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Abstract

Spontaneous parametric down-conversion is a nonlinear quantum process in which

correlated photons are created in pairs. Photon pairs have become an indispensable tool

for veri�cation of quantum-mechanical principles, in quantum-information processing,

for quantum-communication protocols and quantum cryptography.

Modern photonic structures enhance photon-pair emission rates and simultaneously

modify the properties of generated photon pairs. Periodically-poled silica ring-shaped

�bers are capable of generation and stable guidance of photon pairs in modes with de-

�ned orbital angular momentum (OAM). The most stable modes have been selected

for the nonlinear interaction. Their transversal pro�les together with phase-matching

conditions have been analyzed to obtain the desired interaction. Narrow-band and

broad-band emission of photon pairs have been obtained in dependence on the mode

of the pump beam. In the time domain, the conditional probability of detection of

a signal photon has been obtained and correlation times have been evaluated. The

emission of photon pairs entangled in OAMs and frequencies have been analyzed. Ef-

fective dimension of the entangled space has been quanti�ed by means of the Schmidt

number indicating a maximally entangled photon-pair state. The in�uence of noise

on the entangled OAM state has been evaluated by the Clauser-Horne-Shimony-Holt

inequality.

Also metallo-dielectric layered structures have been analyzed as highly e�cient

sources of photon pairs. Layered structures consisting of silver (Ag) and Gallium-

Nitride (GaN) have been investigated. Two structures formed by three and eleven

layers have been designed to maximize the emission rate. They have been examined

with respect to relative signal photon-number density in the angular-spectral domain.

Both structures have been found more e�cient than dielectric structures due to strong

back-scattering e�ects caused by the high index-of-refraction contrast. Distributions

of electric-�eld amplitudes corresponding to the emission maxima have been analyzed.

Correlated areas as well as temporal characteristics including those appropriate for the

Hong-Ou-Mandel interferometer have been investigated. Also, numbers of noise photons

have been discussed as the metallic layers are absorptive.
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Abstrakt

Spontánní parametrická frekven£ní konverze je nelineární kvantový proces, p°i kterém

jsou vytvá°eny korelované fotonové páry. Fotonové páry se staly jedine£ným prost°ed-

kem pro ov¥°ení fundamentálních princip· kvantové mechaniky, pro zpracování kvantové

informace, pro kvantov¥ komunika£ní protokoly a kvantovou kryptogra�i.

Moderní fotonické struktury zvy²ují míru emise fotonových pár· a sou£asn¥ modi-

�kují vlastnosti generovaných fotonových pár·. Periodicky pólovaná k°emi£itá prsten-

cová vlákna jsou schopna generace a stabilního vedení fotonových pár· s de�novaným

úhlovým momentem (OAM). Nejstabiln¥j²í módy byly vybrány pro nelineární inter-

akci. Jejich p°í£né pro�ly spole£n¥ s podmínkou sfázování byly analyzovány za ú£elem

optimalizace procesu. Pro odli²né módy £erpacího svazku byla obdrºena úzko- a ²iroko-

spektrální emise fotonových pár·. V £asové domén¥ byla obdrºena podmín¥ná pravd¥-

podobnost detekce jalového fotonu a byly spo£teny korela£ní £asy. Analyzována byla

emise fotonových pár· entanglovaných v OAM a frekvenci. Efektivní dimenze entan-

glovaného prostoru byla vy£íslena pomocí Schmidtova £ísla. To poukázalo, ºe fotony v

páru jsou maximáln¥ entanglované v OAM. Vliv ²umu na entanglovaný OAM stav byl

vyhodnocen pomocí Clauser-Horne-Shimony-Holtovy nerovnosti.

Metalo-dielektrické fotonické struktury byly rovn¥º analyzovány jako ú£inné zdroje

fotonových pár·. Zkoumány byly vrstevnaté struktury skládající se ze st°íbra (Ag)

a Gallium-Nitridu (GaN). Dv¥ struktury skládající se ze t°í a jedenácti vrstev byly

navrºeny tak, aby maximalizovaly míru emise fotonových pár·. Byly zkoumány s ohle-

dem na relativní po£et emitovaných signálových foton· v úhlov¥-spektrální domén¥.

Ob¥ struktury byly shledány ú£inn¥j²ími neº jejich dielektrické prot¥j²ky díky vysokému

kontrastu index· lomu obou materiál·. Analyzovány byly distribuce amplitud elektrick-

ých polí, které p°íslu²í nejsiln¥j²í emisi fotonových pár·. P°edm¥tem zkoumání také byly

korelované plochy a £asové charakteristiky v£etn¥ charakteristik p°íslu²ných Hong-Ou-

Mandelov¥ interferometru. Diskutován byl i po£et ²umových foton·, jelikoº metalické

vrstvy vykazují nenulovou absorpci.
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Chapter 1

Intoduction

1.1 The goals of the thesis

The modern photonic structures are bright sources of photon pairs. The main goal

was to study spontaneous parametric down conversion in a metallo-dielectric layered

medium and a periodically-poled ring silica �ber. In both cases the spectral, spatial

and temporal properties of photon pairs had to be studied. The photon pair emission

rate of both sources had to be evaluated in order to determine their e�ciency.

1.2 Annotation

Chapter 1 identi�es goals of the thesis (Sec. 1.1) and gives an overview about the content

of the thesis (Sec. 1.2).

The introduction to the �eld of classical non-linear optics is provided in Chapter 2.

A polarization vector describing linear and non-linear interaction of radiation with mat-

ter is de�ned together with frequency dependent linear and non-linear susceptibilities

(Sec. 2.1). Its de�nition is utilized for derivation of the coupled wave equations. A

general interaction of two monochromatic waves in the second-order non-linear medium

is qualitatively described in Section 2.2. The individual processes, which arise from the

interaction, are explained by the electron-photon energy transition schemes.

Chapter 3 covers the topic of photon pairs. The �rst step, which started a fruitful era

of quantum phenomena is brie�y mentioned in Section 3.1.1. The quantum-optical ap-

proach to quantization of the electromagnetic �eld in vacuum is placed in Section 3.1.2.

The properties and usefulness of the photon pairs in physics are summarized in Sec-

tion 3.2. The generation of photon pairs entangled in various degrees of freedom from
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a bulk crystal is explained in Section 3.3.

The spontaneous parametric down-conversion (SPDC) in a ring �ber is described

in Chapter 4. Section 4.1 introduces integrated sources of photon pairs (Sec. 4.1.1),

explains usefulness of modes with orbital angular momentum (OAM), concept of quasi-

phase matching and the thermal poling procedure (Sec. 4.1.3). The theorectial approach

to SPDC in the ring-�ber is developed in Section 4.2. The simulated quantities charac-

terizing a photon pair are de�ned at the end of the Section. The angular decomposition

of individual modes together with determination of the number of Schmidt modes is

described in Section 4.3. The derivation of analytical formula of the guided OAM modes

of the ring �ber and their analysis are in the Sections 4.4 and 4.5. Section 4.5 covers

as well analysis of the narrow-band generation of photon pairs. The broad-band type is

investigated in Section 4.6. The entanglement of the generated photon pairs is explored

in Section 4.7. Subsequently, the impact of the noise on the entanglement of generated

photon pairs is evaluated.

The emission of the photon pairs from a layered structure is examined in Chapter 5.

In the introduction, the state of art is brie�y summarized. The non-linear model of

metal is derived from hydrodynamical model in Section 5.2. The SPDC model in the

layered medium is provided in Section 5.3. The quantities characterizing a photon

pair are de�ned in Section 5.4. Section 5.5 is devoted to a theory of photon losses in

the layered medium. Emission of photon pairs from simple metal-dielectric-metal (Ag-

GaN-Ag) resonator and structure with 11 layers (GaN-Ag) is explored in Section 5.6 and

Section 5.7, respectively. The correlated areas, temporal properties (both in Sec. 5.8)

and photon losses (Sec. 5.9) have been considered as well.

The Conclusion (Chapter 6) summarizes the content of the thesis in English (Sec. 6.1)

and Czech (Sec. 6.2) language. The list of author's publications is found on page 102,

while the references are placed on page 103.
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Chapter 2

Non-linear phenomena of the

second order

The elements of dispersion in transparent media are provided in Section 2.1. The po-

larization vector is introduced for both linear and non-linear media. The non-linear

media are assumed to posses only second-order non-linearity. With the de�nition of

polarization vector in dependence on the electric �eld, the equations for spatial evo-

lution of the electric-�eld frequency amplitudes are derived. Polarization vector for a

general non-linear second-order process is derived in Section 2.2. All the associated pro-

cesses - second harmonic generation, sum-frequency generation and di�erence-frequency

generation are described with electron transition schemes.

2.1 Non-linear vector of polarization

Non-linear optics started to develop at the beginning of 1960's. Shortly after the dis-

covery of light ampli�cation by stimulated emission of radiation (laser). The lasers were

the �rst su�ciently intense sources of coherent light. The intensity of generated light

was strong enough to reveal the non-linear nature of matter for the �rst time. The �rst

observed non-linear e�ect was second-harmonic generation by Franken et al. [1]. Since

then, the �eld on non-linear optics started its fruitful era. Many distinct non-linear phe-

nomena have been observed and theoretically described [2]. At present, the non-linear

optics is indispensable part of the physics.

Till the discovery of laser, the matter had appeared to preserve the frequency of the

light. From theoretical point of view it means, that the optical properties of the matter

are linear with respect to propagating light. If we describe the matter as a system of

15



electric dipoles, this is expressed as

P(r, t) = ε0χ
(1)E(r, t). (2.1)

Eq. (2.1) relates the dipole density in a matter P with the total electric �eld E. The

vector P is termed polarization vector, ε0 is the permittivity of vacuum, r = (x, y, z) is

the coordinate vector and t indicates time. Eq. (2.1) can be physically interpreted as

follows. When the electric dipoles are exposed to an electromagnetic wave, they start

to oscillate. The oscillating dipoles radiate secondary waves, which superpose with the

incident wave. The process results in di�erent phase velocity of the wave in the matter

than in vacuum. The relation (2.1) is valid for medium, which responds immediately

on the local electric �eld E/1. Moreover, the polarization properties of the medium

are assumed to be polarization independent2. Therefore, the proportionality constant

between electric �eld E and polarization vector P is a scalar quantity denoted as χ(1).

The constant χ(1) is called dielectric susceptibility and in the visible spectrum usually

reaches values around 1.

The situation is di�erent if the medium does not respond instantly on the applied

electric �eld E. The polarization vector P(r, t) in time t is dependent on electric �eld

E at the same point in the previous times. This can be expressed by the equation

P(r, t) = ε0

t∫
−∞

dt′Φ(t− t′)E(r, t′). (2.2)

The function Φ(t− t′) is called a response function. If we assume the electric �eld E to

be composed of countable number of frequency components

E(r, t) =
∑
n

E(r, ωn) exp(−iωnt), (2.3)

equation (2.2) attains the form

P(r, t) =
∑
n

ε0χ
(1)(ωm)E(r, ωn) exp(−iωnt). (2.4)

The function χ(ωn) is the frequency-dependent dielectric susceptibility. It is related to

the response function Φ(t) by a Fourier transform χ(ωn) =
∫ +∞
−∞ dt′Φ(t′) exp(iωnt

′). If

1The polarization vector P(r, t) in time t is solely dependent on electric �eld E(r, t) in the same
time.

2The direction of the polarization vector P is the same as direction of the electric �eld E.
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the polarization vector P is as well decomposed into the frequency components P(r, t) =∑
nP(r, ωn) exp(−iωnt), the relation between the electric-�eld amplitudes E(r, ωn) and

polarization-vector amplitudes P(r, ωn) is obtained:

P(r, ωn) = ε0χ
(1)(ωn;ωn)E(r, ωn). (2.5)

In Eq. (2.5), we adopted the notation from [2], where the �rst argument in the per-

mittivity tensor denotes the frequency of the polarization vector (wave emitted by the

dipoles). The second argument is separated from the �rst argument by a semicolon and

corresponds to frequency of the propagating electric �eld E/3.

In general, the non-linear properties and non-uniform directional polarizability of

matter have to be taken into account. The polarization vector P is dependent on the

electric �eld E in a more complex manner. Particularly, the polarization vector P(r, t)

is treated as a general function of electric �eld E(r, t). For simplicity it is assumed,

that the response of a matter is instant. The expansion of the polarization vector with

respect to electric �eld to the second order reads [2]:

Pj(r, t) =
∑
k

ε0χ
(1)
jk Ek(r, t) +

∑
kl

ε0χ
(2)
jklEk(r, t)El(r, t). (2.6)

The symbol Pj denotes the j-the component of the polarization vector P and the linear

dielectric susceptibility tensor χ(1)
jk is a generalization of the linear dielectric suscepti-

bility written in Eq. (2.1). The quantity χ(2)
jkl is called the second-order susceptibility

tensor. It is non-zero only in material, which does not posses inversion symmetry. The

terms of the tensor have values around 10−12 m/V. Thus, the corresponding e�ects are

observable only with a strong coherent source of light4.

When the matter exhibits �nite response time with respect to the applied electric

�eld E, the dependence of the polarization vector P on spectral components of electric

3If the polarization vector P is linearly dependent on the electric �eld E, the notation of incident
and generated frequency in the dielectric susceptibility might appear to be redundant. On the other
hand, when the non-linear phenomena are considered, the introduced notation appears to be helpful [2].

4The non-linear tensor χ
(2)
klm describes the polarization properties of the matter with respect to

the product of two electric �elds. Therefore, the associated observed e�ects are called quadratic or
non-linear second-order e�ects.
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�eld is expressed by the equation

Pj(r, t) =
∑
k

∑
n

ε0χ
(1)
jk (ωn;ωn)Ek(r, ωn) exp(−iωnt) +∑

kl

∑
mn

ε0χ
(2)
jkl(ωm + ωn;ωm, ωn)Ek(r, ωm)El(r, ωn) exp[−i(ωm + ωn)t].

(2.7)

The second-order permittivity tensor χ(2)
jkl(ωm+ωn;ωm, ωn) is dependent on the frequen-

cies of the incident �elds ωm, ωn. The frequency of the associated polarization vector

amplitude

Pj(r, ωm + ωn) =
∑
kl

∑
mn

ε0χ
(2)
jkl(ωm + ωn;ωm, ωn)Ek(r, ωm)El(r, ωn) (2.8)

is equal to the sum of frequencies ωm, ωn of the interacting electric-�eld amplitudes

Ek(r, ωm), El(r, ωn). Therefore, the outgoing electromagnetic �eld, emitted by the

dipoles, has di�erent frequency then the two incident electric �elds.

The interaction of the electromagnetic �eld in non-linear medium is classically de-

scribed by the Maxwell equations

∇×E = −∂B
∂t
, (2.9)

∇×H = −∂D
∂t

+ j, (2.10)

∇ ·D = ρ, (2.11)

∇ ·B = 0. (2.12)

E denotes electric intensity �eld, B magnetic induction �eld, H magnetic intensity

�eld, D displacement �eld, j free current density and ρ free charge density. The most

of materials are non-magnetic for electromagnetic waves with frequencies in or near

the visible spectral range. Therefore, the �rst material equation relating the vector of

magnetic intensity �eld H with the vector of magnetic induction B reads

B(r, t) = µ0H(r, t). (2.13)

The second material equation relates the displacement �eldD with the electric intensity

�eld E. In medium, where dipole moments can be induced by the electric �eld, the

relation is

D(r, t) = ε0E(r, t) +P(r, t). (2.14)

In the most of dielectrics, free currents and free charges are negligible, j = 0, ρ = 0.
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The currents and charges in the dielectric media originate solely from polarization of

the medium [2].

If we insert Eqs. (2.13) and (2.14) into the Maxwell equations (2.9) � (2.12), we ob-

tain

∇×E = −∂B
∂t
, (2.15)

∇×B = ε0µ0
∂E

∂t
+ µ0

∂P

∂t
, (2.16)

∇ ·E = − 1

ε0
∇ ·P, (2.17)

∇ ·B = 0. (2.18)

In order to obtain the equation of motion for the electric �eld E, a ∇× operation on

the Eq. (2.15) is performed and with the use of Eq. (2.16), we arrive at

∇×∇×E = ∇(∇ ·E)−△E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
. (2.19)

c indicates the speed of light in the vacuum. The term ∇(∇ ·E) is usually negligible in

comparison with the term △E, thus it can be omitted it in the next considerations [2].

Eq. (2.19) can be rearranged as follows

△E− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
. (2.20)

The polarization vector can be expanded to electric �eld components according to

Eq. (2.7). If the electric �eld is expanded in the same manner [Eq. (2.3)], the cou-

pled di�erential equations in space for di�erent frequency components are obtained:

△Ej(r, ωn) +
ω2
n

c2
Ej(r, ωn) +

∑
k

ω2
n

c2
χ
(1)
jk (ωn;ωn)Ek(r, ωn)+

∑
(mo)

∑
kl

(ωm + ωo)
2

c2
χ
(2)
jkl(ωm + ωo;ωm, ωo)Ek(r, ωm)El(r, ωo) = 0; ∀n. (2.21)

The sum with index (mo) goes only through frequencies ωm, ωo, which satisfy the equa-

tion ωn = ωm + ωo. Eq. (2.21) governs the spatial evolution of electric-�eld spectral

amplitudes E(r, ωn) in medium with non-zero second-order susceptibility tensor χ(2).

The equation couples spectral amplitudes Ej(r, ωn), which correspond to distinct spec-

tral components. Thus, an electric-�eld spectral amplitude at particular frequency may

be a�ected by electric-�eld spectral amplitudes with di�erent frequencies. This is the

main principle of all non-linear processes. Eq. (2.21) can be further simpli�ed in order
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to obtain equation, which is more appropriate for analytical or numerical methods [2].

2.2 Non-linear process of the second order

A non-linear process of the second order involves interaction of three electric-�eld am-

plitudes. Two waves with frequency components ω1 and ω2 enter the interaction and

one new frequency component ω3 originates. Scheme of the process is shown in Fig. 2.1.

The total electric �eld entering the interaction is equal to

Figure 2.1: Scheme of the non-linear e�ect of the second order.

E(r, t) = E(r, ω1) exp(−iω1t) +E(r, ω2) exp(−iω2t) + c.c. (2.22)

Symbol c.c. denotes the complex conjugated part of the foregoing expression. If we

include Eq. (2.22) into Eq. (2.7) and take only the non-linear part of the expression, we

obtain

P(r, t) = P(r, 2ω1) exp(−i2ω1t) +P(r, 2ω2) exp(−i2ω2t) +

P(r, ω1 + ω2) exp[−i(ω1 − ω2)t] +P(r, ω1 − ω2) exp[−i(ω1 − ω2)t] + c.c.

(2.23)

The individual spectral components of the polarization vector are equal to

Pj(r, 2ω1) = ε0χ
(2)
jkl(2ω1;ω1, ω1)Ek(r, ω1)El(r, ω1) (2.24)

Pj(r, 2ω2) = ε0χ
(2)
jkl(2ω2;ω2, ω2)Ek(r, ω1)El(r, ω1) (2.25)

Pj(r, ω1 + ω2) = 2ε0χ
(2)
jkl(ω1 + ω2;ω1, ω2)Ek(r, ω1)El(r, ω2) (2.26)

Pj(r, ω1 − ω2) = 2ε0χ
(2)
jkl(ω1 − ω2;ω1,−ω2)Ek(r, ω1)E

∗
l (r, ω2). (2.27)

There are several new frequency components, which originated from the non-linear

interaction. The frequencies ω3 = 2ω1, 2ω2 belongs to the second harmonic and the

process, in which the frequency components are generated, is called second-harmonic

generation. The frequency ω3 = ω1 + ω2 is connected with the process termed sum-
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frequency generation, and ω3 = ω1 − ω2 di�erence-frequency generation.

The generation of new frequency components by means of the second-order non-

linearity [Eqs. (2.24) � (2.27)] can be explained microscopically. So far, the treatment

of the non-linearity was purely mathematical. Its origin was established from expansion

of polarization vector P in electric �eld E. Nevertheless, if the microscopic structure of

the matter is considered, the non-linear phenomena originate naturally.

In quantum mechanics, the total energy of the electromagnetic �eld is treated as

a package of energetic quanta. Each quantum has an energy ℏω and the associated

particle, which carries this energy, is called photon. The second-order processes involve

interaction of two photons with one electron. The electron is assumed to be bounded

in an orbit of an atom, which is located in the medium. When the electron absorbs the

quanta or quantum of energy, it is excited to higher energy level according to the law

of conservation of energy. The higher energy level may be either stable or a virtual one.

The stable energy level originates from the parameters of the atom and the electron

may occupy this level for su�ciently long time. In contrast, virtual energy level is not

an energetic level of an atom, where electron may reside. Therefore, the electron is

allowed to stay at this energetic level for restricted amount of time, which is de�ned by

the Heissenberg inequality

δt = ℏ/δE. (2.28)

δE is the energetic di�erence from the virtual level to closest real level of an atom.

The transition times δt typically reach values around 10−15 − 10−16 s. Due to such a

short times, the virtual transitions can be considered as instantaneous with respect to

electromagnetic waves in the visible spectrum.

In the non-linear processes described in this thesis, the transitions trough the virtual

levels are utilized. They allow for fast transition times of the electrons. Moreover, the

transitions conserve energy of all involved photons. The processes, where only virtual

energy levels of an electron are involved are called parametric. The transitions, which

involve the real energy levels are called non-parametric. The transition times in non-

parametric processes are much higher than in the case of parametric ones. Therefore,

the exchange of energy between the photons and the medium has to be taken into the

account. There might be as well e�ects, which may transform energy of photons to

mechanical vibrations of the medium. In this case, there will be an absorption of the

energy of the photons. Since the utilized energy levels are real, the resonance of the

electric �eld with the electron transition causes the non-linear process to be resonantly

enhanced. As a result, the probability of the transition can be much higher than in the
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case of parametric process, but for the cost of additional absorption.

The simplest non-linear process of the second order is second-harmonic generation.

It is connected with the non-linear polarization vector (2.24) and (2.25). It is described

by transition scheme in Fig. 2.2(a). Two photons of the same frequency ω1 are anni-

hilated by an electron. Due to absorption of two energetic quanta ℏω1, the electron

is excited from the ground state with energy Eg to virtual energy level with energy

Eg+2ℏω1. Till the de�ned time [Eq. (2.28)], the electron de-excites back to the original

ground state. During the de-excitation process, the electron releases one photon with

energy 2ℏω1. The second-harmonic generation is a special case of more general process,

the sum-frequency generation [Fig. 2.2(b)]. In sum-frequency generation two photons

of arbitrary frequencies ω1 and ω2 are annihilated by an electron and one photon of fre-

quency ω1 + ω2 is emitted. The physical explanation of the sum-frequency generation

is identical to second harmonic generation.

Figure 2.2: Electron transition schemes for (a) second-harmonic generation (b) sum-
frequency generation (c) di�erence-frequency generation.

The last non-linear phenomenon of the second order is di�erence-frequency gener-

ation. Its transition scheme is shown in Fig. 2.2(c). There are two waves entering the

interaction. Wave with positive frequency ω1 and wave with negative frequency −ω2.

We assume, that the frequency ω1 is greater than ω2. The outgoing wave has positive

frequency

ω3 = ω1 − ω2. (2.29)

Eq. (2.29) can be rearranged and multiplied by the reduced Planck constant ℏ. Then

we obtain,

ℏω2 + ℏω3 = ℏω1. (2.30)

Eq. (2.30) identi�es the energy exchange between the interacting quantum �elds, me-
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diated by the electron. It can be explained as follows. The ingoing wave ω1 releases

one of its quantum ℏω1 to electron. The electron is excited to a virtual energy level

with energy E = Eg + ℏω1. When electron de-excites, it releases one quantum of en-

ergy into the wave with frequency ω2 and wave with frequency ω3 = ω1 − ω2. Besides

the name di�erence frequency generation, the process can be as well called parametric

down-conversion.

In the classical case5, it has to be always assumed, that there are non-zero spectral

amplitudes of interacting waves E(r, ωn). If there is an ingoing wave with non-zero

electric-�eld amplitude E(r, ω1) and no external �elds with frequencies ω2, ω3 entering

the interaction [E(r, ω2), E(r, ω3) = 0], the classical approach fails. It predicts that the

waves with frequencies ω2, ω3 should not be generated. However, in the experiments,

the generation of frequencies ω2 and ω3 is observed even if no external waves on the

frequencies are provided.

In order to theoretically obtain the observed results, small non-zero amplitudes to

the �elds with frequencies ω2 and ω3 have to be introduced before the interaction. This

ad-hoc solution is no longer needed when quantum-mechanical (QM) approach is used.

The QM predicts, that there are non-zero vacuum �uctuations of the electromagnetic

�elds at an arbitrary frequency. As a result, if there are no externally provided �elds

with frequency ω2 or ω3, the energy from de-exciting electron is passed to the vacuum

�uctuations of �elds with frequencies ω2 or ω3. In analogy, the same problem arises

for the second-harmonic generation as well as sum-frequency generation. They can be

generated from the vacuum �uctuations in the same manner.

5The classical approach describes the non-linear interaction of the waves by the equations of coupled
waves (2.21).
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Chapter 3

Photon pairs

A brief historical background about the quantization of electromagnetic �eld is provided

in Section 3.1.1. The quantization procedure of electromagnetic �eld in vacuum in

the Coulomb gauge is shown in Section 3.1.2. The properties and usefulness of the

photon pairs in physics, and particularly in quantum optics, are discussed in Section 3.2.

In Section 3.3 the emission of photon pairs from a bulk birefringent crystal is brie�y

described as the simplest scenario of their generation. Subsequently, the procedures for

obtaining the photon pairs entangled in frequency, emission angles and polarization are

introduced.

3.1 Photons and quantization of the electromagnetic �eld

3.1.1 Introduction

A cornerstone for the quantization of an electromagnetic �eld was placed by Max Planck.

