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ABSTRACT
The thesis explores possibilities of applying genetic algorithms on the problem of finding
the optimal prestressed concrete tendon path. The objective of the thesis is to develop a
genetic algorithm based on the Automatic Dynamic Penalization method and to test its
robustness on selected analytical functions. Subsequently, the algorithm is connected to
a Time Dependent Analysis module for the computation of prestressed concrete structure
to solve selected examples of prestressed beams in the form of a constrained optimization
problem. The algorithm is developed in the Python programming language with the help
of the Distributed Evolutionary Algorithm library.

KEYWORDS
optimization, constraints, genetic algorithms, automatic dynamic penalization, pre-
stressed concrete, tendon path

ABSTRAKT
Bakalářská práce se zabývá možnostmi využití genetických algoritmů pro optimalizaci
trasy předpínacích kabelů. Cílem práce je vyvinout genetický algoritmus na základě me-
tody automatické dynamické penalizace a ověřit jeho robustnost na vybraných analy-
tických funkcích. Následně je tento algoritmus napojen na TDA modul pro výpočet
předpětí a použit pro řešení optimalizační úlohy s omezením. Veškeré úlohy jsou řešeny v
programovacím jazyce Python s využitím knihovny Distributed Evolutionary Algorithms.
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ROZŠÍŘENÝ ABSTRAKT
Beton je známý svou malou pevností v tahu, která je přibližně desetkrát menší než
pevnost v tlaku. Pro překonání tohoto nedostatku, se beton vyztužuje, a to buď
ocelovou výztuží, čímž vznikne železobeton, nebo předpínací výztuží, čímž vznikne
beton předpjatý. Postup předpínání, tedy vnesení tlakového napětí do betonové
konstrukce, byl patentován na konci 80. let 18. století. Rozmach tohoto materiálu
nastal až roku 1928, kdy Eugéne Freyssinet poprvé použil vysokopevnostní před-
pínací výztuž [10]. Navzdory počátečním neúspěchům způsobených velkými ztrá-
tami vnesené předpínací síly, výzkum vlastností tohoto materiálu pokračoval a dnes
jsou konstrukce z předpjatého betonu široce využívané. Navzdory dlouholetému
výzkumu i širokému využití je stále velmi složité navrhnout optimální trasu předpí-
nací výztuže. Jednoduchým postupem může být dosažen návrh splňující dané pod-
mínky, ale pro navržení nejlepší, optimální trasy je nutné zapojit moderní výpočetní
metody.

Proces hledání nejlepšího řešení jakéhokoliv problému se nazývá optimalizace.
Problém k řešení se dá zpravidla definovat funkcí 𝑓(𝑥), která se označuje jako cílová.
Ta je závislá na proměnných, které se sdružují do vektoru 𝑥. Řešení může být pří-
padně omezeno dalšími podmínkami. Definičním oborem cílové funkce jsou potom
možné hodnoty proměnných a optimálním řešením problému je potom globální ex-
trém této funkce.

Metody řešení optimalizačních problémů se v zásadě dají rozdělit do dvou skupin:
tradiční, které využívají analytické postupy, a moderní, které ve většině případů
fungují na principech přírodních zákonů a pro řešení je ve většině případů nutné
využít výpočetní kapacitu počítačů [12].

Genetický algoritmus, který spadá do metod moderních, je robustním nástro-
jem, který se pro optimalizaci trasy předpínacích kabelů velmi dobře hodí. Pracuje
s množinou možných řešení, kterou v průběhu výpočtu obměňuje. Právě díky této
souběžnosti výpočtu se hodí pro optimalizaci cílových funkcí, u kterých se před-
pokládá větší množství lokálních extrémů a větší množství proměnných, což je i
problém optimalizace trasy předpínacích kabelů. Další výhodou je poměrně snadná
implementace dalších podmínek, které musí řešení splňovat, taktéž relevantní pro
problém řešený v této bakalářské práci.

Základním stavebním kamenem genetických algoritmů je využití evolučních prin-
cipů přežití silnějších a dědičnosti. Algoritmus pracuje v cyklech a v každém upraví
množinu (také „generaci“) možných řešení (také „jedinců“) pomocí genetických op-
erátorů, které zákony evoluce a dědičnosti aplikují. Tímto způsobem algoritmus v
každém cyklu nalézá lepší řešení.

Prvním genetickým operátorem je výběr jedinců ze současné generace. Tento
krok vybere jedince, na které budou následně aplikovány další dva genetické operá-



tory, křížení a mutace. V rámci křížení si jedinci vymění část své informace mezi
sebou. Pomocí tohoto kroku by mělo dojít k prohledání okolí již nalezených do-
brých řešení. Mutace slouží opačnému účelu, a to k prohledání celého definičního
oboru. Pomocí náhodné změny části řešení by měla zabránit předčasné konvergenci
k lokálnímu optimu. Nicméně konkrétní forma nejen těchto genetických operátorů,
ale každého kroku výpočtu, není jasně daná, protože záleží na potřebách řešeného
problému [12]. Kromě toho jsou jednotlivé kroky algoritmu závislé na číselných
parametrech, které můžou mít na robustnost algoritmu velký vliv.

Vyvinutý algoritmus byl tedy testován. První zkouškou byla ověřena robustnost
hodnotící funkce zahrnující penalizaci řešení. Na jejím základě jsou vybíráni jed-
inci pro křížení a mutaci. Ohodnocení bylo implementováno podle [9]. V článku
je navržená metoda hodnocení testována na analytické funkci, která je vystavena
dvěma různým omezením, které nesplňují požadovaná omezení. Vyvinutý algorit-
mus byl testován na stejné funkci celkem desetkrát a průměrný výsledek z těchto
spuštění algoritmu vykazoval stejně dobré výsledky jako referenční algoritmus uve-
dený v článku.

V druhé fázi byl analyzován vliv jednotlivých parametrů, které určují mají vliv
na robustnost algoritmu. Cílem bylo nalezení nejefektivnějších hodnot. Byla zvolena
základní sada parametrů a následně byla vždy jedna z hodnot změněna tak, aby bylo
možné pozorovat její vliv na výpočet. Pro účely zkoušení byla optimalizována trasa
předpínacího kabelu prostě podepřeného nosníku se spojitým zatížením ve směru
osy 𝑦 s konstantním průřezem. Pro účely optimalizace je trasa předpínací výztuže
definovaná pomocí kvadratické Bézierovy křivky, která je jednoznačně určená po-
mocí tří bodů [1]. Cílovou funkcí je počet kabelů, kterou se snažíme z ekonomických
důvodů minimalizovat. V tomto konkrétním případě vektor neznámých proměn-
ných obsahoval jeden člen vyjadřující polohu trasy a druhý člen vyjadřující počet
použitých kabelů.

Celkem sedm parametrů bylo postupně otestováno, na základě čehož byly následně
stanoveny jejich optimální hodnoty a tak byl algoritmus nastaven pro budoucí opti-
malizace. Vyvinutý a otestovaný algoritmus byl následně aplikován na dvě konkrétní
úlohy. Jednalo se o optimalizace trasy předpínacích kabelů prostě podepřeného
nosníku a spojitého nosníku o dvou rozdílných polích. Délka prostého nosníku a
prvního pole spojitého nosníku je stejná, přičemž i ostatní charakteristiky jako za-
tížení, charakteristické pevnosti betonu i oceli byly totožné pro oba případy.

Cílem bylo nalézt řešení s co nejmenším počtem kabelů, které vyhovuje třem
následujícím podmínkám: v nosníku nevzniká tah od dlouhodobého zatížení, ne-
jvětší tlak je omezen a dráha kabelu musí být uvnitř nosníku. V prvním případě se
jednalo o troj rozměrný problém, kde dvě neznámé vyjadřovaly tvar Bézierovi křivky
a třetí počet kabelů. Druhý případ byl čtyř rozměrný, kde tři neznámé vyjadřovaly



tvar dvou Bézierových křivek (jedna křivka pro každé pole) a poslední neznámá
vyjadřovala počet kabelů.

Výpočet byl opět proveden desetkrát, přičemž v každém z celkem dvaceti výpočtů
algoritmus nalezl řešení, které splňuje zadané podmínky. Z výsledků vyplývá, že
nejvíce omezující podmínkou byla podmínka nulového tahu po délce konstrukce.
Každé nalezené řešení bylo přesně na hranici tahu, tedy maximální tlak byl přesně
0 MPa. Nicméně u obou úloh se nalezené trasy podstatně lišily. To může být
důsledkem přítomnosti několika lokálních minim s velmi podobnou hodnotou cílové
funkce a tedy nedostatečnou robustností algoritmu.
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1 Introduction
Without a doubt, the main advantage of prestressed concrete over the reinforced
and plain ones is its load bearing capacity. By prestressing, additional compressive
stress is induced in a concrete beam by high-strength steel tendons resulting in the
ability to resist greater loads before cracking. Although known since the late 1880
when first prestressed concrete structures were patented, the boom in development
began in 1928 when Eugéne Freyssinet used high-strength wires for prestressing.
However, inventors at that time had to deal with great loss of prestressing due to
shortening of concrete. In their earliest experiments, two thirds of induced stress
disappeared [10].

These days, after ninety years of research, the loss of prestressing due to various
aspects of the structure is well documented. But it doesn’t necessarily make the
design of a structure subjected to so many changes in time any less difficult. Various
calculus-based approaches which had been put to practice appear to have one thing
in common: finding only a passable solution. Furthermore, considerable experience
might be crucial in the process.

