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základě analýzy hodnot a vztah̊u mezi sloupky se však dá zpětně určit, jakou
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Introduction

Our century is the century of Information Technologies (IT) and the main

trend today is the automation of all possible repetitive and manual processes.

This transition is a key to development of new technologies, it moves the global

progress forward. We see how automation changes industries. McKinsey Global

Institute’s report [1], assesses that by 2030 year, 75 million to 375 million workers

(3 to 14 percent of the global workforce) will have to change occupation because

of global automation and consequently, extinction of some professions. More-

over, all workers will need to adapt, as machines become more powerful and

occupations develop as fast as new technologies do. The sphere of audit is not

an exception. That is why one of the world’s biggest auditing companies Price-

waterhouseCoopers (PwC) follows these trends by launching IT departments for

tasks automation, forecasting and developing smart solutions. PwC [2] high-

lights the following eight technologies as the most disruptive and promising to

business at the same time: Artificial intelligence, Augmented reality/virtual re-

ality, Blockchain, Drones, Internet of things, Robots, 3D printing, Autonomous

vehicles. PwC’s IT departments are ready to help companies to face difficult

challenges and exciting opportunities, which technology progress brings to the

world of business. This bachelor thesis is written during the close collaboration

with PwC Czech Republic. We use real data provided by the company to per-

form a project focused on automation and acceleration of audit results analysis.

There are a lot of Business Intelligence (BI) tools [3], such as Power BI and Qlik

Sense, which can provide us with data visualisation and data analysis. But before

data can be used in the purpose of analysis, it should have particular structure
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to load it in BI tool and perform any further operations with it. Data cleans-

ing is an important process that helps companies to increase their efficiency and

decrease time spent on manual routine work. The idea of this thesis is close to

the idea of data mining [4], automatic process of discovering certain patterns in

data. It is not completely new, people have been seeking patterns in data since

life began and engineers, economists and statisticians have pushed ahead an idea

that patterns in data can be identified automatically and used for analysis and

prediction. But the new is a huge and fast increase in opportunities for working

with data. It is concerned with an amazing growth of databases in recent years,

which makes data mining one of the most significant business technologies. The

aim of this bachelor thesis is to create a smart tool with the help of programming

language Python which automatically recognizes the structure of the data based

on the relations between values, statistical analysis and text recognition. This

tool then transforms the data to the form suitable for subsequent visualisation

and analysis. This smart solution is vital for the company as it increases the qual-

ity of services provided, it also reduces the amount of manual time-consuming

work and consequently allows to focus on assignments which require more intel-

lectual resources. Meanwhile, this is not a trivial task to put on the automation

as it implies the combination of interdisciplinary approaches among which are

mathematical statistics, programming, theory of algorithms and audit itself.
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1. The Impact of IT on the
Audit Process

Audit is very ancient phenomenon, there are some confirmations of its exis-

tence in ancient cultures such as China, Rome, Egypt and Greece [5] [6]. There

are also some records of auditing activity that were found by anthropologists in

early Babylonian times (around 3000 BC) [5]. “To hear” is the meaning of the

Latin word “audire”, which is the basis of the well-known term “audit”. There

are several versions of the parentage of this word. For example, according to [5],

in medieval times in Rome auditors used to listen to the taxpayers, such as farm-

ers, telling about the progress and results of their business and the tax duty due.

But Derek Matthews [7] mentioned that this term appeared because in that time

all book-keeping was manual and accounts were read out to auditors in Britain

so they could check its correctness. Nowadays audit is defined in the following

way: “An audit is the examination of the financial report of an organisation -

as presented in the annual report - by someone independent of that organisation.

The purpose of an audit is to form a view on whether the information presented

in the financial report, taken as a whole, reflects the financial position of the or-

ganisation at a given date” [8].

The sphere of audit is continuously developing with the times and considerable

changes had started in 1950 – 1960s with the technologies and computer boom in

business area. At that time auditors mostly continued their business on paper,

only a few industrial companies used new technologies for data processing oper-

ations. But computers are becoming more multifunctional and new technologies

are so progressive, that it is impossible not to follow them. In the 21st century all
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business transactions are conducted through information technologies and here

appears a term Computer Assisted Audit Techniques (CAATs). CAATs are a

set of tools, which help to automate and speed up the audit procedure and to

achieve the goals of auditing [9]. The main reasons to incorporate information

technologies into auditing process can be summarised as follows [10]:

• Ability to cope with difficult tasks

For example, tasks which require working with huge amount of data and

which is almost impossible to complete manually.

• Increased productivity

Auditors can focus on more significant issues, while all the routine work

will be done automatically.

• Competitive advantage gained

Using CAATs improves client’s perception of the quality of services pro-

vided by the company.

CAATs include: data analysis software, BI tools, network security evaluation

software, software and code testing tools, generalized audit software etc.
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2. Data description

Every enterprise resource planning system generates a register of assets in

some structure (the names of the columns, the order of the columns, the format

of the cells etc.). For statistical analysis and processing, data is usually stored in

comma-separated values (csv) or Microsoft Excel file (xls) formats. In our case,

we have data stored in xls format. We have 35 testing sets of data with different

number of rows and columns. This are only a training data samples, our tool is

created to work on any other data that will be loaded.