At the turn of 19th and 20th century, he managed to theoretically solve the problem of

radiation of a black body [3]. Till this time, there were two di�erent formulas predicting

the spectral density of black body radiation u(ω). The �rst one, proposed by Wilhelm

Wien, approximated the spectral density for high frequencies

u(ω) = C1ω
3 exp

(
−C2

ω

T

)
; (3.1)

C1, C2 are real positive constants and T is thermodynamic temperature. Although it

was successful with predictions for the high frequencies, it failed in the low frequency

limit. For the low frequency limit, there was a formula derived by Lord Rayleigh and
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sir Jeans:

u(ω) =
2

π
ω2kT

c3
, (3.2)

where k represents the Boltzmann constant. It was in agreement with the measurements

of low-frequency part of black body spectrum. Although in low frequency limit, there

was a discrepancy.

Max Planck was awared by the presence of two distinct formulas (3.1) and (3.2).

By mathematical uni�cation of entropies for both formula, he managed to derive an

equation for spectral density of radiation:

u(ω) =
2ω2

πc3
ℏω

exp(ℏω/kT )− 1
, (3.3)

which was able to predict the spectral density precisely across the whole spectral range.

In order to obtain this formula, he was forced to take an unusual assumption. The energy

of the radiation modes, which were in thermal equilibrium with the black body, had to

be quantized. Particularly, each mode, which harmonically oscillated with frequency ω

had to carry a discrete number of energy quanta ℏω.

Together with Einstein's explanation of the photoe�ect and observation of the spec-

tral lines from emitting atoms, it started to be obvious, that quantization of en electro-

magnetic �eld is inherent part of the nature [3].

3.1.2 Quantization of the electromagnetic �eld

The quantization procedure in linear quantum optics composes of few stages [4]. First

the wave equations of the vector potentialA(r, t) and scalar potential φ(r, t) are derived.

The equations are solved with periodic boundary conditions. Then it is shown, that

energy of the derived electromagnetic �eld in one periodic cell is equal to energy of

in�nite set of harmonic oscillators.

In the utilized approach, the potentials of the electromagnetic �eld are introduced.

The equation stating non-existence of magnetic monopoles (2.18) and the Faraday law

(2.15) are identically valid if we introduce the vector potential A as follows:

B = ∇×A (3.4)

E = −∂A
∂t

−∇φ. (3.5)

We assume, that the medium through which the electromagnetic waves propagate is
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vacuum. Then, the following material relations are valid:

B = µ0H, (3.6)

D = ε0E. (3.7)

By inserting Eqs. (3.4) and (3.5) into the Ampere law (2.10) and the Coulomb law

(2.11) and by usage of Eqs. (3.6) and (3.7), the equations of motion for potentials A

and φ are obtained:

△φ = −∇ · ∂A
∂t

− ρ

ε0
, (3.8)

∇×∇×A = − 1

c2
∂2A

∂t2
− 1

c2
∂

∂t
∇φ. (3.9)

Further, we will assume, that there are no free charges nor free currents. This means

j = 0 and ρ = 0. By the use of vector algebra and rearrangement of the terms in

Eqs. (3.8) and (3.9), we get equations:

□φ = − ∂

∂t

(
∇ ·A+

1

c2
∂φ

∂t

)
□A = ∇

(
∇ ·A+

1

c2
∂φ

∂t

)
. (3.10)

With the usage of Lorentz gauge

∇ ·A+
1

c2
∂φ

∂t
= 0, (3.11)

which utilizes the non-uniqueness of the potentials A and φ, the wave equations for the

potentials are obtained

□φ = 0, (3.12)

□A = 0. (3.13)

The Lorentz gauge (3.11) can be further speci�ed. In the investigated case it is possible

to pass the Lorentz gauge (3.11) by de�ning

∇ ·A = 0 ∧ φ = 0. (3.14)

The particular choice of gauge (3.14) is called the Coulomb gauge.
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The procedure of quantization is independent of the shape of volume. Thus it will

be assumed, that the radiation �eld is located in the cube of volume V = L3/1. It is

further assumed that the complex solution of Eq. (3.13) is in the separable form,

A(+)(r, t) = q(t)u(r). (3.15)

Due to separability of the solutions (3.15), the wave equation for the vector potential

(3.9) splits into two equations for functions q and u

△u+
ω2

c2
u = 0 (3.16)

d2q

dt2
+ ω2q = 0. (3.17)

The parameter ω originated from assumption of the separability. In order to obtain a

solution of Eq. (3.16), the function u(r) is expanded into the plane-wave basis:

u(r) =

+∞∫
−∞

d3k A(k) e(k) exp(ik · r). (3.18)

The vector e(k) de�nes the polarization of the plane wave with wave vector k, is real

and its norm is equal to unity. The complex amplitude A covers magnitude of the wave

and its phase shift. By insertion of Eq. (3.18) into Eq. (3.16) we obtain a dispersion

relation between the wave vectors k and frequencies ω in the free space

ω2 = c2k2. (3.19)

The periodic boundary conditions at the edges of the quantization volume V require

the function u(r) to ful�l the condition

u(r) = u(r+ x0L) = u(r+ y0L) = u(r+ z0L), (3.20)

where x0,y0, z0 are the unit axis vectors. The requirement (3.20) is passed if the wave

vectors are discretized, namely:

kl =
2π

L
(j,m, n), (3.21)

where j,m, n are integers. The multi-index l = (j,m, n) in the subscript of the wave
1The quantization in the free space limit can be done by expanding the volume V to in�nity V → ∞
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vector includes the indexes j,m, n. While the wave vectors have become discrete, the

angular frequencies ω have to be as well discretized. Therefore the frequencies are

indexed with a multi-index l: ωl.

After imposing the boundary conditions, the solution u(r) attains the form

u(r) =
∑
l

Alel exp(ikl · r) =
∑
l

ul(r). (3.22)

The functions ul are orthogonal and can be normalized such that∫
V
u∗
l (r) · um(r) = δlm. (3.23)

The function u∗
l is complex conjugated to function ul and δlm is the Kronecker delta.

Then the form of function ul is:

ul(r) =
1√
V

el exp(ikl · r). (3.24)

The spatial functions ul(r) have to ful�l the Coulomb gauge (3.14), which means

that:

el · kl = 0 (3.25)

for all multi-indexes l. This implies, that the polarization vectors el are located in the

transverse plane with respect to the wave vector kl. Thus, it is possible to decompose

arbitrary vector el into the basis of two-dimensional space. This basis is formed by two

vectors el1 and el2. The vectors el1, el2 are real and have norm equal to unity. The

spatial function u(r) can be �nally expressed as a superposition of mutually orthogonal

modes ul:

u(r) =
∑
l,σ

1√
V
elσ exp(ikl · r), (3.26)

where index σ = 1, 2 denotes the polarization of the wave.

The general solution of the di�erential equation (3.17) is

ql(t) = Alσ(ω) exp(−iωlt) +Alσ(−ω) exp(iωlt), (3.27)

in which Alσ(ωl), Alσ(−ωl) are complex numbers and ωl = ckl is a positive real number.
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The resulting vector potential is given by the equation [5]

A(r, t) =
∑
l

ul(r)ql(t) =
∑
σl

1√
V
elσ [Alσ(ωl) exp(−iωlt+ ikl · r)+

Alσ(−ωl) exp(iωlt+ ikl · r)] . (3.28)

We break the sum into two parts and in the second sum the following identities are used∑+∞
l=−∞ gl =

∑+∞
l=−∞ g−l, k−l = −kl, ωl = ω−l. Then, the obtained result is equal to

A(r, t) =
∑
l

ul(r)ql(t) =
∑
lσ

1√
V
elσ [Alσ(ωl) exp(−iωlt+ ikl · r)+

A−lσ(−ωl) exp(iωlt− ikl · r)] . (3.29)

We require the vector potential to be a real quantity. Thus, its complex conjugate must

be equal to the original function A = A†. From this demand it follows that

Alσ(ωl) = A†
−lσ(−ωl), (3.30)

A−lσ(−ωl) = A†
lσ(ωl). (3.31)

De�ning Alσ = Alσ(ωl) the �nal solution for the vector potential reads

A(r, t) = A(+)(r, t) +A(−)(r, t)

=
∑
l,σ

elσ√
V

[
Alσ exp(−iωlt+ ikl · r) +A†

lσ exp(iωlt− ikl · r)
]
. (3.32)

The vector function A(+) is complex conjugated to vector function A(−), they denote

the positive and negative frequency components of the vector potential A. By insertion

of Eq. (3.32) into the Hamiltonian of the electromagnetic �eld in the Coulomb gauge

H =
1

2

∫
V

[
ε0

(
∂A

∂t

)2

+
1

µ0
(∇×A)2

]
(3.33)

we arrive at

H =
∑
l,σ

ℏωl

2
(A†

lσAlσ +AlσA
†
lσ). (3.34)

The Hamiltonian (3.34) is in the symmetric form with respect to complex amplitudes

AlσA
†
lσ. The �nal stage of the quantization procedure is the interchange between the

amplitudes of the �elds and creation and annihilation operators of linear harmonic
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oscillator A†
lσAlσ → â†lσ, âlσ. The commutation relations between the operators â†lσ, âlσ

is

[âlσ, â
†
l′σ′ ] = âlσâ

†
l′σ′ − â†l′σ′ âlσ = δσσ′δll′1, (3.35)

where the operator 1 is a unity operator.

After quantization of the �eld, the vector potential and Hamiltonian operator of the

electromagnetic �eld are equal to:

Â(r, t) =
∑
l,σ

elσ

[
âlσ exp(−iωlt+ ikl · r) + â†lσ exp(iωlt− ikl · r)

]
, (3.36)

Ĥ =
∑
lσ

ℏωl

2
(â†lσâlσ + âlσâ

†
lσ) =

∑
lσ

ℏωl

(
â†lσâlσ +

1

2

)
. (3.37)

Operator of the number n̂ of photons is de�ned as

n̂lσ = â†lσâlσ. (3.38)

Its eigenvectors are the Fock states |n⟩ ful�lling

n̂|n⟩ = n|n⟩ (3.39)

and its eigenvalues are numbers of photons in given Fock states n. With the usage of

the photon number operator n̂, we may obtain mean number of photons in an arbitrary

mode lσ of a state |ψ⟩. This can by computed from the equation

⟨nlσ⟩ = ⟨ψ|n̂lσ|ψ⟩. (3.40)

The symbol ⟨nlσ⟩ indicates mean number of signal photons in mode lσ of a multimode

state |ψ⟩.

3.2 Properties and usefulness of photon pairs

A photon pair is composed of two single-energetic quanta, which originate together

in the spontaneous parametric down-conversion process (SPDC). SPDC is a quantum-

mechanical phenomenon in which three quantum particles - photons interact together2.

It was for the �rst time predicted by Luisell in 1961 [6] and experimentally observed

independently by two research groups in 1968 [7, 8]. During the process one photon of

2From classical point of view, the SPDC has been already described in Section 2.2 on page 20.
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the pump �eld is annihilated and two other photons - signal and idler are created. The

newly created particles are mathematically described by a common wavefunction - the

two-photon state. This state describes all properties of both photons.

SPDC occurs only in a non-linear medium with a non-zero second-order susceptibil-

ity tensor χ(2). In classical optics this tensor describes the non-linear capabilities of a

medium, in SPDC it represents an interaction parameter. The magnitude of the param-

eter governs strength of the interaction. Despite of classical description of non-linear

medium by a parameter, theoretical models of SPDC provide predictions which are in

good agreement with experimental results [9�12].

Theoretical predictions and experimental results reveal that two-photon states do

not o�er deterministic results of measurements like the classical objects do. Just the

opposite, there can be many various statistically correlated states but only one of them

is detected [13]. These states, termed entangled, have served for performing many

through-braking experiments like the test of Bell inequalities. Testing of the inequal-

ities have revealed non-locality or non-realism of quantum phenomena [14, 15]. The

photon pairs were as well used for testing EPR paradox [16�18] or quantum telepor-

tation [19]. Besides the teleportation schemes, entanglement can be used for secured

quantum key distribution [20,21]. Last but not least, entanglement also plays a crucial

role in quantum computing [22, 23], quantum metrology [24, 25] and quantum object

identi�cation [26]. Till now, photon pairs were the exclusively experimentally obtain-

able entangled particles. However at present, entanglement can be established between

the single atoms [27].

In the process of annihilation of a pump photon and creation of signal and idler

photons, the laws of energy and momentum conservation have to be ful�lled. The law

of conservation of energy is expressed as:

ℏωp = ℏωs + ℏωi. (3.41)

The frequencies ωp, ωs and ωi belong to pump, signal and idler photons. The law of

conservation of momentum equals3

ℏkp = ℏks + ℏki, (3.42)

where kp, ks and ki are wave vectors of pump, signal and idler �eld.

3The law of conservation of momentum in the Eq. (3.42) is valid, if the non-linear medium is
homogeneous on lengths many times higher than the wavelengths of the interacting photons. Otherwise
a more general formula has to be used for the evaluation of conservation of momentum.
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Strong statistical correlations between newly created photons arise due to these

laws. The correlations may arise in variables such as frequency, wave vector or polar-

ization. They provide us availability to predict properties of one photon by measuring

properties of the other one. Generally, this implies that signal and idler photons are

not independent particles. The nature of correlations is closely related to geometry and

optical properties of the non-linear medium and shape of the pump pulse [28�31].

The energy conservation makes signal and idler photons to be created in a narrow

temporal window. In addition, the law determines the sum frequency of down-converted

photons. Time correlations can be observed in Hong-Ou-Mandel interferometer by

measuring a correlation function of the 4th order [11,28] (see scheme of the interferometer

in Fig. 3.1). Measurement is based on detecting coincidences between two spatially and

temporally separated photons. Time correlations can be tailored by the shape of the

pump �eld in the time domain or by precise design of the non-linear structure [28].

By proper design of these parameters, frequency chirped two-photons states [32], anti-

correlated states [33] or non-correlated two-photon states [29] can be obtained.

Figure 3.1: Scheme of the Hong-Ou-Mandel interferometer together with non-linear
crystal.

The momentum conservation leads to correlations in wave vectors. Satisfying this

law is crucial for e�ectivity of SPDC and it is termed phase-matching. At �rst, bire-

frigent materials passed this requirement, later photonic structures have started to being

used. In modern photonic structures periodicity in a strucutre, in linear regime - refrac-

tion index or in non-linear regime - periodical poling, is introduced to provide a desired

phase-matching condition [34,35]. Correlation in wave vectors is closely connected with

emission angles of the photons from the structure. When one photon is observed at a

given direction the direction of the other one is fully determined or can be located in

a cone volume with certain probability [30, 31, 36]. Which one of these possibilities oc-

curs depend on the geometry of the crystal and spatial parameters of the pump pulse.
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The spatial correlations, which are connected with the wave vector correlations, are

investigated in connection with, e.g., ghost imaging [37] or Schmidt modes [31]4.

Last important degree of freedom in which a correlations may occur is polarization

[39,40]. There are two distinct polarization states in which the signal and idler photons

can be created. One is orthogonal to the other or both of them have the same direction

of polarization and the pump has di�erent polarization from them. The �rst one is called

type-II generation and the second is type-I generation. Polarization states are easy to

calculate with and handle them in experiments. Therefore, this type of correlation is

a suitable platform for many experiments. It has been used, e.g., for demonstration of

quantum teleportation [13], violation of Bell unequalities [15] or test of EPR paradox

[18].

3.3 Generation of photon pairs in bulk material

Photon pairs are generated in non-centrosymmetric crystals5. Typical examples are

KNbO3, LiIO3, LiNbO3, or β−BaB2O4 [3]. In the crystal, there are no preferred direc-

tions of emission or frequencies of the signal and idler photons ωs and ωi. Therefore,

the photons are emitted at all allowed frequencies and in all directions governed by the

conservation laws.

The simplest way how to obtain the photon pairs is their generation from birefringent

bulk crystal. If the pump beam has a transverse spatial pro�le of a plane wave and

is monochromatic, the photon pairs are emitted in the vicinity of two cone surfaces.

Particularly, the wave vectors of the emitted photons form the cones. The orientation

and alignment of the cone surfaces are determined by the phase-matching condition.

The condition states, that the wave vectors of pump beam, signal and idler photons

kp,ks,ki have to ful�l the conservation law of momentum (3.42). This implies, that the

wave vectors have to lie in one plane. Therefore, if we select a plane, in which a pump

wave vector is located, the cross section of the plane with the cone surfaces uniquely

determine the wave vectors (directions of emission) of the signal and idler photons in a

pair.

The photon pairs are correlated in all variables. Namely in frequency, wave vector

and polarization. The photons entangled in frequency can be obtained by selecting a

small neighbourhood of two particular directions of emission. The directions of emission

4The Schmidt modes can be as well introduced in frequency region. Their number determines the
amount of entanglement between the photons in a pair [38].

5Non-centrosymmetric media posses non-zero second-order susceptibility tensor χ(2).
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have to ful�l the conservation law of momentum. The directions can be experimentally

�ltered by small apertures of �nite diameters. After that, we obtain a state, which is

entangled in frequencies. It is approximately described by the formula

|ψ⟩ = |vac⟩+
∫∫ +∞

−∞
dωsdωi ξ(ωs, ωi) δ(ωp − ωs − ωi)|ωs⟩s|ωi⟩i. (3.43)

The function ξ(ωs, ωi) represents a probability amplitude with which the photon pairs

with given frequencies are emitted, function δ(ωp−ωs−ωi) represents the law of energy

conservation and couples frequencies of the signal and idler photons in a pair. The

indices of the states s and i determine the signal and idler photons. Polarization of

the photons is neglected in this case. The vacuum state |vac⟩ in Eq. (3.43) represents

vacuum �uctuations of photons which were not converted to single energetic quanta.

The photons correlated in emission directions can be extracted by selecting precisely

de�ned directions of two photon pairs. Each pair has to ful�l the conservation law of

momentum and conservation law of energy. Then, the obtained two-photon state is

|ψ⟩ = |vac⟩+ (|a⟩|b⟩+ |a′⟩|b′⟩). (3.44)

The states |a⟩, |b⟩, |a′⟩, |b′⟩ are single photon states propagating in the selected directions
a, b, a′, b′.

There are two distinct photon-pair states entangled in polarization. The �rst one

consists of photon pairs, where the polarizations of signal and idler photons are orthog-

onal:

|ψ⟩ =
√

1− α2|vac⟩+ α
[
| ↑⟩A| →⟩B + | →⟩A| ↑⟩B

]
; (3.45)

α is a real number and satis�es the inequality α2 ≤ 1. The state | →⟩ denotes, that the
photon has horizontal polarization and state | ↑⟩ assigns a photon vertical polarization.

The indices A and B denote directions of the emitted photons. The other photon

pair state is formed by photon pairs, where photons have the same polarization. The

two-photon state in this case equals

|ψ⟩ =
√

1− α2|vac⟩+ α
[
| ↑⟩A| ↑⟩B + α| →⟩A| →⟩B

]
; α2 ≤ 1. (3.46)

The state in Eq. (3.45) is generated in alignment called type II. The second state

(Eq. (3.46)) is generated in alignment called type I. In the type II SPDC, the photons

with orthogonal polarizations are emitted at surfaces of two cones, which intersect each

other. The intersections de�ne two directions in which photons of both polarizations
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can be emitted. There is the same probability, that a photon in direction A has a

vertical polarization ↑ simultaneously with the photon in direction B having horizontal

polarization → like in the case, when the polarizations are interchanged. The entangled

state of photons (3.46) can be obtained by emission from two crystals located close to

each other. Both crystals have to be conveniently cut and turned by 90 deg in the

transverse plane with respect to each other. Then the crystals are aligned such that,

their optical axes are orthogonal. It is further assumed that the generation occurs only

for polarization of the pump wave oriented along the optical axis of the crystal and the

non-linear tensor χ(2) allows for generation likely polarized signal and idler photons.

By use of the polarization of the pump wave, which is declined from the axes of both

crystals by 45 deg, the cone emission patterns similar to single crystal can be observed.

The state (3.46) is be obtained by selection of two directions from the cone, which

satisfy the law of conservation of momentum and energy.
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Chapter 4

Generation of photon pairs in a ring

�ber

Integrated sources of photon pairs are introduced in Section 4.1.1. The guidance of

modes with a de�ned OAM in �bers and waveguides is discussed in Section 4.1.2. The

importance and applications of the OAM modes is as well mentioned. Section 4.1.3 is

devoted to the concept of quasi-phase matching and thermal poling process.

The theoretical description of SPDC in a ring �ber is developed in Section 4.2. The

theoretical framework is based on quantum-mechanical approach, where the Schrödinger

equation is solved by means of perturbation series to the �rst order. De�nitions of

quantities characterizing a photon pair are provided at the end of the Section.

The theory describing decomposition of modes of the ring �ber into the basis of

OAM operator eigenfunctions is introduced in Section 4.3. In addition, decomposition

of a two-photon amplitude into the Schmidt basis in frequency and spatial domain is

described.

Section 4.4 includes characterization of the guided modes of the ring �ber. Eigen-

modes of the ring �ber are derived and procedure for computation of the propagation

constants of the �ber is described. E�ective refractive indices of the modes are shown.

The most stable modes obeying the conservation law of OAM are identi�ed as suitable

for the non-linear interactions. Their transversal pro�les together with angular spectral

components are shown and discussed.

Narrow-band non-linear interaction of the pump beam with OAM number lp = +1

with the signal and idler modes having OAM numbers ls = +1 and li = 0 is investigated

in Section 4.5. Stability of the interacting modes is analyzed by means of an e�ective

index of refraction. The results of simulation of the non-linear interaction are shown.
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Particularly, phase-matching conditions and mean signal photon-number spectra are

discussed.

The non-linear interaction of pump beam with OAM number lp = 0 with the signal

and idler �elds in TE01 modes is investigated in Section 4.6. Width of the mean signal

photon-number spectrum and correlation times are compared with the results obtained

for the narrow-band process in Section 4.5.

The entanglement of photon pairs generated by the pump beam with OAM number

lp = 0 and Gaussian time pro�le is investigated in Section 4.7. The two-photon am-

plitude in spatio-spectral coordinates is analyzed in order to determine the number of

Schmidt modes. The maximal e�ective dimension of the entangled space is evaluated.

The in�uence of noise on entanglement of the generated state is evaluated by means of

the Clauser-Horne-Shimony-Holt inequalilty.

4.1 Introduction

4.1.1 Integrated sources of photon pairs

Entangled photon pairs can be generated from �ber or waveguide sources with χ(2) non-

linearity. Rectangular periodically-poled waveguides made of PPKPT or LiNbO3 [41�

44] represent well-developed and highly-e�cient photon-pair sources. They can provide

photon pairs entangled in polarization on degenerate and non-degenerate frequencies as

well as non-correlated photons. LiNbO3 and KTP have large coe�cients of non-linear

tensor χ(2), typically between 10− 30 pm/V. Thus, they may be highly bright sources

of photon pairs. Particularly, they are able to emit 102 − 103 photon pairs per second

per microwatt. On the other hand, there are �ber sources of photon pairs. For example,

a periodically poled silica (SiO2) �bre produces around 10 photon pairs per second per

microwatt and can be utilized for the generation of polarization entangled photon pairs

in a broad spectral range [45]. This is about two orders of magnitude less than in the

case of the waveguides. The lower e�ciency comes from lower value of the terms of

non-linear tensor χ(2) ∼ 10−2 pm/V. But the length of the �bers can be one order of

magnitude higher in comparison with the waveguides1. The longer non-linear grating

then compensates for the lower value of the terms of non-linear tensor χ(2).

The modes of waveguides re�ect their rectangular transverse pro�les that cannot

be easily and e�ectively transformed into modes of �bers. Especially, they are unable

1The periodically poled grating can be uniformly introduced in �bers with lengths up to 1 m. The
periodically poled waveguides are usually up to 10 cm long.
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to guide modes with radial symmetry without distortion. On the other hand, there

exist structured photonic waveguides with eigenmodes close to OAM modes [46, 47].

Unfortunately, these �bers have transverse pro�les typically few tens of micrometers

wide and so they are not suitable for poling. Thus, the only �bers, which combine the

features of non-linearity and radial symmetry are the investigated ring shaped �bers.

Though only weakly non-linear [45], they may be source of photon pairs with radially

symmetric spatial modes. The detailed analysis of SPDC in the periodically poled ring

�ber has been carried out in [A1,A2].

4.1.2 Guided OAM modes

The ring �bers are able to steadily guide modes with a de�ned OAM [46�49]. Such

modes have been theoretically studied [48,49] and experimentally characterized recently

[48] using a ring [Fig. 4.1(a)] or vortex geometry (concentric rings) of optical �bers.

This geometry allows to separate modes of the LP11 family2 that di�er in their e�ective

refractive indices. This results in their stable propagation with a low ratio of crosstalk

for lengths over 1 km [48]. Such stable states of OAM can then be exploited to multiplex

data and rise the transfer capacity of channels.

OAM �elds are bene�cial for both the classical and quantum areas of physics. Suf-

�ciently strong (classical) �elds are namely useful for nano-particle manipulations [52].

From the point of view of quantum communications that use individual photon pairs,

entangled states are crucial. As we show below, the process of SPDC in thermally

poled silica �bers allows to generate photon pairs entangled in di�erent degrees of free-

dom. These �bers then represent sources of entangled photons that can be directly

integrated into optical �ber networks [45]. The entanglement in OAM numbers o�ers

additional advantage for the construction of division multiplexing systems [48]. OAM

multi/demultiplexers have been recently addressed in [53]. E�ciency of these systems

has been characterized via the crosstalk between demultiplexed OAM modes (the max-

imum value equaled -8 dB) and total losses (∼ 18 dB). The entangled OAM �elds also

allow to implement various quantum computation protocols including the above men-

tioned quantum random walks [54,55] and a CNOT gate [56]. Last but not least, OAM

�elds have been found extraordinarily useful in the area of atomic physics where they

enable enhanced control of transitions between atomic levels [57].

2LPmn is a group of guided modes of radially symmetric �ber with slightly di�erent propagation
constants [50,51]. The integers m,n categorize the modes.
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4.1.3 Periodical poling of the silica �ber

The non-linear �bers are being poled in order to pass the conservation law of momentum

[58,59]. The process of poling involves local introduction of non-zero non-linear tensor

χ(2). The technique of achieving the momentum conservation is called quasi-phase-

matching. When the poling process is periodically repeated over the length of the �ber,

a non-linear grating χ(2) originates. The grating introduces additional momentum into

the process. The law of conservation of momentum then reads

kp − ks − ki +Gm = 0, (4.1)

where the vector Gm belongs to the non-linear grating. It may attain di�erent values

according to the order m. At microscopic level, a poled domain can be considered

as a volume of dipoles, which behave in a non-linear manner. When the dipoles are

driven by the electric �eld of the pump beam, they emit waves with distinct harmonic

components. The wave contributions from all the emitting dipoles superpose and form

the outgoing wave. The proper space alignment of the non-linear domains cause the

contributions from individual dipole domains to add constructively. As a result, the

non-linear process is enhanced.

