
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

HARDWARE ACCELERATION O F T H E SUDOKU GAME

BAKALÁRSKA P R A C E
B A C H E L O R ' S THESIS

AUTOR PRÁCE RÓBERT JURINEK
AUTHOR

BRNO 2010

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

HARDWAROVÁ A K C E L E R A C E HRY SUDOKU
H A R D W A R E A C C E L E R A T I O N O F THE S U D O K U G A M E

BAKALÁŘSKÁ PRAČE
B A C H E L O R ' S THESIS

AUTOR PRÁCE ROBERT JURINEK
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN KAŠTIL
S U P E R V I S O R

BRNO 2010

Abstrakt
Tato práce pojednáva o implementaci hardwarové jednotky řešící S U D O K U . V práci jsem
zadefinoval pojmy týkající se hlavolamu S U D O K U a popsal některé jeho vlastnosti, zejména
z hlediska řešení na počítačovém systému. Práce dále popisuje některé techniky používané
při řešení S U D O K U a možnosti jejich hardwarové implementace. V hlavní části je popsána
konkrétní realizace jednotky řešící S U D O K U a také je zhodnocena výkonnost navržené
jednotky. Jednotku jsem ověřil i na reálném hardwaru. V závěru práce jsem zhodnotil
možnosti dalšího rozšíření navržené jednotky.

Abstract
This work deals with the implementation of a hardware-based S U D O K U solver. S U D O K U
terminology is described as well as S U D O K U puzzle metrics related to computer puzzle
solvers. Solving techniques are introduced and possibilities of a hardware-based implemen­
tation are discussed. The implementation of the S U D O K U solver is described and the
performance of the implemented unit is assessed. The designed solver was also verified on
a real hardware platform. In conclusions possible unit extensions are proposed.

Klíčová slova
S U D O K U , F P G A , řešení hlavolamů, hardwarová akcelerace

Keywords
S U D O K U , F P G A , puzzle solving, hardware-based acceleration

Citace
Robert Jurinek: Hardware acceleration of the S U D O K U game, bakalářská práce, Brno,
FIT V U T v Brně, 2010

Hardware acceleration of the SUDOKU game

Prohlášení
Hereby I declare, that this thesis is my authorial work. I have worked it out by my own. A l l
sources, references and literature used during elaboration of this work are properly cited
and listed in complete reference to the due source.

Robert Jurinek
May 18, 2010

Poděkování
I would like to thank Ing. Jan Kaštil for his suggestions, comments and time he spent
helping me with this work.

© Robert Jurinek, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4

2 The S U D O K U game 5
2.1 S U D O K U rules 5
2.2 Sets of candidates 6

3 Solving techniques 9
3.1 Logical constraints 9
3.2 Guessing 1 2

4 Target architecture 14
4.1 F P G A 14
4.2 Employed platform 15
4.3 Logic design flow 15

5 The S U D O K U solver 17
5.1 Solver components 17
5.2 Top module 22

6 Solver testing 26
6.1 Solver benchmark 26

6.2 Design verification using ChipScope 29

7 Conclusion 31

A C D - R contents 33

1

List of Figures

2.1 Example Latin square 5
2.2 Example S U D O K U puzzle [7] (modified) 6
2.3 Intersection of the sets of candidates 7
2.4 Intersection of the sets 8

3.1 Naked single candidates [7] (modified) 10
3.2 Hidden single candidates [7] (modified) 11
3.3 The guess process 13

4.1 generic F P G A 14
4.2 L U T - F F pair 15
4.3 Iterative process of design flow 16

5.1 Elimination unit 20
5.2 Next empty cell unit 21
5.3 Self-blind mode 21
5.4 Self-sight mode 22
5.5 Finite state machine of the top module 23
5.6 The solver unit 24

6.1 Benchmark 03a solving process 27
6.2 Benchmark 03b solving process 27
6.3 Benchmark 10a solving process 27
6.4 Solving process of the benchmark 05a 30
6.5 Benchmark 03a solved 30

2

List of Tables

2.1 Calculations of data volume 7

4.1 Logic resources available in Virtex-6 XC6VLX240T F P G A [9] 15

5.1 Buses width calculation 18
5.2 R A M segments 19
5.3 Stack memory segments 19
5.4 Resources occupied by design and maximum achievable frequency 23
5.5 Unit interface description 24

6.1 Benchmark time and raw acceleration 28
6.2 Cell fill acceleration 29

3

Chapter 1

Introduction

S U D O K U was first published in 1979 by Dell Magazines as Number Place. Suuji (or suji)
wa dokushin ni kagiru, which was later abbreviated to S U D O K U , can be translated as the
digits must be single or the digits are limited to one occurrence. This name comes from
Japan, where it was first introduced in the paper Monthly Nikolist in 1984.

The S U D O K U game became very popular in the last twenty years. It can be found in
almost every newspaper all over the world. Most people noticed widened S U D O K U soft­
ware. It is available through numbers of websites as well as for many computer platforms,
mobile devices and video game consoles. It even appeared in the Teletext service. A n an­
nual international S U D O K U competition, The World S U D O K U Championship, is visited
by teams from various countries. These are services, activities and commodities intended
for a popular amusement.

There is also software designed for S U D O K U solving. However, much less of hardware is
available. The goal of the design competition at FPT '09 (the 2009 International Conference
on Field-Programmable Technology) was to develop a general purpose S U D O K U solver on
field-programmable gate arrays. One of leading designs will serve as a performance reference
to my solver.

In the first chapter, the S U D O K U game is described. S U D O K U terminology is intro­
duced and puzzle basic characteristics which influence the solver's design are discussed.

The second chapter introduces obvious solving techniques applicable in hardware-based
solvers. The performance of these techniques is predicted and estimation of needed resources
is provided.

A description of a target hardware platform is the topic of the third chapter. Generic
structure of programmable chips is foreshadowed. The next part of this chapter introduces
features of the target hardware platform. The chapter is finalized with the description of a
hardware programming process.

The design of the solver is the subject of matter of the fourth chapter. Particular
components and application of used solving methods are described. The performance of
the solver is also discussed. Results of verification on real hardware platform are mentioned
in the last part of this chapter.

Historical and general facts concerning S U D O K U used in this chapter were adopted
from [] and [].

4

Chapter 2

The SUDOKU game

A popular form of S U D O K U is presented on a square grid of 9 x 9 cells. In oncoming text,
terminology and characteristics of S U D O K U game will be introduced and generalized for
grids of any size.

2.1 SUDOKU rules

2.1.1 Latin square

Latin square was introduced by Leonhard Euler. It is rectangular grid containing n x n
cells. Every cell is filled-in by a symbol. Every symbol can occur within every row and
column exactly once. Word Latin refers to Latin alphabet symbols which Euler used to
fill-in cells with. Any set of symbols can be used for this purpose. The example Latin
square filled with natural numbers is pictured in Figure 2.1.

