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Abstract

Spontaneous parametric down-conversion is a nonlinear quantum process in which
correlated photons are created in pairs. Photon pairs have become an indispensable tool
for verification of quantum-mechanical principles, in quantum-information processing,
for quantum-communication protocols and quantum cryptography.

Modern photonic structures enhance photon-pair emission rates and simultaneously
modify the properties of generated photon pairs. Periodically-poled silica ring-shaped
fibers are capable of generation and stable guidance of photon pairs in modes with de-
fined orbital angular momentum (OAM). The most stable modes have been selected
for the nonlinear interaction. Their transversal profiles together with phase-matching
conditions have been analyzed to obtain the desired interaction. Narrow-band and
broad-band emission of photon pairs have been obtained in dependence on the mode
of the pump beam. In the time domain, the conditional probability of detection of
a signal photon has been obtained and correlation times have been evaluated. The
emission of photon pairs entangled in OAMs and frequencies have been analyzed. Ef-
fective dimension of the entangled space has been quantified by means of the Schmidt
number indicating a maximally entangled photon-pair state. The influence of noise
on the entangled OAM state has been evaluated by the Clauser-Horne-Shimony-Holt
inequality.

Also metallo-dielectric layered structures have been analyzed as highly efficient
sources of photon pairs. Layered structures consisting of silver (Ag) and Gallium-
Nitride (GaN) have been investigated. Two structures formed by three and eleven
layers have been designed to maximize the emission rate. They have been examined
with respect to relative signal photon-number density in the angular-spectral domain.
Both structures have been found more efficient than dielectric structures due to strong
back-scattering effects caused by the high index-of-refraction contrast. Distributions
of electric-field amplitudes corresponding to the emission maxima have been analyzed.
Correlated areas as well as temporal characteristics including those appropriate for the
Hong-Ou-Mandel interferometer have been investigated. Also, numbers of noise photons

have been discussed as the metallic layers are absorptive.



Abstrakt

Spontanni parametricka frekvenéni konverze je nelinearni kvantovy proces, pii kterém
jsou vytvareny korelované fotonové pary. Fotonové pary se staly jedine¢nym prostied-
kem pro ovéreni fundamentalnich principt kvantové mechaniky, pro zpracovani kvantové
informace, pro kvantové komunika¢ni protokoly a kvantovou kryptografii.

Moderni fotonické struktury zvySuji miru emise fotonovych part a soucasné modi-
fikuji vlastnosti generovanych fotonovych péarti. Periodicky pélovand kiemicita prsten-
cové vlédkna jsou schopna generace a stabilnfho vedeni fotonovych parti s definovanym
thlovym momentem (OAM). Nejstabilngjsi mody byly vybrény pro nelineérni inter-
akci. Jejich pficné profily spole¢né s podminkou sfazovani byly analyzovany za tcelem
optimalizace procesu. Pro odlisné mody cerpaciho svazku byla obdrzena tizko- a Siroko-
spektralni emise fotonovych péari. V ¢asové doméné byla obdrzena podminéné pravdé-
podobnost detekce jalového fotonu a byly spocteny korela¢ni ¢asy. Analyzovéana byla
emise fotonovych part entanglovanych v OAM a frekvenci. Efektivni dimenze entan-
glovaného prostoru byla vy¢islena pomoci Schmidtova ¢isla. To poukazalo, ze fotony v
paru jsou maximalné entanglované v OAM. Vliv sumu na entanglovany OAM stav byl
vyhodnocen pomoci Clauser-Horne-Shimony-Holtovy nerovnosti.

Metalo-dielektrické fotonické struktury byly rovnéz analyzovany jako ac¢inné zdroje
fotonovych pari. Zkouméany byly vrstevnaté struktury skladajici se ze stiibra (Ag)
a Gallium-Nitridu (GaN). Dvé struktury skladajici se ze t¥i a jedenécti vrstev byly
navrzeny tak, aby maximalizovaly miru emise fotonovych péari. Byly zkoumany s ohle-
dem na relativni pocet emitovanych signdlovych fotoni v uhlové-spektralni doméné.
Obeé struktury byly shledany i¢innéj$imi nez jejich dielektrické proté&jsky diky vysokému
kontrastu indexii lomu obou materidlti. Analyzovany byly distribuce amplitud elektrick-
ych poli, které pfislusi nejsilnéjsi emisi fotonovych part. Predmétem zkoumani také byly
korelované plochy a Casové charakteristiky vCetné charakteristik pfislusnych Hong-Ou-
Mandelové interferometru. Diskutovan byl i pocet Sumovych fotoni, jelikoZz metalické

vrstvy vykazuji nenulovou absorpci.
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Chapter 1

Intoduction

1.1 The goals of the thesis

The modern photonic structures are bright sources of photon pairs. The main goal
was to study spontaneous parametric down conversion in a metallo-dielectric layered
medium and a periodically-poled ring silica fiber. In both cases the spectral, spatial
and temporal properties of photon pairs had to be studied. The photon pair emission

rate of both sources had to be evaluated in order to determine their efficiency.

1.2 Annotation

Chapter 1 identifies goals of the thesis (Sec. 1.1) and gives an overview about the content
of the thesis (Sec. 1.2).

The introduction to the field of classical non-linear optics is provided in Chapter 2.
A polarization vector describing linear and non-linear interaction of radiation with mat-
ter is defined together with frequency dependent linear and non-linear susceptibilities
(Sec. 2.1). Its definition is utilized for derivation of the coupled wave equations. A
general interaction of two monochromatic waves in the second-order non-linear medium
is qualitatively described in Section 2.2. The individual processes, which arise from the
interaction, are explained by the electron-photon energy transition schemes.

Chapter 3 covers the topic of photon pairs. The first step, which started a fruitful era
of quantum phenomena is briefly mentioned in Section 3.1.1. The quantum-optical ap-
proach to quantization of the electromagnetic field in vacuum is placed in Section 3.1.2.
The properties and usefulness of the photon pairs in physics are summarized in Sec-

tion 3.2. The generation of photon pairs entangled in various degrees of freedom from
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a bulk crystal is explained in Section 3.3.

The spontaneous parametric down-conversion (SPDC) in a ring fiber is described
in Chapter 4. Section 4.1 introduces integrated sources of photon pairs (Sec. 4.1.1),
explains usefulness of modes with orbital angular momentum (OAM), concept of quasi-
phase matching and the thermal poling procedure (Sec. 4.1.3). The theorectial approach
to SPDC in the ring-fiber is developed in Section 4.2. The simulated quantities charac-
terizing a photon pair are defined at the end of the Section. The angular decomposition
of individual modes together with determination of the number of Schmidt modes is
described in Section 4.3. The derivation of analytical formula of the guided OAM modes
of the ring fiber and their analysis are in the Sections 4.4 and 4.5. Section 4.5 covers
as well analysis of the narrow-band generation of photon pairs. The broad-band type is
investigated in Section 4.6. The entanglement of the generated photon pairs is explored
in Section 4.7. Subsequently, the impact of the noise on the entanglement of generated
photon pairs is evaluated.

The emission of the photon pairs from a layered structure is examined in Chapter 5.
In the introduction, the state of art is briefly summarized. The non-linear model of
metal is derived from hydrodynamical model in Section 5.2. The SPDC model in the
layered medium is provided in Section 5.3. The quantities characterizing a photon
pair are defined in Section 5.4. Section 5.5 is devoted to a theory of photon losses in
the layered medium. Emission of photon pairs from simple metal-dielectric-metal (Ag-
GaN-Ag) resonator and structure with 11 layers (GaN-Ag) is explored in Section 5.6 and
Section 5.7, respectively. The correlated areas, temporal properties (both in Sec. 5.8)
and photon losses (Sec. 5.9) have been considered as well.

The Conclusion (Chapter 6) summarizes the content of the thesis in English (Sec. 6.1)
and Czech (Sec. 6.2) language. The list of author’s publications is found on page 102,

while the references are placed on page 103.
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Chapter 2

Non-linear phenomena of the

second order

The elements of dispersion in transparent media are provided in Section 2.1. The po-
larization vector is introduced for both linear and non-linear media. The non-linear
media are assumed to posses only second-order non-linearity. With the definition of
polarization vector in dependence on the electric field, the equations for spatial evo-
lution of the electric-field frequency amplitudes are derived. Polarization vector for a
general non-linear second-order process is derived in Section 2.2. All the associated pro-
cesses - second harmonic generation, sum-frequency generation and difference-frequency

generation are described with electron transition schemes.

2.1 Non-linear vector of polarization

Non-linear optics started to develop at the beginning of 1960’s. Shortly after the dis-
covery of light amplification by stimulated emission of radiation (laser). The lasers were
the first sufficiently intense sources of coherent light. The intensity of generated light
was strong enough to reveal the non-linear nature of matter for the first time. The first
observed non-linear effect was second-harmonic generation by Franken et al. [1]. Since
then, the field on non-linear optics started its fruitful era. Many distinct non-linear phe-
nomena have been observed and theoretically described [2]. At present, the non-linear
optics is indispensable part of the physics.

Till the discovery of laser, the matter had appeared to preserve the frequency of the
light. From theoretical point of view it means, that the optical properties of the matter

are linear with respect to propagating light. If we describe the matter as a system of
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electric dipoles, this is expressed as
P(r,t) = cox\VE(r, ). (2.1)

Eq. (2.1) relates the dipole density in a matter P with the total electric field E. The
vector P is termed polarization vector, €g is the permittivity of vacuum, r = (z,y, 2) is
the coordinate vector and t indicates time. Eq. (2.1) can be physically interpreted as
follows. When the electric dipoles are exposed to an electromagnetic wave, they start
to oscillate. The oscillating dipoles radiate secondary waves, which superpose with the
incident wave. The process results in different phase velocity of the wave in the matter
than in vacuum. The relation (2.1) is valid for medium, which responds immediately
on the local electric field E/'. Moreover, the polarization properties of the medium
are assumed to be polarization independent?. Therefore, the proportionality constant
between electric field E and polarization vector P is a scalar quantity denoted as .
The constant x(!) is called dielectric susceptibility and in the visible spectrum usually
reaches values around 1.

The situation is different if the medium does not respond instantly on the applied
electric field E. The polarization vector P(r,t) in time ¢ is dependent on electric field

E at the same point in the previous times. This can be expressed by the equation
¢
P(r.1) = 2 / At Bt — ') E(r, '), (2.2)
—00

The function ®(t — ') is called a response function. If we assume the electric field E to

be composed of countable number of frequency components

E(r,t) = > E(r,w,)exp(—iwnt), (2.3)

n

equation (2.2) attains the form
P(r,t) = Zeox(l)(wm) E(r,w,) exp(—iwpt). (2.4)

The function x(wy,) is the frequency-dependent dielectric susceptibility. It is related to
the response function ®(¢) by a Fourier transform y(wy,) = fj;o dt’ ®(t') exp(iwpt). If

!The polarization vector P(r,t) in time ¢ is solely dependent on electric field E(r,t) in the same
time.
2The direction of the polarization vector P is the same as direction of the electric field E.

16



the polarization vector P is as well decomposed into the frequency components P(r,t) =
> P(r,wy,) exp(—iwyt), the relation between the electric-field amplitudes E(r, wy,) and

polarization-vector amplitudes P(r,w,,) is obtained:
P(r,w,) = coxV (wn; wn)E(r, wp). (2.5)

In Eq. (2.5), we adopted the notation from [2], where the first argument in the per-
mittivity tensor denotes the frequency of the polarization vector (wave emitted by the
dipoles). The second argument is separated from the first argument by a semicolon and

corresponds to frequency of the propagating electric field E/3.

In general, the non-linear properties and non-uniform directional polarizability of
matter have to be taken into account. The polarization vector P is dependent on the
electric field E in a more complex manner. Particularly, the polarization vector P(r,t)
is treated as a general function of electric field E(r,t). For simplicity it is assumed,
that the response of a matter is instant. The expansion of the polarization vector with

respect to electric field to the second order reads |2]:
Pi(r,t) = > eoxy Er(r,t) + Y cox\ P Ex(r, ) By(r, t). (2.6)
k kl

The symbol P; denotes the j-the component of the polarization vector P and the linear

dielectric susceptibility tensor Xﬁ) is a generalization of the linear dielectric suscepti-

bility written in Eq. (2.1). The quantity Xﬁ;)l is called the second-order susceptibility
tensor. It is non-zero only in material, which does not posses inversion symmetry. The
terms of the tensor have values around 10712 m /V. Thus, the corresponding effects are

observable only with a strong coherent source of light?.

When the matter exhibits finite response time with respect to the applied electric

field E, the dependence of the polarization vector P on spectral components of electric

3If the polarization vector P is linearly dependent on the electric field E, the notation of incident
and generated frequency in the dielectric susceptibility might appear to be redundant. On the other
hand, when the non-linear phenomena are considered, the introduced notation appears to be helpful [2].
“The non-linear tensor ijfn describes the polarization properties of the matter with respect to
the product of two electric fields. Therefore, the associated observed effects are called quadratic or

non-linear second-order effects.
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field is expressed by the equation

Pj(r,t) = Z Zgoxﬁ) (Wn; wn) Br(r,wy) exp(—iw,t) +
k n

Z Z ong'i)l (Wm + Wnj W, Wn)Ek:(ra wm)El(rv wn) exp[—i(wm + wn)t]'

kl mn

(2.7)

The second-order permittivity tensor Xﬁ)l(merwn; W, wn ) is dependent on the frequen-

cies of the incident fields wy,,w,. The frequency of the associated polarization vector

amplitude

Pj(r,wm +wy) = Z Zegxgz)l(wm + Wi Wi,y Wy ) B (T, wim ) Ep(r, wy) (2.8)

kI mn
is equal to the sum of frequencies wp,,w, of the interacting electric-field amplitudes
Ey(r,wpn), Ej(r,w,). Therefore, the outgoing electromagnetic field, emitted by the
dipoles, has different frequency then the two incident electric fields.

The interaction of the electromagnetic field in non-linear medium is classically de-

scribed by the Maxwell equations

0B
VxE = =50 (2.9) V-D = p,  (211)
VxH = —%?Jrj, (2.10) V-B = 0. (212

E denotes electric intensity field, B magnetic induction field, H magnetic intensity
field, D displacement field, j free current density and p free charge density. The most
of materials are non-magnetic for electromagnetic waves with frequencies in or near
the visible spectral range. Therefore, the first material equation relating the vector of

magnetic intensity field H with the vector of magnetic induction B reads
B(r,t) = puoH(r, t). (2.13)

The second material equation relates the displacement field D with the electric intensity
field E. In medium, where dipole moments can be induced by the electric field, the
relation is

D(r,t) = eoE(r,t) + P(r,1). (2.14)

In the most of dielectrics, free currents and free charges are negligible, j = 0,p = 0.
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The currents and charges in the dielectric media originate solely from polarization of
the medium |2].

If we insert Egs. (2.13) and (2.14) into the Maxwell equations (2.9) - (2.12), we ob-

tain

oB 1
E = —— 2.1 -E = ——V.P 2.1
V x TR (2.15) \Y% EOV , (2.17)
_ IE op V-B = 0. (2.18)
VxB = eup— o + po—=- ETR , (2.16)

In order to obtain the equation of motion for the electric field E, a VX operation on
the Eq. (2.15) is performed and with the use of Eq. (2.16), we arrive at

1 O’E 0*P

(2.19)
¢ indicates the speed of light in the vacuum. The term V(V - E) is usually negligible in
comparison with the term AE, thus it can be omitted it in the next considerations [2].

Eq. (2.19) can be rearranged as follows

1 9°E 9*P

AE= 55m THga

(2.20)

The polarization vector can be expanded to electric field components according to
Eq. (2.7). If the electric field is expanded in the same manner [Eq. (2.3)], the cou-
pled differential equations in space for different frequency components are obtained:

2
Wi
AEj(r,wn)—l— (r,wn —1—2 gxﬁ (wn; wn) Br(r,wn)+

Wm + Wo
Z Z (CQ)Xg?l(wm + Wo Wi, Wo ) Bk (T, wm) Ey(r,w,) = 0;Vn. (2.21)
(mo) kl

The sum with index (mo) goes only through frequencies wy,, w,, which satisfy the equa-
tion wy, = wm + wo. Eq. (2.21) governs the spatial evolution of electric-field spectral
amplitudes E(r,w,) in medium with non-zero second-order susceptibility tensor X2,
The equation couples spectral amplitudes E(r,wy,), which correspond to distinct spec-
tral components. Thus, an electric-field spectral amplitude at particular frequency may
be affected by electric-field spectral amplitudes with different frequencies. This is the

main principle of all non-linear processes. Eq. (2.21) can be further simplified in order
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to obtain equation, which is more appropriate for analytical or numerical methods [2].

2.2 Non-linear process of the second order

A non-linear process of the second order involves interaction of three electric-field am-
plitudes. Two waves with frequency components w; and wy enter the interaction and
one new frequency component ws originates. Scheme of the process is shown in Fig. 2.1.

The total electric field entering the interaction is equal to

w1 w1
2 w3

x® —
w2 w2

Figure 2.1: Scheme of the non-linear effect of the second order.

E(r,t) = E(r,w;) exp(—iwit) + E(r,w2) exp(—iwat) + c.c. (2.22)

Symbol c.c. denotes the complex conjugated part of the foregoing expression. If we
include Eq. (2.22) into Eq. (2.7) and take only the non-linear part of the expression, we

obtain

P(r,t) = P(r,2w;)exp(—i2wit) + P(r,2ws) exp(—i2wat) +
P(r,w; + wa) exp[—i(w1 — w2)t] + P(r,w; — w2) exp[—i(wi — wa)t] + c.c.
(2.23)

The individual spectral components of the polarization vector are equal to

Pj(r,2w;) = onjk (2w1;w1,wl)Ek(r,wl)El(r,wl) (2.24)
Pj(r,2wp) = 50Xﬂd(2w2;wg,wg)Ek(r,wl)El(r,wl) (2.25)
Pj(r,w1 +w2) = 250X( )(wl + wo; wi,w2) Bk (r,wr) Ey(r, ws) (2.26)
Pj(r,wi —wy) = 250)(5,31((,01 — wo; w1, —w2) B (r, wi) Ef (r,ws). (2.27)

There are several new frequency components, which originated from the non-linear
interaction. The frequencies w3 = 2wq, 2wy belongs to the second harmonic and the
process, in which the frequency components are generated, is called second-harmonic

generation. The frequency ws = w; + we is connected with the process termed sum-
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frequency generation, and w3 = w1 — wa difference-frequency generation.

The generation of new frequency components by means of the second-order non-
linearity [Eqgs. (2.24) — (2.27)] can be explained microscopically. So far, the treatment
of the non-linearity was purely mathematical. Its origin was established from expansion
of polarization vector P in electric field E. Nevertheless, if the microscopic structure of

the matter is considered, the non-linear phenomena originate naturally.

In quantum mechanics, the total energy of the electromagnetic field is treated as
a package of energetic quanta. Each quantum has an energy Aw and the associated
particle, which carries this energy, is called photon. The second-order processes involve
interaction of two photons with one electron. The electron is assumed to be bounded
in an orbit of an atom, which is located in the medium. When the electron absorbs the
quanta or quantum of energy, it is excited to higher energy level according to the law
of conservation of energy. The higher energy level may be either stable or a virtual one.
The stable energy level originates from the parameters of the atom and the electron
may occupy this level for sufficiently long time. In contrast, virtual energy level is not
an energetic level of an atom, where electron may reside. Therefore, the electron is
allowed to stay at this energetic level for restricted amount of time, which is defined by
the Heissenberg inequality
o0t =h/0E. (2.28)

0F is the energetic difference from the virtual level to closest real level of an atom.
The transition times 6t typically reach values around 107 — 1076 s. Due to such a
short times, the virtual transitions can be considered as instantaneous with respect to

electromagnetic waves in the visible spectrum.

In the non-linear processes described in this thesis, the transitions trough the virtual
levels are utilized. They allow for fast transition times of the electrons. Moreover, the
transitions conserve energy of all involved photons. The processes, where only virtual
energy levels of an electron are involved are called parametric. The transitions, which
involve the real energy levels are called non-parametric. The transition times in non-
parametric processes are much higher than in the case of parametric ones. Therefore,
the exchange of energy between the photons and the medium has to be taken into the
account. There might be as well effects, which may transform energy of photons to
mechanical vibrations of the medium. In this case, there will be an absorption of the
energy of the photons. Since the utilized energy levels are real, the resonance of the
electric field with the electron transition causes the non-linear process to be resonantly

enhanced. As a result, the probability of the transition can be much higher than in the
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case of parametric process, but for the cost of additional absorption.

The simplest non-linear process of the second order is second-harmonic generation.
It is connected with the non-linear polarization vector (2.24) and (2.25). It is described
by transition scheme in Fig. 2.2(a). Two photons of the same frequency w; are anni-
hilated by an electron. Due to absorption of two energetic quanta hwi, the electron
is excited from the ground state with energy F, to virtual energy level with energy
Eg,+2hwy. Till the defined time |[Eq. (2.28)], the electron de-excites back to the original
ground state. During the de-excitation process, the electron releases one photon with
energy 2hwi. The second-harmonic generation is a special case of more general process,
the sum-frequency generation [Fig. 2.2(b)]. In sum-frequency generation two photons
of arbitrary frequencies w; and wy are annihilated by an electron and one photon of fre-
quency wi + wo is emitted. The physical explanation of the sum-frequency generation

is identical to second harmonic generation.

Eg + 2hw1 Eg + hwl + FL(UQ Eg + hwl
E A AT T T T T T - AT T T T T T - ) S, -
Wa w2
w1
A---- |\ | _____ 2
w
+4----- w3 = 2w1 w3 = w1 + w2 !
w1 W3 = Wi — ws
wi
Ey Eg Ey
(a) (b) (c)

Figure 2.2: Electron transition schemes for (a) second-harmonic generation (b) sum-
frequency generation (c) difference-frequency generation.

The last non-linear phenomenon of the second order is difference-frequency gener-
ation. Its transition scheme is shown in Fig. 2.2(c). There are two waves entering the
interaction. Wave with positive frequency w; and wave with negative frequency —ws.
We assume, that the frequency w; is greater than ws. The outgoing wave has positive
frequency

W3 = W1 — wWa. (2.29)

Eq. (2.29) can be rearranged and multiplied by the reduced Planck constant h. Then
we obtain,

hws + hws = hwq. (230)

Eq. (2.30) identifies the energy exchange between the interacting quantum fields, me-
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diated by the electron. It can be explained as follows. The ingoing wave w; releases
one of its quantum hw; to electron. The electron is excited to a virtual energy level
with energy £ = FE, + hwi. When electron de-excites, it releases one quantum of en-
ergy into the wave with frequency wy and wave with frequency ws = w; — ws. Besides
the name difference frequency generation, the process can be as well called parametric
down-conversion.

In the classical case®, it has to be always assumed, that there are non-zero spectral
amplitudes of interacting waves E(r,wy). If there is an ingoing wave with non-zero
electric-field amplitude E(r,w;) and no external fields with frequencies ws,ws entering
the interaction [E(r,ws2), E(r,ws) = 0], the classical approach fails. It predicts that the
waves with frequencies wsy,ws should not be generated. However, in the experiments,
the generation of frequencies wy and w3 is observed even if no external waves on the
frequencies are provided.

