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ABSTRACT 
Technical textiles play a highly important role in today's material engineering. In fibrous 
composites, which are being applied in a number of industrial branches ranging from 
aviation to civil engineering, technical textiles are used as the reinforcing or toughening 
constituent. With growing number of production facilities for fibrous materials, the need 
for standardized and reproducible quality control procedures becomes urgent. 
The present thesis addresses the issue of tensile strength of high-modulus multifilament 
yarns both from the theoretical and experimental point of view. In both these aspects, 
novel approaches are introduced. Regarding the theoretical strength of fibrous yarns, a 
model for the length dependent tensile strength is formulated, which distinguishes three 
asymptotes of the mean strength size effect curve. The transition between the model of 
independent parallel fibers applicable for smaller gauge lengths and the chain-of-bundles 
model applicable for longer gauge lengths is emphasized in particular. It is found that 
the transition depends on the stress transfer or anchorage length of filaments and can be 
identified experimentally by means of standard tensile tests at different gauge lengths. 
In the experimental part of the thesis, the issue of stress concentration in the clamping 
has been addressed. High-modulus yarns with brittle filaments are very sensitive to 
stress concentrations when loaded in tension making the use of traditional tensile test 
methods difficult. A novel clamp adapter for the Statimat 4U yarn tensile test machine 
(producer: Textechno GmbH) has been developed and a prototype has been built. A 
test series comparing yarns strengths tested with the clamp adapter and with commonly 
used test methods has been performed and the results are discussed. Furthermore, they 
are compared with theoretical values using the Daniels' statistical fiber-bundle model. 
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ABSTRAKT 
Technické textilie hrají v současnosti velmi důležitou roli v materiálovém inženýrství. 
Používají se pro vyztužování nebo zvyšování houževnatosti ve vláknitých kompozitech, 
které nachází uplatnění v celé řadě průmyslových odvětví sahajících od aeronautiky až 
po stavební inženýrství. S rostoucí produkcí vláknitých materiálů roste také potřeba 
standardizovaných a reprodukovatelných metod řízení jakosti. 
Tato doktorská práce se zaměřuje na tahovou pevnost vysokomodúlových vláknitých 
svazků z teoretického i praktického úhlu pohledu. V obou těchto aspektech jsou před
staveny nové přístupy. Co se týče teoretické pevnosti vláknitých svazkuje v této práci for
mulován model délkově závislé tahové pevnosti, který rozlišuje tři asymptotická chování 
pevnosti v závislosti na délce. Zdůrazněna je především problematika přechodu z módu 
svazku nezávislých paralelních vláken (kratší svazky) do módu řetězce nezávislých svazků 
(delší svazky). Ukazuje se, že tento přechod závisí na kotevní délce vláken ve svazku a 
je možné jej experimentálně identifikovat pomocí standardních tahových zkoušek svazků 
na různých délkách. 
V experimentální části práce se autor zabývá koncentrací napětí v uchycení svazků při 
tahové zkoušce. Vysokomod úlové svazky s křehkými vlákny jsou v průběhu tahové zk
oušky velmi náchylné ke koncentracím napětí, což často znemožňuje použití standard
ních metod pro jejich zkoušení. V rámci této práce byl vyvinut a vyroben adaptér 
uchycení pro existující zkušební stroj Statimat 4U firmy Textechno GmbH. Byla prove
dena série komparativních tahových zkoušek na vláknitých svazcích s vyvinutým adap
térem a standardními metodami a výsledky jsou v práci diskutovány. Tyto zkoušky jsou 
rovněž porovnány s teoretickou pevností svazků predikovanou Danielsovým statistickým 
modelem pro svazky. 
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vláknité svazky, pravděpodobnost a statistika, vliv velikosti, tahová zkouška vláknitých 
svazků 
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1 INTRODUCTION 

1.1 Motivation 

The 2 0 t h century has witnessed an uprise of fibrous composites. Fibrous reinforce

ment has been used both for reinforcing polymer and metal matrices and toughen

ing ceramic matrices. A s the production of high modulus and high strength fibers 

- made of both ceramic and polymer materials - has grown in efficiency and thus 

has become more economic, the supreme properties of fibrous composites have been 

exploited by an ever wider range of industry branches. Having been discovered for 

aviation and sport, the domain of fibrous composites expanded over energy and au

tomotive and, finally has reached civi l engineering, where the strength and stiffness 

to weight and price ratio became interesting only at the end of the 1990s. There are 

in general three fundamental parts determining the mechanical behavior of fibrous 

composites: 

1) fibers (reinforcing or toughening) 

2) matrix (polymer, ceramic, metal) 

3) interface between fibers and matrix 

Even though there have been endless discussions on the hierarchy of priorities of 

these three components, it is probably most apt to conclude that each one plays a 

significant role with none of them being less important than the others. 