In the case of waveguides and �bers, there is only one homogeneous direction, the

longitudinal one. Then the equation for the momentum conservation (4.1) reaches a

scalar form

βp − βs − βi +
2π

Λ
m = 0. (4.2)

The variables βp, βs and βi indicate propagation constants3 of pump, signal and idler

�elds. The remaining term in the equation is the longitudinal component of the wave

vector of the non-linear grating Gm. It depends on the integer m, which means, that

the phase matching condition can be satis�ed in multiple ways. In practise, only few

orders m may signi�cantly contribute to the emission of photons. Usually only the

most intense order m0 is utilized. Nevertheless, there are proposals for utilization of the

higher orders, which increases a versatility of a photon source [60]. The Eqs. (4.1) and

(4.2) are exactly valid for in�nitely long grating. In practise, the grating incorporates

�nite number periods, usually more then one hundred. In these cases, the equation

(4.2) provides us the condition of the most intense generation.

There are many types of materials with various physical properties, which can be

3Propagation constant is a component of the wave vector in the direction of propagation. This term
is used mainly in connection with the waveguides or �bers.
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Figure 4.1: (a) A scheme of the twin-hole �ber (b) Process of thermal poling (c) The
positions of electrons and ions after the poling process.

periodically poled. Therefore, di�erent techniques for periodical poling have to be

utilized [61�64]. Particularly, the process of periodical poling of χ(2) susceptibility in

silica �bers has already been mastered [65�67]. It allows to achieve phase matching of

the non-linearly interacting �elds, together with the conservation law of energy. During

the poling, a SiO2 material with no natural χ(2) susceptibility (due to symmetry) is

heated up and exposed to a strong electric �eld E originating in the electrodes inserted

in the �ber [Fig. 4.1(b)]. The free ions in the �ber are dragged by the �eld and form the

macroscopic charge nearby the electrodes. When the material is cooled down back to the

room temperature, the electric �eld is switched o�. However, the ions remain frozen at

their positions and form a permanent internal static electric �eld E [Fig. 4.1(c)], [67,68].

This �eld is responsible for quadratic non-linear properties of the �ber. The non-linear

grating is created by a UV erasure process that removes the non-linearity inside domains

exposed to a UV laser. Suitable choice of the grating period Λ then allows to reach

quasi-phase-matching of the non-linear process.

Photon pairs in �bers can also be generated via the process of four-wave mixing

using χ(3) susceptibility available in common optical �bers. However, there also occur

other competing non-linear processes based on χ(3) susceptibility (Raman scattering).

Their presence results in larger values of single-photon noise superimposed on photon-

pair �elds. Despite this, a lot of attention has been devoted to such sources emitting

photon pairs both around 800 nm and 1550 nm [69�71].
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4.2 Theoretical description

Non-linear process of SPDC occurring among the pump (p), signal (s) and idler (i)

�elds can be described by the following interaction Hamiltonian Ĥint [72]:

Ĥint(t) = 2ε0

∫
S⊥

rdr dθ

∫ 0

−L
dz χ(2)(z) : E(+)

p (r, θ, z, t)

×Ê(−)
s (r, θ, z, t)Ê

(−)
i (r, θ, z, t) + h.c. (4.3)

Symbol : means tensor shorthand with respect to its three indices, ε0 denotes the vac-

uum permittivity and h.c. replaces the Hermitian conjugated term. A vector positive-

frequency electric-�eld amplitude of a pump beam is denoted as E(+)
p (r, θ, z, t) whereas

vector negative-frequency electric-�eld operator amplitudes of the signal and idler beams

are described as Ê(−)
s (r, θ, z, t) and Ê

(−)
i (r, θ, z, t), respectively. Non-linear susceptibil-

ity χ(2) is assumed z-dependent. Its spatial periodic rectangular modulation along the

z axis (Fig. 4.2) with certain period permits quasi-phase-matching of the non-linear

process. Hamiltonian Ĥint in Eq. (4.3) is written in cylindrical coordinates with ra-

dial variable r, angular variable θ and longitudinal variable z. Symbol S⊥ denotes the

transverse area of the �ber of length L.

Figure 4.2: Modulation of non-linear tensor

of the second order χ(2) along the axis of the

twin-hole �ber z.

After the process of thermal poling,

a static electric �eld is established in the

area of the core of the �ber [67] (for details

see Sec. 4.1.3). The static electric �eld,

oriented in the direction of axis x interacts

with the silica's non-linear tensor of the

the third order χ(3) [2, 73]4. The origin

of the e�ective χ(2) tensor is explained by

interaction of the static electric �eld E0

with dynamical electric �eld E through the non-linear tensor of the third order χ(3):

χ
(3)
jklm(Ek + E0,k)(El +E0,l)(Em + E0,m) →

χ
(3)
jklmE0,kElEm + χ

(3)
jklmEkE0,lEm + χ

(3)
jklmEkElE0,m

= 3χ
(3)
jklmE0,kElEm = 3χ

(3)
jxlmE0ElEm = χ

(2)
jlmElEm. (4.4)

The electric �eld components E0,j belong to static electric �eld with magnitude equal to
4The values of the coe�cients of silica's non-linear tensor of third order χ(3) are at the level of

10−22 m2V−2.
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E0. The electric �eld components Ej correspond to additional dynamical electric �eld.

In the Eq. (4.4), the terms, which follow the arrow sign e�ectively correspond to the

non-linear processes of the second order. The terms, which are e�ectively assigned with

the non-linear processes of the third order and linear processes, have been omitted5.

In the Eq. (4.4), it was explicitly substituted for the static electric �eld E0,j = δjxE0.

The e�ective second-order susceptibility tensor χ(2)
jlm then originated as a product of the

static electric �eld E0,x with the third order non-linear tensor χ(3)
jxlm. As a consequence,

thermal poling of SiO2 material giving non-linearity to the �ber results in the following

non-zero elements of χ(2) tensor: χ(2)
xxx ≃ 3χ

(2)
xyy and χ(2)

xyy = χ
(2)
yyx = χ

(2)
yxy = 0.021 pm/V

[2,74].

In the considered ring �ber with its rotational symmetry6 around the z axis, the

pump, signal and idler �elds can be decomposed into transverse eigenmodes eη(r, θ, ω)

with propagation constants βη(ω) at the appropriate frequencies ω. Multi-index η

contains a mode name [51] including azimuthal (n) and radial indices and polarization

index ϕ. In this decomposition, the strong (classical) positive-frequency electric-�eld

pump amplitude E
(+)
p attains the form

E(+)
p (r, θ, z, t) =

∑
ηp

Ap,ηp

∫
dωp Ep(ωp) ep,ηp(r, θ, ωp)

× exp
[
iβp,ηp(ωp)z − iωpt

]
, (4.5)

in which Ap,ηp gives the amplitude of mode ηp and Ep stands for the pump normalized

amplitude spectrum. As the normalized eigenmodes eη(r, θ, ω) form a basis, they can

be used for quantization of the signal- and idler-�eld photon �uxes [75,76]. As a conse-

quence, the negative-frequency electric-�eld signal and idler operator amplitudes Ê(−)
s

and Ê
(−)
i can be expressed as

Ê(−)
a (r, θ, z, t) =

∑
ηa

∫
dωa

√
ℏωa

4πε0cn̄a,ηa
â†a,ηa(ωa)

×e∗a,ηa(r, θ, ωa) exp [iβa,ηa(ωa)z − iωat] , a = s, i; (4.6)

5In terms, which e�ectively belong to non-linear processes of the third order, the components of
static electric �eld E0,j are not present. While in the linear terms, the components of the static electric
�eld E0,j are present with the power of two. As a result, it modulates the linear index of refraction.

6The ring �bers partially loose their radial symmetry owing to the presence of two thin metallic
wires used for thermal poling. However, the holes with wires are usually far from the �ber core and so
their in�uence to radial symmetry of �ber modes results in only weak anisotropy that can usually be
omitted [74].
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Figure 4.3: (a) Sketch of a ring �ber with two small poling holes (b) Radial pro�les of
indices of refraction n at the pump (λ0p = 0.775 µm) and signal (λ0s = 1.55 µm) wave-
lengths (c) Cross-section of the �ber with corresponding linear dielectric permitivitties.

ℏ is the reduced Planck constant, c speed of light in the vacuum and n̄a,ηa e�ective index

of refraction for mode ηa of �eld a (n̄a,ηa = cβa,ηa/ωa). The boson creation operators

â†a,ηa(ωa) in Eq. (4.6) add one photon into mode a with index ηa and frequency ωa. The

eigenmodes are normalized such that
∫
rdrdθ |ea,ηa(r, θ, ωa)|2 = 1.

For the considered ring �ber composed of SiO2 cladding and SiO2 core doped by

19.3 mol% of GeO2 [for the scheme, see Fig. 4.3(c)] [77, 78], the normalized electric-

�eld eigenmodes eη(r, θ, ω) together with the accompanying normalized magnetic-�eld

eigenmodes hη(r, θ, ω) can be obtained analytically. Their longitudinal z components

can be expressed in terms of Bessel functions of the �rst (Jn) and second (Yn) kind and

modi�ed Bessel functions of the �rst (In) and second (Kn) kind as follows [50]:

ez,η(r, θ, ω) =
{
C(0)
η (ω)In(w

(0)
η r)rect0,r1(r)

+
[
C(1)
η (ω)Jn(w

(1)
η r) +D(1)

η (ω)Yn(w
(1)
η r)

]
rectr1,r2(r)

+D(2)
η (ω)Kn(w

(2)
η r)rectr2,∞(r)

}
sin(nθ + ϕ),

hz,η(r, θ, ω) =
{
A(0)

η (ω)In(w
(0)
η r)rect0,r1(r)

+
[
A(1)

η (ω)Jn(w
(1)
η r) +B(1)

η (ω)Yn(w
(1)
η r)

]
rectr1,r2(r)

+B(2)
η (ω)Kn(w

(2)
η r)rectr2,∞(r)

}
cos(nθ + ϕ). (4.7)

Function recta,b(r) equals 1 for r ∈< a, b > and is zero otherwise. Whereas the Bessel

functions describe the oscillating solutions inside the ring core with higher index of
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refraction extending from r = r1 to r = r2, the modi�ed Bessel functions express

the exponentially growing solutions in the center of the �ber and the exponentially

decreasing solutions in the outer cladding. Transverse components of the wave vector

w(q) introduced in Eqs. (4.7) are real and they di�er according to the radial region:

w(q)
η (ω) =

√
β2η(ω)−

ω2

c2
ε
(q)
r (ω), q = 0, 2,

w(1)
η (ω) =

√
ω2

c2
ε
(1)
r (ω)− β2η(ω). (4.8)

Relative permittivity ε(1)r (ω) characterizes the �ber ring core, permittivity ε(0)r (ω) de-

scribes the �ber inner cladding and permittivity ε
(2)
r (ω) is appropriate for the �ber

outer cladding7 [Fig. 4.3(c)]. All permittivities are considered to be scalar quantities.

Values of real coe�cients A(0)
η (ω), A(1)

η (ω), B(1)
η (ω), B(2)

η (ω), C(0)
η (ω), C(1)

η (ω), D(1)
η (ω),

and D
(2)
η (ω) occurring in Eqs. (4.7) are obtained from the requirement of continuity

of tangential components (θ and z) of vector electric- [eη(r, θ, ω)] and magnetic-�eld

[hη(r, θ, ω)] amplitudes at the boundaries of the ring core. This continuity requirement

is ful�lled only for speci�c values of the propagation constant βη(ω) that arise as the

solution of dispersion equation [50,51].

The θ and r components of the electric- and magnetic-�eld amplitudes are obtained

from their z components in Eqs. (4.7) using the following formulas originating in the

Maxwell equations,

er,η =
c2

εrω2 − β2ηc
2

[
iωµ0
r

∂hz,η
∂θ

+ iβη
∂ez,η
∂r

]
,

eθ,η =
c2

εrω2 − β2ηc
2

[
−iωµ0

∂hz,η
∂r

+
iβη
r

∂ez,η
∂θ

]
,

hr,η =
c2

εrω2 − β2ηc
2

[
− iωε0εr

r

∂ez,η
∂θ

+ iβη
∂hz,η
∂r

]
,

hθ,η =
c2

εrω2 − β2ηc
2

[
iωε0εr

∂ez,η
∂r

+
iβη
r

∂hz,η
∂θ

]
. (4.9)

Alternatively, the θ and r components can be replaced by the cartesian x and y com-

7The relative permittivities ε
(p)
r ; p ∈ {0, 1, 2} are related to linear part of the dielectric permittivity.

Since the interacting �elds are assumed to be weak, the non-linear contribution are assumed to have a
negligible in�uence on the pro�les of the modes.
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ponents obtained by the simple relations:

ex,η(r, θ, ω) = cos(θ)er,η(r, θ, ω)− sin(θ)eθ,η(r, θ, ω),

ey,η(r, θ, ω) = sin(θ)er,η(r, θ, ω) + cos(θ)eθ,η(r, θ, ω).

(4.10)

The electric- and magnetic-�eld amplitudes for azimuthal index n ̸= 0 in Eq. (4.7)

depends as well on phase ϕ that determines the mode polarization. An eigenmode

with vertical (horizontal) polarization V (H) is obtained for ϕ = 0 (ϕ = π/2). As

pairs of eigemodes with V and H polarizations have the same propagation constant βη,

eigenmodes with right- (R) and left-handed (L) circular polarizations can be built from

these eigemodes using the relations:

ez,η̃R(r, θ, ω) =
1√
2
[ez,η̃V (r, θ, ω)− iez,η̃H(r, θ, ω)] ,

ez,η̃L(r, θ, ω) =
1√
2
[ez,η̃V (r, θ, ω) + iez,η̃H(r, θ, ω)] ,

(4.11)

where η̃ indicates a mode excluding its polarization. These eigemodes are close to

OAM eigemodes and in general posses non-zero OAM numbers. The electric- and

magnetic-�eld amplitudes for n = 0 in Eqs. (4.7) describe two orthogonal TE01 and

TM01 eigenmodes with di�erent propagation constants βη(ω). Polarization of TE01

and TM01 mode is obtained for ϕ = 0 and ϕ = π/2, respectively.

A common state |ψ⟩ of the signal and idler �elds at the output face of the �ber

describing one photon pair is determined by a �rst-order perturbation solution of the

Schrödinger equation with the interaction Hamiltonian Ĥint,

|ψ⟩ = − i

ℏ

∫ ∞

−∞
dt Ĥint(t)|vac⟩. (4.12)

State |vac⟩ denotes the vacuum state.

Substitution of the expressions from Eqs. (4.3�4.6) into Eq. (4.12) provides the

output state |ψ⟩ in the form:

|ψ⟩ =
∑
ηp

∑
ηs,ηi

∫
dωs

∫
dωiΦ

ηp
ηsηi(ωs, ωi)

× â†s,ηs(ωs)â
†
i,ηi

(ωi)|vac⟩. (4.13)
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Two-photon spectral amplitudes Φηp
ηsηi(ωs, ωi) introduced in Eq. (4.13) give a probability

amplitude of generating a signal photon into mode ηs with frequency ωs together with

an idler photon into mode ηi with frequency ωi from a pump photon in mode ηp. They

are derived as follows:

Φ
ηp
ηsηi(ωs, ωi) = −

i
√
ωsωi√

n̄s,ηs n̄i,ηic
Ap,ηpEp(ωs + ωi)I

ηp
ηsηi(ωs, ωi), (4.14)

where

I
ηp
ηsηi(ωs, ωi) =

√
2π

∫
S⊥

rdrdθ χ̃(2)[−∆β
ηp
ηsηi(ωs, ωi)]

: ep,ηp(r, θ, ωs + ωi)e
∗
s,ηs(r, θ, ωs)e

∗
i,ηi(r, θ, ωi) (4.15)

and ∆β
ηp
ηsηi(ωs, ωi) = βp,ηp(ωs+ωi)−βs,ηs(ωs)−βi,ηi(ωi) characterizes phase mismatch

of the non-linear interaction.

Fourier transform χ̃(2)(β) of spatially modulated χ(2)(z) non-linearity used in

Eq. (4.15) is given as follows:

χ̃(2)(β) =
1√
2π

∫ ∞

−∞
dzχ(2)(z) exp(−iβz). (4.16)

It attains the following form for the considered rectangular modulation composed of

2N + 1 periods of length Λ:

χ̃(2)(β) = χ(2) 2√
2πβ

sin(βΛ/4)
sin[(N + 1/2)βΛ]

sin(βΛ/2)

× exp(iβΛ/4) exp(iNβΛ). (4.17)

Photon-pair number density Nηp
ηsηi(ωs, ωi) belonging to an individual non-linear pro-

cess (ηp, ηs, ηi) is de�ned as

N
ηp
ηsηi(ωs, ωi) = ⟨ψ|â†s,ηs(ωs)â

†
i,ηi

(ωi)âs,ηs(ωs)âi,ηi(ωi)|ψ⟩. (4.18)

Using Eq. (4.13), the density Nηp
ηsηi can be expressed in a simple form:

N
ηp
ηsηi(ωs, ωi) = |Φηp

ηsηi(ωs, ωi)|2. (4.19)

The corresponding signal photon-number density Nηp
s,ηsηi(ωs) is then derived according

46



to the formula

N
ηp
s,ηsηi(ωs) =

∫
dωiN

ηp
ηsηi(ωs, ωi). (4.20)

Whereas the two-photon amplitudes Φ(ωs, ωi) de�ned in Eq. (4.14) characterize

the emitted photon pair in spectral domain, temporal two-photon amplitudes Φ̃(ts, ti)

de�ned as [79]

Φ̃(ts, ti) = ⟨vac|Ê(+)
s (0, ts)Ê

(+)
i (0, ti)|ψ⟩ (4.21)

are useful for the description of photon pairs in time domain. The substitution of

Eqs. (4.6) and (4.13) into Eq. (4.21) gives us the formula valid outside the �ber:

Φ̃
ηp
ηsηi(ts, ti) =

ℏ
4πε0c

∫
dωs

∫
dωi

√
ωsωi√

n̄s,ηs n̄i,ηi

× Φ
ηp
ηsηi(ωs, ωi) exp(−iωsts) exp(−iωiti). (4.22)

Photon pairs generated in an individual non-linear process (ηp, ηs, ηi) usually have

a complex spectral structure that can be revealed by the Schmidt decomposition of

spectral two-photon amplitude Φ
ηp
ηsηi ,

Φ
ηp
ηsηi(ωs, ωi) =

∞∑
k=0

λω,kfs,k(ωs)fi,k(ωs). (4.23)

In Eq. (4.23), functions fs,k and fi,k form a Schmidt dual basis and eigenvalues λω,k
give coe�cients of the decomposition. Provided that these coe�cients are properly

normalized (
∑∞

k=0 λ
2
ω,k = 1) they determine the Schmidt number Kω of independent

modes needed in the description [80],

Kω =
1∑∞

k=0 λ
4
ω,k

. (4.24)

4.3 OAM decomposition of modes in the transverse plane

Vector modes in the transverse plane have in general a complex structure that, however,

has to accord with rotational symmetry of the �ber. For this reason, it is useful to

decompose their azimuthal dependencies into eigenmodes of OAM operator L̂(θ), L̂(θ) =

−iℏ∂/(∂θ), that take the form of harmonic functions [81]:

tl(θ) =
1√
2π

exp(ilθ). (4.25)
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Convenience of this decomposition is even emphasized when non-linear processes are

taken into account as there occurs the conservation law of OAM number l [82]. This

law immediately follows from the integration over azimuthal angle θ in the interaction

Hamiltonian Ĥint written in Eq. (4.3). For the considered SPDC process, this law is

expressed as

lp = ls + li, (4.26)

where the subscripts indicate the participating �elds.

The electric-�eld modes eη(r, θ, ω) involved in the interactions are vectorial, but

their longitudinal components ez,η(r, θ, ω) are usually at least one order of magnitude

smaller compared to their transverse components er,η(r, θ, ω), eθ,η(r, θ, ω) or ex,η(r, θ, ω),

ey,η(r, θ, ω) [50, 51]. For this reason, we concentrate our attention to the analysis of

transverse components. The analysis of cartesian transverse components ex,η(r, θ, ω)

and ey,η(r, θ, ω) is more useful as they can easily be experimentally obtained using opti-

cal polarizers. Moreover, the x and y components of electric-�eld amplitude eη(r, θ, ω) of

the circularly polarized modes given in Eq. (4.11) are only mutually shifted in azimuthal

variable θ by π/2. That is why, we further pay attention only to the x component

ex,η(r, θ, ω) ≡ eη(r, θ, ω).

The mode functions eη(r, θ, ω) depend in general on three variables r, θ and fre-

quency ω. Following the rules of quantum mechanics, the probability p of detecting a

photon in an OAM eigenstate tl is given by the formula [81]:

pl,η(ω) =

∫
rdr

∣∣∣∣∫ dθ t∗l (θ)eη(r, θ, ω)

∣∣∣∣2 (4.27)

that expresses averaging over the radial variable r.

As entangled photon pairs in their general form (for hyper-entangled photons, see

[83, 84]) are emitted, two-photon amplitudes Φ depending on both transverse-plane

variables and frequencies are needed in their description. They generalize the two-

photon spectral amplitudes Φηp
ηsηi(ωs, ωi) de�ned in Eq. (4.14). In the usually considered

spectral ranges several nm wide, the two-photon amplitude Φ(rs, θs, ωs, ri, θi, ωi) can be

approximately written in the following factorized form:

Φ(rs, θs, ωs, ri, θi, ωi) ≈ Φrθ(rs, θs, ri, θi)Φω(ωs, ωi). (4.28)

The transverse part Φrθ of two-photon amplitude can in principle be decomposed sim-
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ilarly as the spectral part Φω in Eq. (4.21), i.e.

Φrθ(rs, θs, ri, θi) =
∑
m

λrθ,m gs,m(rs, θs)gi,m(ri, θi) (4.29)

using eigenvalues λrθ,m and eigenfunctions gs,m and gi,m. The eigenvalues λrθ,m then de-

termine the Schmidt numberKrθ of independent modes by the formula (4.24). However,

the decomposition (4.29) is usually di�cult to achieve. Nevertheless, the two-photon

amplitude Φrθ(rs, θs, ri, θi) nearly factorizes into its radial and azimuthal parts due to

a simple radial dependence in our case. Then we can obtain an approximate number of

modes Kθ from singular values λθ,l of matrix Fθ de�ned as

Fθ,lsli =

[∫
rsdrs

∫
ridri

∣∣∣∣∣
∫
dθs

∫
dθit

∗
ls(θs)t

∗
li
(θi)Φrθ(rs, θs, ri, θi)

∣∣∣∣∣
2]1/2

(4.30)

using Eq. (4.24).

4.4 Guided modes of a ring �ber

The generation of photon pairs around the wavelengths λ0s and λ0i equal to 1.55 µm

is considered. The pump �eld is assumed to be monochromatic with a wavelength

λ0p = 0.775 µm. From the considerations of �elds' propagation stability and e�ciency

of the non-linear interaction, the �ber was designed to guide radial fundamental modes

for wavelengths longer than 1.2µm. This can be assured by an engineering of the inner

and outer radii of the �ber.

The solution of the dispersion equation provides us the guided modes of the �ber.

The dispersion equation is formulated as a determinant of a boundary-condition ma-

trix. The boundary-condition matrix originates from the requirement of continuity of

tangent components of all involved �elds ez, eθ, hz and hθ at the discontinuities of di-

electric permittivity function ε(r, ω)/8. The problem of boundary conditions can be

solved in general for a multi-ring �ber with m discontinuities at radii {r1, . . . , rm} as

follows. It holds, that the z-component of the electric and magnetic �eld amplitude in

8In the investigated ring �ber there are two discontinuities. One associated with the inner radius
of the core r1 and the other at the outer radius of the core r2. The positions of the discontinuities are
depicted in the Fig. 4.3(c).
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a homogeneous region of the �ber is equal to

e(q)z (r, θ, ω) = [C(q)
n U (q)

n (k
(q)
⊥ r) +D(q)

n V (q)
n (k

(q)
⊥ r)] sin(nθ + ϕ),

h(q)z (r, θ, ω) = [A(q)
n U (q)

n (k
(q)
⊥ r) +B(q)

n V (q)
n (k

(q)
⊥ r)] cos(nθ + ϕ). (4.31)

Index q labels a region of the �ber, Un is a Bessel function of the �rst order, Vn is a Bessel

function of the second order and k(q)⊥ =

√
(ω/c)2ε

(q)
r − β2 is a perpendicular component

of the wave vector9. The angular components eθ(r, θ, ω), hθ(r, θ, ω) are computed from

Eqs. (4.10) by usage of Eqs. (4.31).

The continuity of tangential components of electric- and magnetic-�eld amplitudes

at boundary located at radius rq requires validity of the following relations:

e(q)z (rq, θ, ω) = e(q+1)
z (rq, θ, ω),

h(q)z (rq, θ, ω) = h(q+1)
z (rq, θ, ω),

e
(q)
θ (rq, θ, ω) = e

(q+1)
θ (rq, θ, ω),

h
(q)
θ (rq, θ, ω) = h

(q+1)
θ (rq, θ, ω). (4.32)

The dependencies of amplitudes ez, eθ, hz and hθ on the angular variable θ and longi-

tudinal variable z can be integrated out. By explicit insertion into Eqs. (4.32), a set of

9The perpendicular component of the wave vector k
(q)
⊥ is a real function of frequency ω in the core

region and purely imaginary function of frequency ω in the cladding regions.

