside
computer networks. This part is also called network diagnostics. The problem is that computer networks are
very complex, and there is no single universal approach for diagnosing the errors. In this paper, we propose
a new method of diagnostics which utilizes looking for specific patterns inside captured network data. This
approach automatically checks for all predefined patterns and generates a report with error descriptions for any
detected errors. We have created a proof-of-concept tool and demonstrated its functionality.

1 INTRODUCTION

Computer networks are complex difficult to manage
systems because they contain a large number of de-
vices of different kinds that use a large number of dif-
ferent services and protocols. To fix any error that has
occurred, it must be first identified and then correctly
analyzed (Roy et al., 2010). Unfortunately, finding
an error is not an easy task. Network administra-
tors regularly spend a significant amount of time net-
work troubleshooting (Zeng et al., 2012). Depend-
ing on the availability of the data, a diagnostic pro-
cedure can be done for the network traffic (Qadeer
et al., 2010), application logs (Qiu et al., 2010), Net-
flow records (Garcia-Teodoro et al., 2009), etc. In this
paper, we only consider network traffic, although the
proposed method can work with other types of data
sources.

An example of typical network issues is a prob-
lem with the DNS server resulting from a configu-
ration change. Because of backup servers, the error
may not immediately affect clients. One of the ways
to detect the problem is to monitor the reply statuses
of DNS queries from internal servers and determine
the amount of successful and error replies. If the ratio
between error and successful DNS replies increases
significantly, an administrator is notified about the
possible problem with the DNS server, e.g., the wrong
configuration was inserted.

Detection of a peak within network data is cur-
rently implemented in most monitoring systems pro-
viding simple but efficient identification of anoma-

lies. In this paper, we propose a system that can iden-
tify more complicated patterns in network data and
attribute them to different errors. The data consists
of a collection of timestamped events. For example,
the amount of transferred data in the last 5 minutes.
The proposed system analyzes the data and looks
for predefined patterns that represent the specific situ-
ation, e.g., drop of transfer rate. The pattern search
system uses simple descriptions of value changes,
which are easily understandable by network admin-
istrators. An example of a pattern is a rapid drop fol-
lowed by a sharp increase, which can be seen as a
V-shape in the traffic graph. Administrators mostly
use this form of visual analysis to get an overview of
network status or to observe specific host behavior.

This paper’s contribution is an automatic diagnos-
tic of network problems by looking for patterns within
timestamped events drawn from network traffic data.
The method implemented in a proof-of-concept tool
is demonstrated on data extracted from packet cap-
tures. However, the approach can also be applied to
other suitable data sources, e.g., NetFlow data, logs,
event files.

The structure of the paper is organized as follows.
Section 2 discusses related work and describes similar
approaches. Section 3 describes how the tool will be
used. Section 4 describes the architecture of the pro-
posed tool. Section 5 provides a simple tool usage
demonstration. Finally, Section 7 contains the con-
clusion which summarizes the current state and pro-
poses future work.

99

2 RELATED WORK

There are many ways to diagnose network errors.
For maximum flexibility, it is necessary to be able
to diagnose errors across TCP/IP layers (łgorzata
Steinder and Sethi, 2004). In literature, this process
is often referenced by authors as a root-cause analy-
sis (RCA) (Solé et al., 2017). Although there is no
standardized classification of diagnostic approaches,
the most basic and well-known classes are determin-
istic and probabilistic (Solé et al., 2017).

One of the most common ways to diag-
nose network problems is by using the Wireshark
tool (Ndatinya et al., 2015). However, Wireshark
lacks any built-in automation, and therefore, efforts
have been made to automate the work with this tool.
One such tool implements decision trees that work
with rules and exact matches similarly to the IDS sys-
tems (Holkovič and Ryšavý, 2019).

Our diagnostic approach, which consists
of searching for patterns in data, is more similar
to anomaly detection techniques. Anomaly detection
is a search for situations when data are outside
of the usual or expected value range (Chandola et al.,
2009). As Martinez states in his work (Martinez et al.,
2015), anomaly detection techniques can also be used
for diagnostics purposes. An example is a solution
that uses a neural network that learns anomalies and
associated errors (Katasev and Kataseva, 2016). A
similar approach was presented by (Ben Kraiem
et al., 2019), they are also looking for patterns inside
time-series. However, the patterns are limited to a
single data series and a relationship between only one
point and its directly adjacent points.

Similarly to diagnostics, the detection of anoma-
lies is divided into classes, and the names and types
of these differ in different literature sources. Com-
pared to the diagnostics description, the closest clas-
sification is the anomaly (probabilistic) and signature
(deterministic) class (Bhuyan et al., 2013; Kruegel
and Toth, 2003; Sekar et al., 2002). Another possible
classification is statistical, knowledge-based, and ma-
chine learning (Garcia-Teodoro et al., 2009).

Several approaches to analyze the network data,
which are also usable for network diagnostics exist,
for instance:

• Intrusion detection system (IDS) (Lee et al., 2005)
Snort (Roesch et al., 1999; Li et al., 2015)
or Bro (Udd et al., 2016) - they are looking for
an exact match in transferred network data. These
tools miss some diagnostic information.

• Prudence (Prayote and Compton, 2006) - a sys-
tem which automatically learns the range of sev-
eral network attributes and checks whether

the current amount exceeds the ones in the learned
model. This solution has a drawback that it is
not able to detect anomalies for data traffic inside
the learned ranges.

• Entropy (Gu et al., 2005) - the detection method
uses maximum entropy technique to compare ac-
tual traffic with created baselines.

• Signal processing (Barford et al., 2002) - the data
are split into several signals which are processed
by special algorithms. The output from these
techniques is hardly understandable by a regular
network administrator.

• Outliers (Hodge and Austin, 2004) - These tech-
niques look for variations in data. Part of the
techniques deals with the detection of variations
in graphs (Akoglu et al., 2015). These techniques
use artificial intelligence (Rudrusamy et al., 2003)
that makes the explanation of the diagnosed faults
more complicated.

3 TOOL USAGE DESCRIPTION

Before describing the tool’s architecture, we will de-
scribe how the tool will be deployed, how administra-
tors will use it, and what kind of results the network
administrator can expect from it. Further, this section
describes which types of errors the tool can detect and
the associated types of patterns.

The tool will not analyze traffic online but will
work with captured PCAP files. When diagnosing a
network problem, the administrator needs to capture
the selected (problematic) network traffic and pro-
vides it as a PCAP file to the created tool. This im-
plies that the tool will not perform all-time monitoring
and that it will not be necessary to analyze full traffic
across the network.

normal state error state

amount of correct and error DNS replies

Figure 1: The figure illustrates how the problem with the
DNS server configuration can be detected based on the net-
work traffic visualization.

The tool’s goal is to search for predefined patterns
in selected packets in the specified PCAP file based
on configuration files. Each such pattern is associ-
ated with a specific error in which the pattern occurs.
An example is an error with the DNS server settings,

100

data preprocessing per packet processing after all packets are processed

PCAP

Packet
Iterator

Interval
Assignment

Field Value
Extraction

Value
Aggregation

Calculation and
abstraction of
output values

Patterns
Detection

diagnostic
output

JSON

{ }.. .
Input data
preparation

Figure 2: The architecture of the proposed tool, which consists of seven stages separated into three phases. The first phase
prepares the input data, the second phase processes packets one by one, and the last phase begins when there are no more
packets to process.

as mentioned in the introduction. A configuration er-
ror changes the ratio of correct and incorrect DNS re-
sponses. This example is shown in Figure 1.

The tool output will consist of detected patterns
together with descriptions of detected errors to which
the patterns relate. The detected pattern will also be
drawn as an image file by the Linux GNUplot tool.
Using these images, the administrator can easily iden-
tify whether it is a correct detection or a false positive.

The system will be able to detect two types of
patterns - single and double. Simple patterns are
searched in a single data series to detect fluctuations
of values. For example, it is possible to detect in-
correctly set QoS for a multimedia application or a
significant increase in the average RTT value for the
monitored server. Patterns will check whether the
value decreases, increases, or stays the same.

The second type of pattern is double, which is
searched for in two data series, analyzing the rela-
tionship between values from those series. It checks
whether the value from one series is higher, less, or
equal to the second series’s value. With these patterns,
it is possible to detect errors such as an increased rate
of application errors or a non-functional load balance
between two links to the Internet.

4 SYSTEM ARCHITECTURE

We have designed the tool as a single-thread appli-
cation that consists of several parts. It is possible to
implement the tool more efficiently as a multi-thread
application executing several parts in parallel, but our
tool is just a proof-of-concept of the proposed ap-
proach. The proposed system is displayed in Figure 2,
and consists of seven stages, an input PCAP file and a
configuration file.

The configuration file instructs the system which
patterns should be detected. If more than one con-
figuration file is specified, each configuration file is
processed individually. There is only one excep-
tion, during the processing of the first configuration
file, transferred data from the first stage is saved into
the memory, so in the next configurations, this stage
does not need to be executed. Configuration files use
the YAML format, which is easily understandable by

real users and also easily processed by computer pro-
grams.

4.1 Input Data Preparation

The first part of the tool prepares the input data for
further processing. It begins with loading and pars-
ing the PCAP file. This allowed us to use an al-
ready existing external tool called TShark. TShark
is a command-line version of a well-known network
management tool Wireshark which takes a PCAP file
and converts it into the JSON format. The already
implemented tool eliminates the need for implement-
ing custom protocol parsers. TShark already supports
hundreds of protocols, even if they are tunneled or
segmented.

Another benefit of using TShark is that JSON out-
put from the tool is marked by the Wireshark display
language 1. We have decided to use the Wireshark dis-
play language inside configuration files (specifically
the inputs section). This well-known language will
allow a better understanding of the configuration files
by network administrators.

4.2 Interval Assignment

The X-axis of each chart represents the relative time
when the packets were captured inside the input
PCAP file. The time is represented by time inter-
vals, where multiple values within one interval are
processed in later stages, aggregated and represented
by a single value.

The size of a time interval is specified in the con-
fig files in the section interval and has the format
"interval: value in milliseconds". It is up
to the user to specify an interval adequately to the
amount of data inside the input file so that the out-
put chart will contain enough data to visualize a chart,
and it will be possible to detect patterns in the chart.

During the processing of individual packets, the
system calculates into which time interval the packets
belong based on the field name frame.time relative.
The frame.time relative value represents the number
of seconds (with a microseconds accuracy) since the
first packet inside the PCAP file was captured.

1https://www.wireshark.org/docs/dfref/

101

4.3 Field Value Extraction

The generated chart can be constructed from multi-
ple values located in the source file, called the input
series. For example, we may want to display the num-
ber of transferred bytes and the number of transferred
packets. All input series need to be specified in the
input configuration section.

The format of an input value is "input name:
aggregation function (field name
filter condition)", where:

• input name - a user-defined name of the input se-
ries;

• aggregation function - name of the aggregation
function. The functionality is described in the
following subsection. The possible functions are:
MIN, MAX, AVG, COUNT, SUM, UNIQUE;

• field name - field name from the Wireshark dis-
play language;

• filter condition - an optional argument which con-
sists of a comparator (==, ! =, <, <=, >, >=)
and a constant value (number or string).

The value is added to the list of values assigned to
the calculated interval, only if the packet contains the
specified field name and fulfills the filter condition.
For example, if we would like to count only DNS
packets with the domain name server.local, we would
use COUNT(dns.qry.name == "server.local").

4.4 Value Aggregation

After all packets are assigned into time intervals and
their values are extracted, the system executes the ag-
gregation function over all intervals and their values.
The goal of the aggregation function is to replace a list
of values with a single numeric value. For example,
when an aggregation function SUM() is specified, the
system iterates over the intervals and for each interval
calculates a summary of the specified field name val-
ues. In case the interval does not contain any packets,
the aggregated value is 0.

The process of interval assignment, field value ex-
traction, and value aggregation is displayed in Fig-
ure 3. The packets from the input PCAP file are in the
same order as they were saved in the PCAP file. The
result is a list of aggregated values, however in case of
the config file exports and aggregates multiple values
at once, the result will consist of multiple lists.

time
intervals

packets from input

aggregated values

Figure 3: The figure shows how aggregation works. Packets
from the input are grouped based on the time intervals, and
an aggregation function is executed over each interval. The
aggregation function returns a single numeric value.

4.5 Calculation and Abstraction of
Output Values

A chart generated by the tool can be generated di-
rectly from the input series’s values, or it is possible
to calculate a series of new (output) values from mul-
tiple input series. For example, if we have one series
containing HTTP bytes and another one containing
HTTPS bytes, it can make sense to draw a chart as a
summary of the two series. The output section of the
configuration file specifies how the data is generated.

The section output contains a list of unnamed el-
ements that can contain any name of the input se-
ries, mathematical operation +,−,∗,/, and parenthe-
ses (,). The output values are calculated based on
input series values and a specified formula for each
time interval separately.

The system is not searching for patterns in numer-
ical values. The numerical values are abstracted by
an alphabet character according to the type of patterns
we are looking for. Two types of patterns exist:

• simple - patterns are evaluated based on a sin-
gle output series only. There are five possible
characters which describe original numerical val-
ues. The selected percentage levels were selected
based on testing, and their purpose is to ensure
that the detection does not depend on exact val-
ues, but allow minor variations.
– c - constant - this value is used when the next

value is the same as the previous value or within
the range of < 80%;120% > of the previous
value;

– r - raise - the new value is larger, in the range
of < 120%;140% > of the previous value;

– f - fall - the new value is smaller, in the range of
< 60%;80% > of the previous value;

– R - rapid raise - the new value is significantly
larger, in the range of < 140%;∞% >;

– F - rapid fall - the new value is significantly
smaller, in the range of < 0%;60% >;

102

• double - patterns are evaluated based on two dif-
ferent output series. There are three possible char-
acters for them: a (above), u (under), s (same)
describing that the first numerical value is larger
(graphically above), smaller (graphically below)
or approximately same (there is some tolerance)
with comparison to the second numerical value.

At the end of the abstraction process, each output
series will be represented by a single string with spe-
cific alphabet characters. This process of output value
calculation and abstraction is displayed in Figure 4.

values of input series

a) variant for simple patterns:

string with abstracted values

output series with numerical values

b) variant for double patterns:

Q Q Q Q

string with abstracted values

Figure 4: The figure shows the idea of calculating the nu-
merical values of the output series and abstracting them into
a string format. Two possible patterns are displayed - sim-
ple and double. In this figure, the string alphabet is replaced
by arrows and comparator symbols for easy understanding.

4.6 Pattern Detection

The pattern lookup process is implemented as an
evaluation of regular expressions over output series,
which have a regular string format. The patterns are
specified in the section patterns, and their format de-
pends on whether we are working with a simple chart
or a double chart:

• simple - the format is "patterns: pattern1,
pattern2, ...". The table 1 lists all of the pos-
sible pattern names together with their regular ex-
pression definitions.

• double - the format is "patterns:
output series 1 RELATION X% of
output series 2". The X specifies the rate

between the two compared values. For example,
the dns error above 10% dns success rule is
looking for a situation when the amount of DNS
error packets will be at least 10% higher than the
success DNS packets. The relation can have one
of the following values:

– above - detects the situation when the output
series 1 is above the series 2;

– cross - detects the situation when the output se-
ries 1 crosses the series 2 in whatever direction.

– under - detects the situation when the output
series 1 is below the series 2;

Table 1: Possible simple patterns and their definition in a
regular expression format.

Pattern name Regular Expression
rapidly raising [R]+
rapidly falling [F]+
tooth [R][c]+[F]
reversed tooth [F][c]+[R]
drop [F][R]+[ˆF]
drop jump [F][R]+[F]
peak [R][F]

The idea of searching for patterns inside the ab-
stracted data is displayed in Figure 5. The system is
looking for a tooth pattern, which begins by a rapid
raise, followed by at least one constant value and ends
with rapid falling.

tooth pattern

Figure 5: The idea of searching for patterns in the abstracted
values.

5 EVALUATION

This section provides a simple demonstration of how
to use the proposed tool. The tool always works with
one PCAP file, which is prefiltered to contain only
packets essential for analysis. So if the goal is to find
patterns in network communication of several differ-
ent applications, it is up to the network administrator
to create one PCAP file for each application.

The example shows the transfer speed analysis
of the selected application and attempts to find a
drop jump pattern. This pattern looks very similar

103

to the electrocardiogram (EKG) signal. The drop
jump pattern forms when the network is congested,
and the router stores all unsent data into a buffer. The
buffering will temporarily reduce the bit rate. After
the network is no longer congested, the router sends
the buffered data to their destination (Chappell and
Aragon, 2014). Therefore, transmission speed tem-
porarily raises above the normal level.

When diagnosing a problem with the poor qual-
ity of a video conference application, the drop jump
pattern is searched for. When the pattern is detected,
it means that the QoS queuing and buffering settings
are applied to the application. These settings are un-
desirable, because they will decrease QoE (quality-
of-experience) of such an application.

i n t e r v a l : 20
i n p u t s :
− t r a n s f e r s p e e d : COUNT(f rame . l e n)

o u t p u t s :
− t r a n s f e r s p e e d

p a t t e r n s : drop jump
e r r o r : QoS queu ing d e t e c t e d which

may d e c r e a s e t h e q u a l i t y o f u s e r
e x p e r i e n c e f o r m u l t i m e d i a t r a f f i c

Listing 1: The configuration specifies that the administrator
is interested in the drop jump pattern applied at the transfer
rate.

Listing 1 contains a configuration file that divides
the input data into intervals with a length of 20 mil-
liseconds and stores the amount of transferred data
into those intervals. The transferred data are used as
the input for the system, which tries to find the drop
jump pattern. With the drop jump pattern, the system
searches for a rapid drop, followed by a rapid increase
in the value. Figure 6 shows an example of pattern
detection in the PCAP file “tr-queuing.pcapng” from
the “Troubleshooting with Wireshark” (Chappell and
Aragon, 2014) book. The error describes what has
been detected to the network administrator.

Before deploying the created tool inside the pro-
duction network, it is necessary to evaluate the created
tool using real data and to measure the accuracy of
detection (true positive vs. false positive rate). In the
case of a high false-positive detection rate, the level
of the deviation will need to be adjusted to determine
whether there has been an increase or decrease in the
data values. Another option would be to create addi-
tional symbols to describe changes in values in more
detail (e.g., increase by 10%, increase by 20%). How-
ever, more symbols would increase the complexity of
the rules, and it would be harder for administrators to
manage them.

Figure 6: The output from the implemented tool which con-
tains the detected drop jump (DJ) pattern as specified by
the configuration in the Listing 1.

6 DISCUSSION

The presented method complements existing diagnos-
tic tools for network troubleshooting. Because of its
deterministic decision procedure based on the manu-
ally defined knowledge base, several advantages are
provided:

• Repeated execution of the method for the same
data yields the same results. This property is im-
portant for practical analysis when different paths
during problem investigations are examined.

• Using the rule-based method, it is usually easy to
observe the supporting information for the results
presented. Rule execution can be traced to pro-
vide a path of reasoning followed by the system,
which aids in understanding the issues and sug-
gests possible corrective actions.

• The system is robust and flexible. It is possible
to extend the system with new rules defined by a
simple, declarative rule language.

• The system does not require a huge labeled data
set to learn the classifier. It provides highly accu-
rate detection for a carefully crafted collection of
rules.

On the other hand, the method is limited in the fol-
lowing areas:

• It is not possible to identify behavior that is not
represented in the knowledge base. If an attack
exhibits a behavior, which has not been seen yet,
it is not possible to detect it.

• Creating new rules can be difficult as sometimes it
is hard to describe the expected situations in terms
of packet count, size, and timing. While this is
a very simple paradigm, it can represent a non-
trivial class of network configuration issues and
anomalies.

104

• To define the erroneous conditions, a deep knowl-
edge of communication protocols and systems is
necessary. Therefore the rules are to be defined by
the domain expert. However, it may be possible to
extend the system with specific rules identified by
the network administrator using the rule language.

• The process of creating rules is mostly manual,
and every update requires additional effort. How-
ever, to simplify the rule definition, an easy to un-
derstand declarative rule language was defined.

While modern methods introduced in the realm of
computer network management stems from machine-
learning algorithms, the rule-based approach is still
prevalent in practice. It is because rules are easy to
understand and rule evaluation is a deterministic pro-
cedure often offering enough information for finding
the root cause of the issue by the administrator.

7 CONCLUSION

Network diagnostics is a complex activity requiring
a lot of time and experience. We have presented a new
rule-based approach to the detection and identifica-
tion of network issues. The rules employ patterns
that consist of a sequence of value changes to identify
a sequence in network communication that possibly
represents an anomaly. This new approach automates
the labor activity conducted by network administra-
tors that use the visual representation of network ac-
tivities to identify non-standard situations.

We have implemented the proposed approach as
a proof-of-concept tool that processes capture traffic
and produces a log of identified issues. To demon-
strate the functionality of the tool, we have tested
the tool over a small amount of network data. The
results confirm that the approach has practical poten-
tial, but further evaluation is required.

Future work will focus on: (i) Use this approach
for another type of source data, such as log files or
NetFlow records. It also makes sense to think about
new types of patterns for these new data sources. (ii)
Comparing the solution (accuracy and performance)
with similar diagnostic tools. This could be difficult
because each approach aims at different network er-
rors, and accuracy will depend on created patterns
and configurations. Also, many published papers on
network diagnostics either do not provide access to
the tools or datasets used for revaluation. (iii) Reim-
plementing the tool into pipeline architecture to allow
the processing of real-time data.

ACKNOWLEDGEMENTS

This work was supported by the BUT FIT grant FIT-
S-20-6293, ”Application of AI methods to cyber se-
curity and control systems”.

REFERENCES

Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based
anomaly detection and description: a survey. Data
mining and knowledge discovery, 29(3):626–688.

Barford, P., Kline, J., Plonka, D., and Ron, A. (2002). A
signal analysis of network traffic anomalies. In Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on In-
ternet measurment, pages 71–82.

Ben Kraiem, I., Ghozzi, F., Péninou, A., and Teste, O.
(2019). Pattern-based method for anomaly detection
in sensor networks. 21st International Conference on
Enterprise Information Systems (ICEIS 2019), pages
104–113.

Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K.
(2013). Network anomaly detection: methods, sys-
tems and tools. IEEE communications surveys & tu-
torials, 16(1):303–336.

Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM computing sur-
veys (CSUR), 41(3):1–58.

Chappell, L. and Aragon, J. (2014). Troubleshooting
with Wireshark: Locate the source of performance
problems. Laura Chappell University. ISBN: 978-
1893939974.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G.,
and Vázquez, E. (2009). Anomaly-based network
intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1-2):18–28.

Gu, Y., McCallum, A., and Towsley, D. (2005). Detect-
ing anomalies in network traffic using maximum en-
tropy estimation. In Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, pages
32–32.

Hodge, V. and Austin, J. (2004). A survey of outlier de-
tection methodologies. Artificial intelligence review,
22(2):85–126.

Holkovič, M. and Ryšavý, O. (2019). Network diagnostics
using passive network monitoring and packet analy-
sis. The Fifteenth International Conference on Net-
working and Services (ICNS), pages 47–51.

Katasev, A. S. and Kataseva, D. V. (2016). Neural network
diagnosis of anomalous network activity in telecom-
munication systems. In 2016 Dynamics of Systems,
Mechanisms and Machines (Dynamics), pages 1–4.
IEEE.

Kruegel, C. and Toth, T. (2003). Using decision trees to
improve signature-based intrusion detection. In Inter-
national Workshop on Recent Advances in Intrusion
Detection, pages 173–191. Springer.

105

Lee, H., Song, J., and Park, D. (2005). Intrusion detec-
tion system based on multi-class svm. In Interna-
tional Workshop on Rough Sets, Fuzzy Sets, Data Min-
ing, and Granular-Soft Computing, pages 511–519.
Springer.

łgorzata Steinder, M. and Sethi, A. S. (2004). A survey
of fault localization techniques in computer networks.
Science of computer programming, 53(2):165–194.

Li, H., Liu, G., Jiang, W., and Dai, Y. (2015). Designing
snort rules to detect abnormal dnp3 network data. In
2015 International Conference on Control, Automa-
tion and Information Sciences (ICCAIS), pages 343–
348. IEEE.

Martinez, E., Fallon, E., Fallon, S., and Wang, M. (2015).
Cadmant: Context anomaly detection for mainte-
nance and network troubleshooting. In 2015 Interna-
tional Wireless Communications and Mobile Comput-
ing Conference (IWCMC), pages 1017–1022. IEEE.

Ndatinya, V., Xiao, Z., Manepalli, V. R., Meng, K., and
Xiao, Y. (2015). Network forensics analysis using
wireshark. International Journal of Security and Net-
works, 10(2):91–106.

Prayote, A. and Compton, P. (2006). Detecting anomalies
and intruders. In Australasian Joint Conference on
Artificial Intelligence, pages 1084–1088. Springer.

Qadeer, M. A., Iqbal, A., Zahid, M., and Siddiqui, M. R.
(2010). Network traffic analysis and intrusion de-
tection using packet sniffer. In 2010 Second Inter-
national Conference on Communication Software and
Networks, pages 313–317. IEEE.

Qiu, T., Ge, Z., Pei, D., Wang, J., and Xu, J. (2010). What
happened in my network: mining network events from
router syslogs. In Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, pages
472–484.

Roesch, M. et al. (1999). Snort: Lightweight intrusion de-
tection for networks. In Lisa, pages 229–238.

Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V.,
and Wu, Q. (2010). A survey of game theory as ap-
plied to network security. In 2010 43rd Hawaii Inter-
national Conference on System Sciences, pages 1–10.
IEEE.

Rudrusamy, G., Ahmad, A., Budiarto, R., Samsudin, A.,
and Ramadass, S. (2003). Fuzzy based diagnostics
system for identifying network traffic flow anoma-
lies. Proceedings of the International Conference of
Robotics, Vision, Information and Signal Processing
ROVISP, pages 190–195.

Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A.,
Yang, H., and Zhou, S. (2002). Specification-based
anomaly detection: a new approach for detecting net-
work intrusions. In Proceedings of the 9th ACM con-
ference on Computer and communications security,
pages 265–274.

Solé, M., Muntés-Mulero, V., Rana, A. I., and Estrada, G.
(2017). Survey on models and techniques for root-
cause analysis. arXiv preprint arXiv:1701.08546.