The obvious answer is to use modern computation methods which became avail-
able due to fast computer development in recent years. Nonetheless, in order to
find the optimal solution, the ideal tendon path, it could be convenient to use an
advanced computational method - an algorithm specifically designed to find the
minimum/maximum of noisy functions.

For such a task, a genetic algorithm was chosen. Genetic algorithms being meth-
ods based on the natural law of selection and heredity, and being population based as
well, their popularity as problem solvers has grown considerably in recent years [9].
By mimicking nature and using its laws, genetic algorithms are robust optimization
tools which are used not only in civil engineering [3]. Moreover, their structure
allows casting additional constraints to possible solutions, which is highly relevant
in the case of prestressed concrete structure design.

The purpose of the thesis is to develop a genetic algorithm, while implementing
the evaluation as suggested by [9], to test the robustness of the algorithm, obtain
the correct form of the algorithm by testing and finally apply the algorithm to
solve the constraint optimization problem in the form optimization of a prestressed
concrete tendon path. The result would be savings with regard to both the amount
of material needed and the cost of the material.

1



2 Objectives of the thesis
Primary goals of the thesis are:

• to develop the genetic algorithm in Python programming language [11] based
on the Automatic Dynamic Penalization method [9].

• to test the developed algorithm on selected analytical functions to asses its
robustness.

• to determine the most effective forms of the algorithm by analysing its perfor-
mance on a simple example of the optimization problem.

• to optimize selected examples of prestressed concrete tendon path by the de-
veloped algorithm.

2



3 Engineering optimization
The chapter aims to define general optimization problem and to give an overview of
most common methods used in the field of engineering optimization. The term of
optimization is introduced, followed by possible approaches to optimization along
with their advantages and disadvantages. If not stated otherwise, following chapter
is based on the book Engineering optimization: Theory and practice [13].

3.1 The theory behind optimization

Engineers from various fields can find themselves in an uneasy place as demands
to their designs are often contradictory. One example for all from the field of civil
engineering is the ever present effort to design a structure of a certain load bearing
capacity for a minimum cost. But each of the decision making problem, including
those of civil engineering, can be expressed as a function of varying number of vari-
ables 𝑓(𝑥). Such a function, called an objective function, expresses the nature of
the given problem and summarizes criteria of the optimization, where the perfect
(optimal) solution 𝑥0 is minimizing or maximizing such function. The process of
finding the minimum/maximum value is called optimization. Further more, maxi-
mum of a function 𝑓(𝑥) equals to the minimum of the negative function −𝑓(𝑥) and
accordingly, minimum of a function equals to the maximum of the negative function,
as displayed in Fig. 3.1. Consequently, each optimization problem can be defined
as a minimization of a function.

Fig. 3.1: Minimum of 𝑓(𝑥) equals to the maximum of −𝑓(𝑥).

3



There are two major optimization categories, based on the nature of the problem
at hand. First category are problems defined only by the objective function 𝑓(𝑥)
and the unknowns of vector 𝑥. Such a task is called unconstrained optimization.
In the second category, additional conditions are cast on the solution in the form of
equality and inequality constraints, hence the name constrained optimization. See
the definition of a optimization problem in subsequent equations.

find 𝑥0 so that for all 𝑥 : 𝑓(𝑥0) ≤ 𝑓(𝑥) (3.1)

𝑥 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥n} (3.2)

𝑔j(𝑥0) ≤ 0; 𝑗 = 1, 2, 3, . . . , 𝑚 (3.3)

ℎk(𝑥0) = 0; 𝑘 = 1, 2, 3, . . . , 𝑛 (3.4)

The function 𝑓(𝑥) is the objective function to minimize and 𝑥 is the multidimen-
sional vector of 𝑛 design variables. In the definition of constrained problem, 𝑔j are
known inequality constraints and ℎk are known equality constraints to which the
solution is subjected. The definition domain of any optimization is defined as the
domain of the vector of design variables:

𝑥L ≤ 𝑥 ≤ 𝑥U (3.5)

where 𝑥L and 𝑥U are lower and upper bounds of the vector of design variables
respectively. Based on above mentioned equations, a hypothetical two-dimensional
design space may be drawn for illustration as in Fig 3.2. In the picture, feasible
region is bounded by four constraints: 𝑔1, 𝑔2, 𝑔3 and 𝑔4. Four types of points can
be identified based on their position in relation to constraints:

• free acceptable point: positioned in the feasible region,
• bound acceptable point: placed on the boundary of feasibility,
• free unacceptable point: located in the non-feasible region but not lying on

any constraint surface,
• bound unacceptable point: positioned on the boundary of one or more con-

straints but being non-feasible due to other constraint(s).
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Fig. 3.2: Illustration of a possible constrained surface of optimization.

3.2 Optimization methods

Based on the historical development and the development of means of optimization,
various methods used for engineering optimization can be sorted into two main
categories: traditional or classic ones and modern techniques. In the following
sections, each category will be described along with examples.

3.2.1 Traditional techniques

Although varying in the approach, roots of traditional search methods can be traced
back to the times of Newton or Leibnitz. These methods were then further devel-
oped in the twentieth century and implemented with the help of digital computers.
However, due to the fact that real-life problems are often represented by noisy ob-
jective functions with multiple local minima and maxima and the search space of
such functions might be considerably wide, traditional methods do not always posses
the robustness required for solving complicated, real-life cases. Despite that, these
methods can prove highly efficient when applied in combination with modern search
methods, as described in section 3.2.2. Following paragraphs offer basic description
of each of the three main types of traditional search methods [3].

Calculus-based methods

Based on analytical approach, traditional methods may be divided into two main
subclasses based on the procedure: direct and indirect.

The first one, direct method, uses local gradient. By obtaining gradient at a
given point, it is then possible to move in the direction of the steepest slope. Such
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an approach is also called a hill-climbing method. However, when dealing with an
objective function of multiple local minima/maxima, climbing based on the gradient
is highly inefficient, as it searches only in a local region. Further more, if local
extrema are present, the success of this method is highly dependable on the starting
point.

The second type of calculus-based methods are indirect methods. When search-
ing for the extremum, set of equations is obtained by setting the gradient to zero.
By solving these equations, possible extrema are found, which are then tested to
achieve the global maximum or minimum.

Both approaches, whether direct or indirect, are local in scope and dependable
on the existence of derivative. Thus, objective functions has to be differentiable
and continuous. Real-life problem representations often do not posses such char-
acteristics and thus make calculus-based methods suited only to a limited problem
domain [3].

Enumerative methods

When using enumerative method, the search algorithm examines one value in the
search space after another to find the extreme one. The domain has to be either
finite or discretized. Although attractive in its simplicity, such an approach lacks the
efficiency when applied to larger search spaces. As such, its application to practical
problems is highly restricted.

Random search algorithms

As the name suggests, random search examines random values of the search space
and saves the best one found so far. However, just like enumerative methods, its
apparent lack of robustness makes the method highly unsuitable for larger scale
problems.

3.2.2 Modern Techniques

Along with the development of modern computers, not only traditional methods had
been improved, but also new methods had begun to emerge in the second half of
twentieth century. Most of the methods mimic principles found in nature, whether
hereditary principles or behaviour of colonies of organisms. Five methods will be
introduced in the following sections.
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Simulated Annealing

The simulated annealing simulates the slow cooling process of metal to achieve the
global minimum. The algorithm works with one solution, gradually moving in the
search space. By contrast to gradient based methods, a temperature-like parameter
𝑇 is introduced to control the search process. Also, a probability distribution is
implemented to generate the new value. In the beginning of the search, the value
of 𝑇 is usually higher and as the search continues, the value declines. The greater
the parameter 𝑇 , the greater the probability of accepting a worse solution. Towards
the end of the search the improved solutions are accepted almost exclusively, thus
searching in the local area.

Particle Swarm Optimization

Particle swarm optimization (PSO) mimics the behaviour of animal colonies (swarms),
where the term ’particle’ refers to one animal of such a colony. The swarm contains
specified number of particles, each of which is characterized by its velocity and its
position. Each particle moves in the search space, remembers the best solution it
has found so far and tries to find a better one. The particles communicate between
themselves, thus in the case of finding exceptional point, other particles will follow to
further explore the region. The process of updating the swarm is repeated specified
number of times.

Ant Colony Optimization

Based on the behaviour of ant colonies, the Ant Colony Optimization (ACO) mimics
the approach ants use to find the shortest way to food. The optimization problem
is defined as multi-layered where each layer corresponds to one design variable and
each of the variables is defined by its permitted discrete values. Thus this approach
is applicable only to discrete optimization problems, also called combinatorial prob-
lems. The ants move from one variable to the other leaving certain trace behind
themselves (also called pheromone trace), the better the solution, the stronger the
trace is. Ants which subsequently visits the solutions are then moving in the direc-
tion of stronger pheromone and are thus capable of finding the better solutions.

Optimization of Fuzzy Systems

On the contrary to previously mentioned methods, Optimization of Fuzzy Systems
deals with real life problems which are stated in vague linguistic terms. With that
being said, for the search of the optimum value of such systems, the basic definition
of optimization changes. In contrary to the definition (3.1), constraints are given in
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a fuzzy statements called membership functions, which are boundaries of the area
where a statement is true. Optimum solution can be viewed as an intersection of
such functions. The solution can be found only after membership functions are
formulated, which requires substantial knowledge of the problem to optimize.

Genetic Algorithms

Genetic algorithms (GA) mimic two basic evolutionary principles found in nature,
which are survival of the fittest along with hereditary principles. Through the
computation a set of possible solutions is improved by applying the natural principles
in the form of genetic operators. Due to the mixture of these principles, GAs are
a very effective tool when searching in a domain of noisy function. However, a lot
of testing is needed as there are parameters which need to be tuned specifically for
a given problem.