In Fig. 1 one of the data sample is represented as a snapshot from the com-

mand line output of the Python script. There are three first rows of the data,

that were anonymised because this data is sensitive. You can see there a lot

of different metrics, but we are interested only in few of them: Item Number,

Item Description, Gross Book Value, Accounting Accumulated Depreciation and

Net Book Value. Our aim is to program a tool which will automatically recognise

columns containing these metrics and will create a new xls file with these columns

only. Columns like Item Description, Accounting Gross Book Value, Accounting

Accumulated Depreciation and Accounting Net Book Value can be recognized us-

ing formulas, relations between these columns and other characteristics of the

figures in columns. There is also a column which can be recognised only by

name: Item Number. Our script is divided into several parts, where each part

recognizes different columns.
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Figure 1: Data structure representation

14



3. Motivation for choosing
Python

To perform this automation, it is possible to use different programming lan-

guages. In this chapter, some general information about programming language

Python and reasons for choosing exactly this option are represented.

In [11] we can find the following definition: ”Python is a general-purpose,

object-oriented, and open source computer programming language.” Python was

released in year 1991 and now it is one of the most popular programming lan-

guages. Python is widely used both among non-technical users and among leading

IT companies. For example, many components of the Google search engine are

written in Python, Johnson Space Centre uses Python in its Integrated Planning

System as the standard scripting language, famous computer game Battlefield 2

uses Python to implement core elements of the gameplay and there are lots of

other interesting implementations of Python [12].

Here are the main advantages of programming language Python, which are

clearly described in [13]:

• Libraries supporting

Standard library is a large collection of prebuilt functionality, which allows

users not to create their own complicated scripts every time, but to use

some already invented tools. There are a lot of different libraries [14] made

specially for working with data, for example Pandas. This is the reason

why Python is so popular among data scientists [15] and this is also the

main reason why we use it in this coursework.
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• Software quality

Python’s readability and software quality in general make it dominant over

other languages. Thanks to its uniformity Python code is easy to read and

understand, even if it was written by someone else.

• User-friendliness

Compared to programming languages like C++ and Java, Python is easy

to run, without any intermediate compile and link steps. Also Python code

is usually one-third to one-fifth the size of the same code written in C++

or Java.

• Program portability

Python programs run on every major computer platform. To port Python

code from Windows to Linux we need only to copy script’s code between

machines.
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4. Recognition of column by
name: Item Number

This chapter contains information concerning the first part of our task, recog-

nition of column Item number only by the name. This metric has no specific

features, which would enable us to involve more elegant and reliable solution.

Lis.1 represents our script. In this code, we used regular expressions and library

Pandas, which allow us to work with data.

4.1 Regular expressions

The term regular expression was introduced after American mathematician

Stephen Cole Kleene formalized the concept of regular languages and finite au-

tomata [16] which was based on a pioneering work of McCulloch and Pitts [17]

where they studied the behaviour of nervous systems. In theoretical computer

science, the regular expression is a sequence of characters defining the search pat-

tern. Then this pattern is usually used by searching algorithms. The syntax of

regular expressions is standardised by the POSIX and Perl standards (the latter

is the mostly used one).

The most common usage of regular expressions may be formulated by three

examples:

• Search for a specific pattern appearance in text. For example, check if either

the word ”recognize” or the word ”recognise” appears in a loaded text.

• Replace parts of text. For example, change all the words similar to ”tree”

with ”spruce”.
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• Check if an input corresponds a predetermined pattern. For example, check

if an information entered in a HTML formulary is a valid e-mail address.

In Python regular expressions are supported by the re module which provides

matching operations similar to Perl.

4.2 Code

The logic of the script in Lis.1 is as follows:

1. Upload initial target xls file, choose particular sheet and save it in a data

frame.

2. Create a list of all key words (all possible names of columns).

As PwC Czech Republic is a part of network of firms all over the world,

column name can be in different languages and it also can be in a form of

different abbreviations. We have a set of testing files, so we went through

each file and added all possible names of column, which occur over there.

It is easy to append any other key words in our script, it can be modified

according to the current needs.

3. Create a list of all column names from initial xls file.

4. Create a regular expression to search key words and make it ignore letter

case.

5. Create an empty list for being used later to store new columns.

6. Create a loop for choosing columns, which contain key words from initial

data frame.