50



the following equations is obtained

U (q)
n C(q)

n + V (q)
n D(q)

n − U (q+1)
n C(q+1)

n − V (q+1)
n D(q+1)

n = 0,

U (q)
n A(q)

n + V (q)
n B(q)

n − U (q+1)
n A(q+1)

n − V (q+1)
n B(q+1)

n = 0,

nβU
(q)
n

(k
(q)
⊥ )2 rq

C(q)
n +

nβV
(q)
n

(k
(q)
⊥ )2 rq

D(q)
n − ωµ0w

(q)U
(p)
n

′

(k
(q)
⊥ )2

A(q)
n

−ωµ0w
(q)V

(q)
n

′

(k
(q)
⊥ )2

B(q)
n − nβU

(q+1)
n

(k
(q+1)
⊥ )2 rq

C(q+1)
n − nβV

(q+1)
n

(k
(q+1)
⊥ )2 rq

D(q+1)
n +

ωµ0w
(q)U

(q+1)
n

′

(k
(q+1)
⊥ )2

A(q+1)
n +

ωµ0w
(q)V

(q+1)
n

(k
(q+1)
⊥ )2

B(q+1)
n = 0,

ωε0ε
(q)
r w(q)U

(q)
n

′

(k
(q)
⊥ )2

C(q)
n +

ωε0ε
(q)
r w(q)V

(q)
n

′

(k
(q)
⊥ )2

D(q)
n − βnU

(q)
n

k
(q)
⊥ rq

A(q)
n

βnV
(q)
n

k
(q)
⊥ rq

B(q)
n − ωε0ε

(q+1)
r w(q+1)U

(q+1)
n

′

(k
(q+1)
⊥ )2

C(q+1)
n

−ωε0ε
(q+1)
r w(q+1)V

(q+1)
n

′

(k
(q+1)
⊥ )2

D(q+1)
n +

βnU
(q+1)
n

(k
(q+1)
⊥ )2 rq

A(q)
n +

βnV
(q+1)
n

(k
(q+1)
⊥ )2 rq

B(q)
n = 0.

(4.33)

The symbols U (q)
n , V

(q)
n in Eqs. (4.33) are the corresponding Bessel functions evaluated at

the discontinuity rp [U
(q)
n = U

(q)
n (k

(q)
⊥ rq, ω), V

(q)
n = V

(q)
n (k

(q)
⊥ rq, ω)] and primes U q

n
′, V

(q)
n

′

denote their derivatives with respect to argument k(q)⊥ r. Equations (4.33) form set of

four equations with eight unknown real-valued variables A(q)
n , B(q)

n , C(q)
n , D(q)

n , A(q+1)
n ,

B
(q+1)
n , C(q+1)

n and D(q+1)
n . For a discontinuity with index q, it is possible to rewrite

the relations in Eq. (4.33) in a matrix form as follows:(
A(q)

11,n A(q)
12,n

A(q)
21,n A(q)

22,n

)(
U

(q)
n

U
(q+1)
n

)
= 0. (4.34)

The elements of the submatrices A(q)
11,n,A

(q)
12,n,A

(q)
21,n,A

(q)
22,n are de�ned by the set of equa-

tions (4.33), while the vector U(q)
n =

(
A

(q)
n , B

(q)
n , C

(q)
n , D

(q)
n

)
is formed by the unknown

variables. The dimensions of the matrices A(q)
ij,n; i, j = 1, 2 are 2× 4.

In the case of �rst and last discontinuity r1 and rm, the relations at the boundaries

(4.34) are modi�ed by the boundary conditions. The solution of amplitudes e(1)z and

h
(1)
z are required to be �nite in the region r ∈ ⟨0, r1⟩. The Bessel function of the second

51



kind Yn and modi�ed Bessel function of the second kind Kn are singular at r = 0. Thus,

the coe�cients B(1)
n , D

(1)
n have to equal to zero. The requirement of vanishing of the

�eld amplitudes e(m)
z and h(m)

z with r → ∞ implies, that the amplitudes have to evolve

according to the modi�ed Bessel function of the second kind Kn/10. As a result, the

coe�cients A(m)
n , C

(m)
n = 0. In total, this reduces the number of unknown variables by

number of four. The boundary conditions for the �rst discontinuity q = 1 then attains

a form: (
Ã(1)

11,n A(1)
12,n

Ã(1)
21,n A(1)

22,n

)(
Ũ

(1)
n

U
(2)
n

)
= 0. (4.35)

The matrices Ã(1)
11,n and Ã(1)

21,n are 2 × 2 matrices and the vector of unknown variables

Ũ
(1)
n is de�ned as Ũ(1)

n = (A
(1)
n , C

(1)
n ). The matrices A(m)

12,n,A
(m)
22,n have a size 2 × 4. In

the case of the last discontinuity q = m, we arrive at the equation(
A(m)

11,n Ã(m)
12,n

A(m)
21,n Ã(m)

22,n

)(
U

(m)
n

Ũ
(m+1)
n

)
= 0. (4.36)

The vector of unknown variables Ũ
(n+1)
n is de�ned as Ũ

(n+1)
n = (B

(n+1)
n , D

(n+1)
n ) and

the sizes of matrices A(m)
11,n,A

(m)
21,n and Ã(m)

12,n, Ã
(m)
22,n are 2× 4 and 2× 2, respectively.

For m discontinuities, we arrive at set of 4m equations for 4m unknown variables.

This set of equations has a form AU = 0, which can be expressed as

Ã(1)
11,n A(1)

12,n 0 0 . . . 0 0

Ã(1)
21,n A(1)

22,n 0 0 . . . 0 0

0 A(2)
11,n A(2)

12,n 0 . . . 0 0

0 A(2)
21,n A(2)

22,n 0 . . . 0 0
...

. . . . . .
...

0 . . . . . . 0 A(m)
11,n Ã(m)

12,n

0 . . . . . . 0 A(m)
21,n Ã(m)

22,n





Ũ
(1)
n

U
(2)
n

U
(3)
n

...

U
(m)
n

Ũ
(m+1)
n


= 0. (4.37)

The non-zero solution of the problem requires determinant of the boundary-condition

matrix A (4.37) to be zero. This results in the equation

ξ(β, ω, n) = det(A) = 0, (4.38)

where function ξ is given by determinant of the boundary-matrix A. The variables ω, n
10Modi�ed Bessel function of the second kind Kn(r) is exponential-like decaying function in radial

coordinate r. Therefore it satis�es the requirement limr→∞Kn(r) = 0
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in Eq. (4.38) are de�ned as independent variables and variable β = β(ω, n) is de�ned

to be dependent variable. The propagation constants β are found as roots of function

ξ(β, ω0, n0) for �xed values of parameters ω = ω0, n = n0. For this task a suitable

numerical approach has to be used11.

The fundamental mode arises as the solution of dispersion equation with the highest

value of propagation constant β(ω, n) and occurs even at the lowest possible guided

frequencies. The other modes follow the fundamental mode with lower propagation

constants β. The modes are categorized with respect to their complexity in the angular

and radial directions. In the angular direction, the �elds are de�ned by the integer n

(4.31). The integer n de�nes number of periods of the z-components of the electric-

ez and magnetic-�eld amplitudes hz in the angular direction θ. In the radial direction,

the modes are labelled by radial index ñ, which is as well an integer. It is not present

explicitly in the solutions for the �elds' components (4.7), but arises naturally from

geometry of the problem. Geometrically, it is related to the number of periods of the

mode in the radial direction.

The modes with higher radial mode numbers ñ originate for higher threshold fre-

quencies ω. This property allows us to exclude higher-order modes for the chosen

frequencies (wavelengths) by a suitable choice of radii r1 and r2 of the �ber ring core

(Fig. 4.3). Detailed numerical calculations have revealed that the analyzed �ber with

its core extending from r1 = 4 µm to r2 = 5.5 µm admits only the radial fundamental

modes for the wavelengths longer than 1.2 µm.

E�ective indices of refraction np,eff (np,eff = cβp/ωp) for the pump �eld at the

wavelength λ0p = 0.775 µm are shown in Fig. 4.4. They are indexed by azimuthal number

n and radial number ñ. Modes with the simplest transverse pro�les are interesting for

the non-linear interaction as they propagate with low distortions and also allow to

reach the greatest values of the interaction overlap integral written in Eq. (4.15). From

this point of view, TE01, TM01, HE11, and HE21 modes with the greatest e�ective

indices of refraction np,eff are important (see Fig. 4.4). Whereas transverse components

of TE01 and TM01 modes have a complex structure from the point of view of OAM

eigenmodes tl(θ) given by Eq. (4.25), transverse components of modes HE11,R and

HE11,L are close to eigenmode t0(θ). Transverse components of mode HE21,R [HE21,L]

are close to eigenmode t+1(θ) [t−1(θ)] and so bear a nonzero OAM (for details, see

Fig. 4.6 below).

11The formulation of the dispersion Eq. (4.38) needs computation of determinant of matrix A in
Eq. (4.37). Since the order of matrix is 4m, the computation of the determinant can be computational
demanding for higher numbers of m. For this case an alternative approach is developed [51].

53



1.455

1.46

1.465

1.47
n p

,e
ff

0 1 2 3 4 5 6 7 8 9 10
np

TE01,TM01

HE11

HE21

(a)

1.4724

1.4725

1.4726

1.4727

1.4728

1.4729

n p
,e

ff

0 1 2 3
np

HE11

TE01

TM01

HE21

(b)

Figure 4.4: (a) E�ective refractive index np,eff of the pump �eld in dependence on
azimuthal number np for λ0p = 0.775 µm. (b) Detail of the graph around np = 0 is
shown.

The signal and idler �elds analyzed at the wavelength λ0s = λ0i = 1.55 µm contain

only radial fundamental modes which e�ective indices of refraction ns,eff are plotted in

Fig. (4.5). In total 14 modes occur in the analyzed spectral region: TE01 and TM01

modes without a de�ned OAM and both left- and right-handed circularly polarized

modes HE11 (l = 0), HE21 (l = ±1), HE31 (l = ±2), HE41 (l = ±3), EH11 (l = ±2) and

EH21 (l = ±3).
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Figure 4.5: (a) E�ective refractive index ns,eff of the signal �eld in dependence on
azimuthal number ns for λ0s = 1.55 µm. In (b), detail of the graph around ns = 0 is
shown.

Pro�les of the x and z components of signal electric-�eld amplitudes eη(r, θ) for four

simplest modes, TE01, TM01, HE11, and HE21, are shown in Fig. 4.6. The y components
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of electric-�eld amplitudes eη(r, θ) have the same amplitudes as the x components of

eη(r, θ) but their phases are shifted by π/2 with respect to the phases of the x compo-

nents. The pump modes have similar pro�les as the signal modes, they are only more

localized inside the core ring as a consequence of their half wavelength relative to the

signal one.
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Figure 4.6: Amplitude and phase of components ex(x, y) and ez(x, y) of electric-�eld
amplitudes for modes TE01 (a), TM01 (b), HE11,R (c), and HE21,R (d) for the signal
�eld at λ0s = 1.55 µm; x = r cos(θ), x = r sin(θ). The cartesian x and y axes' labels are
in µm and the components are normalized according to

∫
dxdy |ex,z(x, y)|2 = 1.

The weights of individual OAM eigenmodes in the above modes determined by prob-

abilities p in Eq. (4.27) are important for judging e�ciency of the non-linear interaction

as it obeys the conservation law of OAM expressed in Eq. (4.26). The probabilities p

determined for the most useful modes TE01, TM01, HE11, and HE21 of the signal �eld

are depicted in Fig. 4.7. Whereas several OAM eigenmodes are essential for building

TE01 and TM01 modes, the OAM eigenmode t0(θ) [t+1(θ) and t−1(θ)] dominates in the
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x and y components of electric-�eld amplitude eη(r, θ) of modes HE11,R and HE11,L

[HE21,R and HE21,L]. On the other hand, the z components of electric-�eld amplitudes

eη(r, θ) usually contain OAM eigenmodes tl with l in absolute value greater by one com-

pared to their x and y components. So the component ez,HEm1,R
(r, θ) [ez,HEm1,L

(r, θ)]

is formed by OAM eigenstate t+m(θ) [t−m(θ)] for m = 1, 2.
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Figure 4.7: Probabilities pl of measuring an OAM eigenmode tl for the x and z compo-
nents of electric-�eld amplitude eη(r, θ, ω) for modes (a) TE01, (b) TM01, (c) HE11,R,
and (d) HE21,R for the signal �eld at λ0s = 1.55 µm.

These modes of the pump, signal and idler �elds can be combined in several di�erent

ways in order to arrive at an e�cient non-linear interaction among individual modes.

This interaction is e�cient provided that the conservation laws of energy and OAM to-

gether with quasi-phase-matching are ful�lled. Period Λ of periodical poling is the only

free parameter that allows us to choose among several individual non-linear processes.

In the following three sections, di�erent processes that give us both spectrally narrow-

and broad-band photon pairs as well as photon pairs entangled in OAM numbers are
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analyzed.

4.5 Generation of photon pairs with non-zero OAM num-

bers

Pump modes with zero OAM numbers lp are suitable for the generation of spectrally

broad-band photon pairs whereas pump modes with non-zero OAM are optimal for the

emission of spectrally narrow-band photon pairs. When the conservation law of OAM

in Eq. (4.26) is applied to pump modes HE11,R and HE11,L with lp = 0, the signal ls
and idler li OAM numbers have to have the same absolute value, but opposite sign.

The signal and idler modes then naturally have similar properties, which allow for a

broad-band photon-pair generation (see the Sec. 4.6). On the other hand, if the pump

beam is in mode HE21,R with lp = +1 (or its left-handed circularly polarized variant

HE21,L with lp = −1) the conservation law of OAM suggests the signal and idler modes

with di�erent OAMs. The down-converted modes are then expected to have di�erent

properties and the emission of photon-pairs is assumed to be narrow-band and non-

degenerate. Stability of the pump mode HE21,R follows from the graph in Fig. 4.4 that

identi�es modes TE01 and TM01 as the closest modes with respect to e�ective refractive

index np,eff . However, di�erences ∆np,eff between the modes (∆np,eff = −9 × 10−5 for

mode TE01, ∆np,eff = 1 × 10−4 for mode TM01) are high enough to guarantee stable

guiding of mode HE21 without crosstalk.

The signal and idler modes ful�lling the conservation of OAM together with the

pump HE21,R mode are summarized in Table 4.1. However, only the variants with the

signal HE21,R mode and idler HE11,R and HE11,L modes are su�ciently stable. The

fundamental modes HE11,R and HE11,L are the most stable. In detail, the di�erence

∆ns,eff of refraction indices of modes HE11 and the closest mode TE01 equals 1× 10−3,

whereas ∆ns,eff for mode HE21 and the closest mode TE01 is 1.5× 10−4.

Also the signal TE01 and TM01 modes may participate in the non-linear interaction

as they are partially composed of OAM eigenmodes with ls = +1 [see Fig. 4.8(a)].

However, these modes are not suitable for transmission of photons as they do not

have a well de�ned OAM. They can be spectrally separated from the combinations of

modes discussed above owing to di�erent propagation constants. They lead to di�erent

values of non-linear phase mismatch ∆β for the considered individual non-linear pro-

cesses (HEp
21,HE

s
21,HE

i
11), (HE

p
21,TE

s
01,HE

i
11) and (HEp

21,TM
s
01,HE

i
11). The dependence

of non-linear phase mismatch ∆β on signal wavelength λs for continuous-wave pumping
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pump HE21,R

lp +1

signal HE21,R
HE31,R

EH11,R

HE41,R

EH21,R

ls 1 2 3

idler
HE11,R

HE11,L
HE21,L

HE31,L

EH11,L

ls 0 -1 -2

Table 4.1: Possible combinations of pump, signal and idler modes with their OAM
numbers l (in the weakly-guiding approximation [50]) ful�lling the conservation of OAM.

plotted in Fig. 4.8(a) shows that a su�ciently narrow spatial spectrum χ̃(2) of QPM grat-

ing [see Eq. (4.17)] provides spectral separation of di�erent non-linear processes. Width

∆χ̃(2) of spatial spectrum can easily be varied by the length L of the grating. The longer

the grating, the narrower the spectrum χ̃(2) and also the narrower the signal- and idler-

�eld spectra. Individual non-linear processes are thus better separated for longer QPM

gratings. Therefore a suitable length of the grating has to be found. A 10-cm long rect-

angular grating [for scheme, see Fig. 4.2] with period Λ = 42.9 µm available by a simple

fabrication method [23] [see Fig. 4.8(a) for its spectrum χ̃(2)] satis�es the requirement.

It allows the generation of signal photons around the wavelength λ0s = 1.5 µm accom-

panied by idler photons around the wavelength λ0i = 1.6 µm in the non-linear process

(HEp
21,HE

s
21,HE

i
11). Intensity spectral width ∆χ̃(2) equals 2 × 10−4 µm−1 (full width

at half maximum, FWHM) for this grating and guarantees the amount of unwanted

photons at the level of 1%.

The number of generated photon pairs depends on the overlap integral containing

the product of pump, signal and idler electric-�eld amplitudes in the transverse plane

[see Eq. (4.15)]. The value of this integral in the azimuthal angle is maximized due to

the conservation of OAM. The maximal available value of this integral then depends

on radial mode pro�les that are shown in Fig. 4.8(b) for the chosen non-linear process.

It holds in general that the lower the number of minima in radial intensity pro�les,

the greater the number of generated photon pairs. This favors modes with lower mode

numbers. The utilized modes are fundamental in the radial direction. This implies that

there are no zeros in their radial pro�les, as can be veri�ed in Fig. 4.8(b). As a result,

they e�ciency of the non-linear interaction is maximized.

Six well separated peaks occur in the down-converted �eld spectrum Ns(λs) shown

in Fig. 4.9. The most intensive peak at λs = 1.5 µm belongs to mode HEs
21,R and origi-
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Figure 4.8: (a) Phase mismatch ∆β for non-linear processes (HEp
21,HE

s
21,HE

i
11),

(HEp
21,TE

s
01,HE

i
11) and (HEp

21,TM
s
01,HE

i
11). The gray horizontal pattern describes spa-

tial spectrum χ̃(2)(β) of a rectangular QPM grating with Λ = 42.9 µm; L = 10 cm. (b)
Absolute value |ex| of the x component of electric-�eld amplitude depending on radius
r for pump mode HEp

21, signal mode HEs
21 and idler mode HEi

11. Normalization is such
that

∫
dxdy |ex(x, y)|2 = 1.

nates in the non-linear processes (HEp
21,R,HE

s
21,R,HE

i
11,L) and (HEp

21,R,HE
s
21,R,HE

i
11,R).

The accompanying peaks at λi = 1.603 µm correspond to modes HEi
11,L and HEi

11,R

with the same weight. The curves in Fig. 4.9 con�rm that these desired peaks can be

well separated by frequency �lters from the unwanted ones. The modes HEi
11,L and

HEi
11,R with the same spectra cannot be separated and in fact form a common quan-

tum superposition state. The e�ciency of spectral separation in ring �bers is similar to

that found in non-linear waveguides with SPDC [85,86]. Spectral width of the peak at

λs = 1.5 µm equals 9.41 nm (FWHM). The peak occurring at λs = 1.4 µm belongs to

TM01 mode and forms a pair together with the peak at λi = 1.73 µm given by mode

HEi
11,R. Mode TEs

01 is responsible for the peak at λs = 1.63 µm that occurs together

with the peak at λi = 1.47 µm established by mode HEi
11,R. It is worth to note that

small oscillations at the wings of the peaks re�ect the shape of spatial spectrum χ̃(2)(β)

of QPM grating.

As follows from Fig. 4.9, photon-pair density Ns attains its maximum value at

2.4× 109 nm−1s−1 for 1 W of the pump power. Taking into account the peak spectral

width, around 20 photon pairs per 1 s and 1 µW of pumping are expected in modes

(HEp
21,R,HE

s
21,R,HE

i
11) provided that appropriate spectral �lters are used. The number

of generated photon pairs can be increased by considering longer �bers. It can be shown

theoretically that the number of photon pairs increases better than linearly with the
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�ber length. Also narrowing of the emitted spectra occurs with the increasing �ber

length. On the other hand, fabrication imperfections as well as non-ideal alignment of

the non-linear interaction in the laboratory reduces these numbers by one or two orders

in magnitude [45].

Photon pairs are emitted in states entangled in signal and idler frequencies due to

the conservation law of energy. This results in sharp temporal correlations in detection

times of the signal and idler photons. For the spectra approx. 10 nm wide, typical

entanglement times quantifying these correlations are in hundreds of fs (for details, see

Fig. 4.11) [87].

4.6 Generation of spectrally broad-band photon pairs

As it has already been discussed above, the pump �eld in a HE11,R (or HE11,L) mode

with lp = 0 allows to generate spectrally broad-band photon pairs achievable usually

in chirped poled non-linear materials [88,89]. This is a consequence of �at spectral de-

pendencies of phase mismatches ∆β of individual non-linear processes conserving OAM

[see Fig. 4.10(a)]. Stable down-converted modes of LP11 family, HE21, TE01 and TM01,

can take part in this interaction. The curves in Fig. 4.10(a) indicate that the non-linear

processes (HEp
11,R,HE

s
21,R,HE

i
21,L), (HE

p
11,R,HE

s
21,L,HE

i
21,R), (HE

p
11,R,TE

s
01,TM

i
01), and

(HEp
11,R,TM

s
01,TE

i
01) occur nearly simultaneously and thus may provide a more complex

state. On the other hand, the processes (HEp
11,R,TE

s
01,TE

i
01) and (HEp

11,R,TM
s
01,TM

i
01)

can easily be separated from other processes for su�ciently narrow spatial spectra
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χ̃(2)(β), similarly as in the case discussed in Section 4.5. As an example, we consider the
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Figure 4.10: (a) Phase mismatch ∆β for non-linear processes pumped by mode HEp
11,R

with signal and idler �elds in modes HE21, TE01 and TM01 in dependence on wave-
length of signal photon λs. The gray horizontal pattern describes spatial spectra
χ̃(2)(∆β) of rectangular non-linear modulation with Λ = 41.06 µm (upper pattern)
and Λ = 42.28 µm (lower pattern); L = 10 cm. (b) Spectral photon-number density
Ns originating in non-linear process (HEp

11,R,TE
s
01,TE

i
01); Λ = 42.28 µm, L = 10 cm in

dependence on wavelength λs.

non-linear interaction with TE01 signal and idler modes. This interaction is achieved

for period Λ of the non-linear modulation equal to 42.28 µm. Signal photon-number

density Ns(λs) for this process and 10-cm long QPM grating attains its maximum at

degenerate wavelength λ0s = 1.55 µm where a 142-nm wide peak occurs [FWHM, see

Fig. 4.10(b)]. Around 150 photon pairs per 1 s and 1 µW of pumping are emitted in this

process. The obtained spectrum is approx. 15 times broader compared to that of the

process analyzed in Section 4.5. This implies considerably sharper temporal features

of photon pairs generated by the process (HEp
11,R,TE

s
01,TE

i
01). Pro�les of probabil-

ity densities pt,i of detecting an idler photon at time ti conditioned by detection of a

signal photon at time ts = 0 s for both cases (narrow-band and broad-band) are com-

pared in Fig. 4.11 con�rming this fact. Whereas the probability-density width equals

4.5 × 10−14 s (FWHM) for the spectrally broad-band process (HEp
11,R,TE

s
01,TE

i
01), it

attains 63.5× 10−14 s for the spectrally narrow-band process (HEp
21,R,HE

s
21,R,HE

i
11,R).

The sharp temporal correlations are important in metrology as they determine the

available temporal resolution [25,90].
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photon detection time ti for a signal photon detected at time ts = 0 s for processes
(HEp

21,R,HE
s
21,R,HE

i
11,R) (Λ = 42.9 µm) and (HEp

11,R,TE
s
01,TE

i
01) (Λ = 42.28 µm),

L = 10 cm. Constant C is de�ned such that
∫∞
−∞ dtipt,i(ti) = 1.

4.7 Generation of photon pairs entangled in OAM numbers

Pumping the �ber with a HE11,R (or HE11,L) mode is interesting even in the case

when more LP11 modes participate in the non-linear interaction. Period Λ of non-

linear modulation equal to 41.06 µm provides suitable conditions for four non-linear

processes (HEp
11,R,HE

s
21,R,HE

i
21,L), (HE

p
11,R,HE

s
21,L,HE

i
21,R), (HE

p
21,R,TE

s
01,TM

i
01) and

(HEp
21,R,TM

s
01,TE

i
01) [see Fig. 4.10(a)]. The last two processes do not contribute to

photon-pair generation as they have zero overlap integrals given in Eq. (4.15). In the

�rst two non-linear interactions, the signal and idler photons are generated with OAM

numbers equal to ±1 and ∓1. State |ψls,li⟩ entangled in OAM numbers [91] (|ψls,li⟩ =
C1|ls = 1⟩s|li = −1⟩i + C2|ls = −1⟩s|li = 1⟩i, C1 and C2 are constants) can thus be

obtained at wavelengths λs = 1.35 µm and λi = 1.82 µm. As both processes have

nearly equal intensities, a generated state close to the maximally entangled state is

expected. Also radial pro�les of the emitted photons are close to each other which

justi�es the use of formula (4.30) for the determination of Schmidt number Kθ. It gives

Kθ = 1.998. For comparison, the exact numerical decomposition described in Eq. (4.29)

provides Kθ = 1.994. The obtained peak in the signal photon-number density Ns(λs)

is 21 nm wide (FWHM) and its pro�le is shown in Fig. 4.12. The curve plotted in

Fig. 4.12 corresponds to 30 signal photons generated per 1 s and 1 µW of pumping,

which characterizes an intense source of photon pairs.