3.2.3 Algorithm suitable for the optimization of prestressed
tendon path

The above mentioned list is by no means complete, however, it represents the most
common methods. The algorithm used for the optimization of prestressed concrete
tendon path should reflect the demands of the problem.

The objective function of the problem is continuous on the specified domain,
however, the presence of multiple local extrema can be presumed. Based on [13] an
algorithm working with multiple possible solutions at the same time would be more
effective with regard to the given problem.

From the requirements listed in the previous paragraph, traditional optimization
techniques can be rejected as their robustness appears not be sufficient for a given
problem. Regarding modern optimization methods, the Ant Colony Optimization
is suited for discrete domains only and the Optimization of Fuzzy Systems is not
fitting the clearly defined problem such as the optimization in question. Both Ge-
netic Algorithms and Particle Swarm Optimization appear to be well suited for the
problem, as both work with the set of solutions, thus being supposedly robust for
multiple local optima problems. For the purpose of the thesis the optimization via
Genetic Algorithms had been chosen.
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4 Genetic algorithms
The chapter firstly defines a genetic algorithm based on the historical development
of the optimization method. Subsequently, basic structure of a GA is described with
its key steps. The most common ways of implementation of each step are outlined
along with possible alternatives.

4.1 The development of genetic algorithms

For the reasons described in previous chapter a genetic algorithm are suitable tool for
the purpose of the optimization. They are stochastic 1 algorithms [13] which combine
the law of natural selection along with the principles of genetics to become an
algorithm robust enough to be applicable to a wide range of optimization problems
[3].

First efforts to mimic natural processes via computer simulations had appeared
in the nineteen sixties and their primary goal was to study principles of evolution.
As evolution is a process which takes long periods of time to be observable in nature,
computer simulations allowed examining development of these processes more easily.
Such practices were later described by John Holland in his book “Adaptation in nat-
ural and artificial systems” (1975) with the purpose to study adaptability of natural
systems and possibilities to apply these principles in algorithms. As Mitchell remarks
in [8], the theoretical background of genetic algorithms as described by Holland had
laid foundations to their future development. Basic principle of Holland’s algorithm
was to replace the existing set of possible solutions to a given problem by a new
one by applying principles of natural selection and heredity. Possible solutions were
coded in a binary representation (strings of zeros and ones) and hereditary principles
were applied in a form of binary genetic operators: crossover and mutation [5].

In the following years, genetic algorithms started to attract more attention as a
possible optimization tool. However, their limitations started to present themselves
as well. Application of GA upon various problems had proved that in many cases
binary representation is not sufficient and better results are accessible by so-called
real-coding. Instead of binary representation, real-coded algorithms use different
representation of solutions, better corresponding to a given problem: matrices, ar-
rays, vectors etc. Also, binary genetic operators were altered to better express
nature of the problem. These transformed forms of GA were given various names:
non-standart GA, modified GA or specialized GA [7].

1probabilistic
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Genetic algorithms are not the only algorithm inspired by the process of natural
selection. All such algorithms are members of a group called evolutionary algo-
rithms. However, because of the gradual development of genetic algorithms, the
difference between real-coded, modefied GAs and other evolutionary algorithms is
not possible to define [7], [12]. For the purpose of this work, the expression genetic
algorithm will be interchangeable with transformed genetic algorithm and evolution-
ary algorithm.

4.2 Basic principles

The basic structure of a genetic algorithm is displayed in Fig. 4.1 on the following
page. This structure is in no way complete as it can be enriched by other steps.
The deployment of these steps as well as their specific form is determined based on
the given problem, as genetic algorithms tend to be more efficient the more special-
ized they are [7]. The meaning of each step is explained in subsequent paragraphs.
The implementation of each step and their modifications are explained primarily
with regard to the optimization solved in later chapters of the thesis, which is the
optimization of a constrained problem by a real-coded algorithm.

Because of the inspiration by nature, the terminology corresponds to the one of
biological evolution and heredity. Previously mentioned set of possible solutions is
also called a “generation” or a “population”, while a solution itself is referred to as
an “individual”. As seen on the flowchart (Fig 4.1), the computation is iterative and
a new generation of individuals is generated in each step. Thus number of iterations
(cycles) corresponds to the number of generations 𝑁G used in one computation by
the algorithm.

4.2.1 Selection of the first generation

To begin the computation, the first generation comprising 𝑁I has to be created. The
most common way is to generate the required number of individuals randomly out
of given definition domain. However, the first step of the search may be facilitated
by certain precautions, which mainly depend on the knowledge of the problem at
hand. Naturally, the wider the domain is, the more solutions are there to explore.
Hence the possibilities are to either generate more individuals in the first generation
(first suggested by De Jong in [6]) or to narrow the domain by applying knowledge
about the problem [12]. The ultimate goal is to found better solutions in the first
generation which would guide the search in the later stages of computation. As
suggested by Simon in [12], the initial population may be also locally optimized
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Fig. 4.1: Flowchart representing basic structure of a genetic algorithm [8].

to obtain even better first generation of solutions. However, such a modification
requires the use of an additional algorithm.

4.2.2 Evaluation of the generation

After selecting the first generation, each of the individuals is evaluated. Such an
evaluation is also referred to as a fitness score of the individual. In the case of a
constrained problem, the evaluation is calculated based on two components.

Fitness function

Firstly, the realization of the objective of the optimization is assessed. From the
definition of an optimization (Eq. 3.1) can be derived, that the smaller the value of
the objective function is for the given individual, the better evaluation it receives.
The fitness function may mathematically vary from the objective function, however,
both functions pursuit the same target: to express the problem [12].
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Penalization function

Second part of the evaluation represents the compliance with the additional condi-
tions, expressed in the form of inequality and equality constraints, (3.3) and (3.4)
respectively. Their fulfilment is evaluated by a penalization function. Many practi-
cal optimization problems place the optimum value on the boundary of feasible and
infeasible regions. For this reason, it is desirable to use such a penalty, which favours
feasible individuals only to a certain extent so that best non-feasible individuals can
still act as attraction points when looking for a better solution.

The formulation of such a function may vary considerably, based on the problem
at hand and multiple approaches exist when dealing with penalization [9]. As the
penalization has to be scaled appropriately with regard to the values of the fitness
function to fulfil the above mentioned objective, it is necessary to use a coefficient
which adjusts the penalty. To avoid manual tuning of the factor which requires
multiple testing, various methods have been suggested to balance between feasible
and non-feasible regions during computation. In these methods, the penalty function
is self-adaptive and the coefficient varies in generations (see [9] for an overview
of self-adaptive methods). In the developed algorithm the Automatic Dynamic
Penalization method was implemented as described in the section 6.2.2.

4.2.3 Convergence criteria and termination

As the algorithm runs in cycles, a convergence criteria must be specified to terminate
the computation. The nature of the criteria depends on the problem at hand and
can be in principle divided into one of the following three groups [12].

1 Searching for a previously known solution.
In this case, it is possible to stop the algorithm when the best solution in a
generation lies close enough to a given one. As genetic algorithms are stochas-
tic, the solution will never be absolutely precise and it is thus necessary to
specify the degree of precision required of the algorithm.

2 Preset number of cycles/evaluations.
Specifying the number of generations is used in problems for which the solution
is unknown. As the number of generations corresponds to the number of cycles,
the algorithm will terminate after given number of iterations is performed. The
approach has its advantages, such as run-time predictability and simplicity.
However, when comparing different algorithms, the sole number of generations
𝑁G used is not a valid criteria as the number of individuals 𝑁I may vary. For
this reason, a total number of evaluations performed 𝑁TOT is preferred.
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3 No improvement criteria.
Common philosophy behind these types of termination condition is following:
if the fitness value of individuals over generations is no longer improving, the al-
gorithm has found the optimal value. Obvious drawback is that the algorithm
may be terminated before converging to the global optimum. The condition
may be specified in various terms, whether the fitness of the best individual
in a generation, the average fitness of all individuals or a standard deviation
of fitness in a generation.

4 Combination of the above mentioned.
A combination of the above mentioned criteria may be used as well. For
example to limit the number of cycles while using the no improvement criteria
as well.

4.2.4 Genetic operators

Genetic operators apply the principles of natural selection and heredity. Through
appropriately implementing them, two opposite objectives are pursued. Properly
setted genetic operators should balance the exploitation of previously found solutions
while exploring the whole definition domain. If an emphasis is given to exploitation,
the algorithm may converge prematurely towards local optima and even though,
the exploitation of such local area will be sufficient, the final solution will not satisfy
the goal of the optimization. In the opposite case of accenting exploration, the
region found will be that of the global optimum, however, the result will not be
precise enough.

Genetic operators are usually applied in two stages. In the first step, individ-
uals are selected from a generation(principle of the survival of the fittest) while
in the second step, the selected individuals are combined or changed to produce
the individuals of the new generation (principles of heredity).

Selection

To incorporate the survival of the fittest, the selection should be performed at least
partly on the basis of evaluation. However, an emphasis too strong on the evaluation
might lead to premature convergence towards local optimum. Oppositely, a com-
pletely random selection might result in not exploiting the present information.
Multiple stochastic methods of selection have been designed. The most common is
perhaps the roulette-wheel selection, when the better fitness the individual has, the
better chance of being selected [12].

A frequent tool integrated in selection is a so-called elitism. First suggested by
De Jong in [6], elitism sends a number of good enough individuals directly to the new
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generation. Such a tool aims at preventing the algorithm from changing the best
solutions found so far in the generation by subsequent genetic operators.