Udd, R., Asplund, M., Nadjm-Tehrani, S., Kazemtabrizi,
M., and Ekstedt, M. (2016). Exploiting bro for intru-
sion detection in a scada system. In Proceedings of the

2nd ACM International Workshop on Cyber-Physical
System Security, pages 44–51.

Zeng, H., Kazemian, P., Varghese, G., and McKeown, N.
(2012). A survey on network troubleshooting. Tech-
nical Report Stanford/TR12-HPNG-061012, Stanford
University, Tech. Rep.

106

A.5 Using Network Traces to Generate Models for Auto-
matic Network Application Protocols Diagnostics

Authors: Holkovič Martin, Ing. (70%), Ryšavý Ondřej, doc. Ing., Ph.D. (20%), Polčák
Libor, Ing., Ph.D. (10%)
Abstract: Network diagnostics is a time-consuming activity that requires an administrator
with good knowledge of network principles and technologies. Even if some network errors
have been resolved in the past, the administrator must spend considerable time removing
these errors when they reoccur. This article presents an automated tool to learn the ex-
pected behavior of network protocols and possible variations. The created model can be
used to automate the diagnostic process. The model presents a finite automaton containing
protocol behavior for different situations. Diagnostics of unknown communication is per-
formed by checking the created model and searching for error states and their descriptions.
We have also created a proof-of-concept tool that demonstrates the practical potential of
this approach.
Keywords: Network diagnostics, automatic diagnostics, protocol model from traces.
Published in: 10th International Conference on Data Communication Networking (DC-
NET 2019), Prague, Czech Republic
Conference rating: C (Core), B4 (Qualis)
ISBN: 978-989-758-378-0

107

Using Rule-Based Decision Trees for Automatic
Passive Diagnostics of the Network Problems

Martin Holkovič

Flowmon Networks
Sochorova 3232/34

Brno 61600, CZ
Email: martin.holkovic@flowmon.com

Ondřej Ryšavý

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: rysavy@fit.vutbr.cz

Abstract—Network troubleshooting often requires a detailed anal-
ysis that may involve network packet capturing and a manual
analysis using tools such as Wireshark. This is time-consuming
and requires deep knowledge of communication protocols. There-
fore, this domain is a suitable candidate for the deployment
of an expert system. In this paper, we consider a rule-based system
integrating the expert knowledge that performs an automatic root
cause analysis of network problems identifiable from network
communications. The system is open, thus it is possible to add
new rules as needed, e.g., for specific and recurring cases
of a target environment. The rules are evaluated in a tree-
based fashion, which enables us to collect additional information
during the problem search to better explain the possible causes.
We successfully deployed the tool as part of a commercial tool
for network monitoring.

Keywords–Network diagnostics; rule-based diagnostics; fault
tree analysis; event-based diagnostics; decision trees.

I. INTRODUCTION

Network infrastructure and applications are complex, prone
to cyber attacks, outages, performance problems, misconfigu-
rations, and problems caused by software or hardware incom-
patibility. All these problems may affect network performance
and user experience [2], which may have fatal consequences
for critical network infrastructure, e.g., e-health, e-government,
Industrial IoT, smart grid, etc. Network troubleshooting is
thus among the most common and important activities by
network administrators. Despite the help of the current network
monitoring tools, identification of a root cause of issues
can be a complicated and mostly manual activity. The tools
often reveal symptoms of the problem but the reasoning and
problem localization are left for human operators expecting
that they understand the problem and have sufficient knowl-
edge of the technologies involved. Even if it is the case,
the troubleshooting can be a lengthy and tiresome process
that requires inspection of different sources of information,
e.g., log files, the content of various tables, communication
traces, etc. Application communication protocols are designed
to implement the data exchange of remote parties. The protocol
specification defines the syntax and meaning of messages, the
way the conversation is controlled, and also the indication of
error states. Thus, by inspecting the network communication it
is possible to understand the situation and identify the indicated
errors and in many cases also their probable cause.

Unfortunately, many network administrators do not have
the proper tools and/or knowledge to diagnose and fix network

problems effectively, and they require an automated tool to
diagnose these errors [3]. Zeng et al. [4] provide a short survey
on network troubleshooting from the administrators’ viewpoint
identifying the most common network problems: reachability
problems, degraded throughput, high latency, and intermittent
connectivity. The consulted network administrators expressed
the need for a network monitoring tool that would be able
to identify such problems.

This paper proposes a system, which creates diagnostic
information only by performing passive network traffic packet-
level analysis. Previous research and development provided
tools for helping administrators to diagnose faults [5] and
performance problems [6]. However, these tools either require
installation of agents on hosts, active monitoring, or providing
rich information about the environment. The idea behind our
proposal is to automate the reasoning usually done by network
analysts when investigating the root cause of an error from the
captured network traces. It means that it is not necessary to
change the network environment nor deploy any new devices.
The troubleshooting process may remain unchanged except
that one of the most labor-intensive parts represented by the
packet-level traffic analysis is automated. Still, the user can
verify the results obtained from the automated analysis as
the process provides sufficient diagnostic information for the
identification of problem relevant artifacts.

One of the most common ways of analyzing network
traffic is by using a network packet analyzer (e.g., Wireshark).
The analyzer works with captured network traffic (PCAP
files) and displays structured information of layered protocols
contained in every packet (encapsulated protocols, protocol
fields). Administrators work with this information, check trans-
ferred content and compare the data with expected values.
This process, done manually, is time-consuming and requires
a good knowledge of network protocols and technologies.

The main contribution of this paper is a proposal of a tool
for automatic diagnoses of network related problems from
network communication only. Our approach tries to imitate
a diagnostic process of a real administrator using the fault tree
method and a popular packet parsing tool TShark. We have
also implemented a proof-of-concept implementation to con-
firm the viability of the approach. This paper is an extension
of our previous paper [1]. The most significant change is the
improvement of input data processing. A new more efficient
mechanism of converting input data into a specific indexable

108

format has been implemented. This change required significant
modification of the method the system uses to access the data.
However, the new format simplifies processing of other data
types and reduces the execution time of the whole diagnostic
significantly. A simple example of a tool usage for another
data type (log files) is also presented.

The paper is organized as follows. Section II defines
the problem statement and research questions. Section III
discusses related work and describes diagnostic approaches.
Our solution consists of five stages and is introduced in Sec-
tion IV. Section V instructs network administrators how to use
our system and shows how we model diagnostic knowledge.
Section VI shows the output from the tool and evaluates the
performance. Finally, Section VII is the conclusion, which
summarizes the current state and proposes future work.

II. RESEARCH QUESTIONS

Our primary goal is to design a system that infers possible
causes accountable for network related problems, such as
service unreachability or application errors. Offering a list
of actions for fixing the errors’ cause is the secondary and
optional goal. All this information is gathered only from
captured network communication, which makes this approach
applicable to various scenarios.

In our work, we focus on enterprise networks that have
complex networking topologies, usually consisting of various
network and end-point devices. The availability of network
traces in the form of packet captures is essential to our method.
Thus, we expect that administrators can collect network com-
munication at appropriate locations in the network. Also, we
consider that the capturing process creates packet captures
without packet losses. As this may be difficult to guarantee
for high-speed networks without using specialized hardware,
for the diagnostic we usually do not require all communication.
Thus, the packet capture can be recorded by applying a suitable
filter to reduce the amount of data that needs to be processed.

To achieve our goal, we need to find answers
to the following research questions:

1) How to model different network faults in a suitable way
for implementation in a diagnostic system? Reachability,
application specific, and device malfunctioning problems
can cause various networking issues. We need to have
a unified approach for modeling these problems to iden-
tify the symptoms and link them with root causes.

2) What information should be extracted from the captured
network communication to identify symptoms of failures?
In our case, we can passively access the communica-
tion in the monitored network and extract the necessary
data to detect possible symptoms. An approach that can
efficiently detect the symptoms in terms of precision and
performance is needed.

3) How to identify the root cause of the problem, if we have
a set of related symptoms? The core part of the diagnostic
engine is to apply knowledge gathered from observed
symptoms to infer the possible root cause of the problem.
The result should provide the information in sufficient
detail. For instance, if the authentication during the estab-
lishing of the connection fails, then we would like to know
this specific information instead of a more general expla-
nation (e.g., unable to establish a connection).

4) What actions can be provided to the administrator to fix
the problems? Based on the observed symptoms and
the root cause, the system should be able to provide fixing
guidelines. These guidelines are supposed to be easy
to understand even for an inexperienced administrator.

III. RELATED WORK

A lot of research activities were dedicated to the diagnoses
of network faults. Various methods were proposed for different
network environments [5], in particular, home networks [7],
enterprise networks [8]–[11], data centers [6], backbone and
telecommunications networks [12], mobile networks [13], In-
ternet of Things [14], Internet routing [15] and host reach-
ability. Methods of network troubleshooting can be roughly
divided into the following classes:

Active methods use traffic generators to send probe packets
that can detect the availability of services or check
the status of applications [16]. Usually, generators create
diagnostic communication according to the test plan [8].
The responses are evaluated and provide diagnostic infor-
mation that may help to reveal device misconfiguration
or transient fail network states. Diagnostic probes intro-
duce extra traffic, which may pose a problem for large in-
stallations [11]. Also, active methods may rely on the de-
ployment of an agent within the environment to get
information about the individual nodes [9].

Passive methods detect symptoms from existing data sources,
e.g., traffic metadata [12], traffic capture files, network
log files [15], performance counters. Passive methods can
utilize the data commonly provided by various network
monitoring systems.

Some systems combine passive traffic monitoring to detect
faults with active probing to determine the cause of fail-
ure. Identifying anomalies related to network faults and
linking them with possible causes commonly utilizes some
of the following approaches:

Inference-based approach uses a model to identify the depen-
dence among components and to infer the faults using
a collection of facts about the individual components [9],
[17].

Rule-based approach uses predefined rules to diagnose
faults [10]. The rules identify symptoms and determine
how these contribute to the cause. The rules may be or-
ganized in a collaborative environment for sharing knowl-
edge between administrators [7]. Kim et al. [18] propose
a rule-based reasoning (RBR) expert system for network
fault and security diagnosis. The system uses a set of
agents that provide facts to the diagnostics engine. De
Paola et al. [19] deals with a distributed multi-agent
architecture for network management. The implemented
logical inference system enables automated isolation,
diagnosis, and repairing network anomalies through the
use of agents running on network devices. Dong and
Dulay [20] developed an assumption-based argumentation
to create an open framework of the diagnosis procedures
able to identify the typical errors in home networks. Rule-
based systems often do not directly learn from experience.
They are also unable to deal with new previously unseen
situations, and it is hard to maintain the represented
knowledge consistently [5].

109

Figure 1. The top-level architecture of the proposed system. The architecture consists of five stages and one intermediate data storage (index file). The grey
area represents optional architecture extensions — additional data sources.

Classifier-based approach requires training data to learn
the normal and faulty states. The classifier can identify
a fault and its likely cause [21]. Classifier-based methods
were considered for misconfiguration detection in the
home networks [22] and in the large network infrastruc-
ture [23]. Tranalyzer [24] is a flow-based analyzer that
does traffic mining and a statistical analysis for large-
scale networks. Big-DAMA [25] is a novel framework
for detection and diagnosis of network traffic anomalies.

Network diagnostics based on traffic analysis can also
use methods proposed for anomaly detection as some types
of faults result in network communication anomalies.

Compared to other rule-based solutions, our system uses
decision trees, which allows us to define more complex sit-
uations. Compared to simple rules (as used, for example, by
a fishbone diagram), it is possible to make decisions based
on previous diagnostic steps. Another difference is that our
system does not need to know in advance what is wrong or
what to focus on. Also, our system is not limited to only one
type of data, and diagnostic rules are understandable by real
administrators (not just scientists and programmers).

IV. PROPOSED SYSTEM ARCHITECTURE

We have built an expert system for analyzing network traf-
fic, that has already been integrated into a worldwide business
product [26]. The system combines rule-based and inference-
based methods as it is easy to understand for network admin-
istrators. While the use of classifier-based methods has been
proven very suitable for anomaly detection it lacks the capabil-
ity to provide additional information for the detected case. The
advantage of learning from provided data can only be exploited
if a large set of annotated data is available. Contrary, the rule-
based method can be extended also for detecting rare cases.
The system only requires captured network traffic containing
enough information about the event. Thus it is a completely
passive method. Active methods generate additional traffic into
a network (which can be unwanted in some situations) and
require access to the network.

The proposed system is a processing pipeline that consists
of several stages, as shown in Figure 1. The first stage, labeled
as Protocol Analyzer, filters and decodes input packets using
an external tool. The second stage takes decoded packets
and converts them into a format for easier and faster data
access (PCAP index file). The third stage, named Fact Finder,

executes simple rules to identify facts significant from the di-
agnostics point of view. In the fourth Tree Engine stage, the
decision tree utilizes the Fact Finder and identifies the possible
problem cause. The fifth, and the last, stage Event Generator
generates diagnostic outputs that contain detected errors and
suggested solutions. Stages three, four, and five are easily
extendable by the administrator who can add new rules and
definitions.

The system can also be extended to use different data
sources (e.g., log files or NetFlow records), as shown on the
second row in Figure 1. Each data source requires specific
data preprocessing that leads to the creation of an index
file. The common part starts with the Fact Finder that can
search indexed data of different data sources. If not specified
otherwise, in the rest of the paper, we describe and evaluate the
system only for a single data source represented by captured
packet traces.

A. Protocol Analyzer

The first step in the processing pipeline is decoding cap-
tured network traffic in the PCAP format into a readable JSON
format. We employ the tool TShark, which is a command-line
version of the widely-used network protocol analyzer Wire-
shark. Because TShark follows the field naming convention
used by Wireshark, we can use Wireshark Display Filter Ex-
pressions to select packet attributes. TShark supports all packet
dissectors available in Wireshark. An example of TShark’s
output format with some omitted data is displayed in Figure 2.

{

...

 "_source": {
 "layers": {
 "frame": {
 "frame.number": "15",
 "frame.len": "84",

 "ip": {
 "ip.ttl": "50",
 "ip.proto": "6",

 "tcp": {
 "tcp.srcport": "25",
 "tcp.dstport": "1470",

 "smtp": {
 "smtp.response.code": "235",
}

...

...

...

...

Figure 2. An output from the TShark’s JSON format.

110

Using TShark brings the following benefits:

• many protocol dissectors are available and the community
quickly provides a parser for an emerged protocol;

• tunneled, segmented and reassembled data are support;
• data presentation is consistent with the Wireshark, which

allows the creation of an easy-to-read API for diagnostics.

TShark provides not only data of fields from supported
network protocols but also some computed data, such as round
trip time, missing or retransmitted TCP segments, which can
be used in diagnostic rules.

Even if our primary use case is to diagnose problems inside
the captured network data, we would like to test that our system
can work with other data sources as well. For this test, we have
chosen to use the log files. Because each application has its
own format of log messages and we were not able to find a
universal tool that can parse the content of any log message
into a JSON object, we have implemented a custom parser.

Our data preparation script takes log records one by one,
and if a record matches some of the predefined regular expres-
sions, the record is converted into a JSON format, as shown
in Figure 3. Currently, only a few applications are supported
- postfix, dovecot, and fail2ban. The output JSON format has
the same structure as the JSON from the TShark tool, so future
processing will remain the same.

Feb 20 01:12:19 mail dovecot: auth: passwd-file(info,
185.36.81.57): unknown user (SHA1 of given password:
ece4e6)

 {
 "time": "1582161139", # Feb 20 01:12:19
 "service": "mail dovecot",

 "mode": "auth",
 "username": "info",
 "ip": "185.36.81.57",
 "description": "unknown user"
 }

Figure 3. Conversion of a single log record into a JSON object.

B. Data Indexer
Data Indexer converts data from the JSON format into

a format suitable for fast searching by packets’ field names
(attributes) and their values. Most of the time, it will not be
necessary to process the packets one by one, which signif-
icantly improves the resulting diagnostic speed. Each input
packet is indexed and the following data is stored:

1) the packet itself;
2) a set of all field names of the packet;
3) map of values assigned to each packet’s field.

Figure 4 shows an example of how indexing works. The en-
tire index is represented by an associative array. First, the
packet is stored under the raw key and a packet number
(in this case, 3). Using this value, it is possible to retrieve
the packet in the same format as returned by TShark. Subse-
quently, the packet number is stored under a set of all indexed
packets stored under the packets key. This set will simplify
some operations, and its usage can be seen in Figure 5. In
the next steps, for each packet attribute and its values (each
attribute can contain multiple values) a set of packet numbers is
created (when it does not already exist). After that, the current
packet number is added to the set.

1 index = dict() # associative array in
Python

2 index["_raw/3"] = {"frame.number":
["3"], "dns.id": ["0x00007df5"],
"ip.addr": ["192.168.1.1",
"192.168.1.100"],...} # under the
_raw + packet number key, the
original packet in the JSON format
is stored

3 index["_packets"] = {1, 2, 3} #
_packets index contains set of all
packet numbers

4 index["dns.id"] = {3} # all packets
with any "dns.id" field value are
saved under the field name key

5 index["dns.id/0x00007df5"] = {3} #
packets which contain "dns.id" field
with value "0x00007df5" are saved

under field name/field value key
6 index["ip.addr"] = {1, 2, 3}
7 index["ip.addr/192.168.1.1"] = {1, 3}
8 index["ip.addr/192.168.1.100"] = {3}

Figure 4. An example of the indexing of a few fields from the DNS packet.
The bold text is showing index keys and values, which have been added

because of the new packet.

C. Fact Finder
The Fact Finder aims to identify specific situations useful

for network diagnostics. Facts can be attributed to one or more
packets, which are in some relation. For example, a successful
DNS name resolution is a fact that consists of a query and
a corresponding reply DNS messages. The facts are specified
by rules describing which packets should be found and which
relation they should fulfill. The format of these rules is de-
scribed in Subsection V-B. A rule can consist of up to three
parts:

1) a list of packet filters;
2) a list of assertions to express relation constraints;
3) parameters for the filters and assertions.

The system evaluates rules as follows: (i) Parameters are
replaced by provided values. (ii) Each packet filter returns a list
of packets matching the filter. (iii) Assertions are evaluated
to select sets of packets satisfying the constraints. A result
has the form of a collection of sets of packet numbers, e.g.,
a rule that identifies DNS request-reply pairs checks that
the transaction ID in both the request and reply packets match.
The last step is converting sets of packet numbers into lists
of packets. Packets in lists are ordered by the packet numbers.

Filter expressions use Wireshark’s display filter language.
By using this language, the expression can be first tested
in Wireshark before it is used in a Fact Finder rule. Assertion
constraints use our created language that is based on the
Wireshark’s display filter language. There are three changes
made to the original language, which add support of:

1) working with packets from filter expressions;
2) simple math operations (+, -, *, /);
3) parameters for expressions. The parameters do not in-

crease language capability but aim to simplify rule defi-
nition.

111

The evaluation of the facts begins with searching for
packets with specific attributes. However, this varies depending
on how these attributes are specified. In the case of a simple
condition, it is possible to use the index created in the Data
Indexer step, but with more complex conditions, this is not
possible. A more complex condition is one that contains
either a regular expression, function (string length, substring),
or some comparison (<,<=, >,>=).

If it is possible to search for packets using the created
index, the appropriate packet numbers are searched for using
each attribute specified. Based on the specific relation between
attributes, the adequate set operation is applied to the sets
of packets. This process is shown in Figure 5. This figure
describes finding packets by using the created index.

1 search: dns
2 result = index["dns"]
3
4 search: dns.flags.response == 1
5 result = index["dns.flags.response/1"]
6
7 search: dns and ip.addr == "10.10.10.1"
8 dns_packets = index["dns"]
9 ip_packets=index["ip.addr/10.10.10.1"]

10 result = dns_packets.intersection(
ip_packets) # packets both in
dns_packets and ip_packets

11
12 search:smtp.response.code != 250
13 all_packets = index["_packets"]
14 skip_packets = index["smtp.response.

code/250"]
15 result = all_packets.difference(

skip_packets) # packets in
all_packets but not in skip_packets

Figure 5. An example of index usage when searching for packets that meet
the specified constraints. When combining attributes in constraints, results
from individual attributes are combined using set operations. The bold text

shows the packet specification.

In case the packet specification cannot be evaluated using
the created index, it is necessary to go through each packet
and evaluate the condition for its values. This is accom-
plished by replacing the attributes in the expression (e.g.,
smtp.response.code matches ”[45] [0-9] [0-9]” and ip.addr =
”10.10.1.1”) with values from each packet. Because a list of
values represents each attribute’s value, the evaluation process
must try all value combinations. If at least one combination
fulfills the packet specification, the packet is added to the set of
fulfilling packets. The principle is shown in Figure 6. Because
there was not such a complicated rule in DNS protocol, we
are showing this principle on the SMTP rule.

After all packets have been searched, they are represented
only by a list of packet numbers. Before working with the
packet’s data, it is necessary to replace these packet numbers
with the actual packets. After that, constraints defining packet
relationships can be evaluated (assert rules). An example
of a relationship is a request-reply pair of packets that are
linked together by a request ID. Searching for such packets
is accomplished by creating all possible packet combinations
(Cartesian product) and evaluating all conditions for each
combination.

1 search packets: smtp.response.code
matches "[45] [0-9] [0-9]" and
ip.addr = "10.10.1.1"

2 import re # regular expression module
3 result = set()
4 def check_packet(packet):
5 values = {}
6 for value in packet["smtp.response.

code"]: # only packets with field
smtp.response.code are used

7 values["smtp.response.code"]=value
8 for value in packet["ip.addr"]: #

only packets with attribute ip.
addr are used

9 values["ip.addr"] = value
10 if re.search(values["smtp.

response.code"],"[45][0-9]
[0-9]") and values["ip.addr"]
== "10.10.1.1":

11 result.add(packet_number)
12 return result
13
14 for packet_number in index["_packets"]:
15 packet = index["_raw/"+packet_number]
16 result = check_packet(packet, result)
17 return result

Figure 6. An example of finding all packets that meet the specified
condition, which can not be evaluated by using the created indexes. When

evaluating a condition, all value combinations are tested for each packet. The
bold text shows the packet specification and the corresponding condition.

The principle of evaluating the assert conditions is shown
in Figure 7. The code in the figure contains a relation()
function that combines all possible values (similar to the
code in Figure 6) and compares whether at least one value
combination meets the defined relation function (e.g., ” == ”
for equality). The relation() function works with a packets
dictionary that contains a list of packets that are saved under
the keys defined in the facts section of the rule.

1 facts:
2 dns_query: dns.flags.response == 0
3 dns_reply: dns.flags.response == 1
4 asserts:
5 - dns_query[udp.stream] ==

dns_reply[udp.stream]
6 - dns_query[dns.id] ==

dns_reply[dns.id]
7
8 result = []
9 for query in packets["dns_query"]:

10 for reply in packets["dns_reply"]:
11 if relation(query["udp.stream"],

"==", reply["udp.stream"])
12 and relation(query["dns.id"],"==",

reply["dns.id"]): # relation()
function checks all combinations of
values from two lists

13 result.append({"dns_query": query
, "dns_reply": reply})

14 return result

Figure 7. Example of a packet set search (DNS query and response) that
meets the defined constraint (packets from the same UDP stream and the

same request ID). The bold text is sharing assert constraints and the
corresponding relation() function.

112

D. Tree Engine
The tree engine infers the possible error cause by evaluating

a decision tree that contains expert knowledge about supported
network protocols and services. Each node of the tree con-
tains a diagnostic question. Questions refer to facts identified
by the Fact Finder. Based on the question’s result, the next tree
node is chosen. This node transition creates a path that begins
in a root node and finishes in a leaf node. Paths in the tree
represent gathered knowledge and lead to the possible cause
of the problem.

The decision tree consists of declarative specifications
of tree nodes enriched by Python code. The declarative part is
responsible for creating the tree and consists of a rule name,
a rule type, a Fact Finder rule, and two branches, which cover
the success and the fail result of the Fact Finder. Both branches
can define the next rule, which should be processed.

Python codes are located inside the success and fail
branches. These codes are responsible for processing logic
(e.g., saving packets for future tree nodes or translating error
codes from packets into human-readable format) and gener-
ating diagnostic results. The format of rules is described in
Subsection V-A.

E. Event Generator
During the diagnostic process, a report is created to provide

diagnostic information for network administrators. The diag-
nostic report is produced in a human-readable format, as well
as in a machine format useful for further processing or
visualization. The report consists of events that are constructed
in tree nodes based on the derived knowledge and processed
packets. Each event describes one situation that happened in
the network. For example, the connection to the HTTP server
has been detected.

Each rule consists of a name, description, and severity of
the detected situation. Additionally, the event may include a
suggestion message and data from the provided packet. The
provided packet is specified as a parameter in the tree rule.
By using this packet, parameters such as flow identification or
timestamp can be associated with the event. Subsection V-C
describes the format of the event rules.

V. RULE SPECIFICATION

The diagnostic engine defines each protocol as a decision
tree. The tree consists of nodes representing administrator
questions, and edges representing answers to these questions.
The edge can move the diagnostic process from one question
to another (within the same protocol or another) or finish
the process with the discovered result.

Administrator

Does the PCAP
contain a DNS

query?

Is the reply OK?
Is there any reply
for the detected

query?
Is the used DNS
server running?NO

...

YES

YES

NO ...

...

Figure 8. A simple illustration of a binary decision tree. An administrator
diagnoses a DNS problem by anwering questions in the predefined order.

The questions simulate thinking of a real administrator.
Typically, an administrator starts to search for certain network
packet values and after the search for them is finished, the ad-
ministrator searches for next values based on the result. In
our solution, each question can only have two answers: success
or failure. This yields a binary decision tree. Figure 8 shows
an example of a small portion of the DNS tree.

The decision tree needs to be converted to a format
understandable by our system. This conversion is split into
three steps: 1) defining tree nodes (Tree node rules), 2) defining
conditions for choosing tree nodes (Fact Finder rules) and
3) defining the diagnostic report (Event definition rules). The
following subsections describe the syntax for each of these
rules. The reason why a node rule does not contain a lookup
code and an event definition directly and they need to be
defined in separate rules is that multiple rules would not be able
to use the same lookup code and events (increases reusability).

The conversion of the decision tree assigns a name to each
tree node. We use the node names as labels for switching from
one node to another. Each node tries to find specific facts,
defined as a Fact Finder rule. Based on the condition, if some
fact was found or not, the next diagnostic step is chosen. Each
rule can have one or none success and fail branches. Branches
contain executable Python code and the next node rule name.
After the execution of the Python code, the analysis switches
to the next node. Figure 9 shows the pseudocode for writing
tree nodes.