In order to theoretically obtain the observed results, small non-zero amplitudes to
the fields with frequencies wy and w3 have to be introduced before the interaction. This
ad-hoc solution is no longer needed when quantum-mechanical (QM) approach is used.
The QM predicts, that there are non-zero vacuum fluctuations of the electromagnetic
fields at an arbitrary frequency. As a result, if there are no externally provided fields
with frequency wy or ws, the energy from de-exciting electron is passed to the vacuum
fluctuations of fields with frequencies wy or ws. In analogy, the same problem arises
for the second-harmonic generation as well as sum-frequency generation. They can be

generated from the vacuum fluctuations in the same manner.

5The classical approach describes the non-linear interaction of the waves by the equations of coupled
waves (2.21).
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Chapter 3
Photon pairs

A brief historical background about the quantization of electromagnetic field is provided
in Section 3.1.1. The quantization procedure of electromagnetic field in vacuum in
the Coulomb gauge is shown in Section 3.1.2. The properties and usefulness of the
photon pairs in physics, and particularly in quantum optics, are discussed in Section 3.2.
In Section 3.3 the emission of photon pairs from a bulk birefringent crystal is briefly
described as the simplest scenario of their generation. Subsequently, the procedures for
obtaining the photon pairs entangled in frequency, emission angles and polarization are

introduced.

3.1 Photons and quantization of the electromagnetic field

3.1.1 Introduction

A cornerstone for the quantization of an electromagnetic field was placed by Max Planck.
At the turn of 19" and 20" century, he managed to theoretically solve the problem of
radiation of a black body [3]. Till this time, there were two different formulas predicting
the spectral density of black body radiation u(w). The first one, proposed by Wilhelm

Wien, approximated the spectral density for high frequencies
3 w
u(w) = Crw” exp (_02T> ; (3.1)

C1, Cy are real positive constants and T is thermodynamic temperature. Although it
was successful with predictions for the high frequencies, it failed in the low frequency

limit. For the low frequency limit, there was a formula derived by Lord Rayleigh and
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where k represents the Boltzmann constant. It was in agreement with the measurements
of low-frequency part of black body spectrum. Although in low frequency limit, there
was a discrepancy.

Max Planck was awared by the presence of two distinct formulas (3.1) and (3.2).
By mathematical unification of entropies for both formula, he managed to derive an
equation for spectral density of radiation:

2w? hw

u(w) = 73 exp(hw/kT) — 1 (3:3)

which was able to predict the spectral density precisely across the whole spectral range.
In order to obtain this formula, he was forced to take an unusual assumption. The energy
of the radiation modes, which were in thermal equilibrium with the black body, had to
be quantized. Particularly, each mode, which harmonically oscillated with frequency w

had to carry a discrete number of energy quanta Aw.

Together with Einstein’s explanation of the photoeffect and observation of the spec-
tral lines from emitting atoms, it started to be obvious, that quantization of en electro-

magnetic field is inherent part of the nature |[3].

3.1.2 Quantization of the electromagnetic field

The quantization procedure in linear quantum optics composes of few stages [4]. First
the wave equations of the vector potential A(r,¢) and scalar potential ¢(r, t) are derived.
The equations are solved with periodic boundary conditions. Then it is shown, that
energy of the derived electromagnetic field in one periodic cell is equal to energy of
infinite set of harmonic oscillators.

In the utilized approach, the potentials of the electromagnetic field are introduced.
The equation stating non-existence of magnetic monopoles (2.18) and the Faraday law

(2.15) are identically valid if we introduce the vector potential A as follows:

B = VxA (3.4)
0A

We assume, that the medium through which the electromagnetic waves propagate is
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vacuum. Then, the following material relations are valid:

B = poH, (3.6)
D = EoE. (37)

By inserting Egs. (3.4) and (3.5) into the Ampere law (2.10) and the Coulomb law
(2.11) and by usage of Egs. (3.6) and (3.7), the equations of motion for potentials A

and ¢ are obtained:

oA p
Np = -V .— - )
b= Ve (3.8)
10°A 10
VxVxA = — —=—Vo. (3.9)

2o 2ot

Further, we will assume, that there are no free charges nor free currents. This means
j = 0and p = 0. By the use of vector algebra and rearrangement of the terms in

Egs. (3.8) and (3.9), we get equations:

B 0 1 0p
B 1 0y
OA = V<V-A+Czat>. (3.10)

With the usage of Lorentz gauge

10p

A+ S = :
VoA+ 5o =0, (3.11)

which utilizes the non-uniqueness of the potentials A and ¢, the wave equations for the

potentials are obtained

Op = 0, (3.12)
OA = o. (3.13)

The Lorentz gauge (3.11) can be further specified. In the investigated case it is possible
to pass the Lorentz gauge (3.11) by defining

V- A=0Ap=0. (3.14)

The particular choice of gauge (3.14) is called the Coulomb gauge.
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The procedure of quantization is independent of the shape of volume. Thus it will
be assumed, that the radiation field is located in the cube of volume V = L3/'. It is

further assumed that the complex solution of Eq. (3.13) is in the separable form,
A (r 1) = g(t)u(r). (3.15)

Due to separability of the solutions (3.15), the wave equation for the vector potential

(3.9) splits into two equations for functions ¢ and u

2

w
d2q 2
@ +w?q = 0. (3.17)

The parameter w originated from assumption of the separability. In order to obtain a

solution of Eq. (3.16), the function u(r) is expanded into the plane-wave basis:

+o0
u(r) = / d*k A(k) e(k) exp(ik - ). (3.18)

—0o0

The vector e(k) defines the polarization of the plane wave with wave vector k, is real
and its norm is equal to unity. The complex amplitude A covers magnitude of the wave
and its phase shift. By insertion of Eq. (3.18) into Eq. (3.16) we obtain a dispersion

relation between the wave vectors k and frequencies w in the free space
w? = K% (3.19)

The periodic boundary conditions at the edges of the quantization volume V' require
the function u(r) to fulfil the condition

u(r) = u(r + xoL) = u(r + yoL) = u(r + zoL), (3.20)
where xg,y0, 2o are the unit axis vectors. The requirement (3.20) is passed if the wave

vectors are discretized, namely:

2
k= f(.]:man)v (3.21)

where j,m,n are integers. The multi-index [ = (j,m,n) in the subscript of the wave

!The quantization in the free space limit can be done by expanding the volume V to infinity V — oo
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vector includes the indexes j,m,n. While the wave vectors have become discrete, the
angular frequencies w have to be as well discretized. Therefore the frequencies are

indexed with a multi-index I: wj.

After imposing the boundary conditions, the solution u(r) attains the form

u(r) = ZAlel exp(ik; - r) = Zul(r). (3.22)
l

l

The functions u; are orthogonal and can be normalized such that

/ u; (1) - U (r) = Oy (3.23)
\%

The function uj is complex conjugated to function w; and d;,, is the Kronecker delta.

Then the form of function u; is:

e; exp(ik; - r). (3.24)

1
w(r) = W

The spatial functions u;(r) have to fulfil the Coulomb gauge (3.14), which means
that:
e - kl =0 (3.25)

for all multi-indexes . This implies, that the polarization vectors e; are located in the
transverse plane with respect to the wave vector k;. Thus, it is possible to decompose
arbitrary vector e; into the basis of two-dimensional space. This basis is formed by two
vectors e;; and epp. The vectors e, €5 are real and have norm equal to unity. The
spatial function u(r) can be finally expressed as a superposition of mutually orthogonal

modes u;:

1
u(r) = —ey, exp(ik; - 1), (3.26)
%: o explik

where index o0 = 1,2 denotes the polarization of the wave.

The general solution of the differential equation (3.17) is
q(t) = Ajp(w) exp(—iwit) + Aje(—w) exp(iwit), (3.27)
in which A;,(w;), Ajo(—w;) are complex numbers and w; = ck; is a positive real number.
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The resulting vector potential is given by the equation [5]

1
A(r,t) =) w(r)g(t) = —e€y, [Alp(wr) exp(—iwt + ik; - r)+
zl: 1(r)q %: ol Ao p ! !

Ajg(—wy) exp(iwit + ik; - r)]. (3.28)

We break the sum into two parts and in the second sum the following identities are used

;r:ofoo g = Z;;ofoo g—1, k_; = —k;, w; = w_;. Then, the obtained result is equal to

1
A(r,t) = > w(r)g(t) = —e€, [Ajp(wr) exp(—iwt +ik; - r)+
zl: l a %: \/V l l l p l l

A_jo(—wy) exp(iwt —ik; - r)]. (3.29)

We require the vector potential to be a real quantity. Thus, its complex conjugate must

be equal to the original function A = AT. From this demand it follows that

Ag(w) = Al (—w), (3.30)
A p(—w) = Al (w). (3.31)

Defining A;, = Aj,(w;) the final solution for the vector potential reads

A(r,t) = AD(r,t) + A (r,1)
_ Clo ", . ¥ o
= ; N [Alg exp(—iwt 4 ik; - r) + A;  exp(iwt — ik r)] . (3.32)

The vector function A(H) is complex conjugated to vector function A7) they denote
the positive and negative frequency components of the vector potential A. By insertion

of Eq. (3.32) into the Hamiltonian of the electromagnetic field in the Coulomb gauge
H 1/ oA 2+1(V><A)2 (3.33)
= — £ —_— — .
2 Jy [\ ot Ho

hw
H=Y" #(A}UAZU + A AL). (3.34)

l,o

we arrive at

The Hamiltonian (3.34) is in the symmetric form with respect to complex amplitudes
Ay, Al

1o~ The final stage of the quantization procedure is the interchange between the

amplitudes of the fields and creation and annihilation operators of linear harmonic
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oscillator A;[UAZU — &Zro_, 015- The commutation relations between the operators d};, Al
is

a1, @) = o), — @l ite = Opordrl, (3.35)
where the operator 1 is a unity operator.

After quantization of the field, the vector potential and Hamiltonian operator of the

electromagnetic field are equal to:

lo

A(r,t) = Zel" [&lg exp(—iwt +ik; - r) + al exp(iwt — ik - r)} . (3.36)

l,o

A huwp 4 o L 1

H =Y T(a,ﬁ,ala +aea),) =Y hw (alTUalU + 2) : (3.37)
lo lo

Operator of the number # of photons is defined as

o = @) (3.38)
Its eigenvectors are the Fock states |n) fulfilling

n|n) = nin) (3.39)

and its eigenvalues are numbers of photons in given Fock states n. With the usage of
the photon number operator n, we may obtain mean number of photons in an arbitrary

mode [0 of a state |¢). This can by computed from the equation

(o) = (Ylus|¥). (3.40)

The symbol (n;,) indicates mean number of signal photons in mode lo of a multimode
state [¢).

3.2 Properties and usefulness of photon pairs

A photon pair is composed of two single-energetic quanta, which originate together
in the spontaneous parametric down-conversion process (SPDC). SPDC is a quantum-
mechanical phenomenon in which three quantum particles - photons interact together?.
It was for the first time predicted by Luisell in 1961 [6] and experimentally observed
independently by two research groups in 1968 [7,8]. During the process one photon of

2From classical point of view, the SPDC has been already described in Section 2.2 on page 20.
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the pump field is annihilated and two other photons - signal and idler are created. The
newly created particles are mathematically described by a common wavefunction - the
two-photon state. This state describes all properties of both photons.

SPDC occurs only in a non-linear medium with a non-zero second-order susceptibil-
ity tensor (). In classical optics this tensor describes the non-linear capabilities of a
medium, in SPDC it represents an interaction parameter. The magnitude of the param-
eter governs strength of the interaction. Despite of classical description of non-linear
medium by a parameter, theoretical models of SPDC provide predictions which are in
good agreement with experimental results [9-12].

Theoretical predictions and experimental results reveal that two-photon states do
not offer deterministic results of measurements like the classical objects do. Just the
opposite, there can be many various statistically correlated states but only one of them
is detected [13]. These states, termed entangled, have served for performing many
through-braking experiments like the test of Bell inequalities. Testing of the inequal-
ities have revealed non-locality or non-realism of quantum phenomena [14,15]. The
photon pairs were as well used for testing EPR paradox [16-18] or quantum telepor-
tation [19]. Besides the teleportation schemes, entanglement can be used for secured
quantum key distribution [20,21]. Last but not least, entanglement also plays a crucial
role in quantum computing [22, 23|, quantum metrology [24,25| and quantum object
identification [26]. Till now, photon pairs were the exclusively experimentally obtain-
able entangled particles. However at present, entanglement can be established between
the single atoms [27].

In the process of annihilation of a pump photon and creation of signal and idler
photons, the laws of energy and momentum conservation have to be fulfilled. The law

of conservation of energy is expressed as:
hwy = hws + Iw;. (3.41)

The frequencies wy,, ws and w; belong to pump, signal and idler photons. The law of

conservation of momentum equals?
hk, = hks + hk;, (3.42)

where k;,, ks and k; are wave vectors of pump, signal and idler field.

5The law of conservation of momentum in the Eq. (3.42) is valid, if the non-linear medium is
homogeneous on lengths many times higher than the wavelengths of the interacting photons. Otherwise
a more general formula has to be used for the evaluation of conservation of momentum.
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Strong statistical correlations between newly created photons arise due to these
laws. The correlations may arise in variables such as frequency, wave vector or polar-
ization. They provide us availability to predict properties of one photon by measuring
properties of the other one. Generally, this implies that signal and idler photons are
not independent particles. The nature of correlations is closely related to geometry and
optical properties of the non-linear medium and shape of the pump pulse [28-31].

The energy conservation makes signal and idler photons to be created in a narrow
temporal window. In addition, the law determines the sum frequency of down-converted
photons. Time correlations can be observed in Hong-Ou-Mandel interferometer by
measuring a correlation function of the 4*" order [11,28] (see scheme of the interferometer
in Fig. 3.1). Measurement is based on detecting coincidences between two spatially and
temporally separated photons. Time correlations can be tailored by the shape of the
pump field in the time domain or by precise design of the non-linear structure [28].
By proper design of these parameters, frequency chirped two-photons states [32], anti-

correlated states [33] or non-correlated two-photon states [29] can be obtained.
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¥
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Figure 3.1: Scheme of the Hong-Ou-Mandel interferometer together with non-linear
crystal.

The momentum conservation leads to correlations in wave vectors. Satisfying this
law is crucial for effectivity of SPDC and it is termed phase-matching. At first, bire-
frigent materials passed this requirement, later photonic structures have started to being
used. In modern photonic structures periodicity in a strucutre, in linear regime - refrac-
tion index or in non-linear regime - periodical poling, is introduced to provide a desired
phase-matching condition [34,35]. Correlation in wave vectors is closely connected with
emission angles of the photons from the structure. When one photon is observed at a
given direction the direction of the other one is fully determined or can be located in
a cone volume with certain probability [30,31,36]. Which one of these possibilities oc-

curs depend on the geometry of the crystal and spatial parameters of the pump pulse.
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The spatial correlations, which are connected with the wave vector correlations, are
investigated in connection with, e.g., ghost imaging [37] or Schmidt modes [31]*.

Last important degree of freedom in which a correlations may occur is polarization
[39,40]. There are two distinct polarization states in which the signal and idler photons
can be created. One is orthogonal to the other or both of them have the same direction
of polarization and the pump has different polarization from them. The first one is called
type-1I generation and the second is type-I generation. Polarization states are easy to
calculate with and handle them in experiments. Therefore, this type of correlation is
a suitable platform for many experiments. It has been used, e.g., for demonstration of
quantum teleportation [13], violation of Bell unequalities [15] or test of EPR paradox
[18].

3.3 Generation of photon pairs in bulk material

Photon pairs are generated in non-centrosymmetric crystals®. Typical examples are
KNbO3, LilOg, LiNbOg, or f—BaB20y4 [3]. In the crystal, there are no preferred direc-
tions of emission or frequencies of the signal and idler photons ws and w;. Therefore,
the photons are emitted at all allowed frequencies and in all directions governed by the
conservation laws.

The simplest way how to obtain the photon pairs is their generation from birefringent
bulk crystal. If the pump beam has a transverse spatial profile of a plane wave and
is monochromatic, the photon pairs are emitted in the vicinity of two cone surfaces.
Particularly, the wave vectors of the emitted photons form the cones. The orientation
and alignment of the cone surfaces are determined by the phase-matching condition.
The condition states, that the wave vectors of pump beam, signal and idler photons
k,, ks, k; have to fulfil the conservation law of momentum (3.42). This implies, that the
wave vectors have to lie in one plane. Therefore, if we select a plane, in which a pump
wave vector is located, the cross section of the plane with the cone surfaces uniquely
determine the wave vectors (directions of emission) of the signal and idler photons in a
pair.

The photon pairs are correlated in all variables. Namely in frequency, wave vector
and polarization. The photons entangled in frequency can be obtained by selecting a

small neighbourhood of two particular directions of emission. The directions of emission

“The Schmidt modes can be as well introduced in frequency region. Their number determines the
amount of entanglement between the photons in a pair [38].
5Non-centrosymmetric media posses non-zero second-order susceptibility tensor X(2>~
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have to fulfil the conservation law of momentum. The directions can be experimentally
filtered by small apertures of finite diameters. After that, we obtain a state, which is

entangled in frequencies. It is approximately described by the formula

+o0o
W}> = ’V&LC> + // dwsdw; §(W57 wi) 5(wp — Ws — Wi)’w8>8|wi>i‘ (3'43)

The function &(ws,w;) represents a probability amplitude with which the photon pairs
with given frequencies are emitted, function §(w, —ws —w;) represents the law of energy
conservation and couples frequencies of the signal and idler photons in a pair. The
indices of the states s and ¢ determine the signal and idler photons. Polarization of
the photons is neglected in this case. The vacuum state |vac) in Eq. (3.43) represents

vacuum fluctuations of photons which were not converted to single energetic quanta.

The photons correlated in emission directions can be extracted by selecting precisely
defined directions of two photon pairs. Each pair has to fulfil the conservation law of

momentum and conservation law of energy. Then, the obtained two-photon state is
[¥) = [vac) + (|a) ) + a)[V)). (3.44)

The states |a), |b), |a’), |b’) are single photon states propagating in the selected directions
a,b,a,b.
There are two distinct photon-pair states entangled in polarization. The first one

consists of photon pairs, where the polarizations of signal and idler photons are orthog-

onal:

) = V1= a2lvac) +al| t)al )5+ =)al 1a]; (3.45)

« is a real number and satisfies the inequality a? < 1. The state | —) denotes, that the
photon has horizontal polarization and state | 1) assigns a photon vertical polarization.
The indices A and B denote directions of the emitted photons. The other photon
pair state is formed by photon pairs, where photons have the same polarization. The

two-photon state in this case equals
) = VI—a2lvac) +a[| )l g +al 2)al 2)p]s 0 <1 (3.46)

The state in Eq. (3.45) is generated in alignment called type II. The second state
(Eq. (3.46)) is generated in alignment called type I. In the type II SPDC, the photons
with orthogonal polarizations are emitted at surfaces of two cones, which intersect each

other. The intersections define two directions in which photons of both polarizations
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can be emitted. There is the same probability, that a photon in direction A has a
vertical polarization 1 simultaneously with the photon in direction B having horizontal
polarization — like in the case, when the polarizations are interchanged. The entangled
state of photons (3.46) can be obtained by emission from two crystals located close to
each other. Both crystals have to be conveniently cut and turned by 90 deg in the
transverse plane with respect to each other. Then the crystals are aligned such that,
their optical axes are orthogonal. It is further assumed that the generation occurs only
for polarization of the pump wave oriented along the optical axis of the crystal and the
non-linear tensor x? allows for generation likely polarized signal and idler photons.
By use of the polarization of the pump wave, which is declined from the axes of both
crystals by 45 deg, the cone emission patterns similar to single crystal can be observed.
The state (3.46) is be obtained by selection of two directions from the cone, which

satisfy the law of conservation of momentum and energy.
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Chapter 4

(Generation of photon pairs in a ring
fiber

Integrated sources of photon pairs are introduced in Section 4.1.1. The guidance of
modes with a defined OAM in fibers and waveguides is discussed in Section 4.1.2. The
importance and applications of the OAM modes is as well mentioned. Section 4.1.3 is
devoted to the concept of quasi-phase matching and thermal poling process.

The theoretical description of SPDC in a ring fiber is developed in Section 4.2. The
theoretical framework is based on quantum-mechanical approach, where the Schrédinger
equation is solved by means of perturbation series to the first order. Definitions of
quantities characterizing a photon pair are provided at the end of the Section.

The theory describing decomposition of modes of the ring fiber into the basis of
OAM operator eigenfunctions is introduced in Section 4.3. In addition, decomposition
of a two-photon amplitude into the Schmidt basis in frequency and spatial domain is
described.

Section 4.4 includes characterization of the guided modes of the ring fiber. Eigen-
modes of the ring fiber are derived and procedure for computation of the propagation
constants of the fiber is described. Effective refractive indices of the modes are shown.
The most stable modes obeying the conservation law of OAM are identified as suitable
for the non-linear interactions. Their transversal profiles together with angular spectral
components are shown and discussed.

Narrow-band non-linear interaction of the pump beam with OAM number [, = +1
with the signal and idler modes having OAM numbers l; = 41 and [; = 0 is investigated
in Section 4.5. Stability of the interacting modes is analyzed by means of an effective

index of refraction. The results of simulation of the non-linear interaction are shown.
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Particularly, phase-matching conditions and mean signal photon-number spectra are
discussed.

The non-linear interaction of pump beam with OAM number [, = 0 with the signal
and idler fields in TEp; modes is investigated in Section 4.6. Width of the mean signal
photon-number spectrum and correlation times are compared with the results obtained
for the narrow-band process in Section 4.5.

The entanglement of photon pairs generated by the pump beam with OAM number
[, = 0 and Gaussian time profile is investigated in Section 4.7. The two-photon am-
plitude in spatio-spectral coordinates is analyzed in order to determine the number of
Schmidt modes. The maximal effective dimension of the entangled space is evaluated.
The influence of noise on entanglement of the generated state is evaluated by means of

the Clauser-Horne-Shimony-Holt inequalilty.

4.1 Introduction

4.1.1 Integrated sources of photon pairs

Entangled photon pairs can be generated from fiber or waveguide sources with x@ non-
linearity. Rectangular periodically-poled waveguides made of PPKPT or LiNbOgz [41-
44| represent well-developed and highly-efficient photon-pair sources. They can provide
photon pairs entangled in polarization on degenerate and non-degenerate frequencies as
well as non-correlated photons. LiNbO3 and KTP have large coefficients of non-linear
tensor x(?), typically between 10 — 30 pm /V. Thus, they may be highly bright sources
of photon pairs. Particularly, they are able to emit 10? — 103 photon pairs per second
per microwatt. On the other hand, there are fiber sources of photon pairs. For example,
a periodically poled silica (SiO2) fibre produces around 10 photon pairs per second per
microwatt and can be utilized for the generation of polarization entangled photon pairs
in a broad spectral range [45]. This is about two orders of magnitude less than in the
case of the waveguides. The lower efficiency comes from lower value of the terms of
non-linear tensor y(? ~ 1072 pm/V. But the length of the fibers can be one order of
magnitude higher in comparison with the waveguides'. The longer non-linear grating
then compensates for the lower value of the terms of non-linear tensor x(.

The modes of waveguides reflect their rectangular transverse profiles that cannot

be easily and effectively transformed into modes of fibers. Especially, they are unable

!The periodically poled grating can be uniformly introduced in fibers with lengths up to 1 m. The
periodically poled waveguides are usually up to 10 cm long.
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to guide modes with radial symmetry without distortion. On the other hand, there
exist structured photonic waveguides with eigenmodes close to OAM modes [46,47].
Unfortunately, these fibers have transverse profiles typically few tens of micrometers
wide and so they are not suitable for poling. Thus, the only fibers, which combine the
features of non-linearity and radial symmetry are the investigated ring shaped fibers.
Though only weakly non-linear [45], they may be source of photon pairs with radially
symmetric spatial modes. The detailed analysis of SPDC in the periodically poled ring
fiber has been carried out in [A1,A2].