Crossover

Crossover primarily aims to exploit the already found solutions contained in the cur-
rent generation. By swapping parts of individuals between themselves, new individ-
uals are generated.

In its simplest form, crossover may be performed as one-point recombination, as
described by the following equations [12]. Vectors 𝑥𝑎 and 𝑥𝑏 are two individuals
selected from the current generation, containing 𝑘 number of variables.

𝑥𝑎 =
{︁
𝑥𝑎

1, 𝑥𝑎
2, ..., 𝑥𝑎

𝑚−1, 𝑥𝑎
𝑚, ..., 𝑥𝑎

𝑘−1, 𝑥𝑎
𝑘

}︁
𝑥𝑏 =

{︁
𝑥𝑏

1, 𝑥𝑏
2, ..., 𝑥𝑏

𝑚−1, 𝑥𝑏
𝑚, ..., 𝑥𝑏

𝑘−1, 𝑥𝑏
𝑘

}︁ (4.1)

while vectors 𝑦𝑎 and 𝑦𝑏 represent their offsprings, members of the new generation.
Where 𝑛 is the number of design variables in every individual and the crossover
point is right before the 𝑚th component. By recombining 𝑥𝑎 and 𝑥𝑏 individuals via
one-point crossover, following offsprings are produced:

𝑦𝑎 =
{︁
𝑥𝑎

1, 𝑥𝑎
2, ..., 𝑥𝑎

𝑚−1, 𝑥𝑏
𝑚, ..., 𝑥𝑏

𝑘−1, 𝑥𝑏
𝑘

}︁
𝑦𝑏 =

{︁
𝑥𝑏

1, 𝑥𝑏
2, ..., 𝑥𝑏

𝑚−1, 𝑥𝑎
𝑚, ..., 𝑥𝑎

𝑘−1, 𝑥𝑎
𝑘

}︁ (4.2)

Just like in the case of previous steps, multiple alternations may be made. One point
crossover is generally considered the least productive one [12]. In lieu of it a multiple-
point crossover may be used, or other forms such as multi-parent crossover or binary
like crossover in the case of real-coded algorithm. For other options see [7, 12].

The chance that each of the selected individuals will be recombined is expressed
by the crossover probability 𝑝c. It ranges from 0 when no individual will be chosen,
to 1 when every individual will be recombined.

Mutation

In opposition to crossover, mutation primarily serves the exploration of the domain
and thus the preservation of a diversity in a generation. By randomly changing parts
of a solution, a completely different solution should be found, potentially better
but at least different then those already found. The aim is to avoid premature
convergence towards local optimum.

The mutation probability 𝑝m defines the probability that each variable in every
selected individual will be mutated. The new variable is added the current one is
usually generated either from a uniform distribution or from a Gaussian distribution.
Both of these two options are defined by the mean and by the standard deviation
and may considerably influence the search of the algorithm.
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5 Prestressed concrete
As the objective of the optimization is to determine the optimal prestressed con-
crete tendon path, following chapter explains basic principle of prestressed concrete
structures. Comparison of a plain concrete and a reinforced concrete is drawn.
Subsequently, secondary effects along with the losses of prestressing are described
as both may have considerable effects on the distribution of internal forces of a
prestressed concrete structure and thus play an important role in the optimization
process. If not stated otherwise, the chapter is based on the book [10] by Jaroslav
Navrátil.

5.1 Basic design principle

Well known characteristics of a plain concrete is its low strength in tension. The ten-
sile strength 𝑓ctm is approximately ten times smaller compared to the compressive
one 𝑓ck. The response of such a structure loaded in tension is approximately linear
until first crack appears, resulting in brittle failure happening without any previous
warning.

This serious drawback of any concrete structure can be outweighed by inserting
reinforcement in the form of steel rods. Such a reinforcement is placed in the most
critical parts of the structure, where tension might occur. The reinforcement then
passively resists the load applied. As the reinforcement is of a ductile material,
sudden failure is avoided when the stress reaches the yield strenght of the material.
Even though the stiffness of the structure is reduced, its ability to resist loading
remains.

To prevent the reduction of stiffness, the creation of cracks and subsequently cor-
rosion of the reinforcement, prestressed concrete had been developed. By prestressed
tendons an additional compressive stress is induced in the structure resulting in fur-
ther delaying the formation of cracks and thus the stiffness reduction. Further more,
there is a possibility to control the distribution of internal forces by the prestressing
force and by the tendon path.

In following stress-strain diagram the response of different kinds of concrete
structures to loading is shown. Black colour represents plain concrete, a reinforced
concrete is represented by a blue one and a prestressed concrete by a red one.
The hatched part corresponds to the improvement of a prestressed concrete over
reinforced one as the area bellow the curve is proportional to the energy necessary for
a failure of the structure. The picture is taken from [10] and theoretically compares
the same elements subjected to the same loading, which is not possible in practice.
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Fig. 5.1: Stress strain diagram comparing different types of concrete [10].

The mechanism of eliminating normal stress from loading by prestressing is de-
scribed in following equations:

𝜎c = 𝜎N
c,P + 𝜎M

c,P + 𝜎M
c,l

(︁
+𝜎N

c,l

)︁
(5.1)

𝜎c = 𝑁P

𝐴
+ 𝑀P𝑧

𝐼𝑦

+ 𝑀l𝑧

𝐼𝑦

+
(︂

𝑁l

𝐴

)︂
(5.2)

In the first equation 𝜎c represents the resulting stress in the beam, the first letter
of the upper index stands for the internal force (𝑀 for a bending moment and 𝑁

for normal force) and the second letter stands for the origin of the force (𝑃 for
prestressing and 𝑙 for external loading and self-weight). In the following formula, 𝐼y

stands for the moment of inertia of the cross section of the beam in the direction
of 𝑦 axis and 𝑧 indicates the distance from the centre of the cross section. In the
case of applying only horizontal external loading, no normal stress 𝜎N

c,l emerges (as in
example in Fig. 5.2). However, in a case of structures loaded differently, it influences
the stress in the construction as well.

Tension is considered of positive value and compression of a negative value, thus
when the additional compression is induced by prestressing, considerable amount of
the occuring tensile stress may be eliminated. See the graphical representation of the
stress midspan and at the end of a simply supported beam subjected to continuous
load 𝑔 and prestressing force 𝑁P in Fig. 5.2.

The diagrams show that to eliminate the tensile stress effectively, the tendon
should induced the biggest compression in the area which is most likely to be sub-
jected to tension: the place of the maximum bending moment from external loading
and self-weight. In this case that is the middle part of bottom fibres. However, as
the external bending moment decreases towards the supports, different stress occurs
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at the end of the beam, see bottom part of the Fig. 5.2. The position of the tendon
path in the lower part of the cross section may lead to a high negative bending mo-
ment in the top fibres as there is no bending moment from external loading present.

Fig. 5.2: Stress distribution in different parts of a prestressed simply supported
beam.

5.2 Secondary effects

In the Fig. 5.2, the stress in a simply supported prestressed beam is demonstrated.
However, statically indeterminate structures are subjected to additional stress due
to statically indeterminate forces. These effects are called complementary or sec-
ondary effects of prestressing. The term “primary prestressing effects” describes the
statically determinate reactions of prestressing, also termed basic effects. The total
effects of prestressing can be then calculated as a summation of primary (𝐼) and
secondary (𝐼𝐼) effects. The total moment of prestressing can be written as follows:

𝑀P = 𝑀 I
P + 𝑀 II

P (5.3)

The comparison of internal forces of statically determinate and indeterminate beams
is shown in Fig. 5.3. An additional reaction 𝑅 occurs due to the pressence of
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the middle support of statically indeterminate beam. The support restrains defor-
mation of the beam, thus additional forces arise: secondary bending moment 𝑀 II

P

and secondary shear force 𝑉 II
P which equals to the resulting shear force 𝑉P.

Fig. 5.3: Illustration of secondary effects of prestressing.

5.3 Losses of prestress

Prestress as induced in the beam at the time of creation (prestressing) does not
remains constant. Due to various factors which will be explained later in the section,
a reduction occurs either by immediate action or in time. Such a reduction is also
called loss of prestress and it equals to the difference between the initial prestressing
value and the effective prestress remaining in a structure.

As indicated above, the losses may be divided into two groups from the perspec-
tive of time. The first type of losses occurs at the time of prestressing, and as such is
termed immediate loss or short-term loss. The second type, occurring during service
life of the structure, is called time dependent loss or long-term loss.

5.3.1 Short-term losses

In comparison to long-term losses, immediate losses are highly dependable of the
technology used, whether the beam is pre-tensioned1 or post-tensioned2. The fol-
lowing list classifies the losses with regard to the type of production.

1The reinforcement is prestressed first followed by a casting of the concrete.
2The concrete element is cast first and prestressed after hardening of the concrete.
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• Elastic shortening: occurs with both type of manufacturing, although when
post-tensioning only in case of seqential tensioning.

• Friction: although present in pre-tensioned structures as well (at the drap-
ing points of the reinforcement), this loss influences post-tensioned structures
considerably more.

• Anchorage slip: only in case of post-tensioning as there is no need for anchor
in the other procedure.

For the purpose of short term losses calculation, both concrete and tendon are
considered ideally elastic. Also, the prestressing force is assumed to act in the
tendon section’s center of gravity.