7. Create a new data frame for storing chosen columns.

8. Rewrite chosen columns from initial data frame to new data frame.

9. Export new data frame to xls file.
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1 import pandas as pd
2 import re
3

4 #upload Excel f i l e
5 x l = pd . Exce lF i l e ( ” .\\ data \\01 Majetek FY17 . x l sx ” )
6 #read p a r t i c u l a r e x c e l shee t
7 df = x l . parse ( ”2017 Majetek ” )
8

9 #l i s t o f a l l keywords
10 key words1 = [ ’ majetek ’ , ’ item number ’ , ’ i c i s l o ’ , ’ Inventarne c i s l o

’ , ’ Inv . majetek ’ , ’ Tř ı́da IM ’ , ’M CISLO ’ , ’ Č ı́ s l o ’ , ’ INV CISLO ’ ]
11

12 #l i s t o f a l l column names in i n i t i a l e x c e l f i l e
13 c o l l i s t = l i s t ( df . columns )
14

15 #r e g u l a r exp r e s s i on to search key words
16 words re = re . compi le ( ” | ” . j o i n ( key words1 ) , re .IGNORECASE)
17

18 #l i s t o f new columns
19 n e w c o l l i s t = [ ]
20

21 #loop to choose r i g h t columns from old data frame
22 f o r i in c o l l i s t :
23 i f words re . s earch ( i ) :
24 pr in t ( i )
25 n e w c o l l i s t . append ( i )
26

27 #new dataframe
28 df new = pd . DataFrame ( )
29

30 #r e w r i t i n g new columns from old data frame to new data frame
31 df new [ n e w c o l l i s t ] = df [ n e w c o l l i s t ]
32

33 #export to x l s f i l e
34 w r i t e r = ExcelWriter ( ’ new data . x l sx ’ )
35 df new . t o e x c e l ( wr i te r , ’ Sheet1 ’ )
36 w r i t e r . save ( )

Listing 1: Python script for recognition of columns by name

With the help of the Python script Lis.1, we exported recognised column Item

Number to a new xls file.
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5. Recognition of columns by
their characteristics

In this chapter, the methods which require deeper analysis and more sophis-

ticated approaches are presented. The goal is to use more reliable methods for

the columns recognition as recognition by name may not always lead to desired

results.

5.1 Columns Accounting Gross Book Value, Accounting

Net Book Value, Accounting Accumulated Depreciation

In this section, we present the way to recognize the columns Accounting Gross

Book Value, Accounting Net Book Value and Accounting Accumulated Depreca-

tion. The definitions of these metrics are as follows:

Gross book value (GBV) – initial cost of an asset, including all the shipping,

taxes and other fees related to this purchase [18].

Accumulated depreciation (AD) – the sum of depreciation for an asset that has

been ascribed to expense since that asset was acquired and put into service [19].

Net book value (NBV) – the amount at which a company carries an asset on its

accounting records. It is equal to the difference of gross book value and accumu-

lated depreciation [19].

From this definitions there is an obvious relation between our values of interest:

GBV = NVB + AD (1)

Introduced formula is a key to recognition of this columns. We have to find three

columns where one is the sum of the other two. There are several ways to do it,
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in the following subsections, we represent two different approaches, which give us

the same result but are characterized by different computational complexity and

execution time.

5.1.1 Computational complexity

Firstly we introduce the term Computational Complexity which will allow us

to characterize different algorithms we are going to use in the course of this work.

In informatics and theory of algorithms, computational complexity is defined as

the dependence of the amount of work performed by a given algorithm from the

amount of input data f(n) [20]. The amount of work is usually defined by abstract

notions of time and space referred as computational resources. The former one is

defined as a number of basic steps necessary to perform the computation and the

latter one is usually related with the amount of memory used. According to the

Church-Turing thesis [21], if the problem can be solved by an algorithm, there

exists a Turing machine which can solve this problem. By Turing machine [22]

we suppose a general mathematical model of any computing instance, whether it

is a quantum computer or a simple calculator, and which may be represented as

mechanism manipulating symbols on a string of tapes.

The main types of Turing machines [23] are deterministic and non-deterministic

ones. Deterministic Turing machine is the mechanism using a fixed set of rules

which determine its actions. The non-deterministic Turing machine is the one

with extra random bits. This allows the latter to be more efficient in some com-

putations.

Based on this definition there are different complexity classes [23] [24]. If we

talk about the time complexity the three main classes are DTIME (determinis-

tic Turing machine within time f(n)), P (deterministic Turing machine within

polynomial time pol(n)) and EXPTIME (deterministic Turing machine within

exponential time exp(n)). The analogous classes exist for the non-deterministic

machines and they are referred as NTIME, NP and NEXPTIME correspondingly.

Usually the explicit form of time complexity f(n) is very hard to derive
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and hence some estimations should be used instead. The consideration of large

amounts of input data and estimations of increase of computational time lead to

the notion of asymptotical complexity of the algorithm. The following notation

is used to determine asymptotical behaviour of the function [25]:

f(n) ∈ O(g(n)). (2)

It (2) means that function f has the asymptotical upper threshold g:

∃C > 0, n0 : ∀n > n0 |f(n)| ≤ C|g(n)|,

The complexity of an algorithm is usually determined as the worst-case com-

plexity.