1 tree_node_id:
2 if fact_finder_rule finds some facts:
3 success branch_code
4 jump to the next tree_node_id
5 else:
6 fail branch_code
7 jump to the next tree_node_id

Figure 9. Pseudocode for writing a tree node. Each node should have
a unique id, lookup condition, and branch codes.

A. Tree Node Rules
All the rules are saved in a declarative YAML format.

This format is easily understandable by programming code
and by people without programming skills (we assume that
not all network administrators are also programmers). Even if
the system already contains some protocols, the administrators
can easily add new protocols or can extend capabilities of the
current protocols by updating the rules. In the following
paragraphs, the format of the rules will be described. Names
of the sections as they used in rules are placed inside the text.

The rule definition begins with the rule name (rule section
id) and the execution of a Fact Finder rule (rule section query).
The result of the Fact Finder is a list of associative arrays. Each
array can contain multiple packets, where the packet name is
the key to the array. These packets will be processed according
to the Tree Node rule type (rule section type). The default
behavior selects the first array from the list of arrays (the list is
ordered by the arrival time of packets) and marks it as a found
fact. The second type of rule is a ”foreach” type, which iterates
through the list of arrays and progressively marks each array as
a fact and executes the defined rule. For example, the foreach
rule can analyze each query to the server or each response to
the selected query (as shown in Figure 10).

113

1 id : DNS query d e t e c t e d # name of the
rule

2 query : e x i s t s DNS r e p l y f o r t h e d e t e c t e d
que ry ? # Facts Finder rule

3 type : f o r e a c h
4 s u c c e s s :
5 s t a t e : i s r e p l y ok ? # next state
6 code : | # Python code follows
7 rep ly pkt = f a c t ["dns_reply"]
8 save ("dns_reply" , r ep ly pkt)
9 event ("reply_detected" , r ep ly pkt)

10 f a i l :
11 s t a t e : f i n d any r e p l y from t h e same

d e s t i n a t i o n s e r v e r # next state
12 code : | # Python code follows
13 query pkt = load ("dns_query")
14 event ("reply_not_detected" , query pkt)

Figure 10. Simple Tree Engine rule showing what should be done if a DNS
query was detected.

Furthermore, the rule consists of two parts, with only one
executed (depending on whether the diagnostic engine has
found the searched fact or not). The format of both parts
is the same. Each part consists of the name of the next rule
with which the diagnostics should continue (rule section state)
and the Python code (rule section code). Each rule can switch
to to a rule from another protocol to diagnose problems across
several protocols, e.g., if an SMTP communication is not
detected, we will check if there are any ICMP unreachable
messages, failed TCP connection attempts or incorrect DNS
resolutions. If the next rule is not specified, the diagnostic
engine stops the diagnostic process.

The Python code can process packet data, make logical
decisions and most importantly, generate diagnostic output.
Within the Python code, it is possible to use any Python 3
code and it is also possible to utilize the following variables
and functions defined by the engine:

1) fact - contains the first fact found (or the next one in the
foreach type rule)

2) facts - contains all the facts found
3) save() - saving any value for further processing (inside

another Tree node rule or as a parameter in the Fact
Finder rule);

4) load() - read the value previously saved by the save()
function;

5) event() - generates a diagnostic report, where the param-
eter is a packet to which the report refers.

Figure 10 shows an example of a rule defining the middle
node from the tree in Figure 8. The figure shows a node de-
scribing that a DNS query has been detected (id) and the rule is
looking for a DNS response for the detected query (query). For
each detected reply, a successful section (success) is executed
(foreach type). The response is saved, the diagnostic message is
generated (code), and the diagnostic process continues to check
whether the response is without error (state). If no response
to the query is found, the failure section is executed (fail).
First, the original query is retrieved, the diagnostic message
is generated (code), and then the diagnostic process continues
with the next state (state).

B. Fact Finder Rules
Rules in this section describe how a question is converted

into packet lookup functions. Each rule may look for several
independent packets, which are combined and checked if their
relation fulfills assert conditions. Each question returns a list
of associative arrays, where each arrays represents a unique
combination of packets fulfilling the assert conditions (packet
names are arrays keys).

Each rule needs to have a name (rule section id), which is
used inside the Tree Node rules. The rule can have parameters
to make rules more reusable (rule section params). For exam-
ple, instead of creating a rule for each error code, it is possible
to create one rule with a parameter containing the expected
error code. Parameters are used as variables in the following
sections and can have a format of a single value or single
packet (previously saved by save() function within the Tree
Node rule). Rule section facts define the name of the searched
packets and the filter. The filter uses Wireshark display lan-
guage and specifies which packets should be assigned to the
specified name (each packet can be assigned to multiple packet
names). Rule section asserts define conditions for the detection
of packets. The conditions use our custom language, which is
based on the Wireshark display language. However, the custom
language allows to:

• use math operations addition(+), subtraction(-), multipli-
cation(*) and division(/);
• use single value parameters as if the values were directly

inserted into the condition;
• use values from packets (provided from packets or params

section). The format is packet name[field.name], where
field.name is the Wireshark name assigned to the attribute.

Figure 11 shows an example of a simple rule for the ques-
tion Is there any DNS reply for the detected DNS query? After
the rule name (id), the parameter dns query for the assert
conditions is specified (params). The rule contains a definition
of the dns reply packet (packets), which is used in the assert
conditions. The conditions (asserts) are checking whether the
dns reply belongs to the same UDP stream as the provided
dns query and if the reply packet is answering to the specific
query.

1 id : e x i s t s DNS r e p l y f o r t h e d e t e c t e d
que ry ? # name of the rule

2 params: # saved data from any tree rule
3 −dns query
4 f a c t s : # which packets we are looking

for
5 −dns rep ly : dns . f l a g s . r e s p o n s e == 1
6 a s s e r t s : # packets relation constrain
7 −dns query [udp . stream]== dns rep ly [udp .

stream]
8 −dns query [dns . id]== dns rep ly [dns . id]

Figure 11. Example of a DNS fact rule for checking if the PCAP file
contains a reply for the provided query or not.

By default, the Fact Finder rules are working with the data
saved inside the PCAP index file. To allow searching for facts
from different data index files, it is necessary to specify the
data type (rule section type). Figure 12 shows an example of
such a rule that looks for a log record containing specific values
related to the wrong username event. Because the rules are

114

using the same Tree Node engine, the rule of one type can use
parameters from a different type of rule. In our example, we
are looking for a record with the same IP address as used in
the provided imap query packet.

1 id : wrong username ?
2 params: # saved packet from previous

rules
3 −imap query
4 type : l o g # the data are saved in

different index file
5 f a c t s :
6 −auth : d e s c r i p t i o n == "unknown user"

and i p == imap query [s r c . i p]

Figure 12. Fact rule for different data source (log file). The rule is checking
presence of a specific record in input log file.

C. Event Definitions

Event rules describe how the diagnostic message will look.
The message is created by calling a function event() from
the Tree Node rule. In addition to the event name, the event
function also accepts a packet parameter (the event is related
to this packet). The idea is that from the provided packet,
the time, the flow identification, and possibly other specified
values are extracted and inserted into the message.

Each rule consists of a name, severity, description, instruc-
tions on how to fix the problem, and a list of fields from the
provided packet. The field list contains the names according
to the Wireshark terminology. An optional part of each field is
its description to help the administrator understand its value.
The description and suggestion may contain variables. The
variables are written as {fieldname}, and will be replaced
by values from the provided packet when the diagnostic report
is generated.

Figure 13 shows an event describing the error that no
DNS response was detected for the DNS query. From the pro-
vided packet, the queried domain name is inserted into the
description and the DNS server address into the suggestion.
Additional items will be also included in the output: transaction
ID, queried domain name, and DNS server IP address.

1 id : r e p l y n o t d e t e c t e d
2 s e v e r i t y : e r r o r
3 d e s c r i p t i o n : "No reply for query ’{dns.

qry.name}’ has been detected."
4 s u g g e s t i o n : "Check if the DNS service is

running on {ip.dst}. If yes, check
the firewall on the server and the
path between server and the client."

5 f i e l d s :
6 − name: dns . i d
7 d e s c r i p t i o n : T r a n s a c t i o n ID
8 − name: dns . q ry . name
9 d e s c r i p t i o n : Que r i ed domain name

10 − name: i p . d s t
11 d e s c r i p t i o n : S e r v e r IP a d d r e s s

Figure 13. A DNS event example, that reports that the query wasn’t detected.

VI. USE CASE AND EVALUTION

The goal of the tool is on-demand diagnostic of the selected
network traffic. It is essential to note that the goal is not an
on-line (24/7) analysis or analysis of a large amount of data.
The idea is based on a use case that when an administrator
detects a problem on the network, it triggers a capture on
the selected network traffic. For example, if a client with the
address 192.168.0.20 is unable to establish a TLS connection
with the server on the address 192.168.0.1, the administrator
will capture the communication between these two stations.

We have implemented diagnostic rules for several appli-
cation and service protocols. Table I shows the current list
of supported protocols and their complexity in term of Tree
node and Fact Finder rule count, and their capabilities in term
of Event rule count.

Table I. Supported protocols and amount of rules and success, warning, error
events which describe various protocol behavior situations.

Protocol Tree nodes Fact finders Events
Success Warning Error

DHCP 24 22 10 9 4
DNS 12 12 8 4 5
FTP 24 10 15 6 7
HTTP 3 3 2 1 1
ICMP 4 2 0 0 4
IMAP 15 8 7 3 9
POP 21 7 5 10 7
SIP 38 22 15 1 8
SLAAC 8 7 1 6 1
SMB 27 25 20 3 5
SMTP 17 13 9 6 9
SSL 2 2 2 0 1
TCP 10 10 0 7 2

We have tested the functionality and performance of the
implemented tool. Table II provides a sample of data from
performance experiments. The execution time is divided into
TShark tool processing time, time used for indexing the JSON
from TShark, and the analysis time. Five files of different sizes
containing some representative data are presented. The tests
were performed on a CPU Intel Xeon Silver 4116 2.10 GHz
and 4 GB RAM. It should be noted that only one CPU core
was used for the diagnostics on the given processor, as TShark
as well as the implemented tool are single-core applications.

Table II. The table shows the diagnostics execution time for the selected
PCAP files of different sizes.

Size [MB] Packets Flows Time [s]
TShark Indexes Analysis Total

182.253 222 372 7155 18.717 27.407 19.678 65.802
21.569 62 471 7002 5.004 5.940 7.748 18.692
9.640 14 509 954 1.969 1.533 1.464 4.966
1.687 3 544 373 1.295 0.589 1.186 3.070
0.978 4 848 84 0.821 0.669 1.291 2.781

The output of the tool is a report in JSON format, which
enables easy machine processing. We have created a web
interface to visualize the report in a more human-readable
format. The visualization consists of two parts. The first part
shows a list of all detected events. After clicking on any event,
the detail of this event is displayed in the second part. Below
an event name, a suggestion for fixing the problem is displayed
in which real values from the packet have replaced the message
variables (written in curly brackets). After the suggestion
message, the rest of the event attributes are displayed.

115

To demonstrate the functionality of the tool, we have
diagnosed a PCAP file that was captured on a station with
the IP address 10.10.1.4. The tool diagnoses all predefined
protocols and displays the detected events in a hierarchical
structure. Figure 14 shows this situation, with some events
omitted for simplicity. For each event, a description and an
icon of the event are displayed. The highest severity is then
propagated from the deepest events out so that it is possible
to find problem situations in a large number of events quickly.
In addition to the detected error with the DNS response, it
is possible to see other communications in the picture, which
were without error.

Figure 14. The figure shows a list of detected events for a diagnosed PCAP
file. The list contains events from multiple protocols with different severities.
The screenshot was taken from the Flowmon Packet Investigator, a product

that has integrated the proposed tool.

After selecting an event from the list (represented by a
blue rectangle), a detailed description of the event is displayed.
Figure 15 shows this output, which describes the reason why
the domain name translation failed. In addition to the event
name, the listing is divided into three sections: 1) suggestions
for the administrator on how to fix the error, 2) a brief summary
of the event (description, severity, and flow), and 3) attributes
extracted from the packet that triggered the displayed event.

Figure 15. The figure shows an example of diagnostic output for a DNS
error. It suggests to an administrator to check the domain name and the

server configuration. The screenshot was taken from the Flowmon Packet
Investigator, a product that has integrated the proposed tool.

VII. CONCLUSION

Network troubleshooting can be a nightmare for adminis-
trators because of system complexity. There may not be an
evident link between the issue reported by a user and the real
cause of the problem. Some of the errors can be identified
and analyzed by examining network traffic. However, using
the traditional mostly manual approach is time-consuming and
requires significant expertise. The presented paper describes
the automatized approach to network traffic analysis able to
identify errors using the rule-based approach. The rules encode
expert knowledge and are evaluated for the captured traffic.

While the rule-based approach may be considered
as an old-fashioned approach these days when the majority
of research considers a machine learning-based approach, it
was demonstrated that knowledge encoded in the form of
rules provides an efficient method for network troubleshooting.
Moreover, because of expert-designed rules, it is possible to
add information that explains the possible cause of the issue
and recovery options. Mainly the explainability associated with
this approach seems to be the biggest benefit for users. The
drawback, of course, is related to the necessity of creating and
testing the rules base. Also, the method is susceptible to the
quality of data sources. When the captured communication is
incomplete, the method can provide incorrect results.

The performance is important for any method to be prac-
tically usable. The presented method uses a rule evaluation
engine that traverses decision trees for problem domains,
which can be evaluated in a reasonable timeframe. However,
as nodes of the tree contain expressions that can potentially
require complex operations over the input data, the set of
indexes is precomputed to improve the performance.

The proof-of-concept demonstrating the approach was im-
plemented and further finalized to the tool integrated into
the commercial suite for network monitoring. The tool is
commercially provided on the market by Flowmon Networks
company as Flowmon Packet Investigator [26].

Future work will focus on:
• adding support of new protocols, e.g., NTP or SNMP;
• even though the current performance is good enough, it

can always be better, and our goal will be to decrease the
execution time of the diagnostic process;

• because the quality of the diagnostic output highly de-
pends on the quality of the input data, we would like to
create a validation technique (maybe by using machine
learning techniques) to check the validity of the input
data (e.g., detection of packets loss);

• after separating the processing of the input data from
the Fact Finder into Data Indexer, it is now possible to
create a distributive solution that consists of many data
collection points across the network. At each point, the
data would be indexed by the Data Indexer and sent to
the central processing unit.

ACKNOWLEDGMENT

This work was supported by project ”Network Diag-
nostics from Intercepted Communication” (2017-2019),
no. TH02010186, funded by the Technology Agency
of the Czech Republic, the BUT FIT grant FIT-S-20-6293,
”Application of AI methods to cyber se-curity and control sys-
tems”, and by private network monitoring company Flowmon
Networks.

116

REFERENCES

[1] M. Holkovič and O. Ryšavý, “Network diagnostics using passive
network monitoring and packet analysis,” The Fifteenth International
Conference on Networking and Services (ICNS), 2019, pp. 47–51.

[2] R. Wang, D. Wu, Y. Li, X. Yu, Z. Hui, and K. Long, “Knight’s tour-
based fast fault localization mechanism in mesh optical communication
networks,” Photonic Network Communications, vol. 23, no. 2, 2012,
pp. 123–129.

[3] M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

[4] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey
on network troubleshooting,” Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep., 2012.

[5] M. łgorzata Steinder and A. S. Sethi, “A survey of fault localization
techniques in computer networks,” Science of computer programming,
vol. 53, no. 2, 2004, pp. 165–194.

[6] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 139–152.

[7] B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and
G. M. Voelker, “Netprints: Diagnosing home network misconfigurations
using shared knowledge,” in Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation, ser. NSDI’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 349–364.

[8] L. Lu, Z. Xu, W. Wang, and Y. Sun, “A new fault detection method
for computer networks,” Reliability Engineering & System Safety, vol.
114, 2013, pp. 45–51.

[9] S. Kandula et al., “Kandula, srikanth and mahajan, ratul and verkaik,
patrick and agarwal, sharad and padhye, jitendra and bahl, paramvir,”
ACM SIGCOMM Computer Communication Review, vol. 39, no. 4,
2009, pp. 243–254.

[10] M. Luo, D. Zhang, G. Phua, L. Chen, and D. Wang, “An interactive rule
based event management system for effective equipment troubleshoot-
ing,” in IECON 2011-37th Annual Conference on IEEE Industrial
Electronics Society. IEEE, 2011, pp. 2329–2334.

[11] A. Mohamed, “Fault detection and identification in computer networks:
A soft computing approach,” Ph.D. dissertation, University of Waterloo,
2010.

[12] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly extraction in backbone networks using association rules,”
in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement. ACM, 2009, pp. 28–34.

[13] L. Benetazzo, C. Narduzzi, P. A. Pegoraro, and R. Tittoto, “Passive
measurement tool for monitoring mobile packet network performances,”
IEEE transactions on instrumentation and measurement, vol. 55, no. 2,
2006, pp. 449–455.

[14] K.-H. Kim, H. Nam, J.-H. Park, and H. Schulzrinne, “Mot: a collabo-
rative network troubleshooting platform for the internet of things,” in
Wireless Communications and Networking Conference (WCNC), 2014
IEEE. IEEE, 2014, pp. 3438–3443.

[15] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: mining network events from router syslogs,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement. ACM,
2010, pp. 472–484.

[16] M. Vásquez-Bermúdez, J. Hidalgo, M. del Pilar Avilés-Vera, J. Sánchez-
Cercado, and C. R. Antón-Cedeño, “Analysis of a network fault detec-
tion system to support decision making,” in International Conference
on Technologies and Innovation. Springer, 2017, pp. 72–83.

[17] S. Jamali and M. S. Garshasbi, “Fault localization algorithm in computer
networks by employing a genetic algorithm,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 29, no. 1, 2017, pp. 157–174.

[18] S. Kim, S. j. Ahn, J. Chung, I. Hwang, S. Kim, M. No, and S. Sin, “A
rule based approach to network fault and security diagnosis with agent
collaboration,” in Artificial Intelligence and Simulation, T. G. Kim, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 597–606.

[19] A. De Paola, S. Fiduccia, S. Gaglio, L. Gatani, G. Lo Re, A. Pizzitola,
M. Ortolani, P. Storniolo, and A. Urso, “Rule based reasoning for
network management,” in Seventh International Workshop on Computer
Architecture for Machine Perception (CAMP’05), July 2005, pp. 25–30.

[20] C. Dong and N. Dulay, “Argumentation-based fault diagnosis for home
networks,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Home Networks, ser. HomeNets ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 37–42. [Online].
Available: https://doi.org/10.1145/2018567.2018576

[21] E. S. Ali and M. Darwish, “Diagnosing network faults using bayesian
and case-based reasoning techniques,” in Computer Engineering &
Systems, 2007. ICCES’07. International Conference on. IEEE, 2007,
pp. 145–150.

[22] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker, “NetPrints: Diagnosing home
network misconfigurations using shared knowledge,” Proceedings of
the 6th USENIX symposium on Networked systems design and
implementation, vol. Di, no. July, 2009, pp. 349–364. [Online].
Available: http://portal.acm.org/citation.cfm?id=1559001

[23] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” International Conference on Autonomic
Computing, 2004. Proceedings., 2004, pp. 36–43. [Online]. Available:
http://ieeexplore.ieee.org/document/1301345/

[24] S. Burschka and B. Dupasquier, “Tranalyzer: Versatile high performance
network traffic analyser,” in 2016 IEEE Symposium Series on Compu-
tational Intelligence, SSCI 2016, 2017.

[25] P. Casas, T. Zseby, and M. Mellia, “Big-DAMA: Big Data Analytics
for Network Traffic Monitoring and Analysis,” Proceedings of the 2016
Workshop on Fostering Latin-American Research in Data Communica-
tion Networks (ACM LANCOMM’16), 2016.

[26] “Flowmon products overview,” https://www.flowmon.com/en/overview,
accessed: 2020-May-27.

117

A.6 Application Error Detection in Networks by Protocol
Behavior Model

Authors: Holkovič Martin, Ing. (70%), Polčák Libor, Ing., Ph.D. (15%), Ryšavý Ondřej,
doc. Ing., Ph.D. (15%)
Abstract: The identification of causes of errors in network systems is difficult due to their
inherent complexity. Network administrators usually rely on available information sources
to analyze the current situation and identify possible problems. Even though they are able
to identify the symptoms seen in the past and thus can apply their experience gathered
from the solved cases the time needed to identify and correct the errors is considerable. The
automation of the troubleshooting process is a way to reduce the time spent on individual
cases. In this paper, the model that can be used to automate the diagnostic process of
network communication is presented. The model is based on building the finite automaton
to describe protocol behavior in various situations. The unknown communication is checked
against the model to identify error states and associated descriptions of causes. The tool
prototype was implemented in order to demonstrate the proposed method via a set of
experiments.
Keywords: Network diagnostics, automatic diagnostics, timed automata, protocol model
from traces, encrypted data diagnostics, application behavior model.
Published in: E-Business and Telecommunications
Conference rating: C (Core), B4 (Qualis)
ISSN: 1865-0929
ISBN: 978-3-030-52685-6

118

Application Error Detection in Networks
by Protocol Behavior Model

Martin Holkovič1, Libor Polčák2[0000−0001−9177−3073], and
Ondřej Ryšavý2[0000−0001−9652−6418]

1 Brno University of Technology, Faculty of Information Technology, NES@FIT,
Bozetechova 1/2, 612 66 Brno, Czech Republic

2 Brno University of Technology, Faculty of Information Technology, Centre of
Excellence IT4Innovations, Bozetechova 1/2, 612 66 Brno, Czech Republic

{iholkovic,polcak,rysavy}@fit.vutbr.cz

Abstract. The identification of causes of errors in network systems is
difficult due to their inherent complexity. Network administrators usu-
ally rely on available information sources to analyze the current situation
and identify possible problems. Even though they are able to identify the
symptoms seen in the past and thus can apply their experience gathered
from the solved cases the time needed to identify and correct the errors is
considerable. The automation of the troubleshooting process is a way to
reduce the time spent on individual cases. In this paper, the model that
can be used to automate the diagnostic process of network communica-
tion is presented. The model is based on building the finite automaton to
describe protocol behavior in various situations. The unknown communi-
cation is checked against the model to identify error states and associated
descriptions of causes. The tool prototype was implemented in order to
demonstrate the proposed method via a set of experiments.

Keywords: Network diagnostics · automatic diagnostics · timed au-
tomata · protocol model from traces · encrypted data diagnostics · ap-
plication behavior model.

1 Introduction

Computer networks are complex systems equipped with different network devices
and hosts that provide and consume application services. Various types of er-
rors, such as misconfiguration, device failures, network application crashes, or
even user misbehavior can cause that expected network functions are not avail-
able. Users perceive network problems by the inaccessibility of web services, the
degraded performance of network applications, etc. Usually, it is the role of net-
work administrators to identify the cause of problems and to apply corrective
activities in order to restore the network functions again.

The network troubleshooting process is often described as a systematic ap-
proach to identify, diagnose and resolve problems and issues within a computer
network. Despite the published procedures, methods and techniques, and tool

119

2 M. Holkovič et al.

support, the network diagnostics is a largely manual and time-consuming pro-
cess. Troubleshooting often requires expert technical knowledge of network tech-
nologies, communication protocols, and network applications. Another complica-
tion is that the administrator often needs to check the number of possible sources
to find the real source of the problem. It amounts to check log files in network
devices or network applications, the current content of various tables, traces
of network communication, etc. Although an experienced administrator usually
has advanced skills in network troubleshooting that helps the administrator to
quickly identify problems there may be situations that are hard to solve and not
evident until the detailed network communication analysis is carried out.

The need for advanced tools that support network diagnostics is expressed
by most network professionals surveyed in the report presented by Zeng et al.
[31]. Existing tools can provide various information about the network, such
as service status and performance characteristics, which is useful for problem
detection but they often do not provide enough information for the cause iden-
tification. In computer networks, there can happen a lot of different problems.
Many of them can be identified by using a network traffic analyzer. The traffic
analyzer is a software to intercept the data packet flow that in the hand of an
experienced administrator enables to check for the latency issues and other net-
working problems which help to reveal the root cause. However, using a traffic
analyzer requires an understanding of different communication protocols. Also,
the number of flows that need to be analyzed can be large making the analysis
long and tedious task.

In order to improve the network troubleshooting process, we propose to de-
velop a tool that automatically generates a protocol behavior model from the
provided examples (traces) of the protocol conversations. In particular, a network
administrator is required to provide two groups of files. The first group contains
traces of normal (expected) behavior, while the second group consists of known,
previously identified error traces. Based on these distinct groups, the tool is able
to construct a protocol model that can be later used for detection and diagnosis
of issues in the observed network communication. Once the model is created,
additional traces may be used to improve the model gradually.

When designing the system, we assumed some practical considerations:

– It should not need to be required to implement custom application protocol
dissectors to understand the communication.

– Application error diagnostics cannot be affected by lower protocols, e.g.,
version of IP protocol, data tunneling protocol.

– The The model should be easily interpretable and also useful for other ac-
tivities too, e.g., security analysis, performance analysis.

The main benefit of this work is a new automatic diagnostic method for the
detection of errors observable from the application protocol communication. The
method is based on the construction of a protocol behavior model that contains
both correct and error communication patterns. An administrator can also use
the created model for documentation purposes and as part of a more detailed
analysis, e.g., performance or security analysis.

120

Application Error Detection in Networks by Protocol Behavior Model 3

This paper is an extended version of the paper ”Using Network Traces to
Generate Models for Automatic Network Application Protocols Diagnostics” [13].
We have added and improved several parts that extend the original paper, in
particular: i) models of protocols are better described, ii) the processing of un-
generalizable requests (and states) have been completely reworked, iii) the diag-
nostics engine can now include time information, iv) and preliminary evaluation
of encrypted traffic analysis was realized.