Figure 2.1: Example Latin square

2.1.2 Generic S U D O K U

S U D O K U game is derived from Latin square. The puzzle of order n is represented by
a rectangular grid of n 2 x n 2 cells. The task is to fill partially filled grid with symbols,
so that every row, column and block contains every symbol exactly once []. Symbols
are represented by natural numbers from 1 up to n 2 . Since rows, columns and blocks have
almost all the attributes in common [5], these will be further referred as virtual lines. Every
cell is a member of three virtual lines (row, column, and block). In the puzzle, there are
3n 2 such virtual lines.

5

A n example of the S U D O K U puzzle of order 3 is shown in Figure 2.2. Blocks are
emphasized by a thicker line. The puzzle contains 30 given symbols. Candidates are symbols
that can be filled into the certain cell. Candidates are in-scripted into each cell by small
signs. The grey cell's candidates are 1, 2 and 4.

5 3 124 26 7 2468 1489 1249 248

6 247 247

1 9 5
3478 234 2478

12 9 8 23 34 24 13457

6
247

8 125 1259 579 6 147 4679 2459 3
4 25 2569

8 5 3
579 259 1

7
15 1359 59 2 14 4589 459

6
139 6

134579 357 35 7 2 8
4

23 278 237 4 1 9
36 3

5
123 1245 12345 2356

8
26 1346

7 9
Figure 2.2: Example S U D O K U puzzle [] (modified)

2.2 Sets of candidates

Candidates in-scripting into each cell is a favourite practice of humans when solving SU­
D O K U . After placing a symbol into some cell, this symbol is eliminated from the sets of
candidates of all the cells that share the same virtual line. Computer-based solvers can
emulate this manner. The construction of such a solver demands storing the sets of can­
didates related to every single cell. Allocation of one flag bit per candidate (candidate
present, or candidate absent) requires n2 bits for each cell. Since there is n 4 cells, this
technique requires storing n 6 bits.

Considering the example cell from Figure 2.2, the sets of candidates of the related virtual
lines are as follows (R refers to row, C refers to column, and B refers to block):

. i? i = {1,2,4,6,8,9}

. C 3 = {1,2,3,4,5,6,7,9}

. Bx = {1,2,4,7}

The cell can be only filled by symbols that are elements of all these sets. Consequently,
the set of candidates related to the cell equals the intersection of the sets of candidates
related to all the three virtual lines [6]. The example situation is depicted in Figure 2.3.

6

C E L L

Figure 2.3: Intersection of the sets of candidates

Elaboration of storage capacity required is shown in Table 2.1. As it can be seen in the
table, this approach reduces data volume by factor of ^ n 2 S U D O K U solvers of high-ordered
puzzles can be designed by utilizing this method. M y work focuses on puzzles of orders 3
up to 10.

n l|5|| = n2 Gs = nA Vc = 3n 2 Gs • \\S\\ = n 6 Vc • \\S\\ = 3n 4

3 9 81 27 729 243
4 16 256 48 4 096 768

5 25 625 75 15 625 1875

6 36 1296 108 46 656 3 888

7 49 2 401 147 117649 7 203

8 64 4 096 192 262 144 12 288

9 81 6 561 243 531441 19 683

10 100 10 000 300 1 000 000 30 000

Table 2.1: Calculations of data volume

• S - the set of symbols

• Gs - the grid size

• Vc - the virtual lines count

In my work, I used a method of storing the sets of candidates similar to that described
in [6]. The sets of candidates are represented by bitmaps. These bitmaps are separately
stored in registers for each virtual line. These registers are grouped into clusters. There are
three such clusters of registers related to rows, columns and blocks. Initially, all the bits
are set high (l) . When puzzle is sequentially read into the solver, respective bitmaps are
eliminated. The related position within a bitmap is set low (0). This is performed by the
bitwise X0R logic operation. The same operation is performed during solving process when
solver fills-in any of cells. If the solver needs to return to previous state for some reason,
removed candidate is restituted by the bitwise OR logic operation.

7

The set of candidates for a particular cell is obviously needed by the solver. If this is
required, the intersection of three sets of candidates related to the cell is performed. The
bitwise AND logic operation is actioned over three mentioned bitmaps. This operation is
demonstrated in Figure 2.4 using example situation depicted in Figure 2.3.

R

c

B

Ld
H

 0

M
 0

M
 0

M
 l

l 0 1 l 1 l 1 l l

0 0 1 0 0 l 0 l l

0 0 0 0 0 0

M

CELL

Figure 2.4: Intersection of the sets

The operation described above is performed very fast due to parallel logic used. Parallel
nature of performing tasks is substantive principle of hardware-based acceleration. The
solver is now able to quickly recognize candidates of any cell. The utilization of this ability
will be introduced in the forthcoming chapter.

8

Chapter 3

Solving techniques

This chapter describes obvious S U D O K U puzzle solving techniques applicable in hardware-
based solvers. Two approaches to solve S U D O K U are mentioned. The first approach
employs very fast techniques using logical constraints. This approach is described in the
first part of this chapter. The second one utilizes a brute-force search. This is a very general
method but also it has exhaustive time demands. I took an advantage of both of them in
my solution.

3.1 Logical constraints

Almost all of the S U D O K U problems of order 3 can be solved by applying only logical
constraints [3]. This fact can be applied to S U D O K U problems of any order [5]. Applying
logical constraints performs elimination of sets of candidates. Advanced solving techniques
that use logical constraints have exaggerated resources demands. This is because these
methods require information about various groups of cells. I found two of such logical
constraints that can be plainly applied in hardware-based solver. Both of them only require
knowledge of the sets of candidates of virtual lines. Special attribute of these two techniques
is that they directly allow solver to fill in a cell.

3.1.1 Naked single

This is the most straightforward method of S U D O K U solving. It is assumed that there is
only one remaining symbol in the set of candidates of a cell. Such a candidate is marked
as a naked single candidate. In this case, the symbol can be written into the cell []. A n
example of this situation is depicted in Figure 3.1. The main liability of this technique is
that it is unable to solve all the puzzles. Therefore algorithm that uses only this technique
would be incomplete.

The solver is able to work on the set of candidates related to any cell as it was described
in the previous chapter. Application of the naked single method requires recognition of sole
candidate within a set. I used a one-hot detector for this purpose since the set is represented
by bitmap. The one-hot detector is a combinational logic unit that detects a presence of
the single bit that is set high. If the one-hot situation is detected, the output bit of the
detector is set high. Otherwise, the output bit is set low.

The naked single method was deprecated by designers of the solver that my imple­
mentation is compared with. They considered it too weak and hence they only employed
exhaustive search with guessing. This technique worked well for puzzles of order 3. Puzzles

9

with a lot of empty cells of order more than 3 were not solved in reasonable time. Puzzles
of order more than 8 were not solved in 24 hours.