4.1.2 Guided OAM modes

The ring fibers are able to steadily guide modes with a defined OAM [46-49]. Such
modes have been theoretically studied [48,49] and experimentally characterized recently
[48] using a ring [Fig. 4.1(a)] or vortex geometry (concentric rings) of optical fibers.
This geometry allows to separate modes of the LP1; family? that differ in their effective
refractive indices. This results in their stable propagation with a low ratio of crosstalk
for lengths over 1 km [48]. Such stable states of OAM can then be exploited to multiplex

data and rise the transfer capacity of channels.

OAM fields are beneficial for both the classical and quantum areas of physics. Suf-
ficiently strong (classical) fields are namely useful for nano-particle manipulations [52].
From the point of view of quantum communications that use individual photon pairs,
entangled states are crucial. As we show below, the process of SPDC in thermally
poled silica fibers allows to generate photon pairs entangled in different degrees of free-
dom. These fibers then represent sources of entangled photons that can be directly
integrated into optical fiber networks [45]. The entanglement in OAM numbers offers
additional advantage for the construction of division multiplexing systems [48]. OAM
multi/demultiplexers have been recently addressed in |53]. Efficiency of these systems
has been characterized via the crosstalk between demultiplexed OAM modes (the max-
imum value equaled -8 dB) and total losses (~ 18 dB). The entangled OAM fields also
allow to implement various quantum computation protocols including the above men-
tioned quantum random walks [54,55] and a CNOT gate [56]. Last but not least, OAM
fields have been found extraordinarily useful in the area of atomic physics where they

enable enhanced control of transitions between atomic levels [57].

2LPumn is a group of guided modes of radially symmetric fiber with slightly different propagation
constants [50,51]. The integers m,n categorize the modes.

38



4.1.3 Periodical poling of the silica fiber

The non-linear fibers are being poled in order to pass the conservation law of momentum
[58,59]. The process of poling involves local introduction of non-zero non-linear tensor
x?. The technique of achieving the momentum conservation is called quasi-phase-
matching. When the poling process is periodically repeated over the length of the fiber,
a non-linear grating x(?) originates. The grating introduces additional momentum into

the process. The law of conservation of momentum then reads
k, — ks —k; + G, =0, (4.1)

where the vector Gy, belongs to the non-linear grating. It may attain different values
according to the order m. At microscopic level, a poled domain can be considered
as a volume of dipoles, which behave in a non-linear manner. When the dipoles are
driven by the electric field of the pump beam, they emit waves with distinct harmonic
components. The wave contributions from all the emitting dipoles superpose and form
the outgoing wave. The proper space alignment of the non-linear domains cause the
contributions from individual dipole domains to add constructively. As a result, the
non-linear process is enhanced.

In the case of waveguides and fibers, there is only one homogeneous direction, the
longitudinal one. Then the equation for the momentum conservation (4.1) reaches a

scalar form

Bp — Bs — Bi + %m =0. (4.2)

The variables 3,, 35 and f3; indicate propagation constants® of pump, signal and idler
fields. The remaining term in the equation is the longitudinal component of the wave
vector of the non-linear grating G,,. It depends on the integer m, which means, that
the phase matching condition can be satisfied in multiple ways. In practise, only few
orders m may significantly contribute to the emission of photons. Usually only the
most intense order myg is utilized. Nevertheless, there are proposals for utilization of the
higher orders, which increases a versatility of a photon source [60]. The Egs. (4.1) and
(4.2) are exactly valid for infinitely long grating. In practise, the grating incorporates
finite number periods, usually more then one hundred. In these cases, the equation

(4.2) provides us the condition of the most intense generation.

There are many types of materials with various physical properties, which can be

$Propagation constant is a component of the wave vector in the direction of propagation. This term
is used mainly in connection with the waveguides or fibers.
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Figure 4.1: (a) A scheme of the twin-hole fiber (b) Process of thermal poling (c¢) The
positions of electrons and ions after the poling process.

periodically poled. Therefore, different techniques for periodical poling have to be
utilized [61-64|. Particularly, the process of periodical poling of @ susceptibility in
silica fibers has already been mastered [65-67|. It allows to achieve phase matching of
the non-linearly interacting fields, together with the conservation law of energy. During
the poling, a SiOy material with no natural x(® susceptibility (due to symmetry) is
heated up and exposed to a strong electric field E originating in the electrodes inserted
in the fiber |Fig. 4.1(b)|. The free ions in the fiber are dragged by the field and form the
macroscopic charge nearby the electrodes. When the material is cooled down back to the
room temperature, the electric field is switched off. However, the ions remain frozen at
their positions and form a permanent internal static electric field E [Fig. 4.1(c)], [67,68].
This field is responsible for quadratic non-linear properties of the fiber. The non-linear
grating is created by a UV erasure process that removes the non-linearity inside domains
exposed to a UV laser. Suitable choice of the grating period A then allows to reach

quasi-phase-matching of the non-linear process.

Photon pairs in fibers can also be generated via the process of four-wave mixing
using x(® susceptibility available in common optical fibers. However, there also occur
other competing non-linear processes based on & susceptibility (Raman scattering).
Their presence results in larger values of single-photon noise superimposed on photon-
pair fields. Despite this, a lot of attention has been devoted to such sources emitting
photon pairs both around 800 nm and 1550 nm [69-71].
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4.2 Theoretical description

Non-linear process of SPDC occurring among the pump (p), signal (s) and idler ()
fields can be described by the following interaction Hamiltonian Hiyg [72]:

0
Hine(t) = 260/5 rdrdQ/Lde(2)(z) : E;J“)(r,e,z,t)
N _

B (1,0, 2, 0B (r,0,2,1) + huc, (4.3)

Symbol : means tensor shorthand with respect to its three indices, €9 denotes the vac-
uum permittivity and h.c. replaces the Hermitian conjugated term. A vector positive-
frequency electric-field amplitude of a pump beam is denoted as E§,+) (r,0,z,t) whereas
vector negative-frequency electric-field operator amplitudes of the signal and idler beams
are described as ng)(r,G, z,t) and ]:31(.7)(7", 0, z,t), respectively. Non-linear susceptibil-
ity x@ is assumed z-dependent. Its spatial periodic rectangular modulation along the
z axis (Fig. 4.2) with certain period permits quasi-phase-matching of the non-linear
process. Hamiltonian Hiy in Eq. (4.3) is written in cylindrical coordinates with ra-
dial variable r, angular variable € and longitudinal variable z. Symbol S| denotes the
transverse area of the fiber of length L.
After the process of thermal poling, Y@

a static electric field is established in the

area of the core of the fiber [67] (for details

see Sec. 4.1.3). The static electric field,

oriented in the direction of axis x interacts

0
with the silica’s non-linear tensor of the &

the third order x® [2,73]*. The origin Figure 4.2: Modulation of non-linear tensor
of the effective y? tensor is explained by Of the second order x? along the axis of the
interaction of the static electric field Eg twin-hole fiber z.

with dynamical electric field E through the non-linear tensor of the third order x(®):

Xg?c)lm(Ek + EOJf)(El + EO,l)(Em + EO,m) —

®3) 3) 3)

X B0k Bt B + X'y i Bot B + X g B Bt Eom
3 3 2
= 3 B0k EiEm = 3X' 0 B0 By = X Ey B (44)

The electric field components Ej ; belong to static electric field with magnitude equal to

“The values of the coefficients of silica’s non-linear tensor of third order X(3) are at the level of
1072 m?vV—2,
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Ejy. The electric field components E; correspond to additional dynamical electric field.
In the Eq. (4.4), the terms, which follow the arrow sign effectively correspond to the
non-linear processes of the second order. The terms, which are effectively assigned with
the non-linear processes of the third order and linear processes, have been omitted®.

In the Eq. (4.4), it was explicitly substituted for the static electric field Ey ; = d;,Ep.

(2)

The effective second-order susceptibility tensor X;im then originated as a product of the

(3)

static electric field Eg , with the third order non-linear tensor x Jaulm As a consequence,

thermal poling of SiO2 material giving non-linearity to the fiber results in the following
non-zero elements of X(z) tensor: X&%}m ~ 3x,(,;2y)y and X%)y = X%)x = Xé,?p)y =0.021 pm/V

[2,74].

In the considered ring fiber with its rotational symmetry® around the z axis, the
pump, signal and idler fields can be decomposed into transverse eigenmodes e, (r, §,w)
with propagation constants (3,(w) at the appropriate frequencies w. Multi-index 7
contains a mode name [51] including azimuthal (n) and radial indices and polarization
index ¢. In this decomposition, the strong (classical) positive-frequency electric-field

pump amplitude Egr) attains the form

Eé“(?% 0,2,t) = Z Apy /dwp Ep(wp) epyn, (1,0, wp)
Mp
X exp [iBpy, (wp)z — iwpt] (4.5)

in which A, gives the amplitude of mode 7, and &, stands for the pump normalized
amplitude spectrum. As the normalized eigenmodes e, (r, 6, w) form a basis, they can
be used for quantization of the signal- and idler-field photon fluxes [75,76]. As a conse-
)

quence, the negative-frequency electric-field signal and idler operator amplitudes Eg_

and EZ(*) can be expressed as

o [ hoe .
E)(r0,2,t) = Z/dwa Wag,na(wa)
MNa @7

xer

ane (75 0,wa) exp [iBan, (Wa)2 — iwal], a = s,4; (4.6)

In terms, which effectively belong to non-linear processes of the third order, the components of
static electric field Fy ; are not present. While in the linear terms, the components of the static electric
field Ey,; are present with the power of two. As a result, it modulates the linear index of refraction.

5The ring fibers partially loose their radial symmetry owing to the presence of two thin metallic
wires used for thermal poling. However, the holes with wires are usually far from the fiber core and so
their influence to radial symmetry of fiber modes results in only weak anisotropy that can usually be
omitted [74].
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Figure 4.3: (a) Sketch of a ring fiber with two small poling holes (b) Radial profiles of
indices of refraction n at the pump (A) = 0.775 pum) and signal (A) = 1.55 pum) wave-
lengths (c¢) Cross-section of the fiber with corresponding linear dielectric permitivitties.

I is the reduced Planck constant, ¢ speed of light in the vacuum and 7y, effective index
of refraction for mode 7, of field a (7a,y, = ¢Bay,/wWa). The boson creation operators
&jz,na (wq) in Eq. (4.6) add one photon into mode a with index 7, and frequency w,. The
eigenmodes are normalized such that [ rdrdf|eq ., (r,0,w,)|* = 1.

For the considered ring fiber composed of SiOs cladding and SiO2 core doped by
19.3 mol% of GeOg [for the scheme, see Fig. 4.3(c)| [77, 78|, the normalized electric-
field eigenmodes e, (r, §,w) together with the accompanying normalized magnetic-field
eigenmodes h,(r,,w) can be obtained analytically. Their longitudinal z components
can be expressed in terms of Bessel functions of the first (J,,) and second (Y,) kind and
modified Bessel functions of the first (1,,) and second (K,,) kind as follows |50]:

enlr0,w) = {CO(@) (I )recto, (r)
+ [CP @) I (wPr) + D ()Y (wDr)] xecty, 1, (1)
+ DD (@) Kn(wr)rects, oo(r) } sin(nd + ¢),
hon(r,0,0) = {AD @)L (wPr)recto,, (7)
+ [AD @) Ja(wDr) + B (@)Y (wfr)| recty, 1, (r)
+ B (@) Kn(wr)rect;, oo (1) } cos(nf + ). (4.7)

Function rect, (r) equals 1 for r €< a,b > and is zero otherwise. Whereas the Bessel

functions describe the oscillating solutions inside the ring core with higher index of
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refraction extending from r = r; to r = ry, the modified Bessel functions express
the exponentially growing solutions in the center of the fiber and the exponentially
decreasing solutions in the outer cladding. Transverse components of the wave vector

w'? introduced in Eqs. (4.7) are real and they differ according to the radial region:

w2
wy (@) = Jﬁ%(w)—c?aﬁq%w), =02,

wV(w) = \/“c’je£.1>(w)— 2(w). (4.8)

Relative permittivity 81(})(&}) characterizes the fiber ring core, permittivity e (w) de-

scribes the fiber inner cladding and permittivity 67(_2) (w) is appropriate for the fiber
outer cladding” [Fig. 4.3(c)]. All permittivities are considered to be scalar quantities.
Values of real coefficients A,,(;J) (w), Ag,l)(w), qul)(w), B,(72) (w), 07(70) (w), Cqsl)(w), Dgl)(w),
and D7(72) (w) occurring in Egs. (4.7) are obtained from the requirement of continuity
of tangential components (6 and z) of vector electric- [e,(r,8,w)| and magnetic-field
[hy,(r,0,w)] amplitudes at the boundaries of the ring core. This continuity requirement
is fulfilled only for specific values of the propagation constant f,(w) that arise as the

solution of dispersion equation [50,51].

The 6 and r components of the electric- and magnetic-field amplitudes are obtained
from their z components in Egs. (4.7) using the following formulas originating in the

Maxwell equations,

e = sroﬂcj 22 Mf = ”5’78;7}’
he, = 5rw26—25302 :iw&tgerag;m—i—ifnag;’n] (4.9)

Alternatively, the 6 and r components can be replaced by the cartesian x and y com-

"The relative permittivities €$p);p € {0, 1,2} are related to linear part of the dielectric permittivity.

Since the interacting fields are assumed to be weak, the non-linear contribution are assumed to have a
negligible influence on the profiles of the modes.
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ponents obtained by the simple relations:

exn(r,0,w) = cos(B)e,y(r,0,w) —sin(f)eg,(r,0,w),
eyn(r0,w) = sin(B)e,,(r, 0, w) + cos()eg(r,0,w).
(4.10)

The electric- and magnetic-field amplitudes for azimuthal index n # 0 in Eq. (4.7)
depends as well on phase ¢ that determines the mode polarization. An eigenmode
with vertical (horizontal) polarization V' (H) is obtained for ¢ = 0 (¢ = 7/2). As
pairs of eigemodes with V' and H polarizations have the same propagation constant (,,
eigenmodes with right- (R) and left-handed (L) circular polarizations can be built from
these eigemodes using the relations:

e.sr(r,0,w) = lezmv(r,0,w) —ie, mm(r,0,w)],

62777[/(7", 97("}) =

Sl =Sl

lezqv (7,0, w) +ie. mm(r,0,w)],

(4.11)

where 77 indicates a mode excluding its polarization. These eigemodes are close to
OAM eigemodes and in general posses non-zero OAM numbers. The electric- and
magnetic-field amplitudes for n = 0 in Egs. (4.7) describe two orthogonal TEg; and
TMo: eigenmodes with different propagation constants f,(w). Polarization of TEq;
and TMg; mode is obtained for ¢ = 0 and ¢ = /2, respectively.

A common state |1)) of the signal and idler fields at the output face of the fiber
describing one photon pair is determined by a first-order perturbation solution of the

Schrédinger equation with the interaction Hamiltonian fIint,
T [
9y =1 / dt Hipy (1) |vac). (4.12)
— 00

State |vac) denotes the vacuum state.

Substitution of the expressions from Egs. (4.3-4.6) into Eq. (4.12) provides the
output state [¢) in the form:

W = X [do [ e o)

o MsyMi

xal, (ws)al, (wi)lvac). (4.13)
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Two-photon spectral amplitudes ®,7,, (ws, w;) introduced in Eq. (4.13) give a probability
amplitude of generating a signal photon into mode 7, with frequency w together with
an idler photon into mode n; with frequency w; from a pump photon in mode 7,. They

are derived as follows:

1/ WsW;
(I)me (Ws, Wi) = —ﬁflnnpgp(ws + Wi)Igfm (WSawi)a (4-14)
S,Ms " 7,M;

where

Igfm(wmwi) = V2r o rdrd&X(g)[ Aﬁnsm(w&wz)]
€L

L ep, (1,0, ws + wi)e;‘,ns (r,0,ws)e;,. (r,0,w;) (4.15)

and ABy", (ws, wi) = By, (ws + wi) — Bsp, (ws) — Bim, (wi) characterizes phase mismatch

of the non-linear interaction.

Fourier transform ¥(®(8) of spatially modulated x®(z) non-linearity used in
Eq. (4.15) is given as follows:
~(2) dz ) exp(—ifz). 4.16
X = U / X p(—i6z) (4.16)
It attains the following form for the considered rectangular modulation composed of
2N + 1 periods of length A:
- 2 sin[(N + 1/2)BA]
) = sin(BA/4
() = X (™ S
x exp(ifA/4) exp(iNSA). (4.17)

Photon-pair number density Ngfm (ws,w;) belonging to an individual non-linear pro-

cess (1p, Ns,ni) is defined as
N (s w1) = (laly, ()], (01) s, (@3) i, (i) [15)- (4.18)
Using Eq. (4.13), the density N,"%, can be expressed in a simple form:
Nt (ws, wi) = | @l (ws, wi) [ (4.19)
The corresponding signal photon-number density Ngh. . (ws) is then derived according
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to the formula
N () = / duos NIy, (s, 7). (4.20)

Whereas the two-photon amplitudes ®(ws,w;) defined in Eq. (4.14) characterize
the emitted photon pair in spectral domain, temporal two-photon amplitudes ®(ts, t;)
defined as [79]

Bt 1) = (vac ECD(0,£) D (0, 1)) (421)

are useful for the description of photon pairs in time domain. The substitution of
Egs. (4.6) and (4.13) into Eq. (4.21) gives us the formula valid outside the fiber:

~ V/WsW;
), s 7
Oplp (ts, ti) = /dws/dwl Y
4mege NRO

X @Zsm (ws, w;) exp(—iwsts) exp(—iw;t;). (4.22)

Photon pairs generated in an individual non-linear process (1,,7s,7;) usually have
a complex spectral structure that can be revealed by the Schmidt decomposition of

spectral two-photon amplitude CDnSm,

‘I)Zsm ws>wz Z)\w kfsk ws)fz k(ws) (4.23)
k=0

In Eq. (4.23), functions fsj and f; form a Schmidt dual basis and eigenvalues A g
give coefficients of the decomposition. Provided that these coefficients are properly
normalized (3 72, )\i p = 1) they determine the Schmidt number K, of independent

modes needed in the description [80],

1

K, = T
k 0 "w,k

(4.24)

4.3 OAM decomposition of modes in the transverse plane

Vector modes in the transverse plane have in general a complex structure that, however,
has to accord with rotational symmetry of the fiber. For this reason, it is useful to
decompose their azimuthal dependencies into eigenmodes of OAM operator L(0), L(#) =
—ih0/(00), that take the form of harmonic functions [81]:

}(0) = \/12? exp(ilf). (4.25)
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Convenience of this decomposition is even emphasized when non-linear processes are
taken into account as there occurs the conservation law of OAM number [ [82|. This
law immediately follows from the integration over azimuthal angle 6 in the interaction
Hamiltonian Hiy written in Eq. (4.3). For the considered SPDC process, this law is
expressed as

l, =15+ 1, (4.26)

where the subscripts indicate the participating fields.

The electric-field modes e, (r,0,w) involved in the interactions are vectorial, but
their longitudinal components e, ,(r, 6, w) are usually at least one order of magnitude
smaller compared to their transverse components e,., (1, 8,w), eg., (7, 0, w) or e, ,(r, 0, w),
eyn(r,0,w) [50,51]. For this reason, we concentrate our attention to the analysis of
transverse components. The analysis of cartesian transverse components e, (r,8,w)
and ey (7, 0, w) is more useful as they can easily be experimentally obtained using opti-
cal polarizers. Moreover, the z and y components of electric-field amplitude e, (r, 0, w) of
the circularly polarized modes given in Eq. (4.11) are only mutually shifted in azimuthal
variable 6 by 7/2. That is why, we further pay attention only to the = component

exn(r,0,w) = ey(r,0,w).

The mode functions e;(r,0,w) depend in general on three variables r, § and fre-
quency w. Following the rules of quantum mechanics, the probability p of detecting a

photon in an OAM eigenstate ¢; is given by the formula [81]:

Piy(w) = /rdr

that expresses averaging over the radial variable r.

2

/dt9 t7(0)ey(r,0,w) (4.27)

As entangled photon pairs in their general form (for hyper-entangled photons, see
[83,84]) are emitted, two-photon amplitudes ® depending on both transverse-plane
variables and frequencies are needed in their description. They generalize the two-
photon spectral amplitudes ®,7,. (ws,w;) defined in Eq. (4.14). In the usually considered
spectral ranges several nm wide, the two-photon amplitude ®(rg, 65, ws, 74, 0;,w;) can be

approximately written in the following factorized form:
Q)(T’S, Os,ws, 7, 0;, Wi) ~ (I)rﬁ(r& Os, 74, 91) q)w(wsv wi)' (428)
The transverse part ®,¢ of two-photon amplitude can in principle be decomposed sim-
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ilarly as the spectral part ®,, in Eq. (4.21), i.e.
D, (TSa O0s, 73, 0@) = Z )\re,m 9sm (TSa es)gi,m (Tiv 01) (4'29)
m

using eigenvalues A9 ,,, and eigenfunctions g, and g; ,,,. The eigenvalues g, then de-
termine the Schmidt number K¢ of independent modes by the formula (4.24). However,
the decomposition (4.29) is usually difficult to achieve. Nevertheless, the two-photon
amplitude ®,¢(rs, b5, 7;,0;) nearly factorizes into its radial and azimuthal parts due to
a simple radial dependence in our case. Then we can obtain an approximate number of

modes Ky from singular values Ag; of matrix Fy defined as

Fe,lsli = [/TSdTS/TZ‘dTZ‘

using Eq. (4.24).

211/2
] (4.30)

/ a6, / dB;t;, (6:)15,(6:)Pro(rs, B, 74, 01)

4.4 Guided modes of a ring fiber

The generation of photon pairs around the wavelengths A2 and A} equal to 1.55 ym

is considered. The pump field is assumed to be monochromatic with a wavelength
0 _ . . 9 . ey .

Ap = 0.775 pm. From the considerations of fields’ propagation stability and efficiency

of the non-linear interaction, the fiber was designed to guide radial fundamental modes

for wavelengths longer than 1.2um. This can be assured by an engineering of the inner

and outer radii of the fiber.

The solution of the dispersion equation provides us the guided modes of the fiber.
The dispersion equation is formulated as a determinant of a boundary-condition ma-
trix. The boundary-condition matrix originates from the requirement of continuity of
tangent components of all involved fields e, eg, h, and hy at the discontinuities of di-
electric permittivity function e(r,w)/%. The problem of boundary conditions can be
solved in general for a multi-ring fiber with m discontinuities at radii {ri,...,r,} as

follows. It holds, that the z-component of the electric and magnetic field amplitude in

®In the investigated ring fiber there are two discontinuities. One associated with the inner radius
of the core r1 and the other at the outer radius of the core r2. The positions of the discontinuities are
depicted in the Fig. 4.3(c).
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a homogeneous region of the fiber is equal to

0(r0,0) = [COUDHr) + DV (K r)]sin(nf + ),
D (r,0,w) = [AQUWEDr) + BOVD (D)) cos(nf + ¢). (4.31)

Index q labels a region of the fiber, U, is a Bessel function of the first order, V;, is a Bessel

function of the second order and k:f) = \/ (w/ 0)28,@ — [32 is a perpendicular component
of the wave vector?. The angular components eq(r, 0, w), hg(r,0,w) are computed from
Egs. (4.10) by usage of Egs. (4.31).