The focus of the previous contribution was only on detecting application
layer errors in enterprise networks. We did not consider errors occurred on other
layers and domains, e.g., wireless communication [24], routing errors [10], or per-
formance issues [19]. However, in this extended version, we are also able to cope
with performance problems. Because we are focusing on enterprise networks, we
have made some assumptions on the accessiblity of data sources. For instance,
we expect that administrators using this approach have full access to network
traffic in the network. Even if the communication outside the company’s network
is encrypted, the traffic between the company’s servers and inside the network
can be sometimes available unencrypted, or the data can be decrypted by pro-
viding server’s private key or logging the session keys 3. However, because the
encrypted traffic forms the majority of all communication on the Internet, we
also preliminary evaluated whether the presented approach (generating models
from traces) is applicable to encrypted traffic.

The paper is organized as follows: Section 2 describes existing work com-
parable to the presented approach. Section 3 defines model used for diagnos-
tics. Section 4 overviews the system architecture. Section 5 provides details
on the method, including algorithms used to create and use a protocol model.
Section 6 presents the evaluation of the tool implementing the proposed system.
Section 7 discusses some problems related to our approach. Finally, Section 8
summarizes the paper and identifies possible future work.

2 Related Work

Traditionally, error detection in network systems was mostly a manual process
performed by network administrators as a reaction to the user reported or de-
tected service unavailability or connectivity loss. As it is a tedious task various
tools and automated methods were developed. A survey by [26] classifies the er-
rors to network systems as either application-related or network-related problems.
The most popular tool for manual network traffic analysis and troubleshooting
is Wireshark [20]. It is equipped with a rich set of protocol dissectors that en-
ables to view details on the communication at different network layers. However,
an administrator has to manually analyze the traffic and decide which commu-
nication is abnormal, possibly contributing to the observed problem. Though
Wireshark offers advanced filtering mechanism, it lacks any automation [12].

Network troubleshooting can be done using active, passive, or hybrid meth-
ods [27]. Active methods rely on the tools that generate probing packets to locate

3 http://www.root9.net/2012/11/ssl-decryption-with-wireshark-private.html

121

4 M. Holkovič et al.

network issues [2]. Specialized tools using generated diagnostic communication
were also developed for testing network devices [23]. The advantage of active
methods is that it is possible to detect a certain class of errors quickly and pre-
cisely identify the problem. On the other hand, generating diagnostic traffic may
be unwanted in some situations. Passive detection methods rely on information
that can be observed in network traffic or obtained from log files, dumps, etc.

During the course of research on passive network diagnostic methods, several
approaches were proposed utilizing a variety of techniques. In the rest of this sec-
tion, we present the different existing approaches to network diagnostics closely
that relates to the presented contribution.

Rule-based Methods. Rule-based systems represent the application of artifi-
cial intelligence (reasoning) to the problem of system diagnosis. While this ap-
proach was mainly popular for automated fault detection of industrial systems,
some authors applied this principle to develop network troubleshooting systems.
[15] introduced rule-based reasoning (RBR) expert system for network fault and
security diagnosis. The system uses a set of agents that provide facts to the di-
agnostics engine. [9] proposed distributed multi-agent architecture for network
management. The implemented logical inference system enables automated iso-
lation, diagnosis, and repairing network anomalies through the use of agents
running on network devices. [11] employed assumption-based argumentation to
create an open framework of the diagnosis procedures able to identify the typical
errors in home networks. Rule-based systems often do not directly learn from
experience. They are also unable to deal with new previously unseen situations,
and it is hard to maintain the represented knowledge consistently [25].

Protocol Analysis. Automatic protocol analysis attempts to infer a model
of normal communication from data samples. Often, the model has the form
of a finite automaton representing the valid protocol communication. An au-
tomatic protocol reverse engineering that stores the communication patterns
into regular expressions was suggested in [30]. Tool ReverX [3] automatically
infers a specification of a protocol from network traces and generates corre-
sponding automaton. Recently, reverse engineering of protocol specification only
from recorded network traffic was proposed to infer protocol message formats
as well as certain field semantics for binary protocols [17]. The automated infer-
ence of protocol specification (message format or even protocol behavior model)
from traffic samples was considered by several authors. [8] presented Discover,
a tool for automatic protocol reverse engineering of protocol message formats
from network traces. The tool works for both binary and text protocols pro-
viding accuracy about 90%. The different approach to solve a similar goal was
proposed by [29]. They instrumented network applications to observe the oper-
ation of processing network messages. Based on this information their method
is able to recreate a message format, which is used to generate protocol parser.
This work was extended by the same authors in [7] with an algorithm for ex-
tracting the state machine for the analyzed protocol. [16] developed a method

122

Application Error Detection in Networks by Protocol Behavior Model 5

based on Markov models called PRISMA, which infers a functional state machine
and message format of a protocol from network traffic alone. While focused on
malware analysis, the tool is capable to identify communication behavior of ar-
bitrary services using binary or textual protocols. Generating application-level
specification from network traffic is addressed by [28]. They developed a system
called Veritas that using the statistical analysis on the protocol formats is able
to generate a probabilistic protocol state machine to represent the protocol flows.

Statistical and Machine Learning methods. Statistical and machine learn-
ing methods were considered for troubleshooting misconfigurations in the home
networks by [1] and diagnosis of failures in the large networks by [6]. Trana-
lyzer [4] is a flow-based traffic analyzer that performs traffic mining and sta-
tistical analysis enabling troubleshooting and anomaly detection for large-scale
networks. Big-DAMA [5] is a framework for scalable online and offline data min-
ing and machine learning supposed to monitor and characterize extremely large
network traffic datasets.

Automata-based Analysis. Timed automaton is one of the natural represen-
tations of the behavior models for communication protocols. For example, [14]
uses timed automata to model parallel systems and to detect errors by verify-
ing the satisfaction of given properties. However, they do not assume to learn
the model automatically. Another work [21] proposes a heuristic state-merging
algorithm that learns the model automatically. They are using NetFlow records
and time windows to create models that are later used to detect malware and
infected hosts. [18] uses a model described by timed automata to diagnose er-
rors. The system monitors several sensors which values are converted into timed
sequences to be accepted by the timed automata, which are able to detect vio-
lations of the measured values to the predefined model.

3 Model representation

Diagnosed protocols are described using models that define the protocols’ com-
munications as pair sequences. Each pair consists of a request and a reply mes-
sage, as shown in Figure 1. These requests and replies are pre-specified message
types specific for each protocol. In addition to the original paper, models will
take the form of a timed finite automaton, which, in addition to the message
order, will also contain timestamp - time since the last reply was received. The
finite automaton will process the input sequence and will traverse through the
model states. The result of the traverse process will be the result of diagnostics.

Each model processes a message sequence that is distinguished by a 6-tuple:
source and destination IP address, source and destination port, L4 protocol, and
session ID. The session ID is an optional parameter specified for each protocol
to distinguish multiple conversations that are transmitted within a single con-
nection. When transferring multiple conversations over a single connection, the
model does not describe the entire connection, but only individual conversations.

123

6 M. Holkovič et al.

Fig. 1. An illustration of a protocol messages conversion into a finite state automaton.
Requests and replies are paired together with the time of their arrival since the last
pair.

The finite automaton works with the input alphabet, which is a pair of request
and reply values. Both the request and the reply values are composed of packet
fields, such as the value of the ”ftp.request.command” attribute for the FTP
request and value of the ”ftp.response.code” attribute for its reply. If the input
symbol (request/reply pair) is repeated (which might mean periodic reports),
the model will contain a transition to the same state.

For each request/reply pair, the time since the last reply message or the
beginning of the communication is calculated. Using this time, the interval at
which the message must arrive for the finite automaton to transition through
the state is calculated. Before calculating the interval range, it is necessary to
calculate a minimum, a maximum, and a square root of standard deviation
from the time values. The interval is calculated in the range from ”minimum−√
std deviation” to ”maximum+

√
std deviation”, including extreme values. If

the number of values is less than 5, the interval is from zero to infinity (all pairs
will match this interval).

A model has a form of a timed finite automaton [22, Def.6.4] — a 6-tuple
(S, S0, Σ, Λ,C, δ), where:

– S is a finite set of states,

– S0 ∈ S is an initial state,

– Σ is a finite input alphabet (Σ ∩ S = ∅, ε /∈ Σ), where Σ = (request, reply)
and ε is an empty value,

– Λ is a finite output alphabet (Λ∩S = ∅, ε /∈ Λ), where Λ = error description
and ε is an empty value,

– C is a finite state of clocks,

– δ:S×(Σ∪ε)×Φ(C)→ S×Λ∗×2C is a transition function mapping a triplet
of a state, an input symbol (or empty string), and a clock constraint over C
to a triplet of a new state, an output sequence, and a set of clocks to be reset.
It means, given a specific input symbol, δ shifts the timed transducer from
one state to another while it produces an output if and only if the specified
clock constraint hold.

124

Application Error Detection in Networks by Protocol Behavior Model 7

4 System Architecture

This section describes the architecture of the proposed system which learns from
communication examples and diagnoses unknown communications. In this ex-
tended version, the architecture now works with timed information inside au-
tomata’s transitions, and a new concept of model generalization is described.
The system takes PCAP files as input data, where one PCAP file contains
only one complete protocol communication. An administrator marks PCAP files
as correct or faulty communication examples before model training. The ad-
ministrator marks faulty PCAP files with error description and a hint on how
to fix the problem. The system output is a model describing the protocol behav-
ior and providing an interface for using this model for the diagnostic process.
The diagnostic process takes a PCAP file with unknown communication and
checks whether this communication contains an error and if yes, returns a list
of possible errors and fixes.

The architecture, shown in Figure 2, consists of multiple components, each
implementing a stage in the processing pipeline. The processing is staged as fol-
lows:

– Input data processing - Preprocessing is responsible for converting PCAP
files into a format suitable for the next stages. Within this stage, the input
packets are decoded using protocol parser. Next, the filter is applied to select
only relevant packets. Finally, the packets are grouped to pair request to their
corresponding responses.

– Model training - The training processes several PCAP files and creates
a model characterizing the behavior of the analyzed protocol. The output
of this phase is a protocol model.

– Diagnostics - In the diagnostic component, an unknown communication
is analyzed and compared to available protocol models. The result is a report
listing detected errors and possible hints on how to correct them.

Model training

Diagnostics

Input data processing

Protocol modelPCAP file

Fig. 2. After the system processes the input PCAP files (the first yellow stage), it uses
the data to create the protocol behavior model (the second green stage) or to diag-
nose an unknown protocol communication using the created protocol model (the-third
purple stage). [13]

In the rest of the section, the individual components are described in detail.
Illustrative examples are provided for the sake of better understanding.

125

8 M. Holkovič et al.

4.1 Input Data Processing

This stage works directly with PCAP files provided by the administrator. Each
file is parsed by TShark 4 which exports decoded packets to JSON format.
The system further processes the JSON data by filtering irrelevant records and
pairs request packets with their replies. The output of this stage is a list of tuples
representing atomic transactions.

We have improved the data pairing process in this extended paper to support
timed transitions in the model. The system calculates time between the arrival
time of the current and the last reply message. For the first reply message within
the communication, the time since the beginning of the communication is used.
In the case requests do not have corresponding replies, the system uses the
requests arrival times. The result of the pairing process is a sequence of pairs
with time information, where each pair consists of one request and one reply.
The Figure 3 shows an example of this pairing process.

Data filtering output Data pairing output

Reply: "220"
Request: "EHLO"

Reply: "250"
Reply: "250"
Reply: "250"

Request: "AUTH"
Reply: "334"
Reply: "334"
Reply: "235"

Request: "MAIL"
Reply: "250"

Request: "QUIT"

(None, "220")

("EHLO", "250")
("EHLO", "250")
("EHLO", "250")

("AUTH", "334")
("AUTH", "334")
("AUTH", "235")

 ("MAIL", "250")

("QUIT", None)

time

Fig. 3. An SMTP communication in which the client authenticates, sends an email
and quits. The left part of the example shows a list of requests and replies together
with the time of their arrival in the protocol-independent format. The right part shows
a sequence of paired queries with replies, which are the output of the Input Data
Porcessing stage. For each pair, time since the last pair is also saved. The system pairs
one request and one reply with the special None value.

4.2 Model Training

After the Input Data Processing stage transformed input PCAP files into a list
of request-response pairs, the Model Training phase creates a protocol model.
For example, we can consider regular communication traces that represent typi-
cal POP3 protocol operations with the server: the client is checking a mail-box,
downloading a message or deleting a message. The model is first created for
regular communication and later extended with error behavior.

4 https://www.wireshark.org/docs/man-pages/tshark.html

126

Application Error Detection in Networks by Protocol Behavior Model 9

Learning from traces with expected behavior. The model creation process
begins by learning the protocol behavior from input data representing regular
communication. The result of this training phase is a description of the protocol
that represents a subset of correct behavior. The model is created from a col-
lection of individual communication traces. When a new trace is to be added,
the tool identifies the longest prefix of the trace that is accepted by the current
model. The remaining of the trace is then used to enrich the model.

During a traverse within the model, the time attribute of each request-reply
pair is added to transitions (each transition has an auxiliary variable containing
a list of time attributes). If the number of saved time values within a transi-
tion is greater than 5, the time interval of the model transition is recalculated
as described in Section 3.

Model generalization. Unfortunately, TShark marks some unpredictable data
(e.g., authentication data) in some protocols as regular requests and does not
clearly distinguish between them. These values are a problem in later process-
ing because these unpredictable values create ungeneralizable states during the
model learning phase. Therefore, all transitions that contain requests with un-
predictable values are removed from the model and replaced by new transitions.

An unpredictable request value is a request value which is contained inside
only one transition - no matter the previous state, the next state, and the reply
value. The wildcard value will replace these request values. The time interval
of the transition is kept at value from zero to infinity. Which requests contain
unpredictable values is determined during the learning process of the model.
During this process, the amount of times a request value is being used (no matter
the current automata state) is counted (count 1 = unpredictable).

Multiple transitions with unpredictable requests and an identical reply value
may originate from a single finite automata state. In this case, all these transi-
tions with the next finite automata states are merged. The merging idea is dis-
played in Figure 4. After all input traces are used for the model to learn, there
is a state from which four transitions are originating. The gray dashed lines are
transitions that occurred only once within the input. These two transitions con-
tain various request values, but the same reply value (“OK”). After generalizing
these three transitions, a new transition containing the request wildcard value
and the “OK” reply value will be added to the model.

When traversing through an automaton, in each state, transitions with ex-
plicit commands are checked as first. When no match is found, the model checks
if there is a wildcard command value and a reply value for the current state.

Learning the errors. After the system learns the protocol from regular com-
munication, the model can be extended with error traces. The system expects
that the administrator prepares that error trace as the result of previous (man-
ual) troubleshooting activities. The administrator should also provide error de-
scription and information about how to fix the error.

127

10 M. Holkovič et al.

Fig. 4. Illustration of replacing unpredictable requests by a wildcard value (*). The
replaced transitions are merged into one generic transition.

When extending the model with error traces, the procedure is similar to when
processing correct traces. Automaton attempts to consume as long prefix of input
trace as possible ending in state s. The following cases are possible:

– Remaining input trace is not empty : The system creates a new state s′

and links it with from state s. It marks the new state as an “error” state
and labels it with a provided error description.

– Remaining input trace is empty :
• State s is error state: The system adds the new error description to ex-

isting labeling of an existing state s.
• State s is correct state: The system marks the state as possible error and

adds the error description.

4.3 Diagnostics

After the system creates a behavioral model that is extended by error states, it is
possible to use the model to diagnose unknown communication tracks. The sys-
tem runs diagnostics by processing a PCAP file in the same way as in the learning
process and checks the request-reply sequence with their time attributes against
the automaton. Diagnostics distinguishes between these classes:

– Normal: The automaton accepts the input trace and ends in the correct
state.

– Error: The automaton accepts the input trace and ends in the error state.
– Possible error: The automaton accepts the input trace and ends in the pos-

sible error state. In this case, the system cannot distinguish if the commu-
nication is correct or not. Therefore, the system reports an error description
from the state and leaves the final decision on the user.

– Unknown: The automaton does not accept entire the input trace, which
may indicate that the trace represents a behavior not fully recognized by the
underlying automaton.

It is important to notice that during the traverse within the automaton,
the time attribute of each request-reply pair is compared with time constraints.
In case the time attribute does not fulfill the constraint, the model generates
a warning message. However, the diagnostic process does not stop, and the tra-
verse process continues to the next state in the same way as if the time constraint
was fulfilled.

128

Application Error Detection in Networks by Protocol Behavior Model 11

5 ALGORITHMS

This section provides algorithms for (i) creating a model from normal traces,
(ii) generalization of the model, (iii) updating the model from error traces and
(iv) evaluating a trace if it contains an error. The algorithms are based on algo-
rithms from the original paper. The difference is that in this version, they need
to work with timed transitions. All presented algorithms work with a model that
uses a deterministic timed finite automaton (DTFA) as its representation.

To simplify algorithms’ codes, we have defined time interval 〈0;∞〉 as the
default interval. If the interval is not specified, the model uses this value which
has less priority when traversing throw the model states. Only when there is no
match with a specific interval, the system checks default values.

5.1 Adding Correct Traces

Algorithm 1 takes the input model (DTFA) and adds missing transitions and
states based on the input sequence (P). The algorithm starts with the init state
and saves it into the previous state variable. The previous state variable is used
to create a transition from one state to the next. In each loop of the while section,
the algorithm assigns the next pair into the current state variable until there
is no next pair. From the previous state and the current state, the transition
variable is created, and the system checks if the DTFA contains this transition.
If the DTFA does not contain it, it is added together with the time value.
Otherwise, the new time value is added to the transition. If at least five time
values are saved, the time interval is calculated and applied to the transition.

Before continuing with the next loop, the current state variable is assigned
to the previous state variable. The updated model will be used as the input for
the next input sequence. After processing all the input sequences, which represent
normal behavior, the resulting automaton is a model of normal behavior.

Algorithm 1 Updating model from the correct traces

Inputs: P = query-reply pairs sequence with time value; DTFA = set of the transitions
Output: DTFA = set of the transitions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA does not contain transition then

add transition to DTFA and save time value to the transition
else

add time value to the saved times in transition
if saved times >= 5 then

calculate the time interval constraint and apply it to the transition
previous state = current state

end
return DTFA

129

12 M. Holkovič et al.

Algorithm 2 Generalization of the model

Inputs: DTFA = set of transitions
Output: DTFA = set of transitions
foreach transition ∈ DTFA do

if transition contains only one time then
new transition = make copy of transition
remove transition from DTFA
replace request in new transition by wildcard
if DTFA does not contain new transition then

add new transition to DTFA
end
return DTFA

5.2 Model Generalization

The Algorithm 2 takes all transitions from a model one by one (variable transition),
calculates the number of times each transition was used, and checks whether
the transition was used only once (contains only one time value). Only one time
value means that in all of the input traces, the transition was used only once.
The model creates a new copy of the transition (variable new transition) and
removes the old one.

The wildcard value replaces the request value in the new transition. The al-
gorithm checks whether the model contains this new transition, and if not, it
is inserted into the model. This presence control ensures that a single transition
replaces multiple ungeneralizable states with a wildcard request value.

Algorithm 3 Extending the model with error traces

Inputs: P = query-reply pairs sequence; DTFA = set of transitions; Error = description
of the error

Output: DTFA = set of transitions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA contains transition then

if transition fulfills time interval then
if transition contains error then

append error to transition in DTFA
return DTFA

previous state = current state
else

add transition to DTFA and mark it with error
return DTFA

else
add transition to DTFA and mark it with error
return DTFA

end
return DTFA

130

Application Error Detection in Networks by Protocol Behavior Model 13

5.3 Adding Error Traces

The Algorithm 3 has one more input (Error), which is a text string describing
a user-defined error. The start of the algorithm is the same as in the previous
case. The difference is in testing whether the automaton contains the transition
specified in the input sequence. If so, the system checks whether the transition
fulfills the time interval. This time interval checking is an improvement of the
algorithm from the previous paper. Only when the time interval is fulfilled,
the system checks to see if the saved transition also contains errors. In this
case, the algorithm updates the error list by adding a new error. Otherwise,
the algorithm continues to process the input string to find a suitable place to in-
dicate the error. If the transition does not fulfill the time interval restriction or
the transition does not exist, it is created and marked with the specified error.

5.4 Testing Unknown Trace

The Algorithm 4 uses previously created automaton (DTFA variable) to check
the input sequence P. According to the input sequence, the algorithm traverses
the automaton and checks whether the transitions contain errors. If an error
in some transition is found, the system returns an errors description messages
(errors) to the user. If the transition was not found, the algorithm returns
an unknown error. In this case, it is up to the user to analyze the situation and
possibly extend the automaton for this input.

In this extended paper, the system also verifies if the input sequence fulfills
transitions time restrictions. With each transition, the time value is compared
to the time interval. If the transition does not fulfill the time interval, the
system creates a warning message to the user. More than one warning message
can be generated because the generating of warning messages does not stop the
diagnostic process.

Algorithm 4 Checking an unknown trace

Inputs: P = query-reply pairs sequence; DTFA = set of transitions
Output: Errors = one or more error descriptions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA contains transition then

if transition doesn’t fulfill time interval then
create warning that transition does not matched the interval and continue

if transition contains error then
return errors from transition

previous state = current state
else

return ”unknown error”
end
return ”no error detected”

131

14 M. Holkovič et al.

6 EVALUATION

We have implemented a proof-of-concept tool which implements the Algorithm 1,
2, 3, and 4. In this section, we provide the evaluation of our proof-of-concept tool
to demonstrate that the proposed solution is suitable for diagnosing application
protocols. Another goal of the evaluation is to show how the created model
changes by adding new input data to the model. We have chosen four application
protocols with different behavioral patterns for evaluation.

The results from the original’s subsections 5.1-5.3 are the same and still
valid. From this reason the subsections 6.1 and 6.3 are the same as in the original
paper, and in the subsection 6.2 the figure showing the model’s complexity during
the model training is omitted. The new content is in the following subsections.
Section 6.4 tests the benefit of using finite automata as the model by detecting
a performance problem inside a communication. The last section 6.5 tries to
verify whether the proposed approach is somehow usable for encrypted traffic.

6.1 Reference Set Preparation and Model Creation

Our algorithms create the automata states and transitions based on the se-
quence of pairs. The implication is that repeating the same input sequence
does not modify the learned behavior model. Therefore, it is not important
to provide a huge amount of input files (traces) but to provide unique traces
(sequences of query-reply pairs). We created our reference datasets by captur-
ing data from the network, removing unrelated communications, and calculating
the hash value for each trace to avoid duplicate patterns. Instead of a correlation
between the amount of protocols in the network and the amount of saved traces,
the amount of files correlates with the complexity of the analyzed protocol. For
example, hundreds of DNS query-reply traces captured from the network can be
represented by the same query-reply sequence (A type query,No error).

After capturing the communication, all the traces were manually checked and
divided into two groups: (i) traces representing normal behavior and (ii) traces
containing some error. In case the trace contains an error, we also identified
the error and added the corresponding description to the trace. We split both
groups of traces into the training set and the testing set.

It is important to notice that the tool uses traces to create a model for one
specific network configuration and not for all possible configurations. Focus on
a single configuration results in a smaller set of unique traces and smaller created
models. This allows an administrator to detect situations which may be correct
for some network, but not for a diagnosed network, e.g., missing authentication.

6.2 Model Creation

We have chosen the following four request-reply application protocols with dif-
ferent complexity for evaluation:

– DNS: Simple stateless protocol with communication pattern - domain name
query (type A, AAAA, MX, ...) and reply (no error, no such name, ...).

132

Application Error Detection in Networks by Protocol Behavior Model 15

– SMTP: Simple state protocol in which the client has to authenticate, specify
email sender and recipients, and transfer the email message. The protocol
has a large predefined set of reply codes resulting in many possible states in
DTFA created by Algorithm 1 and 2.

– POP: In comparison with SMTP, the protocol is more complicated because
it allows clients to do more actions with email messages (e.g., download,
delete). However, the POP protocol replies only with two possible replies
(+OK, -ERR), which reduce the number of possible states.

– FTP: Stateful protocol allowing the client to do multiple actions with files
and directories on server. The protocol defines many reply codes.

Table 1. For each protocol, the amount of total and training traces is shown.
These traces are separated into proper (without error) and failed (with error) groups.
The training traces are used to create two models, the first without errors and the sec-
ond with errors. The states and transitions columns show the complexity of the mod-
els. [13]

Protocol
Total
traces

Training
traces

Model without
error states

Model with
error states

Proper Failed Proper Failed States Transitions States Transitions

DNS 16 8 10 6 18 28 21 34

SMTP 8 4 6 3 11 18 14 21

POP 24 9 18 7 16 44 19 49

FTP 106 20 88 14 33 126 39 137

The proof-of-concept tool took input data of selected application protocols
and created models of the behavior without errors and a model with errors.
The Table 1 shows the distribution of the input data into a group of correct
training traces and a group of traces with errors. Remaining traces will be later
used for testing the model. The right part of the table shows the complexity
of the generated models in the format of states and transitions count.

Based on the statistics of models, we have made the following conclusions:

– transitions sum depicts the model’s complexity better than the state’s sum;
– there is no direct correlation between the complexity of the protocol and

the complexity of the model. As can be seen with protocols DNS and SMTP,
even though the model SMTP is more complicated than DNS model, there
were about 50% fewer unique traces resulting in a model with 21 transitions,
while the DNS model consists of 34 transitions. The reason is that one DNS
connection can contain more than one query-reply and because the protocol
is stateless, any query-reply can follow the previous query-reply value.

Part of the original paper is a figure with four charts outlining the same
four protocols, as displayed in Table 1. These four charts show the progress
of increasing the model size and decreasing the number of diagnostic errors

133

16 M. Holkovič et al.

when new traces are added to the model. The model creation process was split
into two parts: training from traces without errors and learning the errors.

6.3 Evaluation of Test Traces

Table 2 shows the amount of successful and failed testing traces; the right part
of Table 2 shows testing results for these data. All tests check whether:

1. a successful trace is marked as correct (TN);
2. a failed trace is detected as an error trace with correct error description

(TP);
3. a failed trace is marked as correct (FN);
4. a successful trace is detected as an error or failed trace is detected as an error

but with an incorrect error description (FP);
5. true/false (T/F) ratios which are calculated as (TN+TP)/(FN+FP). T/F

ratios represents how many traces the model diagnosed correctly.