I decided to probe naked single method. This method allows to solve a puzzle in constant
time, if there is naked single candidate present in the puzzle on every step. If there is none,
a guess should be executed to continue solving, or some another logical constraint applied.
Puzzles with a lot of guesses seems to be solved in unpredictable time. On the other hand,
I predicted that this method should reduce search tree of brute-force searching algorithm
employed in pure guessing method. Presentation of results is in Chapter 6.

5 3 124 26 7 2468 1489 1249 248

6 247 247

1 9 5
3478 234 2478

12 9 8 23 34 24 13457

6 247

8
125 1259 579 6 147 4679 2459

3
4 25 2569

8 5 3
579 259 1

7
15 1359 59 2 14 4589 459

6
139 6

134579 357 35 7 2 8
4

23 278 237 4 1 9
36 3

5
123 1245 12345 2356

8
26 1346

7 9
Figure 3.1: Naked single candidates [] (modified)

3.1.2 Hidden single

Another straightforward method of S U D O K U solving is looking for a hidden single candi­
date. The method requires investigation of virtual lines. If there is unique cell in a virtual
line that can contain particular symbol, this symbol must be assigned to this cell []. This
method requires gathering unit that stores information about cells within a virtual line.
After the virtual line is traversed, found hidden single candidates are filled-in.

I also considered that this information could be stored separately for each virtual line.
For every symbol there would be pointer to all possible locations within a virtual line.
This approach requires 3n 6 pointers to be stored. Therefore, this approach is of no use for
high-ordered hardware-based S U D O K U solvers.

If the solver proposed in this work should be extended to support this method, imple­
mentation of a gathering unit would be only required.

10

5 3 124 26 7 2468 1489 1249 248

6 247 247 1 9 5
3478 234 2478

12 9 8 23 34 24 13457

6
247

8 125 1259 579 6 147 4679 2459 3
4 25 2569

8
5

3
579 259 1

7
15 1359 59

2
14 4589 459

6
139 6

134579 357 35 7 2 8
4

23 278 237 4 1 9
36 3

5
123 1245 12345 2356

8
26 1346

7 9
Figure 3.2: Hidden single candidates [] (modified)

3.1.3 Other techniques

In addition to the techniques mentioned above, there is another group of elimination-based
S U D O K U solving techniques. These techniques do not directly allow to fill-in a cell. In­
stead, they allow to eliminate candidates from particular cell.

Naked single and hidden single candidate techniques can be extended to more cells.
Instead of one candidate present in one cell, there are the same two candidates in two cells,
the same three candidates in three cells, etc. These techniques are known as naked sets, or
hidden sets.

Locked candidates are found within certain intersection of block with another virtual
lines. If there is a block where the only possible positions for a candidate are in intersecting
part with another virtual line, the symbol must appear in that intersection within the block.
From another parts of intersecting virtual lines, this candidate can be eliminated. Another
similar situation occurs when a symbol missing from a virtual line (row, or column) can be
placed only within one of the blocks that intersect that virtual line. Therefore the symbol
must be placed on the intersection of these virtual lines. This candidate can be eliminated
from other cells within a block.

X-wing is elimination technique applied on two rows, or columns. There is the same
candidate exactly twice in two rows and on the same position of these rows. These can­
didates connected together with X creates two pairs. The candidate that created X-wing,
must be filled-in on one of these positions. Hence the candidate can be eliminated from
other positions within related virtual lines (in this technique, rows and columns can be
swapped). There is also swordfish technique similar to X-wing. Swordfish is extended to
three symbols, rows, and columns [5].

11

3.2 Guessing

The most frequently used method by ordinary computer solvers is brute-force search. Cells
are filled speculatively. The symbol is guessed from the set of candidates. Puzzle is traversed
in row-major order until a conflict with S U D O K U rules is discovered. On conflict the solver
backtracks to a cell that has untried candidates. Otherwise it continues to the next empty
cell. This method always finds the solution [5].

3.2.1 Next empty cell search

At first, the method requires to find the first empty cell. Empty cell search performed over
thousands of cells is enormously time-consuming. This is accelerated by a unit that can
determine address of the first empty cell without search. Such unit operates over bitmap
of size n2 that represents S U D O K U grid. Status of each cell is represented by a value of
corresponding bit. If the cell is empty, related bit is set high. Otherwise, it is set low.
Address of the first empty cell is then determined by a priority encoder. The priority
encoder is a combinational logic unit that outputs position of the first high set bit. Hence
address of the first empty cell within S U D O K U grid is determined in one clock cycle. The
first empty cell unit was described in [].

The described solution works well if the solver uses only guessing. The unit, as described
above, does not allow to traverse over empty cells. M y solver performs search for naked
single candidate over empty cells after each guess. Therefore the unit has to be designed
considering this requirement. I designed the unit that derives address of the next empty
cell from given address. In this unit, bitmaps are arranged into rows and columns according
to classic S U D O K U grid. Particular cell is addressed by combination of corresponding row
number and column number. This unit will be closely described in Section 5.1.5.

3.2.2 Backtracking

If guessing is employed to solve a puzzle, a conflict with S U D O K U rules can occur. On
conflict the solver must be able to return to the first previous cell that has untried candi­
dates. If solver saved status of all the cells on every step, it would allow to return to any
previous status in very little time. This approach can not be realised because of excessive
data record needed.

Pushing every performed step onto a stack seems to be the best solution. Stack overflow
can occur when stack depth is underrated, therefore necessary stack depth should be defined.
Considering the worst-case puzzle all the empty cells are filled by guessing. In this case it
is necessary to know the minimal number of given symbols in the puzzle that implies the
number of empty cells.

The minimal number of given symbols for S U D O K U of order 3 is 17. There is no known
valid puzzle of 16 given symbols yet []. For S U D O K U of order above 3, the minimal number
of given symbols has not been proven neither computed. I decided to use a simple formula
that approximately calculates the number of minimal given symbols and therefore the stack
depth.

S U D O K U puzzle of order 3 contains 3 4 = 81 cells. In the minimal puzzle with 17 pre-
filled cells, 81 — 17 = 64 cells are left blank. I will assume that number of blank cells in the
minimal puzzle of order n (Bmn) is computed as follows:

12

For order n = 3 applies

Bm3 = 64 = 8 2 = (9 - l) 2 = (3 2 - l) 2 = (n 2 - l) 2 (3.1)

Assuming for order n
Bmn = (n 2 - l) 2 (3.2)

Hence depth of the stack will be further designed consulting Equation 3.2. Implementation
of the stack will be described in more detail Section 5.1.3.