The continuity of tangential components of electric- and magnetic-field amplitudes

at boundary located at radius r4 requires validity of the following relations:

ela

Tqs = e(q+1)(rq, 0,w),
q

9 (rg,0,w) :

9 (rg,0,w) W (rg, 0, w),

ey (rg,0,w) = ef™V(rg,6,w),

WO (rg,0,w) = B (ry,0,w). (4.32)

>
Il
>

Tq,

re,0,w

The dependencies of amplitudes e, eg, h, and hg on the angular variable ¢ and longi-

tudinal variable z can be integrated out. By explicit insertion into Eqs. (4.32), a set of

®The perpendicular component of the wave vector k:f) is a real function of frequency w in the core

region and purely imaginary function of frequency w in the cladding regions.
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the following equations is obtained
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(4.33)

The symbols Uéq), n( ) in Eqgs. (4.33) are the corresponding Bessel functions evaluated at
the discontinuity rp, [Un @ = ,(ﬂ)(kf)rq,w), V9 =y )(k(Q)rq, )] and primes Uy, V, (@)
denote their derivatives with respect to argument ki)r. Equations (4.33) form set of

four equations with eight unknown real-valued variables AS{”, BSLQ), Cflq), D7(f), Aﬁ?*l),

B,({Hl), C,({Hl) and Dflqﬂ). For a discontinuity with index g, it is possible to rewrite

the relations in Eq. (4.33) in a matrix form as follows:

A, A, )\ Uty

The elements of the submatrices AH s A%)n, qul)n, Aggn are defined by the set of equa-

tions (4.33), while the vector U£3) (A(Q) B,(l ), C(Q) D(Q)) is formed by the unknown
(@) .

7, n’

variables. The dimensions of the matrices A;? ;4,5 = 1,2 are 2 x 4.

In the case of first and last discontinuity 71 and r,,, the relations at the boundaries
(4.34) are modified by the boundary conditions. The solution of amplitudes e( ) and

h,(zl) are required to be finite in the region r € (0,r;). The Bessel function of the second
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kind Y;, and modified Bessel function of the second kind K, are singular at » = 0. Thus,
the coefficients BT(LI), D,(f) have to equal to zero. The requirement of vanishing of the
field amplitudes egm) and hS") with 7 — oo implies, that the amplitudes have to evolve
according to the modified Bessel function of the second kind K, /!°. As a result, the
coefficients A%m), Cr(Lm) 0. In total, this reduces the number of unknown variables by

number of four. The boundary conditions for the first discontinuity ¢ = 1 then attains

(D) (1) oW
( Al Az ) ( s ) —o. (4.35)
"421,71 A22,n n
The matrices .,Zlgll)n and flgll)n are 2 X 2 matrices and the vector of unknown variables

U is defined as U = (A%l), cl )) The matrices A12 n,A22 - have a size 2 x 4. In

the case of the last discontinuity ¢ = m, we arrive at the equation

An n A\ (O
21 n 22.n n

The vector of unknown Variables fJ'?(lnH) is deﬁned as INL({LH) = (Bflnﬂ), Dflnﬂ)) and

the sizes of matrices Au ) A21 n and .A12 ) A22 are 2 x 4 and 2 x 2, respectively.

a form:

For m discontinuities, we arrive at set of 4m equations for 4m unknown variables.

This set of equations has a form AU = 0, which can be expressed as

o
(2)

n

U

o
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The non-zero solution of the problem requires determinant of the boundary-condition

matrix A (4.37) to be zero. This results in the equation
£(B,w,n) = det(A) =0, (4.38)

where function £ is given by determinant of the boundary-matrix .A. The variables w,n

10Modified Bessel function of the second kind K, (r) is exponential-like decaying function in radial
coordinate r. Therefore it satisfies the requirement lim,_, oo Kp (r) =0
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in Eq. (4.38) are defined as independent variables and variable 8 = (w,n) is defined
to be dependent variable. The propagation constants 3 are found as roots of function
&(B,wo,np) for fixed values of parameters w = wp,n = ng. For this task a suitable
numerical approach has to be used!!.

The fundamental mode arises as the solution of dispersion equation with the highest
value of propagation constant S(w,n) and occurs even at the lowest possible guided
frequencies. The other modes follow the fundamental mode with lower propagation
constants 8. The modes are categorized with respect to their complexity in the angular
and radial directions. In the angular direction, the fields are defined by the integer n
(4.31). The integer n defines number of periods of the z-components of the electric-
e, and magnetic-field amplitudes h in the angular direction 6. In the radial direction,
the modes are labelled by radial index n, which is as well an integer. It is not present
explicitly in the solutions for the fields’ components (4.7), but arises naturally from
geometry of the problem. Geometrically, it is related to the number of periods of the
mode in the radial direction.

The modes with higher radial mode numbers 7 originate for higher threshold fre-
quencies w. This property allows us to exclude higher-order modes for the chosen
frequencies (wavelengths) by a suitable choice of radii 71 and r2 of the fiber ring core
(Fig. 4.3). Detailed numerical calculations have revealed that the analyzed fiber with
its core extending from r; = 4 pum to ro = 5.5 um admits only the radial fundamental
modes for the wavelengths longer than 1.2 pm.

Effective indices of refraction npeg (npes = c¢Bp/wp) for the pump field at the
wavelength )\2 = 0.775 pm are shown in Fig. 4.4. They are indexed by azimuthal number
n and radial number 7. Modes with the simplest transverse profiles are interesting for
the non-linear interaction as they propagate with low distortions and also allow to
reach the greatest values of the interaction overlap integral written in Eq. (4.15). From
this point of view, TEg;, TMp;, HE11, and HE3; modes with the greatest effective
indices of refraction np, g are important (see Fig. 4.4). Whereas transverse components
of TEg; and TMp; modes have a complex structure from the point of view of OAM
eigenmodes ¢;(0) given by Eq. (4.25), transverse components of modes HE;; p and
HE;,, 1, are close to eigenmode to(#). Transverse components of mode HE2; g [HE92; 1
are close to eigenmode t11(0) [t—1(f)] and so bear a nonzero OAM (for details, see
Fig. 4.6 below).

"The formulation of the dispersion Eq. (4.38) needs computation of determinant of matrix A in
Eq. (4.37). Since the order of matrix is 4m, the computation of the determinant can be computational
demanding for higher numbers of m. For this case an alternative approach is developed [51].
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Figure 4.4: (a) Effective refractive index n, ¢ of the pump field in dependence on
azimuthal number n, for A) = 0.775 pm. (b) Detail of the graph around n, = 0 is
shown.

The signal and idler fields analyzed at the wavelength A\Y = A\? = 1.55 um contain
only radial fundamental modes which effective indices of refraction n, g are plotted in
Fig. (4.5). In total 14 modes occur in the analyzed spectral region: TEp; and TMo
modes without a defined OAM and both left- and right-handed circularly polarized
modes HE1; (I =0), HE2; (I = £1), HE3; (I = £2), HEy; (I = £3), EHy; (I = £2) and
EHy (1= +£3).
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Figure 4.5: (a) Effective refractive index ngeg of the signal field in dependence on
azimuthal number ng for A2 = 1.55 ym. In (b), detail of the graph around ns = 0 is
shown.

Profiles of the z and z components of signal electric-field amplitudes e, (r, #) for four

simplest modes, TEg;, TMp1, HE11, and HE»;, are shown in Fig. 4.6. The y components
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of electric-field amplitudes e, (r, ) have the same amplitudes as the x components of
e,(r,8) but their phases are shifted by m/2 with respect to the phases of the x compo-
nents. The pump modes have similar profiles as the signal modes, they are only more
localized inside the core ring as a consequence of their half wavelength relative to the

signal one.
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EEEE:
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Figure 4.6: Amplitude and phase of components e, (x,y) and e,(x,y) of electric-field
amplitudes for modes TEq; (a), TMo1 (b), HE11,r (c), and HE9 g (d) for the signal
field at A9 = 1.55 ym; x = rcos(#), x = rsin(#). The cartesian = and y axes’ labels are
in ym and the components are normalized according to [ dzdy|es .(z,y)|> = 1.

The weights of individual OAM eigenmodes in the above modes determined by prob-
abilities p in Eq. (4.27) are important for judging efficiency of the non-linear interaction
as it obeys the conservation law of OAM expressed in Eq. (4.26). The probabilities p
determined for the most useful modes TEqg;, TMo1, HE11, and HE2; of the signal field
are depicted in Fig. 4.7. Whereas several OAM eigenmodes are essential for building
TEo1 and TMo; modes, the OAM eigenmode to(6) [t+1(0) and ¢_1(0)] dominates in the

95



x and y components of electric-field amplitude e;(r,8) of modes HE1; g and HEqq 1,
|HE21 g and HE9; 1]. On the other hand, the 2z components of electric-field amplitudes
e, (r,0) usually contain OAM eigenmodes ¢; with [ in absolute value greater by one com-
pared to their # and y components. So the component e, ug,,, (7, 0) [e:HE,,, , (7, 0)]
is formed by OAM eigenstate ¢y, (6) [t—mn(0)] for m =1, 2.
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Figure 4.7: Probabilities p; of measuring an OAM eigenmode ¢; for the x and z compo-
nents of electric-field amplitude e, (r,0,w) for modes (a) TEq1, (b) TMo1, (c) HEq1,R,
and (d) HEgy g for the signal field at A\? = 1.55 pm.

These modes of the pump, signal and idler fields can be combined in several different
ways in order to arrive at an efficient non-linear interaction among individual modes.
This interaction is efficient provided that the conservation laws of energy and OAM to-
gether with quasi-phase-matching are fulfilled. Period A of periodical poling is the only
free parameter that allows us to choose among several individual non-linear processes.
In the following three sections, different processes that give us both spectrally narrow-

and broad-band photon pairs as well as photon pairs entangled in OAM numbers are
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analyzed.

4.5 Generation of photon pairs with non-zero OAM num-

bers

Pump modes with zero OAM numbers [, are suitable for the generation of spectrally
broad-band photon pairs whereas pump modes with non-zero OAM are optimal for the
emission of spectrally narrow-band photon pairs. When the conservation law of OAM
in Eq. (4.26) is applied to pump modes HE1; g and HE;; 1 with [, = 0, the signal [,
and idler [; OAM numbers have to have the same absolute value, but opposite sign.
The signal and idler modes then naturally have similar properties, which allow for a
broad-band photon-pair generation (see the Sec. 4.6). On the other hand, if the pump
beam is in mode HEy; g with [, = +1 (or its left-handed circularly polarized variant
HEg; 1, with [, = —1) the conservation law of OAM suggests the signal and idler modes
with different OAMs. The down-converted modes are then expected to have different
properties and the emission of photon-pairs is assumed to be narrow-band and non-
degenerate. Stability of the pump mode HE9; g follows from the graph in Fig. 4.4 that
identifies modes TEg; and TMjy; as the closest modes with respect to effective refractive
index n, .. However, differences An, o4 between the modes (Any, g = —9 X 107 for
mode TEqg1, Any e = 1 X 10~* for mode TMy;) are high enough to guarantee stable
guiding of mode HE9; without crosstalk.

The signal and idler modes fulfilling the conservation of OAM together with the
pump HE9; g mode are summarized in Table 4.1. However, only the variants with the
signal HE9; g mode and idler HE{; g and HEq1 ;, modes are sufficiently stable. The
fundamental modes HE11 r and HEq;,; are the most stable. In detail, the difference
Ang o of refraction indices of modes HE; and the closest mode TEq; equals 1 x 1073,
whereas Ang o for mode HE2; and the closest mode TEg is 1.5 x 1074,

Also the signal TEp; and TMg; modes may participate in the non-linear interaction
as they are partially composed of OAM eigenmodes with [; = +1 [see Fig. 4.8(a)].
However, these modes are not suitable for transmission of photons as they do not
have a well defined OAM. They can be spectrally separated from the combinations of
modes discussed above owing to different propagation constants. They lead to different
values of non-linear phase mismatch Ag for the considered individual non-linear pro-
cesses (HES, HE$, HE!,), (HES,, TES, HE},) and (HES,,TM3;,HE!;). The dependence

of non-linear phase mismatch A on signal wavelength ¢ for continuous-wave pumping
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pump HEg r
L, 1

. HE HE
signal HE21 r EHi’Z EHii
ls 1 2 3
. HE11.r HE31,1
idler ’ HE ’

HE11 1 21,L EHi1 1
ls 0 -1 -2

Table 4.1: Possible combinations of pump, signal and idler modes with their OAM
numbers [ (in the weakly-guiding approximation [50]) fulfilling the conservation of OAM.

plotted in Fig. 4.8(a) shows that a sufficiently narrow spatial spectrum x(? of QPM grat-
ing [see Eq. (4.17)] provides spectral separation of different non-linear processes. Width
Af(@) of spatial spectrum can easily be varied by the length L of the grating. The longer
the grating, the narrower the spectrum )2(2) and also the narrower the signal- and idler-
field spectra. Individual non-linear processes are thus better separated for longer QPM
gratings. Therefore a suitable length of the grating has to be found. A 10-cm long rect-
angular grating [for scheme, see Fig. 4.2| with period A = 42.9 um available by a simple
fabrication method [23] [see Fig. 4.8(a) for its spectrum x(?)] satisfies the requirement.
It allows the generation of signal photons around the wavelength A\) = 1.5 ym accom-
panied by idler photons around the wavelength )\? = 1.6 um in the non-linear process
(HES, HE$; ,HE},). Intensity spectral width AY(® equals 2 x 10™* pm™! (full width
at half maximum, FWHM) for this grating and guarantees the amount of unwanted
photons at the level of 1%.

The number of generated photon pairs depends on the overlap integral containing
the product of pump, signal and idler electric-field amplitudes in the transverse plane
[see Eq. (4.15)]. The value of this integral in the azimuthal angle is maximized due to
the conservation of OAM. The maximal available value of this integral then depends
on radial mode profiles that are shown in Fig. 4.8(b) for the chosen non-linear process.
It holds in general that the lower the number of minima in radial intensity profiles,
the greater the number of generated photon pairs. This favors modes with lower mode
numbers. The utilized modes are fundamental in the radial direction. This implies that
there are no zeros in their radial profiles, as can be verified in Fig. 4.8(b). As a result,
they efficiency of the non-linear interaction is maximized.

Six well separated peaks occur in the down-converted field spectrum Ng(Ag) shown

in Fig. 4.9. The most intensive peak at Ay = 1.5 um belongs to mode HE3; 5 and origi-
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Figure 4.8: (a) Phase mismatch AB for non-linear processes (HEL HES HE!;),
(HES, , TE§;,HEY,) and (HES, , TM;,,HE?,). The gray horizontal pattern describes spa-
tial spectrum ¥ () of a rectangular QPM grating with A = 42.9 ym; L = 10 cm. (b)
Absolute value |e,| of the = component of electric-field amplitude depending on radius
r for pump mode HEY,, signal mode HE$; and idler mode HE?;. Normalization is such
that [ dzdy |ez(z,y)|*> = 1.

nates in the non-linear processes (HE}, p HES, p HEY, ;) and (HES, , HES,  HE], ).
The accompanying peaks at A\; = 1.603 pm correspond to modes HE"H’L and HE%LR
with the same weight. The curves in Fig. 4.9 confirm that these desired peaks can be
well separated by frequency filters from the unwanted ones. The modes HE%L ;, and
HE%L r With the same spectra cannot be separated and in fact form a common quan-
tum superposition state. The efficiency of spectral separation in ring fibers is similar to
that found in non-linear waveguides with SPDC [85,86]. Spectral width of the peak at
As = 1.5 um equals 9.41 nm (FWHM). The peak occurring at \s = 1.4 pum belongs to
TMp; mode and forms a pair together with the peak at A\; = 1.73 um given by mode
HElﬁ,R- Mode TE§; is responsible for the peak at A = 1.63 um that occurs together
with the peak at A; = 1.47 pm established by mode HEY; . It is worth to note that
small oscillations at the wings of the peaks reflect the shape of spatial spectrum x(? (8)
of QPM grating.

As follows from Fig. 4.9, photon-pair density Ny attains its maximum value at
2.4 x 10 nm~!s7! for 1 W of the pump power. Taking into account the peak spectral
width, around 20 photon pairs per 1 s and 1 W of pumping are expected in modes
(HEIQ’LR,HE;LR,HE%) provided that appropriate spectral filters are used. The number
of generated photon pairs can be increased by considering longer fibers. It can be shown

theoretically that the number of photon pairs increases better than linearly with the
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Figure 4.9: Spectral photon-number density Ny created by modes HEo g,
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fiber length. Also narrowing of the emitted spectra occurs with the increasing fiber
length. On the other hand, fabrication imperfections as well as non-ideal alignment of
the non-linear interaction in the laboratory reduces these numbers by one or two orders
in magnitude [45].

Photon pairs are emitted in states entangled in signal and idler frequencies due to
the conservation law of energy. This results in sharp temporal correlations in detection
times of the signal and idler photons. For the spectra approx. 10 nm wide, typical
entanglement times quantifying these correlations are in hundreds of fs (for details, see
Fig. 4.11) [87].

4.6 Generation of spectrally broad-band photon pairs

As it has already been discussed above, the pump field in a HE11 g (or HEq1,7,) mode
with [, = 0 allows to generate spectrally broad-band photon pairs achievable usually
in chirped poled non-linear materials [88,89]. This is a consequence of flat spectral de-
pendencies of phase mismatches AS of individual non-linear processes conserving OAM
|[see Fig. 4.10(a)|. Stable down-converted modes of LP1; family, HE21, TEg; and TMop,
can take part in this interaction. The curves in Fig. 4.10(a) indicate that the non-linear
processes (HEIfLR:HE;l,RvHEZéLL)a (HEIfLR’HE;LLvHEléLR)a (HEzljl,R’TEf)lvTM%)l)’ and
(HEIfL R,TMgl,TEél) occur nearly simultaneously and thus may provide a more complex
state. On the other hand, the processes (HE’{LR,TESDTE%I) and (HEII’LR,TMSI,TM&)

can easily be separated from other processes for sufficiently narrow spatial spectra
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)2(2)(6), similarly as in the case discussed in Section 4.5. As an example, we consider the
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Figure 4.10: (a) Phase mismatch AJ for non-linear processes pumped by mode HE},
with signal and idler fields in modes HE9;, TEg; and TMg; in dependence on wave-
length of signal photon A;. The gray horizontal pattern describes spatial spectra
P (AB) of rectangular non-linear modulation with A = 41.06 pm (upper pattern)
and A = 42.28 um (lower pattern); L = 10 cm. (b) Spectral photon-number density
Ny originating in non-linear process (HEY, R,TE01,TE61); A=42.28 ym, L =10 cm in
dependence on wavelength A;.

non-linear interaction with TEg; signal and idler modes. This interaction is achieved
for period A of the non-linear modulation equal to 42.28 pum. Signal photon-number
density Ng(\s) for this process and 10-cm long QPM grating attains its maximum at
degenerate wavelength A = 1.55 ym where a 142-nm wide peak occurs [FWHM, see
Fig. 4.10(b)]. Around 150 photon pairs per 1 s and 1 W of pumping are emitted in this
process. The obtained spectrum is approx. 15 times broader compared to that of the
process analyzed in Section 4.5. This implies considerably sharper temporal features
of photon pairs generated by the process (HEIfl’ rTE§, TE};). Profiles of probabil-
ity densities p;; of detecting an idler photon at time ?; conditioned by detection of a
signal photon at time t; = 0 s for both cases (narrow-band and broad-band) are com-
pared in Fig. 4.11 confirming this fact. Whereas the probability-density width equals
4.5 x 10714 s (FWHM) for the spectrally broad-band process (HE, R,TEgl,TEi ),

attains 63.5 x 107! s for the spectrally narrow-band process (HES, rHES R,HEH R)
The sharp temporal correlations are important in metrology as they determine the

available temporal resolution [25,90].
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Figure 4.11: Probability density pi;, pri = C|®(0,t;)|?, as a function of idler-
photon detection time ¢; for a signal photon detected at time t; = 0 s for processes
(HEQLR,HEZLR,HEZILR) (A = 429 um) and (HE?LR,TESLTE&) (A = 42.28 um),
L =10 c¢m. Constant C is defined such that ffooo dtipei(t;) = 1.

4.7 Generation of photon pairs entangled in OAM numbers

Pumping the fiber with a HE;; g (or HEq1,z) mode is interesting even in the case
when more LPj; modes participate in the non-linear interaction. Period A of non-
linear modulation equal to 41.06 pm provides suitable conditions for four non-linear
processes (HEll)l,RJHESLR7HEél,L)7 (HE%,RaHEgLLaHEéLR)a (HEgl,R’TEglaTMél) and
(HEgLR,TMSI,TEBI) |[see Fig. 4.10(a)]. The last two processes do not contribute to
photon-pair generation as they have zero overlap integrals given in Eq. (4.15). In the
first two non-linear interactions, the signal and idler photons are generated with OAM
numbers equal to £1 and F1. State [¢y, ;,) entangled in OAM numbers [91] (|41, 1,) =
Ch|ls = Dg|ll; = —=1); + Co|ls = —1)4]l; = 1);, C1 and Cy are constants) can thus be
obtained at wavelengths A = 1.35 um and A; = 1.82 um. As both processes have
nearly equal intensities, a generated state close to the maximally entangled state is
expected. Also radial profiles of the emitted photons are close to each other which
justifies the use of formula (4.30) for the determination of Schmidt number Ky. It gives
Ky = 1.998. For comparison, the exact numerical decomposition described in Eq. (4.29)
provides Ky = 1.994. The obtained peak in the signal photon-number density Ng(As)
is 21 nm wide (FWHM) and its profile is shown in Fig. 4.12. The curve plotted in
Fig. 4.12 corresponds to 30 signal photons generated per 1 s and 1 W of pumping,

which characterizes an intense source of photon pairs.

The generated state is simultaneously entangled also in the signal and idler frequen-
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Figure 4.12: Spectral photon-number density Ng = Zn N arising from non-

) 3757l ’
linear processes (HET, R’HEgl,R’HEZZLL) and (HE?I’R,HE§17L,HE’217R) in dependence on
wavelength ;. The curves nearly coincide; A = 41.06 ym, L = 10 cm.

cies. It can be expressed as

) = /dwsdwz‘ D1, 1, (ws, wi)|ls = Lws)s|li = =1, wi)i
+P_q, 1, (ws, wi)|ls = =1, ws)s|li = 1, w;);. (4.39)

We analyze spectral entanglement assuming separability of the spectral profile and
that in the transverse plane for both fields. We also analyze the two-photon spectral
amplitude @, _1,(ws,w;) arising from the process (HE’{LR,HE%’R,HEQLL) and note
that the two-photon amplitude ®_;, 1,(ws,w;) of process (HE?LR,HEgLL,HEéLR) is
very similar to the former one. As the amount of spectral entanglement depends on
the pump-field spectral width o,, we consider the Gaussian spectrum &, centered at

frequency wg corresponding to )\2 = 0.775 pm,

w — w?)?
Ep(w) = \/zolp exp [—m] . (4.40)

The two-photon spectral amplitude ®1, _1,(ws,w;) considered for a pulsed pump

field has a typical elliptical shape with axes oriented at directions ws = w; — wio + wf

0
p

be wider than o, = 0.85 nm (the corresponding intensity FWHM equals 2 nm) to

and ws = wy — w;. For the analyzed configuration, the pump-field spectrum cannot
assure negligible contributions from other non-linear processes discussed above. In this
case, the two-photon amplitude ®1, 1, is elongated along the direction ws = wg — wj.
This is caused by the fact that the extension of amplitude ®q, _;, in direction w,; =
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Figure 4.13: (a) Cut of absolute value |®1, 1, (ws, w;)| of two-photon spectral amplitude

along the line ws = w; — wY + w? and (b) ws = wg — w; appropriate for the process

(HEIIDLR,HEgLR,HEéLL) pumped by a pulsed field; 0, = 0.85 nm, A = 41.06 pum,
L =10 cm. It holds that [ dwgdw; |®(ws,w;)|? = 1.

w; — w? +w? is limited by the product of pump-field spectrum &p and spatial spectrum
X of non-linear modulation. As shown in Fig. 4.13(a) for the pump field with width
op = 0.85 nm, spatial spectrum %@ introduces oscillations in this direction. The
extension of amplitude ®1, _1; in direction w,; = wg — w; depends on phase-matching
properties of the structure as well as on the width of the pump-field spectrum. This
admits much broader profiles, as documented in Fig. 4.13(b). Oscillations in spectrum
%@ of non-linear grating are also visible in this profile, as it depends on variation from

the optimal phase-matching condition.