When the force is induced in a pre-tensioned beam, its effect results in immediate
deformation of the concrete beam which shortens. Simultaneously the tendon is also
deformed, resulting in its shortening and thus, loss of prestress. If every cable in
post-tensioned beam would be stressed at the same time (which is not feasible)
no loss would occur due to elastic shortening. However, in most cases beams are
prestressed one after another and due to the sequentiality the loss occurs as well.
Due to the presumed bond between concrete and tendon, the strain increment in
the concrete Δ𝜀c is equal to the strain reduction in the tendon Δ𝜀p, see following
equations.

Δ𝜀c = Δ𝜀P (5.4)

Δ𝜀c = Δ𝑁c

𝐴c𝐸c
(5.5)

Δ𝜀P = 𝑃 − Δ𝑁c

𝐴P𝐸P
(5.6)

Δ𝑁c is the increment of normal force in concrete which equals the reduction of pre-
stressing force Δ𝑁c = 𝑃 − Δ𝑃 , 𝑃 is the prestressing force and 𝐴𝐸 is the axial
stiffness of both materials (marked by respective lower index).

Loss of prestress as a result of friction appears mainly in post-tensioned struc-
tures, as the friction exists between the tendon and walls of a tendon duct. In case
of a pre-tensioned structure the loss appears at draping points of the reinforcements
and between the tendon and the stressing bed. The total change of prestress between
points 𝐴 and 𝐵 od distance 𝑙 can be obtained as in following equation:∫︁ 𝑃B

𝑃A

𝑑𝑃

𝑃
= −𝜇

∫︁ 𝛼B

𝛼A
𝑑𝛼 − 𝐾

∫︁ 𝑥B

𝑥A
𝑑𝑙 (5.7)

where the total loss is a combination of the loss due to angular change 𝛼 and along
the tendon’s length between the points 𝑙. 𝑃A and 𝑃B is the prestressing force applied
in respective points, 𝜇 and 𝐾 are the friction coefficients.

The loss due to anchorage slip always depends on the anchor used and the lenght
of the slip 𝑤 is reported by the manufacturer. The anchorage slip must be equal to
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the total shortening of the tendon 𝜀pw due to the drop of the stress during anchorage
set −Δ𝜎pw:

𝑤 = −
∫︁ 𝑙w

0
Δ𝜀pw𝑑𝑙 = −

∫︁ 𝑙w

0
Δ𝜎pw𝑑𝑙 (5.8)

where the integral limit is not known [10].

5.3.2 Long-term losses

Time dependent losses occur after anchoring or transport and influence the value of
prestressing force through the life span of the element. Unlike short-time losses they
are not dependent on the production used. See major causes of long-term losses in
the list below.

• Relaxation of the tendon(s).
• Shrinkage and creep of concrete.

In the case of tendons relaxation, an increased deformation over time occurs due
to a constant stress. The deformation (elongation) increases and thus the tendon
relaxes. Various factors influence the loss, namely the level of induced prestressing
force and time. Shrinkage of concrete is the result of water evaporation from the
concrete which occurs through the life span of the structure. As such, it does not
depend on the loading history. The creep is caused by sustained load applied on the
element.

The calculation of the problem is complex as the above mentioned phenomena
depend on various factors, such as the concrete mix parameters, the design strength
and the age when loading begins etc. Mostly numerical methods are used for the
calculation, as the ageing is an obstacle to analytical solution.

However, the total strain in the element subjected to normal stress 𝜀𝑚𝑎𝑡ℎ𝑟𝑚𝑁

may be formulated as follows [10]:

𝜀𝑚𝑎𝑡ℎ𝑟𝑚𝑁(𝑥, 𝑡) = 𝜎N(𝑥, 𝑡0)𝐽(𝑡, 𝑡0) +
∫︁ 𝑡

𝑡0
𝐽(𝑡, 𝑡′)𝜎̇N(𝑥, 𝑡′)𝑑𝑡′ (5.9)

where the strain depends on two variables, 𝑥 the position of stress and 𝑡 the time.
First part of the equation represents the instantaneous strain which is elastic if the
stress is small [14]. 𝑡0 is the time of applying the stress and 𝐽(𝑡, 𝑡0) is the compliance
function, also called the creep function. The function represents the strain at time
𝑡 from the load applied at time 𝑡0. The second part of the equation represents the
inelastic, stress-dependent strain, where 𝜎̇N(𝑥, 𝑡′)𝑑𝑡′ represents the stress increment
from time 𝑡0 to time 𝑡.
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6 The optimization of a prestressed con-
crete tendon path

To optimize prestressed concrete tendon path, firstly the parametrization of the
tendon path is described to define the problem later. Subsequently, the algorithm
itself is described along with the form of individual steps. One of the crucial steps
has been the implementation of the penalty function so its performance on selected
analytical function has been analysed. As the efficiency of the algorithm depends
on certain constant values, the testing has been performed on a two-dimensional
optimization example to asses the best values of these parameters. Results of the
performed tests are presented. Last but not the least, the developed algorithm
is applied on selected examples of the optimization problem and its results are
described.

6.1 Formulation of the problem

The ultimate goal of the optimization is to design the tendon path in a way so
that the least possible cables could be used while complying with given conditions.
To do so, the algorithm is connected to Time Dependent Analysis module kindly
provided by the supervisor of the thesis, doc. Ing. Jan Eliáš, Ph.D. The modul
takes into account both short-term and long-term losses as described in section 5.3.
With regard to the goal of the optimization, apart from the path of the tendon and
the number of cables, all the other values needed for the optimization are selected
prior to the computation (e.g. characteristic strengths of both materials, dimensions
of the beam, loading, life span etc.). With regard to the behaviour of the concrete
subjected to stress (Fig. 5.1), following conditions are cast on the optimal solution
member:

1. no tension occurs in the structure due to the long-term loading,
2. maximum compression doesn’t exceed 60% of the characteristic compressive

strength of the concrete,
3. the tendon path is located inside the beam.

6.1.1 Parametrization of the tendon path

In order to successfully apply the developed optimization algorithm, the path of the
cable has to be parametrized. For this purpose one quadratic curve is considered per
span (or per beam, in case of a simply supported beam) representing the central line
of the tendon. The connection of curves in case of a continuous beam is obtained
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by inserting an arch generated by the module. To parametrize the quadratic curve,
a Bézier curve is used. The curve is in its quadratic form represented by three
control points, each of which is defined by its 𝑥 and 𝑦 coordinate.

Fig. 6.1: Quadratic Bézier curve [1].

It is possible to calculate any point of the curve with the help of the parameter
𝑡, which is assigned a value of 𝑡 ∈ ⟨0, 1⟩. For example if 𝑡 = 0 then [𝑥 (0) , 𝑦 (0)] is
the first control point of the curve and if 𝑡 = 0.5 then [𝑥 (0.5) , 𝑦 (0.5)] is the point
in the middle of the curve. Each point of the curve may be calculated with the help
of the parameter 𝑡 by the following equation:

B (𝑡) = (1 − 𝑡)2 P1 + 2 (1 − 𝑡) 𝑡P2 + 𝑡2P3 (6.1)

Thus for the purpose of the optimization, the position of control points is subjected
to optimization as they present unambiguous definition of the tendon’s path.

6.1.2 Definition of the problem

Following equations define the given problem, which is termed as a constrained
optimization due to the occurrence of additional conditions.

Objective function 𝑓(𝑥) equals to the number of cables, which is to be minimized:

find 𝑥0 so that for all 𝑥 : 𝑓(𝑥0) ≤ 𝑓(𝑥) (6.2)

𝑓(𝑥) = 𝑛cab (6.3)

The 𝑛 dimensional vector of unknowns is chosen with the least possible number
of variables to allow the optimization without jeopardizing the process unnecessarily.
For that reason 𝑥 coordinates are fixed. As the path is defined by one Bézier curve
per span of the beam, in case of a continuous beam more curves is used and only 𝑦

of its control points are left free to be optimized. The last member of the vector is
the number of the cables 𝑛cab:

𝑥 = {𝑦1, 𝑦2, . . . , 𝑦n, 𝑛cab} (6.4)
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The domain is restricted by lower 𝑥L and upper 𝑥U bounds of the vector:

𝑥L ≤ 𝑥 ≤ 𝑥U (6.5)
The sign convention is used so stress in tension acquires positive value while com-
pression is described by negative value. The first two of the following equation
concern minimum and maximum stress occurring in the beam, while the final con-
dition assures that the path is led inside the element by restricting extreme points
of the curve, see Fig. 6.2.

𝑔1 :𝜎max ≤ 0 (6.6)
𝑔2 :𝜎min ≥ 0.6𝑓ck (6.7)

𝑔3 : max {|𝑦 (𝑡)|} ≤ ℎ

2 (6.8)

Fig. 6.2: Representation of the objective function and the vector of design variables.

6.2 The developed algorithm

The algorithm is written in the Python programming language [11] with the aid
of its built in libraries and the Distributed Evolutionary Algorithms library [2].
The section describes the selected implementation of individual steps which were
discussed in the section 4.2.

6.2.1 Selection of the first generation

The first generation is selected randomly with a uniform distribution. However,
greater number of individuals, 𝑘𝑁I, is generated so the chance of finding a feasible
individual in the first generation increases. Such procedure was first suggested by De
Jong in [6]. The value of the multiplier 𝑘 was subjected to testing and its influence
on the performance of the algorithm is described later in section 6.3.
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6.2.2 Evaluation of generations

An exterior penalty based method called The Automatic Dynamic Penalization
method (ADP) was implemented as suggested in [9] with certain changes.