Table 2. The created models have been tested by using testing traces, which are split
into proper (without error) and failed (with error) groups. The correct results are
shown in the true negative (TN) and true positive (TP) columns. The columns false
positive (FP) and false negative (FN) on the other side contain the number of wrong
test results. The ratio of correct results is calculated as a true/false ratio (T-F ratio) .
This ratio represents how many testing traces were diagnosed correctly. [13]

Protocol
Testing traces

Testing against model
without error states

Testing against model
with error states

Proper Failed TN TP FN FP T-F ratio TN TP FN FP T-F ratio

DNS 6 2 4 2 0 2 75 % 4 1 1 2 63 %

SMTP 2 1 2 1 0 0 100 % 2 1 0 0 100 %

POP 6 2 6 2 0 0 100 % 6 2 0 0 100 %

FTP 18 6 18 6 0 0 100 % 18 5 1 0 96 %

TN - true negative, TP - true positive, FN - false negative,
FP - false positive, T-F ratio - true/false ratio

As the columns T-F ratio in Table 2 shows, most of the testing data was diag-
nosed correctly. We have analyzed the incorrect results and made the following
conclusions:

– DNS: False positive - One application has made a connection with the DNS
server and keeps the connection up for a long time. Over time several queries
were transferred. Even though the model contains these queries, the order
in which they came is new to the model. The model returned an error result
even when the communication ended correctly. An incomplete model causes
this misbehavior. To correctly diagnose all query combinations, the model
has to be created from more unique training traces.

134

Application Error Detection in Networks by Protocol Behavior Model 17

– DNS: False positive - The model received a new SOA update query. Even
if the communication did not contain the error by itself, it is an indication
of a possible anomaly in the network. Therefore, we consider this as the ex-
pected behavior.

– DNS: False negative - The situation was the same as with the first DNS
False positive mistake - the order of packets was unexpected. Unexpected
order resulted in an unknown error instead of an already learned error.

– FTP: False negative - The client sent a PASS command before the USER
command. This resulted in an unexpected order of commands, and the model
detected an unknown error. We are not sure how this situation has hap-
pened, but because it is nonstandard behavior, we are interpreting this as
an anomaly. Hence, the proof-of-concept tool provided the expected outcome.

All the incorrect results are related to the incomplete model. In the stateless
protocols (like DNS), it is necessary to capture traces with all combinations
of query-reply states. For example, if the protocol defines 10 types of queries,
3 types of replies, the total amount of possible transitions is (10 ∗ 3)2 = 900.
Another challenge is a protocol which defines many error reply codes. To create
a complete model, all error codes in all possible states need to be learned from
the traces.

We have created the tested tool as a prototype in Python language. Our goal
was not to test the performance, but to get at least an idea of how usable our
solution is, we gathered basic time statistics. The processing time of convert-
ing one PCAP file (one trace) into a sequence of query-replies and adding it
to the model took on average 0.4s. This time had only small deviations because
most of the time took initialization of the TShark. The total amount of time re-
quired to learn a model depends on the amount of PCAPs. At average, to create
a model from 100 PCAPs, 30 seconds was required.

6.4 Timed transitions

For this test, we took a model of the SMTP protocol from the previous test, and
we have extended it with new PCAP files. These new PCAP files contain two
problems that could not be detected without a timed finite automata model:

1. overloaded SMTP server - all requests from the server have a high delay;
2. overloaded authentication LDAP server - the SMTP server responds

to requests at an average speed, but user authentication, which uses an ex-
ternal LDAP server takes considerably longer.

Unfortunately, we do not have PCAP files with these errors from a real
production network, so we had to create them. We achieved this by manually
overloading the SMTP server, LDAP server, or creating a delay for the commu-
nication between these two servers.

The part of the extended model that covers authentication problems is dis-
played in Figure 5. Red colored transitions cover situations where, regardless

135

18 M. Holkovič et al.

of the authentication type and authentication result, a slow response is detected.
The model describes two authentication methods: simple authentication (name
and password in one message) and login authentication (name and password sent
separately). As described in Algorithm 3, these new transitions have a time inter-
val with the value < 0;∞ >. Therefore all traces that do not match the original
time restrictions are matched by these new transitions.

Fig. 5. The segment of the SMTP model which contains new transitions and states
related to the high delay from the authentication server.

We have tested the created model on other captured PCAP files. With over-
loaded LDAP servers or high communication latency between an SMTP and
an LDAP server, the model correctly detected a problem related to the authen-
tication. When the SMTP server was overloaded, the model correctly detected
overload at the beginning of the communication.

However, the extended SMTP model was not able to correctly diagnose a sit-
uation where the beginning of the communication was OK, and the overload
of the SMTP server began during client authentication. Although other delayed
responses followed the delayed response for authentication, the system stopped
at the first error and erroneously detected an authentication problem.

6.5 Encrypted data diagnostics

We have performed another type of evaluation aimed at verifying if the method
proposed by us applies to encrypted traffic or not. As described in the previous
sections, the diagnostic process uses request-reply values, but we are not able
to detect this in encrypted communication. To overcome this limitation, we have
proposed a modification to the model in the way that the model uses the size
of the encrypted data (TLS record size) instead of the request-reply value.

Because we only consider the size of the application data, which can eas-
ily vary even if the request value or the reply value is the same, it is neces-

136

Application Error Detection in Networks by Protocol Behavior Model 19

sary to work with a range of values. We are using an algorithm similar to the
one used to calculate the range for time intervals. From the set of values, we
calculate the minimum, maximum, and square root of the standard deviation.
The range of the interval that will accept messages will have a value ranging from
”minimum−

√
std deviation” to ”maximum+

√
std deviation”. The difference

from the calculation of the time intervals is that with a range of application data
sizes, the interval is calculated from even a single value, and it is not required
to have at least five values.

With this modified approach of diagnostics, we are not able to diagnose such
a range of errors as in unencrypted traffic. However, we are still able to obtain
at least basic information about the state of communication. We have based this
idea on the fact that protocol communication between endpoints goes through
different states. Protocol standards specify these states and their order. Diag-
nostics of encrypted communication, do not analyze exactly what caused the
error but only when (or in which state) the error occurred.

As in the case of unencrypted communications, a model should be cre-
ated only from traces belonging to one service (on a single server) and applied
to the same service. With other configurations, the content of messages can
be different, which would cause different sizes of the messages themselves.

To verify the idea of diagnostics based on the size of application data, we have
captured ten correct and three error SMTP communication traces. From these
communications, a model was created, which is shown in Figure 6. The Figure
shows three detectable errors that also separate the SMTP protocol states -
welcoming client, user authentication, and e-mail sending. Based on this test,
we have reached the conclusion that the approach is usable. However, to use
the model in the real-world, the model should be trained from more traces.

Fig. 6. The segment of the SMTP model which contains new transitions and states
related to the high delay from the authentication server.

137

20 M. Holkovič et al.

7 DISCUSSION

This chapter describes some of the topics we have come across when developing
and using the tool.

7.1 Fully trained model

One of the fundamental questions when using the tool is when the model is
fully (or for X%) trained and when it is possible to switch from training mode
to diagnostic mode. The simplest way of specifying how much percent the model
is trained is by calculating all possible transitions. Transitions are connecting
any two states, which are defined by request/reply values. The total number
of states is requests count ∗ replies count, and the total number of transitions
is states count2. Of course, many combinations of requests and replies do not
make sense, but the algorithm can never be sure which combinations are valid
and which are not. The problem with counting all possible combinations is that
without predefined knowledge of the diagnosed protocol, the tool can never be
sure if all possible requests and replies have already been seen or not.

One way to determine whether a model is trained without knowing the total
number of states is by checking the list of trained states when processing new
input data. If the system has not detected a new state for a certain amount
of iterations, it will declare that the list is complete, and the model is fully
trained. Here comes the problem of determining how long to wait for a new
value.

Basically, there are three approaches that can be combined:

A1 amount of new files - waiting for X new files to be processed (e.g., 100);
A2 training duration- waiting for an X lasting interval;
A3 unique amount of clients - waiting for X unique clients (e.g., 10).

Unfortunately, each of these approaches has drawbacks that cannot be elim-
inated entirely:

ReA1 If most (or all) new files have the same content type (for example, the same
client queries the same DNS translation type), then the number of these files
is not important. We have partially solved this problem by creating commu-
nications fingerprints and ignoring duplicate fingerprint files. This is why the
evaluation section describes so few unique communications. As an example,
we take the SMTP protocol. Most conversations had an identical pattern
- welcoming the client, user authentication, and sending an email. The re-
sponses to all commands were without any error. Although the welcome
message (timestamp), login information, email addresses, and email content
varied from one communication to the next, the fingerprint was the same
as all of this data was deleted in the Input Data Processing stage. So even
though we had dozens of these conversations, we counted them as just one
conversation.

138

Application Error Detection in Networks by Protocol Behavior Model 21

ReA2 By taking communications carried during a limited time frame, e.g. 24 hours,
we may not cover situations that arise less frequently or irregularly. For ex-
ample, SMTP clients can process requests to send a message even when
the client is offline and then send these messages at once when the client is
online again. However, the situation, when a client sends multiple messages
at once, does not occur often, and a 24-hour window might not be enough.

ReA3 This criterion can only be applied if a large number of clients connect to
a single server. In the case of a pre-defined server-server communication,
this criteria makes no sense. Even with a larger amount of clients, all clients
may use the same application, the same settings, and perform the same
activity.

In our opinion, the best option is to combine all three mentioned approaches
and select parameters so that the data sample used is relevant and that the model
is trained within an acceptable time. For example, waiting for 100 unique se-
quences in the SMTP protocol or 1000 communications if only one communica-
tion happens per day is meaningless. However, even in this case, we are not able
to capture the following situations:

– Protocol updates can introduce new version of the protocol which may in-
troduce new types of commands or responses.

– Another version (e.g., by an update) of the application or a brand new
application will appear on the network. This may cause the client to start
to communicate with the server with a different pattern of behavior.

– Some types of errors are associated with less frequently used features, which
occur very irregularly. Such errors are hard to catch and get into the model.

From our experience, it is not possible to determine when the model is fully
trained or at least trained from X%. Even if the model does not grow for a long
time, it can suddenly expand by processing a new trace (new extensions, pro-
grams with specific behavior, program updates).

Nevertheless, the model incorporates means to train even in the diagnostic
phase (when the tool is deployed). An administrator that encounters a false error
can always improve the model. Consequently, as time passes, the model can adapt
to handle infrequent communications and protocol/application updates.

7.2 Data labeling

During model training, an administrator needs to determine if there is an error
in conversation manually. If an error is detected, an administrator creates a de-
scription of this error. This process is time-consuming and requires knowledge
of the modeled protocol and computer networks in general. However, it is im-
portant to realize that in the case of manual diagnosis, the administrator has to
perform a similar diagnosis. Hence, our approach does not introduce additional
requirements for administrators’ skills. Therefore, we do not think that the need
to manually mark communications is a disadvantage of our method.

139

22 M. Holkovič et al.

Another possible way to label data can be by applying artificial intelligence
or machine learning. However, we think that even with machine learning, su-
pervised learning has to be used. Therefore, it is still necessary to analyze the
content of the communications manually and instruct the algorithm. Another
question is, how easy it is for the network administrator to work with artificial
intelligence, and whether network administrators without programming knowl-
edge understand working with machine learning.

7.3 Model of models

As part of our proposed approach, we do not model relationships between indi-
vidual communications or between different protocols. Each model describes one
particular communication with one protocol. However, there are more complex
errors that cannot be detected or diagnosed by analyzing just a single communi-
cation. An example is downloading a web page content. This activity can consist
of multiple individual communications: user authentication, HTML page down-
load, and download of other elements such as images or scripts. Another example
is that during communication with an application server, the server establishes
another connection to the RADIUS server to authenticate the user.

To be able to diagnose problems that are spread across multiple commu-
nications correctly (even over multiple protocols), it is necessary to create a
model which will consist of several models describing individual communica-
tions (“model of models”). This high-level model can check one communication
and, based on its result, launch another model for the following communication
or generate a diagnostic report.

7.4 Another usage of models

The proposed models do not apply to network diagnosis only. Another applica-
tion is the security analysis. The model can be trained to accept only commu-
nications which fulfill the security policy. Other communications that are not
accepted by the trained model are reported as possibly dangerous. Another type
of security analysis is by visualizing the model and employing a manual analy-
sis. Our tool can export models to a format suitable for graphical visualization.
From the trained models, an administrator can make some deductions. For ex-
ample, if some users are not using the recommended authentication or some
communications contain outdated commands.

Another possible model usage is related to time transitions within the model.
We think it makes sense to investigate whether it is possible to use models
for profiling communications. For example, in the case of FTP communication,
if the browsing and downloading of files are without delays caused by user in-
teraction, it is possible to associate such communication with a tool that auto-
matically browses and downloads server content.

140

Application Error Detection in Networks by Protocol Behavior Model 23

8 CONCLUSIONS

In the presented paper, we have proposed an automatic method for generating
automata from network communication traces and their use in the network di-
agnostic process. The diagnostic system is designed to learn from both normal
error-free communication sequences as well as from erroneous traces in order to
create an automata-based model for the communication protocol behavior. The
states in the automaton can be labeled with additional information that provides
diagnostic information for the error detected.

The method requires network traces prepared by an expert to create a good
model. The expert is expected to annotate network traces and label the known
errors. The current model is only applicable to query-response protocols and
those that provides a sufficient amount of information to observe their state. We
demonstrated that if the model is created based on the reasonable sample of
good and error behavior it can be used in any network environment.

We have implemented the method in a proof-of-concept tool5 and use it in
a set of experiments for demonstration purposes. The tool has been tested on
a limited set of application protocols of different types, e.g., e-mail transfer, file
download, domain name resolution. Experiments show that the suitability and
usability of the model heavily depend on the network protocol. Although the
model typically does not cover all possible scenarios, it is useful for diagnosis of
repetitive error. As the model can learn errors during deployment, an adminis-
trator does not have to deal with errors not encountered during learning phase
more than once.

ACKNOWLEDGEMENTS

This work was supported by The Ministry of Education, Youth and Sports from
the National Programme of Sustainability (NPU II) project IT4In-novations
excellence in science - LQ1602”.

References

1. Aggarwal, B., Bhagwan, R., Das, T., Eswaran, S., Padmanabhan, V.N.,
Voelker, G.M.: NetPrints: Diagnosing home network misconfigurations us-
ing shared knowledge. Proceedings of the 6th USENIX symposium on
Networked systems design and implementation Di(July), 349–364 (2009),
http://portal.acm.org/citation.cfm?id=1559001

2. Anand, A., Akella, A.: Net-replay: a new network primitive. ACM SIGMETRICS
Performance Evaluation Review (2010). https://doi.org/10.1145/1710115.1710119

3. Antunes, J., Neves, N., Verissimo, P.: Reverx: Reverse engineering of protocols.
Tech. Rep. 2011-01, Department of Informatics, School of Sciences, University of
Lisbon (2011), http://hdl.handle.net/10451/14078

5 https://github.com/marhoSVK/semiauto-diagnostics

141

24 M. Holkovič et al.

4. Burschka, S., Dupasquier, B.: Tranalyzer: Versatile high performance network traf-
fic analyser. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI
2016 (2017). https://doi.org/10.1109/SSCI.2016.7849909

5. Casas, P., Zseby, T., Mellia, M.: Big-DAMA: Big Data Analytics for Network Traf-
fic Monitoring and Analysis. Proceedings of the 2016 Workshop on Fostering Latin-
American Research in Data Communication Networks (ACM LANCOMM’16)
(2016). https://doi.org/2940116.2940117

6. Chen, M., Zheng, A., Lloyd, J., Jordan, M., Brewer, E.: Failure diagno-
sis using decision trees. International Conference on Autonomic Computing,
2004. Proceedings. pp. 36–43 (2004). https://doi.org/10.1109/ICAC.2004.1301345,
http://ieeexplore.ieee.org/document/1301345/

7. Comparetti, P.M., Wondracek, G., Krügel, C., Kirda, E.: Prospex: Protocol specifi-
cation extraction. 2009 30th IEEE Symposium on Security and Privacy pp. 110–125
(2009)

8. Cui, W., Kannan, J., Wang, H.J.: Discoverer: Automatic Protocol Reverse Engi-
neering from Network Traces. USENIX Security (2007). https://doi.org/“Protocol-
Independent Adaptive Replay of Application Dialog”

9. De Paola, A., Fiduccia, S., Gaglio, S., Gatani, L., Lo Re, G., Pizzitola, A., Ortolani,
M., Storniolo, P., Urso, A.: Rule based reasoning for network management. In:
Seventh International Workshop on Computer Architecture for Machine Perception
(CAMP’05). pp. 25–30 (July 2005). https://doi.org/10.1109/CAMP.2005.47

10. Dhamdhere, A., Teixeira, R., Dovrolis, C., Diot, C.: NetDiagnoser: Troubleshooting
network unreachabilities using end-to-end probes and routing data. Proceedings of
the 2007 ACM CoNEXT (2007). https://doi.org/10.1145/1364654.1364677

11. Dong, C., Dulay, N.: Argumentation-based fault diagnosis for home net-
works. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Home
Networks. p. 37–42. HomeNets ’11, Association for Computing Machin-
ery, New York, NY, USA (2011). https://doi.org/10.1145/2018567.2018576,
https://doi.org/10.1145/2018567.2018576

12. El Sheikh, A.Y.: Evaluation of the capabilities of wireshark as network intrusion
system. Journal of Global Research in Computer Science 9(8), 01–08 (2018)

13. Holkovič, M., Ryšavý, O., Polčák, L.: Using network traces to generate
models for automatic network application protocols diagnostics. In: Proceed-
ings of the 16th International Joint Conference on e-Business and Telecom-
munications Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WIN-
SYS. pp. 43–53. SciTePress - Science and Technology Publications (2019),
https://www.fit.vut.cz/research/publication/12012

14. Ivković, N., Milić, L., Konecki, M.: A timed automata model for systems with
gateway-connected controller area networks. In: 2018 IEEE 3rd International Con-
ference on Communication and Information Systems (ICCIS). pp. 97–101. IEEE
(2018)

15. Kim, S., Ahn, S.j., Chung, J., Hwang, I., Kim, S., No, M., Sin, S.: A rule based
approach to network fault and security diagnosis with agent collaboration. In:
Kim, T.G. (ed.) Artificial Intelligence and Simulation. pp. 597–606. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

16. Krueger, T., Gascon, H., Krämer, N., Rieck, K.: Learning stateful models for
network honeypots. In: Proceedings of the 5th ACM Workshop on Security
and Artificial Intelligence. p. 37–48. AISec ’12, Association for Computing Ma-
chinery, New York, NY, USA (2012). https://doi.org/10.1145/2381896.2381904,
https://doi.org/10.1145/2381896.2381904

142

Application Error Detection in Networks by Protocol Behavior Model 25

17. Lodi, G., Buttyon, L., Holczer, T.: Message Format and Field Semantics Inference
for Binary Protocols Using Recorded Network Traffic. In: 2018 26th International
Conference on Software, Telecommunications and Computer Networks, SoftCOM
2018 (2018). https://doi.org/10.23919/SOFTCOM.2018.8555813

18. Lunze, J., Supavatanakul, P.: Diagnosis of discrete–event system described by
timed automata. IFAC Proceedings Volumes 35(1), 77–82 (2002)

19. Ming Luo, Danhong Zhang, G.P.L.C.: An interactive rule based event
management system for effective equipment troubleshooting. Proceedings of
the IEEE Conference on Decision and Control 8(3), 2329–2334 (2011).
https://doi.org/10.1007/s10489-005-4605-0

20. Orzach, Y.: Network Analysis Using Wireshark Cookbook. Packt Publishing Ltd
(2013)

21. Pellegrino, G., Lin, Q., Hammerschmidt, C., Verwer, S.: Learning behavioral fin-
gerprints from netflows using timed automata. In: 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). pp. 308–316. IEEE (2017)

22. Polčák, L.: Lawful Interception: Identity Detection. Ph.d. thesis, Brno
University of Technology, Faculty of Information Technology (2017),
https://www.fit.vut.cz/study/phd-thesis/679/

23. Procházka, M., Macko, D., Jelemenská, K.: IP Networks Diagnostic Communica-
tion Generator. In: Emerging eLearning Technologies and Applications (ICETA).
pp. 1–6 (2017)

24. Samhat, A., Skehill, R., Altman, Z.: Automated troubleshooting in WLAN net-
works. In: 2007 16th IST Mobile and Wireless Communications Summit (2007).
https://doi.org/10.1109/ISTMWC.2007.4299084

25. lgorzata Steinder, M., Sethi, A.S.: A survey of fault localization techniques in
computer networks. Science of computer programming 53(2), 165–194 (2004)

26. Tong, V., Tran, H.A., Souihi, S., Mellouk, A.: Network troubleshooting: Sur-
vey, Taxonomy and Challenges. 2018 International Conference on Smart Com-
munications in Network Technologies, SaCoNeT 2018 pp. 165–170 (2018).
https://doi.org/10.1109/SaCoNeT.2018.8585610

27. Traverso, S., Tego, E., Kowallik, E., Raffaglio, S., Fregosi, A., Mellia, M., Matera,
F.: Exploiting hybrid measurements for network troubleshooting. In: 2014 16th
International Telecommunications Network Strategy and Planning Symposium,
Networks 2014 (2014). https://doi.org/10.1109/NETWKS.2014.6959212

28. Wang, Y., Zhang, Z., Yao, D.D., Qu, B., Guo, L.: Inferring protocol state machine
from network traces: A probabilistic approach. In: Lopez, J., Tsudik, G. (eds.)
Applied Cryptography and Network Security. pp. 1–18. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

29. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E.: Automatic network pro-
tocol analysis. In: Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08 (2008)

30. Xiao, M.M., Yu, S.Z., Wang, Y.: Automatic network protocol automa-
ton extraction. In: NSS 2009 - Network and System Security (2009).
https://doi.org/10.1109/NSS.2009.71

31. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: A survey on network trou-
bleshooting. Technical Report Stanford/TR12-HPNG-061012, Stanford University,
Tech. Rep. (2012)

143

A.7 Network Problem Diagnostics using Typographic Error
Correction

Authors: Holkovič Martin, Ing. (70%), Bohuš Michal, Ing. (20%), Ryšavý Ondřej, doc.
Ing., Ph.D. (10%)
Abstract: Detecting and correcting network and service availability issues is an essential
part of the network administrator’s daily duty. One of the causes of errors can be the user
herself providing incorrect input. The present work describes a new diagnostic method that
detects incorrectly inserted inputs observed in network-related data, e.g., network traffic,
log files. The proposed method aims to detect incorrect words in domains, login names,
or email addresses. First, we describe how to detect possible incorrect words. For each
such detected word, a list of correct candidates is created based on edit distance. Next, the
correction method selects the best word by scoring candidates based on the probability of
occurrence in the given context. The proposed method was implemented as a prototype
and tested on words created using real user activities. The evaluation demonstrates that
this approach can substantially reduce the time needed to identify this kind of errors.
Keywords: Computer network errors, network diagnostics, typographic error correction,
end-user data diagnostics.
Published in: 17th International Conference on Network and Service Management (CNSM
2021), Izmir, Turkey
Conference rating: B(Core), B4(Qualis)
ISSN: 2165-963X
ISBN: 978-3-903176-36-2

144

Network Problem Diagnostics using Typographic
Error Correction

Martin Holkovič
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
iholkovic@fit.vutbr.cz

Michal Bohuš
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Ondřej Ryšavý
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

rysavy@vutbr.cz

Abstract—Detecting and correcting network and service avail-
ability issues is an essential part of the network administrator’s
daily duty. One of the causes of errors can be the user herself
providing incorrect input. The present work describes a new diag-
nostic method that detects incorrectly inserted inputs observed in
network-related data, e.g., network traffic, log files. The proposed
method aims to detect incorrect words in domains, login names,
or email addresses. First, we describe how to detect possible
incorrect words. For each such detected word, a list of correct
candidates is created based on edit distance. Next, the correction
method selects the best word by scoring candidates based on
the probability of occurrence in the given context. The proposed
method was implemented as a prototype and tested on words
created using real user activities. The evaluation demonstrates
that this approach can substantially reduce the time needed to
identify this kind of errors.

Index Terms—computer network errors, network diagnostics,
typographic error correction, end-user data diagnostics

I. INTRODUCTION

Errors in computer networks can be caused by a lot of
different types of faults. System or device failure can prevent
networks from working, some services may become unavail-
able, and user experience could be negatively affected. Due to
the great variety of errors, there is no single procedure or path
to detect the cause of all network-related errors.

Some of the errors can be caused by incorrect user input.
For example, users can often type a wrong URL into a web
browser, wrong credentials into a mail transfer agent, or an
incorrect phone ID for a VoIP call. When a user incorrectly
specifies some of this data, the requested service will be
unavailable or not work as expected. Because some of the
information entered by a user is necessary to initiate a network
connection or is transmitted in network messages, it is possible
to detect wrong information by analyzing of suitable data
sources, e.g., network packets, NetFlow records, or log files.

We propose a new diagnostic method that applies typo-
graphical error detection techniques and correction commonly
used in spell-checkers. The proposed method can inform the
network administrator about the incorrectly inserted values
from end-users by detecting typographical errors in user data.
At the same time, it provides a suggestion for a possible
correction. This can be useful for the administrator as he
can automatically find out whether the error is created by a
typographical error or if there is another reason.

The paper contribution is as follows. We developed a
method for detecting errors in user data. The method is
similar to that used by spell-checker systems. For each possi-
ble incorrect word, the algorithm creates a list of possible
correct word candidates selected using the number of edit
operations as a distance between the words. Among these
candidates, the correct word is selected using the ranking
method. The problem with current solutions is that they do
not work well without context (individual words) and with
words that are not based on grammar rules (e.g., email address
xholko00@fit.vutbr.cz).

The method’s direct application is to validate typographical
errors in domain names and usernames, which enables us
to apply it to a wide range of applications and services.
Regarding domain names, except for the purely diagnostic use
case, the method can be employed for detecting various types
of malicious activities, such as an IDN homograph attack,
typosquatting, and other forms of domain phishing attacks.

This paper presents the principles and design of a new
diagnostic tool that focuses on detecting typing errors. The
method relies only on passive data sources (captured traffic,
NetFlow records, log files). Similarly, as in [8], our method
will be able to work in a learning mode for which it will
require error-free data. The proposed method is considered as
a complementary tool for the existing systems.