There typically occur several tens of independent spectral modes for the consid-
ered pulsed pumping. The number K, of independent spectral modes determined by
Eq. (4.24) increases nearly linearly with the increasing pump-field spectral width o,
in the interval depicted in Fig. 4.14. This originates in considerable broadening of the
signal- and idler-field spectra with the increasing values of spectral width o,. The over-
all number of independent modes is given by the product KyK,, of numbers of modes
in the spectral and azimuthal variables and thus reaches approx. 200 for the pump field
having 0.85 nm wide spectrum. All these modes can, in principle, be used for quantum

communications for delivering entangled information.

We have considered 10 c¢m long periodically poled ring fiber as it can be fabricated
by a simple method [67]. However, there exists a more sophisticated fabrication method

allowing production of poled ring fibers up to 1 m long [92]. The numbers of generated
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Figure 4.14: Number K, of independent spectral modes as it depends on pump-field
spectral width op,; A = 41.06 pm, L = 10 cm.

photon pairs more than one order of magnitude greater are expected in such fibers.

In many applications, the signal-to-noise ratio of a photon-pair source is an impor-
tant parameter. In the analyzed ring fiber, three sources of noise can be identified. The
first source is related to the presence of other non-linear processes. The second source of
noise is caused by the photon losses in the fiber. One photon from a generated photon
pair can be lost leaving the remaining photon in the form of noise. Finally, a photon
pair can be emitted into an unwanted pair of modes and so both its photons contribute
to the noise. However, it has been shown in [45] that the Raman scattering as well
as other non-linear processes are negligible in regular fibers with the same material
structure. As for the broken photon pairs, any measurement based on the detection
of photon coincidences eliminates this kind of noise. Our results have shown that the
probability of generation of a photon pair into an unwanted pair of modes is lower than

1/100 for the discussed configuration. Thus, all three sources of noise can be neglected.

The discussed noise weakens entanglement of the generated state entangled in OAM
numbers. This weakening can be quantified, e.g., using the Clauser-Horne-Shimony-Holt
(CHSH) form of the Bell inequalities [93]. To simplify calculations, we first determine a
reduced statistical operator poam corresponding to the state |¢) in Eq. (4.39) reduced
over the signal (ws) and idler (w;) frequencies. Considering additional noise with relative

weight p, an appropriate statistical operator gy can be expressed as

A

A . 1
poan = (1 = p)hoam TPy (4.41)

using the unity operator I. Maximal violation of the CHSH inequalities occurs under
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conditions discussed in [94]. In this case and assuming p = 0.01, parameter S quanti-
fying this violation (S > 2) equals 2.8. The boundary value of parameter S (S = 2) is
observed for p = 0.283, which does not represent a real limitation for experiments. For
comparison, recent measurements with states entangled in OAM numbers have reached
S =278 for I £1[95] and S = 2.69 for [ £ 2 [96].

The results obtained is this Chapter can also be applied to fibers with vortex ge-
ometry [48]. Compared to ring fibers, they contain an additional central core. As a
consequence, their fundamental mode HE1; is more stable. Altought, the dispersion
curves of individual modes are expected to by slightly different, the non-linear process

should behave in the same manner.
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Chapter 5

(Generation of photon pairs in

layered structures

The advantages of the use of the layered structures for SPDC are mentioned in Sec-
tion 5.1. It also includes the current state of art in the field of SPDC in the lay-
ered dielectric and metallo-dielectric systems. The advantages and disadvantages of
the metallo-dielectric systems in comparision with the purely dielectric ones are high-
lighted. The non-linear tensor of the second order for metal is derived in Section 5.2.
The proposed model assumes that the non-linearity is caused by the Lorentz force. The
quantities characterizing a photon pair and parameters evaluating efficiency of layered
structures are defined in Section 5.4. Section 5.5 includes theory of the photon losses in
the investigated metallo-dielectric layered structures. The emission of photon pairs from
a metal-dielectric-metal resonator is examined in Section 5.6. The design procedure is
applied in order to obtain the resonator with the highest emission rate. The proper-
ties of photon pairs emitted from the designed structure are explored. Particularly,
the angular-wavelength density of photon pairs. The emission efficiency is compared
to both a single dielectric layer of the same length and to a reference structure. The
most efficient structure with 11 layers is obtained and analyzed along the same vein in
Section 5.7. In addition, mode profiles, correlated areas (both in Sec. 5.7), temporal

properties (Sec. 5.8) and photon losses (Sec. 5.9) are examined.

5.1 Introduction

Modern optical structures that confine the fields in one (layered structures) or two

(waveguides, optical fibers) dimensions represent qualitative improvement from the
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point of view of efficiency of photon-pair generation. The confinement of interacting
fields enhances their electric-field amplitudes on one side, it qualitatively changes the
conditions for an efficient non-linear interaction on the other side. The requirement for
phase matching of wave vectors is then replaced by the need of large spatial overlap
of the electric-field amplitudes of all three interacting fields. As spatial profiles of the
electric-field amplitudes depend strongly on parameters and geometry of the structures,
much broader possibilities for tailoring properties of the emitted photon pairs exist.

Non-linear layered structures confine the fields along their propagation direction.
Back-scattering of the fields creates a one dimensional photonic-band structure (PBG)
with transmission peaks and forbidden bands [87,97-99|. The electric-field amplitudes
can be enhanced by this back-scattering, which under suitable conditions gives an effi-
cient non-linear interaction. However, as the confinement of optical fields occurs only
in one dimension, the enhancement of optical fields is considerably weaker compared to
waveguiding structures, at least for dielectric structures. On the other hand, there exist
the usual transverse phase-matching conditions and the impinging fields can be easily
coupled into the modes of the structure [87]. Also properties of a two-photon state can
be efficiently and easily controlled by spatial and temporal spectra of the pump beam.
Taking into account the precision of well-established fabrication techniques [100-102],
one-dimensional PBGs represent promising sources of photon pairs.

Non-linear dielectric layered structures have been already investigated from the point
of view of SPDC. Both semiclassical (stochastic) [98] and quantum models [87,99] of
SPDC in dielectric layered structures have been elaborated. These structures have
been shown to be able to provide entangled photon pairs anti-symmetric with respect
to the exchange of signal and idler frequencies [33]. Also random non-linear dielectric
layered structures have been analyzed as sources of spectrally ultra-narrow photon pairs
[103,104]. Surface SPDC has been shown to give important contribution to photon-pair
generation rates [105-107].

The metallo-dielectric layered structures have been investigated from the point of
view of linear transmission properties [108,109]. It has been shown that, considering the
overall transmission, the total amount of metal inside the structure can be considerably
larger provided that it is split into thin layers sandwiched by dielectric layers. The en-
hanced transmission takes place due to resonant tunnelling effect of light!, which relates

to the entire periodical system. The strong back-scattering effects in metallo-dielectric

!The resonant tunnelling effect originates from three simultaneously occurring effects. Tunnelling
of light through the metallic layers, negative interference of light in metallic layers and enhancement
of field’s amplitudes in dielectric regions. As a result the electromagnetic field is transmitted through
a periodic layered structure with high efficiency.
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structures, which result from high reflectivity of metallic layers, enhances the electric-
field amplitudes. The amplification is considerably stronger compared to only dielectric
structures [110]. This allows to consider efficient non-linear processes in more complex
metallo-dielectric structures. Narrow spectral interaction regions and strong direction-
ality of photon emissions are distinguished properties of such structures. For this reason,
the emitted photon pairs are suitable for photon-atom interactions that require both
properties to maximize the strength of interaction [111]. We note that such photon-
atom interaction is in the center of attention in recent years in quantum-information
processing as entanglement is easily generated in optical fields but excitations are easily
stored in atomic systems [112-114]. Recently, the process of second harmonic gener-
ation in metallo-dielectric layered structures has been investigated both theoretically
and experimentally [115,116]. Also the first brief investigation of SPDC in such struc-
tures has confirmed high enhancement of photon-pair generation rates due to strong
back-scattering occurring at metal-dielectric boundaries with high contrast of refrac-
tion indices [A3]. The detailed analysis of these structures confirmed the preliminary
results and showed that the transmission properties influence as well correlated areas

and temporal properties of photon pairs [A4].

5.2 Non-linear model of metal

Optical non-linear response of metals can arise due to several physical processes includ-
ing the Fermi smearing [115], strong redistribution of charges [116,117] and affecting
the path of electrons by a strong magnetic field [118]. Other mechanisms leading to
non-linearity are discussed in [116,118].

The linear and non-linear properties of free electrons in metal can be described by
the hydrodynamical model [116]. The hydrodynamical model of metal originates from

equation of motion for free electron

ma(r,t) +myv(r,t) = —eE —ev(r,t) x B — - (5.1)

m is an effective mass of electron, v is velocity of an electron, v is a damping factor,
e is absolute value of elementary charge, p is an electron gas pressure and n is volume
density of electrons. With the use of the relation between the total time derivative and

the partial spatial and time derivatives



the relation between electric current density j and electron velocity v,
j=nev, (5.3)

and relation between electric current density and polarization vector P,

opP

E =J (5-4)

the equation of motion for polarization vector P is obtained:

?’P  10noP oP 1 0P oP B ne? e OP
ot2 n Ot Ot

e
— — — =—E—-———xB+—Vp. (5.5
ot ne Ot ot m m Ot +m p. (5:5)
Noting Eq. (5.5) is non-linear partial differential equation of motion. In the simplest
case, it is assumed that there are no significant spatial variations in the electron charge
density n &~ ng/?, and that the electron gas pressure p can be neglected [118]. Than,
Eq. (5.5) can be simplified

0’P oP  ne? e OP

— —=—E-—— xB. 5.6

o Ve T m e mon (5.6)
Equation (5.6) is still non-linear equation of motion. The non-linearity arises from the
Lorentz-force term 0;P x B [118].

Perturbation approach is applied to find the solution of Eq. (5.6). The polarization

P is decomposed into strong linear and weak non-linear parts. Solution of Eq. (5.6) for
three monochromatic waves representing the pump, signal and idler fields can then be

easily found following |2|. It allows us to express the non-linear tensor x? as follows:

(2) N o 1€0
lem(kp7k87k’b) - 27TN€ Z

0,4=1,y,%

L (wp) L7 (ws) Aws, wi)€ jofogmki g + L7 (wp) L™ (wi) A(wi, Ws)€imoEoqiks g

+ L(wi) L™ (ws) A(ws, wp)miooqjkp.q — L(wi) L(wp) A(wp, ws)emjofoqks 4

— L(ws)L(wp)A(wp, wi)sljoaoqu;q + L(ws)L* (w;) A(ws, wp)slmosoqjkp,q] .
(5.7)

2The assumption of a small variation of the electron charge density n is valid only when the po-
larization of electric field amplitude E of a strong pump beam is parallel to the surfaces of metallic
layers. Otherwise, there is non-zero spatial distribution of charges at the boundaries of the metallic
and dielectric layers, which have to be taken into account. The assumption is in agreement with the
performed simulations, where polarization of the electric field amplitude of the pump beam satisfy this
requirement,.
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In Eq. (5.7), €ijx denotes the Levi-Civita tensor, L(w) = 22/(w® +iyw) and A(w,w’) =

w/w'.

The expression in Eq. (5.7) for tensor x(?) reveals its strong dependence on
frequencies and wave vectors of the interacting fields. Wave vectors k occurring in
Eq. (5.7) are assumed to be complex, as the fields are strongly attenuated in metals
(due to the skin effect). The expected values of elements of x(?) tensor for metals are

of the order of 10713 m/V.

5.3 Model of spontaneous parametric down-conversion

Vectorial model of SPDC in non-linear layered structures has been formulated in [87]
using the interaction Hamiltonian Hine. Alternatively, the interaction momentum oper-
ator Ging /3 can be used to describe SPDC caused by a strong pump beam propagating
along the z axis [72,110,119]:

Gint (2) = 250/ dt/ dady P (r) : EZ(;H(r,t)Eg_)(r,t)Eg_)(r,t) +h.c.} ;o (5.8)
—00 S

r = (z,y,z). The pump-field is characterized by its positive-frequency electric-field

vector Egr) (r,t). The signal and idler fields are described by their negative-frequency

electric-field operator vector amplitudes Eg_)(r,t) and Eg_)(r,t), respectively. Short-
ening of the tensor of non-linear susceptibility ¥ with respect to its three indices is
denoted by :. Symbol ¢q stands for the vacuum permittivity; h.c. replaces the Hermitian

conjugated term.

The strong un-depleted pump field is characterized by its incident temporal spec-
trum &,(wp) and spatial spectrum & (kp s, kp, ) defined in the transverse plane S. The
pump positive-frequency electric field vector Egr)(r, t) occurring in Eq. (5.8) can be de-

composed in a layered structure with boundaries localized at positions z;, j =0,..., N,

3Whereas the non-linear interaction Hamiltonian Hing gives the interaction energy, the momentum
operator Gint(z) provides the overall flux of this energy through the transverse plane S positioned at
distance z.
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Figure 5.1: Scheme of a metallo-dielectric layered structure composed of six GaN layers
and five Ag layers.

(for the scheme of the structure, see Fig. 5.1) as follows:

1 w/2 w/2 )
Ef) (r,t) = / sin(v,)| dv dw/ widw, E)(w
00 = g [ sl [y [ &)
5; [Kpz(Qp), kpy (Qp)] exp [ikp o (Qp)x + ik 4y (2p)y]

N+1

Z Z Z rect(l)(Z)A;(,lg,y(ﬂp)eg)v(ﬂp)

y=TE,TM g=F,B =0

X exp [iké?yz(ﬂp)(z - Zl—1)] exp(—iwpt) (5.9)

using the notation ©Q, = (wp,Vp, 1) for ’spherical coordinates’ composed of the fre-
quency wy, radial propagation angle ¥, and azimuthal propagation angle 1,. The
scalar electric-field amplitudes Aj(glb)ﬁﬁ and AS;,V in Eq. (5.9) characterize the forward-
and backward-propagating pump fields, respectively, with v polarization in an [-th layer
with index of refraction ng). Polarization vectors eél;ﬁ and ej(ogﬁ determine polarization
directions of y-polarized waves in an [-th layer propagating forward (index F') and back-
ward (B), respectively. Function rect)(z) for I = 1,..., N equals 1 for z;_; < z < 2
and is zero otherwise; function rect(®(z) [rect®¥+1(2)] is non-zero only for z < z
[zn < z] and equals 1. Speed of light in vacuum is denoted as ¢. Decomposition of the
pump electric field Ez()+) into its TE- and TM-polarized waves [120] in Eq. (5.9) is done

with respect to the plane of incidence of a plane wave with given wave vector k.

Cartesian components of the pump-field wave vector k, in spherical coordinate sys-
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tem can be written in the form:

wy, sin (1), ) sin (Y
kp,a:(ﬂp) _ _p ( ];) (17)7
wy, cos(1y) sin(Y))
kpy(Qp) = . i p7
n(l)(w Jw
kD (9,) = i%cos(z?z(f));lzo,...,]\f—i—l, (5.10)

O]
P

where the radial propagation angle 9’ in an I-th layer obeys the Snell law:

n}()o) sin(ﬁz(,o)) = ng) sin(ﬁg)), l=1,...,N+1, (5.11)
19,@,0) = vp. When writing Eq. (5.10), air around the structure was assumed (néo) =
n]gNH) = 1). As the transverse components of wave vectors do not change during the

propagation, the z and y components of wave vector k, in Eq. (5.10) are not indexed.

Also sign + (—) in Eq. (5.10) corresponds to the forward- (backward-) propagating field.

The signal and idler fields with intensities at single-photon level can be decomposed

in the same way as the pump field in Eq. (5.9). However, instead of coefficients A;(,lg{7

characterizing the classical pump amplitudes, operator coefficients A1(7l1)a7a describing the
quantized signal (m = s) and idler (m = %) fields are needed [72]. The formula (5.9)
for the pump field can be transformed into the form applicable to the signal and idler

fields:

A~ 1 /2 /2
EH)(r,t) = \/73 2/ | sin(V,)| d9m, dipp,
2w c? J—m/2 —7/2
/ wzndwm exp [ka,x<ﬂm)x + ikm,y(”m)y]
0
N+1

Z Z Z rect(l)(z)/l%)ma((lm)

~=TE,TM a=F,B 1=0
X e;?,a(nm) exp [ikrfb)mz(ﬂm)(z — zl,l)]
X exp(—iwmt);  m = s,i. (5.12)

Symbols introduced in Eq. (5.12) have the same meaning for the signal and idler fields
as those defined below Eq. (5.9) for the pump field.

The pump electric-field amplitudes Az(oll)w,w and Afj;ﬁ as well as the signal and idler
electric-field operator amplitudes A,(QFQ and A%?B,a occurring in Egs. (5.9) and (5.12),

respectively, are mutually coupled through the Fresnel relations at the boundaries and
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free-space evolution inside the layers. These relations allow to express the pump electric-
field amplitudes inside the layers in terms of the amplitudes Aﬁ,‘?,y and Ag,g#) char-
acterizing the forward- and backward-propagating incident pump fields. On the other
hand, the same relations applied to the signal and idler fields provide the signal and
idler electric-field operator amplitudes inside the layers in terms of operator amplitudes
A%Jral) and /1,(3337& that correspond to the forward- and backward-propagating outgoing
signal and idler fields. The transfer matrix formalism describing these relations has been
developed in [87,110,120]. Using quantization of photon flux [75,76], the operator am-
plitudes A,(fl\;zl) and AS{}W can be written using the annihilation operators &%\;Jfal)(ﬂm)
and dg%,a(ﬂm):

AN+ Y = %d(NH)(Qm);

mp,q 20 mg,q
. huw
(0) — 4./ 2m £(0)
A o) ) Degc amB,a(Qm), (5.13)

obeying the usual boson commutation relations:

2
/ C

m)] =

A0 (@ ~ (1)1 Q _
() ( [Sin(0rm) 2,

!
Ma,& Mg,

5l,l’5a,a/5a,a’5(wm _W;n)‘s(em - 9%)5(@%@ - ¢7/n)
(5.14)

Symbol & stands for the reduced Planck constant. More details can be found in
[87,110].

out
EX)

An outgoing photon pair in the state | ) is described by the first-order pertur-

bation solution of the Schrédinger equation written as

L
W5 = ;L/o dz Ging(2)|vac). (5.15)

In Eq. (5.15), L denotes the structure length and |vac) means the signal and idler

vacuum state.

Substituting Egs. (5.8), (5.9), (5.12), and (5.13) into Eq. (5.15) the expression for
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out >

the two-photon state [10%") is revealed:

ey =

w/ 7/
[H / Q\Sin(ﬁmﬂdﬂm Zdwm

V21 €T 1T b= F.B 0,84 =TE,TM Lm=p,s,i / ~7/2 —/2

/ w dwm] \/(Z)SZ(I)( 5p(wp)5;r[kp,x(ﬂp)> kp,y(np)]

ns’ (ws)n; ’ (w;)
X6 (wp = wi)0 [kp 2 () — ks 2o (2s) — ki (i)
x4 [ pﬂy( ) Fosy(S2s) — Ki gy (€23)]
(

* 1)
XX 2)(l) (Q Q Q ) Ig’lg)v’Y(Qp) e§?7a(ﬂs) egb?ﬁ(ﬂﬂ

l ~ ~(1
Lif [2Ak§ (2, 2, Qi)Ll] AD_(92,)a01 (2,)aT () vac);  (5.16)

f(z) = exp(iz) sin(z)/x. Phase mismatch Ak;{ibg(ﬂp,ﬂs, Q) = élg,z(ﬂp)—kgi),z(ﬂs)—
0]

1,2

emitted at the boundaries [105,106,110| that are not described by Eq. (5.16). Contribu-

tion of this surface SPDC behaves similarly as the analyzed volume contribution given

(€2;) occurs in an [-th layer of length L; = z; — z;_1. There also exist photon pairs

in Eq. (5.16). It increases the photon-pair generation rates. The general dependency of
the second-order susceptibility tensor x® on the pump, signal and idler vectors €, is
assumed. This dependency has to be taken into account, while the non-linear properties
of metal are angular-frequency dependent*. For GaN layers, non-zero elements of the
susceptibility tensor x(?) take the values [121]
X = XS = X = Xy = X = xby = 10pm/V,
ng)z = —20pm/V.

The output state | Out> in Eq. (5.16) can be further decomposed with respect to the
signal and idler propagation directions and field polarizations. Each term describing the

signal field at position ry and the idler field at position r; outside the structure reaches

4The second-order susceptibility tensor X<2) for metal is derived in Section 5.2
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the form:

w/2 /2 o0
s L[5t [ [

m=s,i —7/2 —7/2
XG0 (s, ;) expli(ws + w;)t] exp[—i (k3 r, + k)]
x il o (Q)al 5(Q)|vac),a,b = F,B; a, 8 = TE, TM.
(5.17)

Wave vectors kg;‘t and k?but are defined outside the structure. Spectral two-photon
amplitude ¢:5 (25, €2;) defined by Eq. (5.17) gives the probability amplitude of emitting
an a-polarized signal photon at frequency ws and propagation direction (s, 1s) together
with its S-polarized idler twin at frequency w; and propagation direction (¥;,1);) at the

outputs a and b of the structure.

5.4 Quantities characterizing photon pairs

Spatial and spectral intensity properties of photon pairs [99,110] can be derived from the
joint signal-idler photon-number density ngf (92, €2;) related to signal [idler| photons
with polarization « [5] and frequency ws [w;] propagating at angles (195, ¥s) [(¥i, )] in
direction a [b]. Using the formula Eq. (5.17) for two-photon state |¢27. (rs,r;,t)) the

density an can be written as follows:

Sa 'ib(

| sin(¥s) sin(9

O oo, ) (5.18)

n®f (Q, ) =

Signal photon-number density n?ib(ﬂs) is then derived in the form:

nl (2 / dv“/ / dus; n%F (Q, ).
—7/2 —7/2 0

Subsequently, the signal spectral photon-number density n:’ao‘bﬁ (

(5.19)

ws) is determined along

the formula:

j;bﬁws / dﬁ/ dibsn Sab Q). (5.20)
—7/2 —7/2

Similarly, the signal transverse photon-number density n' (295, 1) characterizing pho-

sab
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tons propagating in direction (s, 1s) is determined as:

zraolc)ﬁ(ﬁs,ws) :/0 dws Sgb(ﬂ ). (5.21)

Intensity correlations between the signal and idler fields in their transverse planes are
described by the joint signal-idler transverse photon-number density nj," B9, s, Vi, )
characterizing a photon pair with signal [idler| photon propagating along angles (s, ¥s)
[(¥4, ;)] in direction a [b]:

COI“ o0 (7987 Vs, Ui, ¢z = / dws / dwi nzbﬁ(ﬂ& QZ)
0 0
(5.22)

If a signal photon is detected at angle (92,4?), the joint signal-idler transverse photon-
number density ny" b (99,49, 9;,4;) gives the probability of detecting the accompany-
ing idler photon at direction (¥;, ;). This probability determines the shape of correlated
area [10].