The purpose of the method is to allow the algorithm to search on the boundaries
of non-feasibility [9]. The resulting evaluation of a non-feasible individual with
respect to each condition is the same as the evaluation of the best individual in
the generation. Such an approach is highly relevant in the case of the tendon path
optimization, as the best results are expected to lie on the boundary of infeasible
region. To enable such a search, non-feasible points are expected not to be eliminated
by the evaluation and should remain in the population to act as attraction points.

The penalty function of ADP 𝑓P(𝑥) is defined as a modified objective function
𝑓(𝑥) [9]:

find 𝑥0 so that for all 𝑥 : 𝑓P(𝑥0) ≤ 𝑓P(𝑥) (6.9)

𝑓P(𝑥) = 𝑓(𝑥) +
𝑚∑︁

𝑖=1
𝑐𝑖 max {0, 𝑔𝑖(𝑥)} +

𝑛∑︁
𝑖=1

𝑞𝑗 max {0, |ℎ𝑗(𝑥) − 𝜖|} (6.10)

The first member of the equation is the objective function, the second member
incorporates inequality constraints. The third one incorporates equality constraints
by introducing acceptable tolerance 𝜖, thus converting the equality constraint to the
form of inequality constraint. For the purpose of the optimization in this whole
thesis,only inequality constraints are considered. It can be noticed that when the
conditions are not violated (𝑔𝑖(𝑥) ≤ 0), the penalization function equals to the
objective function. In the case of any constraint violation, the evaluation is based on
the degree of violation of a given condition 𝑔𝑖. The scaling coefficient of a constraint
violation 𝑐𝑖 is determined for each generation separately based on the individuals
that violate 𝑖-th constraint 𝑥NF𝑖 .

𝑐𝑖 = max
𝑥∈𝑥NF𝑖

⃒⃒⃒
𝑓(𝑥F

BEST) − 𝑓(𝑥)
⃒⃒⃒

𝑔𝑖(𝑥) (6.11)

Where 𝑥F
BEST is the best feasible individual in the generation. If no feasible individ-

ual appears in the generation, its value 𝑓(𝑥F
BEST) is equal to zero.

6.2.3 Termination criteria

The simplest form of termination criteria has been chosen: the number of gen-
erations 𝑁G determined prior to the computation. For the purpose of analysing
the penalization function and the determination of coefficients, 𝑁G was set to 200
generations. However, for the optimization of the tendon path, the number of gen-
erations is augmented to 500 generations in order to allow the algorithm to find a
more precise solution. For the purpose of future comparisons, the total number of
evaluations is given for each problem.
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6.2.4 Selection of individuals for a new generation

The selection of individuals to undergo genetic operators differs for the first genera-
tion and the subsequent generations. In the case of the first generation, the number
of individuals is multiplied by 𝑘. The selection is based solely on the evaluation
and 𝑁I individuals are chosen to undergo crossover and mutation and subsequently
continue to second generation.

Since the second generation, the number of individuals remains constant (𝑁I) and
the individuals are always selected based on the following key. Elitism is applied with
regard to each constraint and to feasible individuals. 𝑚 constraints are given, thus
the number of elite individuals equals to (𝑚+1)𝑁E. The remaining 𝑁I − (𝑚+1)𝑁E

is chosen randomly. The value of 𝑁E was subjected to testing (see section 6.2.2).
However, elite individuals are still present in the set from which the algorithm

chooses so beside being directly chosen, they may be subjected to genetic operators
as well. In such case both the elite form and the modified form of the individual
continues to the next generation.

6.2.5 Crossover

A simulation of binary crossover is implemented. The crossover modifies in-place
the input individuals element by element [2] for each of the 𝑘 variables contained in
an individual. The crossover is defined in the following equation [12]:

𝑦𝑎
𝑘 =0.5

[︁
(1 − 𝛽𝑘) 𝑥𝑎

𝑘 + (1 + 𝛽𝑘) 𝑥𝑏
𝑘

]︁
𝑦𝑏

𝑘 =0.5
[︁
(1 + 𝛽𝑘) 𝑥𝑎

𝑘 + (1 − 𝛽𝑘) 𝑥𝑏
𝑘

]︁ (6.12)

𝛽𝑘 is computed for each individual based on a generated random number 𝑟 ∈ ⟨0, 1⟩
[2]:

𝛽𝑘 =

⎧⎪⎨⎪⎩
𝑟

1
𝜂+1 , if 𝑟 ≤ 0.5(︁

1
2(1−𝑟)

)︁ 1
𝜂+1 otherwise

(6.13)

Where 𝜂 stands for the crowding degree of the crossover, which expresses how much
offsprings 𝑦a and 𝑦b resemble their parents 𝑥a and 𝑥b. The greater the value of 𝜂 is,
the more the offsprings resemble their parents. Although no bounds are given for 𝜂,
the value is recommended between 0 and 5 [12]. For the purpose of the optimization,
various values have been tested to obtain the best one for the problem at hand, see
section 6.3.

6.2.6 Mutation

The mutation is defined as Gaussian, centered in the middle of the search domain.
The value of the probability 𝑝m (see section 4.2.4) was determined based on the
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testing presented in section 6.3. Standard deviation 𝜎 linearly decreases over gener-
ations, so that the exploitation is gradually more focused at regions already found.
The starting value of standard deviation 𝜎ini was subjected to testing as well as the
rate of decreasing of the value.

6.3 Analysis of the algorithm

The analysis of the algorithm was performed in two phases. Firstly, the algorithm
was tested on selected analytical function with different constraints to asses robust-
ness of the penalization function and analyse its implementation. Subsequently, the
algorithm was applied to a two dimensional optimization problem of the tendon path
to determine the most efficient values of the coefficients described in the previous
section.

6.3.1 Test function

For the purpose of evaluating the performance of implemented penalization func-
tion, the function as defined in [9] was selected. As certain form of the penalization
function is tested on the same function in the article, it is possible to draw a com-
parison of results presented in the article with results obtained by the developed
algorithm.

The only difference between the algorithm developed and the reference one is the
selection method. On the contrary to the algorithm described in [9], the developed
algorithm uses elitism and random selection for the rest of individuals as explained
in 6.2.4. However, the value of coefficients is set to be the same, so the number of
generations 𝑁G = 100 and number of individuals in one generation 𝑁I = 200 making
the total number of evaluations 𝑁TOT = 20000. The number of individuals in the
first generation is also equal to 𝑁I. Probabilities of crossover and mutation equal to
𝑝c = 0.85 and 𝑝m = 1

𝑁I
= 0.005. Other steps are implemented as described in the

section 6.2.4.
The function is of two variables, continuous on a given domain:

find 𝑥0 so that for all 𝑥 : 𝑓(𝑥0) ≤ 𝑓(𝑥)

𝑓(𝑥1𝑥2) = −exp(0.2
√︁

𝑥2
1 + 𝑥2

2) sin(𝑥1) cos(1.2𝑥2) (6.14)

0 ≤ 𝑥1 ≤ 4𝜋

0 ≤ 𝑥1 ≤ 2𝜋
(6.15)
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Test case 1

In the first case, the function (6.15) is subjected to the following constraint:

𝑔1(𝑥1, 𝑥2) = exp(0.012𝑥2
1) − 1 − 𝑥2 ≤ 0 (6.16)

There is multiple local minima present on the feasible side of the domain and the
constrained minimum is placed exactly on the boundary of infeasibility. Further
more, the unconstrained minimum is placed closely to the unfeasible one.

Ten runs of the algorithm were performed. The following table presents mean
and standard deviation of values obtained by the algorithm in comparison to the
reference solution presented in [9]. The distance from the compared value was
calculated from the mean value.

𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
Mean 10.70716 2.95853 −8.11192

Standard deviation 0.01289 0.01311 0.00406
Reference solution [9] 10.71119 2.96646 −8.09933

Distance to the ref. solution 0.00889

Tab. 6.1: Comparison of results of the two algorithms for test case 1.

Tab. 6.1 documents, that the developed algorithm has found a solution better by
0.0889. Thus the algorithm is robust enough for the problem. The slightly changed
penalization function combined with elitism with regard to non-feasible individuals
does not negatively effects the algorithm.

The search domain along with the constraint 𝑔1 can be seen in the Fig. 6.3. The
solution lies on the boundary where 𝑔1 = 0.
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Fig. 6.3: Representation of the test case 1 of two design variables and one constraint.

Test case 2

For the second test the function is subjected to two constraints. There are several
regions containing local minima, which are barely infeasible. Just like in the case
of the first function, the unconstrained global minimum lies in the infeasible area.
The constrained minimum lies on the intersection of the two constraints. The first
condition is the constraint 𝑔1 from test case 1, the second constraint 𝑔2 is defined as
follows:

𝑔1(𝑥1, 𝑥2) = exp0.012𝑥2
1 − 1 − 𝑥2 ≤ 0 (6.17)

𝑔2(𝑥1, 𝑥2) = 0.1
[︂(︂0.4

4𝜋
𝑥1 + 0.7

)︂
sin(𝜋

2 𝑥1) sin(𝜋

2 𝑥2) − 0.7
]︂

≤ 0 (6.17)

Ten runs were performed as in the previous case. Means and standard deviations
are shown in the Tab. 6.2, along with results of the compared algorithm of [9].
The distance from the reference algorithm was calculated based on the mean value
of 𝑥0.

The definition domain is depicted in Fig. 6.4 where barely infeasible islands are
present as a result of the constraint 𝑔2 (represented by white). Despite the fact
that the global minimum lies on the intersection of the two constraints cast, the
algorithm has again found the global minimum in each of the ten runs.
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𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
Mean 10.47196 2.72999 −7.47438

Standard deviation 0.00174 0.00230 0.01022
Reference solution [9] 10.45320 2.71465 −7.33770

Distance to the ref. solution 0.13800

Tab. 6.2: Comparison of results of the two algorithms for test case 2.