The generated state is simultaneously entangled also in the signal and idler frequen-
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s
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i
21,L) and (HEp

11,R,HE
s
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wavelength λs. The curves nearly coincide; Λ = 41.06 µm, L = 10 cm.

cies. It can be expressed as

|ψ⟩ =

∫
dωsdωiΦ1s,−1i(ωs, ωi)|ls = 1, ωs⟩s|li = −1, ωi⟩i

+Φ−1s,1i(ωs, ωi)|ls = −1, ωs⟩s|li = 1, ωi⟩i. (4.39)

We analyze spectral entanglement assuming separability of the spectral pro�le and

that in the transverse plane for both �elds. We also analyze the two-photon spectral

amplitude Φ1s,−1i(ωs, ωi) arising from the process (HEp
11,R,HE

s
21,R,HE

i
21,L) and note

that the two-photon amplitude Φ−1s,1i(ωs, ωi) of process (HEp
11,R,HE

s
21,L,HE

i
21,R) is

very similar to the former one. As the amount of spectral entanglement depends on

the pump-�eld spectral width σp, we consider the Gaussian spectrum Ep centered at

frequency ω0
p corresponding to λ0p = 0.775 µm,

Ep(ω) =

√√
2

π

1

σp
exp

[
−
(ω − ω0

p)
2

σ2p

]
. (4.40)

The two-photon spectral amplitude Φ1s,−1i(ωs, ωi) considered for a pulsed pump

�eld has a typical elliptical shape with axes oriented at directions ωs = ωi − ω0
i + ω0

s

and ωs = ω0
p − ωi. For the analyzed con�guration, the pump-�eld spectrum cannot

be wider than σp = 0.85 nm (the corresponding intensity FWHM equals 2 nm) to

assure negligible contributions from other non-linear processes discussed above. In this

case, the two-photon amplitude Φ1s,−1i is elongated along the direction ωs = ω0
p − ωi.

This is caused by the fact that the extension of amplitude Φ1s,−1i in direction ωs =
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Figure 4.13: (a) Cut of absolute value |Φ1s,−1i(ωs, ωi)| of two-photon spectral amplitude
along the line ωs = ωi − ω0

i + ω0
s and (b) ωs = ω0

p − ωi appropriate for the process
(HEp

11,R,HE
s
21,R,HE

i
21,L) pumped by a pulsed �eld; σp = 0.85 nm, Λ = 41.06 µm,

L = 10 cm. It holds that
∫
dωsdωi |Φ(ωs, ωi)|2 = 1.

ωi − ω0
i + ω0

s is limited by the product of pump-�eld spectrum Ep and spatial spectrum

χ̃(2) of non-linear modulation. As shown in Fig. 4.13(a) for the pump �eld with width

σp = 0.85 nm, spatial spectrum χ̃(2) introduces oscillations in this direction. The

extension of amplitude Φ1s,−1i in direction ωs = ω0
p − ωi depends on phase-matching

properties of the structure as well as on the width of the pump-�eld spectrum. This

admits much broader pro�les, as documented in Fig. 4.13(b). Oscillations in spectrum

χ̃(2) of non-linear grating are also visible in this pro�le, as it depends on variation from

the optimal phase-matching condition.

There typically occur several tens of independent spectral modes for the consid-

ered pulsed pumping. The number Kω of independent spectral modes determined by

Eq. (4.24) increases nearly linearly with the increasing pump-�eld spectral width σp

in the interval depicted in Fig. 4.14. This originates in considerable broadening of the

signal- and idler-�eld spectra with the increasing values of spectral width σp. The over-

all number of independent modes is given by the product KθKω of numbers of modes

in the spectral and azimuthal variables and thus reaches approx. 200 for the pump �eld

having 0.85 nm wide spectrum. All these modes can, in principle, be used for quantum

communications for delivering entangled information.

We have considered 10 cm long periodically poled ring �ber as it can be fabricated

by a simple method [67]. However, there exists a more sophisticated fabrication method

allowing production of poled ring �bers up to 1 m long [92]. The numbers of generated
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photon pairs more than one order of magnitude greater are expected in such �bers.

In many applications, the signal-to-noise ratio of a photon-pair source is an impor-

tant parameter. In the analyzed ring �ber, three sources of noise can be identi�ed. The

�rst source is related to the presence of other non-linear processes. The second source of

noise is caused by the photon losses in the �ber. One photon from a generated photon

pair can be lost leaving the remaining photon in the form of noise. Finally, a photon

pair can be emitted into an unwanted pair of modes and so both its photons contribute

to the noise. However, it has been shown in [45] that the Raman scattering as well

as other non-linear processes are negligible in regular �bers with the same material

structure. As for the broken photon pairs, any measurement based on the detection

of photon coincidences eliminates this kind of noise. Our results have shown that the

probability of generation of a photon pair into an unwanted pair of modes is lower than

1/100 for the discussed con�guration. Thus, all three sources of noise can be neglected.

The discussed noise weakens entanglement of the generated state entangled in OAM

numbers. This weakening can be quanti�ed, e.g., using the Clauser-Horne-Shimony-Holt

(CHSH) form of the Bell inequalities [93]. To simplify calculations, we �rst determine a

reduced statistical operator ρ̂OAM corresponding to the state |ψ⟩ in Eq. (4.39) reduced

over the signal (ωs) and idler (ωi) frequencies. Considering additional noise with relative

weight p, an appropriate statistical operator ρ̂′OAM can be expressed as

ρ̂′OAM = (1− p)ρ̂OAM + p
Î

4
(4.41)

using the unity operator Î. Maximal violation of the CHSH inequalities occurs under
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conditions discussed in [94]. In this case and assuming p = 0.01, parameter S quanti-

fying this violation (S > 2) equals 2.8. The boundary value of parameter S (S = 2) is

observed for p = 0.283, which does not represent a real limitation for experiments. For

comparison, recent measurements with states entangled in OAM numbers have reached

S = 2.78 for l ± 1 [95] and S = 2.69 for l ± 2 [96].

The results obtained is this Chapter can also be applied to �bers with vortex ge-

ometry [48]. Compared to ring �bers, they contain an additional central core. As a

consequence, their fundamental mode HE11 is more stable. Altought, the dispersion

curves of individual modes are expected to by slightly di�erent, the non-linear process

should behave in the same manner.
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Chapter 5

Generation of photon pairs in

layered structures

The advantages of the use of the layered structures for SPDC are mentioned in Sec-

tion 5.1. It also includes the current state of art in the �eld of SPDC in the lay-

ered dielectric and metallo-dielectric systems. The advantages and disadvantages of

the metallo-dielectric systems in comparision with the purely dielectric ones are high-

lighted. The non-linear tensor of the second order for metal is derived in Section 5.2.

The proposed model assumes that the non-linearity is caused by the Lorentz force. The

quantities characterizing a photon pair and parameters evaluating e�ciency of layered

structures are de�ned in Section 5.4. Section 5.5 includes theory of the photon losses in

the investigated metallo-dielectric layered structures. The emission of photon pairs from

a metal-dielectric-metal resonator is examined in Section 5.6. The design procedure is

applied in order to obtain the resonator with the highest emission rate. The proper-

ties of photon pairs emitted from the designed structure are explored. Particularly,

the angular-wavelength density of photon pairs. The emission e�ciency is compared

to both a single dielectric layer of the same length and to a reference structure. The

most e�cient structure with 11 layers is obtained and analyzed along the same vein in

Section 5.7. In addition, mode pro�les, correlated areas (both in Sec. 5.7), temporal

properties (Sec. 5.8) and photon losses (Sec. 5.9) are examined.

5.1 Introduction

Modern optical structures that con�ne the �elds in one (layered structures) or two

(waveguides, optical �bers) dimensions represent qualitative improvement from the
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point of view of e�ciency of photon-pair generation. The con�nement of interacting

�elds enhances their electric-�eld amplitudes on one side, it qualitatively changes the

conditions for an e�cient non-linear interaction on the other side. The requirement for

phase matching of wave vectors is then replaced by the need of large spatial overlap

of the electric-�eld amplitudes of all three interacting �elds. As spatial pro�les of the

electric-�eld amplitudes depend strongly on parameters and geometry of the structures,

much broader possibilities for tailoring properties of the emitted photon pairs exist.

Non-linear layered structures con�ne the �elds along their propagation direction.

Back-scattering of the �elds creates a one dimensional photonic-band structure (PBG)

with transmission peaks and forbidden bands [87, 97�99]. The electric-�eld amplitudes

can be enhanced by this back-scattering, which under suitable conditions gives an e�-

cient non-linear interaction. However, as the con�nement of optical �elds occurs only

in one dimension, the enhancement of optical �elds is considerably weaker compared to

waveguiding structures, at least for dielectric structures. On the other hand, there exist

the usual transverse phase-matching conditions and the impinging �elds can be easily

coupled into the modes of the structure [87]. Also properties of a two-photon state can

be e�ciently and easily controlled by spatial and temporal spectra of the pump beam.

Taking into account the precision of well-established fabrication techniques [100�102],

one-dimensional PBGs represent promising sources of photon pairs.

Non-linear dielectric layered structures have been already investigated from the point

of view of SPDC. Both semiclassical (stochastic) [98] and quantum models [87, 99] of

SPDC in dielectric layered structures have been elaborated. These structures have

been shown to be able to provide entangled photon pairs anti-symmetric with respect

to the exchange of signal and idler frequencies [33]. Also random non-linear dielectric

layered structures have been analyzed as sources of spectrally ultra-narrow photon pairs

[103,104]. Surface SPDC has been shown to give important contribution to photon-pair

generation rates [105�107].

The metallo-dielectric layered structures have been investigated from the point of

view of linear transmission properties [108,109]. It has been shown that, considering the

overall transmission, the total amount of metal inside the structure can be considerably

larger provided that it is split into thin layers sandwiched by dielectric layers. The en-

hanced transmission takes place due to resonant tunnelling e�ect of light1, which relates

to the entire periodical system. The strong back-scattering e�ects in metallo-dielectric
1The resonant tunnelling e�ect originates from three simultaneously occurring e�ects. Tunnelling

of light through the metallic layers, negative interference of light in metallic layers and enhancement
of �eld's amplitudes in dielectric regions. As a result the electromagnetic �eld is transmitted through
a periodic layered structure with high e�ciency.
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structures, which result from high re�ectivity of metallic layers, enhances the electric-

�eld amplitudes. The ampli�cation is considerably stronger compared to only dielectric

structures [110]. This allows to consider e�cient non-linear processes in more complex

metallo-dielectric structures. Narrow spectral interaction regions and strong direction-

ality of photon emissions are distinguished properties of such structures. For this reason,

the emitted photon pairs are suitable for photon-atom interactions that require both

properties to maximize the strength of interaction [111]. We note that such photon-

atom interaction is in the center of attention in recent years in quantum-information

processing as entanglement is easily generated in optical �elds but excitations are easily

stored in atomic systems [112�114]. Recently, the process of second harmonic gener-

ation in metallo-dielectric layered structures has been investigated both theoretically

and experimentally [115, 116]. Also the �rst brief investigation of SPDC in such struc-

tures has con�rmed high enhancement of photon-pair generation rates due to strong

back-scattering occurring at metal-dielectric boundaries with high contrast of refrac-

tion indices [A3]. The detailed analysis of these structures con�rmed the preliminary

results and showed that the transmission properties in�uence as well correlated areas

and temporal properties of photon pairs [A4].

5.2 Non-linear model of metal

Optical non-linear response of metals can arise due to several physical processes includ-

ing the Fermi smearing [115], strong redistribution of charges [116, 117] and a�ecting

the path of electrons by a strong magnetic �eld [118]. Other mechanisms leading to

non-linearity are discussed in [116,118].

The linear and non-linear properties of free electrons in metal can be described by

the hydrodynamical model [116]. The hydrodynamical model of metal originates from

equation of motion for free electron

m
dv

dt
(r, t) +mγv(r, t) = −eE− ev(r, t)×B− ∇p

n
. (5.1)

m is an e�ective mass of electron, v is velocity of an electron, γ is a damping factor,

e is absolute value of elementary charge, p is an electron gas pressure and n is volume

density of electrons. With the use of the relation between the total time derivative and

the partial spatial and time derivatives

d

dt
=

∂

∂t
+ v · ∇, (5.2)
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the relation between electric current density j and electron velocity v,

j = nev, (5.3)

and relation between electric current density and polarization vector P,

∂P

∂t
= j, (5.4)

the equation of motion for polarization vector P is obtained:

∂2P

∂t2
− 1

n

∂n

∂t

∂P

∂t
−
(
∂P

∂t
· ∇
)(

1

ne

∂P

∂t

)
+ γ

∂P

∂t
=
ne2

m
E− e

m

∂P

∂t
×B+

e

m
∇p. (5.5)

Noting Eq. (5.5) is non-linear partial di�erential equation of motion. In the simplest

case, it is assumed that there are no signi�cant spatial variations in the electron charge

density n ≈ n0/2, and that the electron gas pressure p can be neglected [118]. Than,

Eq. (5.5) can be simpli�ed

∂2P

∂t2
+ γ

∂P

∂t
=
ne2

m
E− e

m

∂P

∂t
×B. (5.6)

Equation (5.6) is still non-linear equation of motion. The non-linearity arises from the

Lorentz-force term ∂tP×B [118].

Perturbation approach is applied to �nd the solution of Eq. (5.6). The polarization

P is decomposed into strong linear and weak non-linear parts. Solution of Eq. (5.6) for

three monochromatic waves representing the pump, signal and idler �elds can then be

easily found following [2]. It allows us to express the non-linear tensor χ(2) as follows:

χ
(2)
jlm(kp,ks,ki) = − iε0

2πNe

∑
o,q=x,y,z[

L∗(ωp)L
∗(ωs)A(ωs, ωi)εjloεoqmk

∗
i,q + L∗(ωp)L

∗(ωi)A(ωi, ωs)εimoεoqlk
∗
s,q

+ L(ωi)L
∗(ωs)A(ωs, ωp)εmloεoqjkp,q − L(ωi)L(ωp)A(ωp, ωs)εmjoεoqlk

∗
s,q

− L(ωs)L(ωp)A(ωp, ωi)εljoεoqmk
∗
i,q + L(ωs)L

∗(ωi)A(ωi, ωp)εlmoεoqjkp,q

]
.

(5.7)
2The assumption of a small variation of the electron charge density n is valid only when the po-

larization of electric �eld amplitude E of a strong pump beam is parallel to the surfaces of metallic
layers. Otherwise, there is non-zero spatial distribution of charges at the boundaries of the metallic
and dielectric layers, which have to be taken into account. The assumption is in agreement with the
performed simulations, where polarization of the electric �eld amplitude of the pump beam satisfy this
requirement.
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In Eq. (5.7), εijk denotes the Levi-Civita tensor, L(ω) = Ω2
p/(ω

2 + iγω) and A(ω, ω′) =

ω/ω′. The expression in Eq. (5.7) for tensor χ(2) reveals its strong dependence on

frequencies and wave vectors of the interacting �elds. Wave vectors k occurring in

Eq. (5.7) are assumed to be complex, as the �elds are strongly attenuated in metals

(due to the skin e�ect). The expected values of elements of χ(2) tensor for metals are

of the order of 10−13 m/V.

5.3 Model of spontaneous parametric down-conversion

Vectorial model of SPDC in non-linear layered structures has been formulated in [87]

using the interaction Hamiltonian Ĥint. Alternatively, the interaction momentum oper-

ator Ĝint/3 can be used to describe SPDC caused by a strong pump beam propagating

along the z axis [72,110,119]:

Ĝint(z) = 2ε0

∫ ∞

−∞
dt

∫
S
dxdy χ(2)(r) :

[
E(+)

p (r, t)Ê(−)
s (r, t)Ê

(−)
i (r, t) + h.c.

]
; (5.8)

r = (x, y, z). The pump-�eld is characterized by its positive-frequency electric-�eld

vector E(+)
p (r, t). The signal and idler �elds are described by their negative-frequency

electric-�eld operator vector amplitudes Ê
(−)
s (r, t) and Ê

(−)
s (r, t), respectively. Short-

ening of the tensor of non-linear susceptibility χ(2) with respect to its three indices is

denoted by :. Symbol ε0 stands for the vacuum permittivity; h.c. replaces the Hermitian

conjugated term.

The strong un-depleted pump �eld is characterized by its incident temporal spec-

trum Ep(ωp) and spatial spectrum Etr
p (kp,x, kp,y) de�ned in the transverse plane S. The

pump positive-frequency electric �eld vector E(+)
p (r, t) occurring in Eq. (5.8) can be de-

composed in a layered structure with boundaries localized at positions zj , j = 0, . . . , N ,

3Whereas the non-linear interaction Hamiltonian Ĥint gives the interaction energy, the momentum
operator Ĝint(z) provides the overall �ux of this energy through the transverse plane S positioned at
distance z.
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Figure 5.1: Scheme of a metallo-dielectric layered structure composed of six GaN layers
and �ve Ag layers.

(for the scheme of the structure, see Fig. 5.1) as follows:

E(+)
p (r, t) =

1
√
2π

3
c2

∫ π/2

−π/2
| sin(ϑp)| dϑp

∫ π/2

−π/2
dψp

∫ ∞

0
ω2
pdωp Ep(ωp)

Etr
p [kp,x(Ωp), kp,y(Ωp)] exp [ikp,x(Ωp)x+ ikp,y(Ωp)y]∑

γ=TE,TM

∑
g=F,B

N+1∑
l=0

rect(l)(z)A(l)
pg ,γ(Ωp)e

(l)
p,γ(Ωp)

× exp
[
ik(l)pg ,z(Ωp)(z − zl−1)

]
exp(−iωpt) (5.9)

using the notation Ωp ≡ (ωp, ϑp, ψp) for 'spherical coordinates' composed of the fre-

quency ωp, radial propagation angle ϑp and azimuthal propagation angle ψp. The

scalar electric-�eld amplitudes A(l)
pF ,γ and A(l)

pB ,γ in Eq. (5.9) characterize the forward-

and backward-propagating pump �elds, respectively, with γ polarization in an l-th layer

with index of refraction n(l)p . Polarization vectors e(l)pF ,γ and e
(l)
pB ,γ determine polarization

directions of γ-polarized waves in an l-th layer propagating forward (index F ) and back-

ward (B), respectively. Function rect(l)(z) for l = 1, . . . , N equals 1 for zl−1 ≤ z < zl

and is zero otherwise; function rect(0)(z) [rect(N+1)(z)] is non-zero only for z < z0

[zN ≤ z] and equals 1. Speed of light in vacuum is denoted as c. Decomposition of the

pump electric �eld E
(+)
p into its TE- and TM-polarized waves [120] in Eq. (5.9) is done

with respect to the plane of incidence of a plane wave with given wave vector kp.

Cartesian components of the pump-�eld wave vector kp in spherical coordinate sys-
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tem can be written in the form:

kp,x(Ωp) = −ωp sin(ψp) sin(ϑp)

c
,

kp,y(Ωp) =
ωp cos(ψp) sin(ϑp)

c
,

k(l)pa,z(Ωp) = ±n
(l)
p (ωp)ωp

c
cos(ϑ(l)p ); l = 0, . . . , N + 1, (5.10)

where the radial propagation angle ϑ(l)p in an l-th layer obeys the Snell law:

n(0)p sin(ϑ(0)p ) = n(l)p sin(ϑ(l)p ), l = 1, . . . , N + 1, (5.11)

ϑ
(0)
p ≡ ϑp. When writing Eq. (5.10), air around the structure was assumed (n(0)p =

n
(N+1)
p = 1). As the transverse components of wave vectors do not change during the

propagation, the x and y components of wave vector kp in Eq. (5.10) are not indexed.

Also sign + (−) in Eq. (5.10) corresponds to the forward- (backward-) propagating �eld.

The signal and idler �elds with intensities at single-photon level can be decomposed

in the same way as the pump �eld in Eq. (5.9). However, instead of coe�cients A(l)
pg ,γ

characterizing the classical pump amplitudes, operator coe�cients Â(l)
ma,α describing the

quantized signal (m = s) and idler (m = i) �elds are needed [72]. The formula (5.9)

for the pump �eld can be transformed into the form applicable to the signal and idler

�elds:

Ê(+)
m (r, t) =

1
√
2π

3
c2

∫ π/2

−π/2
| sin(ϑm)| dϑm

∫ π/2

−π/2
dψm∫ ∞

0
ω2
mdωm exp [ikm,x(Ωm)x+ ikm,y(Ωm)y]

∑
γ=TE,TM

∑
a=F,B

N+1∑
l=0

rect(l)(z)Â(l)
ma,α(Ωm)

× e(l)m,α(Ωm) exp
[
ik(l)ma,z(Ωm)(z − zl−1)

]
× exp(−iωmt); m = s, i. (5.12)

Symbols introduced in Eq. (5.12) have the same meaning for the signal and idler �elds

as those de�ned below Eq. (5.9) for the pump �eld.

The pump electric-�eld amplitudes A(l)
pF ,γ and A(l)

pB ,γ as well as the signal and idler

electric-�eld operator amplitudes Â(l)
mF ,α and Â(l)

mB ,α occurring in Eqs. (5.9) and (5.12),

respectively, are mutually coupled through the Fresnel relations at the boundaries and
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free-space evolution inside the layers. These relations allow to express the pump electric-

�eld amplitudes inside the layers in terms of the amplitudes A(0)
pF ,γ and A

(N+1)
pB ,γ char-

acterizing the forward- and backward-propagating incident pump �elds. On the other

hand, the same relations applied to the signal and idler �elds provide the signal and

idler electric-�eld operator amplitudes inside the layers in terms of operator amplitudes

Â
(N+1)
mF ,α and Â(0)

mB ,α that correspond to the forward- and backward-propagating outgoing

signal and idler �elds. The transfer matrix formalism describing these relations has been

developed in [87,110,120]. Using quantization of photon �ux [75,76], the operator am-

plitudes Â(N+1)
mF ,α and Â(0)

mB ,α can be written using the annihilation operators â(N+1)
mF ,α (Ωm)

and â(0)mB ,α(Ωm):

Â(N+1)
mF ,α (Ωm) = i

√
ℏωm

2ε0c
â(N+1)
mF ,α (Ωm);

Â(0)
mB ,α(Ωm) = i

√
ℏωm

2ε0c
â(0)mB ,α(Ωm), (5.13)

obeying the usual boson commutation relations:

[â(l)ma,α(Ωm), â
(l′)†
ma′ ,α

′(Ω
′
m)] =

c2

| sin(ϑm)|ω2
m

δl,l′δa,a′δα,α′δ(ωm−ω′
m)δ(θm−θ′m)δ(ψm−ψ′

m).

(5.14)

Symbol ℏ stands for the reduced Planck constant. More details can be found in

[87,110].

An outgoing photon pair in the state |ψout
s,i ⟩ is described by the �rst-order pertur-

bation solution of the Schrödinger equation written as

|ψout
s,i ⟩ =

i

ℏ

∫ L

0
dz Ĝint(z)|vac⟩. (5.15)

In Eq. (5.15), L denotes the structure length and |vac⟩ means the signal and idler

vacuum state.

Substituting Eqs. (5.8), (5.9), (5.12), and (5.13) into Eq. (5.15) the expression for
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the two-photon state |ψout
s,i ⟩ is revealed:

|ψout
s,i ⟩ = − 2i

√
2π

3
c7

N∑
l=1

∑
a,b,g=F,B

∑
α,β,γ=TE,TM

[ ∏
m=p,s,i

∫ π/2

−π/2
| sin(ϑm)|dϑm

∫ π/2

−π/2
dψm

×
∫ ∞

0
ω2
mdωm

]√
ωsωi

n
(l)
s (ωs)n

(l)
i (ωi)

Ep(ωp)Etr
p [kp,x(Ωp), kp,y(Ωp)]

×δ(ωp − ωs − ωi)δ [kp,x(Ωp)− ks,x(Ωs)− ki,x(Ωi)]

×δ [kp,y(Ωp)− ks,y(Ωs)− ki,y(Ωi)]

×χ(2)(l)(Ωp,Ωs,Ωi) : e
(l)
pg ,γ(Ωp) e

(l)∗
sa,α(Ωs) e

(l)∗
ib,β

(Ωi)

×Llf

[
1

2
∆k

(l)
g,ab,z(Ωp,Ωs,Ωi)Ll

]
A(l)

pg ,γ(Ωp)â
(l)†
sa,α(Ωs)â

(l)†
ib,β

(Ωi)|vac⟩; (5.16)

f(x) = exp(ix) sin(x)/x. Phase mismatch∆k
(l)
g,ab,z(Ωp,Ωs,Ωi) = k

(l)
pg ,z(Ωp)−k(l)sa,z(Ωs)−

k
(l)
ib,z

(Ωi) occurs in an l-th layer of length Ll = zl − zl−1. There also exist photon pairs

emitted at the boundaries [105,106,110] that are not described by Eq. (5.16). Contribu-

tion of this surface SPDC behaves similarly as the analyzed volume contribution given

in Eq. (5.16). It increases the photon-pair generation rates. The general dependency of

the second-order susceptibility tensor χ(2) on the pump, signal and idler vectors Ωm is

assumed. This dependency has to be taken into account, while the non-linear properties

of metal are angular-frequency dependent4. For GaN layers, non-zero elements of the

susceptibility tensor χ(2) take the values [121]

χ
(2)
xxz = χ

(2)
xzx = χ

(2)
yyz = χ

(2)
yzy = χ

(2)
zxx = χ

(2)
zyy = 10 pm/V,

χ
(2)
zzz = −20 pm/V.

The output state |ψout
s,i ⟩ in Eq. (5.16) can be further decomposed with respect to the

signal and idler propagation directions and �eld polarizations. Each term describing the

signal �eld at position rs and the idler �eld at position ri outside the structure reaches

4The second-order susceptibility tensor χ(2) for metal is derived in Section 5.2
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the form:

|ψαβ
sa,ib

(rs, ri, t)⟩ =
∏

m=s,i

[
1

c2

∫ π/2

−π/2
| sinϑm|dϑm

∫ π/2

−π/2
dψm

∫ ∞

0
ω2
mdωm

]
×ϕαβab (Ωs,Ωi) exp[i(ωs + ωi)t] exp[−i(kout

sa rs + kout
ib

ri)]

× â†sa,α(Ωs)â
†
ib,β

(Ωi)|vac⟩, a, b = F,B; α, β = TE,TM.

(5.17)

Wave vectors kout
sa and kout

ib
are de�ned outside the structure. Spectral two-photon

amplitude ϕαβab (Ωs,Ωi) de�ned by Eq. (5.17) gives the probability amplitude of emitting

an α-polarized signal photon at frequency ωs and propagation direction (ϑs, ψs) together

with its β-polarized idler twin at frequency ωi and propagation direction (ϑi, ψi) at the

outputs a and b of the structure.