The stack stores a backtrack path only. The path is composed of addresses on which
writing was performed. If solver backtracks, symbols are restituted into the sets of can­
didates. Therefore the solver needs to know the symbol written on a particular address.
Although symbols could be pushed onto the stack, it is not a good practice because it is
wasting storage resources. Since solved puzzle should be readable from the solver, I decided
to create one common storage unit of symbols. The unit is realised as a standard R A M unit.
Every symbol present in the grid is written into this storage. Each symbol is addressed by
the row number and column number.

3.2.3 The guess process

If solver guessed symbols randomly, it would be able to recognize which symbols were
guessed. For this purpose, enormous data storage would be allocated. M y solver performs
guess with the highest symbol available. The symbol is represented by the leftmost bit that
is set high. I used a priority encoder to determine the value of this symbol. Previously
guessed symbols are masked if solver backtracks. The solver reads the value of the last
guessed symbol from the symbols storage unit. From the value of this symbol, the mask
is generated. The mask is then applied to the bitmap of set of candidates. The masked
bitmap only contains previously unguessed symbols. Demonstration of this operation is
pictured in Figure 3.3.

LAST GUESS

MASK
GENERATOR

SET
CLUSTERS

A D D R E S S

MASK

0 0 0 0 0 0 1 1 1

CANDIDATES

0 0 0 0 0 1 0 1 1

MASKED CANDII

I—I o I o I o I o I o I oTc

GUESS

CANDIDATES

Figure 3.3: The guess process

13

Chapter 4

Target architecture

There is a variety of programmable hardware platforms on the market. I focused on one
family of P L D (programmable logic devices). This type of devices will be described and
features of the particular chip used in my work will be presented in this chapter. The last
part of this chapter is dedicated to a programming process of such devices.

4.1 F P G A

F P G A (field-programmable gate array) is a chip with predesigned and fabricated cells
branded as C L B (configurable logic block). In Figure 4.1, there is a structure of a generic
F P G A depicted. The chip is customized by creating (or destroying) connections within the
CLBs and between the routing wires and CLBs . Each C L B contains a few slices. Such a
slice embodies L U T s (look-up tables), D flip-flops, MUXes (multiplexers) and other random
logic []. In addition to this basic logic cells, F P G A chips involve ASICs (application-specific
integrated circuits) comprehensive DSP (digital signal processing) slices, Block R A M s , etc.
Modern F P G A chips provide thousands of slices while possible operating frequency is up
to l .5GHz.

Customizable connections

- | ' | | <
— H ¥ - ^ » — P r ^

- - r V 4 — -

3 — r ¥ -

^ - ^ 4

n n

Programmable cells Routing wires

Figure 4.1: generic F P G A

14

4.2 Employed platform

ML605 Evaluation K i t by Xil inx was picked to verify design of the solver. This board
includes the Virtex-6 XC6VLX240T F P G A chip. The chip has been chosen since it offers
enough logic resources for the design of the solver. Table 4.1 depicts the chip's available
resources.

Slices SLICELs SLICEMs 6-input L U T s Distr. R A M [kb] Flip-Flops

37680 23 080 14 600 150 720 3 770 301440

Table 4.1: Logic resources available in Virtex-6 XC6VLX240T F P G A []

Each C L B on the Virtex-6 chip contains two slices. In one slice, there are four function
generators (LUTs). Each of the four L U T s in a slice disposes of six independent inputs
and two independent outputs. LUTs , in combination with slice multiplexers, provide any
function of up to eight inputs in a slice. Multiple L U T s in a S L I C E M can be combined
to store larger amount of data as a synchronous R A M resource called a distributed R A M
element. R A M elements are configurable in various ways to implement different types of
R A M modules. R A M module can provide up to 256 bits within one C L B . R A M module
configuration used within my design is described in more detail in Section 5.1.2. There are
eight (four original and four additional) storage elements in a slice. Common configuration
of these elements is as edge-triggered D-type flip-flops. The D input is obviously driven by
a L U T output via one of the slice MUXes []. Simplified scheme of one pair of flip-flop and
L U T within a slice is depicted in Figure 4.2.

SR

>CLK

Figure 4.2: L U T - F F pair

The kit provides various communication and configuration interfaces and protocols. In
this case, the kit was connected via U S B cable. Onboard J T A G interface was employed to
configure F P G A chip. The kit also facilitates connections via various modern buses and
protocols such as P C I express, Ethernet...

4.3 Logic design flow

The solver is written in V H D L language. V H D L language is a H D L (hardware description
language) used for the specification, modeling, synthesis, and simulation of digital logic cir­
cuits []. X I L I N X provides software tools including text editing interface, design simulator,
and tools for programming PLDs . V H D L code is processed by a synthesizer. The synthe­
sizer generates a file that contains optimized logical design data and constraints. This file is
processed by design implementation tools. These tools provides mapping design to F P G A

15

resources, placement of mapped design and routing within placed design. Routed design
is then transformed into the bitstream file. This file is typically downloaded to a target
device.

Debugging and verification of logic design is typically performed within design process.
Functional simulation of design is accomplished before and after synthesis process. There
are two simulation environments obviously used. Model Sim provided by Mentor Graphics
and Isim provided within ISE by Xil inx. I prefer Isim because it is included in ISE and
therefore there is no need to transfer source codes from one program to another.

Static timing analysis is provided during the implementation process. This analysis
checks whether specified timing constraints were met. The last method I used is in-circuit
verification.

In-circuit verification is provided by ChipScope software tool that communicates via
USB within scopes added to the design. Scopes are predesigned specialized cores. CoreGen
is used for customizing and generating those cores. Often used cores are integrated logic
analyzer (ILA) and virtual input and output (VIO). Both of them are driven by an Inte­
grated Controller (ICON) via 32-bit control signal. I L A unit can be connected to any of
the signals within the design being verified. This unit collects data samples from the design
being verified. Proportions of captured data samples are adjustable in various ways. I used
this unit to verify my design on Virtex-6 chip. VIO unit provides virtual input and output
ports for the design being verified. Input ports are fed in real-time via ChipScope software
interface [8]. Adding scopes into the design can be provided in two ways. CoreGen flow
requires generation of cores by CoreGen. Generated cores are then instantiated into the
design V H D L code. Units are synthesized as black boxes. V I O core can be only added via
CoreGen flow. This approach did not work in school lab for some reasons. In core inserter
flow, cores are added to the design after synthesis. The advantage of this approach is that
cores are included into the design automatically by Core. Specification of connected signals
via graphical user interface is only required. The process of design flow is schematized in
Figure 4.3.

VHDL
source codes

Design
synthesis

Design
implementation

Download to
a chip

Design verification
1

Functional
simulation

Timing
analysis

T
In-circuit

verification

Figure 4.3: Iterative process of design flow

16

Chapter 5

The SUDOKU solver

In this chapter, I will describe implementation of my S U D O K U solver. The architecture of
the solver will be presented and implementation of solving algorithm will be introduced.