For the most part, this thesis thoroughly examines the fibrous constituent sepa

rately. The understanding of the complex behavior of the fibrous constituent alone 

- fibers, bundles and yarns - provides much inside into the composite behavior and 

is of great significance for simulating the composite mechanics. However, in the last 

chapter, the interaction of short fiber bundles wi th cement-based matrix and the 

resulting composite called glass fiber reinforced concrete ( G F R C ) are analyzed. 

Being a brittle material whose strength is governed by the weakest link, high-

modulus fibers and fiber bundles exhibit various size-effects, which are in their ele

mentary tendencies depicted in F ig . 1.1. O n one hand, the tensile strength decreases 

wi th the gauge length of the fibrous material. O n the other hand, the strength de-
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F ig . 1.1: Demonstration of size-effect in the tensile strength of high-modulus fibrous 

material: log-log plot of carbon filament and carbon yarn tensile strengths at various 

gauge lengths. 

creases with the number of fibers in the bundle. In particular, the strength of a 

single fiber is on average about 20% higher than the strength of a multi-filament 

yarn. A s shall be revealed in the body of the thesis, this tendency only applies for 

a range on gauge lengths and is violated above a transition threshold. Clearly, the 

tensile strength of fibrous materials is not a t r ivial quantity to identify and a number 

of mechanisms have to be understood in order to predict the tensile strength in a 

range extrapolated beyond experimentally measured data. 

1.2 Goal setting 

The main goals of this work can be summarized as follows: 

(1) Provide a probabilistic model of the strength of high-modulus fibrous material 

for the complete range of gauge lengths. 
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(2) Address the clamping issue in tensile testing of fibrous yarns and propose an 

enhanced clamp device that reduces stress concentrations in the clamp region. 

(2) Analyze and asses the behavior of short glass fiber reinforced cement-based 

matrix subjected to tensile loading from the probabilistic point of view. 

1.3 Overview of the dissertation 

The probabilistic model of the yarn strength developed in this thesis is an extension 

of the classical Daniels' statistical fiber bundle model [16]. It includes the effects of 

friction between individual filaments in the bundle and represents this effect by a 

finite stress transfer length which causes the bundle of parallel fibers to behave like 

a chain of independent bundles. A method for identifying the stress transfer length 

based on tensile tests at various gauge lengths is presented. 

Closely connected to the experimental investigation of the yarn strength is the 

issue of stress concentrations in the clamp region. This phenomenon causes a re

duction of the measured strength compared to its theoretical value based on fiber 

bundle models. A new clamping device is proposed, which diminishes the stress 

concentration issue by a large amount. 

Ultimately, the fibrous yarns are to be applied as reinforcement in composites. 

Cement-based fibrous composites have been thoroughly described by the author in 

[56, 49, 50, 54]. In this thesis, only short glass fiber reinforced concrete ( G F R C ) is 

addressed since it has not been included in the authors dissertation at the R W T H 

Aachen University [54] 

The body of the thesis is structured as follows: 

• Chapter 2: State of the art 

• Chapter 3: Stress transfer length in yarns 

• Chapter 4: Tensile testing of yarns 

• Chapter 4: Glass fiber reinforced concrete 
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Summary of chapter 2 

O n the background of the state of the art, the length dependent strength of fi

brous yarns is introduce, analyzed and issues are highlighted. Fiber bundle models, 

weakest link models and chain of bundles models are summarized in light of their 

probabilistic aspects. Current standardized tensile test setups for high-modulus 

multi-filament are critically discussed and both their advantages and disadvantages 

are pointed out motivating the development of an enhanced tensile test device. 

Summary of chapter 3 

A probabilistic model of the strength of fibrous yarns is derived. Based on the 

fiber bundle model wi th spatially correlated fiber strength and the chain of bundles 

model, it describes the length dependent yarn strength over the full range of gauge 

lengths wi th three distinguished asymptotes. These correspond to gauge ranges 

1) less than the correlation length - constant mean strength; 

2) greater than the correlation length and less than the stress transfer length -

Weibul l scaling law; 

3) greater than the stress transfer length - chain-of-bundles model. 

Summary of chapter 4 

A new tensile test clamping device for high-modulus yarns is proposed, and the 

mechanism of reducing the stress concentrations is explained. Experiments wi th 

AR-glass and carbon yarns are used to validate the performance of a prototype of 

the new device. Standardized tensile tests using resin porters and capstan grips are 

performed as reference values. 

Summary of chapter 5 

The highly heterogeneous structure of glass fiber reinforced concrete is studied from 

a probabilistic point of view. A semi-analytical multiscale model of the composites 

response is formulated. Due to the probabilistic formulation, the model is capable 
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of evaluating statistical moments of the composite response and of propagating 

micromechanical properties of its constituents to its macro-scale behavior. 
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2 STATE OF T H E ART 

The following state of the art presents a summary and analysis of technical literature 

regarding fibrous yarns. Bo th theoretical models of their mechanical behavior and 

experimental setups for determining their tensile strength are described. Note that 

state of the art regarding glass fiber reinforced concrete is provided at the beginning 

of Chapter 5. 