5.4 Quantities characterizing photon pairs

Spatial and spectral intensity properties of photon pairs [99,110] can be derived from the

joint signal-idler photon-number density nαβab (Ωs,Ωi) related to signal [idler] photons

with polarization α [β] and frequency ωs [ωi] propagating at angles (ϑs, ψs) [(ϑi, ψi)] in

direction a [b]. Using the formula Eq. (5.17) for two-photon state |ψαβ
sa,ib

(rs, ri, t)⟩ the
density nαβab can be written as follows:

nαβab (Ωs,Ωi) =
| sin(ϑs) sin(ϑi)|ω2

sω
2
i

c4
|ϕαβab (Ωs,Ωi)|2. (5.18)

Signal photon-number density nαβs,ab(Ωs) is then derived in the form:

nαβs,ab(Ωs) =

∫ π/2

−π/2
dϑi

∫ π/2

−π/2
dψi

∫ ∞

0
dωi n

αβ
ab (Ωs,Ωi).

(5.19)

Subsequently, the signal spectral photon-number density nω,αβs,ab (ωs) is determined along

the formula:

nω,αβs,ab (ωs) =

∫ π/2

−π/2
dϑs

∫ π/2

−π/2
dψs n

αβ
s,ab(Ωs). (5.20)

Similarly, the signal transverse photon-number density ntr,αβs,ab (ϑs, ψs) characterizing pho-
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tons propagating in direction (ϑs, ψs) is determined as:

ntr,αβs,ab (ϑs, ψs) =

∫ ∞

0
dωs n

αβ
s,ab(Ωs). (5.21)

Intensity correlations between the signal and idler �elds in their transverse planes are

described by the joint signal-idler transverse photon-number density ncor,αβab (ϑs, ψs, ϑi, ψi)

characterizing a photon pair with signal [idler] photon propagating along angles (ϑs, ψs)

[(ϑi, ψi)] in direction a [b]:

ncor,αβab (ϑs, ψs, ϑi, ψi) =

∫ ∞

0
dωs

∫ ∞

0
dωi n

αβ
ab (Ωs,Ωi).

(5.22)

If a signal photon is detected at angle (ϑ0s, ψ
0
s), the joint signal-idler transverse photon-

number density ncor,αβab (ϑ0s, ψ
0
s , ϑi, ψi) gives the probability of detecting the accompany-

ing idler photon at direction (ϑi, ψi). This probability determines the shape of correlated

area [10].

In the time domain, two-photon states are characterized by a two-photon temporal

amplitude A(τs, τi) that gives the probability amplitude of detecting a signal photon

at time τs together with detecting the accompanying idler photon at time τi. Using

two-photon spectral amplitude ϕαβab in Eq. (5.17), the two-photon temporal amplitude

A(τs, τi) can be expressed as:

Aαβ
ab (θs, ψs, τs, θi, ψi, τi) =

√
| sin(ϑs) sin(ϑi)|ℏ

4πε0c3

∫ ∞

−∞
dωs∫ ∞

−∞
dωi

√
ω3
sω

3
i ϕ

αβ
ab (Ωs,Ωi) exp(−iωsτs) exp(−iωiτi).

(5.23)

Temporal properties of photon pairs are usually experimentally investigated em-

ploying the Hong-Ou-Mandel interferometer [11]. In this interferometer, two photons

are mutually delayed by τl and then they interfere on a beam splitter which output

ports are monitored by two detectors measuring in coincidence (Fig. 3.1). A normalized

coincidence-count rate R depends on time delay τl according to the formula:

Rαβ
ab (τl, ϑs, ψs, ϑi, ψi) = 1− ραβab (τl, ϑs, ψs, ϑi, ψi), (5.24)
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where

ραβab (τl, ϑs, ψs, ϑi, ψi) =
| sin(ϑs) sin(ϑi)|ℏ2

2c4Rαβ
0,ab

∫ ∞

0
dωs

∫ ∞

0
dωiω

3
sω

3
i

Re
{
ϕαβ∗ab (Ωs,Ωi)ϕ

αβ
ab (ωi, ϑs, ψs, ωs, ϑi, ψi) exp[i(ωs − ωi)τl]

}
Rαβ

0,ab(ϑs, ψs, ϑi, ψi) =
| sin(ϑs) sin(ϑi)|ℏ2

2c4

∫ ∞

0
dωs∫ ∞

0
dωi ω

3
sω

3
i |ϕ

αβ
ab (Ωs,Ωi)|2.

Enhancement of the non-linear interaction inside a layered structure originates from

increased electric-�eld amplitudes due to back-scattering on the boundaries. This en-

hancement can be quanti�ed using a reference structure de�ned in [87]. This reference

structure uses the natural material non-linearity exploiting the greatest non-linear co-

e�cient, but it does not take into account the back-scattering of the propagating light5.

The reference structure generates a signal photon in direction (ϑs, ψs) together with

an idler photon in direction (ϑi, ψi) exploiting phase matching in the transverse plane

reached with a pump plane wave found in the spatial spectrum Etr
p . The phase-matching

is assumed to be maintained as well in the longitudinal direction z. The corresponding

two-photon state |ψref
s,i ⟩ is expressed as:

|ψref
s,i ⟩ = − 2i

√
2π

3
c5

[ ∏
m=s,i

∫ π/2

−π/2
| sin(ϑm)| dϑm

∫ π/2

−π/2
dψm

∫ ∞

0
ω2
mdωm

]
Ep(ωs + ωi)Etr

p [ks,x(Ωs) + ki,x(Ωi), ks,y(Ωs) + ki,y(Ωi)]

×
N∑
l=1

√
ωsωi

n
(l)
s (ωs)n

(l)
i (ωi)

max(|χ(2)(l)|)Ll â
†
s(Ωs)â

†
i (Ωi)|vac⟩ (5.25)

Creation operator â†s(Ωs) [â
†
i (Ωi)] describes the signal [idler] photon at the output plane

of the structure. Function max gives the maximal value of elements of non-linear tensor

χ(2)(l). Using the signal photon-number density nrefs (Ωs) of the reference structure given

in Eq. (5.19), the signal relative photon-number density ηαβs,ab(Ωs) at frequency ωs and

5The terms in the two-photon amplitude, which correspond to electric �eld amplitudes of the inter-
acting �elds are discarded. The magnitudes of the original amplitudes are determined by the interfer-
ence of the light scattered inside the structure. Therefore, the reference structure discards the impact
of the interference e�ects on the non-linear interaction.
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in emission direction (ϑs, ψs) is conveniently de�ned using the relation:

ηαβs,ab(Ωs) =
nαβs,ab(Ωs)

maxϑs,ωs [n
ref
s (Ωs)]

. (5.26)

In Eq. (5.26), the maximum is taken over the whole interval of radial emission angles

ϑs and frequencies ωs assuming a �xed azimuthal emission angle ψ0
s .

In the numerical calculations, a cw pump �eld with amplitude ξp and Gaussian

transverse pro�le is considered, i.e.

Ep(ωp) = ξpδ(ωp − ω0
p), (5.27)

Etr
p (kx, ky) =

rp√
2π

exp

[
−
r2p(k

2
x + k2y)

4

]
; (5.28)

ω0
p is the central frequency and rp stands for the radius of transverse pro�le. It holds

that
∫
dkx

∫
dky|Etr

p (kx, ky)|2 = 1. Whenever the expression δ2(ω) occurs in the above

de�ned formulas, it has to be replaced by the expression 2T/(2π)δ(ω) obtained for the

�elds de�ned inside interval (−T, T ). Physical quantities obtained per unit time interval

are reached in the limit T → ∞.

5.5 Losses in layered structures and noise photons

The analyzed metallo-dielectric layered structures may produce considerable amount of

noise photons due to strong absorption of the metal. The reason is that an absorbed

photon leaves its twin in the structure. If this twin exits the structure, it forms the

noise that is superimposed on the emitted photon-pair �eld. In this section, a theory

that quanti�es the contribution of noise photons is developed. We assume for simplicity

that photon pairs are generated only in dielectric layers, in accord with our results that

have revealed only weak generation of photon pairs in metal layers.

Detailed inspection of Eq. (5.16) for two-photon state |ψout
s,i ⟩ reveals that this state

is composed of contributions describing photon pairs emitted in di�erent layers. We

assume that similar decomposition can be done also for the joint signal-idler photon-

number density nαβab (Ωs,Ωi) de�ned in Eq. (5.18):

nαβab (Ωs,Ωi) ≈
∑
l∈diel

∑
a′,b′=F,B

T
(l)α
s,aa′(Ωs)T

(l)β
i,bb′ (Ωi)n

(l)αβ
a′b′ (Ωs,Ωi). (5.29)
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In Eq. (5.29), symbol n(l)αβa′b′ (Ωs,Ωi) stands for the joint signal-idler photon-number

density of photon pairs emitted in an l-th layer. Symbol
∑

l∈diel means summation

over dielectric layers. The photon-number density n(l)αβa′b′ (Ωs,Ωi) is determined along

Eq. (5.18) using a two-photon spectral amplitude ϕ(l)αβa′b′ (Ωs,Ωi) appropriate for the l-th

layer. The intensity transmission coe�cients T (l)α
m,aa′ introduced in Eq. (5.29) give the

probability that an α-polarized photon, which was created in �eld m in l-th layer with

direction a′, leaves the structure in direction a.

Whereas T (l)α
m,Fa′ + T

(l)α
m,Ba′ = 1 holds for dielectric structures, intensity absorption

coe�cients D(l)α
m,a′ are needed in metallo-dielectric structures to generalize this relation:

T
(l)α
m,Fa′ + T

(l)α
m,Ba′ +D

(l)α
m,a′ = 1;

m = s, i; α = TE,TM; a′ = F,B. (5.30)

The intensity absorption coe�cientD(l)α
m,a′ determines the probability that an α-polarized

photon propagating in direction a′ in a l-th layer in �eld m is absorbed inside the

structure. Using absorption coe�cients D(l)α
m,a′ , the signal noise photon-number den-

sity dαsi,a(Ωs,Ωi) quantifying the amount of single α-polarized photons at frequency ωs

propagating at angle (ϑs, ψs) in direction a and originating in pairs with an idler photon

with frequency ωi at angle (ϑi, ψi) is expressed as follows:

dαsi,a(Ωs,Ωi) =
∑
l∈diel

∑
β=TE,TM

∑
a′,b′=F,B

T
(l)α
s,aa′(Ωs)D

(l)β
i,b′ (Ωi)n

(l)αβ
a′b′ (Ωs,Ωi). (5.31)

An overall signal noise photon-number density dαs,a(Ωs) is then simply determined by

integrating over all possible idler-�eld frequencies ωi and propagation angles (ϑi, ψi):

dαs,a(Ωs) =

∫ ∞

0
dωi

∫ π/2

−π/2
dϑi

∫ π/2

−π/2
dψi d

α
si,a(Ωs,Ωi). (5.32)

Formulas analogous to those written in Eqs. (5.31) and (5.32) can be derived also for

the idler-�eld noise contribution.

To judge contributions of noise single photons to the generated state with α-polarized

signal photons in direction a and β-polarized idler photons in direction b, we de�ne

ratios Rαβ
m,ab(Ωm) of noise photon-number densities dαs,a(Ωs) and d

β
i,b(Ωi) with respect
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to densities nαβm,ab(Ωm) belonging to photon pairs and written in Eq. (5.19):

Rαβ
s,ab(Ωs) =

dαs,a(Ωs)

nαβs,ab(Ωs)
, Rαβ

i,ab(Ωi) =
dβi,b(Ωi)

nαβi,ab(Ωi)
. (5.33)

Also photon pairs with polarizations and propagation directions di�erent from the

analyzed one and denoted by indices (a, α) and (b, β) in Eq. (5.33) contribute to noise

photons provided that one of their two photons is captured by detectors. In this case,

ratios R̃αβ
m,ab(Ωm) de�ned along the relations

R̃αβ
s,ab(Ωs) =

dαs,a(Ωs) +
∑TM

β′=TE

∑B
b′=F n

αβ′

s,ab′(Ωs)

nαβs,ab(Ωs)
− 1,

R̃αβ
i,ab(Ωi) =

dβi,b(Ωi) +
∑TM

α′=TE

∑B
a′=F n

α′β
i,a′b(Ωi)

nαβi,ab(Ωi)
− 1

(5.34)

appropriately characterize the noise of the emitted state. However, this part of noise

can be removed in principle when multiple coincidence-count measurements are applied

in the experiment.

To determine ratios Rαβ
m,ab(Ωm) and R̃αβ

m,ab(Ωm) characterizing noise in the emitted

state, we need intensity transmission T
(l)α
m,aa′ and absorption coe�cients D(l)α

m,a′ for the

signal and idler photons born in each dielectric layer. In what follows, we concentrate

our attention to photons of �eld m (m = s, i) created in an l-th layer (for the scheme

of a general structure, see Fig. 5.2). To describe properly damping in metal layers, we

have to introduce time into the description, at least implicitly. We reach this by de�ning

the appropriate boundary conditions and by placing the initial amplitude of the photon

at particular position in the structure. There are two distinct cases characterizing the

photons propagating forward and backward in the l-th layer.

First, backward-propagating α-polarized photons described by amplitude

A
(l),ext
mB ,α (Ωm) are added to the l-th layer and their evolution inside the structure is fol-

lowed. This evolution is described by the transfer-matrix formalism elaborated for the

non-linear layered structures in [87, 110]. The remaining boundary conditions are such

that photons do not enter the structure from its front (A(0)
mF ,α(Ωm) = 0) and rear

(A(N+1)
mB ,α (Ωm) = 0) ends. The backward-propagating photons added into the l-th layer

propagate �rst in the layers to the left from the l-th layer, they can penetrate into the

layers to the right from the l-th layer later and they can even return back to the left-
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hand-side layers from the right-hand-side ones. This consideration takes into an account

all possible paths of the photon inside the structure. Following the scheme plotted in

Fig. 5.2 and showing the used amplitudes, two sets of linear equations characterizing

the propagation through the left- and right-hand-side layers can be written separately:(
A

(l)
mF ,α(Ωm)

A
(l),ext
mB ,α (Ωm) + [P(l)

m (Ωm)]∗22B
(l)
mB ,α(Ωm)

)
= L(l)

m,α(Ωm)

(
0

A
(0)
mB ,α(Ωm)

)
,

(
A

(N+1)
mF ,α (Ωm)

0

)
= R(l)

m,α(Ωm)

(
[P(l)

m (Ωm)]11A
(l)
mF ,α(Ωm)

B
(l)
mB ,α(Ωm)

)
.

(5.35)

dielectric layer

Figure 5.2: Scheme of a structure composed of N layers. Whereas amplitudes A(l)

describe the �elds at the left-hand side of an l-th layer (l = 1, . . . , N + 1), amplitudes
B(l) are appropriate for the right-hand side of this layer (l = 1, . . . , N); amplitudes
A(0) give the �elds in front of the structure. Amplitudes A(l),ext

B and B(l),ext
F belong to

the �elds added into an l-th layer. Subscript F (B) identi�es the forward- (backward-
) propagating �elds. Matrices T (l) characterize an l-th boundary and matrices P(l)

determine the free-�eld evolution in an l-th layer.

Matrices L(l)
m,α(Ωm) [R(l)

m,α(Ωm)] introduced in Eq. (5.35) describe the propagation of

both forward- and backward-propagating �elds in the layers positioned to the left [right]

from the l-th layer. They can be expressed in terms of matrices T (j)
m,α(Ωm) and P(j)

m (Ωm)

characterizing propagation through a j-th boundary and free-�eld propagation in a j-th
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layer, respectively:

L(l)
m,α(Ωm) =

2∏
j=l

[
T (j−1)
m,α (Ωm)P(j−1)

m (Ωm)
]
T (0)
m,α(Ωm),

R(l)
m,α(Ωm) =

l+1∏
j=N

[
T (j)
m,α(Ωm)P(j)

m (Ωm)
]
T (l)
m,α(Ωm).

(5.36)

More details including de�nitions of the elements of matrices T (j)
m,α(Ωm) and P(j)

m (Ωm)

can be found in [87,110].

Two sets of equations written in (5.35) are coupled. These equations can easily be re-

arranged such that one linear set of equations for amplitudes A(N+1)
mF ,α (Ωm), B(l)

mB ,α(Ωm),

A
(l)
mF ,α(Ωm), and A

(0)
mB ,α(Ωm) is obtained [Eq. (5.37)]. The �elds propagating out of

the l-the layer are characterized by amplitudes B(l)
mB ,α(Ωm), A(l)

mF ,α(Ωm), while the

�elds leaving the whole structure at its front and rear end correspond to amplitudes

A
(0)
mB ,α(Ωm) and A(N+1)

mF ,α (Ωm), respectively.
0

1

0

0

A(l),ext
mB ,α (Ωm) = M(l)

m,α(Ωm)


A

(N+1)
mF ,α (Ωm)

B
(l)
mB ,α(Ωm)

A
(l)
mF ,α(Ωm)

A
(0)
mB ,α(Ωm)

 ,

(5.37)

M(l)
m,α(Ωm) =


0 0 −1 [L(l)

m,α]12

0 −[P(l)
m ]∗22 0 [L(l)

m,α]22

−1 [R(l)
m,α]12 [R(l)

m,α]11[P(l)
m ]11 0

0 −[R(l)
m,α]22 −[R(l)

m,α]21[P(l)
m ]11 0

 .

(5.38)

The solution of set of Eqs. (5.37) provides the amplitudes that determine photon �uxes

both inside the l-th layer and outside the whole layered structure. The obtained am-

plitudes provide us the needed intensity transmission and absorption coe�cients as

follows.

According to the Poynting theorem, time-averaged power P (l)
mB ,α(Ωm) generated in
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the l-th layer by the added �eld A(l),ext
mB ,α is expressed as follows:

P (l)
mB ,α(Ωm) = n(l)m (ωm) cos(ϑ(l)m )

[
|A(l),ext

mB ,α (Ωm) + [P(l)
m (Ωm)]∗22B

(l)
mB ,α(Ωm)|2

+|[P(l)
m (Ωm)]11A

(l)
mF ,α(Ωm)|2 − |A(l)

mF ,α(Ωm)|2 − |B(l)
mB ,α(Ωm)|2

]
.

(5.39)

This power is partly dissipated both in the left- and right-hand-side layers and its

remaining part leaves the structure either at its front or rear end. Power P (l)F
mB ,α(Ωm)

[P (l)B
mB ,α(Ωm)] beyond the rear end [in front] of the structure is determined as follows

P (l)F
mB ,α(Ωm) = cos(ϑ(N+1)

m )|A(N+1)
mF ,α (Ωm)|2,

P (l)B
mB ,α(Ωm) = cos(ϑ(0)m )|A(0)

mB ,α(Ωm)|2. (5.40)

Power P (l)D
mB ,α(Ωm) dissipated in the left- and right-hand-side layers can then be derived

from the conservation law of energy:

P (l)D
mB ,α(Ωm) = P (l)

mB ,α(Ωm)− P (l)F
mB ,α(Ωm)− P (l)B

mB ,α(Ωm). (5.41)

If power P (l)
mB ,α(Ωm) equals to that of one photon per second, the powers P (l)F

mB ,α(Ωm),

P
(l)B
mB ,α(Ωm) and P (l)D

mB ,α(Ωm) give in turn intensity transmission coe�cients T (l)α
m,FB(Ωm)

and T (l)α
m,BB(Ωm) and intensity absorption coe�cient D(l)α

m,B(Ωm):

T
(l)α
m,aB(Ωm) =

P
(l)a
mB ,α(Ωm)

P
(l)
mB ,α(Ωm)

, a = F,B,

D
(l)α
m,B(Ωm) =

P
(l)D
mB ,α(Ωm)

P
(l)
mB ,α(Ωm)

. (5.42)

In the second case, forward-propagating α-polarized photons described by amplitude

B
(l),ext
mF ,α (Ωm) is added into the l-th layer. These photons propagate �rst in the right-

hand-side layers, they enter into the left-hand-side layers later and they can propagate

back to the right-hand-side layers again. Also in this case, no photon enters the structure

from its front [A(0)
mF ,α(Ωm) = 0] and rear [A(N+1)

mB ,α (Ωm) = 0] ends. Similarly as for

the added backward-propagating photons, we can write two sets of linear equations
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characterizing the propagation through the left- and right-hand-side layers separately:(
A

(l)
mF ,α(Ωm)

[P(l)
m (Ωm)]∗22B

(l)
mB ,α(Ωm)

)
= L(l)

m,α(Ωm)

(
0

A
(0)
mB ,α(Ωm)

)
,(

A
(N+1)
mF ,α (Ωm)

0

)
= R(l)

m,α(Ωm)

(
B

(l),ext
mF ,α (Ωm) + [P(l)

m (Ωm)]11A
(l)
mF ,α(Ωm)

B
(l)
mB ,α(Ωm)

)
.

(5.43)

Matrices L(l)
m,α(Ωm) and R(l)

m,α(Ωm) are de�ned in Eqs. (5.36). Eqs. (5.43) can be

transformed into a linear set of equations for amplitudes A(N+1)
mF ,α (Ωm), B(l)

mB ,α(Ωm),

A
(l)
mF ,α(Ωm), and A(0)

mB ,α(Ωm) of �elds:
0

0

−[R(l)
m,α(Ωm)]11

[R(l)
m,α(Ωm)]21

B(l),ext
m,α (Ωm) = M(l)

m,α(Ωm)


A

(N+1)
mF ,α (Ωm)

B
(l)
mB ,α(Ωm)

A
(l)
mF ,α(Ωm)

A
(0)
mB ,α(Ωm)

 ; (5.44)

matrix M(l)
m,α(Ωm) is de�ned in Eq. (5.38). The solution of system of Eqs. (5.44) allows

us to determine photon �uxes that give the powers discussed above. For the forward-

propagating photons added into the l-th layer, power P (l)
mF ,α(Ωm) given into this layer

by the external �eld with amplitude B(l),ext
mF ,α is derived in the form:

P (l)
mF ,α(Ωm) = n(l)m (ωm) cos(ϑ(l)m )

[
|B(l),ext

mF ,α (Ωm) + [P(l)
m (Ωm)]11A

(l)
mF ,α(Ωm)|2

+|[P(l)
m (Ωm)]∗22B

(l)
mB ,α(Ωm)|2 − |B(l)

mB ,α(Ωm)|2 − |A(l)
mF ,α(Ωm)|2

]
.

(5.45)

This power can be divided into three parts. Its �rst part [P (l)F
mF ,α(Ωm)] is delivered be-

yond the rear end of the structure, whereas its second part [P (l)B
mF ,α(Ωm)] is transferred

into the space in front of the structure. Finally, the third part [P (l)D
mF ,α(Ωm)] dissipates

inside the metal layers. These powers then serve for the determination of intensity

transmission coe�cients T (l)α
m,FF (Ωm) and T

(l)α
m,BF (Ωm) and intensity absorption coe�-

cient D(l)α
m,F (Ωm). Whereas formulas analogous to those written in Eqs. (5.39) and (5.40)

give powers P (l)F
mF ,α(Ωm), P (l)B

mF ,α(Ωm) and P (l)D
mF ,α(Ωm), expressions derived from those

in Eqs. (5.41) provide coe�cients T (l)α
m,FF (Ωm), T (l)α

m,BF (Ωm) and D(l)α
m,F (Ωm).
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5.6 A simple metallo-dielectric resonator

Though both the metal and dielectric layers are non-linear, the dielectric layers are

able to provide much higher photon-pair �uxes6. For this reason, the presence of thin

metal layers is important for an enhancement of electric-�eld amplitudes inside the

structure. This enhancement then results in much stronger non-linear interaction and

e�cient production of photon pairs. Compared to pure dielectric layered structures

like those composed of GaN and AlN, analyzed in [87, 110], metallo-dielectric layered

structures allow for much higher enhancement of electric-�eld amplitudes due to the high

refraction-index contrast of the used metal and dielectric materials. For comparison and

considering the wavelength 800 nm, this indices of refraction are equal to 2.51 [2.16]

for GaN [AlN] layers and 5.3 [2.51] for Ag [GaN] layers analyzed here. However, strong

attenuation, re�ection and losses of the electric-�eld amplitudes occur in metal layers.

This puts restrictions to the possible thicknesses of metal layers as well as to the number

of metal layers embedded into the structure.

To get deeper insight into the behavior of metallo-dielectric layered structures, we

�rst consider the simplest possible structure composed of only one non-linear GaN

layer sandwiched by two thin Ag layers. Thus, the Ag layers form mirrors of a simple

resonator that enhances the electric-�eld amplitudes inside the GaN layer. To achieve

e�cient non-linear interaction, we apply the method for designing an e�cient layered

structure for SPDC suggested in [87]. Lengths l2 of GaN layers and l1 of Ag layer vary

in the method to reveal the most e�cient structure. In the method, only pairs (l1, l2) of

lengths that provide transmission maxima for the pump �eld at a chosen wavelength λ0p
are analyzed. Concentrating on the highest transmission maximum that also gives the

greatest enhancement of the pump �eld, the appropriate pairs (l1, l2) of lengths form a

one-dimensional parametric system. This means that for any value of GaN-layer length

l2 there exists only one value of Ag-layers length l1.

In the analysis, we consider a plane-wave TE-polarized7 pump-�eld at central wave-

length λ0p = 400 nm impinging on the structure at normal incidence. The simulated

power transmission of the pump beam is shown in the Fig. 5.3. Structures with thick

Ag layers (l1 > 10 nm) provide frequency-degenerated photon pairs. On the other

hand, structures with thin Ag layers emit frequency non-degenerated photon pairs.