5.1 Solver components

The solver's design contains four independent units. Symbols are stored into a symbols RAM
unit. Backtracking path is being pushed onto a backtrack stack unit. Candidate elimination
and recognition is performed by an elimination unit. Next empty cell unit enables to
traverse the S U D O K U grid. A l l the components are driven by a top module. The S U D O K U
order is defined before solver synthesis (or simulation). A l l the solver components are fully
generic. A l l the necessary equations related to the design are automatically computed.
Used equations will be introduced and results for particular orders will be presented in the
later text.

5.1.1 Design analysis

In a popular form of S U D O K U , symbols are represented by natural numbers. M y solver
utilizes a binary encoded representation of symbols. The symbols are represented by binary
numbers from 0 to n 2 — 1. Hence the required number of binary digits (bits) to encode the
symbols should be defined.

There is n 2 symbols, the number of bits (6) that are needed to encode the symbols was
computed as follows:

b = r iog 2 (n 2)l (5.1)

The number of rows and the number of columns is the same as the number of symbols
in a particular S U D O K U puzzle. In my design, addressing is provided by the row number
and the column number (i.e., the row address and the column address). Hence address'
bus width will be twice as wide as symbols' bus width. I performed complete elaboration
of buses width requirements. Results of this calculation are depicted in Table 5.1.

17

n n 2 BS = r iog 2 (n 2)l #4 = 2BS

3 9 4 8

4 16 4 8

5 25 5 10

6 36 6 12

7 49 6 12

8 64 6 12

9 81 7 14

10 100 7 14

Table 5.1: Buses width calculation

• Bs - the symbols bus

• Ba - the address bus

5.1.2 Symbols R A M unit

The symbols filled into cells are stored in the symbols R A M unit that is composed of dis­
tributed R A M s of target F P G A . I chose 256 x IS configuration. This configuration provides
256 x 1-bit R A M . In this configuration, distributed R A M is in a single-port mode. For a
single-port configuration, distributed R A M has a common 8-bit address port for writing
and reading. This configuration occupies all the four L U T s in a slice. Each distributed
R A M module stores one bit of total data width required for symbol's storage (see Table
5.1). The R A M unit that is composed this way provides space for up to 256 symbols.
Therefore the unit provides enough storage for puzzles of order 3 and 4. In addition, 8-bit
address port can be connected to a compound address bus. In this configuration, the row
address occupies the leftmost bits of the compound address bus and the column address
occupies the rightmost bits of the compound address. This is not possible when solving
higher-ordered puzzles. Therefore I decided to divide the symbols R A M unit into segments.
Eight rightmost bits of compound address determine offset. The offset is address within
one segment. Remaining bits determine address of the segment. The calculation of R A M
segments is depicted in Table 5.2.

Data read from R A M is synchronized via output flip-flop. Hence in the case of reading
a symbol, the solver must wait one clock cycle until data is ready.

18

n WA = BA WSA = Wa-8 5 = 2Wsa

3 8 0 1

4 8 0 1

5 10 2 4

6 12 4 16

7 12 4 16

8 12 4 16

9 14 6 64

10 14 6 64

Table 5.2: R A M segments

• WA - the address width

• WSA - the segment address width

• S - the number of segments

5.1.3 Backtrack stack unit

A stack is a last in, first out (LIFO) type of a computer memory. The designed stack consists
of a stack pointer and a stack memory. The stack pointer is up-down counter which stores
the address of the next empty memory cell. The memory is composed of distributed R A M s
in the same manner as the symbols R A M unit. Stack depth was computed according to
Equation 3.2. The computation of stack memory proportions is depicted in Table 5.3.
Negative values were rounded up to 0. The width of the stack memory is the same as the
address bus width computed since the stack serves as a storage for cell addresses.

n SD WA = r i o g 2 (5 D) i WSA = WA - 8 S = 2Wsa

3 64 6 0 1

4 225 8 0 1

5 576 10 2 4

6 1225 11 3 8

7 2304 12 4 16

8 3969 12 4 16

9 6400 13 5 32

10 9801 14 6 64

Table 5.3: Stack memory segments

• SD - the stack depth

• WA - the address width

• WSA - the segment address width

19

• S - the number of segments

Due to usage of Equation 3.2 some memory resources were saved in stack design. The
stack provides standard POP and PUSH operations. PUSH is performed in two clock cycles.
The stack pointer points to the first empty position of the memory, therefore in the first
cycle, writing to the memory is performed. In the second clock cycle, the value of the stack
pointer is increased by one. POP operation is performed in three clock cycles. In the first
cycle, stack pointer is decreased by one. In the second cycle, actual stack pointer value is
presented on the address port of the memory. In the third cycle, synchronizing flip-flops of
R A M are fed and data is available.

5.1.4 Elimination unit

The elimination unit is the backbone of the solver's design. The unit contains the set of
candidates' bitmaps. The bitmaps are clustered according to the type of the virtual line.
There are row, column and block bitmaps clusters. The top module of the solver drives
operating mode of elimination unit via MODE input signal. The unit provides three operating
modes encoded to 2-bit representation as follows:

• OX - READ

• 10 - ELIMINATE SYMBOL

• 11 - RESTITUTE SYMBOL

The leftmost bit of MODE input signal is used as a write enable signal for flip-flops. The
usage of flip-flops allows to perform logical operations over the bitmaps in one clock cycle.
This is because flip-flop output is connected to the one of L U T inputs. L U T performs
selected logical functions and feeds flip-flop input with results. Each result is read into
flip-flop on the next clock rising edge.

G M
M ELIMINATION
C_A UNIT S O
R_A C
<̂ l NSC
O 1

> C L K RST
S_V

Figure 5.1: Elimination unit

In READ mode, the unit provides various operations over the bitmap that represents the
intersection of sets of virtual lines . The first of them is naked single candidate detection
provided by one-hot detector. The unit outputs result on the next clock rising edge. The
result is presented via a dedicated output port. Another function of this unit is decoding
the highest symbol available for guess. In this case, guess masking should be enabled. A
guess mask generator is included in this unit. Guessing is performed by a priority encoder
with two outputs. A n encoded symbol value is presented via the first of them. The second
1-bit output reflects whether there is at least one input bit set high. This output is used
as conflict detector and this signal is connected to one of unit's outputs. The unit also

20

detects whether input symbol is valid for the cell specified by input address. This is useful
if the solver waits until actual data is ready. Waiting for data is necessary for example after
popping an address from the stack. The unit is pictured in Figure 5.1.

5.1.5 N E C unit

The next Empty Cell (NEC) unit derives next empty cell address from given basic address.
Basic principles of this unit were described in the above text. The unit is pictured in Figure
5.2.