Computational complexity is closely related with the Kolmogorov complexity,

which was firstly introduced by Andrey Kolmogorov in year 1963 [26]. In the

algorithmic information theory, the Kolmogorov complexity is the length of the

shortest program needed to produce this object as the output of the program’s

execution. Suppose there are two string of the same length of 24 symbols:

String 1: wklwklwklwklwklwklwklwkl

String 2: hkwzb34skwl1zj9sdnsdkoao

String 1 can be described by 11 characters: ”wkl 8 times”, whereas string 2

has no simple description except of the whole string itself, which consists of 24

characters. The length of the minimal description is the Kolmogorov complexity

of the string. The same idea may be generalized to more complex objects.

5.1.2 Brute force method

Let us consider the first possible approach to identify columns of interest.

As it was mentioned earlier this method is based on the known relation (1). It

means that the problem may be reduced to the so-called “2 -SUM” which may

be formulated in the following way. The one is given an array of n numbers and
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a target sum S. The goal is to determine whether or not there are two numbers

from the array which sum is equal to S. In our case, the array is the set of

columns of the dataset and moreover, we have an additional dimension — rows

of the dataset. Otherwise, our problem is very similar to the described one. The

idea of algorithm we are implementing is that it iterates over all the columns in

a dataset and for every column considered as possible sum S, the remaining ones

are summed in pairs and compared with S. As there is also additional dimension

(rows of the dataset), the operation of addition is applied on every row and the

number of successful coincidences is calculated. If it is equal to 100%, then these

three columns are the target ones. The time complexity of this algorithm may

be estimated as

O(N × n(n− 1)2), (3)

where N is the number of rows in a dataset and n is a number of columns. This

formula maybe explained in the following way. For every chosen element ni from

the array there are (n− 1) elements to calculate sum of pairs and compare with

ni. To calculate all the pairs one needs (n− 1)2 steps. This should be multiplied

by the number of elements in the initial array n, as the same operation will be

repeated for every single one, and by the number of rows N , which are supposed

to be iterated through.

The logic of the Python script itself is presented below:

1. Firstly we need to keep only numerical data as the other types are out of our

interest. In Python we check if the columns contain the float64 datatype

which basically stores decimal numbers.

1 #keep only columns with data type being f l o a t 6 4
2 df = df1 . l o c [ : , d f1 . dtypes == ’ f l o a t 6 4 ’ ]

Listing 2: Script for keeping numerical data only

2. After we got rid of all unnecessary information we need to deal with the

missing data. In our case, the easiest way is to fill the missing records with

zeros as it’s not going to ruin relations between columns.
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1 #f i l l NaNs with z e ro s
2 df = df . f i l l n a (0 )

Listing 3: Filling all missing data with zeros

3. Next, we need to create a function to find all possible pairs of columns. This

one will be used later while iterating through all the columns. It returns

an array of all possible pairs when the list of items is passed to the input.

1 de f p a i r s ( source ) :
2 r e s u l t = [ ]
3 f o r p1 in range ( l en ( source ) ) :
4 f o r p2 in range ( p1+1, l en ( source ) ) :
5 r e s u l t . append ( [ source [ p1 ] , source [ p2 ] ] )
6 re turn r e s u l t

Listing 4: Defining a function to find all pairs of columns

4. Implementation of the main logic. The realisation of the algorithm is per-

formed through couple of loops, one of them iterating through columns and

creating list of pairs and another one iterating through rows and checking

the coincidences. The percentage of coincidences is counted the following

way: the number of rows where the sum is equal divided by the number of

all rows and multiplied by 100.

1 #l i s t o f new columns without the cur rent one ( to f i n d p a i r s )
2 new col = [ x f o r x in columns i f x != i ]
3 #c r e a t e a l i s t o f a l l p o s s i b l e p a i r s from the new l i s t
4 p a i r i n g s = p a i r s ( new col )
5 #c r e a t e a count o f c o i n c i d e n c e s
6 count = 0
7 #c r e a t e a count o f rows
8 count r = 0
9 #loop to i t e r a t e through a l l the p a i r s

10 f o r j in p a i r i n g s :
11 #loop to go through a l l the rows in a pa i red columns
12 f o r z , row in df . i t e r r o w s ( ) :
13 #i f not zero rows
14 i f ( df . l o c [ z , i ] != 0) :
15 #count o f rows i n c r e a s e d
16 count r = count r + 1
17 #check i f the sum of the se columns equal to the

t a r g e t column
18 i f ( round ( df . l o c [ z , j [ 0 ] ] + df . l o c [ z , j [ 1 ] ] , 2 )==

round ( df . l o c [ z , i ] , 2 ) ) :
19 #count o f c o i n c i d e n c e s i n c r e a s e d
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20 count = count + 1
21 #c a l c u l a t e the percentage o f c o i n c i d e n c e s
22 perc = ( count / count r ) ∗100
23 #s e t a l l the counts to zero f o r the next i t e r a t i o n
24 count = 0
25 count r = 0

Listing 5: Creating list of pairs and checking the coincidences

After the script has been executed and in the case it has found the columns

of interest, two situations are possible:

1. The percentage of coincidences is 100% within only one combination of

columns. It means that this set of columns is the target one: Accounting

Gross Book Value, Accounting Net Book Value, Accounting Accumulated

Depreciation. In this case the script uploads them to a new xls file.