The greatest value of relative signal photon-number density η de�ned in Eq. (5.26) is

reached for slightly frequency non-degenerated photon-pair emission for l1 = 9.6376 nm
6Non-linear suscetibility tensor χ(2) of GaN has at least two orders of magnitude larger terms in

comparison with Ag.
7The TE polarized electric �eld amplitude of the pump beam is oriented along the axis x.
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and l2 = 95.1195 nm. It is important to note that the signal and idler photons can leave

the structure either along the +z or −z axes, so four possible combinations for photon

pairs exist. Nevertheless di�erent photon pairs have comparable properties. That is

why, we pay attention to only photon pairs with both photons propagating along the

+z direction. The structure generates photon pairs around the radial emission angle

ϑ = 83 deg. Two emission maxima are observed in relative signal photon-number den-

sity ηs [see Fig. 5.4(a)]8. Whereas one maximum contains TE-polarized photons, the

other maximum is composed of TM-polarized photons. As elements χ(2)
xxz and χ(2)

xzx of

susceptibility tensor participate in the non-linear interaction, a TE-polarized photon is

accompanied by a TM-polarized photon and vice versa. Two maxima in relative signal

photon-number density ηs, shown in Fig. 5.4(a), are sharp compared to similar dielectric

structures. This is a consequence of strong interference of back-scattered optical �elds

caused by the high refractive-index contrast. These sharp features are characteristic for

both spectral and spatial properties of photon pairs.
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Figure 5.4: (a) The relative signal photon-number density ηs in dependence on signal
radial emission angle ϑs and wavelength λs for a simple 'metallo-dielectric' resonator
structure composed of one GaN layer and two Ag layers. Both photons with arbi-
trary polarizations propagate along the +z axis; λ0p = 400 nm, l1 = 95.1195 nm,
l2 = 9.6376 nm, ψ0

s = 0 deg; log denotes the decimal logarithm. (b) The ratio κ of
signal photon-number densities ns of the simple 'metallo-dielectric' resonator structure
and GaN monolayer of equal thickness as it depends on signal radial emission angle ϑs
and wavelength λs.

The advantage of 'metal resonator' surrounding the non-linear GaN layer can be

quanti�ed comparing its signal photon-number density ns [Eq. (5.19)] with that char-

8The quantity ηs was plotted for azimuthal angle ψ0
s = 0 deg.
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acterizing one GaN monolayer structure of the same length (l = 114.3947 nm). Ratio

κ of these photon-number densities ns [see Fig. 5.4(b)] shows that the enhancement

of up to nine orders in magnitude is reached in areas of maximal emission intensities,

i.e. under conditions of the strongest constructive interference of the signal [idler] �eld.

The enhancement factor rapidly drops down when wavelengths λs and radial emission

angles ϑs move away from these optimal conditions.

5.7 An e�cient metallo-dielectric structure
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Figure 5.3: Power transmission coe�cient

Tp in dependence on the length of the metal-

lic layers l1 and dielectric layer l2.

In order to su�ciently enhance the non-

linear interaction, more complex metallo-

dielectric layered structures have to be

considered. There exists an interval of

suitable numbers of the used layers. On

one side, larger number of layers leads

to strong interference and also to high

enhancement of electric-�eld amplitudes.

On the other side, larger number of metal

layers results in strong attenuation of the

electric �elds. To keep balance between

these e�ects, we have decided to design a

structure with �ve metal Ag layers sand-

wiched by six GaN layers (for the scheme, see Fig. 5.1).

Following the design procedure, we have plotted the pump-�eld intensity trans-

mission coe�cient Tp at the wavelength λ0p = 400 nm and for TE polarization [see

Fig. 5.5(a)] as it depends on lengths of the dielectric layers l1 and metallic layers l2.

The pump �eld impinging on the structure at normal incidence has been assumed. In

this graph, �ve transmission bands can be seen. It follows from the theory of band-

gap structures that the greatest enhancement of electric-�eld amplitudes occurs in the

transmission band closest to the band gap. In this band, also the greatest values of

absorption Ap are found [see Fig. 5.5(b)] indicating large electric-�eld amplitudes inside

the metal layers [118].

Structures corresponding to the maxima of the �rst transmission band have been

parameterized by the ratio L = l2/l1. Maximum ηmax
s of relative signal photon-number

density ηs taken over frequency ωs and radial emission angle ϑs assuming �xed azimuthal

angle ψs,0 = 0 deg was chosen for quanti�cation of e�ciency of the non-linear process.
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Figure 5.5: (a) Intensity transmission coe�cient Tp. (b) Intensity absorption coe�cient
Ap. Both quantities Tp and Ap depend on lengths of the layers l1 - dielectric, and l2 -
metallic. The obtained results are valid for TE-polarized �eld at λ0p = 400 nm impinging
on the structure under normal incidence . Positions of maxima in the �rst transmission
band are indicated by solid black curves.

Structures with parameter L in the interval (0.1, 0.25) were only considered because very

thin metal layers do not su�ciently enhance the electric-�eld amplitudes. Moreover,

their transmission bands are broader. On the other hand, thick metal layers attenuate

the propagating electric �elds. Maximal values ηmax
s of relative signal photon-number

density ηs were found in two regions: L ∈ (0.17, 0.18) and L ∈ (0.225, 0.24). In these

regions, ηmax
s reaches values around 106. The �rst region of L, analyzed in Fig. 5.6,

is more suitable and contains the most e�cient structure (L = 0.178) with lengths

l1 = 101.752 nm and l2 = 18.083 nm. The obtained values of maxima ηmax
s are higher by

two orders in magnitude compared to the values of maxima ηmax
s of the 'metal resonator'

investigated in Section 5.6. Additionally, these values are even higher by seven orders

in magnitude compared to those of pure dielectric layered structures studied in [87].

Detailed analysis of SPDC inside the metallo-dielectric structures shows that dielectric

layers are the major source of photon pairs. Metal layers give photon-pair numbers lower

by six orders in magnitude compared to the dielectric layers. Nevertheless, they play a

critical role in the enhancement of electric-�eld amplitudes inside the structure due to

their high indices of refraction. We have also analyzed SPDC involving a TM-polarized

pump �eld along the same vein. However, the obtained values of maxima ηmax
s have

been found considerably lower than those discussed above for the TE-polarized pump

�eld.
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Figure 5.6: Maximum ηmax
s of relative signal photon-number density ηs depending on

ratio L of layers' lengths, L = l2/l1, for structures composed of 11 layers such that
the pump �eld at λ0p = 400 nm occurs in the center of the �rst transmission band (see
Fig. 5.5).

Relative signal photon-number density ηs of this structure (plotted in Fig. 5.7)

reveals two emission peaks. One peak is centered at the wavelength λs = 737.837 nm

and the radial emission angle ϑs = 47.686 deg, the other peak occurs at the wavelength

λs = 873.601 nm and the radial emission angle ϑs = 61.095 deg. The signal photon

at wavelength λs = 737.837 nm is TE polarized and its twin has TM polarization. On

the other hand, the signal photon at wavelength λs = 873.601 nm has TM polarization,

whereas its twin is TE polarized. This means that the �rst photon pair exploits the

element χ(2)
xxz of susceptibility tensor whereas the second photon pair uses the element

χ
(2)
xzx. The emission peaks are very narrow in both the wavelength λs and radial emission

angle θs. The intensity peaks' widths ∆λs are narrower than 1 × 10−3 nm (full width

at half maximum, FWHM). In radial emission angle, the intensity peaks' widths ∆ϑs

are narrower than 5 × 10−2 deg. It is worth to stress that the sharpness of these

peaks arises from the behavior of TM-polarized �elds. The analyzed system has nearly

radial symmetry which is only weakly broken by the varying values of χ(2) elements

in azimuthal direction. So the emitted photon pairs form two narrow concentric rings;

slightly changing intensities are found around these rings.

The electric-�eld amplitude pro�les of the interacting �elds along the propagating z

axis for (p, s, i) = (TE,TE,TM) interaction are shown in Fig. 5.8. The pump electric-

�eld amplitude pro�le is determined for the incident electric-�eld amplitude 1 V/m

impinging on the structure at z = 0 m. The signal and idler electric-�eld amplitude

pro�les are such that they give the outgoing amplitude 1 V/m at the end of the structure

and 0 V/m for the outgoing amplitude at z = 0 m. The TE-polarized pump and signal
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Figure 5.7: Relative signal photon-number density ηs in dependence on signal wave-
length λs and radial emission angle ϑs for two regions containing (a) TE-polarized and
(b) TM-polarized photons; λ0p = 400 nm, l1 = 101.752 nm, l2 = 18.083 nm.

�elds have their electric-�eld amplitudes inside the structure enhanced several times.

In contrast, the enhancement factor of TM-polarized idler �eld equals around 105 due

to highly constructive interference of the back-scattered �elds at the boundaries. For

comparison, the enhancement factor for GaN/AlN layered structures typically equals

several tens [87].

Also correlated areas characterizing spatial correlations between the signal and idler

intensities are narrow. Two di�erent shapes of correlated areas found in the analyzed

structure are shown in Fig. 5.9 for a pump beam with Gaussian transverse pro�le of

radius rp = 1 mm. If we �x the emission direction of the TM-polarized idler photon

at ϑi = −61.095 deg, the correlated area of TE-polarized signal photon has roughly

a Gaussian shape which originates in the Gaussian pump-�eld transverse shape [see

Fig. 5.9(a)]. On the other hand, when the TE-polarized signal photon is detected at

ϑs = 47.686 deg, the correlated area of TM-polarized idler photon is highly elliptic

[see Fig. 5.9(b)]. The reason is that its extension along the azimuthal angle ψi is

determined by the pump-beam radius rp, whereas its extension along the radial angle

ϑi is strongly limited by the properties of TM modes related to their strong back-

scattering on the boundaries. The dependence on pump-beam radius rp can be used to

tailor the extensions of correlated areas [10].
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Figure 5.8: Pro�le of modulus of the electric-�eld amplitude for (a) pump, (b) signal
and (c) idler �elds along the z axis for the pump �eld with amplitude 1 V/m incident
at z = 0 m and outgoing signal and idler �elds with amplitudes 1 V/m at the end of
the structure composed of eleven GaN/Ag layers described in the caption of Fig. 5.7.
In the TM-polarized idler �eld, the z component of electric-�eld amplitude is by several
orders in magnitude lower than the plotted y component; λp = 400 nm, ϑp = 0 deg,
λs = 737.8367 nm, ϑs = 47.686 deg, λi = 873.6015 nm, ϑi = −61.095 deg.

5.8 Temporal properties of emitted photon pairs

Due to stationarity, the two-photon spectral amplitude ϕ(ωs, ωi) gets a general form

fi(ωi)δ(ω
0
p − ωs − ωi), in which the δ-function expresses the energy conservation law.

The squared modulus |fi|2 is then linearly proportional to the idler spectral photon-

number density nωi (ωi). For the analyzed structure, the spectral density nωi of a photon

pair with signal photon propagating along direction ϑ0s = 47.686 deg and ψ0
s = 0 deg
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Figure 5.9: Correlated area ncor of (a) signal [(b) idler] photon observed after detection of
an idler [signal] photon at direction ϑ0i = −61.095 deg and ψ0

i = 0 deg [ϑ0s = 47.686 deg
and ψ0

s = 0 deg] for the structure analyzed in Fig. 5.7. The correlated areas are
normalized such that

∫
dϑ
∫
dψ ncor(ϑ, ψ) = (π/180)2.

and idler photon propagating along direction ϑ0i = −61.095 deg and ψ0
i = 0 deg attains

the form of a very narrow peak of width 4.45× 10−4 nm [FWHM, see Fig. 5.10(a)].

The narrow spectral peak is responsible for longer temporal correlations of �elds'

intensities compared to those characterizing photon pairs generated in a typical bulk

crystals. For the analyzed structure and cw pumping, intensity temporal correlations

occur at the time scale of ns [for the conditional probability density pi of detecting an

idler photon at time τi, see Fig. 5.10(b)]. It is worth noting that the signal- and idler-

�eld group velocities considerably di�er. The TE-polarized signal photons propagate

on average faster than the TM-polarized idler photons that undergo on average much

higher number of back re�ections on the boundaries after their emission. If pulsed

SPDC occurred in the structure, the idler-�eld detection interval would be much wider

than that of the signal �eld.

Di�erent group velocities of the signal and idler photons inside the structure also

result in highly asymmetric coincidence-count rate pro�les observed in the Hong-Ou-

Mandel interferometer, as documented in Fig. 5.11. In this interferometer, a much

longer average delay of the idler photon has to be compensated by a delay line placed

into the signal-photon path to achieve mutual interference of both photons at a beam

splitter. Fast oscillations caused by non-zero di�erence of the signal and idler central

frequencies are also visible in the normalized coincidence-count rate R in Fig. 5.11. It

is worth to note that the Hong-Ou-Mandel interferometer represents the simplest tool
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Figure 5.10: (a) Idler spectral photon-number density ni as a function of idler wave-
length λi and (b) probability density pi of detecting an idler photon at time τi provided
that its signal twin was detected at time τs = 0 s; pi(τi) = C|A(τs = 0, τi)|2 us-
ing an appropriate normalization constant C. A photon pair is emitted in directions
ϑs = 47.686 deg and ψs = 0 deg and ϑi = −61.095 deg and ψi = 0 deg in the structure
described in the caption to Fig. 5.7. Normalization is such that

∫
dωi ni(ωi) = 1 and∫

dτi pi(τi) = 1.

for the observation of temporal correlations between photons.
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Figure 5.11: Normalized coincidence count rate R in the Hong-Ou-Mandel interferom-
eter depending on mutual time delay τl between the signal and idler photons. The
structure described in the caption of Fig. 5.7 is analyzed.
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5.9 Losses in the structure and noise photons

Non-negligible losses occur in the analyzed metallo-dielectric layered structures because

of the presence of highly absorbing metal layers. When one photon from a photon pair

is absorbed whereas the other photon leaves the structure, the emitted joint signal and

idler �eld contains also the single-photon noise present both in the signal and idler

�elds. According to the theory developed in Section 5.5, these noise contributions are

comparable to the photon-pair one. Ratios RTE,TM
s,FF and RTE,TM

i,FF given in Eqs. (5.33) in

Section 5.5 and quantifying contributions of the signal and idler noise photon-number

densities relatively to the photon-number densities ns and ni given in Eqs. (5.20), re-

spectively, are plotted in Fig. 5.12. They are appropriate for the structure with 11

layers and the joint signal and idler �eld composed of the forward-propagating TE-

polarized signal and TM-polarized idler photons. From the numbers of emitted signal

and idler noise photons follows, that their amount is at the same level as the number

of emitted photon pairs. Comparable values of ratios RTE,TM
s,FF (1.20 for ϑs = 47 deg

and λs = 738 nm) and RTE,TM
i,FF (0.97 for ϑi = 61 deg and λi = 834 nm) for the signal

noise and idler noise �elds at the corresponding radial emission angles ϑ and for the

corresponding frequencies ω indicate that the numbers of emitted noise photons depend

mainly on the number of photon pairs generated inside the structure. The values of

ratios RTE,TM
s,FF and RTE,TM

i,FF increase in the vicinity of forbidden bands, i.e. in the area

with strong back-scattering and interference (see Fig. 5.12).

As discussed in Section 5.5, photons from photon pairs in which only one photon

enters the detection system represent an additional source of the noise. In the analyzed

structure, photon pairs with a forward-propagating TE-polarized signal photon and a

backward-propagating TM-polarized idler photon contribute to the noise in the signal

�eld. On the other hand, photon pairs with a backward-propagating TE-polarized signal

photon and a forward-propagating TM-polarized idler photon are responsible for an

additional noise in the idler �eld. As the numbers of emitted photon pairs with di�erent

propagation directions are comparable, the numbers of noise photons constituting these

contributions are also comparable. However, these noise contributions can be decreased

if multiple coincidence-count detections are measured.

Considerable amount of the noise present in the generated photon-pair states re-

stricts applicability of such states to the schemes based on coincidence-count measure-

ments. In these schemes, a single-photon noise contributes to the measurement only via

random coincidences that are, however, seldom due to the weakness of the �eld. Possi-

ble applications suitable for photon-pair states emitted from metallo-dielectric layered
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Figure 5.12: Ratio (a)RTE,TM
s,FF [(b)RTE,TM

i,FF ] of signal [idler] noise photon-number density
and photon-pair density in dependence on signal [idler] radial emission angle ϑs [ϑi] and
wavelength λs [λi] determined along Eq. (5.33) in Section 5.5. The photon-pair �eld
contains the forward-propagating TE-polarized signal and TM-polarized idler photons;
λ0p = 400 nm, l1 = 101.752 nm, l2 = 18.083 nm.

structures include quantum cryptography using photon pairs [122] or quantum optical

coherence tomography [123], to name few. On the other hand, these states are not

suitable for constructing heralded single-photon sources [124].

96



Chapter 6

Conclusion

6.1 Summary of the thesis

The introductory Chapter 1 included goals of the thesis (Sec. 1.1) and annotation

(Sec. 1.2). The goals of the thesis de�ned the objects of the research and required

results. The annotation described the content of the thesis.

Non-linear phenomena of the second order were introduced in Chapter 2. The lin-

ear and non-linear vectors of polarization for dispersive and non-dispersive media were

de�ned in Section 2.1. Non-linear susceptibility of the second order was de�ned as well.

At the end of the Section, equation of coupled waves in non-linear medium was derived.

The non-linear processes of the second order were described in Section 2.2. Namely, the

second-harmonic generation, sum-frequency generation and di�erence-frequency gener-

ation. The electron transition schemes were used to describe the interactions micro-

scopically.

The properties and use of photon pairs together with the process of their generation

were described in Chapter 3. A brief historical introduction mentioning a milestone,

which started an era of quantum physics, was given in Section 3.1.1. The quantization

procedure of electromagnetic �eld was described in Section 3.1.2. The properties and

usefulness of photon pairs in experimental and theoretical physics were summarized

in Section 3.2. The simplest mean of generation of photon pairs - in bulk crystal, is

described in Section 3.3. The approach for preparation of photon pairs entangled is

frequency, emission direction and polarization were explained.

The generation of photon pairs in a periodically-poled silica ring �ber was studied

in Chapter 4. The introduction (Sec. 4.1) covered an overview about integrated photon

pairs sources (Sec. 4.1.1), explained the bene�ts and usefulness of �elds carrying orbital
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angular momentum (Sec. 4.1.2) and described periodical poling process along with the

concept of quasi-phase matching (Sec. 4.1.3). Theoretical approach of SPDC in a �ber

was developed in Section 4.2. It included analytical expressions for the modes of the

�ber, derivation of a resulting quantum state vector and de�nitions of quantities char-

acteristic for a photon pair. The theory covering decomposition of transverse pro�les of

the modes to basis of OAM eigenstates was provided in Section 4.3. The decomposition

of a two photon amplitude in the transverse spatial domain as well as in frequency

domain to the Schmidt basis was mentioned. The approximative and rigorous formulas

for obtaining the e�ective dimension of the entangled space were de�ned. The guided

modes of the �ber were characterized in Section 4.4. The approach for derivation of

an implicit dispersion equation was explained. The e�ective indicies of refraction of

the guided modes for a particular �ber were shown. For the modes of interest, the

transversal spatial pro�les were depicted together with their angular spectral weights.

The spectrally narrow generation of photon pairs in the �ber was investigated in Sec-

tion 4.5. Particularly, the modes with OAM number equal to 0,+1 were generated

by a pump beam with OAM number equal to +1. The emission of spectrally broad-

band photon pairs was examined in Section 4.6. The pump beam with OAM number

0 generated photon pairs with photons in TE01 modes. The temporal features of both

narrow-band and broad-band emission schemes were explored. The generation of pho-

ton pairs entangled in frequency and OAM was studied in Section 4.7. The photon

pairs consisting of photons with OAM number ±1 were generated by a pump beam

with OAM number equal to 0. The states entangled in OAM were simultaneously en-

tangled in the frequency domain. The impact of noise on the entanglement of photon

pairs (entangled in OAM) was studied by means of the Clauser-Horne-Shimony-Holt

form of the Bell inequalities.

The emission of photon pairs from metallo-dielectric layered structures consisting

of Gallium-Nitride (GaN) and silver (Ag) layers was explored in Chapter 5. The intro-

duction (Sec. 5.1) described advantages and disadvantages of the layered structures and

summarized current state of art. The non-linear model of metal was developed in Sec-

tion 5.7. Outcome of the model was non-linear susceptibility tensor of the second order.

The theoretical framework of SPDC was derived in Section 5.3. It covered quantization

of modes of layered structure and derivation of the photon-pair state vector. The quan-

tities characterizing the emitted photon pairs were de�ned in Section 5.4. The theory

evaluating the photon losses in the structure was derived in Section 5.5. In Section 5.6

photon pair generation from Ag-GaN-Ag resonator was studied. The design procedure

was applied in order to obtain the most e�cient structure. The emission rate of the
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resonator was compared with the reference structure and with a single GaN monolayer

of the same length. A structure with eleven layers was investigated along the same vain

in Section 5.7. The spatial mode pro�les, corresponding to the most intense generation,

were plotted for pump, signal and idler electric �eld intensity components. The corre-

lated areas around the emission maxima were investigated. The temporal properties of

the photon pairs were examined in the Section 5.8. The number of noise photons was

investigated in Section 5.9.

The Conclusion summarizes content of the thesis in Chapter 6 followed by the list

of author's publications (p. 102) and bibliography (p. 103).

6.2 Shrnutí v £e²tin¥

Úvodní Kapitola 1 obsahuje cíle práce (Sek. 1.1) a anotaci (Sek. 1.2). Cíle práce

konkrétn¥ speci�kovaly zadaný výzkumný úkol a poºadované výsledky. Anotace popiso-

vala obsah práce.

Nelineární jevy druhého °ádu byly uvedeny v Kapitole 2. Lineární a nelineární

vektory polarizace pro nedisperzní a disperzní prost°edí byly de�novány v Sekci 2.1.

Spole£n¥ s nimi byla de�nována nelinární susceptibilita druhého °ádu. Na konci sekce

byla odvozena rovnice vázaných vln. Nelineární procesy druhého °ádu byly uvedeny

a popsány v Sekci 2.2. Jmenovit¥, generace druhé harmonické, sou£tové frekvence a

rozdílové frekvence. Procesy byly analyzovány jak matematicky, tak mikroskopicky

pomocí schémat elektronových p°echod· v atomech.

Vlastnosti a pouºití fotonových pár· spole£n¥ s principem jejich generace byly pop-

sány v Kapitole 3. Stru£ný historický úvod zmi¬uje klí£ový objev, který odstartoval

éru kvantové fyziky (Sek. 3.1.1). Procedura pro kvantování elektromagnetického pole

byla popsána v Sekci 3.1.2. Vlastnosti a uºite£nost fotonových pár· v teoretické a ex-

perimentální fyzice byly shrnuty v Sekci 3.2. Nejjednodu²²í zp·sob generace fotonových

pár· - v objemovém nelineárním krystalu, byl popsán v Sekci 3.3. Navíc byly vysv¥tleny

zp·soby experimentální p°ípravy fotonových pár· kvantov¥ korelovaných ve frekvenci,

sm¥ru ²í°ení a polarizaci.

Generace fotonových pár· v periodicky pólovaném sklen¥ném vlákn¥ s prstencovým

pro�lem byla popsána v Kapitole 4. Úvod (Sek. 4.1.1) zahrnoval p°ehled integrovaných

zdroj· fotonových pár·. Výhody a uºite£nost polí s úhlovým momentem byly pop-

sány v Sekci 4.1.2. Experimentální procedura periodického pólování sklen¥ných vláken

spole£n¥ s konceptem kvazi-sfázování byly oz°ejmeny v Sekci 4.1.3. Teorie popisující

spontánní parametrickou sestupnou frekven£ní konverzi (SPDC) ve vlákn¥ byla uve-
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dena v Sekci 4.2. Obsahovala analytické vyjád°ení mód· vlákna, odvození generovaného

kvantového stavu a de�nice veli£in charakterizujících fotonových pár. Teorie zahrnu-

jící dekompozici p°í£ných pro�l· mód· do báze vlastních stav· operátoru úhlového

momentu byla popsána v Sekci 4.3. Zmín¥na byla téº dekompozice dvoufotonové am-

plitudy do Schmidtovy báze a to jak v prostorové p°í£né domén¥, tak ve frekven£ní

oblasti. De�novány byly rigorózní i aproximativní rovnice vy£íslující efektivní dimenzi

entanglovaného prostoru. Vedené módy vlákna byly charakterizovány v Sekci 4.4.

Vysv¥tleno bylo odvození implicitní disperzní rovnice a byly ukázány efektivní indexy

lomu vedených mód·. Pro vybrané módy byly zobrazeny pro�ly sloºek elektrických

polí spole£n¥ s jejich úhlovým spektrem. Úzko-spektrální generace fotonových pár·

byla zkoumána v Sekci 4.5. Konkrétn¥ byla studována kon�gurace, kdy £erpací svazek

s kvantovým £íslem úhlového momentu (OAM) +1 generoval fotonové páry s kvan-

tovým £íslem OAM 0 a +1. �iroko-spektrální emise fotonových pár· byla analyzována

v Sekci 4.6. �erpací svazek s kvantovým £íslem OAM 0 generoval fotonové páry v

módech TE01. �asové vlastnosti úzko- a ²iroko-spektrálního procesu byly prov¥°eny na

konci kapitoly. Generace fotonových pár· entanglovaných sou£asn¥ v OAM a frekvenci

byla studována v Sekci 4.7. Fotonové páry se skládaly z foton· s kvantovým £íslem OAM

±1 a byly tvo°eny £erpacím svazkem s OAM £íslem 0. Vliv ²umu na entanglement v

OAM byl studován pomocí Clauser-Horne-Shimony-Holt nerovnosti Bellova typu.

Emise fotonových pár· z metalo-dielektrických vrstevnatých struktur skládajících

se z Gallium-Nitridu (GaN) a st°íbra (Ag) byla analyzována v Kapitole 5. Úvod

(Sek. 5.1) popisuje výhody a nevýhody vrstevnatých struktur a shrnuje sou£asný stav

v daném oboru. Nelineární model kovu byl odvozen v Sekci 5.2. Výsledkem modelu

byl nelineární tensor susceptibility druhého °ádu. Teoretický rámec spontánn¥ para-

metrického frekven£n¥ sestupného procesu byl odvozen v Sekci 5.3. Zahrnoval kvan-

tování pole ve vrstevnatých strukturách a odvození dvoufotonového kvantového stavu.

Veli£iny charakterizující fotonový pár byly de�novány v Sekci 5.4. Teorie vyhodnocující

fotonové ztráty byla odvozena v Sekci 5.5. V Sekci 5.6 byla studována emise fotonových

pár· z Ag-GaN-Ag rezonátoru. Konkrétní struktura byla navrºena tak, aby sm¥rov¥

a frekven£n¥ emitovala co nejv¥t²í po£et fotonových pár·. Míra emise byla porovnána

s mírou emise z referen£ní struktury a GaN monovrstvy o stejné délce. Struktura s

jedenácti vrstvami byla zkoumána stejným zp·sobem. V oblasti nejintenzivn¥j²í emise

byly studovány prostorové módy £erpacího, signálového a jalového elektrického pole.