2.1 Strength of multi-filament yarns 

It has been widely agreed upon in the scientific community that the strength of 

multifilament yarns cannot be modeled deterministically. The reasons for the use of 

probabilistic methods for this purpose are: 

a) The random nature of fiber failure and fiber properties in general; 

b) the large number of fibers (of the order of 10 4-10 8) in yarns. 

If one incorporated these features in deterministic models, computational limits 

would be exceeded very fast [10]. In this thesis, probabilistic methods are therefore 

taken into account. 

A s shall be explained in this introductory overview to the probabilistic modeling 

of fibrous yarns, the yarn strength is determined by a complex propagation of the 

random fiber strength through the yarn structure. A yarn is a bundle of fibers wi th 

frictional interaction so that the yarn behaves essentially like a pseudo-composite. 

Such a structure can represented by a series-parallel system of fibers, whose strength 

has been addressed by many authors in the past, e.g. in [40, 19, 20, 66, 68, 50]. The 

elementary failure mechanism considered in this work is a micromechanical fiber 

rupture governed by the weakest flaw in the fiber material structure. Therefore, 

the weakest link model and the related Weibul l scaling law, which are thoroughly 

described in the following subsection, can be applied. 
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2.1.1 Weakest link model 

Weakest link models describe the strength of a structural system by the strength 

of its weakest link. Given that the system is divided into sub-elements where the 

failure of either of these elements causes the ultimate failure of the whole system, the 

weakest link model applies. If the sub-elements have a random strength distribution, 

the strength of the system decreases as its size grows. This phenomenon is known 

as the statistical size effect and can be explained by the behavior of global minima 

of sets of random realizations: with growing number of random realizations in a set 

the expected value of the global minimum decreases. 

First intuitive formulations of the strength of materials by means of the weakest 

link theory and the connected statistical size effect date back to Leonardo da V i n c i 

(1500s) and Galileo Gali lei (1638). However, a robust mathematical theory wi th 

derived statistical distribution function was first formulated by W . Weibul l [69]. 

Since a brittle filament is only as strong as its weakest cross-section, it can be 

assumed to behave according to the weakest l ink model. It is generally accepted 

that the random flaws in the fiber's material structure follow the compound Poisson 

process, i.e. the mean number of flaws per unit length wi th strength less than or 

equal a, A(<j) is of the form 

A(a,a0) = [(a/a0)m]/L0 (2.1) 

where o"o is a scale parameter related to the reference length L 0 and m is a shape 

parameter [29, 45, 61, 11]. The tensile strength of fibers of length L is therefore a 

random variable which follows the Weibul l distribution (extreme value distribution 

of type III) defined as 

F(a, L) = 1 - exp [-LA(a/a0)]. (2.2) 

The mean fiber strength is then 

< ( L ) = ( L / L 0 ) - 1 / m a 0 r ( l + l / m ) (2.3) 

with T denoting the gamma function. The formula reveals the length dependency 

of the mean fiber strength (as well as of any percentile of the fiber strength), which 
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Fig . 2.1: (a) Theoretical fiber E q . (2.8) and mean bundle Eq . (2.9) stress-strain 

diagrams; (b) theoretical mean fiber strength E q . (2.3) and mean bundle strength 

E q . (2.6) function of gauge length. 

is found to be proportional to L _ 1 / / m (Fig. 2.1b). This means that the mean tensile 

strength of fibers decreases with fiber length wi th the slope —1/m in a double 

logarithmic plot. For ceramic fibers used as reinforcement in composites, the shape 

parameter is usually between 3.0 and 7.0 [14, 12]. 

2.1.2 Fiber bundle models 

The analysis of the strength of a fiber bundle which consists of parallel brittle fibers 

wi th random strength is based on the work of H . E . Daniels [16]. This work has been 

reviewed and extended wi th further effects relevant to fiber bundles many times 

since [13, 47, 10]. Daniels analyzed a set of parallel Weibul l fibers (i.e. following the 

strength distribution given by E q . 2.2) subjected to increasing load a and derived an 

exact statistical distribution of the strength of such a bundle consisting of rif fibers, 

which was later rewritten in the compact recursive form 

GM = E ( - l ) i + 1 ( 7 ) [F(a)fGn{.t ( ^ ) (2.4) 

where G0(a) = 1 and G\{a) = F(a) is the strength distribution of a single fiber 

given by E q . (2.2). Daniels also formulated comprehensive results on the behavior 

of asymptotic bundles (large rif) including the asymptotic bundle strength which 
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was found to be normally distributed as 

Gnf^{a) « $ ( ^ T ^ v W ) (2-5) 

where $ is the standard normal distribution function, /x*b is the mean value 

< ( L ) = a 0 ( — ) e x p ( - l / m ) (2.6) 

and the variance of the bundle strength. It is interesting to note that the 

mean bundle strength decreases with respect to the length with the same rate as a 

single fiber (i.e. /x*b oc L _ 1 / / m , see F ig . 2.1). The convergence of the mean bundle 

strength to its asymptotic distribution Eq . (2.5) wi th growing was shown to be 
1 /6 

extremely slow 0 ( n f ). Smith in [60] and later Daniels [17] himself proposed 

modifications on the mean value and variance that respect the actual finite number 

of fibers and accelerate the convergence significantly. 