2. The percentage of coincidences is 100% within two or more combinations.

This can happen because in the initial files usually there is not only account-

ing data, but also a tax data. This means that Tax Gross Book Value, Tax

Net Book Value and Tax Accumulated Depreciation are also present and

they have the same relation between them. In this case we have no other

option but to check the names of the columns either manually or program-

matically.

5.1.3 Hash Tables method

The previous method demonstrated quite a poor performance so the ways for

it’s enhancement should be found. In this purpose, we consider another algorithm

which is known as a Hash Table method [27].

The following example represents an idea of this algorithm. Let assume that

one has an array A = {1, 5, 0, 2, 7, 3, 4, 6} and S = 6. The idea of the approach

is to build a table containing keys and differences between keys and target value

S. Once the table is build, one needs to iterate through the elements of the

array, find them in the table and check if the stored result of difference between

S and key refers to any other element in the array. This method implies much
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less calculations than the brute force one. Tabl.1 is the example of a hash table

for array A and S = 6.

Keys Values Pairs
1 6− 1 = 5 (5; 1)

5 6− 5 = 1 (1; 5)

0 6− 0 = 6 (6; 0)

2 6− 2 = 4 (4; 2)

7 6− 7 = −1

3 6− 3 = 3 (3; 3)

4 6− 4 = 2 (2; 4)

6 6− 6 = 0 (0; 6)

Table 1: Example hash table

We can generalize this method to our case which has, as it was mentioned

earlier, one additional dimension — rows. The problem of subtraction of two

elements now is the problem of subtraction of two vectors v1 and v2:

v1 = (a1, a2, . . . , an), v2 = (b1, b2, . . . , bn)

The result of this operation is new vector with the following elements:

vr = (a1 − b1, a2 − b2, . . . , an − bn),

which imply n operations to be performed. It is possible to do this by looping

through all the elements of v1 and v2, what has been done in the brute force

method, or we can go further in performance enhancement by implementing

vectorized operations. Vectorized operations in contrast to scalar ones allow to

apply the function on the object (array, vector) as a whole instead of being applied

to every element individually. In computer science, this is called SIMD (single
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instruction, multiple data) operation. The idea is that one command performs

operation on several components at the same time. For hash table there is a need

to subtract vector of size N from another vector of size N . Let us suppose that

M is the number of components which can be operated concurrently and which

is defined by the properties of the computational system. Using vectorization,

the number of operations needed to execute is approximately N/M , compared to

N for conventional looping.

The time complexity of the hash table method may be estimated as follows:

O(N × n(n− 1)), (4)

where n is the number of columns and N is the number of rows. This formula

may be explained in the following way. Hash table method implies n steps to

be performed when applied to the array of n elements. As we have to iterate

through all the columns and for each consider the separate 2-SUM problem, we

apply n(n− 1) steps. This should be multiplied by the number of rows N as for

every one we are performing the same operations. In case of vectorized operations

applied, (4) transforms to

O (N × n(n− 1)/M) . (5)

Lis.6 represents the implementation of hash tables method in the Python

script:

1. First steps are similar to step 1 and 2 of brute force method. We need to

keep only columns, which contain the float64 data type that stores decimal

numbers and fill missing data with zeros.

2. Create a list of all column names and an empty list, where output column

names will be written.

3. Choose all the columns except of the current one.

4. Create a data frame, which we use in hash table (data frame in our case),

with the differences between the current column and all other columns.
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5. Go through initial list of all column names and compare them to the ele-

ments of hash table.

1 #keep only columns with data type being f l o a t 6 4
2 df = df1 . l o c [ : , d f1 . dtypes == ’ f l o a t 6 4 ’ ]
3

4 #f i l l NaNs with z e ro s
5 df = df . f i l l n a (0 )
6

7 #c r e a t e l i s t o f columns
8 columns = l i s t ( df )
9 n e w c o l l i s t = [ ]

10

11 f o r i in columns :
12 #choose a l l the columns except o f the cur rent one
13 new col = [ x f o r x in columns i f x != i ]
14 #c r e a t e data frame , which we use in the ”hash t a b l e ”
15 d f key s = pd . DataFrame ( )
16 f o r j in new col :
17 d f key s [ j ] = df [ i ] − df [ j ]
18 d f key s [ j ] = d f key s [ j ] . apply ( lambda x : round (x , 2 ) )
19 #go through i n i t i a l l i s t o f columns and compare them to the

e lements o f hash t ab l e
20 f o r j in new col :
21 df [ j ] = df [ j ] . apply ( lambda x : round (x , 2 ) )
22 f o r m in d f key s :
23 i f ( ( df [ j ] == df key s [m] ) . a l l ( ) ) :
24 pr in t ( ’Column ’ + i + ’ i s a sum of ’ + j + ’ and ’ + m)

Listing 6: Hash table method

After the script has been executed and in the case it has found the columns

of interest, the same as in brute force method two situations are possible:

1. The script has found only one combination of columns. It means that this

set of columns is the target one: Accounting Gross Book Value, Accounting

Net Book Value, Accounting Accumulated Depreciation. In this case the

script uploads them to a new xls file.