In the time domain, two-photon states are characterized by a two-photon temporal
amplitude A(7s,7;) that gives the probability amplitude of detecting a signal photon
at time 75 together with detecting the accompanying idler photon at time 7;. Using
two-photon spectral amplitude qﬁZ‘bB in Eq. (5.17), the two-photon temporal amplitude

A(Ts,7;) can be expressed as:

Sln Sln h [e%s)
a,b( 57¢877-87 z,’lpz, ’L) = \/| )‘ / dws

47750 c3

@]
/ dw;/wiw? ¢aﬁ(9 Q;) exp(—iwsTs) exp(—iw;7;).

—00

(5.23)

Temporal properties of photon pairs are usually experimentally investigated em-
ploying the Hong-Ou-Mandel interferometer [11]. In this interferometer, two photons
are mutually delayed by 7; and then they interfere on a beam splitter which output
ports are monitored by two detectors measuring in coincidence (Fig. 3.1). A normalized

coincidence-count rate R depends on time delay 7; according to the formula:

Rgbﬁ(n,ﬁs,”tbs,ﬁu%) =1- Pab (Tlvﬁsﬂpsﬂ%awz) (5.24)
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where

af Sy |sin(ds)sin(d |h2 3,3
Pap (71,793,7/)5,191,1#1) = 9 4R35b dwl

R {¢a5*(ﬂ Q )¢ (wlaﬂsawsawmﬁlvd}l) exp[ ( wi)Tl]}
| sin () sin(19;) |h?
dws
/0 ¥

RQ ab(ﬁs’7p57§zv¢z) = 204

/ duws; WPw3 |20 (L5, )2,
0

Enhancement of the non-linear interaction inside a layered structure originates from
increased electric-field amplitudes due to back-scattering on the boundaries. This en-
hancement can be quantified using a reference structure defined in [87]. This reference
structure uses the natural material non-linearity exploiting the greatest non-linear co-
efficient, but it does not take into account the back-scattering of the propagating light?.
The reference structure generates a signal photon in direction (¥s,15) together with
an idler photon in direction (9, ;) exploiting phase matching in the transverse plane
reached with a pump plane wave found in the spatial spectrum 5;1". The phase-matching
is assumed to be maintained as well in the longitudinal direction z. The corresponding

two-photon state |@Zzgezf ) is expressed as:

ref _ /2 >
[Vsi) = \/705[1_[/— | sin(dy,)| d9m, —wzdwm/o w2, dwp,

m=s,1

& (Ws + wz‘)gtr [kﬁ (Qs) + ki@(ﬂi)a ks,y(QS) + ki,y(ﬂi)]

WsWj ~ ~
xZ —,)max<|x<2>“>|>Llal<ns>a1<ﬂz->|vac> (5.25)

I (w;
Creation operator al(§2,) [&I(QZ)] describes the signal [idler| photon at the output plane
of the structure. Function max gives the maximal value of elements of non-linear tensor
xPW_ Using the signal photon-number density n'°f () of the reference structure given

in Eq. (5.19), the signal relative photon-number density nggb(ﬂs) at frequency ws and

5The terms in the two-photon amplitude, which correspond to electric field amplitudes of the inter-
acting fields are discarded. The magnitudes of the original amplitudes are determined by the interfer-
ence of the light scattered inside the structure. Therefore, the reference structure discards the impact
of the interference effects on the non-linear interaction.
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in emission direction (¥s,s) is conveniently defined using the relation:

af 0.) — ns,ab( s 9
ns,ab( s) maxy, .. [ngef(ﬂs)] . (5. 6)

In Eq. (5.26), the maximum is taken over the whole interval of radial emission angles
¥, and frequencies w, assuming a fixed azimuthal emission angle 9.
In the numerical calculations, a ¢w pump field with amplitude &, and Gaussian

transverse profile is considered, i.e.

Ep(wp) = €p5(wp_wg)a (5.27)
2(1.2 2
r T T (kl, + k )
& lhnky) = —ex [—”4@/ ; (5.28)

wg is the central frequency and 7, stands for the radius of transverse profile. It holds

that [ dk, [ dky|E} (ke ky)|* = 1. Whenever the expression 6?(w) occurs in the above
defined formulas, it has to be replaced by the expression 27'/(27)d(w) obtained for the
fields defined inside interval (=7, T"). Physical quantities obtained per unit time interval

are reached in the limit T — oco.

5.5 Losses in layered structures and noise photons

The analyzed metallo-dielectric layered structures may produce considerable amount of
noise photons due to strong absorption of the metal. The reason is that an absorbed
photon leaves its twin in the structure. If this twin exits the structure, it forms the
noise that is superimposed on the emitted photon-pair field. In this section, a theory
that quantifies the contribution of noise photons is developed. We assume for simplicity
that photon pairs are generated only in dielectric layers, in accord with our results that
have revealed only weak generation of photon pairs in metal layers.

Detailed inspection of Eq. (5.16) for two-photon state |@ZJ°‘“> reveals that this state
is composed of contributions describing photon pairs emitted in different layers. We

assume that similar decomposition can be done also for the joint signal-idler photon-
number density njg(ﬂs, Q;) defined in Eq. (5.18):

n® l Do
B Q Q Z Z s,aa’ (b)b[?(Q) (/)I;I/B(Q Q; ) (529)
lediel o/ b=
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In Eq. (5.29), symbol ngl,)c,y'g(ﬂ&ﬂi) stands for the joint signal-idler photon-number
density of photon pairs emitted in an [-th layer. Symbol ), 4 means summation
over dielectric layers. The photon-number densfcy n(,)b, (25, 2;) is determined along
B(Q Q;) appropriate for the [-th

layer. The intensity transmission coefficients T T(ri)ga, introduced in Eq. (5.29) give the

Ot

q. (5.18) using a two-photon spectral amplitude qﬁ b

probability that an a-polarized photon, which was created in field m in [-th layer with

direction d’, leaves the structure in direction a.

Whereas T(l)a o T T(l)a

coefficients DT(n)a, are needed in metallo-dielectric structures to generalize this relation:

o~ = 1 holds for dielectric structures, intensity absorption

(Dex ()

/+T Ba’+D — 7
m=s,1i; a:TE,TM; a =F,B. (5.30)

e

m,Fa

0

The intensity absorption coefficient D, g/ determines the probability that an a-polarized
photon propagating in direction @’ in a I-th layer in field m is absorbed inside the

(Dex

structure. Using absorption coefficients D_~ ,, the signal noise photon-number den-

sity d%; (9, ;) quantifying the amount of smgle a-polarized photons at frequency ws

ST, CL(
propagating at angle (5, ¢5) in direction a and originating in pairs with an idler photon

with frequency w; at angle (¢;,1);) is expressed as follows:

&L =Y S Y 1) p @)nlst (@) (5.31)

lediel B=TE,TM a’,b'=F,B

An overall signal noise photon-number density dg ,(€2s) is then simply determined by

integrating over all possible idler-field frequencies w; and propagation angles (9;,;):

/ dw,/ dz?/ dip; 2% (2, ). (5.32)
—7/2 —7/2

Formulas analogous to those written in Eqs. (5.31) and (5.32) can be derived also for

the idler-field noise contribution.

To judge contributions of noise single photons to the generated state with a-polarized

signal photons in direction a and S-polarized idler photons in direction b, we define
af

ratios Rm b

Q,,) of noise photon-number densities d<,(£2s) and d? ;) with respect
s,a i,b
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af

to densities n, . (,) belonging to photon pairs and written in Eq. (5.19):

m,ab
4o (2, a7, (9
R, () = Balf) - pas () = (@) (5.33)
s,ab aff i,ab af
ns,ab(ﬂs) nz‘,ab(ﬂi)

Also photon pairs with polarizations and propagation directions different from the
analyzed one and denoted by indices (a, ) and (b, 8) in Eq. (5.33) contribute to noise
photons provided that one of their two photons is captured by detectors. In this case,
ratios R?fab(ﬂm) defined along the relations

dgq(€2s) + Zg}\iTE h—r ”igb'(ﬂs)

R?ib(ﬂs) = : a - 17
7 ns,gb(ﬂs)
2o dﬁb(ﬂi) + Y oE Y= nzjb(ﬂi)
Ri,ab(ﬂi) = af -1
nz’,ab(Qi)

(5.34)

appropriately characterize the noise of the emitted state. However, this part of noise
can be removed in principle when multiple coincidence-count measurements are applied
in the experiment.

To determine ratios Rﬁf () and Rfjf () characterizing noise in the emitted

T , and absorption coefficients D(l)z, for the

state, we need intensity transmission m.aa .

signal and idler photons born in each dielectric layer. In what follows, we concentrate
our attention to photons of field m (m = s,i) created in an [-th layer (for the scheme
of a general structure, see Fig. 5.2). To describe properly damping in metal layers, we
have to introduce time into the description, at least implicitly. We reach this by defining
the appropriate boundary conditions and by placing the initial amplitude of the photon
at particular position in the structure. There are two distinct cases characterizing the
photons propagating forward and backward in the [-th layer.

First, backward-propagating a-polarized photons described by amplitude
A&?]’;’;}(Qm) are added to the [-th layer and their evolution inside the structure is fol-
lowed. This evolution is described by the transfer-matrix formalism elaborated for the
non-linear layered structures in [87,110]. The remaining boundary conditions are such
that photons do not enter the structure from its front (A&?L,a(nm) = 0) and rear
(A%\;_;)(Qm) = 0) ends. The backward-propagating photons added into the [-th layer
propagate first in the layers to the left from the I-th layer, they can penetrate into the
layers to the right from the [-th layer later and they can even return back to the left-
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hand-side layers from the right-hand-side ones. This consideration takes into an account
all possible paths of the photon inside the structure. Following the scheme plotted in
Fig. 5.2 and showing the used amplitudes, two sets of linear equations characterizing

the propagation through the left- and right-hand-side layers can be written separately:
O]
( (1),ext Am?z’)a(ﬂm)* ) ) = E%),a(ﬂm) ( 0) ! > ;
Ampa (Qm) + [P’ (2m)]52Bmp.a(2m) Amp,o(2m)

A ) | _ (PR ()l A ()
0 o omen Bl () '

(5.35)

dielectric layer

0 l l),ext N+1
AD —g A B AN+
—> > —>

1 I+1
77(0) H T R)p (k) TOPM H T*)Pp(k)
Yy k=Il—1 k=N
Ay Ay AP =0
- - «——
x .20 Zl—1 2z T ZN+1

Figure 5.2: Scheme of a structure composed of N layers. Whereas amplitudes AWD
describe the fields at the left-hand side of an I-th layer (I = 1,..., N + 1), amplitudes
BW are appropriate for the right-hand side of this layer (I = 1,...,N); amplitudes

A©) give the fields in front of the structure. Amplitudes Ag)’em and Bg)’eXt belong to
the fields added into an [-th layer. Subscript F' (B) identifies the forward- (backward-
) propagating fields. Matrices 7" characterize an I-th boundary and matrices P"
determine the free-field evolution in an [-th layer.

Matrices E%a(ﬂm) [R,(Qa(ﬂm)] introduced in Eq. (5.35) describe the propagation of
both forward- and backward-propagating fields in the layers positioned to the left [right|
from the [-th layer. They can be expressed in terms of matrices ’Tn(fl,(ﬂm) and P ()
characterizing propagation through a j-th boundary and free-field propagation in a j-th
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layer, respectively:
2 . .
£0u(@0) = [T [T020(@n)PY (@) 7%,

RO @) = T [Th0) P (200)] T ().
(5.36)

More details including definitions of the elements of matrices Tn(f L(Qm) and Pf,z)(ﬂm)
can be found in [87,110].

Two sets of equations written in (5.35) are coupled. These equations can easily be re-
arranged such that one linear set of equations for amplitudes A,(ﬁial)(ﬂm), B%)B,a(ﬂm),
AS,ZL)F@(Qm), and Agé,a(ﬂm) is obtained [Eq. (5.37)]. The fields propagating out of
the [-the layer are characterized by amplitudes B,(fl)Bﬂ(Qm)7 A%)Fﬂ(ﬂm), while the
fields leaving the whole structure at its front and rear end correspond to amplitudes
Aggga(ﬂm) and A%ﬂ)(ﬂm), respectively.

0 A%}Jfé)(ﬂm)
U | g0, = MO, (0, | B |
0 ' 7 Aripa(Qm)
0 Al ()
(5.37)
0 0 -1 129l
(D7 1)
M%)a(ﬂm) — 0 —[7;;71 32 0 0 " [Lin.al22
7 -1 [Rm,ah? [Rm,a]ll[Pm ]11 0
0 _[Rgn),oz]ﬂ - grlz),a]Ql[Pr(ri)]ll 0
(5.38)

The solution of set of Egs. (5.37) provides the amplitudes that determine photon fluxes
both inside the I-th layer and outside the whole layered structure. The obtained am-
plitudes provide us the needed intensity transmission and absorption coefficients as

follows.

According to the Poynting theorem, time-averaged power Pﬁé,a(ﬂm) generated in
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the [-th layer by the added field A%);)g is expressed as follows:

mp,x mp,x mp,x

P, @) = 0D () cos@) [ AL (@) + [P ()32, (@)
HPD @)l AL, o ()P = 1AL, o (@) = B, (20 ]
(5.39)

This power is partly dissipated both in the left- and right-hand-side layers and its

remaining part leaves the structure either at its front or rear end. Power nga(ﬂm)

[Pr(,gl?a(ﬂm)] beyond the rear end [in front] of the structure is determined as follows

POF (Q,) = cos(@N ) ANTD (@),

mp,x m mp,x
)B 0 0 2
PS5 (@) = cos(II)AR), o (). (5.40)

Power Pgé?a(ﬂm) dissipated in the left- and right-hand-side layers can then be derived

from the conservation law of energy:

POD () =PY (Q,,)— PV (Q,,)- PV (Q,). (5.41)

mp,x mp,x mp,x

If power P,%La(ﬂm) equals to that of one photon per second, the powers P,giga(ﬂm),

P,%fa(ﬂm) and P,(,%?a(ﬂm) give in turn intensity transmission coefficients T’ T(,?; 5(2m)

and Tﬁ?O{B(Qm) and intensity absorption coefficient D(l)%(ﬂm):

m,

Da
7V (Q,,) = P o ($n) u=F B
m,aB m P(l) (Q )’ b b
mp,o m
(D
a Pm ,Q Qm
Dfn),B(ﬂm) = — (2:0) (5.42)
Pl o(€m)

In the second case, forward-propagating a-polarized photons described by amplitude
B,(n,lL)Fezt(Qm) is added into the I-th layer. These photons propagate first in the right-
hand-side layers, they enter into the left-hand-side layers later and they can propagate
back to the right-hand-side layers again. Also in this case, no photon enters the structure
from its front [Ag,%,a(ﬂm) = 0] and rear [A%\;é)(ﬂm) = 0] ends. Similarly as for

the added backward-propagating photons, we can write two sets of linear equations
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characterizing the propagation through the left- and right-hand-side layers separately:

[
( | A§n>p,a<nlm> >:E(l) © )< o )
[P ()52 B () ’ AR ()

l),ex l l
A @)\ _ (g [ B ) + [P (@)l A ()
0 et Bg)B,a(Qm)

(5.43)

Matrices L%{a(ﬂm) and R,(fl),a(ﬂm) are defined in Eqs. (5.36). Eqs. (5.43) can be

transformed into a linear set of equations for amplitudes A%Jfo{)(ﬂm), Bf,ll)B,a(Qm),

Agvll)F,a(Qm), and Aﬁ%,a(ﬂm) of fields:

Br(rlz),th(Qm) = M(l) (Qm)

m,o

; (5.44)

matrix M%a(ﬂm) is defined in Eq. (5.38). The solution of system of Eqs. (5.44) allows
us to determine photon fluxes that give the powers discussed above. For the forward-

propagating photons added into the I-th layer, power Pr(,f)pa(ﬂm) given into this layer

by the external field with amplitude BT(,ZL)FQ)S is derived in the form:

mp,x

PR o(@m) = ni)(wm) cos(9}) [IB(Z)’eXt(ﬂm) + [PR ()| 1AL, o ()

P ()32 B, (@) = [BY), o (Q)” — 1AL, o () |-

mp,x mp,x meg,x
(5.45)

This power can be divided into three parts. Its first part [PﬁLFa(Qm)] is delivered be-

yond the rear end of the structure, whereas its second part [PgLBa(Qm)] is transferred

into the space in front of the structure. Finally, the third part [PT(,fLDa(Qm)] dissipates
inside the metal layers. These powers then serve for the determination of intensity

transmission coefficients T g);F(Qm) and Tg?g 7(2,) and intensity absorption coeffi-

cient D(Z)O}(Qm). Whereas formulas analogous to those written in Egs. (5.39) and (5.40)

give powers Pr(,f)F}Ta(Qm), Pr(rf)fa(ﬂm) and ng?a(ﬂm), expressions derived from those
in Egs. (5.41) provide coefficients T(l)aF(Qm), Tr(rlb)gF(Qm) and fog?‘,(ﬂm)

m,
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5.6 A simple metallo-dielectric resonator

Though both the metal and dielectric layers are non-linear, the dielectric layers are
able to provide much higher photon-pair fluxes®. For this reason, the presence of thin
metal layers is important for an enhancement of electric-field amplitudes inside the
structure. This enhancement then results in much stronger non-linear interaction and
efficient production of photon pairs. Compared to pure dielectric layered structures
like those composed of GaN and AIN, analyzed in [87,110], metallo-dielectric layered
structures allow for much higher enhancement of electric-field amplitudes due to the high
refraction-index contrast of the used metal and dielectric materials. For comparison and
considering the wavelength 800 nm, this indices of refraction are equal to 2.51 [2.16]
for GaN [AIN] layers and 5.3 [2.51] for Ag [GaN] layers analyzed here. However, strong
attenuation, reflection and losses of the electric-field amplitudes occur in metal layers.
This puts restrictions to the possible thicknesses of metal layers as well as to the number
of metal layers embedded into the structure.

To get deeper insight into the behavior of metallo-dielectric layered structures, we
first consider the simplest possible structure composed of only one non-linear GaN
layer sandwiched by two thin Ag layers. Thus, the Ag layers form mirrors of a simple
resonator that enhances the electric-field amplitudes inside the GaN layer. To achieve
efficient non-linear interaction, we apply the method for designing an efficient layered
structure for SPDC suggested in [87]. Lengths I3 of GaN layers and I; of Ag layer vary
in the method to reveal the most efficient structure. In the method, only pairs (I1,l2) of
lengths that provide transmission maxima for the pump field at a chosen wavelength )\g
are analyzed. Concentrating on the highest transmission maximum that also gives the
greatest enhancement of the pump field, the appropriate pairs (I1,[l2) of lengths form a
one-dimensional parametric system. This means that for any value of GaN-layer length
Iy there exists only one value of Ag-layers length /;.

In the analysis, we consider a plane-wave TE-polarized” pump-field at central wave-
length )\2 = 400 nm impinging on the structure at normal incidence. The simulated
power transmission of the pump beam is shown in the Fig. 5.3. Structures with thick
Ag layers (I3 > 10 nm) provide frequency-degenerated photon pairs. On the other
hand, structures with thin Ag layers emit frequency non-degenerated photon pairs.
The greatest value of relative signal photon-number density 7 defined in Eq. (5.26) is

reached for slightly frequency non-degenerated photon-pair emission for I; = 9.6376 nm

Non-linear suscetibility tensor x? of GaN has at least two orders of magnitude larger terms in
comparison with Ag.
"The TE polarized electric field amplitude of the pump beam is oriented along the axis .
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and ls = 95.1195 nm. It is important to note that the signal and idler photons can leave
the structure either along the +z or —z axes, so four possible combinations for photon
pairs exist. Nevertheless different photon pairs have comparable properties. That is
why, we pay attention to only photon pairs with both photons propagating along the
+2z direction. The structure generates photon pairs around the radial emission angle
¥ = 83 deg. Two emission maxima are observed in relative signal photon-number den-

8

sity ns [see Fig. 5.4(a)]°. Whereas one maximum contains TE-polarized photons, the

other maximum is composed of TM-polarized photons. As elements X:(B2:E)z and xg(fz)x of
susceptibility tensor participate in the non-linear interaction, a TE-polarized photon is
accompanied by a TM-polarized photon and vice versa. Two maxima in relative signal
photon-number density 75, shown in Fig. 5.4(a), are sharp compared to similar dielectric
structures. This is a consequence of strong interference of back-scattered optical fields
caused by the high refractive-index contrast. These sharp features are characteristic for

both spectral and spatial properties of photon pairs.

log[nd log[rd

Us (deg)
A O O N 00 ©

799 800 801 799 800 801
As (Nm) As (NM)

(a) (b)

Figure 5.4: (a) The relative signal photon-number density 75 in dependence on signal
radial emission angle ¥ and wavelength A; for a simple 'metallo-dielectric’ resonator
structure composed of one GaN layer and two Ag layers. Both photons with arbi-
trary polarizations propagate along the +z axis; )\2 = 400 nm, [; = 95.1195 nm,
lo = 9.6376 nm, ! = 0 deg; log denotes the decimal logarithm. (b) The ratio » of
signal photon-number densities ns of the simple 'metallo-dielectric’ resonator structure
and GaN monolayer of equal thickness as it depends on signal radial emission angle ¥
and wavelength A.

The advantage of 'metal resonator’ surrounding the non-linear GaN layer can be

quantified comparing its signal photon-number density ns [Eq. (5.19)] with that char-

8The quantity 75 was plotted for azimuthal angle 90 = 0 deg.
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acterizing one GaN monolayer structure of the same length (I = 114.3947 nm). Ratio
 of these photon-number densities ns [see Fig. 5.4(b)| shows that the enhancement
of up to nine orders in magnitude is reached in areas of maximal emission intensities,
i.e. under conditions of the strongest constructive interference of the signal [idler| field.
The enhancement factor rapidly drops down when wavelengths Ag and radial emission

angles ¥s move away from these optimal conditions.

5.7 An efficient metallo-dielectric structure

In order to sufficiently enhance the non- Tp

linear interaction, more complex metallo- 130 10
dielectric layered structures have to be 120 0.8
considered. There exists an interval of ’g 110 06
suitable numbers of the used layers. On = 04
one side, larger number of layers leads — 10 02
to strong interference and also to high 9

enhancement of electric-field amplitudes. 10 20 30 40 50 60 00
On the other side, larger number of metal l; (nm)

layers results in strong attenuation of the Figure 5.3: Power transmission coefficient

electric fields. To keep balance between T;, in dependence on the length of the metal-

these effects, we have decided to design a Jic layers I; and dielectric layer l.
structure with five metal Ag layers sand-
wiched by six GaN layers (for the scheme, see Fig. 5.1).

Following the design procedure, we have plotted the pump-field intensity trans-
mission coefficient 7}, at the wavelength /\2 = 400 nm and for TE polarization [see
Fig. 5.5(a)] as it depends on lengths of the dielectric layers I; and metallic layers .
The pump field impinging on the structure at normal incidence has been assumed. In
this graph, five transmission bands can be seen. It follows from the theory of band-
gap structures that the greatest enhancement of electric-field amplitudes occurs in the
transmission band closest to the band gap. In this band, also the greatest values of
absorption A, are found [see Fig. 5.5(b)| indicating large electric-field amplitudes inside
the metal layers [118].