S. L . Phoenix and H . M . Taylor [47] analyzed the fiber bundle behavior as con

trolled by bundle strain e and its failure determined by the random strain to failure 

of individual fibers £, which has the two-parameter Weibul l form 
£ ~ Fz(e, L) = P r{£ < e} = 1 - exp [-L/L0{e/e0)m] (2.7) 

wi th the scale parameter e 0 relative to the reference length LQ, and the shape pa

rameter m. The fiber stress-strain relationship (Fig. 2.1a) is then defined as 

( E{e : 0 < e < £ 
<Tt(e) = \ (2.8) 

I 0 : otherwise. 

This strain based approach enables the formulation of the whole mean stress-strain 

curve of an asymptotic bundle (rif —> oo) as 

fjiab(e,L) = Ete[l-Fi(e,L)] (2.9) 

on one hand and, on the other hand, additional random properties of fibers (wavi-

ness, length, modulus of elasticity etc.) can be included [47, 44, 10]. Analyz ing the 

mean stress-strain function of a bundle (Eq. 2.9), its maximum is the mean bundle 

strength given by E q . (2.6) and its stationary point is the strain at which the mean 

bundle strength is achieved 

/mL\ ~1/m 

el = a0/E^—j . (2.10) 
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The relation of E q . (2.6) and Eq . (2.3) given as 

rn .1/™ r(i + l/m) 

exp(—1/m) 
(2.11) 

is the reduction factor for the mean bundle strength compared to the mean fiber 

strength and it depends only on the Weibul l modulus m. For fibers with m ~ 5.0 

for example, the mean bundle strength is 35.5% lower than the mean fiber strength. 

This strength reduction is generally inherent to fiber bundles with scatter in strength 

of individual fibers due to micro-scale flaws. 

Fiber bundle models are a means for modeling parallel structures with indepen

dent links. They can be applied to simulate the response of a fiber bundle wi th no 

interaction among individual fibers response to an applied tensile load. 

2.1.3 Load sharing mechanisms 

A n important property of a system of parallel fibers is the stress redistribution upon 

local fiber damage. Exis t ing models take this mechanical aspect into consideration 

by defining various load sharing patterns for surviving fibers if some fiber breaks. 

The nomenclature on load sharing mechanisms found in literature is not consistent. 

In what follows, the nomenclature used in [32] is reproduced. 

The most intuitive load sharing mechanism is equal load sharing (ELS) used in 

the classical Daniels' fiber bundle models [16, 13], where all intact fibers take up 

an equal amount of the load that was carried by a failed fiber. To be more precise, 

the load is distributed among the intact fibers wi th respect to their stiffnesses. E L S 

assumes that fibers do not interact in parallel so that it is suitable to model dry 

bundles even though a weak inter-fiber friction is present [11]. 

In composites, the failure of a fiber might cause a stress concentration wi thin a 

localized area so that the load is taken over only by close neighbors. This phenomena 

is called localized load sharing (LLS) which covers many models with various rules 

for the influence of breaks of surviving fibers in I D , 2D and 3D [24, 25, 19, 20, 21, 

22, 23, 30, 73, 63]. 

Load sharing rules applied e.g. by [64, 46, 15] take into consideration the lon

gitudinal position of fiber breaks. Broken fibers then carry a residual load due to 
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equal load sharing localized load sharing 

Fig . 2.2: Load sharing mechanisms 

pullout and intact fibers share the remaining part of the load equally or locally. 

When the longitudinal position of fiber breaks and the resulting pullout is consid

ered, the mechanism is called global load sharing (GLS) or frictional load sharing 

(FLS) . 

Localized load sharing systems are more accurate in simulating the real mechan

ical behavior of composites and yarns or pseudo-composites. However, L L S models 

are much more complex and computationally demanding than the E L S counterparts. 

Several factors determine whether the use of E L S can be justified for modeling of 

composites: 1) matrix shear stiffness 2) bond strength 3) fiber strength variability. 

If the matrix shear stiffness is high, the bond weak and the fiber strength variability 

high, E L S can be applied [46, 32]. In the other extreme case, failure wi l l be rather 

localized and one of the L L S models has to be used. Pseudo-composites, which are 

the focus of this thesis, have extremely low frictional bond compared to polymer 

matrix composites. Therefore, the E L S rule is most likely to be an appropriate 

representation of load redistribution upon fiber failures. 