The paper is organized as follows: The next section de-
scribes related work mentioning the key results in computer
network diagnostics. Sec. III provides background information
about research done on spell checking. Sec. IV defines the
principles behind the developed tool. Sec. V presents the
architecture of the tool. In Sec. VI, the approach and results
of the evaluation are provided. Finally, Sec. VII concludes the
paper by discussing the contribution and identifying further
improvements.

II. RELATED WORK

Because computer networks are complex systems, errors are
unavoidable and sooner or later occur [1]. Errors can affect
network performance or user experience, which can cause
other network problems [2]. Therefore, it is necessary to find
and correct errors correctly. This is addressed in diagnostics,
which is an important part of network management [1].

145

Fault diagnosis is a time-consuming activity that requires in-
depth knowledge of network operation. Administrators often
do not have the appropriate tools or knowledge to diagnose
network problems, and they would like to have sophisticated
automated tools to help them diagnose those errors [3]. In case
of insufficient automatic tools, problems must be diagnosed
manually, for example, using the Wireshark tool [4], [5].

Network problems can be divided into application and
network problems [6]. An example of application problems is
a broken server service or a badly configured client software.
Problems related to network infrastructure fall under network
problems. An error can be caused by a human - unintentional
(misconfiguration) / intentional (attack), or a device failure [7].

Currently, a single tool that can diagnose all kinds of errors
does not exist. Researchers have so far developed a wide
range of diagnostic tools [8]. The tools can be divided either
according to what data they work with - network packets, SDN
data, NetFlow records, log files [9]–[12], or how they access
the data - passive, active, and hybrid [6], [13], [14].

III. BACKGROUND

Researchers are working on correcting typographical errors
since the 1960s [15]. Correcting this type of error is based on
the fact that people make mistakes when typing input data.
Because users are often unaware of the error, a wrong value
can cause a problem. One of the best-known examples of
typographic error correction in misspelled words is in text
editors such as Microsoft Office Word [16]. There are also
other uses, such as Optical Character Recognition (OCR) [17]
or typographical error password tolerance [18], [19].

Kukich [15] has divided the problem of typing errors
correction into three categories:

1) nonword error detection (wrong word detection only),
2) isolated-word error correction (finding the wrong word

and proposing a correction),
3) context-dependent correction (finding the wrong word

and offering a correction based on the text’s context).

Word correction extends error detection by offering correc-
tion for the word with a typographical error. It tries to guess
what word the user could have thought of, solves candidates’
selection, and possibly chooses the best candidate. In addi-
tion to common language words, searching for typographical
errors also makes sense in other data types such as numeric
values [21] or domain names [22].

Correcting typographical errors consists of three parts: 1)
finding an error; 2) creating a list of candidates; 3) rating of
individual candidates [15].

A. Finding an error

To detect a wrong word, it is necessary to model the words
of the language. The model needs to detect several sources of
error, such as pronunciation similarity, typographic similarity,
or user’s bad habits [23]. The most commonly used models
are based on vocabularies or n-grams [15].

1) N-grams: N-grams are n character long substrings of
words. The most commonly used are bigrams (n=2) and
trigrams (n=3). Finding errors based on n-grams works by
generating all n-grams from the analyzed word and comparing
them with a previously created model. If the n-gram is not
present in the model or only with a small occurrence, it is
expected that this is an error. An example is a ”zfq” trigram,
which is not common in English. To create an n-gram model,
a huge text containing only words without errors is needed.

2) Dictionaries: In this case, the model is the dictionary
itself, created by storing all the unique words from the error-
free text. If a word cannot be found inside a dictionary during
the check phase, it is considered a typing error [24], [25].

A search response time may be a problem when using the
dictionary as a model [18]. A common technique to speed up
dictionary searches is to split one large dictionary into several
smaller ones. One way to divide is by word length [31]. For
example, when searching for a word of 5 characters in length,
it will only search within words of the same length.

The basic and often used technique to access a dictionary is
by using a hash table. A dictionary can also be implemented
by tree structures such as a ternary search tree [32], trie, binary
search trees sorted by frequency, trees with words or characters
in nodes, bloom filters [33], or finite state machines [34].

3) Types of errors: The two basic types of errors that
automatic word correction focuses on are [32], [35]:

• nonword error - if an error occurs, a non-existent word
is created (e.g., hello - henlo);

• real-word error - an error will result in an existing word
(e.g., pay - day).

Errors that result in an existing word are more challenging
to detect because it is necessary to know the text’s context.
Mitton analyzed the errors from tests filled out by students at
the age of 15 and found that the real-world error accounted for
40% of the errors [36]. The types of errors vary depending on
the environment in which they occurred; for example, if it is
a writer, most of the errors will be due to pressing the wrong
key. On the other hand, OCR errors will be based on similar-
looking characters such as B and 8. Word-bounded errors are
a specific kind of error where the space between words is
missing, or space is shifted [32].

There are three kinds of mistakes that result in a typograph-
ical error [15]:

• typographical errors are those where the user types the
word ”henlo” instead of ”hello”, where it is assumed
that the author knows how the word is spelled and only
pressed a bad character on the keyboard;

• cognitive errors arise from insufficient knowledge of the
user - the user did not know the correct form of the word;

• phonetic errors occur when replacing a character with
another similar-sounding one.

B. Creating a list of candidates

When a misspelled word is detected, it is determined from
which possible words the misspelled word could have been
formed. For this reason, functions that determine the distance

146

between two words are being used. The earliest and one of the
best-known ways to determine the distance of two strings is
the Levenshtein distance [37]. The principle is that we specify
the minimum number of operations required to transform
one string into another. Allowed operations are insertion,
deletion, and substitution. Wagner and Fisher [38] also called
the distance the editing distance. There are other types of
editing distances, such as Hamming [39], [40], Dameraou-
Levenstein [41], or Spring-Winkler [42].

The test with data from Birkbeck Spelling Error Corpus [43]
showed that out of 1000 errors in the English language, 742 are
one-character, 201 two-character, 44 three-character, 9 four-
character, 4 five-character [24]. In the case of TshwaneDJe
Sesotho sa Leboa corpus [44], from the 908 errors in domain
names were 804 one-character, 78 two-character, and 26 three-
character. Further analysis of large texts’ errors confirmed that
80-95% of errors are single-character errors [27]. The results
show that it is most important to check words with a short
editing distance when searching for errors.

C. Rating of individual candidates

After generating all words from which it is possible to create
a searched word with a typographical error within a certain
editing distance, it is necessary to rate them. The purpose of
the rating is to find the most likely word from which the error
originated. Research is focused not only on the accuracy of
results but also on the speed of the ranking process [45], [46].

If the user interactively selects one of several options, it is
possible to adapt to a specific user and his type of errors [47].
Another learning option introduces a learning mode during
which all the found words are saved as correct [25]. In addition
to classic methods, it is also possible to use machine learning
and artificial intelligence [48], [49].

Even though it is impossible to use the language’s grammar
to find the best candidates for correction [31], [50], it is
still possible to use the probabilities of specific errors to
prefer some words before others. The most basic heuristic
is to adjust the weights of the editing distance according to
the type of operation. For example, several sources suggest
that each operation has a different probability from others.
Specifically, their probability is in the following order (from
most to least probable): substitution, deletion, insertion, and
transposition [36], [44], [51]–[53].

IV. METHODOLOGY

This work aims to create a new method for searching
for typographical errors and proposing their correction in
data that contain settings and parameters of various network
applications. It does not make sense to analyze all data that
are coming from the user. For example, hashed passwords,
timestamps, or any random values. In contrast to detecting
typographical errors in plain text, the method must work with
words for which it is impossible to apply grammar from plain
text, such as domain names or IP addresses. Simultaneously,
all words will be processed individually, so it will not be pos-
sible to use the context in which the words are located. Since

the typing error is not created by a machine but by a human, it
is necessary to focus on the user’s data. We have recognized
the following categories of data: IP address, transport port,
domain name, username, generic number, generic string.

The term word in this work means a character string
belonging to one of the described categories. It will also be
possible to create combined categories from these categories.
An example of a combined category is an email address
consisting of a login name, a ”@” delimiter, and a domain
name. With combined categories, the values are broken down
into basic categories and stored in the appropriate dictionaries.
This approach allows knowledge sharing, so if someone on the
network visits the ”company.local” domain name, the system
can find a typographical error in the ”user@copmany.local”
email, even if the email has never been seen before.

A. Detecting an error
Our proposed method works on the principle of dictionaries.

What is in the dictionaries is valid and correct; what is not is
considered a typing error. N-gram analysis could also be used
for this purpose, but for words that are not part of the natural
language (domain name, IP address), the N-grams would not
work correctly. Many correct words would be marked as incor-
rect, and at the same time, many incorrectly marked as correct.
Dictionaries are also used to filter out possible corrections
for detected incorrect words, and a suitable replacement is
eventually selected using heuristic methods.

Words are not all stored together but are stored by word
category in several smaller dictionaries. This means that only
a dictionary containing email addresses is used to determine
if an email is a correct word or a typing error. Each dictionary
further consists of two parts - predefined and learned.

The predefined part of a dictionary contains words that are
expected in a given context. In the case of words of a common
language, this is a list of all grammatically correct words. This
can be a list of the most visited domain names or transport
ports of well-known services for other data types. These
dictionaries are expected to be customized by the administrator
based on the data that are present inside the network. For
example, the administrator can enter all company’s usernames.

The dictionaries’ learned parts are not created manually by
administrators, but their content is created by learning from
the input data. One way to teach a tool the correct data is to
use only data for learning that is not reported as problematic.
The downside is that end-users do not report all problems
because they can fix some typographical errors themselves.
The second way of learning is that the administrator manually
verifies which data is correct and which is not. However,
this is unrealistic due to the huge amount of network data
in real networks. The last option is to use an external tool
that evaluates each communication, whether it has finished
successfully or with an error [55]. In this case, the tool would
automatically learn only from correct communications.

B. Generating candidates
For all words detected as words with an error, finding

suitable candidates for correction in the dictionaries is neces-

147

sary. Candidates are all possible words from which the typing
error could be created with a certain editing distance. We are
working only with words that have an edit distance of less than
or equal to 2. Simultaneously, to consider a word a correct
candidate, the word needs to be in the appropriate dictionary.

The creation of candidates is based on applying reverse
operations to basic operations (insert, delete, replace, and
swapping of two adjacent characters). For example, if we want
to determine if the word ”ello” was formed by omitting the
first letter, the method tries a reverse operation (in this case,
the opposite of omitting is the insertion of a character). After
trying all characters, the method detects that inserting the letter
”h” before the word ”ello” creates the valid word ”hello”. To
try all the possibilities, it is necessary to try all operations on
all word positions and to use all combinations of characters.
Candidates with edit distance 1 are created by one operation
and candidates with distance 2 by two operations.

Our method uses two different ways of creating candidates.
The first method applies all operations to the detected word
with an error and tries to obtain words present in the dictionar-
ies [3]. The second method works oppositely and takes correct
words from dictionaries, and calculates the number of oper-
ations required to create a correct word from the misspelled
word. The second method is more complex, but with fewer
words in the dictionaries, this method is significantly faster.
The amount of words for which the second method is faster
than the first one is described in the evaluation section.

C. Choosing the best candidate

After creating candidates for word correction, it is necessary
to determine the best replacement from them. The easiest way
would be to select the candidate with the shortest editing
distance. The problem is that several candidates may have the
same minimum distance. Based on this information alone, we
cannot select the most suitable candidate.

We propose a scoring algorithm that tries to assign higher
scores to the candidates with higher probability. At first, the
algorithm assigns a basic score for each candidate. In the next
step, the algorithm takes the operations that are needed to
change the word with an error to the correct word (e.g., insert
letter ”h” at the beginning of the word and replace the third
letter ”i” with the letter ”l”). For each of the operations, a
penalty is deducted from the score. The main idea is that each
operation has a different penalty based on probability.

We have analyzed several research papers and identified
which errors are more probable than others. The list of these
errors is in Table I. If the operation contains any of these
errors, its penalty is reduced. Each operation may be attributed
to several probable errors, and the penalty is reduced for each
of them. For example, an error in the username ”matousek”,
where the user mistakenly writes ”mat0usek” is represented as
an operation to replace the fourth character ”o” with ”0”. This
operation contains up to three errors with a higher probability:
1) error is not in the first character; 2) characters ”o” and ”0”
are in a fat finger distance; 3) characters ”o” and ”0” are

visually very similar. All errors have the same weight, and the
same amount reduces the penalty for each of them.

TABLE I
LIST OF ERRORS WITH A HIGHER PROBABILITY

Error type Example
Duplication [21] 44 > 444

Shift [21] 441 > 411
Pluralism [15] money > moneys

Doubling or skipping a voice [36] scissors > sissors
Fat-finger [56], [57] help > hewlp

Transcription error [19] 1 > l
Phonetic error [32] blake > brake

Keyboard layout [19], [32] zoomba > yoomba
Capitalization [19] home > HOME

Error not in first character [31] config > comfig

V. TOOL ARCHITECTURE

This section describes the architecture of the designed tool,
which implements the proposed diagnostic method. The tool
is intended to help network administrators with finding and
fixing a problem on the network. A typical use case for this
is when a service does not work for an end-user. The end-
user reports the problem to the administrator, who uses data
analysis to determine that the service is not working for the
user because he entered some data incorrectly due to a typing
error. Finally, incorrect words with possible corrections will
be displayed to the administrator. Before using the tool, the
administrator needs to know what data to analyze and in which
location this data can be found.

The proposed tool consists of several independent blocks,
shown with their interconnection in Fig. 1. In the left part
of the figure, there is the input data, which, after processing,
continues to other blocks according to the selected mode. The
result of the first (learning) mode is a set of learned words, and
the result of the second (diagnostic) mode is a list of detected
words with a typographical error (or errors) and the proposed
corrections.

PCAP

NetFlow

log file

dictionaries
learning new

words

convertor
typo error

detection

generating

candidates

candidates

ranking
result

typo words diagnostics

Fig. 1. An architecture of the proposed tool which consists of multiple blocks.

A. Convertor

The first part of the tool is used to convert data from
different sources that use a different format into a common
format. The common format will allow the rest of the tool
to work with data no matter its source. For this purpose, a
converter is used. In addition to data converting, it filters the
input data because it does not make sense to analyze all the
data from the sources (e.g., timestamps or password hashes).
The format is based on JSON, consisting of keys (categories)

148

and lists of values belonging to those categories. The rest of
this subsection describes currently supported sources.

1) Network packets: The analysis will look at user data en-
tered into the application and transported in network packets.
An example is the configuration of an email client, where the
user enters the login name. Packets can be saved in the PCAP
format for later analysis. We are using TShark to convert
packets saved in PCAP format into JSON format, which is
better for data analysis. We have chosen TShark because we
do not need to implement our custom protocol parsers.

2) NetFlow records: Another way to analyze network data
is to use NetFlow technology, which aggregates packets ac-
cording to common properties and reduces the amount of
analyzed data. The tool is working with NetFlow records that
are saved in the CSV format. This CSV format consists of
columns representing NetFlow attributes and rows that contain
individual records. It is important to note that current state-
of-the-art implementations of NetFlow monitoring are not
sampling the analyzed data even for high-speed networks and
are exporting application fields, e.g., the domain name from
DNS or email address from SMTP.

3) Log files: The advantage of processing log files over
network data is that packet analysis cannot process any data
in the case of using an encrypted connection. However, the
data is written to the log files in a readable form. Processing
log files allows the analysis to look for errors regardless of
the network topology or protocols used. Although log files
are in text form by default, their format is not uniform. Each
application creates logs differently, and therefore it is up to the
administrator to specify exactly how the information should be
searched for and extracted from the data. For this purpose, we
used regular expressions to specify which part of the record
will be analyzed.

B. Learning mode

After the converter processes the data, it is possible to
start one of the two modes. The first mode is responsible for
learning new words and saving them into dictionaries. Words
are stored in the appropriate dictionary according to their
category and length. For example, when saving the domain
name ”milk.com”, the word’s length is determined (it is 8)
and saved to the dictionary containing only domain names of
the same length. The goal of dividing the dictionaries by word
length is to make it easier to find words with similar lengths.

C. Diagnostic mode

After the tool has learned the correct words, it is possible to
proceed to the diagnostics mode. The second possibility is that
the learning mode was not used at all, and the administrator
manually predefined all the correct words. This consists of
three parts - typing error detection, generating candidates, and
candidate ranking. Each of these parts is using dictionaries
that contain both predefined and learned words.

1) Typing error detection: The first step in diagnostics is
to find out which words are correct and which words have
a typographical error. To do this, it is necessary to load

dictionaries of correct words. When the program is loading
dictionaries, the individual words are loaded into Python sets.
The search for whether a word is in the dictionary is performed
as a search for an element in a set. The benefit of implementing
a search over a set is that it is possible to search for multiple
elements in a very short amount of time. In our test, we
searched for 1000 elements in less than 1 ms, while the data
structure with 100.000 words took up less than 16 MB of
operational memory.

2) Generating candidates: The second step in diagnosis
mode is to obtain potential candidates to correct the de-
tected typographical error. The proposed method is using
two algorithms for generating candidates. The first one is
applying operations to the word with a typographical error
to create a correct word. The second algorithm takes words
from dictionaries and calculates the number of operations (edit
distance) to create a word with error. The reason why we are
using the second algorithm is the expectation that it is faster
than the first one at the moment when there are not many
words in the dictionaries. Therefore, we performed a test in
which we try to find out the limit when the second algorithm
is faster and, conversely, when the second algorithm starts to
be slower than the first algorithm.

The result of the test is shown in Fig. 2. The first algorithm’s
time depends only on the word’s length and is shown by a line
with circle points. The other lines show the second algorithm’s
time according to the number of words with the same length.
It can be seen that the time complexity of the first algorithm
is approximately the same as the complexity of the second
algorithm when there are 25000 words with a similar length
as the analyzed word in the dictionary.

Based on the test, we chose a 25000 word limit to determine
which algorithm to use. Because the method searches for
candidates up to edit distance 2, it is possible to count only
words that are not shorter or longer by two characters than the
detected word with an error. When processing a word with a
typographical error of length N, the tool determines whether
the number of words in the dictionary of length N-2 to N+2
is less than or greater than 25000.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

T
im

e
 [

s
]

Word length

�rst algorithm
5000

25000
50000

Fig. 2. Comparison of the generation time of candidates of the first and
second algorithm.

149

3) Candidate ranking: The algorithm for candidate ranking
works in two stages: assigning a base score and adjusting it
based on the error type. The first stage is simple. If a word
was found in the learned part of the dictionary, a score of 25
is used. Otherwise, a score of 20 is used for words from the
predefined part. Afterward, it is checked whether the word is
of the type domain name, string, or username and whether the
candidate has the same phonetic sound as the typographical
error (according to the Metaphone algorithm). If the phonetic
sound is the same, the value 3 is added to the score.

In the second stage, the method takes the operations needed
to change the word with an error to the correct word and
calculates the penalty that will be reduced from the score.
The penalty has a default value of 10. A list of conditions
defining more probable errors is checked, and for each fulfilled
condition, the penalty is reduced by 1. The system checks the
following conditions that define more probable errors:

• inserted character is the same as the adjacent character;
• inserted character is in the fat finger distance as the

adjacent character;
• changed character is in the fat finger distance as the

original character;
• changed character is on the same position in different

keyboard layouts (qwerty-qwertz);
• mistake is not on the first character;
• error is around the separator (dot, hyphen or underscore);
• inserted character is same as the both adjacent characters;
• inserted character is in prefix or suffix of the word;
• replaced character is visually similar to the original

character;
• removed character is same as the adjacent character;
• both the original and replaced character are different, but

both are the same as one of the adjacent character.
Before substituting the penalty from the score, the penalty

is multiplied by the coefficient based on the operation type:
insert = 0.6, replace = 0.3, delete = 0.5, transpose = 0.7).

There is one exception for which the previous calculation is
not used. When a word with typographical error is capitalized
(caps-lock was enabled on the user’s keyboard). This operation
is not a basic operation used in the edit-distance calculation,
and therefore calculating scores based on these operations
does not make sense. In this case, the algorithm assigns the
maximum score of 25 to all capitalized words. This approach
will make these words always the best candidates.

D. Example

The outputs from the individual tool parts can be seen in
Fig. 3, which also shows the whole method’s main idea. First,
words from the converter belonging to the category domain
name are displayed, which are searched for in dictionaries.
The domain name ”amzon.com” is not in the dictionaries
and is considered a typographical error. All possible words
with a maximum editing distance of 2 that can be created
from the domain name are generated. All these words are
searched for in dictionaries, and only six are considered as
correction candidates. Candidates are ranked, and the one with

the best score (amazon.com) is selected as a replacement for
the original misspelled word.

{

"domain": [

"facebook.com",

"amzon.com",

"google.com"]

}

amzon.com

amzn.com

aaszon.com

amzmin.com

amazon.com

anion.com

azom.com

amazon.com - 23.5

anion.com - 22.9

amzn.com - 22.6

amzmln.com - 21.1

azom.com - 20.2

aaszon - 18.3

amzon.com

�

amazon.com

data from

convertor

detected

typo
candidates

ranked

candidates
result

Fig. 3. Output’s example of individual parts of the architecture.

VI. EVALUATION

This section shows that the presented diagnostic method can
detect typing errors caused by end-users. The first test shows
that the created heuristic for evaluating candidates sorts the
individual errors as expected. The second test tests the success
rate of correcting typographical errors on the created dataset.
In the third test, the speed of the whole tool is measured. The
last test tried to correct typographical errors in IP addresses
and port numbers.

A. Ranking of candidates

The first test aims to verify the correctness of the created
heuristic for scoring correction candidates. We have manually
applied several errors to the word ”google.com”, and a score
heuristic algorithm was run over the words with errors. The
aim is not to verify the exact values of the calculated score
but to determine whether the order of the candidates according
to the calculated score adequately reflects the probability of
the type of typographical error that occurred. The higher the
score, the higher the probability of the candidate should be.
For example, one inserted character from a fat finger distance
should have a better rating (higher score) than deleting two
characters.

The first test result is shown in Table II, containing incorrect
words, a description of operations, and a calculated score. The
calculated score sorts the items in the table. There is no exact
way to determine whether the created order is correct or not.
However, according to intuition, it can be stated that more
probable errors compared to the words with the lowest rating
are placed in the first rows.

B. Candidates proposing accuracy

The second test aims to verify that the created heuristic
selects the correct candidates as a replacement for the detected
errors. We have created a script that applied typing errors from
regular English text to the list of domain names for this test.
As a list of domain names, we have used the most visited
797641 domain names from Alexa 1. A dataset with 2455
typographical errors from 1922 words from English Wikipedia
from Roger Mitton was used to simulate real errors. Each
typing error in this dataset also contains the correct form of
the word.

1http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

150

TABLE II
SCORING VARIOUS CANDIDATES FOR THE GOOGLE.COM DOMAIN NAME

Score Wrong word Operation
25.0 GOOGLE.COM Capitalization
23.9 g0ogle.com Substitution for a similar symbol
23.6 ggogle.com Substitution with a duplicated symbol
23.6 giogle.com Substitution in a fat finger distance
23.3 gwogle.com Substitution
22.0 gogle.com Deletion of the repeated symbol
21.8 gooogle.com Insertion of a repeated symbol
21.5 goole.com Deletion
21.2 giigle.com Substitution in a fat finger distance
21.2 google.comp Insertion at the end of the word
20.6 gooqgle.com Insertion
19.7 ogogle.com Transposition
18.5 gopople.com Insertion in a fat finger distance
17.0 ggle.com Deletion
15.2 goqoqgle.com Insertion

The script for generating domain names with typing errors
consists of four steps:

1) The list containing pairs with correct and error words
has been created. E.g., the correct word ”guard” was
paired with the misspelled word ”gaurd”. Only words
with a maximum editing distance of 2 have been used.

2) Domain names were analyzed to determine whether they
contain any correct words from the created list. E.g.,
the domain name theguardian.com contains the word
”guard”. The list of pairs was always searched in random
order to prevent repeating the same type of errors.

3) If the domain name contained any valid word, this word
was replaced with a misspelled word. E.g., the domain
name theguardian.com was changed to thegaurdian.com.

4) After 1000 different domain names have been created
with typing errors. The process has stopped.

Out of 1000 created domain names, nine domain names
were such that the new word was also a valid domain name
even after applying the typing error. It means that the new do-
main name was in the same list of domain names from Alexa,
and therefore it is not possible to mark those domain names
as incorrect. Of the remaining 991 words, 967 cases were
correctly corrected. Four misspelled words have had more than
one candidate with the best score, and one of those candidates
was the correct word. The remaining 20 domain names were
incorrectly repaired. For example, the ”udemy.com” domain
name had a typographical error ”udemi.com”, which was
corrected to ”udemu.com” because replacing the letter ”i”
with the letter ”u” is more likely because it is located near
to it (based on the QWERTY keyboard layout). The results
are shown in Table IV, and several correctly repaired domain
names with different types of errors are shown in Table III.

Another test to verify the best candidates’ accuracy was
made on a list of 371 usernames of employees and Ph.D.
students within our faculty. All usernames are based on real
names. This list was used as a dictionary to check whether
the checked username is correct or not. We have randomly
selected 100 usernames and applied the typing errors in the

TABLE III
SELECTED DOMAINS WITH ERRORS THAT WERE CORRECTLY FIXED

Wrong word Heuristic rules Correct word
voice-real.com transposition; similar phonetic voice-reel.com

panbda.tv insert; fat finger distance panda.tv
chasr.com substitution; fat finger distance chase.com

ilvoepdf.com transposition ilovepdf.com
weatherr.com insert; letter duplication weather.com

gole.co.kr 2x delete; removed repeating symbol google.co.kr

same way as in the test with domain names. From these
100 usernames with errors, 100 were correctly detected as
incorrect and 99 were correctly corrected. The results are also
shown in Table IV. The one incorrectly repaired username was
”ikuceran” which was created from the username ”ikucera”,
however our tool repaired it as ”ikuceraj”.

TABLE IV
RESULT OF TESTING THE CORRECTNESS OF PROPOSED CORRECTIONS FOR

DETECTED TYPOGRAPHICAL ERRORS IN DOMAIN NAMES AND
USERNAMES

Data type domains usernames
Word count 1000 100

Detected as error 991 100
Detected as correct word 9 0

Correct best candidate 967 99
Multiple best candidates 4 0

Wrongly repaired 20 1
Success rate 97.5% (967 of 991) 99% (99 of 100)

We have detected up to 97.5% of errors in domain names
and 99% of username errors in misspelled words generated
from sources that contained real user typographical errors.
However, it is unnecessary to achieve 100% accuracy to use
the tool because even with a lower success rate, the tool
can make it easier to diagnose errors. We do not consider
typographical errors words that are also correct as errors. For
example, if a user types ”google.cz” instead of ”google.ca”, it
is impossible to detect an error because both are valid domain
names. Therefore we did not count them when calculating the
success rate.