2. The script has found two or more combinations. This can happen because

in the initial files usually there is not only accounting data, but also a tax

data. This means that Tax Gross Book Value, Tax Net Book Value and

Tax Accumulated Depreciation are also present and they have the same

relation between them. In this case we have no other option but to check

the names of the columns either manually or programmatically.
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Figure 2: Dependence of execution time from the amount of data for five data
sets. The figure is plotted in the logarithmic scale for both axes. The decreasing
of the execution time for higher number of rows for some points is due to the
drastically lower number of columns for these data samples.

After both methods have been applied we did a comparison between them. In

this purpose, the execution time was calculated as the function of the input data

amount (represented as a number of rows). The results are presented in Fig. 2. It

is clearly seen that the hash table method together with vectorization shows much

better performance and doesn’t exceed 10 seconds even for 104 rows for which

brute force method without the vectorization is executed in about 1000 seconds.

Decreasing of the execution time with increased number of rows is related with

the fact that for these particular points the number of columns was very low,

enabling the script to finish the calculations quite fast.

5.2 Column Item Description

The next column which should be identified is the Item Description one and

contains the description of the asset. The sample is presented in the Fig.3.

Based on the information obtained by the observation of many datasets, we

know that this column should contain much more spaces than other columns

with the symbolic data, as this column represents the syntactic structure. The

idea behind the approach which we are going to apply is based on the statistics
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Figure 3: Data sample of Item Description column

collected throughout multiple testing datasets provided by the Pricewaterhouse-

Coopers company. For our disposition, there were 35 datasets and we divided

them in two subsets — learning one (20 datasets) and testing one (15 datasets).

For every learning dataset we calculated the distribution of the spaces for Item

Description column. The sample distributions are presented in Fig.4. It is clearly

seen that they look similar and resemble the Poisson distribution. Based on this

fact we can calculate the properties of the distribution of spaces of a given column

and compare them with the ones from the learning datasets.

To do so we firstly calculate the mean values for every distribution which are

defined in the following way:

µ =
1

n

(
n∑

i=1

xi

)
, (6)

with n being the number of rows. But the mean value alone doesn’t tell too

much about the distribution itself. Another characteristic which we calculate is
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Figure 4: The sample of the distribution of spaces throughout the dataset for
four different datasets
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Figure 5: Schematic representation of the selection criteria. Once the mean value
plus minus standard deviation intersects the region of interest – the column is
marked as the target one.

the standard deviation defined as follows:

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2, (7)

with µ defined in (6). The standard deviation is a measure used to characterize

the amount of dispersion of the dataset. When this value is low, it indicates that

the points of a dataset tend to be closer to the mean value. For high values of

the standard deviation the dataset is widely spread around the mean value. We

use this value instead of variance as it is measured in the same units as the data.

After the values (6) and (7) have been calculated the interval of interest is

created as the range between minimal mean minus the deviation for this dataset

(which provided the minimal average) and maximal average plus deviation for

this dataset (which provided the maximal average). The idea of the approach is

then to calculate mean and deviation for the tested dataset and check if it does

intersect the calculated interval as presented in Fig. 5. Once this intersection is

present it means that the distribution is quite close to the common one for the

column Item description.

The realization of this logic is represented below by two listings (Lis. 7 and

Lis. 8).

32



Lis. 7 contains the preparatory code creating the interval of interest. Its

structure is the following:

1. Create two list to store the output of averages and standard deviations for

every of 20 learning files.

2. Iterate through all 20 learning files in the directory.

3. Read each file and write it to the data frame.

4. Create two list to store the numbers of spaces and squared differences for

every row in Item Description column.

5. Iterate through rows in Item Description column, count the number of

spaces for every row and add this number to the list, which was created in

the previous step.

6. Calculate the average number of spaces in Item Description column. The

number of spaces for every row in the column has been written to one list,

so to calculate the average we need to divide the sum of the numbers in

this list by its length.

7. Again iterate through rows in Item Description column and count the num-

ber of spaces for every row.

8. For every row, calculate the squared difference between the average number

of spaces in Item Description column from step 6 and current value of

number of spaces. Add each calculated value to the list created in step 4.

9. Calculate the average of the squared differences from the previous step to

get standard deviation.

10. Store calculated average number of spaces in Item Description column and

standard deviation from the previous step to the global list created in step

1 to later compare between different data frames (files).
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11. Print out the average number of spaces and standard deviation in column

Item Description for every dataset

12. Find minimum and maximum of all average numbers of spaces in Item

Description column from the global list (from all learning files) to create an

interval of interest. This interval is the range between minimal average value

minus the standard deviation for this particular dataset and the maximal

average value plus standard deviation for this dataset. In our case the

interval is (2.3, 4.9).