2.1.4 Filament interactions in yarns 

When applied as reinforcement or toughening constituent in brittle matrix compos

ites, fibrous yarns are often not completely penetrated by the matrix. Especially 

in cementitious composites wi th fibrous reinforcement, the bond between fibers and 

matrix develops only in the outer region of the yarn cross-section and has a rather 

irregular structure. This fact alone leads to a complex damage process in a loaded 

crack bridge. The effect of irregularity of the outer bond on the crack bridge perfor

mance has been studied using the statistical fiber bundle model in [56, 49, 50, 10, 67]. 
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Due to an incomplete penetration of the matrix into the yarn there is st i l l a large 

fraction of filaments without any contact to the matrix. 

Even though the filament-filament frictional stress is much lower than the bond 

shear stress transmitted by filament-matrix bond, the effect of the inner bond on the 

macroscopic performance of a composite cannot be neglected [26]. Whi le the outer 

bond affects the behavior locally at the length scale of a crack-bridge, the inner 

bond influences the failure process at the length scale of a structural element wi th 

sufficiently large stress transfer (or anchorage) length. This can be documented by 

a significant contribution of the inner bond to the stress level in the post-cracking 

regime of a tensile specimen reinforced wi th AR-glass yarns [27]. A s a consequence, 

the interaction and damage effects for both outer and inner bond require a detailed 

mechanical characterization. 

Whi le it is possible to study and characterize the interaction between a single 

filament and the matrix experimentally using the pull-out test [6], it is impossible to 

directly test the in-situ filament-filament interaction. A n indirect qualitative experi

mental observation of the in-situ filament interaction is possible by imposing various 

levels of twist during the yarn tensile test. A n experimental study of the effect of 

increased in-situ filament interaction on the strength of high-modulus multifilament 

yarns (carbon and AR-glass) can be found in [9]. A multivariate experimental analy

sis was used to study the compound effect of the loading rate, gauge length, fineness 

and twist. 

A numerical approach based on Monte Carlo simulation of random filament 

strength was used in [51, 41] to compute the strain-stress relationship of twisted 

blended yarns. The stress transfer length occurring in such a yarn structure was 

computed as a function of yarn strain, twist level (lateral pressure), position of a 

filament within the bundle cross-section and filament type. A n advanced model for 

the statistical strength of twisted fiber bundles has been presented recently in [48]. 

These approaches are, however, computationally very demanding. 

In this thesis, the available theoretical framework of statistical fiber bundle mod

els is utilized wi th the goal to provide a method for identifying the filament-filament 

interaction wi thin the yarn using the data from a specifically designed tensile test 
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setup [9, 11, 55]. 

2.2 Tensile testing 

In order to validate any model of tensile strength of high-modulus multifilament 

yarns, an appropriate tensile test device has to be used for the experiments. The 

steadily growing application of technical yarns has evoked intensive efforts to im

prove the quality and reproducibility of strength characterization for this type of 

material [2, 53]. In contrast to traditional yarn materials like cotton and polyester, 

high-modulus yarns made of glass, carbon, aramid or U H M P E are very sensitive to 

stress concentrations due to their brittleness when loaded in tension. A t the same 

time, they exhibit a pronounced strength size effect due to the presence of randomly 

distributed flaws along the yarn. Bo th these properties make the use of traditional 

setups for yarn tensile testing difficult. 

Two categories of methods that are currently being used for introducing the 

tensile load into a high-modulus multifilament yarn in order to measure its tensile 

strength are outlined below. 

2.2.1 Load transfer via deflection and friction 

The first category uses mechanical fixing clamps and an additional deflection of the 

yarn which introduces the load to the yarn through friction. The deflection reduces 

the force which has to be taken up by the fixing clamps. A n example of this method 

is the test with capstan grips [2, 1, 3] where the yarn is deflected or twisted around 

a spool, see F ig . 2.3a. 

In some cases, the tests are semi or even fully automatic (Statimat 4 U wi th 

'big bollards', Textechno GmbH) which is a great advantage of this test method. 

However, the method also has some disadvantages. Due to the radii of the deflection 

elements, the minimum test length of the specimen is limited. Furthermore, the test 

length of the yarn is not precisely defined since the force is introduced over a certain 

length at the deflection elements. Since the yarn strength is length-dependent, the 

test length needs to be known for the interpretation of the yarn tensile properties. 
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F ig . 2.3: Y a r n tensile test with capstan grips - Zwick Roel l A G (a); embedding the 

porters in resin (b) - specimens can be tested with any tensile test machine (ITA, 

R W T H university, Aachen, Germany 

The main disadvantage, however, is the non-uniformly distributed stress among 

filaments. This issue arises because filaments directly contacting the spool carry 

more of the introduced load. 