Fig. 6.4: Representation of the test case 2 of two design variables and two con-
straints.

6.3.2 Analysis of the effects of algorithm coefficients

To design an algorithm tailored to the given problem, determining of the optimal
values of the coefficients have been performed. The values to determine were namely:
the number of individuals in a population 𝑁I, the number of individuals in the first
generation (the multiplier 𝑘 of 𝑁I), the number of elite individuals transferred di-
rectly to a new generation 𝑁E, the probability of crossover 𝑝c, the crowding degree
of crossover 𝜂, the probability of mutation 𝑝m, and the change of standard deviation
through generations. The testing was performed on the first version of the algorithm,
where the evaluation was precisely as suggested in [9] and the elite individuals were
chosen only with respect to their feasibility.
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To obtain information about the algorithm’s behaviour, basic set of the concerned
values was given and only single parameter was tested at time. The basic set of values
was set as follows: 𝑁I = 100, 𝑘 = 5, 𝑁E = 5, 𝑝c = 0.5, 𝜂 = 5 and 𝜎ini = 0.2 and
𝜎end = 0.02. For each test, ten runs of the algorithm were performed, subsequently
its convergence was compared as well as the results. The information obtained
is therefore limited, as the mutual interaction between different parameters is not
taken into account. However, such analysis was not yet done due to its complexity
and computational resources required.

The analysis was performed on a two dimensional problem of designing pre-
stressed concrete tendon path of a simply supported beam. The curve is determined
by one Bézier curve where the 𝑦-coordinate of the middle point 𝑦2 is optimized.
The other two control points of the curve are fixed in both directions. Second vari-
able is the required number of cables 𝑛cab. The three constraints as described in
the section 6.1.2 are applied. Dimensions of the beam as well as loading along with
times of application are given. The problem is defined by the following objective
function, vector of design variables and domain:

𝑓(𝑥) = 𝑛cab (6.18)
𝑥 = {𝑦2, 𝑛cab} (6.19)

−3 ≤ 𝑦2 ≤ 3 (6.20)
20 ≤ 𝑛cab ≤ 40 (6.21)

See the representation of the problem in Fig. 6.5.

Fig. 6.5: Representation of the test case of two design variables.

The definition domain looks as shown in Fig. 6.6. Each colour represents feasible
area with respect to one condition and constrained minimum is located. The first
condition (6.6) concerning maximum stress is the most limiting one as its feasibility
region represents the feasible region of the problem.
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Fig. 6.6: The domain of the two dimensional problem.

Number of individuals in a generation 𝑁I

Four different values were tested. The process of the algorithm may be seen in the
Fig. 6.7a, showing mean values of the best individuals in a generation from the ten
runs performed. Standard deviation is also visible in the same, although slightly
more transparent colour. In the Fig. 6.7b only the mean result of the ten runs along
with the final standard deviation is shown.

It is obvious, that too small population (𝑁I = 50) have considerable effect on
the algorithm. The convergence is in that case slower and the mean result is rather
worse. The best convergence is obtained by 𝑁I = 200. However, the results of
the other three values differ only slightly (mean results as well as standard deviation).
For the reason of marginally faster convergence, for future application the number
𝑁I = 200 has been selected.

The number of individuals in the first generation 𝑘𝑁I

The aim of involving the multiplier 𝑘 is to find a feasible individual in the first
generation. From the graphs shown in Fig. 6.8a, it is visible that the algorithm
found a feasible solution in the first generation in each of thirty runs (ten runs for
each value). However, the value has no effect whatsoever of the result (Fig. 6.8b)
as the difference between them is negligible. Having in mind, that the test case is
only two-dimensional, a higher value of 𝑘 = 5 has been selected for the benefit of
future applications on more dimensional cases.
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(a) Comparison of the convergence. (b) Comparison of results.

Fig. 6.7: The performance of the algorithm for different 𝑁I.

(a) Comparison of the convergence. (b) Comparison of results.

Fig. 6.8: The performance of the algorithm for different number of individuals in
the first generation.

The number of elite individuals 𝑁E

As already mentioned, the number of elite individuals suggested by De Jong in [6]
is five. However, his research was performed on binary algorithm, thus the determi-
nation of the optimal value was performed as well. From the graphs (Fig. 6.9a) its
observable that the large numbers of elite individuals perform poorly. The conver-
gence in the case of 𝑁E = 20 is considerably worse and moreover, the algorithm is
not capable of finding solutions of the quality of others (Fig. 6.9b). The results of
the other two values are fairly similar, with the only difference being slightly more
precise results in the case of 𝑁E = 5. For this reason, the value of five is used in
future applications of the algorithm.
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(a) Comparison of convergence. (b) Comparison of results.

Fig. 6.9: The performance of the algorithm for different number of elite individuals
𝑁E.

Crossover probability 𝑝c

Based on the literature [12], usually the value of crossover probability ranges from 0.5
to 1. However, smaller value was tested as well and, as suggested by the literature,
its result was poorer. Not only has the crossover probability significant effect on
the convergence rate, but also on the quality of solutions, as depicted in the graphs
(Fig. 6.10). When moving in the suggested range, only the convergence rate changes
while quality of the solutions differs only slightly (Fig. 6.10b). The graph (Fig.
6.10a) shows, that the higher the crossover probability is, the faster the algorithm
converges, therefore, the crossover probability is set to 𝑝c = 1.

(a) Comparison of convergence. (b) Comparison of results.

Fig. 6.10: The performance of the algorithm for different crossover probability 𝑝c.
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Crowding degree of crossover 𝜂

Three values of the crowding degree of crossover were tested, their performance may
be seen in Fig. 6.11. Interestingly, their efficiency differs and favourable convergence
rate is outweighed by poorer solutions and vice versa. Consequently, the middle
value of 𝜂 = 5 was selected. Despite the slower convergence, the quality of solutions
is the best from the tested values.

(a) Comparison of convergence. (b) Comparison of results.

Fig. 6.11: The performance of the algorithm for different crowding degree of
crossover 𝜂.

Mutation probability 𝑝m

Four values of the mutation probability 𝑝m were tested, the convergence and ob-
tained solutions may be observed in the two graphs (Fig. 6.12). From the first
graph it is apparent that the mutation probability does not play a significant role in
convergence. However, standard deviation during the process differs considerably,
suggesting that smaller values of 𝑝m result in the inability of finding passable so-
lution at each run. The results vary as well, but the same trend is visible and the
highest mutation probability of tested values results in the best outcome. As such,
in the future applications, the value of mutation probability 𝑝m = 0.1.

The change of standard deviation of mutation through the computation

Six different combinations of the initial (𝜎ini) and the final (𝜎fin) standard deviation
of mutation were tested. The premise is that in the beginning of computation, higher
𝜎 is desirable as it offers to mutate the member of the vector more radically. Thus,
better exploration of the domain should be performed. A the end of the computation,
the aim is exactly opposite: smaller 𝜎 is desirable to mutate the individuals only in
the region already found.
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(a) Comparison of convergence. (b) Comparison of results.

Fig. 6.12: The performance of the algorithm for different mutation probability 𝑝m.

From the graphs obtained by testing (Fig. 6.13), no significant influence of
the values is apparent from the process. The only influence observable is that of
𝜎fin = 0.1 which results in a worse quality of the solution. However, it is possible
that the sample is not sufficient to observe such a behaviour, with regard to both
the number of generations and the number of runs performed. For future references,
𝜎ini = 0.2 and 𝜎fin = 0.02 is used and the decrease is linear.

(a) Comparison of convergence. (b) Comparison of results.

Fig. 6.13: The performance of the algorithm for different 𝜎ini and 𝜎fin.
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6.4 Optimization of tendons

Two examples were chosen for the application of the developed algorithm. The
optimization of prestressed concrete tendon path of a simply supported beam and
that of a continuous beam of two unequal spans.The formulation of the problem is
defined as described in the section 6.1.2. The vector of design variables is formulated
differently with regard to each problem.

Following characteristics were chosen. The cross-section is rectangular and con-
stant, 𝑏 × ℎ = (0.5 × 2) m, the length of the simply supported beam and the first
span of the continuous beam 𝑙1 = 30 m and the length of the second span of the
continuous beam 𝑙2 = 20 m. Concrete C30/37 with a characteristic compressive
strength of 𝑓ck = 30 MPa and specific weight of 𝛾c = 25 KN/m and a strand type
of characteristic tensile strength 𝑓pk = 1860 MPa was used.

The life span of the structure is 100 years. Two different loads are applied,
each one in a different time. Creation time being day 0, self-weight is activated by
prestressing on day 7 and an additional continuous load 𝑔1 = 30 KN/m is applied
on day 28. These forces result in different stress in the bottom and top fibers in
each phase.

The genetic algorithm uses values determined in the previous section. Contrary
to the test cases, number of generations 𝑁G = 500 was used which along with
number of individuals in a generation 𝑁I = 200 and 𝑘 = 5, adds up to the total
number of evaluations 𝑁TOT = 100800.