1 #c r e a t i n g l i s t s to s t o r e averages and d e v i a t i o n s f o r every f i l e
2 AVG TOTAL SPACES = [ ]
3 DEV TOTAL SPACES = [ ]
4

5 #i t e r a t i n g through a l l f i l e s in the d i r e c t o r y
6 f o r f i l e in os . l i s t d i r ( ’ .\\ f o r p o p i s t e s t \\ ’ ) :
7 f i l e 1 = ’ .\\ f o r p o p i s t e s t \\ ’ + f i l e
8 pr in t ( f i l e )
9

10 #read f i l e and wr i t e i t to the data frame
11 x l = pd . Exce lF i l e ( f i l e 1 )
12 df = x l . parse ( ” Sheet1 ” )
13

14 #c r e a t i n g l i s t s to s t o r e numbers o f spaces and squared
d i f f e r e n c e s

15 COUNT SPACES POPIS = [ ]
16 DIFF SQ POPIS SPACES = [ ]
17

18 #i t e r a t i n g through rows in the data frame
19 f o r j , row in df . i t e r r o w s ( ) :
20 #count spaces
21 count spac e s pop i s = s t r ( df . l o c [ j , ’ pop i s ’ ] ) . count ( ’ ’ )
22 #add count o f spaces f o r t h i s row to the l i s t
23 COUNT SPACES POPIS . append ( count space s pop i s )
24

25 #c a l c u l a t e average number o f spaces in the data frame
26 avg pop i s spac e s = sum(COUNT SPACES POPIS) / l en (

COUNT SPACES POPIS)
27

28 #i t e r a t e through a l l the rows o f the same data frame
29 f o r j , row in df . i t e r r o w s ( ) :
30 #count the number o f spaces
31 count spac e s pop i s = s t r ( df . l o c [ j , ’ pop i s ’ ] ) . count ( ’ ’ )
32 #count the squared d i f f e r e n c e between average and cur rent

value
33 d i f f s q p o p i s s p a c e s = ( count space s pop i s −

avg pop i s spac e s ) ∗∗2
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34 #add c a l c u l a t e d above value to the l i s t
35 DIFF SQ POPIS SPACES . append ( d i f f s q p o p i s s p a c e s )
36

37 #c a l c u l a t e the average o f the squared d i f f e r e n c e s to get
standard dev i a t i on

38 dev pop i s spac e s = math . s q r t (sum(DIFF SQ POPIS SPACES) / l en (
DIFF SQ POPIS SPACES) )

39

40 #s t o r e c a l c u l a t e d va lue s to the g l o b a l l i s t to l a t e r compare
between d i f f e r e n t data frames

41 AVG TOTAL SPACES. append ( avg pop i s spac e s )
42 DEV TOTAL SPACES. append ( dev pop i s spac e s )
43

44 #p r i n t i n g the va lue s out
45 pr in t ( ’ Popis : avg spaces = ’ + s t r ( avg pop i s spac e s ) , ’ dev

spaces = ’ + s t r ( dev pop i s spac e s ) )
46

47 #f i n d minimum and maximum of the averages
48 min avg spaces = min (AVG TOTAL SPACES)
49 max avg spaces = max(AVG TOTAL SPACES)

Listing 7: Creating an interval of interest schematically represented in Fig. 5

Lis. 8 represents the code to select target columns based on the previously

calculated interval. Its logic is as follows:

1. Choose the directory with target files and iterate through them.

2. Read particular file and sheet.

3. We need to keep only columns, which contain the object data type (basically

a string), which is the data type of our column of interest Item Description.

4. Create two lists, one to store the number of spaces for every row in a file

and the second one to store squared difference between the average number

of spaces in every column and current value of number of spaces for every

row.

5. Iterate through all rows in every column and do same cleaning, replace two

or more spaces in a row by one.

6. Count the amount of spaces in each row and add it to the list, which was

created in step 4.
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7. Calculate the average number of spaces in every column. The number of

spaces for every row in the column has been written to one list, so to

calculate the average we need to divide the sum of the numbers in this list

by its length.

8. Iterate through every row again to calculate the squared difference between

the average number of spaces in every column from and current value of

number of spaces. Add each calculated value to the list created in step 4.

9. Calculate the average of the squared differences from the previous step to

get standard deviation.

10. Check the conditions to select correct column. If an interval (average num-

ber of spaces in column minus standard deviation, average number of spaces

in column plus standard deviation) belongs to the interval, which was calcu-

lated with the help of Lis.7, then this is the target column Item Description.

1 #choose the d i r e c t o r y with f i l e s
2 d i r e c t o r y = ’ .\\ f o r p o p i s w e i g h t s \\ ’
3

4 #i t e r a t e through f i l e s in the g iven d i r e c t o r y
5 f o r f i l e in os . l i s t d i r ( d i r e c t o r y ) :
6 #path to the ac tua l f i l e
7 f i l e 1 = d i r e c t o r y + f i l e
8

9 #read f i l e
10 x l = pd . Exce lF i l e ( f i l e 1 )
11 #parse shee t
12 df = x l . parse ( ” Sheet1 ” )
13

14 #choose columns with the data type being ob j e c t
15 df = df . l o c [ : , d f . dtypes == ’ ob j e c t ’ ]
16