2.2.2 Load transfer via resin porters 

For the second category of methods, the yarn ends are embedded in resin blocks 

which are then used for the load introduction (Fig. 2.3b). A n example of resin 

porters for testing AR-glass yarns can be found in [53, 9]. The main advantage 

of these methods is the relatively well-defined test length and the uniform load 

introduction at large test lengths [67, 9]. However, the sample preparation is very 

Tab. 2.1: State of the art for tensile test methods. 

method gauge length load introduction specimen preparation 

capstan grips not accurately defined non-uniform automatic 

resin porters defined gauge length uniform time consuming 
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time consuming and biased by the human factor. O n one hand, manipulation during 

the sample preparation inevitably causes damage of the brittle filaments and, on the 

other hand, the inclination of the yarn to the resin porters axis is variable and induces 

bending into the yarn. The main advantages and disadvantages of these commonly 

used methods are briefly summarized in Tab. 2.1. 
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3 STRESS TRANSFER L E N G T H IN YARNS 

A s stated in Sec. 2, the stress transfer length is a property of fibrous yarns, which 

governs their size effect behavior at longer gauge lengths, see F ig . 3.1. Therefore, it 

is highly important to identify this property in order to describe the tensile strength 

for an arbitrary length. 

The key idea of the identification of the stress transfer length introduced in 

this thesis is to exploit the fact that the in-situ filament-filament interaction affects 

the length-dependent strength of the yarn (size effect curve). The effect of friction 

between filaments becomes significant when the specimen length is greater than the 

stress transfer length, i.e. the length at which a broken filament recovers its stress 

wi thin the gauge length. Such a yarn structure becomes fragmented into a chain-of-

bundles and behaves like a pseudo-composite and the slope of the size effect curve 

is decreased, see F ig . 3.1. 

It is to be understood that the chain-of-bundles model is a simplified represen

tation of the complex mechanics of fiber interactions. The fundamental assumption 

of the model is that due to the stress transfer between fibers, the yarn behaves 

like a chain of independent fiber bundles whose lengths equal the stress transfer 

length. Even though the bulk of probabilistic models of unidirectional composites 

are based on the chain-of-bundles assumption, the stress transfer length cannot be 

directly related to the length along which the fiber stress is fully recovered from a 

2.0 

L °0 100 200 300 400 500 600 700 800 
gauge length [mm] 

Fig . 3.1: Tensile strengths of Toho Tenax 1600 tex carbon yarns as measured at 

various gauge length. 
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rupture. Rather, the stress transfer length is a smeared representation of this phys

ical property which is variable among filaments. For this reason, we wi l l refer to it 

as 'effective bundle length'. 

3.1 Model assumptions 

The only source of randomness considered in the present model is the variability in 

local filament strength. Filaments respond elastically to tensile loading with brittle 

failure upon reaching their strength. The local random breaking strain £ at a certain 

point over the filament length is considered to follow the Weibul l distribution: 

where s and m are the scale and shape parameter of the local distribution and e 

is the imposed axial strain. The spatial distribution of the random strength along 

a filament has a length scale lp at which the strength variability diminishes [67]. 

A s a consequence, for short specimens I <^ lp the strength realization along the 

filament can be considered a constant function wi th random value and, therefore, 

the random filament strength for this length range is length-independent. O n the 

other hand, for / 3> lp the local strength varies over the filament length. Therefore, 

the overall filament strength is defined by the minimum local strength along the 

filament length corresponding to the weakest link model and is well described by 

the Weibul l extreme value distribution [69, 67]. 

W i t h these assumptions for a single filament a qualitative profile of the mean 

size effect curve of a fibrous yarn can be expected as shown in F ig . 3.2. Two types of 

mechanisms of load transfer can be distinguished depending on the yarn length. The 

two regions are separated by the effective bundle length (related to the stress transfer 

length) Z£ at which the fiber fragmentation can occur. The implicit assumption is 

that the autocorrelation length of the random strength process along the filament is 

less than This assumption is reasonable because the autocorrelation length is of 

the order of a few millimeters [10] while the effective bundle length in dry yarns is 

of the order of tens of centimeters [40, 11], see also F ig . 3.1. The two main regimes 

can be characterized as follows: 

(3.1) 
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• For the range of lengths I < l^, the yarn is acting as a bundle or a set of parallel, 

independent filaments wi th identical Weibul l strength distribution. Its size 

effect behavior has been described in a large number of scientific publications, 

e.g. [16, 13, 44] and corrections to the asymptotic strength distribution for 

finite number of fibers have been proposed in [60, 17]. In such a bundle, a 

filament is assumed to break only once within its length and the associated 

released force is redistributed evenly among the surviving fibers according to 

the equal load sharing mechanism, see Sec. 2.1.3. Two l imit ing behaviors 

of a bundle with independent filaments can be distinguished based on the 

dependence of strengths of individual filaments on their length. 

o For very short lengths / < lp any realization of the random process of 

local strength along the filament can be considered a constant function. 

In other words, the realization of the local filament strength simplifies to 

a single random variable independent of the position along the filament. 