C. Usage on other data types

The third test aimed to verify functionality on the domain
name of IP addresses and port numbers. It turned out that
the proposed method of error detection does not apply to real
networks very well. There were two main reasons. The first
problem was to obtain relevant data to which the tool could
be applied. Most networks use DNS protocol and default port
numbers, so the end-users rarely use IP addresses and ports.

The second problem was that even though some data has
been collected, there is only a small difference between
the individual values. Usual domain names, login names,
and emails are very different and easily distinguishable. For
example, login names may look like ”vecerav”, ”polcak”,
or ”iletavay”. On the other hand, IP addresses inside a

151

single network are usually assigned from the same subnet,
e.g., ”147.229.176.14”, ”147.229.176.19,” or ”147.229.176.8”.
With these values, there is a high probability that the value
with an error will also be a valid value. Even if the error will
be detected, it is almost impossible to say the correct value
without additional knowledge.

VII. CONCLUSIONS

This work aimed to create a method for detecting typing
errors in computer network applications appearing in various
data sources. The tool is intended to complement existing
systems for network monitoring and troubleshooting. The
tool focuses on data entered directly by end-users and then
transmitted over a network or stored somewhere in application
servers. An example is the configuration of the email client,
which is provided manually by the user. For example, when an
end-user incorrectly configures such an application and does
not know why the application is not working, the end-user
contacts an administrator. The administrator will use this tool
which will automatically check whether the application is not
working because of the typing error.

The presented method can be considered a spell-checker
for network-related data. The created tool focuses only on
detecting nonword errors, so if another correct word is created
because of a typing error, it is not identified as an error.
The tool checks for each word, whether it is present inside
a dictionary, and if not, it is considered a typographical error.

At the beginning of the work, we have identified data types
in which it makes sense to search for typographical errors. The
most interesting data sources are network packets, NetFlow
records, and log files regarding availability and amount of
data containing possible user’ errors. Each type of data has its
advantages and disadvantages, and therefore it is impossible
to say that only one specific type of data should be used.

Many kinds of typographical errors can be made when
typing on the keyboard. The basic mechanism behind the
emergence of such errors was identified by Damerau, who
defined it in terms of insertion, transposition, replacement, and
deletion of a character. Based on these operations, it is possible
to measure the editing distance between two words and find
similar words to be used as a correction. When there are
multiple candidates for correction, it is necessary to determine
the best selection. To solve this selection problem, we have
developed an algorithm that considers the probabilities of
individual operations’ occurrence and looks for the most
common types of typographical errors in candidates. Based
on the highest evaluation, the best candidate for replacement
is selected. In the case of equally rated candidates, there are
multiple corrections offered.

The created tool works in two modes. Firstly, the learning
mode is applied to create dictionaries of correct words based
on the provided input data considered to be correct. Secondly,
the diagnostic mode uses a learned model to detect and correct
typing errors. The program can also run without the learning
phase, in which case it requires a manually created model.

The tool’s functionality was tested on errors in domain
names and login names created by applying real-user mistakes
from the English Wikipedia. Knowing the correct form of each
error made it possible to determine whether the tool suggests
correct correction candidates. Although the tool’s success rate
was less than 100% (97.5% and 99%), the tool can still speed
up diagnostics by not requiring the administrator to manually
analyze the data entered by the end-user.

Although the method can be applied to any data entered
by a user, it is not appropriate to look for typographical
errors in identifiers from layers other than from the application
layer. The reason is that only the application identifiers are
optimized for typing by users. There are significant differences
between each value, and it is thus possible to easily estimate
the intended word in the case of a typing error.

Finally, we have identified the following future works:
• The tool does not allow feedback processing of the

previous errors. By marking each correction as right or
wrong, the diagnostic method would prioritize previously
successful candidates.

• Every word that has been seen during the learning mode
is considered correct. However, when learning from data
with possible errors, words that were seen only once may
indicate a potential typo. It would make sense to penalize
less frequent words in dictionaries. However, it would be
necessary to deal with words that occur less frequently
and be erroneously marked as typos, even if they are
already in the dictionary.

ACKNOWLEDGMENT

This work was supported by the BUT FIT grant FIT-S-20-
6293, ”Application of AI methods to cyber security and control
systems”.

REFERENCES

[1] Han, Y., Zhao, X. and Li, J., 2018. Computer Network Failure and
Solution. Journal of Computer Hardware Engineering, 1(1).

[2] Wang, R., Wu, D., Li, Y., Yu, X., Hui, Z. and Long, K., 2012.
Knight’s tour-based fast fault localization mechanism in mesh optical
communication networks. Photonic Network Communications, 23(2),
pp.123-129.

[3] Solé, M., Muntés-Mulero, V., Rana, A.I. and Estrada, G., 2017. Sur-
vey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546.

[4] Orzach, Y., 2013. Network Analysis Using Wireshark Cookbook. Packt
Publishing Ltd.

[5] Squicciarini, A.C., Petracca, G., Horne, W.G. and Nath, A., 2014,
March. Situational awareness through reasoning on network incidents.
In Proceedings of the 4th ACM conference on Data and application
security and privacy (pp. 111-122).

[6] Van, T.,Tran, H. A.,Souihi, S. A. Mellouk, A. Network troubleshoot-
ing:Survey, Taxonomy and Challenges. In: IEEE.2018 International Con-
ference onSmart Communications in Network Technologies (SaCoNeT).
2018, pp. 165–170.

[7] Zeng, H., Kazemian, P., Varghese, G. and McKeown, N., 2012. A survey
on network troubleshooting. Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep.

[8] Chen, A., Wu, Y., Haeberlen, A., Zhou, W. and Loo, B.T., 2016, August.
The good, the bad, and the differences: Better network diagnostics with
differential provenance. In Proceedings of the 2016 ACM SIGCOMM
Conference (pp. 115-128).

[9] Kögel, J., Including the Network View into Application Response Time
Diagnostics using Netflow.

152

[10] Rudrusamy, G., Ahmad, A., Budiarto, R., Samsudin, A. and Ramadass,
S., 2013. Fuzzy based diagnostics system for identifying network traffic
flow anomalies. arXiv preprint arXiv:1304.7864.

[11] Qiu, T., Ge, Z., Pei, D., Wang, J. and Xu, J., 2010, November. What
happened in my network: mining network events from router syslogs.
In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement (pp. 472-484).

[12] Csikor, L. and Pezaros, D.P., 2017, December. End-host driven trou-
bleshooting architecture for software-defined networking. In GLOBE-
COM 2017 IEEE Global Communications Conference (pp. 1-7). IEEE.

[13] Pullmann, J. and Macko, D., 2018, November. Network tester: A genera-
tion and evaluation of diagnostic communication in ip networks. In 2018
16th International Conference on Emerging eLearning Technologies and
Applications (ICETA) (pp. 451-456). IEEE.

[14] Traverso, S., Tego, E., Kowallik, E., Raffaglio, S., Fregosi, A., Mellia,
M. and Matera, F., 2014, September. Exploiting hybrid measurements
for network troubleshooting. In 2014 16th International Telecommuni-
cations Network Strategy and Planning Symposium (pp. 1-6). IEEE.

[15] Kukich, K. Techniques for automatically correcting words in text. Acm
Computing Surveys (CSUR). ACM. 1992, 24(4), pp.377-439.

[16] Hirst, G. ”An evaluation of the contextual spelling checker of Microsoft
Office Word 2007.” (2008).

[17] Youssef, B. and Alwani, M.. ”Ocr post-processing error correction
algorithm using google online spelling suggestion.” arXiv preprint
arXiv:1204.0191 (2012).

[18] Chen, X., Huang, X., Mu, Y. and Wang, D., 2019, August. A Typo-
Tolerant Password Authentication Scheme with Targeted Error Cor-
rection. In 2019 18th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE) (pp. 546-553). IEEE.

[19] Chatterjee, R., Athayle, A., Akhawe, D., Juels, A. and Ristenpart, T.,
2016, May. pASSWORD tYPOS and how to correct them securely. In
2016 IEEE Symposium on Security and Privacy (pp. 799-818). IEEE.

[20] Ahmad, I., Parvez, M.A. and Iqbal, A., 2019, July. TypoWriter: A Tool to
Prevent Typosquatting. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC) (Vol. 1, pp. 423-432). IEEE.

[21] Sun, Y.C., Tang, D.D., Zeng, Q. and Greenes, R., 2002. Identification of
special patterns of numerical typographic errors increases the likelihood
of finding a misplaced patient file. Journal of the American Medical
Informatics Association, 9(Supplement 6), pp.S78-S79.

[22] Wang, Y.M., Beck, D., Wang, J., Verbowski, C. and Daniels, B.,
2006. Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-
Squatting. SRUTI, 6(31-36), pp.2-2.

[23] QasemiZadeh, B., Ilkhani, A. and Ganjeii, A., 2006, June. Adaptive
language independent spell checking using intelligent traverse on a tree.
In 2006 IEEE Conference on Cybernetics and Intelligent Systems (pp.
1-6). IEEE.

[24] Lianga, H.L., Watsonb, B.W. and Kourieb, D.G., Technical Report
Classification for Selected Spell Checkers and Correctors.

[25] Peterson, J.L., 1980. Computer programs for detecting and correcting
spelling errors. Communications of the ACM, 23(12), pp.676-687.

[26] Damerau, F.J. and Mays, E., 1989. An examination of undetected typing
errors. Information Processing & Management, 25(6), pp.659-664.

[27] Bao, Z., Kimelfeld, B. and Li, Y., 2011, June. A graph approach to
spelling correction in domain-centric search. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (pp. 905-914).

[28] Odell, K.M. and Russell, R.C., 1918. Soundex phonetic comparison
system. US Patent, 1261167.

[29] Pollock, J.J. and Zamora, A., 1984. Automatic spelling correction
in scientific and scholarly text. Communications of the ACM, 27(4),
pp.358-368.

[30] Philips, L., 1990. Hanging on the metaphone. Computer Language,
7(12), pp.39-43.

[31] Elmi, M.A. and Evens, M., 1998. Spelling correction using context.
In COLING 1998 Volume 1: The 17th International Conference on
Computational Linguistics.

[32] Martins, B. and Silva, M.J., 2004, October. Spelling correction for
search engine queries. In International Conference on Natural Language
Processing (in Spain) (pp. 372-383). Springer, Berlin, Heidelberg.

[33] Mullin, J.K. and Margoliash, D.J., 1990. A tale of three spelling
checkers. Software: Practice and Experience, 20(6), pp.625-630.

[34] Aho, A.V. and Corasick, M.J., 1975. Fast pattern matching: an aid to
bibliographic search. Communications of ACM, 18(6), pp.333-340.

[35] Jurafsky, D. and Martin, J.H.: Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Pearson Prentice Hall (2009).

[36] Mitton, R. English Spelling and the Computer (Studies in Language Lin-
guistics). Addison-Wesley Longman Ltd, dec 1995. ISBN 0582234794.

[37] Levenshtein, V.I., 1966, February. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady (Vol. 10,
No. 8, pp. 707-710).

[38] Wagner, R.A. and Fischer, M.J., 1974. The string-to-string correction
problem. Journal of the ACM (JACM), 21(1), pp.168-173.

[39] Hamming, R.W., 1950. Error detecting and error correcting codes. The
Bell system technical journal, 29(2), pp.147-160.

[40] Pilar Angeles, M. del a Espino Gamez, A. Comparison of methods
Hamming Distance, Jaro, and Monge-Elkan. In: DBKDA 2015: the
seventh international conference on advances in databases, knowl-edge
and data applications. 2015.

[41] Damerau, F.J., 1964. A technique for computer detection and correction
of spelling errors. Communications of the ACM, 7(3), pp.171-176.

[42] Winkler, William E. ”String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage.” (1990).

[43] Mitton., R., Birkbeck spelling error corpus, 1985. http://ota.ahds.ac.uk/
(Last accessed: March 2007).

[44] TshwaneDJe HLT. Sesotho sa leboa corpora, 2006. Private Communi-
cation.September 2006.

[45] Rudy, R. and Naga, D.S., 2018. Fast and Accurate Spelling Correc-
tion Using Trie and Damerau-levenshtein Distance Bigram. TELKOM-
NIKA (Telecommunication Computing Electronics and Control), 16(2),
pp.827-833.

[46] Cordewener, K.A., Verhoeven, L. and Bosman, A.M., 2016. Improving
spelling performance and spelling consciousness. The journal of exper-
imental education, 84(1), pp.48-74.

[47] Van Zaanen, M. and Van Huyssteen, G., 2003. Improving a spelling
checker for Afrikaans. In Computational Linguistics in the Netherlands
2002 (pp. 143-156). Brill Rodopi.

[48] Huang, Y., Murphey, Y.L. and Ge, Y., 2013, April. Automotive diagnosis
typo correction using domain knowledge and machine learning. In
2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM) (pp. 267-274). IEEE.

[49] Etoori, P., Chinnakotla, M. and Mamidi, R., 2018, July. Automatic
spelling correction for resource-scarce languages using deep learning. In
Proceedings of ACL 2018, Student Research Workshop (pp. 146-152).

[50] Carlson, A. and Fette, I., 2007, December. Memory-based context-
sensitive spelling correction at web scale. In Sixth International Con-
ference on Machine Learning and Applications (pp. 166-171). IEEE.

[51] Hussain, S. and Naseem, T., 2013. Spell checking. Crulp, Nuces,
Pakistan, www. crulp. org.

[52] Dhakal, V., Feit, A.M., Kristensson, P.O. and Oulasvirta, A., 2018, April.
Observations on typing from 136 million keystrokes. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (pp.
1-12).

[53] Rimbar, H., 2017. The Influence of Spell-checkers on Students’ ability
to Generate Repairs of Spelling Errors. Journal of Nusantara Studies
(JONUS), 2(1), pp.1-12.

[54] Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto,
A. and Pras, A., 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys
& Tutorials, 16(4), pp.2037-2064.

[55] Holkovič, M., Polčák, L. and Ryšavý, O., 2019, July. Application Error
Detection in Networks by Protocol Behavior Model. In International
Conference on E-Business and Telecommunications (pp. 3-28). Springer,
Cham.

[56] Moore, T. and Edelman, B., 2010, January. Measuring the perpetrators
and funders of typosquatting. In International Conference on Financial
Cryptography and Data Security (pp. 175-191). Springer, Berlin, Hei-
delberg.

[57] Grudin, J.T., 1983. Error patterns in novice and skilled transcription typ-
ing. In Cognitive aspects of skilled typewriting (pp. 121-143). Springer,
New York, NY.

153

A.8 PCAPFunnel: A Tool for Rapid Exploration of Packet
Capture Files

Authors: Uhlár Juraj, Ing. (40%), Holkovič Martin, Ing. (30%), Rusňák Vít, RNDr.,
Ph.D. (30%)
Abstract: Analyzing network traffic is one of the fundamental tasks in both network oper-
ations and security incident analysis. Despite the immense efforts in workflow automation,
an ample portion of the work still relies on manual data exploration and analytical insights
by domain specialists. Current state-of-the-art network analysis tools provide high flexibil-
ity at the expense of usability and have a steep learning curve. Recent - often web-based -
analytical tools emphasize interactive visualizations and provide simple user interfaces but
only limited analytical support. This paper describes the tool that supports the analytical
work of network and security operators. We introduce typical user tasks and requirements.
We also present the filtering funnel metaphor for exploring packet capture (PCAP) files
through visualizations of linked filter steps. We have created PCAPFunnel, a novel tool
that improves the user experience and speeds up packet capture data analysis. The tool
provides an overview of the communication, intuitive data filtering, and details of individ-
ual network nodes and connections between them. The qualitative usability study with
nine domain experts confirmed the usability and usefulness of our approach for the initial
data exploration in a wide range of tasks and usage scenarios, from educational purposes
to exploratory network data analysis.
Keywords: Data analysis, Data visualization, Network traffic analysis, Packet captures.
Published in: 25th International Conference Information Visualisation (IV 2021), Sydney,
Australia
Conference rating: B(Core), B1(Qualis)
ISBN: 978-1-6654-3827-8

154

PCAPFunnel: A Tool for Rapid Exploration of
Packet Capture Files

Juraj Uhlár
Flowmon Networks

Brno, Czech Republic
Email: juraj.uhlar@flowmon.com

Martin Holkovič
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Email: iholkovic@fit.vutbr.cz

Vít Rusňák
Institute of Computer Science

Masaryk University
Brno, Czech Republic

Email: rusnak@ics.muni.cz

Abstract—Analyzing network traffic is one of the fundamental
tasks in both network operations and security incident analysis.
Despite the immense efforts in workflow automation, an ample
portion of the work still relies on manual data exploration and
analytical insights by domain specialists. Current state-of-the-art
network analysis tools provide high flexibility at the expense of
usability and have a steep learning curve. Recent—often web-
based—analytical tools emphasize interactive visualizations and
provide simple user interfaces but only limited analytical support.
This paper describes the tool that supports the analytical work of
network and security operators. We introduce typical user tasks
and requirements. We also present the filtering funnel metaphor
for exploring packet capture (PCAP) files through visualizations
of linked filter steps. We have created PCAPFunnel, a novel
tool that improves the user experience and speeds up packet
capture data analysis. The tool provides an overview of the
communication, intuitive data filtering, and details of individual
network nodes and connections between them. The qualitative
usability study with nine domain experts confirmed the usability
and usefulness of our approach for the initial data exploration
in a wide range of tasks and usage scenarios, from educational
purposes to exploratory network data analysis.

Index Terms—Data analysis, Data visualization, Network traf-
fic analysis, Packet captures

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Cite this article as follows: J. Uhlár, M. Holkovič and V. Rusňák. "PCAPFunnel: A Tool for Rapid Exploration of
Packet Capture Files," 2021 25th International Conference Information Visualisation (IV), Sydney, Australia, 2021.

I. INTRODUCTION

Day-to-day monitoring of the network status and intervention,
if necessary, is part of the network administrators’ duties [1].
Many problems appear, causing the network or its parts
to malfunction daily. E.g., communication issues with the
webserver, broken connections between distant locations, or a
user’s computer spreading malware across the network. Except
for real-time monitoring, packet capture inspection is a standard
method used during network analysis. However, it is nearly
impossible to analyze all traffic on a per-packet basis due to
the overwhelming amount of transferred data, especially in
high-speed networks. Therefore the network administrators
work with the aggregated data only, which yields to the crucial
challenge: selecting the proper criteria for data aggregation
and their presentation. They need to explore multi-dimensional
data and gain knowledge by analyzing them on multiple levels
of abstraction [2].

Commonly used low-level command-line tools or applica-
tions like Wireshark [3] provide broad data processing and

filtering capabilities but provide limited data visualization and
presentation in a comprehensible way. The previous studies con-
firmed the usefulness of visualizations for network analysis [4],
[5] which outperforms the traditional text-based ones. Novel
tools such as NetCapVis [6] bootstrap the network analysis
through interactive and easy-to-learn graphical interfaces, which
makes them accessible also for novice users. However, less
attention is on the support and guidance of the analysts in their
exploratory work.

We address these issues in the prototype implementation of
a web-based visual analysis tool for packet capture (PCAP)
data. PCAPFunnel enables to upload packet capture files and
performs a rapid exploration through a set of consecutive
filters. It improves the initial orientation in the network dataset
and allows the export and import of filter configurations to
simplify their sharing or reuse. The filtering funnel metaphor
guides the analysts and allows quick drill down to the
details of individual network nodes or connections between
them. We performed a qualitative user evaluation with nine
domain experts who considered our approach helpful in a
wide range of usage scenarios for exploratory network data
analysis or educational purposes. The project has been done
in collaboration with Flowmon Networks a.s., a company
providing network monitoring solutions.

We contribute to state of the art with: 1) a filtering funnel
metaphor applied on an exploration of network traffic datasets,
2) design and implementation of PCAPFunnel, a visual analysis
tool for rapid exploration of PCAP files,

Section II covers the related work in network traffic analysis.
Section III provides the data abstraction, outlines user tasks,
and presents design requirements on analytical tools for our
target domain. In Section IV, we describe PCAPFunnel design.
Section V summarizes the qualitative user study demonstrating
the usability and usefulness of our approach. We present the
discussion and outline future work in Section VI and conclude
our paper in Section VII.

II. RELATED WORK

We first introduce the network traffic data sources. To
better situate our work, we present the three-level workflow
of network traffic analysis, including examples of currently

155

used tools. Finally, we discuss existing visualization tools that
inform the PCAPFunnel design or provide akin capabilities.

A. Network Traffic Data Sources

The network traffic analysis can be either active or passive [7].
The active approach requires generating additional network
traffic to check a device’s status or link. The passive approach
uses only data that are already available in the network. In the
remainder, we focus on passive analysis as it is more accessible
since it does not require any additional network infrastructure.

Two primary data sources for passive network traffic analysis
are packet captures (PCAP) and network flows (NetFlow). A
PCAP file [8] contains complete copies of packets transferred
over the network. Therefore, it allows analyzing all values from
packet headers and payloads. Because storing and processing
complete packets is very expensive, it is usually not performed
globally but only for a limited network segment. NetFlow [9]
represents connections between communicating nodes (i.e.,
flows). Compared to PCAP, it contains only a limited amount of
attributes from each packet. While NetFlow technology is pre-
dominantly used in real-time network monitoring, PCAPs are
suitable for detailed inspection of network performance issues
or forensic analysis of detected cybersecurity incidents [10].

B. Network Traffic Analysis

There are three levels network traffic analysis that differ in
the level of automation and depth of the required knowledge
of the analysts or network operators who perform them:

Automatic diagnostic tools process the captured network
traffic, try to identify network issues, and report them [7], [11],
[12]. A common strategy is that the administrators validate
these reports and take countermeasures if necessary. However,
the diagnostic tools heavily rely on the knowledge base they
implement, which often limits their capabilities. Although most
of the routine tasks are automated, many reported network
issues require administrators’ attention. An example of such a
tool is Flowmon Packet Investigator [13].

The top-level analysis is usually performed over the aggre-
gated data. It includes data sorting and filtering according to
several different criteria. Although the workflow is straight-
forward, it gives the administrators the power to explore even
massive network traffic and identify context before diving
into the details. One of the tools for NetFlow data analysis is
NFDump [14].

The in-depth analysis allows the administrators to explore
the detailed information and content of individual packets [15].
It is powerful but time-consuming and often also prone to
losing the "big picture." Therefore, the analysts often switch
continually between the top-level and in-depth analyses in their
work.

To capture and inspect the traffic, network administrators
and security analysts often use command-line utilities (e.g.,
tcpdump, TShark) or highly flexible tools, such as Wireshark [3]
and NetworkMiner [16]. The latter ones also provide statistics
as well as details of each captured packet. However, they
present the data in tables offering only limited visualization

capabilities (e.g., tabular row highlighting or simple static line
or bar charts). They are, however, used mainly by skilled users,
and the steep learning curve is one of their main disadvantages.

These three approaches are usually combined into a complex
workflow of network or security operations (NetOps or SecOps)
teams. The automatic diagnostic tools notify the administrators
about the network issue, and they initiate the top-level analysis.
If these two steps do not provide sufficient information, the
analysts continue with in-depth network traffic inspections
using proper tools [17].

In our work, we focus wholly on top-level analysis. PCAP-
Funnel aims to support the analysis bootstrap, reduce the time-
to-first-insight, and improve the analytical process by providing
better guidance and support through interactive visualizations.

C. Packet Capture Visualizations

With the growing amount of transferred network data,
the design of efficient visualizations gains importance [18].
Visualizations are gradually used in various areas of network
security [19]. Over a decade ago, Goodall [5] performed a
comparative evaluation of a conventional PCAP file analysis
tool with a visualization application. The visualization applica-
tion outperformed the conventional tool in both task accuracy
and completion times. The evaluation also provided insights
and the overall preference of study participants. Further, we
show several examples of such visualization tools.

GrassMarlin [20] is an open-source tool released by the NSA.
Its primary purpose is to help passively map industrial control
systems and networks and visualize them in a communication
graph.

SNAPS [21] and EventPad [22] represent specialized tools
for network analysts and require strong domain knowledge.
Both the tools work with PCAP files. The former provides a
bottom-up pixel-oriented approach for iterative analysis and
parallel filtering options. The latter enables pattern identification
and analysis of malware activity using visual analytics methods.
Another example of an advanced visualization tool is Flo-
Vis [23], a suite of visualization tools intended to complement
command-line utilities. It processes NetFlow data and visualizes
activity diagrams, communication clustering, and connection
details.

The advances in modern web application development
open new possibilities for leveraging visual analytics methods
in network analysis tools. Several tools provide analytical
capabilities as a service. For example, CapAnalysis [24] allows
users to review large PCAP files, parse the data streams, filter
out ports, protocols, or IP addresses, and associate them with
geographical areas. A-packets [25] and PacketTotal [26] provide
multiple individual views on PCAP files. Rather than supporting
the explorative analysis, both tools provide dataset overview
and multiple dashboards focused on individual characteristics
extracted from the data (e.g., application, SSL certificates,
transferred files). The closest to our approach is NetCapVis [6].
It provides both overview and fundamental analytical support
through filtering based on incoming and outgoing IP addresses
and port numbers. Its main limitation is only limited details

156

for individual network nodes or connections between them.
However, a user can export filter configuration for Wireshark
to enable investigation of further details.

In PCAPFunnel, though inspired by these tools, we focused
on improving the support and guidance to reduce users’
cognitive load during the analytical process. Our goal was
to design a tool that will enable rapid initial exploration of the
dataset, be useful for skilled professionals, and easy to learn
for novice users.

III. DATA, TASKS AND REQUIREMENTS

The section provides the data abstraction of PCAP files,
followed by an overview of the user tasks. Based on these, we
formulate five design requirements for PCAPFunnel.

A. Data Abstraction

PCAP is a binary file format described in [8]. The file struc-
ture starts with a global header followed by at least one record
for each packet consisting of a packet header and its payload
(i.e., content data). There are multiple implementations (e.g.,
WinPcap, NPcap) that differ in API methods and supported
features. Though, we worked with the most common libpcap1,
considered a de-facto standard. Moreover, we currently use
only a subset of PCAP data needed for the visualizations.