M_M
M NEXT EMPTY M CELL UNIT CA_ O
C_A RA_ _o
R_A l_ _E

> C L K RST
I

Figure 5.2: Next empty cell unit

This unit operates in four different read modes and two different write modes. Mode
encoding is the same as the one for the elimination unit. This allows to connect mode ports
of both units to the same driving signal. Determination of the next empty cell address is
performed in READ mode. The next empty cell address can be determined from given based
position in four different ways by feeding MASK_M0DE input.

Two of these modes are reserved for the purpose of future solver extensions. Remaining
modes are used in actual design and these modes should be described. The first mode can
be marked as a self-blind mode. In this mode empty cell recognition is provided over cells
on higher addresses than the actual cell's address. This is useful when the solver traverses
over empty cells. This situation is depicted in Figure 5.3.

X

Figure 5.3: Self-blind mode

Actual given position is marked by x symbol. Grey positions are hidden. If the solver
needs to recognize an empty cell within the whole grid, this method is of no use. The solver
performs lookup from the begin anchor of the grid. In this case the first cell is blinded.
Hence the solver would not be able to fill-in this position. For this purpose another mode
is designed. I called it self-sight and this method is depicted in Figure 5.4.

21

Figure 5.4: Self-sight mode

Actual given position is marked by x symbol. Grey positions are hidden.

5.2 Top module

Top module consists of all the components mentioned above and a finite-state machine
(FSM) that provides solving algorithm. Top module mode is driven by dedicated input
port. This section describes complete used solving algorithm, and elaborates occupied
resources according to puzzle order. The solver interface is also described.

5.2.1 Solving algorithm

The solving algorithm combines two solving techniques, naked single and guessing. This
algorithm is performed by a F S M (finite state machine).

The first step is controlling grid on presence of an empty cell. The actual address is
set to the begin anchor. N E C logic is set to the mode in which it can detect an empty cell
even on the given address (11 - RESTITUTE SYMBOL). If there is no empty cell found, the
puzzle is solved. The F S M then waits for next commands. Otherwise, the address of the
found empty cell is read from the N E C unit. The set of candidates of this cell is checked
on presence of naked single candidate. If there is one, respective symbol is written on this
position, clusters of the bitmaps are updated. The bitmap inside the N E C unit is updated
too. If there was a guess before, the address of the written cell is pushed onto the stack. The
performed step of naked single technique is marked into a naked single flag register. This
register reflects whether any step using naked single technique was performed or not. If the
naked single candidate is not present within the set of candidates, the search continues to
the next empty cell. After the grid was traversed, the naked single flag register is checked.
If at least one step of the naked single technique was performed, the algorithm returns to
the first step. Otherwise, a guess is performed.

The guess is executed over the first empty cell within the puzzle grid. The guessed
symbol is written into the symbols R A M unit and respective bitmaps are updated. The
address of position is also pushed onto the stack. A l l these tasks are performed in parallel.
After guess, search for a naked single candidate is performed. Searching for naked singles
after each guess is able to reduce search tree and therefore speed-up the solving process.

If there was a guess before, a conflict can be detected. Conflict detection is performed
in parallel with the naked single candidate search. On conflict, the solver backtracks to
the first cell with untried candidates within the backtrack path. Backtracking is performed

22

step by step over written cells. On every step, cells and their respective candidates are
restituted. Simplified diagram of described finite state machine is depicted in Figure 5.5.
Results of algorithm performance benchmark are presented in Section 6.

B a c k t r a c k

found
V J

none none W r i t e s y m b o l

conflict G u e s s O K J

Figure 5.5: Finite state machine of the top module

5.2.2 Occupied resources

Table 5.4 depicts occupied resources of the target chip according to the order of puzzle.
Wi th growing place occupied by the design, maximum achievable operating frequency is
derogated. This is due to signal delay caused by long interconnecting wires between logic.
Maximum frequency was reached while setting global optimization goal of the synthesizer
to speed and allowing register duplication.

n Occupied slices Utilization fmax [MHz]

3 296 1% 166

4 801 2% 125

5 2040 5% 91

6 3717 9% 71

7 6395 16% 62.5

Table 5.4: Resources occupied by design and maximum achievable frequency

• fmax - maximum achievable frequency

Occupied resources related to orders over 7 are missing in the table. This is because
synthesizer was unable to efficiently synthesize generic priority encoder of 64 and more
inputs. Synthesizable priority encoder could be re-designed as one of design improvements.

23

5.2.3 Solver interface

In this section, I will provide reference to the solver interface for the case of future testing
or utilization of the solver. There are five relevant input ports and two output ports in the
design (see Figure 5.6). The unit is synchronized via clock network of the target chip. Port
tags are described in Table 5.5.

Port Description Signal width [bits]

RST Reset signal input 1

M Mode signal input 2

R_A Row address input [log 2(n 2)]

C_A Column address input [log 2(n 2)]

S_I Symbol input [log 2(n 2)]

S_0 Symbol output [log 2(n 2)]

SOLVED Status output 1

Table 5.5: Unit interface description

M
C_A

SUDOKU
SOLVER

R_A

s_i s _ o

> C L K RST
SOLVED

Figure 5.6: The solver unit

At first, the unit should be reset via synchronous RST signal. Reseting the unit causes
initializing all the bitmaps and clearing data from R A M modules. The solver provides four
specialized operating modes via 2-bit M input port. Those modes allows to read a puzzle
into the unit, to read a puzzle from the unit, to instruct unit to solve the previously read
puzzle or to stay idle. Encoding of these modes is as follows:

• 00 - IDLE

• 01 - READ SYMBOL FROM GIVEN ADDRESS

• 10 - WRITE SYMBOL ON GIVEN ADDRESS

• 11 - SOLVE THE PUZZLE

Reading a puzzle into the unit is provided in the WRITE SYMBOL ON GIVEN ADDRESS
mode. The symbol directed to S_I port is written on the address specified by values of
the R_A and C_A ports. Write operation is executed on rising clock edge. Writing symbol
on particular position should be performed exactly once. Multiple writing of a symbol

24

causes inconsistence of sets bitmaps. There is no control mechanism inside the unit. This
mechanism is one of proposed extensions of the unit.

After the last symbol has been read into the unit, the unit should be set to the SOLVE
THE PUZZLE mode. In this mode, the unit is solving the previously read puzzle utilizing
algorithm introduced in Section 5.2.1. Status of solving process is reported by a value of
the SOLVED port. If the puzzle is solved, the value is set high.

The mode READ SYMBOL FROM GIVEN ADDRESS allows to read solved puzzle out of the
unit. The symbol present on the address specified by specified by values of R_A and C_A
ports is passed to the S_0 port.

If some serial transfer protocol is used to transfer data into, or from the unit, the IDLE
mode is used to wait until buffer is filled. The unit performs no operation in this mode. In
the oncoming chapter, the results of solver's testing will be presented.