The consequence is that the left asymptote of the filament mean strength 

is a horizontal line at the level of the mean value of the local random 

filament strength. Therefore, also the mean size effect curve of a bundle 

has a horizontal left asymptote [66, 67]. A s the bundle length approaches 

the correlation length lp the mean size effect curve starts to decline from 

the left horizontal asymptote and turns slowly down in the direction of 

the middle asymptote dictated by the classical Weibul l size effect [69]. 

o Bundles wi th length greater than lp but st i l l shorter than are assumed 

to consist of non-interacting fibers whose strength is described by the 

weakest link model and Weibull scaling based on the classical extreme 

value theory. The slope —1/m of the middle asymptote in log-log scale 

is dictated solely by the shape parameter m of the Weibul l distribution 

of the local filament strength. 

• W i t h increasing gauge length, the filament-filament friction can recover the 

stress released upon a filament break and allows for multiple filament breaks 

resulting in fragmentation of filaments along their lengths. Such a length Z£ 

marks the transition from the bundle behavior to the behavior of a chain-of-
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bundles. The slope of the mean size effect curve for / > Z£ is significantly re

duced. Asymptotically, its slope approaches — l/(n{m), where rif is the number 

of filaments in the yarn [23]. The particular shape of this transition depends 

on the number of filaments in the bundle [19, 20]. 

The transition zone from a bundle range to chain-of-bundles range is of special 

interest. The change in the slope of the size effect curve reveals the length Z£ a t 

which the fragmentation starts. The idea of the present paper is to exploit this 

fact in order to identify the effective bundle length Z£ within the tested yarn. The 

identification procedure tries to find an intersection between the two branches of 

the mean size effect curve. The mathematical formulation of the two branches is 

summarized in the following two sections. 

3.2 Bundle of parallel independent fibers 

A s derived in Sec. 2, the mean strength of a single Weibull ian filament is prescribed 

as ^ 

** = *o - ( r l -rfr + ir) (3-2) I III 

to c 

B 

asymptote 1 
constant strength 

asymptote 2 
Weibull scaling 

. .test 

asymptote 3 
chain-of-bundles scaling 

T M-
test 

\ — > u 
fiber-bundle chain-of-bundles 

gauge length 

Fig . 3.2: Mean size-effect curve in log-log scale with three distinguished asymptotes 
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with s 0 and m denoting the scale and shape parameters of the Weibul l distribution, 

respectively, and T(-) is the Gamma function [13]. The scale parameter SQ is related 

to a reference length Z0- A s pointed out in [67] the above power-law scaling predicts 

unlimited mean strength for / —> 0 and is therefore unrealistic. To impose an upper 

bound on the strength, a statistical length scale in the form of an autocorrelation 

length of a random strength process along the filament has been introduced in [67]. 

W i t h this in mind, the length-dependent mean filament strength given by E q . (3.2) 

can be formulated with the variable lp. The resulting form then includes the function 

fp(lp, I) as: 

fi<Tt = 8 Q - f p ( i p , i ) - r ( i + -) (3.3) 

The refined scaling function fp(lp, I) accounting for the correlation length lp has been 

suggested as either 

( 1 1 \ " 1 / m 

''<W = U + ^ ) ( 3 ' 4 ) 

or 
( I \ 1 / m 

W M = ( ^ J ' ( 3 ' 8 ) 

Note that this length-scaling remains qualitatively unchanged for any arbitrary num

ber of parallel filaments. Thus, in the sequel the length dependency of the scaling 

parameter within the range lp < /b < (see F ig . 3.2) shall be represented by the 

scaling function 

Sb = s0 • fp {lp, lh). (3.6) 

In the limit of / 3> lp, the scaling in Eqs. (3.4) and (3.5) recovers the classical 

Weibul l length-dependency / w (0 = ( W O ^ ™ S u c h a decomposition of the length 

effect allows for a simple scaling of the mean value 

— If. ("i 7\ 
JP I'oJ 

that shall be used later in the identification procedure. 

The cumulative distribution function of a random per fiber bundle strength of 

a parallel set of filaments wi th independent identically distributed strength, Gnf(e), 

is given by the recursive formula E q . (2.4), derived by Daniels [16]. The result

ing bundle strength approaches the Gaussian normal distribution, Gn{^oo given by 
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E q . (2.5), as the number of filaments grows large (rif —> oo). Based on Daniels' 

analysis, the expected asymptotic mean bundle strength \iah wi th Weibul l fibers is 

related to the filament properties as 

fj,a. = sh • m~1/m • cm wi th cm = exp ( — ( 3 . 8 ) 

wi th s b obtained using Equation (3.6). The standard deviation 7^ is given as 

lah = Sh • m-1/m^Cm-{l-Cm). (3.9) 

The (length-dependent) standard deviation of yarn random strength is scaled in the 

same way as the mean value is scaled in E q . (3.7). A s a consequence, the coefficient of 

variation of the bundle strength does not depend on the bundle length. The decrease 

of the normalized mean bundle strength fiab wi th respect to the filament strength 

fiaf is obvious from the comparison of Eqs. (3.8) and (3.2). In reality, bundles have 

a finite number of filaments and the mean strength is thus only approaching the 

Daniels' asymptotic prediction. Bo th Smith and Daniels proposed ways to decrease 

the gap between the strength distribution of finite sized bundles and the asymptotic 

Daniels' normal approximation by adjusting fj,ab to fiabD( [60, 17]. Bo th adjustments 

have a similar form so that only Smith's formula is written below for demonstration 

purposes: 

/V b , n t = Vab + rif2/3b • A. (3.10) 

In the case of Weibul l filament distribution the parameter 

b = S h • m - 1 / m - 1 / 3 exp [ - 1 / (3m)] 

and the coefficient A = 0.996. This correction shifts the mean value of the bundle 

strength. The standard deviation corresponding to \iah given by Eq . (3.9) is a fair 

approximation and does not need any further adjustment for a finite number of 

filaments rif. 