Structures corresponding to the maxima of the first transmission band have been

max

A% of relative signal photon-number

parameterized by the ratio L = l3/l;. Maximum 7
density 75 taken over frequency ws and radial emission angle 95 assuming fixed azimuthal

angle ¥, o = 0 deg was chosen for quantification of efficiency of the non-linear process.
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Figure 5.5: (a) Intensity transmission coefficient 7). (b) Intensity absorption coefficient
Ap. Both quantities T}, and A, depend on lengths of the layers I; - dielectric, and [ -
metallic. The obtained results are valid for TE-polarized field at )\g = 400 nm impinging
on the structure under normal incidence . Positions of maxima in the first transmission
band are indicated by solid black curves.

Structures with parameter L in the interval (0.1, 0.25) were only considered because very
thin metal layers do not sufficiently enhance the electric-field amplitudes. Moreover,

their transmission bands are broader. On the other hand, thick metal layers attenuate

max
S

density ns were found in two regions: L € (0.17,0.18) and L € (0.225,0.24). In these

reaches values around 10°. The first region of L, analyzed in Fig. 5.6,

the propagating electric fields. Maximal values n of relative signal photon-number

max

regions, 1y

is more suitable and contains the most efficient structure (L = 0.178) with lengths

max
S

{1 =101.752 nm and I, = 18.083 nm. The obtained values of maxima n3'®* are higher by

max

18X of the 'metal resonator’

two orders in magnitude compared to the values of maxima n
investigated in Section 5.6. Additionally, these values are even higher by seven orders
in magnitude compared to those of pure dielectric layered structures studied in [87].
Detailed analysis of SPDC inside the metallo-dielectric structures shows that dielectric
layers are the major source of photon pairs. Metal layers give photon-pair numbers lower
by six orders in magnitude compared to the dielectric layers. Nevertheless, they play a
critical role in the enhancement of electric-field amplitudes inside the structure due to
their high indices of refraction. We have also analyzed SPDC involving a TM-polarized
pump field along the same vein. However, the obtained values of maxima n3'** have
been found considerably lower than those discussed above for the TE-polarized pump

field.
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Figure 5.6: Maximum 7n*®** of relative signal photon-number density ns depending on

ratio L of layers’ lengths, L = la/l;, for structures composed of 11 layers such that
the pump field at /\2 = 400 nm occurs in the center of the first transmission band (see
Fig. 5.5).

Relative signal photon-number density 7, of this structure (plotted in Fig. 5.7)
reveals two emission peaks. One peak is centered at the wavelength A\; = 737.837 nm
and the radial emission angle 9, = 47.686 deg, the other peak occurs at the wavelength
As = 873.601 nm and the radial emission angle s = 61.095 deg. The signal photon
at wavelength Ay = 737.837 nm is TE polarized and its twin has TM polarization. On
the other hand, the signal photon at wavelength A; = 873.601 nm has TM polarization,
whereas its twin is TE polarized. This means that the first photon pair exploits the
element xg«)z of susceptibility tensor whereas the second photon pair uses the element
ngzz)x. The emission peaks are very narrow in both the wavelength As; and radial emission
angle 0. The intensity peaks’ widths A)g are narrower than 1 x 1072 nm (full width
at half maximum, FWHM). In radial emission angle, the intensity peaks’ widths Ad
are narrower than 5 x 1072 deg. It is worth to stress that the sharpness of these
peaks arises from the behavior of TM-polarized fields. The analyzed system has nearly
radial symmetry which is only weakly broken by the varying values of x(?) elements
in azimuthal direction. So the emitted photon pairs form two narrow concentric rings;
slightly changing intensities are found around these rings.

The electric-field amplitude profiles of the interacting fields along the propagating z
axis for (p,s,i) = (TE, TE, TM) interaction are shown in Fig. 5.8. The pump electric-
field amplitude profile is determined for the incident electric-field amplitude 1 V/m
impinging on the structure at z = 0 m. The signal and idler electric-field amplitude
profiles are such that they give the outgoing amplitude 1 V/m at the end of the structure
and 0 V/m for the outgoing amplitude at z = 0 m. The TE-polarized pump and signal
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Figure 5.7: Relative signal photon-number density 7; in dependence on signal wave-
length A\s and radial emission angle ¥4 for two regions containing (a) TE-polarized and
(b) TM-polarized photons; )\2 =400 nm, [, = 101.752 nm, o = 18.083 nm.

fields have their electric-field amplitudes inside the structure enhanced several times.
In contrast, the enhancement factor of TM-polarized idler field equals around 10° due
to highly constructive interference of the back-scattered fields at the boundaries. For
comparison, the enhancement factor for GaN/AIN layered structures typically equals

several tens |87].

Also correlated areas characterizing spatial correlations between the signal and idler
intensities are narrow. Two different shapes of correlated areas found in the analyzed
structure are shown in Fig. 5.9 for a pump beam with Gaussian transverse profile of
radius 7, = 1 mm. If we fix the emission direction of the TM-polarized idler photon
at ¥; = —61.095 deg, the correlated area of TE-polarized signal photon has roughly
a Gaussian shape which originates in the Gaussian pump-field transverse shape [see
Fig. 5.9(a)]. On the other hand, when the TE-polarized signal photon is detected at
¥s = 47.686 deg, the correlated area of TM-polarized idler photon is highly elliptic
[see Fig. 5.9(b)]. The reason is that its extension along the azimuthal angle 1); is
determined by the pump-beam radius 7,, whereas its extension along the radial angle
9¥; is strongly limited by the properties of TM modes related to their strong back-
scattering on the boundaries. The dependence on pump-beam radius 7, can be used to

tailor the extensions of correlated areas [10].
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Figure 5.8: Profile of modulus of the electric-field amplitude for (a) pump, (b) signal
and (c) idler fields along the z axis for the pump field with amplitude 1 V/m incident
at z = 0 m and outgoing signal and idler fields with amplitudes 1 V/m at the end of
the structure composed of eleven GaN/Ag layers described in the caption of Fig. 5.7.
In the TM-polarized idler field, the z component of electric-field amplitude is by several
orders in magnitude lower than the plotted y component; A, = 400 nm, ¥, = 0 deg,
As = 737.8367 nm, ¥ = 47.686 deg, \; = 873.6015 nm, ¥; = —61.095 deg.

5.8 Temporal properties of emitted photon pairs

Due to stationarity, the two-photon spectral amplitude ¢(ws,w;) gets a general form
fi(wi)é(wg — ws — wj), in which the J-function expresses the energy conservation law.
The squared modulus |f;|? is then linearly proportional to the idler spectral photon-
number density n¥'(w;). For the analyzed structure, the spectral density ny’ of a photon

pair with signal photon propagating along direction 90 = 47.686 deg and ¢ = 0 deg
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Figure 5.9: Correlated area n®" of (a) signal [(b) idler| photon observed after detection of
an idler [signal] photon at direction ¥9 = —61.095 deg and ¥ = 0 deg [0% = 47.686 deg
and ¥ = 0 deg| for the structure analyzed in Fig. 5.7. The correlated areas are
normalized such that [ dd [ dy n*(9,¢) = (7/180)2.

and idler photon propagating along direction 19? = —61.095 deg and 1/)? = 0 deg attains
the form of a very narrow peak of width 4.45 x 10~* nm [FWHM, see Fig. 5.10(a)].

The narrow spectral peak is responsible for longer temporal correlations of fields’
intensities compared to those characterizing photon pairs generated in a typical bulk
crystals. For the analyzed structure and cw pumping, intensity temporal correlations
occur at the time scale of ns [for the conditional probability density p; of detecting an
idler photon at time 7;, see Fig. 5.10(b)]. It is worth noting that the signal- and idler-
field group velocities considerably differ. The TE-polarized signal photons propagate
on average faster than the TM-polarized idler photons that undergo on average much
higher number of back reflections on the boundaries after their emission. If pulsed
SPDC occurred in the structure, the idler-field detection interval would be much wider
than that of the signal field.

Different group velocities of the signal and idler photons inside the structure also
result in highly asymmetric coincidence-count rate profiles observed in the Hong-Ou-
Mandel interferometer, as documented in Fig. 5.11. In this interferometer, a much
longer average delay of the idler photon has to be compensated by a delay line placed
into the signal-photon path to achieve mutual interference of both photons at a beam
splitter. Fast oscillations caused by non-zero difference of the signal and idler central
frequencies are also visible in the normalized coincidence-count rate R in Fig. 5.11. Tt

is worth to note that the Hong-Ou-Mandel interferometer represents the simplest tool
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Figure 5.10: (a) Idler spectral photon-number density n; as a function of idler wave-
length A\; and (b) probability density p; of detecting an idler photon at time 7; provided
that its signal twin was detected at time 7, = 0 s; pi(r;) = C|A(rs = 0,7;)|? us-
ing an appropriate normalization constant C. A photon pair is emitted in directions
¥ = 47.686 deg and s = 0 deg and ¥; = —61.095 deg and 1; = 0 deg in the structure
described in the caption to Fig. 5.7. Normalization is such that [ dw;n;(w;) = 1 and

[ dripi(m) = 1.

for the observation of temporal correlations between photons.
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Figure 5.11: Normalized coincidence count rate R in the Hong-Ou-Mandel interferom-
eter depending on mutual time delay 7; between the signal and idler photons. The
structure described in the caption of Fig. 5.7 is analyzed.
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5.9 Losses in the structure and noise photons

Non-negligible losses occur in the analyzed metallo-dielectric layered structures because
of the presence of highly absorbing metal layers. When one photon from a photon pair
is absorbed whereas the other photon leaves the structure, the emitted joint signal and
idler field contains also the single-photon noise present both in the signal and idler
fields. According to the theory developed in Section 5.5, these noise contributions are
comparable to the photon-pair one. Ratios R;F%FTM and R??FTM given in Eqs. (5.33) in
Section 5.5 and quantifying contributions of the signal and idler noise photon-number
densities relatively to the photon-number densities ng and n; given in Egs. (5.20), re-
spectively, are plotted in Fig. 5.12. They are appropriate for the structure with 11
layers and the joint signal and idler field composed of the forward-propagating TE-
polarized signal and TM-polarized idler photons. From the numbers of emitted signal
and idler noise photons follows, that their amount is at the same level as the number
of emitted photon pairs. Comparable values of ratios REE;M (1.20 for 95 = 47 deg
and A, = 738 nm) and R, g * (0.97 for 9; = 61 deg and A; = 834 nm) for the signal
noise and idler noise fields at the corresponding radial emission angles ¥ and for the
corresponding frequencies w indicate that the numbers of emitted noise photons depend
mainly on the number of photon pairs generated inside the structure. The values of
ratios RSTIE;EM and RZTIEEM increase in the vicinity of forbidden bands, i.e. in the area

with strong back-scattering and interference (see Fig. 5.12).

As discussed in Section 5.5, photons from photon pairs in which only one photon
enters the detection system represent an additional source of the noise. In the analyzed
structure, photon pairs with a forward-propagating TE-polarized signal photon and a
backward-propagating TM-polarized idler photon contribute to the noise in the signal
field. On the other hand, photon pairs with a backward-propagating TE-polarized signal
photon and a forward-propagating TM-polarized idler photon are responsible for an
additional noise in the idler field. As the numbers of emitted photon pairs with different
propagation directions are comparable, the numbers of noise photons constituting these
contributions are also comparable. However, these noise contributions can be decreased

if multiple coincidence-count detections are measured.

Considerable amount of the noise present in the generated photon-pair states re-
stricts applicability of such states to the schemes based on coincidence-count measure-
ments. In these schemes, a single-photon noise contributes to the measurement only via
random coincidences that are, however, seldom due to the weakness of the field. Possi-

ble applications suitable for photon-pair states emitted from metallo-dielectric layered
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Figure 5.12: Ratio (a) RST];];EM [(b) RzTI]?FTM of signal [idler| noise photon-number density

and photon-pair density in dependence on signal [idler| radial emission angle 94 [9;] and
wavelength As [A;] determined along Eq. (5.33) in Section 5.5. The photon-pair field
contains the forward-propagating TE-polarized signal and TM-polarized idler photons;
)\2 =400 nm, Iy = 101.752 nm, l5 = 18.083 nm.

structures include quantum cryptography using photon pairs [122] or quantum optical
coherence tomography [123], to name few. On the other hand, these states are not

suitable for constructing heralded single-photon sources [124].
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Chapter 6

Conclusion

6.1 Summary of the thesis

The introductory Chapter 1 included goals of the thesis (Sec. 1.1) and annotation
(Sec. 1.2). The goals of the thesis defined the objects of the research and required
results. The annotation described the content of the thesis.

Non-linear phenomena of the second order were introduced in Chapter 2. The lin-
ear and non-linear vectors of polarization for dispersive and non-dispersive media were
defined in Section 2.1. Non-linear susceptibility of the second order was defined as well.
At the end of the Section, equation of coupled waves in non-linear medium was derived.
The non-linear processes of the second order were described in Section 2.2. Namely, the
second-harmonic generation, sum-frequency generation and difference-frequency gener-
ation. The electron transition schemes were used to describe the interactions micro-
scopically.

The properties and use of photon pairs together with the process of their generation
were described in Chapter 3. A brief historical introduction mentioning a milestone,
which started an era of quantum physics, was given in Section 3.1.1. The quantization
procedure of electromagnetic field was described in Section 3.1.2. The properties and
usefulness of photon pairs in experimental and theoretical physics were summarized
in Section 3.2. The simplest mean of generation of photon pairs - in bulk crystal, is
described in Section 3.3. The approach for preparation of photon pairs entangled is
frequency, emission direction and polarization were explained.

The generation of photon pairs in a periodically-poled silica ring fiber was studied
in Chapter 4. The introduction (Sec. 4.1) covered an overview about integrated photon

pairs sources (Sec. 4.1.1), explained the benefits and usefulness of fields carrying orbital
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angular momentum (Sec. 4.1.2) and described periodical poling process along with the
concept of quasi-phase matching (Sec. 4.1.3). Theoretical approach of SPDC in a fiber
was developed in Section 4.2. It included analytical expressions for the modes of the
fiber, derivation of a resulting quantum state vector and definitions of quantities char-
acteristic for a photon pair. The theory covering decomposition of transverse profiles of
the modes to basis of OAM eigenstates was provided in Section 4.3. The decomposition
of a two photon amplitude in the transverse spatial domain as well as in frequency
domain to the Schmidt basis was mentioned. The approximative and rigorous formulas
for obtaining the effective dimension of the entangled space were defined. The guided
modes of the fiber were characterized in Section 4.4. The approach for derivation of
an implicit dispersion equation was explained. The effective indicies of refraction of
the guided modes for a particular fiber were shown. For the modes of interest, the
transversal spatial profiles were depicted together with their angular spectral weights.
The spectrally narrow generation of photon pairs in the fiber was investigated in Sec-
tion 4.5. Particularly, the modes with OAM number equal to 0,41 were generated
by a pump beam with OAM number equal to +1. The emission of spectrally broad-
band photon pairs was examined in Section 4.6. The pump beam with OAM number
0 generated photon pairs with photons in TEg; modes. The temporal features of both
narrow-band and broad-band emission schemes were explored. The generation of pho-
ton pairs entangled in frequency and OAM was studied in Section 4.7. The photon
pairs consisting of photons with OAM number £1 were generated by a pump beam
with OAM number equal to 0. The states entangled in OAM were simultaneously en-
tangled in the frequency domain. The impact of noise on the entanglement of photon
pairs (entangled in OAM) was studied by means of the Clauser-Horne-Shimony-Holt

form of the Bell inequalities.

The emission of photon pairs from metallo-dielectric layered structures consisting
of Gallium-Nitride (GaN) and silver (Ag) layers was explored in Chapter 5. The intro-
duction (Sec. 5.1) described advantages and disadvantages of the layered structures and
summarized current state of art. The non-linear model of metal was developed in Sec-
tion 5.7. Outcome of the model was non-linear susceptibility tensor of the second order.
The theoretical framework of SPDC was derived in Section 5.3. It covered quantization
of modes of layered structure and derivation of the photon-pair state vector. The quan-
tities characterizing the emitted photon pairs were defined in Section 5.4. The theory
evaluating the photon losses in the structure was derived in Section 5.5. In Section 5.6
photon pair generation from Ag-GaN-Ag resonator was studied. The design procedure

was applied in order to obtain the most efficient structure. The emission rate of the
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resonator was compared with the reference structure and with a single GaN monolayer
of the same length. A structure with eleven layers was investigated along the same vain
in Section 5.7. The spatial mode profiles, corresponding to the most intense generation,
were plotted for pump, signal and idler electric field intensity components. The corre-
lated areas around the emission maxima were investigated. The temporal properties of
the photon pairs were examined in the Section 5.8. The number of noise photons was
investigated in Section 5.9.

The Conclusion summarizes content of the thesis in Chapter 6 followed by the list

of author’s publications (p. 102) and bibliography (p. 103).

6.2 Shrnuti v ¢estiné

Uvodni Kapitola 1 obsahuje cile prace (Sek. 1.1) a anotaci (Sek. 1.2). Cile prace
konkrétné specifikovaly zadany vyzkumny tkol a pozadované vysledky. Anotace popiso-
vala obsah préce.

Nelinearni jevy druhého fadu byly uvedeny v Kapitole 2. Linearni a nelinearni
vektory polarizace pro nedisperzni a disperzni prostiedi byly definovany v Sekci 2.1.
Spolecné s nimi byla definovana nelinarni susceptibilita druhého ¥adu. Na konci sekce
byla odvozena rovnice vazanych vin. Nelinedrni procesy druhého ¥adu byly uvedeny
a popsany v Sekci 2.2. Jmenovité, generace druhé harmonické, souc¢tové frekvence a
rozdilové frekvence. Procesy byly analyzovany jak matematicky, tak mikroskopicky
pomoci schémat elektronovych prechodd v atomech.

Vlastnosti a pouziti fotonovych para spoleéné s principem jejich generace byly pop-
sdny v Kapitole 3. Stru¢ny historicky tivod zminuje klicovy objev, ktery odstartoval
éru kvantové fyziky (Sek. 3.1.1). Procedura pro kvantovéani elektromagnetického pole
byla popsdna v Sekci 3.1.2. Vlastnosti a uzite¢nost fotonovych péarta v teoretické a ex-
perimentélni fyzice byly shrnuty v Sekci 3.2. Nejjednodussi zptisob generace fotonovych
pért - v objemovém nelinearnim krystalu, byl popsén v Sekci 3.3. Navic byly vysvétleny
zpusoby experimentalni piipravy fotonovych part kvantové korelovanych ve frekvenci,
sméru Sifeni a polarizaci.

Generace fotonovych péartu v periodicky poélovaném sklenéném vldkneé s prstencovym
profilem byla popsana v Kapitole 4. Uvod (Sek. 4.1.1) zahrnoval piehled integrovanych
zdroju fotonovych parti. Vyhody a uzite¢nost poli s thlovym momentem byly pop-
sdny v Sekci 4.1.2. Experimentalni procedura periodického polovani sklenénych vldken
spole¢né s konceptem kvazi-sfazovani byly ozfejmeny v Sekci 4.1.3. Teorie popisujici

spontédnni parametrickou sestupnou frekven¢ni konverzi (SPDC) ve vldkné byla uve-
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dena v Sekci 4.2. Obsahovala analytické vyjadieni méda vldkna, odvozeni generovaného
kvantového stavu a definice veli¢in charakterizujicich fotonovych péar. Teorie zahrnu-
jici dekompozici pri¢nych profili média do béze vlastnich stavi operatoru thlového
momentu byla popsdna v Sekci 4.3. Zminéna byla téz dekompozice dvoufotonové am-
plitudy do Schmidtovy béaze a to jak v prostorové pricné doméné, tak ve frekvencni
oblasti. Definovany byly rigorézni i aproximativni rovnice vyc¢islujici efektivni dimenzi
entanglovaného prostoru. Vedené mody vldkna byly charakterizovany v Sekci 4.4.
Vysvétleno bylo odvozeni implicitni disperzni rovnice a byly ukdzany efektivni indexy
lomu vedenych modi. Pro vybrané médy byly zobrazeny profily slozek elektrickych
poli spoletné s jejich thlovym spektrem. Uzko-spektralni generace fotonovych pari
byla zkouméana v Sekci 4.5. Konkrétné byla studovana konfigurace, kdy cerpaci svazek
s kvantovym ¢islem thlového momentu (OAM) +1 generoval fotonové pary s kvan-
tovym &islem OAM 0 a +1. Siroko—spektralni emise fotonovych pari byla analyzovina
v Sekei 4.6. Cerpaci svazek s kvantovym &slem OAM 0 generoval fotonové pary v
modech TEq;. Casové vlastnosti tzko- a giroko-spektralniho procesu byly provéreny na
konci kapitoly. Generace fotonovych péara entanglovanych soucasné v OAM a frekvenci
byla studovana v Sekci 4.7. Fotonové pary se skladaly z fotont s kvantovym ¢islem OAM
£1 a byly tvofeny Cerpacim svazkem s OAM ¢&islem 0. Vliv Sumu na entanglement v
OAM byl studovan pomoci Clauser-Horne-Shimony-Holt nerovnosti Bellova typu.
Emise fotonovych péari z metalo-dielektrickych vrstevnatych struktur skladajicich
se z Gallium-Nitridu (GaN) a st¥ibra (Ag) byla analyzovana v Kapitole 5. Uvod
(Sek. 5.1) popisuje vyhody a nevyhody vrstevnatych struktur a shrnuje sou¢asny stav
v daném oboru. Nelinedrni model kovu byl odvozen v Sekci 5.2. Vysledkem modelu
byl nelinearni tensor susceptibility druhého fadu. Teoreticky ramec spontanné para-
metrického frekvencéné sestupného procesu byl odvozen v Sekci 5.3. Zahrnoval kvan-
tovani pole ve vrstevnatych strukturach a odvozeni dvoufotonového kvantového stavu.
Veli¢iny charakterizujici fotonovy péar byly definovany v Sekci 5.4. Teorie vyhodnocujici
fotonové ztraty byla odvozena v Sekci 5.5. V Sekci 5.6 byla studovana emise fotonovych
part z Ag-GaN-Ag rezonatoru. Konkrétni struktura byla navrzena tak, aby smérové
a frekvenéné emitovala co nejvétsi pocet fotonovych pari. Mira emise byla porovnéna
s mirou emise z referenéni struktury a GaN monovrstvy o stejné délce. Struktura s
jedenacti vrstvami byla zkouména stejnym zptisobem. V oblasti nejintenzivnéjsi emise
byly studoviny prostorové mody cerpaciho, signdlového a jalového elektrického pole.
Predmétem vyzkumu byly také korelované plochy. Casové vlastnosti fotonovych para
byly studovany v Sekci 5.8. Pocet sumovych fotont byl analyzovan v Sekci 5.9.
Shrnuti prace se nachazi v Kapitole 6. A to jak v anglickém (Sek. 6.1), tak ¢eském
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(Sek. 6.2) jazyce. Védecké publikace autora prace se nachézeji na strané 102. Reference

na pouzitou literaturu pak na strané 103.
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Abstract

Spontaneous parametric down-conversion is a nonlinear quantum process in which
correlated photons are created in pairs. Photon pairs have become an indispensable tool
for verification of quantum-mechanical principles, in quantum-information processing,
for quantum-communication protocols and quantum cryptography.