25

Chapter 6

Solver testing

In the case of solving S U D O K U instances of various orders, the solver's performance is
compared to the performance of TU Delft Sudoku Solver on FPGA, denotated as the refer­
ence solver on this text. This solver won 2nd price of FPT '09 Design Competition Award.
I failed to find any reference to the winning design. In the reference solver, guessing based
on exhaustive brute-force search was only used. This solver was unable to solve any of
benchmarks of order above 8 in less then 24 hours []. The goal of my design was to
achieve better results than the reference solver. For this purpose, I supported exhaustive
search with naked single candidate elimination technique as described above. Using this
technique leads to distinctive better results in some cases. Those results will be presented
and discussed in the forthcoming text.

6.1 Solver benchmark

Used benchmarks were the same as those used in testing process of the reference solver.
These benchmarks were provided by [1] for testing solvers participating in the mentioned
design competition. The reference solver's results were presented in [6]. Two types of
benchmarks were provided, namely a and b. The a group benchmarks are predicted to
be easier solved by hardware solver. These from the b group are considered to be very
hard to solve by hardware solvers in general. High-ordered puzzles from this group are
unsolvable using a brute-force search in less than 24 hours. M y solver was unable to solve
these puzzles, unfortunately, it failed to solve some of the puzzles from the a group too.

I tested my solver using this benchmarks in simulations. I used integrated simulator of
ISE, Isim. Benchmark puzzles of order 3 up to 10 were successfully solved. Solving process
of particular benchmark puzzles with comments is depicted in Figures 6.1 - 6.3. Benchmark
results will be presented in the next section.

26

N a m e

14 elk

V a l u e

1

Ops lOrOOOrOCjO P S

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

20|000i0Q0 ps
1 1 1 1 1 1 1 1 1

30 000 000 D S 4n 000 000 ns
. . . 1 . . , ,

5n

lis

1

JOCOtjO ps

III
> 3 | j data_out[3:0]

1̂ is_solved

0101

1

- '(i is_5olving

1̂ per iod

- '(i is_guess

1̂ naked_5ingle

1̂ val id_cand

1

20000 ps

0

0

0

J - '(i is_5olving

1̂ per iod

- '(i is_guess

1̂ naked_5ingle

1̂ val id_cand

1

20000 ps

0

0

0

Z0000 pa >

- '(i is_5olving

1̂ per iod

- '(i is_guess

1̂ naked_5ingle

1̂ val id_cand

1

20000 ps

0

0

0

- '(i is_5olving

1̂ per iod

- '(i is_guess

1̂ naked_5ingle

1̂ val id_cand

1

20000 ps

0

0

0

: < a; j j s&aa: < : • t l > *• i i 1 i B | 11

- '(i is_5olving

1̂ per iod

- '(i is_guess

1̂ naked_5ingle

1̂ val id_cand

1

20000 ps

0

0

0

: < a; j j s&aa: < :

Figure 6.1: Benchmark 03a solving process

This benchmark puzzle was solved in a few/xs. Guess was performed 11 times. This
puzzle is well-posed for naked single candidate technique.

N a m e

14 elk

Value

1

Ops |5,000,00(,000 ps
1 1 1 1 1 1 1 1 1

10,000,0(j0

11,190.

000 ps

550,000 ps

[> j £ data_out[3:0]

"U^ is_solved

0010

1
iiaissii&H^^

/ 0 0 1 0 \

1̂ is_5olving

1̂ period

i5_gues5

naked_single

1̂ valid_cand

1

20000 ps

0

0

0

1̂ is_5olving

1̂ period

i5_gues5

naked_single

1̂ valid_cand

1

20000 ps

0

0

0

Mil.
1̂ is_5olving

1̂ period

i5_gues5

naked_single

1̂ valid_cand

1

20000 ps

0

0

0

_ _ m u n i
m m

Figure 6.2: Benchmark 03b solving process

Solver needs evidently more effort to solve this puzzle. This is caused by many guesses
performed during solving process. Naked single candidate technique is not effective in this
case.

Name Value

"Li elk 1

^ data_out[6:0] 1001101

• is_sohed 1

1̂ is_soking
1

1̂ period
20000 ps

1̂ is_guess
0

.'^ naked_5ingle 0

valid_cand 0

642,770,000"ps1

200,000,000 ps •100,000,000 ps 500,000,000 ps

Figure 6.3: Benchmark 10a solving process

In this case, almost all of the cells were filled-in using the naked single method. Some
guesses were performed in the last part of the solving process. The puzzle, that is unsolvable
by a brute-force, was solved in a less than 0.5 ms.

27

6.1.1 Benchmark results

In this section, I will present results of solver benchmarks. Maximum achievable frequency
{tfm) °f m y design reflects design performance on the particular chip. This is not good sub­
ject of comparison with the reference solver, since the reference solver operating frequency
was set to 50 M H z . Operating frequency was set to 50 MHz in simulations. Results are
presented in Table 6.1.

The naked single candidate method was not applicable on all the benchmarks. In bench­
marks with many guesses executed, solver performance drastically decreased. Therefore,
this technique is not suitable to reduce search-tree of exhaustive search. On the other hand,
naked single candidate technique was very effective in solving puzzles from the a group.

Bi[l] tms [s] ttud [s] Aa[s]

03a 0.000052 0.020821 0.020769 400.40 x

03b 0.011900 0.012460 0.000560 1.057x

04a 0.033764 0.221379 0.187615 6.56x

06a 0.000050 0.115347 0.115297 3251.43X

06b N / A N / A N / A N / A

07a 0.000065 0.211343 0.211278 2306.94X

08a 0.000130 0.096424 0.096294 741.72x

09a 0.000253 N / A N / A N / A

10a 0.000493 N / A N / A N / A

Table 6.1: Benchmark time and raw acceleration

• Bi - benchmark identifier

• tms - solving time of designed solver

• ttud - solving time of reference solver

• Aa = tms — ttud - absolute acceleration

• Ar = - relative acceleration
Ems

Average relative acceleration (Ara) of my design is computed as follows:

Ara = ^—^ = 1118.02X (6.1)
6

In comparison with the reference solver, my design seems to be much better in solving the
same benchmark puzzles. This is caused by effectivity of the naked single candidate search
method in some cases. These cases are investigated in the forthcoming text.