P°edm¥tem výzkumu byly také korelované plochy. �asové vlastnosti fotonových pár·

byly studovány v Sekci 5.8. Po£et ²umových foton· byl analyzován v Sekci 5.9.

Shrnutí práce se nachází v Kapitole 6. A to jak v anglickém (Sek. 6.1), tak £eském
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(Sek. 6.2) jazyce. V¥decké publikace autora práce se nacházejí na stran¥ 102. Reference

na pouºitou literaturu pak na stran¥ 103.
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Abstract

Spontaneous parametric down-conversion is a nonlinear quantum process in which

correlated photons are created in pairs. Photon pairs have become an indispensable tool

for veri�cation of quantum-mechanical principles, in quantum-information processing,

for quantum-communication protocols and quantum cryptography.

Modern photonic structures enhance photon-pair emission rates and simultaneously

modify the properties of generated photon pairs. Periodically-poled silica ring-shaped

�bers are capable of generation and stable guidance of photon pairs in modes with de-

�ned orbital angular momentum (OAM). The most stable modes have been selected

for the nonlinear interaction. Their transversal pro�les together with phase-matching

conditions have been analyzed to obtain the desired interaction. Narrow-band and

broad-band emission of photon pairs have been obtained in dependence on the mode

of the pump beam. In the time domain, the conditional probability of detection of

a signal photon has been obtained and correlation times have been evaluated. The

emission of photon pairs entangled in OAMs and frequencies have been analyzed. Ef-

fective dimension of the entangled space has been quanti�ed by means of the Schmidt

number indicating a maximally entangled photon-pair state. The in�uence of noise

on the entangled OAM state has been evaluated by the Clauser-Horne-Shimony-Holt

inequality.

Also metallo-dielectric layered structures have been analyzed as highly e�cient

sources of photon pairs. Layered structures consisting of silver (Ag) and Gallium-

Nitride (GaN) have been investigated. Two structures formed by three and eleven

layers have been designed to maximize the emission rate. They have been examined

with respect to relative signal photon-number density in the angular-spectral domain.

Both structures have been found more e�cient than dielectric structures due to strong

back-scattering e�ects caused by the high index-of-refraction contrast. Distributions

of electric-�eld amplitudes corresponding to the emission maxima have been analyzed.

Correlated areas as well as temporal characteristics including those appropriate for the

Hong-Ou-Mandel interferometer have been investigated. Also, numbers of noise photons

have been discussed as the metallic layers are absorptive.

6



Abstrakt

Spontánní parametrická frekven£ní konverze je nelineární kvantový proces, p°i kterém

jsou vytvá°eny korelované fotonové páry. Fotonové páry se staly jedine£ným prost°ed-

kem pro ov¥°ení fundamentálních princip· kvantové mechaniky, pro zpracování kvantové

informace, pro kvantov¥ komunika£ní protokoly a kvantovou kryptogra�i.

Moderní fotonické struktury zvy²ují míru emise fotonových pár· a sou£asn¥ modi-

�kují vlastnosti generovaných fotonových pár·. Periodicky pólovaná k°emi£itá prsten-

cová vlákna jsou schopna generace a stabilního vedení fotonových pár· s de�novaným

úhlovým momentem (OAM). Nejstabiln¥j²í módy byly vybrány pro nelineární inter-

akci. Jejich p°í£né pro�ly spole£n¥ s podmínkou sfázování byly analyzovány za ú£elem

optimalizace procesu. Pro odli²né módy £erpacího svazku byla obdrºena úzko- a ²iroko-

spektrální emise fotonových pár·. V £asové domén¥ byla obdrºena podmín¥ná pravd¥-

podobnost detekce jalového fotonu a byly spo£teny korela£ní £asy. Analyzována byla

emise fotonových pár· entanglovaných v OAM a frekvenci. Efektivní dimenze entan-

glovaného prostoru byla vy£íslena pomocí Schmidtova £ísla. To poukázalo, ºe fotony v

páru jsou maximáln¥ entanglované v OAM. Vliv ²umu na entanglovaný OAM stav byl

vyhodnocen pomocí Clauser-Horne-Shimony-Holtovy nerovnosti.

Metalo-dielektrické fotonické struktury byly rovn¥º analyzovány jako ú£inné zdroje

fotonových pár·. Zkoumány byly vrstevnaté struktury skládající se ze st°íbra (Ag)

a Gallium-Nitridu (GaN). Dv¥ struktury skládající se ze t°í a jedenácti vrstev byly

navrºeny tak, aby maximalizovaly míru emise fotonových pár·. Byly zkoumány s ohle-

dem na relativní po£et emitovaných signálových foton· v úhlov¥-spektrální domén¥.

Ob¥ struktury byly shledány ú£inn¥j²ími neº jejich dielektrické prot¥j²ky díky vysokému

kontrastu index· lomu obou materiál·. Analyzovány byly distribuce amplitud elektrick-

ých polí, které p°íslu²í nejsiln¥j²í emisi fotonových pár·. P°edm¥tem zkoumání také byly

korelované plochy a £asové charakteristiky v£etn¥ charakteristik p°íslu²ných Hong-Ou-

Mandelov¥ interferometru. Diskutován byl i po£et ²umových foton·, jelikoº metalické

vrstvy vykazují nenulovou absorpci.
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The goals of the thesis

The main goal was to study spontaneous parametric down-conversion in metallo-dielectric

layered media and periodically-poled ring silica �bers. In both cases spectral, spatial

and temporal properties of photon pairs have been studied. Photon-pair emission rates

of both sources have been evaluated in order to determine their e�ciencies.

Photon-pair generation in

periodically-poled silica ring �bers

The designed periodically-poled ring-shaped silica �ber guides the modes with de�ned

OAM numbers steadily [1]. The considered �ber core has its inner diameter r1 = 4 µm

and outer diameter r2 = 5.5 µm in order to guide only the radially fundamental modes

for the wavelengths longer than 1.2 µm. The cross-section of the �ber is shown in

Fig. 1(a). The cladding of the �ber consists of pure silica (SiO2), while the core of the

�ber consists of SiO2 dopped by 19.3 mol% of GeO2. The length of the poled �ber has

been assumed to be 10 cm/1.

E�ective refractive indices of the most stable guided modes at waveleghts

λ0p = 0.775 µm (wavelength of the cw pump beam) and λ0s = 1.55 µm (degenerate

wavelength of the down-converted photons) are shown in Figs. 1(b) and 1(c), respec-

tively. The most stable eigen-modes at both wavelengths are HE11, HE21, TE01, and

TM01. The highest risk of overcalls is expected between modes HE21 and TE01 or HE21

1Periodically-poled silica �bers up to 10 cm long can be fabricated by a simple fabrication method [2].
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and TM01, because their e�ective refractive indices are located close to each other. At

the wavelength of the pump beam λ0p, the di�erence in e�ective indices of refraction

∆np,eff between modes HE21 and TE01 [TM01] is −9 × 10−5 [1 × 104]. At the degen-

erate wavelength λ0s, the quantity ∆ns,eff for the closest modes HE21 and TE01 equals

1.5× 10−4. The calculated values of ∆ns,eff are comparable to the results obtained for

the a vortex �ber [3]2.

(a)

1.4724

1.4725

1.4726

1.4727
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1.4729
n p

,e
ff

0 1 2 3
np
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HE21

(b)

1.4535

1.454

1.4545

1.455

1.4555

n s
,e

ff

0 1 2 3 4
ns

HE11

TE01

TM01

HE21

(c)

Figure 1: (a) Cross-section of the investigated ring �ber. (b) and (c) E�ective indices
of refraction np,eff and ns,eff of guided modes for wavelengths λ0p = 0.775 µm and
λ0s = 1.55 µm, respectively.

The complete set of guided eigen-modes of the �ber is formed by HE and EH modes

and TE and TM modes. By a suitable transformation applied to all HE and EH modes,

eη(r, θ, ω) = eη̃,H(r, θ, ω)∓ ieη̃,V (r, θ, ω), (1)

the modes with the corresponding OAM are obtained plus TE, TM modes, which remain

in their original state. The symbol e(r, θ, ω) is related to an electric-�eld amplitude in

the radial coordinates (r, θ) with frequency ω. Index η̃ denotes the original eigen-mode

signature (eg. HE21), the indices V and H identify polarization of the eigen-mode

and index η contains both the original eigen-mode signature η̃, together with its new

polarization variant R or L in dependence on the sign in a de�nition (1). Polarization

R [L] is obtained using − [+] sign.

The angular spectrum of the electric-�eld components ex and ez/3 has been com-

2It has proved to guide the HE21 mode at distance 1 km with low level of noise.
3Due to symmetry of the �ber, the electric �eld components ex and ey are identical up to the shift

in the angular direction θ by 90 deg.
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Figure 2: Weights pl of spectral components l in angular decomposition of �eld's com-
ponents according to Eq. 2 for (a) HE11,R, (b) HE21,R, (c) TE01, and (d) TM01 mode.

puted for modes HE11,R, HE21,R, TE01 and TM01 (see Fig. 2) according to Eq. (2).

The transversal electric-�eld component ex of mode HE11,R [HE21,R] carries the OAM

number equal to 0 [+1]. The variants with the orthogonal polarization L have the

OAM number with opposite sign 0 [−1]. The transversal Cartesian components ex of

TE01 and TM01 modes include OAM equal to ±1 with the same weights pl = 0.5. The

longitudinal component ez has di�erent OAM than the transversal components by one

in the absolute value. It does not take part in the non-linear interactions due to the

form of non-linear tensor χ(2) : χ
(2)
xxx ≃ 3χ

(2)
xyy and χ(2)

xyy = χ
(2)
yyx = χ

(2)
yxy = 0.021 pm/V.

pl,η(ω) =

∫
rdr

∣∣∣∣∫ dθ e−iθlek,η(r, θ, ω)

∣∣∣∣2 ; k ∈ x, y, z. (2)

The non-linear interaction of modes HEp
21,R, HE

s
21,R, HE

i
11,R, and HEi

11,L (p, s and i

in the superscript denotes pump, signal and idler �eld) with OAM numbers +1,+1 and

0 in turn resulted in narrow-band generation of the photon pairs. The signal photon-

number spectrum Ns is shown in Fig. 3(a). The widths of emission peaks (FWHM)

are around the 10 nm. The heights of the peaks indicate the generation of tens of

photon pairs in each peak per second per µW of the pump beam. The emission is non-

degenerate and occurs in the spectral range around the telecommunication wavelength

1.55 µm. The highest peak at wavelength λs = 1.5 µm belongs to mode HE21,R with

the emission rate 20 photons per s per µW (in the peak). The signal and idler photons

are emitted as well in modes without a well de�ned OAM (TE01 and TM01). But

their contributions are spectrally separated from the modes with de�ned OAM. It is

worth to note that the paired signal and idler photons at wavelengths λs = 1.5µm and

λi = 1.603µm are simultaneously emitted in either modes HEs
21,R, HE

i
11,R or modes

11



HEs
21,R, HEi

11,L. Since the probability of emission is the same, modes HE11,R and

HE11,L form a common peak in the signal photon-number spectrum in Fig. 3(a). With

the use of the wavelength multi/demultiplexers [4], the spectrally separated photons

can be used for OAM information processing.

The broad-band emission of photon pairs as been observed for the con�guration of

the interacting �elds: HEp
11,R, TE

s
01 and TEi

01. The width of the peak (FWHM) in

signal photon-number spectrum Ns reaches 142 nm with 150 photon pairs per s per

µW in peak [Fig. 3(b)]. The emission is centered around the degenerate wavelength

1.55 µm. In the signal photon-number spectrum Ns the only signi�cant contribution is

given by the TE01 modes.
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Figure 3: Signal photon-number spectrum Ns for (a) Λ = 42.9 µm and HEp
21,R mode (b)

Λ = 41.06 µm and HEp
11,R mode; Λ denotes length of period of QPM grating followed

by mode of the pump beam. Each peak in the signal photon-number spectrum Ns

corresponds to the emission into a particular mode η. Individual modes η are indicated
in the graphs.

Time probability of detection an idler photon pt,i conditioned by the detection of the

signal photon at time ts = 0 s is shown in Fig. 4(a). The correlation time τ is determined

as FWHM of the pt,i peak in the pro�le of probability. Correlation time for the narrow-

band process [HEp
21,R, HE

s
21,R, HE

i
11,R (HEi

11,L)] equals τ = 63.5 × 10−14 s whereas

the broad-band process (HEp
11,R, TE

s
01, TE

i
01) is characterized by τ = 4.5 × 10−14 s.

Sharp temporal correlations are important in metrology as they determine the available

temporal resolution.

If the pump beam remains in HE11,R mode and period of the QPM grating is properly

chosen (Λ = 41.06 µm), the photon pairs are emitted into the modes HE21,R and

HE21,L with OAM number +1 and −1, respectively. The Schmidt number Kθ has been

12



0.0

0.4

0.8

1.2

1.6

2.0

-50 -40 -30 -20 -10 0 10 20 30 40 50

(10
-14

s)

1
0
−
1
3
p
t,
i

ti

HE
p

11,R,TE
s
01
,TEi

01

HE
p

21,R,HE
s
21,R,HE

i
11,R

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
-9

(s
-1

m
-1

)

1.3 1.32 1.34 1.36 1.38 1.4

s ( m)

N
s

HE21,R

HE21,L

(b)

Figure 4: (a) Probability of detection of an idler photon pt,i in dependence on time ti,
conditioned by the detection of a signal photon at time ts = 0 s. (b) Signal photon-
number spectrum Ns for the period of QPM grating Λ = 41.06 µm and pump mode
HE11,R.

calculated by both approximative (Kθ = 1.998) and rigorous method (Kθ = 1.994).

Thus, the resulting photon-pair state is nearly maximally entangled in the OAM. This

is con�rmed by nearly perfect overlap of the emission peaks of both modes (HE21,R and

HE21,L) in the signal-photon number spectrum Ns [Fig. 4(b)]. Width (FWHM) of the

peaks in the signal photon-number spectrum is 21 nm. There are 30 signal photons per

s per µW in each of them. The obtained OAM entangled state |ψ⟩,

|ψ⟩ =
∫
dωsdωiΦ1s,−1i(ωs, ωi)|1, ωs⟩s| − 1, ωi⟩i +Φ−1s,1i(ωs, ωi)| − 1, ωs⟩s|1, ωi⟩i (3)

exhibits simultaneous entanglement in the frequency domain. E�ective dimension of

the entangled space in the frequency domain reaches the maximal value of 100 for 2 nm

wide (FWHM) spectrum of the Gaussian pump beam. Due to separability of state (3)

in the frequency and spatial domain (Φ1s,−1i ≈ Φ−1s,+1i), the e�ective dimension of the

entire entangled space can be as high as 200. Maximally entangled photon pairs are

highly desired, e.g., for quantum teleportation protocols or quantum computing.

Noise potentially contributing to the generated two-photon state arises from other

non-linear processes, photon losses and generation of photons in unwanted modes [5].

All the sources has been evaluated to be negligible. Despite this the fabrication imper-

fections and handling of the two-photon state in an experimental setup may introduce

additional noise. The impact of noise on the two-photon state entangled in OAM is

evaluated by the Clauser-Horne-Shimony-Holt form of the Bell inequalities. The state
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has to be de-entangled by more than 28% to reach the critical bound S = 2 indicat-

ing non-classicality. This does not put real limitations for experiments. The value of

parameter S has been measured as high as 2.78 for entangled OAM modes with OAM

quantum numbers ±1.

Photon-pair generation in

metallo-dielectric 1D photonic

structures

The process of SPDC is studied in a metallo-dielectric layered structure consisting of

Gallium-Nitride (GaN) and silver (Ag) layers. The �rst investigated structure is a sim-

ple Ag-GaN-Ag resonator. It is designed to provide the highest amount of photon pairs.

The designed most e�cient structure has the length of metallic layers l1 = 9.6376 nm

and length of dielectric layers l2 = 95.1195 nm. The relative signal photon-number

density ηs/4 of the structure is shown in Fig. 5(a). The pump �eld is assumed to be

a TE-polarized monochromatic plane wave with wavelength λ0p = 400 nm propagating

along the axis z. The emission of signal photons is strongly directional and wavelength

selective. The maxima in relative signal photon-number density ηs are located around

the radial angle ϑs = 83 deg and degenerate wavelength λs = 800 nm. If the angle of

emission declines from the point of the most intense generation, the number of gener-

ated signal photons signi�cantly drops. The directional and wavelength sensitivity of

emission of signal photons is caused by the strong resonance of the signal and idler �elds

inside the structure. The signal photon-number density of the resonator is compared to

the same quantity of a GaN monolayer of the same length [see Fig. 5(b)]. The ratio κs
shows that the resonator emits up to 108 more signal photons in the region of resonance.

4Relative signal photon number density ηs is de�ned as ηs(λ, ϑ) = ns(λ, ϑ)/maxϑ,λ{nref
s (λ, ϑ)},

where ns [nref
s ] is signal photon-number density of the structure [reference structure] and function

maxϑ,λ gives the maximum value of a function in the argument across the radial emission angle ϑ and
wavelength λ.
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Figure 5: (a) Relative signal photon-number density ηs of Ag-GaN-Ag resonator (b) κs -
ratio of signal photon-number density of the Ag-GaN-Ag resonator and single GaN layer
of the same length (l = 114.3947 nm); ϑs is radial emission angle and λs is wavelength
of the signal photon. The length of Ag layers [GaN layer] in the resonator is equal to
l1 = 9.6376 nm [l2 = 95.1195 nm], λ0p = 400 nm.

The structure consisting of eleven layers exhibits non-degenerate emission of photon

pairs [see Figs. 6(a) and 6(b)]. The length of GaN [Ag] layers of the designed structure

is l1 = 101.752 nm [l2 = 18.083 nm]. There are two emission peaks in the relative

signal photon-number density ηs. The �rst [second] peak is located at wavelength

λs = 737.8367 nm [λs = 873.6015 nm] and radial emission angle ϑs = 47.686 deg

[ϑs = 61.095 deg]. The relative signal photon-number density ηs attains values up

to 107 near the emission peaks. Thus, the structure is two orders of magnitude more

e�cient than the Ag-GaN-Ag resonator. In comparison with purely dielectric multilayer

systems, the structure can be up to seven orders of magnitude more e�cient [6]. The

normalized signal photon-number density ηs shows even sharper characteristics than in

the case of the resonator [see Fig. 5(a)]. This is caused by stronger interference of the

�elds inside the structure owing to the presence of the higher number of layers. For

the regions of the most intense emission, the transversal components of the interacting

electric �elds are plotted in Figs. 7(a) - 7(c). The y component of TM-polarized idler

electric �eld [see Fig. 7(c)] is ampli�ed by �ve orders of magnitude, while the TE-

polarized component of the pump [see Fig. 7(a)] and signal [see Fig. 7(b)] �elds are

ampli�ed only several times. Therefore, strong enhancement of the process arises from

the resonant ampli�cation of the TM polarized idler �eld at wavelength λi = 873.6 nm
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Figure 6: Relative signal photon-number density ηs in dependence on signal wavelength
λs and radial emission angle ϑs for two regions containing (a) TE-polarized and (b)
TM-polarized photons; λ0p = 400 nm, l1 = 101.752 nm, l2 = 18.083 nm.

emitted at radial angle ϑi = −61.095 deg. For the determination of modes, the boundary

conditions of the �elds were set such that the pump �eld impinges on the structure at

the front interface (z = 0) with amplitude 1 V/m. The amplitude of the backward

propagating pump �eld at the rear end of the structure was set to zero. The electric-

�eld amplitudes of signal and idler �elds leaving the structure at its rear end were equal

to 1 V/m. The amplitudes of the outgoing signal and idler waves at the opposite edge

of the structure were assumed to be zero.

Correlated areas of the signal and idler beams di�er signi�cantly. The pump beam

is assumed to have a Gaussian transversal shape with the radial width equal to 1 mm.

It is assumed to propagate along the z axis of the structure. The radial emission

angle of the idler photon is assumed to be �xed at ϑ0i = −61.095 deg and azimuthal is

ψ0
i = 0 deg. This direction corresponds to the emission maximum in Fig. 6(b). By these

conditions, the correlated area of the TE-polarized signal beam has a Gaussian shape

[Fig. 8(a)]. This means that the shape of the area is determined by spatial parameters

of the pump beam. When the radial emission angle of the signal photon is �xed at

value ϑ0s = 47.686 deg and azimuthal angle equals ψ0
s = 0 deg, the correlated area of

the idler photon is highly elliptic [see Fig. 8(b)]. The width of correlated area in the

radial direction ϑi is governed by the transmission properties of the idler photon near

the region of resonance. In the azimuthal direction psii, its width is determined by the

width of Gaussian pulse.

The squared modulus of two-photon amplitude ni computed for the most intense
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Figure 7: Pro�le of modulus of the electric-�eld amplitude for (a) pump, (b) signal
and (c) idler �elds along the z axis for the pump �eld with amplitude 1 V/m incident
at z = 0 m and outgoing signal and idler �elds with amplitudes 1 V/m at the end
of the structure composed of eleven GaN/Ag layers with lengths l1 = 101.752 nm,
l2 = 18.083 nm; λ0p = 400 nm, ϑp = 0 deg, λs = 737.8367 nm, ϑs = 47.686 deg,
λi = 873.6015 nm, ϑi = −61.095 deg.

emission (ϑs = 47.686 deg, ϑi = −61.095 deg, ψs = ψi = 0 deg) is 4.45 × 10−4 nm

wide (FWHM) [see Fig. 9(a)]. This results in temporal correlations at the time scale of

nanoseconds. The conditional time probability pi of detection of an idler photon, pro-

vided that the signal photon has been detected at time τs = 0 s, is shown in Fig. 9(b). It

is asymmetric, expressing that the TM-polarized idler photon leaves the structure after

the TE-polarized signal photon. The TM-polarized idler photon undergoes more back

re�ections in the structure than the TE-polarized signal photon. This is in agreement

with the resonant behaviour of the idler photon. As a result, the TM-polarized idler
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Figure 8: Correlated area ncor of (a) signal [(b) idler] photon observed after detection of
an idler [signal] photon at direction ϑ0i = −61.095 deg and ψ0

i = 0 deg [ϑ0s = 47.686 deg
and ψ0

s = 0 deg] for the structure analyzed in Fig. 6. The correlated areas are normalized
such that

∫
dϑ

∫
dψ ncor(ϑ, ψ) = (π/180)2.

photon stays in the structure for longer time on average. Di�erent time properties of

TE-polarized signal photon and TM-polarized idler photon are as well observed in the

Hong- Ou-Mandel interferometer (see Fig. 10). The envelope of normalized coincidence-

count rate R is positioned in the negative values. This requires the TE-polarized photon

to be delayed in order to observe detections in a coincidence. Fast oscillations in the

characteristics are caused by unequal wavelengths of the signal and idler photons.

The amount of noise photons emitted from the structure is at the same level as the

number of photon pairs. This is documented by ratios Rs and Ri of absorbed single

photons and number of generated photon pairs [see Figs. 11(a) and 11(b)]. They are

de�ned as

Rαβ
s,ab(Ωs) =

dαs,a(Ωs)

nαβs,ab(Ωs)
, Rαβ

i,ab(Ωi) =
dβi,b(Ωi)

nαβi,ab(Ωi)
. (4)

Index a [b] denotes backward (B) or forward (F ) propagating signal [idler] photon at the

corresponding output of the structure, index α [β] stands for the polarization of signal

[idler] photon. The coe�cient dαs,a(Ωs) denotes density of mean number of photon pairs,

whose signal photon with polarization α has been transmitted to output a and idler

photon has been absorbed. The number of photon pairs nαβs,ab denotes mean number of

photon pairs whose signal photon with polarization α has been transmitted to output a

and idler photon with polarization β to output b. The vectors Ωm = (ωm, ϑm, ψm); m =

s, i correspond to spherical coordinates of the signal (s) or idler (i) wave vector space.
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Figure 9: (a) Idler spectral photon-number density ni as a function of idler wavelength
λi and (b) probability density pi of detecting an idler photon at time τi provided that its
signal twin was detected at time τs = 0 s; pi(τi) = C|A(τs = 0, τi)|2 using an appropriate
normalization constant C. A photon pair is emitted in directions ϑs = 47.686 deg and
ψs = 0 deg and ϑi = −61.095 deg and ψi = 0 deg from the GaN/Ag layered structure
with length of the layers l1 = 101.752 nm, l2 = 18.083 nm. Normalization is such that∫
dωi ni(ωi) = 1 and

∫
dτi pi(τi) = 1.
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Figure 10: Normalized coincidence-count rate R in the Hong-Ou-Mandel interferometer
depending on mutual time delay τl between the signal and idler photons. The structure
described in the caption of Fig. 9 is analyzed.

Higher amount of noise photons is produced near the photonic stop-bands and near

the angle of total re�ection due to multiple back-re�ections. In the area of the most

intense emission of the signal photon (λs = 738 nm ϑs = 47 deg), the value of ratio

RTE,TM
s,FF is equal to 1.2. Near the neighbourhood of the most intense emission of the

idler photon (λi = 834 nm,ϑi = 61 deg) the value of ratio RTE,TM
i,FF is equal to 0.97.
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Figure 11: Ratio (a) RTE,TM
s,FF [(b) RTE,TM

i,FF ] of signal [idler] noise photon-number density
and photon-pair density in dependence on signal [idler] radial emission angle ϑs [ϑi]
and wavelength λs [λi] determined along Eq. (4). The photon-pair �eld contains the
forward-propagating TE-polarized signal and TM-polarized idler photons; λ0p = 400 nm,
l1 = 101.752 nm, l2 = 18.083 nm.

The characteristics of ratios Rs and Ri are smooth functions without resonances which

means that the amount of absorbed signal photons is more-less proportional to the

number of generated photon pairs. The noise photons and photon pairs are produced

with similar intensity in metallo-dielectric photonic structures. This restricts the use of

metallo-dielectric layered structures, as sources of photon pairs to experiments involving

coincidence-count detections.
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