17 #c a l c u l a t i o n o f spaces s t a t i s t i c s
18 f o r i in df :
19 #c r e a t i o n o f s t o rage l i s t s
20 COUNT SPACES POPIS = [ ]
21 DIFF SQ POPIS SPACES = [ ]
22

23 #i t e r a t e through rows
24 f o r j , row in df . i t e r r o w s ( ) :
25 #r e p l a c e three spaces in a row by one space
26 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
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27 #d e l e t e a l l spaces at the end o f the l i n e
28 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r s t r i p ( )
29 #obvious rep lacements
30 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
31 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
32 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
33

34 #count spaces
35 count space s pop i s = s t r ( df . l o c [ j , i ] ) . count ( ’ ’ )
36 #add to the s to rage
37 COUNT SPACES POPIS . append ( count space s pop i s )
38

39 #c a l c u l a t i n g average spaces
40 avg pop i s spac e s = sum(COUNT SPACES POPIS) / l en (

COUNT SPACES POPIS)
41

42 #i t e r a t e through a l l the rows again to c a l c u l a t e the squared
d i f f e r e n c e s

43 f o r j , row in df . i t e r r o w s ( ) :
44 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
45 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r s t r i p ( )
46 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
47 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
48 df . at [ j , i ] = s t r ( df . l o c [ j , i ] ) . r e p l a c e ( ’ ’ , ’ ’ )
49 count space s pop i s = s t r ( df . l o c [ j , i ] ) . count ( ’ ’ )
50 #c a l c u l a t e the squared d i f f e r e n c e s
51 d i f f s q p o p i s s p a c e s = ( count spac e s pop i s −

avg pop i s spac e s ) ∗∗2
52 DIFF SQ POPIS SPACES . append ( d i f f s q p o p i s s p a c e s )
53

54 #c a l c u l a t e standard dev i a t i on as the squared root from the
averaged squared d i f f e r e n c e

55 dev pop i s spac e s = math . s q r t (sum(DIFF SQ POPIS SPACES) / l en (
DIFF SQ POPIS SPACES) )

56

57 #checking the c o n d i t i o n s to s e l e c t c o r r e c t column
58 i f ( ( ( avg pop i s spac e s + dev pop i s spac e s ) > 2 .3 and (

avg pop i s spac e s + dev pop i s spac e s ) < 4 .9 ) or ( (
avg pop i s spac e s − dev pop i s spac e s ) > 2 .3 and ( avg pop i s spac e s
− dev pop i s spac e s ) < 4 . 9 ) ) :

59 pr in t ( ’ guessed column by spaces i s ’ + s t r ( i ) )
60 e l s e :
61 pr in t ( ’ no columns have been found ’ )

Listing 8: Implementation of the main logic for recognition of Item Description
column

After the script has been executed and if there is some output, two situations

are possible:

1. The script has found only one column. It means that this column is the
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target one: Item Description.

2. The script has found two or more columns. This can happen because data is

not clean enough or some other column has the same distribution of spaces.

In this situation we have to check the names of the columns.
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Conclusion

In this bachelor thesis, we showed the proof-of-the-principle automated prepa-

ration of the data for analysis. For solving this problem we used some basics of

accountancy and audit to find out the relations between metrics in our data.

Also, we performed statistical analysis of certain data by building distributions

of the metric of interest for learning datasets. Our main tool was programming

language Python, especially library Pandas, which allows working with data and

regular expressions, which are used by searching algorithms. The reader of this

thesis can get acquainted with three different approaches to data recognition.

The first one is recognition of columns by name with the help of key words using

regular expressions. The second one is recognition of columns by known relations

between them. Here we had to solve so-called “2 -SUM” problem and at this

point we showed the difference of two methods. For solving this problem we ap-

plied brute force method and Hash Tables method together with vectorization.

Our experiment showed that Hash Tables method plus vectorization raises the

performance for growing amount of data more than a hundred times comparing

to brute force method, so the decrease of execution time is highly considerable.

The last but not least approach is recognition of columns using statistics. We

used a part of datasets for learning, building the distribution of our metric of

interest for every learning file, and we found out that this metric has Poisson-like

distribution. Based on this fact we calculated the mean values and the standard

deviations for every distribution. After that we created an interval of interest

as the range between minimal mean minus the deviation for this dataset and

maximal mean plus deviation for this dataset. On testing datasets, we calcu-
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lated mean values and standard deviations and checked if it does intersect the

calculated interval of interest. This approach shows quite stable efficiency.

We believe that this bachelor thesis could be useful for anyone, who is inter-

ested in implementation of Python language while working with data, who strives

for reducing time spent on routine manual work and who is looking for examples

of application statistics and theory of algorithms in data science. Also, created

tool makes a real value for one of the world’s largest professional services firm

PricewaterhouseCoopers by solving a set of interdisciplinary tasks. All Python

scripts together with data for testing can be found as an appendix to this bachelor

thesis.

As being a part of the collaboration with the PricewaterhouseCoopers com-

pany this work implies continuation with recognition of another columns and

possible implementation of sophisticated mathematical algorithms for so-called

Machine Learning.
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