Modern photonic structures enhance photon-pair emission rates and simultaneously
modify the properties of generated photon pairs. Periodically-poled silica ring-shaped
fibers are capable of generation and stable guidance of photon pairs in modes with de-
fined orbital angular momentum (OAM). The most stable modes have been selected
for the nonlinear interaction. Their transversal profiles together with phase-matching
conditions have been analyzed to obtain the desired interaction. Narrow-band and
broad-band emission of photon pairs have been obtained in dependence on the mode
of the pump beam. In the time domain, the conditional probability of detection of
a signal photon has been obtained and correlation times have been evaluated. The
emission of photon pairs entangled in OAMs and frequencies have been analyzed. Ef-
fective dimension of the entangled space has been quantified by means of the Schmidt
number indicating a maximally entangled photon-pair state. The influence of noise
on the entangled OAM state has been evaluated by the Clauser-Horne-Shimony-Holt
inequality.

Also metallo-dielectric layered structures have been analyzed as highly efficient
sources of photon pairs. Layered structures consisting of silver (Ag) and Gallium-
Nitride (GaN) have been investigated. Two structures formed by three and eleven
layers have been designed to maximize the emission rate. They have been examined
with respect to relative signal photon-number density in the angular-spectral domain.
Both structures have been found more efficient than dielectric structures due to strong
back-scattering effects caused by the high index-of-refraction contrast. Distributions
of electric-field amplitudes corresponding to the emission maxima have been analyzed.
Correlated areas as well as temporal characteristics including those appropriate for the
Hong-Ou-Mandel interferometer have been investigated. Also, numbers of noise photons

have been discussed as the metallic layers are absorptive.



Abstrakt

Spontanni parametricka frekvenéni konverze je nelinearni kvantovy proces, pii kterém
jsou vytvareny korelované fotonové pary. Fotonové pary se staly jedine¢nym prostied-
kem pro ovéreni fundamentalnich principt kvantové mechaniky, pro zpracovani kvantové
informace, pro kvantové komunika¢ni protokoly a kvantovou kryptografii.

Moderni fotonické struktury zvySuji miru emise fotonovych part a soucasné modi-
fikuji vlastnosti generovanych fotonovych péarti. Periodicky pélovand kiemicita prsten-
cové vlédkna jsou schopna generace a stabilnfho vedeni fotonovych parti s definovanym
thlovym momentem (OAM). Nejstabilngjsi mody byly vybrény pro nelineérni inter-
akci. Jejich pficné profily spole¢né s podminkou sfazovani byly analyzovany za tcelem
optimalizace procesu. Pro odlisné mody cerpaciho svazku byla obdrzena tizko- a Siroko-
spektralni emise fotonovych péari. V ¢asové doméné byla obdrzena podminéné pravdé-
podobnost detekce jalového fotonu a byly spocteny korela¢ni ¢asy. Analyzovéana byla
emise fotonovych part entanglovanych v OAM a frekvenci. Efektivni dimenze entan-
glovaného prostoru byla vy¢islena pomoci Schmidtova ¢isla. To poukazalo, ze fotony v
paru jsou maximalné entanglované v OAM. Vliv sumu na entanglovany OAM stav byl
vyhodnocen pomoci Clauser-Horne-Shimony-Holtovy nerovnosti.

Metalo-dielektrické fotonické struktury byly rovnéz analyzovany jako ac¢inné zdroje
fotonovych pari. Zkouméany byly vrstevnaté struktury skladajici se ze stiibra (Ag)
a Gallium-Nitridu (GaN). Dvé struktury skladajici se ze t¥i a jedenécti vrstev byly
navrzeny tak, aby maximalizovaly miru emise fotonovych péari. Byly zkoumany s ohle-
dem na relativni pocet emitovanych signdlovych fotoni v uhlové-spektralni doméné.
Obeé struktury byly shledany i¢innéj$imi nez jejich dielektrické proté&jsky diky vysokému
kontrastu indexii lomu obou materidlti. Analyzovany byly distribuce amplitud elektrick-
ych poli, které pfislusi nejsilnéjsi emisi fotonovych part. Predmétem zkoumani také byly
korelované plochy a Casové charakteristiky vCetné charakteristik pfislusnych Hong-Ou-
Mandelové interferometru. Diskutovan byl i pocet Sumovych fotoni, jelikoZz metalické

vrstvy vykazuji nenulovou absorpci.
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The goals of the thesis

The main goal was to study spontaneous parametric down-conversion in metallo-dielectric
layered media and periodically-poled ring silica fibers. In both cases spectral, spatial
and temporal properties of photon pairs have been studied. Photon-pair emission rates

of both sources have been evaluated in order to determine their efficiencies.

Photon-pair generation in

periodically-poled silica ring fibers

The designed periodically-poled ring-shaped silica fiber guides the modes with defined
OAM numbers steadily [1]. The considered fiber core has its inner diameter r; =4 ym
and outer diameter ro = 5.5 um in order to guide only the radially fundamental modes
for the wavelengths longer than 1.2 um. The cross-section of the fiber is shown in
Fig. 1(a). The cladding of the fiber consists of pure silica (SiOz2), while the core of the
fiber consists of SiOy dopped by 19.3 mol% of GeOs. The length of the poled fiber has
been assumed to be 10 cm/!.

Effective refractive indices of the most stable guided modes at waveleghts
A) = 0.775 pm (wavelength of the cw pump beam) and A) = 1.55 um (degenerate
wavelength of the down-converted photons) are shown in Figs. 1(b) and 1(c), respec-
tively. The most stable eigen-modes at both wavelengths are HE;;, HE21, TEp;, and
TMop;. The highest risk of overcalls is expected between modes HE9; and TEqg; or HE9;

! Periodically-poled silica fibers up to 10 cm long can be fabricated by a simple fabrication method [2].



and TMy;, because their effective refractive indices are located close to each other. At
the wavelength of the pump beam )\2, the difference in effective indices of refraction
Any og between modes HE9; and TEqg; [TMo;] is =9 x 107° [1 x 104]. At the degen-
erate wavelength Y, the quantity Ang o for the closest modes HE9; and TEq; equals
1.5 x 1074, The calculated values of Ang o are comparable to the results obtained for
the a vortex fiber |32,

1.4729
1.4728

« 14727

npef

1.4726

1.4725

1.4724

69(&))
(a) (b) (c)

Figure 1: (a) Cross-section of the investigated ring fiber. (b) and (c¢) Effective indices
of refraction n,.f and n,ex of guided modes for wavelengths )\2 = 0.775 pum and
A\ = 1.55 um, respectively.

The complete set of guided eigen-modes of the fiber is formed by HE and EH modes
and TE and TM modes. By a suitable transformation applied to all HE and EH modes,

eﬂ(ra 97 w) = eﬁ,H(Tv 05 UJ) + ieﬁ,V(Ta 07 CU), (1)

the modes with the corresponding OAM are obtained plus TE, TM modes, which remain
in their original state. The symbol e(r, 6,w) is related to an electric-field amplitude in
the radial coordinates (r, ) with frequency w. Index 7 denotes the original eigen-mode
signature (eg. HEg;), the indices V and H identify polarization of the eigen-mode
and index 1 contains both the original eigen-mode signature 7, together with its new
polarization variant R or L in dependence on the sign in a definition (1). Polarization
R [L] is obtained using — [+] sign.

The angular spectrum of the electric-field components e, and e, /3 has been com-

%It has proved to guide the HE2; mode at distance 1 km with low level of noise.
8Due to symmetry of the fiber, the electric field components e, and e, are identical up to the shift
in the angular direction 6 by 90 deg.
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Figure 2: Weights p; of spectral components [ in angular decomposition of field’s com-
ponents according to Eq. 2 for (a) HEq1 g, (b) HE21 g, (c) TEo1, and (d) TMg; mode.

puted for modes HEq1 r, HE21 g, TEg1 and TMq; (see Fig. 2) according to Eq. (2).
The transversal electric-field component e, of mode HE1; g [HEg; ] carries the OAM
number equal to 0 [+1]. The variants with the orthogonal polarization L have the
OAM number with opposite sign 0 [—1]. The transversal Cartesian components e, of
TEo; and TMp; modes include OAM equal to £1 with the same weights p; = 0.5. The
longitudinal component e, has different OAM than the transversal components by one
in the absolute value. It does not take part in the non-linear interactions due to the

form of non-linear tensor y(? : X&?x o~ BXD(Ui,)y and X%)y = XZ(,,Zy)x = Xz(/i)y = 0.021 pm/V.

)= [ i

The non-linear interaction of modes HE‘SLR7 HE;LR, HEZﬁ,R’ and HEilLL (p, s and i

2
/d0 e ey . (r,0,w)| 5 k€ x,y, 2. (2)

in the superscript denotes pump, signal and idler field) with OAM numbers +1,+1 and
0 in turn resulted in narrow-band generation of the photon pairs. The signal photon-
number spectrum N, is shown in Fig. 3(a). The widths of emission peaks (FWHM)
are around the 10 nm. The heights of the peaks indicate the generation of tens of
photon pairs in each peak per second per uW of the pump beam. The emission is non-
degenerate and occurs in the spectral range around the telecommunication wavelength
1.55 pm. The highest peak at wavelength A\; = 1.5 pun belongs to mode HE9; p with
the emission rate 20 photons per s per uW (in the peak). The signal and idler photons
are emitted as well in modes without a well defined OAM (TEp; and TMp;). But
their contributions are spectrally separated from the modes with defined OAM. It is
worth to note that the paired signal and idler photons at wavelengths A\s = 1.5 yum and

Ai = 1.603 pm are simultaneously emitted in either modes HE3; g, HE%L g or modes
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HE3) g HEZﬁ,L- Since the probability of emission is the same, modes HE{; r and
HEq 1, form a common peak in the signal photon-number spectrum in Fig. 3(a). With
the use of the wavelength multi/demultiplexers [4], the spectrally separated photons
can be used for OAM information processing.

The broad-band emission of photon pairs as been observed for the configuration of
the interacting fields: HE’{LR, TE$, and TE};. The width of the peak (FWHM) in
signal photon-number spectrum Ng reaches 142 nm with 150 photon pairs per s per
pW in peak |Fig. 3(b)|]. The emission is centered around the degenerate wavelength
1.55 pm. In the signal photon-number spectrum N the only significant contribution is

given by the TEp; modes.

25 r HEQl’R 14 TEqg1
< 20 o
% I e
o 15 HE1; & o
- ' HEq1,1, =

» 1.0

= TEo: mZ
) HEq1 r g
o 05 ’ g
"o A

0.0 e o d .

135 14 145 15 155 16 165 17 175 1.4 15 1.6 1.7
As (m) As (12m)

(a) (b)

Figure 3: Signal photon-number spectrum N for (a) A = 42.9 ym and HEQLR mode (b)
A = 41.06 pm and HE}fl,R mode; A denotes length of period of QPM grating followed
by mode of the pump beam. FEach peak in the signal photon-number spectrum N,
corresponds to the emission into a particular mode n. Individual modes 7 are indicated

in the graphs.

Time probability of detection an idler photon p; ; conditioned by the detection of the
signal photon at time s = 0 s is shown in Fig. 4(a). The correlation time 7 is determined
as FWHM of the p;; peak in the profile of probability. Correlation time for the narrow-
band process [HEgLR, HES; g, HEZﬁ,R (HE’HL)] equals 7 = 63.5 x 10714 s whereas
the broad-band process (HE?LR, TE§,, TE{,) is characterized by 7 = 4.5 x 10714 s.
Sharp temporal correlations are important in metrology as they determine the available
temporal resolution.

If the pump beam remains in HEq1 g mode and period of the QPM grating is properly
chosen (A = 41.06 pm), the photon pairs are emitted into the modes HEg; p and
HE» 1, with OAM number +1 and —1, respectively. The Schmidt number Ky has been
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Figure 4: (a) Probability of detection of an idler photon p;; in dependence on time t;,
conditioned by the detection of a signal photon at time t; = 0 s. (b) Signal photon-
number spectrum N for the period of QPM grating A = 41.06 ym and pump mode
HE11,R.

calculated by both approximative (Ky = 1.998) and rigorous method (Ky = 1.994).
Thus, the resulting photon-pair state is nearly maximally entangled in the OAM. This
is confirmed by nearly perfect overlap of the emission peaks of both modes (HE2; g and
HE» 1) in the signal-photon number spectrum N |Fig. 4(b)]. Width (FWHM) of the
peaks in the signal photon-number spectrum is 21 nm. There are 30 signal photons per
s per uW in each of them. The obtained OAM entangled state 1),

[) = /dwsdwi Dy, 1, (ws,wi) |1, we)s| — Liwi)i + Py, 1, (ws, wi)| — Lws)s|1,wi)i (3)

exhibits simultaneous entanglement in the frequency domain. Effective dimension of
the entangled space in the frequency domain reaches the maximal value of 100 for 2 nm
wide (FWHM) spectrum of the Gaussian pump beam. Due to separability of state (3)
in the frequency and spatial domain (@1, 1, = ®_1, 41,), the effective dimension of the
entire entangled space can be as high as 200. Maximally entangled photon pairs are
highly desired, e.g., for quantum teleportation protocols or quantum computing.

Noise potentially contributing to the generated two-photon state arises from other
non-linear processes, photon losses and generation of photons in unwanted modes [5].
All the sources has been evaluated to be negligible. Despite this the fabrication imper-
fections and handling of the two-photon state in an experimental setup may introduce
additional noise. The impact of noise on the two-photon state entangled in OAM is

evaluated by the Clauser-Horne-Shimony-Holt form of the Bell inequalities. The state
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has to be de-entangled by more than 28% to reach the critical bound S = 2 indicat-
ing non-classicality. This does not put real limitations for experiments. The value of
parameter S has been measured as high as 2.78 for entangled OAM modes with OAM

quantum numbers £1.

Photon-pair generation in
metallo-dielectric 1D photonic

structures

The process of SPDC is studied in a metallo-dielectric layered structure consisting of
Gallium-Nitride (GaN) and silver (Ag) layers. The first investigated structure is a sim-
ple Ag-GaN-Ag resonator. It is designed to provide the highest amount of photon pairs.
The designed most efficient structure has the length of metallic layers /; = 9.6376 nm
and length of dielectric layers la = 95.1195 nm. The relative signal photon-number
density n5/% of the structure is shown in Fig. 5(a). The pump field is assumed to be
a TE-polarized monochromatic plane wave with wavelength )\g = 400 nm propagating
along the axis z. The emission of signal photons is strongly directional and wavelength
selective. The maxima in relative signal photon-number density ns are located around
the radial angle ¥5 = 83 deg and degenerate wavelength A; = 800 nm. If the angle of
emission declines from the point of the most intense generation, the number of gener-
ated signal photons significantly drops. The directional and wavelength sensitivity of
emission of signal photons is caused by the strong resonance of the signal and idler fields
inside the structure. The signal photon-number density of the resonator is compared to
the same quantity of a GaN monolayer of the same length [see Fig. 5(b)|. The ratio &

shows that the resonator emits up to 10% more signal photons in the region of resonance.

“Relative signal photon number density s is defined as 7s(\, %) = ns(\, ) /maxy \{ni (A, 9)},
where ns [n"°] is signal photon-number density of the structure [reference structure] and function
maxy,x gives the maximum value of a function in the argument across the radial emission angle ¥ and

wavelength A.
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Figure 5: (a) Relative signal photon-number density 7 of Ag-GaN-Ag resonator (b) & -
ratio of signal photon-number density of the Ag-GaN-Ag resonator and single GaN layer
of the same length (I = 114.3947 nm); ¥ is radial emission angle and \s is wavelength
of the signal photon. The length of Ag layers [GaN layer| in the resonator is equal to
l; = 9.6376 nm [l = 95.1195 nm], ) = 400 nm.

The structure consisting of eleven layers exhibits non-degenerate emission of photon
pairs [see Figs. 6(a) and 6(b)]. The length of GaN [Ag] layers of the designed structure
is 3 = 101.752 nm [l = 18.083 nm|. There are two emission peaks in the relative
signal photon-number density 7s. The first [second| peak is located at wavelength
As = 737.8367 nm |[A\s = 873.6015 nm| and radial emission angle ¥, = 47.686 deg
[9s = 61.095 deg|. The relative signal photon-number density 75 attains values up
to 107 near the emission peaks. Thus, the structure is two orders of magnitude more
efficient than the Ag-GaN-Ag resonator. In comparison with purely dielectric multilayer
systems, the structure can be up to seven orders of magnitude more efficient |6]. The
normalized signal photon-number density ns shows even sharper characteristics than in
the case of the resonator [see Fig. 5(a)|. This is caused by stronger interference of the
fields inside the structure owing to the presence of the higher number of layers. For
the regions of the most intense emission, the transversal components of the interacting
electric fields are plotted in Figs. 7(a) - 7(c). The y component of TM-polarized idler
electric field [see Fig. 7(c)| is amplified by five orders of magnitude, while the TE-
polarized component of the pump [see Fig. 7(a)| and signal [see Fig. 7(b)| fields are
amplified only several times. Therefore, strong enhancement of the process arises from

the resonant amplification of the TM polarized idler field at wavelength A\; = 873.6 nm
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Figure 6: Relative signal photon-number density 7, in dependence on signal wavelength
As and radial emission angle ¥4 for two regions containing (a) TE-polarized and (b)
TM-polarized photons; )\2 =400 nm, /; = 101.752 nm, ls = 18.083 nm.

emitted at radial angle ¥; = —61.095 deg. For the determination of modes, the boundary
conditions of the fields were set such that the pump field impinges on the structure at
the front interface (z = 0) with amplitude 1 V/m. The amplitude of the backward
propagating pump field at the rear end of the structure was set to zero. The electric-
field amplitudes of signal and idler fields leaving the structure at its rear end were equal
to 1 V/m. The amplitudes of the outgoing signal and idler waves at the opposite edge

of the structure were assumed to be zero.

Correlated areas of the signal and idler beams differ significantly. The pump beam
is assumed to have a Gaussian transversal shape with the radial width equal to 1 mm.
It is assumed to propagate along the z axis of the structure. The radial emission
angle of the idler photon is assumed to be fixed at ¥ = —61.095 deg and azimuthal is
w? = 0 deg. This direction corresponds to the emission maximum in Fig. 6(b). By these
conditions, the correlated area of the TE-polarized signal beam has a Gaussian shape
[Fig. 8(a)]. This means that the shape of the area is determined by spatial parameters
of the pump beam. When the radial emission angle of the signal photon is fixed at
value 90 = 47.686 deg and azimuthal angle equals ¢ = 0 deg, the correlated area of
the idler photon is highly elliptic [see Fig. 8(b)]. The width of correlated area in the
radial direction ¢; is governed by the transmission properties of the idler photon near
the region of resonance. In the azimuthal direction psi;, its width is determined by the

width of Gaussian pulse.

The squared modulus of two-photon amplitude n; computed for the most intense
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Figure 7: Profile of modulus of the electric-field amplitude for (a) pump, (b) signal
and (c) idler fields along the z axis for the pump field with amplitude 1 V/m incident
at z = 0 m and outgoing signal and idler fields with amplitudes 1 V/m at the end
of the structure composed of eleven GaN/Ag layers with lengths [; = 101.752 nm,
lo = 18.083 nm; )\2 = 400 nm, ¥, = 0 deg, A\s = 737.8367 nm, ¥Js = 47.686 deg,
A; = 873.6015 nm, ¥; = —61.095 deg.

emission (¥ = 47.686 deg, ¥; = —61.095 deg, s = 1; = 0 deg) is 4.45 x 107* nm
wide (FWHM) [see Fig. 9(a)]. This results in temporal correlations at the time scale of
nanoseconds. The conditional time probability p; of detection of an idler photon, pro-
vided that the signal photon has been detected at time 75 = 0 s, is shown in Fig. 9(b). It
is asymmetric, expressing that the TM-polarized idler photon leaves the structure after
the TE-polarized signal photon. The TM-polarized idler photon undergoes more back
reflections in the structure than the TE-polarized signal photon. This is in agreement

with the resonant behaviour of the idler photon. As a result, the TM-polarized idler
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Figure 8: Correlated area n®" of (a) signal [(b) idler| photon observed after detection of
an idler [signal] photon at direction ¥9 = —61.095 deg and ¥ = 0 deg [9? = 47.686 deg
and 10 = 0 deg] for the structure analyzed in Fig. 6. The correlated areas are normalized
such that [ dv [ di n<(9,4) = (7/180)%.

photon stays in the structure for longer time on average. Different time properties of
TE-polarized signal photon and TM-polarized idler photon are as well observed in the
Hong- Ou-Mandel interferometer (see Fig. 10). The envelope of normalized coincidence-
count rate R is positioned in the negative values. This requires the TE-polarized photon
to be delayed in order to observe detections in a coincidence. Fast oscillations in the

characteristics are caused by unequal wavelengths of the signal and idler photons.

The amount of noise photons emitted from the structure is at the same level as the
number of photon pairs. This is documented by ratios Rs and R; of absorbed single
photons and number of generated photon pairs [see Figs. 11(a) and 11(b)]. They are

defined as 5
d% (€2 d; (8
Ry = el s ) - Al
’ nzab(ﬂs) ’ n: ()

i,ab

: (4)

Index a [b] denotes backward (B) or forward (F') propagating signal [idler| photon at the
corresponding output of the structure, index « ] stands for the polarization of signal
[idler| photon. The coefficient dS ,(£2s) denotes density of mean number of photon pairs,
whose signal photon with polarization a has been transmitted to output a and idler
photon has been absorbed. The number of photon pairs n?fib denotes mean number of
photon pairs whose signal photon with polarization a has been transmitted to output a
and idler photon with polarization 5 to output b. The vectors Q,, = (Wi, Im, Ym); M =

s, correspond to spherical coordinates of the signal (s) or idler (¢) wave vector space.
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Figure 9: (a) Idler spectral photon-number density n; as a function of idler wavelength
Ai and (b) probability density p; of detecting an idler photon at time 7; provided that its
signal twin was detected at time 7, = 0's; p;(7;) = C|A(7s = 0,7;)|? using an appropriate
normalization constant C. A photon pair is emitted in directions 95 = 47.686 deg and
s = 0 deg and ¥; = —61.095 deg and ¢; = 0 deg from the GaN/Ag layered structure
with length of the layers {; = 101.752 nm, Iy = 18.083 nm. Normalization is such that
[ dw;ni(w;) =1 and [dr; pi(r;) = 1.
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Figure 10: Normalized coincidence-count rate R in the Hong-Ou-Mandel interferometer
depending on mutual time delay 7; between the signal and idler photons. The structure
described in the caption of Fig. 9 is analyzed.

Higher amount of noise photons is produced near the photonic stop-bands and near
the angle of total reflection due to multiple back-reflections. In the area of the most

intense emission of the signal photon (As = 738 nm ¥ = 47 deg), the value of ratio

RTETM
s,F'F

idler photon (A; = 834 nm,¥; = 61 deg) the value of ratio R;FggM is equal to 0.97.

is equal to 1.2. Near the neighbourhood of the most intense emission of the
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Figure 11: Ratio (a) RST’IE;’EM [(b) RZT?FTM] of signal [idler| noise photon-number density
and photon-pair density in dependence on signal [idler| radial emission angle ¥4 [¥;]
and wavelength As [A\;] determined along Eq. (4). The photon-pair field contains the
forward-propagating TE-polarized signal and TM-polarized idler photons; )\2 = 400 nm,
11 =101.752 nm, I3 = 18.083 nm.

The characteristics of ratios Rs and R; are smooth functions without resonances which
means that the amount of absorbed signal photons is more-less proportional to the
number of generated photon pairs. The noise photons and photon pairs are produced
with similar intensity in metallo-dielectric photonic structures. This restricts the use of
metallo-dielectric layered structures, as sources of photon pairs to experiments involving

coincidence-count detections.
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