We represent each packet as an object with several attributes
listed in Table I to simplify data manipulation.

We also enhanced the packet with the application name
attribute representing the application or service corresponding
to the source or destination port. The information is based on
the IANA Registry [27].

TABLE I
LIST OF PACKET ATTRIBUTES USED IN PCAPFUNNEL.

Attribute PCAP Data Property

index frame.number
timestamp frame.time_epoch
network/transport protocol frame.protocols
source/destination IP src/dst (e.g., ip.src, ip.dst)
source/destination port srcport/dstport (e.g., udp.srcport)
bytes frame.len

B. Tasks

Although NetOps and SecOps teams focus on different goals,
they perform similar network analysis tasks on the same input
data. Ulmer et al. [6] identified three general tasks performed
by both teams: GT1: Get a network traffic overview. GT2: Find
suspicious connections. GT3: Determine relevant events for an
in-depth analysis.

Based on discussion with domain experts, we have identified
five specific tasks (ST), also common to both teams:
ST1: Identify the top N communication sources, based on

given criteria;
ST2: Discover unusual patterns in the network traffic (e.g.,

peaks);
ST3: Identify nodes with which the particular station commu-

nicated.

1https://www.tcpdump.org

ST4: Identify nodes providing specific services to a network
(e.g., DNS server);

ST5: Share the analysis parameters with coworkers.
We derived these tasks from real-world scenarios and the

personal experience of several Flowmon Networks employees.

C. User Requirements

We address the user tasks through six design requirements
that have driven our work on PCAPFunnel:
R1: Provide descriptive statistics of the network’s traffic

properties (e.g., traffic volume, number of connections,
top N statistics for a typical network (e.g., IP, ICMP)
and transport (e.g., UDP, TCP) protocols, ports, or IP
addresses).

R2: Enable intuitive and progressive filtering of data by
multiple packet properties.

R3: Provide details for individual nodes and connections
between them and identify individual packets for further
analysis in external packet analyzer software.

R4: Enhance the PCAP data with information from external
sources where possible (e.g., network node geolocation,
DNS resolving).

R5: Support sharing and reuse of filter configurations.
R6: Allow working with large datasets progressively when

loaded without disrupting the user experience.

IV. PCAPFUNNEL DESIGN

PCAPFunnel is a React-based web application communi-
cating with a Node.js server and external APIs, providing
complementary information about individual IP addresses (e.g.,
resolved DNS names and geolocations). The demo is available
at https://pcap-viz.surge.sh.

The main goals of the tool are (a) to reduce the time-to-first-
insight and (b) to support the users in their explorative drill
down of PCAP files. The application follows Shneiderman’s
"Overview first, zoom and filter, then details on demand" [28].
For data organization and separating different detail levels, the
application leverages tabs. The DATASET OVERVIEW provides
filtering options and an overview of the loaded PCAP dataset.
DETAILED VIEWS display statistics and attributes of network
entities: network nodes (defined by their IP addresses) or
connections between them. In the following sections, we discuss
these views in detail.

A. Dataset Overview

The user interface has two main sections. The left part
(Fig. 1(a–e)) serves for data input and filtering, the right one
(Fig. 1(f))for data visualization and exploration (R1).

File Upload and Summary:
A user can upload a PCAP file from local storage or as

a publicly available URL (Fig. 1(a)). The uploaded PCAP
file is split into progressively processed batches. The packet
attributes from each batch are extracted using TShark and
stored as a JSON file on the server. Fig. 2 overviews the data
preprocessing workflow.

This approach allows the user to start exploring the data
while the PCAP file is still being processed (R6). The dataset

157

Fig. 1. DATASET OVERVIEW visualizes network traffic from packet capture files: (a) One can upload a PCAP file or choose from the previously uploaded
datasets (a). Dataset summary (b) shows the sum of packets, IP addresses, connections, and dataset size. Communication profile (c) is the starting point for the
analysis. The user can progressively configure up to six filter steps (d) to filter out the data according to multiple consecutive attributes. Users can also export
and import the filter configurations or use one of four predefined presets (e). The right part (f)shows the filtering results as a network graph and in tabular form.

summary—Fig. 1(b)—provides an overview of the loaded
dataset parameters: a sum of packets, IP addresses, connections
and the file size.

Filtering Funnel: The network traffic analysis often requires
a combination of multiple filter steps. A common approach is,
therefore, to chain multiple filters into one filtering command.
We implemented such chained filters using the filtering funnel
metaphor, a fundamental concept of PCAPFunnel.

PCAP file analysis starts with a statistical overview of
traffic properties (e.g., traffic volume, peaks in communication,
primary sources or used protocols, and distribution). Filtering
is then based on a chain of filter steps where each step allows
to filter data using a different property. The output of the
preceding filter step becomes the input of the following one.
So the data is progressively filtered, resembling a funnel as
depicted in Fig. 3. Depending on the analytical goal, the
steps can be combined almost arbitrarily from top-down or
bottom-up manner, i.e., from application to network-level or
vice versa (R2).

The traffic volume over time is displayed as a bar chart. The
chart also serves as the first filter step, allowing the user to
select the time range (Fig. 1(c)). Only the traffic information
from the selection is passed to the filter steps below. The user
can also indicate local network IP addresses by selecting them
in the drop-down dialog.

The filter step (Fig. 1(d)) consists of a table and the traffic
volume chart. The table shows packet property statistics (e.g.,

Fig. 2. PCAP file data preprocessing workflow.

Fig. 3. The filtering funnel metaphor illustration. Step-by-step filtering allows
to drill down in the data progressively.

158

a destination IP filter contains a table of all the IP addresses
from the selection). The + button allows to add up to six
different filter steps corresponding to the following packet
properties: IP address (source, destination, or both), network
protocol, transport protocol, port (source, destination, or both),
and application name. The applied filter steps remain visible.
Since they are linked, the change in one instantly affects others.

In addition to an arbitrary combination of filter steps, the
user can select from four presets and export or import filtering
configurations (Fig. 1(e)). There are two presets for a top-down
analysis (i.e., from an application to an IP address) and two
in reversed order. The exported files are in JSON format to
simplify their sharing with co-workers or reuse on similar
datasets (R5).

Filtering Results: Communications that pass through all
the steps are displayed in the DATASET OVERVIEW right part
as a node-link diagram (Fig. 1(f)). The table below lists all
the packets and their attributes. Any changes in filtering steps
directly affect the displayed results.

The node-link diagram visualizes the communication topol-
ogy of the filtered data. Each node corresponds to an IP address.
Its size is proportional to the volume of send and received
data. The link width represents the volume of communication
between two nodes.

Clicking on a node or table row opens a new detailed
view tab with information concerning the given IP address.
Analogically, clicking on a link opens a detailed view tab of
the traffic between the two IP addresses. The user can also
switch between visualizing packets, bytes, or connections (uni-
or bi-directional).

B. Detail View

The DETAIL VIEW (Fig. 4) provides further details of
incoming and outgoing communication of the selected IP
address or addresses in case of connections (R3). The view has
four sections: Communication Profile, Network Profile, Packet
Property Statistics, and Raw Data.

Communications profile: The section contains four mir-
rored charts, each displaying incoming (top) and outgoing
(bottom) traffic (Fig. 4(a)). The charts display the traffic volume
over time in numbers of packets, bytes, and flows. The last
one is a packet size histogram.

Network Profile: The section (Fig. 4(b)) visualizes the
proportional comparison of incoming and outgoing traffic,
geolocalized IP addresses, and the list of the countries based
on the traffic volume. The geolocalization (R4) is provided
through GeoLite2 IP [29].

A Sankey diagram displays incoming (left) and outgoing
(right) connections based on the number of packets, bytes, or
flows. The same color signifies the same source/destination IP.
The user can also display only the top 5, 10, 15, 20, or 30
connections. "Others" aggregates the remaining ones.

The minimap shows all geo-localized IP addresses. If both
connection endpoints are localized, there is also a link between
them. Circle size represents an IP address and is proportional
to the sum of incoming and outgoing traffic.

The table on the right side lists the top countries by traffic
volume. The user can also switch between the table and
choropleth visualization.

All the visualizations are zoomable and draggable. Clicking
on a node or connection either in the Sankey diagram or
geovisualization opens a new Detailed View tab with the
corresponding IP address or connection. So the user can
continue further in the drill-down analysis.

Packet Property Statistics: The third section (Fig. 4(c))
presents the most frequent (i.e., top 5/10/15/20/30) values for
packet properties: source and destination IP addresses, network
protocol, transport protocol, source and destination ports, and
the application name. Each property data is visualized in one
of seven bar charts.

Raw Data: The last section (Fig. 4(d)) presents the raw data
in two tables: Connections and Packets.

The Connections table lists collections of packets with the
same transport protocol, source IP and port, destination IP, and
port. The table also displays the first packet’s timestamp and
overall packet count in the connection. The user can switch
between uni-directional and bi-directional connections.

A country flag is shown in the source and destination IP
columns for localized IP addresses. Another enhancement
is DNS translation which converts IP addresses to resolved
domain names (R4). IP addresses and hostnames are clickable
and open new DETAIL VIEW tab of the clicked IP address. The
Packets table displays the attributes of corresponding packets
that provide the underlying information for all the visualizations
in the DETAIL VIEW. Both tables are sortable by clicking on
the column headings. A click on the IP address invokes a new
DETAIL VIEW tab with corresponding data.

V. USER STUDY

We conducted a qualitative user study of PCAPFunnel with
the following goals: a) collect qualitative feedback on the
usability and usefulness, b) identify limitations of the tool,
and c) assess the fulfillment of the user requirements. Instead
of formal usability evaluation or measuring task performance,
we sought to observe what aspects of the tool provide the
most value to domain experts. The approach is commonly used
in projects like ours [30], [31]. Due to Covid-19 pandemic
restrictions, we held the study online.

A. Method

Participants: We recruited nine domain experts, all males
(26–42 yo). Three of them work in academia as cybersecurity
researchers. Two are managers, and four employees in the
private sector. All participants have previous experience with
computer network security (six over ten years, two 5–10 years,
one less than five years). Six participants participated over
video calls (Google Meet) which were also recorded. Three
(P7–P9) worked asynchronously due to their time restrictions.
In both cases, the study design was equal. Measured on a
five-point Likert scale (1=novice, 5=expert), all the participants
considered themselves as experienced with packet analysis
(mean 3.8) and Wireshark (mean 3.7). The participants had

159

Fig. 4. DETAIL VIEW showing communication details of the IP address 192.168.15.4.

also experience with other PCAP analysis tools such as TShark,
tcpdump, Moloch, SELK, pyshark, Microsoft Network Monitor,
or Netfox Detective.

Procedure and Tasks: We prepared a Google Form that
served as the evaluation guide. The form also included the
prerecorded video presenting PCAPFunnel features, description
of the tasks, and demographic and post-study questionnaires.
The three participants who performed the study asynchronously
used the form to list the steps they performed to complete
each task and for written feedback. Despite being recorded,
their responses still provided helpful feedback, and therefore
we included them in the evaluation results.

The procedure has three phases: introduction phase, task
performing phase, and debriefing phase. In the introduction
phase, the participants consented and filled the demographic
questionnaire. Next, they watched the presentation of PCAP-
Funnel features and have a couple of minutes to interact with
the tool using a dummy dataset.

The task performing phase (∼40 minutes) consisted of five
tasks:
Task 1: Identify the application with the most significant

number of connections.
Task 2: Identify two 2 IP addresses that are the most significant

sources of the most prominent peak in the traffic.
Task 3: Given the IP address of an infected network station,

find out which country the station has communicated with
using the HTTPS application protocol.

Task 4: Which network nodes provide DNS service on other
ports than 53?

Task 5: Import the provided filter configuration. What is the
location of the destination IP address in the resulting

connection?
We developed specific tasks rather than open-ended ex-

ploration, so the participants tried most PCAPFunnel user
interface features. Most of the tasks, however, were possible
to accomplish in several ways. Each task was introduced by a
brief description providing the context and preparation steps
that included, e.g., loading a new dataset for a given task. We
asked participants of video calls to think aloud [32] and to rate
the perceived difficulty.

In the debriefing phase (10–15 minutes), the participants
filled closed-question post-study questionnaire and shared their
suggestions and opinions on our tool.

The participants used their computers. Their screen reso-
lutions were FullHD (6×), QHD (2×), or UHD (1×). Since
the PCAPFunnel is a web application, they used either recent
Google Chrome (7×) or Firefox (2×) browsers.

B. Results

The participants provided helpful feedback about the PCAP-
Funnel design. Overall, the results are encouraging in the
usability and usefulness of the tool.

Tasks: As we can see from Table II, the participants were
largely successful when solving the tasks and considered them
relatively easy.

Overall, the participants engaged well with the tasks, and
we neither received any reservations regarding their purpose
or realism level. The participants solved tasks without the
interventions of the observers, so the perceived task difficulty
was not necessarily correlated with its success rate. Tasks 1 and
5 achieved high success rates and low perceived difficulty. The
participants perceived Task 2 as the easiest, despite most of

160

TABLE II
PERCEIVED TASK DIFFICULTY (7-POINT LIKERT SCALE—HIGHER IS
EASIER) AND SUCCESS RATE (RED CELLS INDICATE FAILED TASKS).

Participant Task 1 Task 2 Task 3 Task 4 Task 5

P1 6 6 4 7 7
P2 7 6 5 5 7
P3 1 7 6 1 7
P4 6 6 5 6 7
P5 6 7 7 7 7
P6 2 6 1 4 7
P7 6 6 1 6 3
P8 5 6 4 7 3
P9 7 7 6 7 7

Mean success rate 89% 44% 89% 66% 100%
Mean task difficulty 5.1 6.3 4.3 5.6 6.1

them submitted only partial answers. Typically, the participants
forgot to change one or more filter steps (e.g., they forgot to
switch to connections instead of packets), resulting in a slightly
different set of resulting IP addresses.

The participants P6 and P7 considered Task 3 as very difficult
since they got confused with the choropleth visualization in
the DETAIL VIEW. Based on this feedback, we favored table
view as the primary and choropleth as the secondary option.

Some confusion arose around the correct interpretation
of Task 4, resulting in a lower success rate. It was caused
by misinterpretation of the task. Since we revealed the task
assignment flaw (there were two possible interpretations) after
a couple of sessions, we decided to finish the rest without the
change.

Usability and Usefulness: The participants worked with
PCAPFunnel without major issues after being given a brief
introduction and quickly grasped the filtering funnel metaphor
principle.

Fig. 5. Answers from the post-study questionnaire.

They were mostly positive (Fig. 5) about its features and
perceived it as easy to learn (mean 3.7) and use (mean 3.8).
Most of them felt confident when solving the tasks. However,
some participants expressed the need for more time to become
acquainted (P3: "I would need some more practice with the
tool"). Most of them think that PCAPFunnel provides them
with enough information (mean 4.2) and that its features are
well-integrated (mean 4.0). P4 remarked that "comparing to
other tools he uses is [PCAPFunnel] very intuitive." Most of

them also indicated they would like to use the application more
often (mean 3.8) since it could save their time (mean 3.7). P2
also remarked that "[he] likes its minimalistic design."

VI. DISCUSSION AND FUTURE WORK

The usability study confirmed our initial assumptions that
our approach to multi-step filtering could improve the user
experience of the top-level PCAP analysis process. Our
observations from the study provide several implications for
future research.

Desired Features and Improvements: The majority of
participants considered the tool as well-designed. However,
we also received several suggestions on improvements, some
of which we have already integrated into the final design—for
example, opening new DETAIL VIEW either by clicking on
the table row or in visualizations. We also revealed and fixed
few minor bugs in the implementation and slightly changed
the terminology used for several visualizations.

Few participants often expressed the need for more filtering
capabilities, such as allowing negative filters by using the
logical NOT operator (P3) or the possibility to enter the filter
as a text input (P5). Additional configuration features include
optional DNS resolving (P1) or anonymization of imported
data (P2).

The truth is that we intentionally omitted many of these
features to keep the prototype compact, but we plan to integrate
them in the next versions of the tool.

Using PCAPFunnel for Training and Education: Few
participants remarked that the tool is so easy to work with that
it could be used during the network administration training.
As we already mentioned, current tools for network analysis
usually provide only limited visualization capabilities and
are hard to learn. PCAPFunnel could support teachers in
explaining various phenomena, identifying communication
patterns, or demonstrating network analysis tasks during the
classes. Moreover, the use of familiar visualizations makes the
tool also suitable for novice users.

Generalizability: Currently, our prototype works only with
PCAP files. However, the filtering funnel metaphor is generic
and can be used with other data sources (e.g., NetFlow or logs).
We would also like to extend export formats to PDF files to
document or present the analysis results. However, making
PCAPFunnel part of the analysts’ toolkit would require its
integration with other deep packet inspection tools. The trivial
way is to create new filter export in a format comprehensible
for Wireshark or similar applications. The more ambitious way
is to provide integration with deep packet inspection tools and
extend the PCAPFunnel user interface, so the user does not
need to switch the tools. Such integration would allow seamless
transition from top-level to in-depth analysis and back.

Performance Improvements: One of the current weak-
nesses of PCAPFunnel is the need to upload the entire PCAP
file to the server before the progressive data processing starts.
We plan to improve our preprocessing to start as soon as the
first packets are uploaded, similarly to the approach used by
NetCapVis [6].

161

VII. CONCLUSION

The traditional network traffic analysis tools have a steep
learning curve and only limited visualization capabilities. To
facilitate and speed up the process, we designed PCAPFunnel—
a tool for packet capture analysis. Inspired by previous work
and based on tight collaboration with domain experts, we
defined user tasks and design requirements.

We proposed the filtering funnel metaphor to support filtering
and data analysis based on linking several independent filter
steps where the output from one is another’s input. All the filter
steps are permanently visible to the user, who can interactively
modify filters’ parameters. With this new approach, a domain
expert can quickly check the data’s content, determine its
structure, analyze network actors’ behavior, or reveal the cause
of network issues. The user interface leverages linked views
and conventional visualizations, so it is also suitable for novice
users.

We further performed the user study with nine domain
experts in the field of network data analysis. The participants
appreciated that PCAPFunnel is easy to learn and use and
considered the proposed method flexible and supportive during
the initial packet capture data analysis. Likewise similar user
studies, we admit that even our study has several limitations.
Namely, a low number of participants and its qualitative
focus. A more extensive deployment in a real-world setup
could provide new insights. Also, a comparative study with
the commonly used tools could be valuable. We hope that
PCAPFunnel will also inspire novel approaches for network
traffic analysis based on interactive visualizations.

ACKNOWLEDGMENT

This research was supported by ERDF “CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of
Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822).

REFERENCES

[1] R. Wang et al., “Knight’s Tour-based Fast Fault Localization Mecha-
nism in Mesh Optical Communication Networks,” Photonic Network
Communications, vol. 23, no. 2, pp. 123–129, 2012.

[2] R. Ball, G. A. Fink, and C. North, “Home-centric Visualization of
Network Traffic for Security Administration,” in International Workshop
on Visualization for Cyber Security, C. E. Brodley, P. Chan, R. Lippmann,
and W. Yurcik, Eds. ACM, 2004, pp. 55–64.

[3] G. Combs et al., “Wireshark: A Network Protocol Analyzer,” 2008.
[Online]. Available: http://www.wireshark.org/

[4] E. W. Bethel, S. Campbell, E. Dart, K. Stockinger, and K. Wu, “Accel-
erating Network Traffic Analytics Using Query-Driven Visualization,”
in 2006 IEEE Symposium On Visual Analytics Science And Technology,
2006, pp. 115–122.

[5] J. R. Goodall, “Visualization is Better! A Comparative Evaluation,” in
6th International Workshop on Visualization for Cyber Security, 2009,
pp. 57–68.

[6] A. Ulmer, D. Sessler, and J. Kohlhammer, “NetCapVis: Web-based
Progressive Visual Analytics for Network Packet Captures,” in 2019
IEEE Symposium on Visualization for Cyber Security (VizSec), 2019, pp.
1–10.

[7] M. łgorzata Steinder and A. S. Sethi, “A Survey of Fault Localization
Techniques in Computer Networks,” Science of computer programming,
vol. 53, no. 2, pp. 165–194, 2004.

[8] G. Harris and M. Richardson, “PCAP Capture File Format,” Working
Draft, IETF Secretariat, Internet-Draft draft-gharris-opsawg-pcap-01,
December 2020. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-gharris-opsawg-pcap-01.txt

[9] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” Internet
Requests for Comments, RFC Editor, RFC 3954, October 2004. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3954.txt

[10] G. A. Pimenta Rodrigues et al., “Cybersecurity and Network Forensics:
Analysis of Malicious Traffic Towards a Honeynet with Deep Packet
Inspection,” Applied Sciences, vol. 7, no. 10, p. 1082, 2017.

[11] C. Guo et al., “Pingmesh: A large-scale System for Data Center Network
Latency Measurement and Analysis,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 139–152.

[12] M. Holkovič and O. Ryšavý, “Using Rule-Based Decision Trees for
Automatic Passive Diagnostics of the Network Problems,” International
Journal on Advances in Networks and Services, vol. 2020, no. 1, pp.
1–10, 2020.

[13] Flowmon Networks a.s., “Flowmon Packet Investigator,” 2020. [Online].
Available: https://www.flowmon.com/cs/products/software-modules/
packet-investigator

[14] P. Haag, “Nfdump – netflow processing tool,” 2007. [Online]. Available:
https://github.com/phaag/nfdump

[15] V. Ndatinya et al., “Network Forensics Analysis Using Wireshark,”
International Journal of Security and Networks, vol. 10, no. 2, pp.
91–106, 2015.

[16] Netresec AB, “NetworkMiner.” [Online]. Available: https://www.netresec.
com/?page=networkminer

[17] M. Solé et al., “Survey on Models and Techniques for Root-cause
Analysis,” arXiv preprint arXiv:1701.08546, 2017.

[18] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A Survey of
Visualization Systems for Network Security,” IEEE Trans. Vis. Comput.
Graph., vol. 18, no. 8, pp. 1313–1329, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/tvcg/tvcg18.html#ShiraviSG12

[19] H. Tang, C. Han, and J. Ge, “Applications of Visualization
Technology for Network Security,” in TrustCom/BigDataSE/ICESS.
IEEE Computer Society, 2017, pp. 1038–1042. [Online]. Available:
http://dblp.uni-trier.de/db/conf/trustcom/trustcom2017.html#TangHG17

[20] NSA, “GRASSMARLIN,” 2017. [Online]. Available: https://github.com/
nsacyber/GRASSMARLIN

[21] B. C. M. Cappers and J. J. van Wijk, “SNAPS: Semantic Network Traffic
Analysis Through Projection and Selection,” in 2015 IEEE Symposium
on Visualization for Cyber Security (VizSec), L. Harrison, N. Prigent,
S. Engle, and D. M. Best, Eds. IEEE Computer Society, 2015, pp. 1–8.

[22] B. C. M. Cappers et al., “Eventpad: Rapid Malware Analysis and
Reverse Engineering using Visual Analytics,” in 2018 IEEE Symposium
on Visualization for Cyber Security (VizSec). IEEE, 2018, pp. 1–8.

[23] T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks, and J. McHugh,
“FloVis: Flow Visualization System,” in 2009 Cybersecurity Applications
Technology Conference for Homeland Security, 2009, pp. 186–198.

[24] Costa, Gianluca, “CapAnalysis,” 2018. [Online]. Available: http:
//www.capanalysis.net/

[25] A-Packets, “Online PCAP file analyzer designed to visualize HTTP,
Telnet, FTP,” 2020. [Online]. Available: https://apackets.com/

[26] PacketTotal, “Simple, free, high-quality PCAP analysis.” [Online].
Available: https://packettotal.com/

[27] “Service Name and Transport Protocol Port Number
Registry.” [Online]. Available: https://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xhtml

[28] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations,” in Proceedings 1996 IEEE Symposium
on Visual Languages, 1996, pp. 336–343.

[29] “GeoLite2 Free Downloadable Databases.” [Online]. Available:
https://dev.maxmind.com/geoip/geoip2/geolite2/

[30] S. Carpendale, Evaluating Information Visualizations. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 19–45. [Online]. Available:
https://doi.org/10.1007/978-3-540-70956-5_2

[31] H. Lam et al., “Empirical Studies in Information Visualization: Seven
Scenarios,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 9, pp. 1520–1536, 2012.

[32] C. Lewis and J. Rieman, Task-Centered User Interface Design. Univer-
sity of Colorado, Boulder, Department of Computer Science, 1993.

162

	Introduction
	Research Goal and Objectives
	Assumptions and Requirements
	Environment
	Network Protocols
	Traffic Analysis
	Automation
	Explainability

	Thesis Outline

	State of the Art
	Computer Networks
	TCP/IP Model

	Network Monitoring
	Analyzing Network Packets
	Network Packets
	Network Packets Analysis

	Network Diagnostics
	Importance of Network Diagnostic
	Errors in Computer Networks
	Steps of Network Diagnostics
	Automatic Diagnostic Tool
	Classification of Diagnostic Techniques

	Research Summary
	Rule-based Diagnostic Decision Tree
	Security Analysis Based on Rule-based Packets Grouping and Searching
	Using Pattern-Based Analysis for Diagnosis
	Creating Automata Models for Diagnostics of Repetitive Problems
	Correcting User’s Data According to Typographical Errors Analysis
	Top-Level Visual Analysis of Network Traffic
	List of Outcomes
	Papers Included in Thesis
	Other Relevant Papers
	Research Projects and Grants
	Software
	Supervised Theses

	Conclusions
	Research Areas
	Summary of Research Objectives
	Software Outcome
	Towards a Practical Solution

	Bibliography
	Included Papers
	Network Diagnostics Using Passive Network Monitoring and Packet Analysis
	Using Rule-Based Decision Trees for Automatic Passive Diagnostics of the Network Problems
	Automating Network Security Analysis at Packet-level by using Rule-based Engine
	Pattern Detection Based Network Diagnostics
	Using Network Traces to Generate Models for Automatic Network Application Protocols Diagnostics
	Application Error Detection in Networks by Protocol Behavior Model
	Network Problem Diagnostics using Typographic Error Correction
	PCAPFunnel: A Tool for Rapid Exploration of Packet Capture Files