I decided to elaborate how long takes to correctly fill-in one cell in a particular puzzle.
The prediction is that in larger puzzles, it takes more time to find a naked single candi­
date. Hence time needed to correctly fill-in one cell should increase with increasing puzzle
proportions. Results of this elaboration are depicted in Table 6.2

28

Bi[l] ct Ce Cer tmsi [ms] ttudi [ms]

03a 81 55 67.90% 0.000945 0.378563

03b 81 58 71.61% 0.205172 0.214828

04a 256 146 57.03% 0.231260 1.516295

04b 256 168 65.63% N / A N / A

05a 625 300 48.00% N / A N / A

05b 625 313 50.08% N / A N / A

06a 1296 401 30.94% 0.000125 0.287648

06b 1296 650 48.23% N / A N / A

07a 2401 601 25.01 % 0.000108 0.351652

08a 4 096 1025 25.03% 0.000127 0.094072

09a 6 561 1641 25.01% 0.000154 N / A

10a 10 000 2 502 25.02% 0.000197 N / A

Table 6.2: Cell fill acceleration

• Ct - cells total

• Ce - cells empty

• Cer - cells empty ratio

• tmsi = tjfy - designed solver one cell fill time

• ttudi = %^ - reference solver one cell fill time

Time required by the solver to correctly fill in a cell depends on an empty cells ratio.
Puzzles with less than | of empty cells contain many naked single candidates. Therefore
cells within these puzzles are correctly filled in a constant time. Consequently, the solver
is able to solve high-ordered puzzles in reasonable time. It seems that the solver should be
able to solve any high-ordered puzzle by applying more logical constraints techniques.

6.2 Design verification using ChipScope

The solver does not dispose of a communication interface. For the purpose of solver verifi­
cation on real hardware, I programmed a benchmark unit. The solver is included into this
unit. This unit provides reading puzzle into the unit and drives operations performed by
the solver. Status of solving process is reported via solver output signal. At first, I created
I C O N core with one control output. Then I created I L A core with two different inputs. The
first input was reserved to symbols output of solver and the second one to status signals.
The number of collected data samples was set to 2048. I performed a few verification tests
of designed solver. ML605 kit was connected to the P C via USB. I successfully downloaded
design bitstream to Virtex-6 chip. Sampled data was displayed by ChipScope software in
a waveform. The process of solving benchmark 05a is depicted in Figure 6.4.

29

g£ waveform - DEV.l MyDevkcl <XC6VLX240T> UNIT:0 MylLAO OLA)
Bus/Signal X 0 (40 SO 120 160 200 240 280 320 360 400 440 480

P. . . . 1 1 1 1 1 1 1 1 1 1 1 1 . .
— / i s _ s o l v i n g 1 1 r

/sudoku_unit/ i s_solved 0 0

/output_data_O_0BUF 1 1

/output_data_l_0BUF 0 0

/output_data_2_0BUF 1 1

/output_data_3_0BUF 1 1 uuur^uUiuraurainruiwuM
/output_data_4_0BJF 0 0

Figure 6.4: Solving process of the benchmark 05a

The solver was unable to solve this puzzle within a few minutes. The solving process was
terminated after approximately five minutes. This figure proves that the solving process
was performed successfully on the target chip. In Figure 6.5, there is shown waveform that
represents data samples after benchmark 03a was solved.

Waveform - DEVI MyDevke l 0CC6VLX240T) UNIT:0 MylLAO OLA)

Bus/Signal X 0
[160 320 4S0 640 800 960 1120 1280 1440 1600 1760 1920

P. . . . 1 1 1 1 1 1 1 1 1 1 1 1 . .
—/i s_sol vi ng 0 0 r —/i s_sol vi ng 0 0 r
- / E u d o ku_u n i t / S 0 L VE D 1 1

/output_data_0_OBUF 1 1

- / o u t p u t data_l OBUF 0 0 - / o u t p u t data_l OBUF 0 0

-/output_data_2_0BUF 1 1

/output_data_3_0BUF 0 0

Figure 6.5: Benchmark 03a solved

The solver was able to solve benchmarks on the real hardware platform, hence results
measured in simulations were proven.

30

Chapter 7

Conclusion

In this work, I described principles of the S U D O K U game. I provided investigation on
possible puzzle solving methods and hardware-based implementation of them. Two of
these methods were chosen and successfully implemented. A solver was designed using a
hardware description language, namely the V H D L . I measured solver's performance using
specialized benchmarks dedicated to hardware S U D O K U solvers. M y solver was able to
solve most of these benchmarks in a very short time. Obtained results were compared with
the results of another hardware-based solver which was awarded in an international chip
design competition. This work provided me with the opportunity to work with one of the
newest evaluation kits (ML605 by X I L I N X) . The designed solver was successfully verified
on this kit with ChipScope software.

One of the solver's liabilities is that it is unable to solve all the puzzles. Solver's per­
formance could be increased by using more solving techniques based on logical constraints.
The hidden single candidate technique, described in this work, could be one of them. Its
implementation is partially incorporated in my chip. However, an extension of a gathering
unit is necessary to be added.

Another reasonable extension of the solver is an input and output communication unit.
The solver interface was described to provide reference for future extensions. The com­
munication unit can transfer data over any serial communication protocol due to solver's
ability to wait until input data is present.

I found puzzle solver design very interesting. I have learned new facts about hardware
design and programmable logic devices as well as about S U D O K U principles. I hope I
will continue in this research. In my future work I would like to implement the extensions
proposed in the text above. I assume I might be able to solve all the S U D O K U puzzles of
order up to 10 in a reasonable time.

31

Bibliography

[1] FPT'09 . Design competition benchmarks [online].
http://fpt09.cse.unsw.edu.au/comp/benchmarks.html, [cit. May, 2010].

[2] Gordon Royle. Minimum sudoku [online].
http://units.maths.uwa.edu.au/~gordon/sudokumin.php, [cit. May, 2010].

[3] Helmut Simonis. Sudoku as a constraint problem. In 4th Int. Works. Modelling and
Reformulating Constraint Satisfaction Problems, pages 13-27, 2005.

[4] Sunggu Lee. Advanced Digital Logic Design: Using VHDL, State Machines, and
Synthesis for FPGAs. Thomson, 2006. ISBN 0-534-46602-8.

[5] Tom Davis. The matematics of sudoku [online].
http://www.geometer.org/mathcircles, [cit. May, 2010].

[6] C. van der Bok, M . Taouil, P. Afratis, and I. Sourdis. The tu delft sudoku solver on
fpga. In Int. Conf. on Field-Programmable Technology (FPT), pages 526-529, 2009.

[7] Wikipedia. Sudoku [online]. http://en.wikipedia.org/SUDOKU, [cit. May, 2010].

[8] Xil inx. Video training: Chipscope pro software overview [online].
http://www.xilinx.com/training/fpga/chipscope-pro-training-video.htm,

[cit. May, 2010].

[9] Xil inx. Virtex-6 fpga clb user guide [online].
http: / / www. xilinx. com/support/document at ion/user_guides/ug364. pdf, [cit.
May, 2010].

32

http://fpt09.cse.unsw.edu.au/comp/benchmarks.html
http://units.maths.uwa.edu.au/~gordon/sudokumin.php
http://www.geometer.org/mathcircles
http://en.wikipedia.org/SUDOKU
http://www.xilinx.com/training/fpga/chipscope-pro-training-video.htm

Appendix A

CD-R contents

1. source codes

2. benchmark puzzles

33