6.4.1 Simply supported beam

In the case of simply supported beam following vector of design variables was chosen
with its respective domain:

𝑥 = {𝑦1,3, 𝑦2, 𝑛cab} (6.22)

−ℎ

2 ≤ 𝑦1 ≤ ℎ

2 (6.23)

−3 ≤ 𝑦2 ≤ 3 (6.24)
20 ≤ 𝑛cab ≤ 40 (6.25)

where 𝑦1,3 = 𝑦1 = 𝑦3 are the 𝑦 coordinates of the first and the last control point of the
Bézier curve. Because only the vertical load is applied, a symmetrical Bézier curve
is used as adding another variable would complicate the process without offering
better solutions. 𝑦2 variable stands for 𝑦 coordinate of the middle point. All three
𝑥 coordinates of control points are fixed, 𝑥1 = 0 m, 𝑥2 = 𝑙1

2 and 𝑥3 = 𝑙1. The last
element of 𝑓(𝑥), 𝑛cab, stands for the number of cabels neccessary for complying with
given conditions(6.6, 6.7, 6.8). See the geometry with its variables in Fig. 6.14.
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Fig. 6.14: Representation of the vector of design variables.

Again, ten runs were performed. The convergence of the algorithm can be ob-
served on Fig. 6.15, where each colour represents one run and the labels stand for
the resulting number of cabels 𝑛cab. Because of a higher number of individuals in the
first generation, in each case the algorithm found at least one feasible solution at the
beginning. Furthermore, the algorithm converges quickly and from approximately
the fiftieth generation the previously found solutions are exploited in order to find
a more precise result.

Results obtained by genetic algorithm

From the solutions found by ten runs of the algorithm (Tab. 6.3, Fig. 6.16), it
is noticeable that the difference between them is significant. Likely explanation is
that the algorithm is not robust enough to find the global minima when more areas
of local minima are present. The comparison of solutions is drawn in Fig. 6.17,
where each solution is marked by the different colour as described by the labels.
The same conclusion may be drawn from the same graph where values obtained by
each solution are compared. Solutions which possibly found the same local minima
are distinguished by horizontal lines.

Despite the differences, in each case the algorithm found a solution in which the
maximum stress is exactly on the boundary of the condition (6.6) without exceeding
it (𝜎max = 0 MPa), so no tensile stress appears through the beam’s life span. Also,
the maximum compression is well above the accepted percentage of the characteristic
compressive strength of the chosen concrete (𝜎min ≥ 0.6𝑓ck = −18 MPa). See Tab.
6.3 for the minimum and the maximum normal stress of all solutions.
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Fig. 6.15: The convergence of each computation by the algorithm.
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Fig. 6.16: Solutions found by the algorithm.

In the Fig 6.18 the normal stress the normal stress of the best solution is plotted.
Bottom fibres are represented by continuous lines and top fibres by dashed lines and
each colour represents different time. It is visible that at the time of creation on
day 0, there is no normal stress present. Since prestressing on day 7 (represented
by lighter blue), the self-weight is not sufficient to even the stress from prestressing.
The bottom fibres are thus under compression and there is small compression up
to no stress along the upper fibres. After applying a continuous load of magnitude
𝑔1 = 30 KN/m on day 28, normal stress adequately shifts. We can observe that the
top fibres are compressed, whereas there is no stress in the midspan of the bottom
fibres and it is further decreasing towards the ends of the beam.
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𝑦1,3 [m] 𝑦2 [m] 𝑛cab 𝜎max [MPa] 𝜎min [MPa]
-0.259 −1.417 26.99 0 −11.14
-0.259 −1.417 26.99 0 −11.14
-0.258 −1.418 26.99 0 −11.14
-0.266 −1.411 27.00 0 −11.14
-0.203 −1.474 27.02 0 −11.14
0.021 −1.657 27.11 0 −11.14
0.005 −1.683 27.12 0 −11.13
0.030 −1.708 27.13 0 −11.13
0.178 −1.857 27.20 0 −11.12
0.243 −1.923 27.23 0 −11.11

Tab. 6.3: Results of the optimization of the simply supported beam’s tendon path
sorted from the best solution to the worst.

Fig. 6.17: Comparison of solutions found by the algorithm.
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Fig. 6.18: Normal stress of the best solution.
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6.4.2 Continuous beam of two unequal spans

For the optimization of a continuous beam of the two unequal spans, the problem
is defined as described in the section 6.1.2. However, since two Bézier curves are
present, one dimension to the vector of the design variables is added. The vector
with its respective domain is formulated as follows:

𝑥 = {𝑦2, 𝑦3, 𝑦4, 𝑛cab} (6.26)
−3 ≤ 𝑦2 ≤ 0 (6.27)

0 ≤ 𝑦3 ≤ ℎ

2 (6.28)

−3 ≤ 𝑦4 ≤ 0 (6.29)
10 ≤ 𝑛cab ≤ 40 (6.30)

Seeing that one variable was added, the range of the search domain was reduced to
increase the chance of finding the optimal solution. See each variable in Fig. 6.19.
The first point of the first Bézier curve and the last point of the second Bézier curve
are fixed in both directions. The other thee points are flexible only in the direction
of 𝑦-axis.

Fig. 6.19: Representation of the vector of design variables.

As a result of the restrained deformation by boundary conditions (the presence
of the middle support) smaller bending moment in the middle of each span develops.
Subsequently, the number of cables needed is expected to be considerably smaller in
the case of the first span of continuous beam than in the case of the simple beam,
even though both dimensions and loading are the same.
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Resluts obtained by genetic algorithm

Ten runs of the algorithm were performed as well. The convergence of each com-
putation by the algorithm is shown in Fig. 6.20. The similarities between the
optimization of the simple beam and the continuous beam are evident: fast conver-
gence in approximately the first fifty generations accompanied by the inability of
finding the global minimum in the final stages of computation.
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Fig. 6.20: The convergence of each run of the algorithm.

In each of the ten runs, the genetic algorithm found a solution, however, not
the best solution was always achieved. In Fig. 6.21, all the tendon paths found by
the algorithm are drawn. Unlike in the case of the simply supported beam, no local
minima are apparent. The only visible trend is the compensation, as when one value
is slightly greater, value of a different variable is smaller, see Fig. 6.22.

Nonetheless, even though the best solution and the worse solution differ by 0.26
cabel (see Tab. 6.4), each of the solutions found by the algorithm satisfy the con-
straints (6.6, 6.7, 6.8), and furthermore, each solution is positioned on the boundary
of non-feasibility where 𝜎max = 0 MPa. The best solution is on the edge of the beam,
on the boundary of the third constrain. It can be also observed that the lower the
Bézier curve lies, the better the solution is. In other words, the higher the Bézier
curve lies, the more cables are needed to overcome tensile stress and subsequently,
the higher compression occurs in opposite fibres.
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Fig. 6.21: Solutions found by the algorithm.

𝑦2 𝑦3 𝑦4 𝑛cab 𝜎max 𝜎min

[m] [m] [m] [MPa] [MPa]
-2.025 0.222 −0.839 22.64 0 −9.27
-2.025 0.223 −0.838 22.64 0 −9.27
-2.018 0.239 −0.831 22.65 0 −9.28
-1.993 0.290 −0.812 22.71 0 −9.31
-1.987 0.304 −0.807 22.72 0 −9.29
-1.989 0.300 −0.809 22.72 0 −9.29
-1.969 0.345 −0.789 22.75 0 −9.32
-1.967 0.350 −0.787 22.76 0 −9.32
-1.920 0.441 −0.757 22.83 0 −9.33
-1.882 0.504 −0.741 22.90 0 −9.30

Tab. 6.4: Results of the optimization of the continuous beam’s tendon path sorted
from the best solution to the worst.

Critical part after prestressing is in the top fibres of the first span and in the
bottom fibres above the middle support (Fig. 6.23). In both cases there is no tension,
however, stress is on the boundary of tension. After applying additional continuous
load of 30 KN/m on day 28, top fibres above the middle support are almost under
tension. Both fibres of the the second span are continuously compressed due to
the smaller length of the span. However, it is clear that the algorithm has found
solutions in accordance of given conditions and is capable of finding such solutions,
that no tension occurs in each case.

In contrast to the optimization of the simply supported beam, the secondary
prestressing effects due to the static indeterminacy of the beam occur [10].

43



Fig. 6.22: Comparison of solutions found by the algorithm.
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Fig. 6.23: Normal stress of the best solution.
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7 Conclusion
The implementation of penalization function was tested on chosen analytical func-
tion and results were compared with a reference value. The penalization function
has proven robust enough for the problem. Subsequently, the coefficients determin-
ing behaviour of the genetic algorithm were analysed. The results obtained by the
analysis were then used for application of the algorithm to real problems.

Ten runs of optimization were performed on two problems: optimization of a
prestressed concrete tendon path of the simple beam and that of the continuous
beam of two unequal spans. The performance of the algorithm was similar in both
cases when in the beginning the algorithm converged quickly only to search in the
already found regions for the rest of the computation.

The life span of optimized beams was set to 100 years with two loads applied
in different times: prestressing on day 7 and additional continuous load on day 28.
By applying the additional load on day 28, the normal stress in the element shifts
and different stress occurs in bottom and top fibres, making the constraints more
restrictive.

In the case of the simply supported beam optimization, the algorithm found
varying solutions. Graphical representation of obtained solutions suggests, that at
least two important local minima are present. Nevertheless, the algorithm has always
found solutions complying with given constraints. Furthermore, the condition of zero
tension has proven as the most restrictive. All the solutions found by the algorithm
were on the boundary of the constraint, where maximal stress equals zero.

The algorithm performed similarly in the case of continuous beam. A solution
complying with given constraints was found each time. As in the previous case, each
solution was positioned on the boundary of non-feasibility of the same constraint.
However, the solutions found by the algorithm differed between the ten runs. Pos-
sibly several local minima are present in the domain, whose values are close and the
algorithm might not be robust enough to overcome them.

The algorithm was developed in the Python programming language with the aid
of its built-in libraries.
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