3.3 Chain of fiber bundles 

Filaments in yarns are not ideally independent as assumed by the fiber bundle 

models. They exhibit a certain amount of frictional interaction that leads to multiple 
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rupture of individual filaments. The distance between two breaks along a filament 

can only be larger than the stress transfer length, also called the ineffective or 

shielded length. This length determines the distance from a break beyond which 

the filament stress state is independent of further ruptures. Based on this reasoning, 

the mechanical-probabilistic model represents the yarn with interacting fibers as a 

chain of mechanically and statistically independent fiber bundles or chain-of-bundles. 

Each bundle is assumed to have the length corresponding to the stress transfer 

length. A yarn can therefore be idealized as a one-dimensional chain of independent 

identically distributed bundles wi th equal load sharing within each bundle. 

The strength distribution Gnf(e) of each of the serially coupled bundles subjected 

to the longitudinal global strain e, has been described in Sec. 3.2. Obviously, the 

yarn strength is governed by the weakest bundle and thus it is distributed as follows 

wi th nb being the number of serially coupled bundles. 

The distribution of the chain-of-bundles strength can have different shapes de

pending on the ratio between the number of filaments rif and number of bundles 

[62, 66]. In general, its left tai l is of the Weibull form and, close to the mean value, 

the distribution can be approximated by the Gaussian normal form. For small values 

of rif, the lower (Weibull) tai l of the bundle strength distribution reaches close to its 

mean value. O n the other hand, for large rif, the Gaussian shape of the distribution 

reaches far into the lower tai l . 

A s known from the extreme value theory, the minimum of IID Gaussian vari

ables, here representing the strength of a chain-of-bundles wi th dominating Gaussian 

distribution, approaches the Gumbel distribution [18] as nb —>• oc 

Hnh,nt(£) = 1 — [1 — Gnt (e)] e > 0 (3.11) 

(3.12) 

where 

a 
7o-b 
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and UJ — In (rib). The mean value of yarn strength is then fj,ay = & n b ,n f

 — V • anb,nf 

and the median equals &nb,nf + In (In (2)) • a „ b i „ f . Here, r\ ~ 0.5772 denotes the Euler-

Mascheroni constant. The strength distribution given in Equation (3.12) is very 

accurate for a high number of filaments, rif, and a number of bundles greater than 

approximately 300. For lower numbers of bundles rib G (1; 300), a cubic regression, 

which was proposed in [66], wi l l be assumed for the mean chain-of-bundles strength. 

Using the constants introduced in E q . (3.11), the cubic regression can be written as 

Hffy = fxab - 7 ( 7 b (-0.007a; 3 + 0.1025a;2 - 0.8684a;) , (3.13) 

where fiah and ̂ a h are the bundle mean strength and standard deviation, respec

tively. This approximation describes the transition from the mean value of the 

Gaussian distribution of a single bundle to the mean value of the Gumbel distribu

tion of a chain-of-bundles. 

A s already mentioned, for the strength distribution of bundles consisting of a 

low number of filaments ri{ the left Weibul l ta i l reaches close to the mean value. 

A s a consequence, the Weibul l shape of the distribution becomes significant also for 

the distribution of the chain-of-bundles strength. Yarns consisting of a very large 

number of such bundles (of the order 10 3 bundles wi th 8 parallel filaments) have the 

Weibul l strength distribution wi th the Weibul l modulus given solely by multiplying 

the number of filaments rif by the Weibul l modulus of a single filament m [19, 20]. 

For the considered types of multifilament yarns consisting of several hundreds of 

filaments and a low number of bundles per meter (approximately 5 for AR-Glass , 

2400 tex) it is sufficient to use the approximating E q . (3.13) or the median value 

obtained from: 

of = / V n f + I***-1 (! - °-5l/nb) • (3-14) 

Here, $ _ 1 (•) stands for the inverse standard Gaussian cumulative distribution func

tion (percent point function) and rib = ly/lb stands for the number of bundles the 

yarn consists of. 
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S3 Q Yarn Size Effect 
data sheet 

mater ia l pa ramete rs | 

Weibull modulus [-] 

autocorrelat ion length [m] 

number of f i laments [-] 

5.0 

I. test in length range of a single bundle 

test length [m]: 10.05 

m e a n s t rength [MPa]: | 1 9 5 5 . B 

| II. tes t in length range of chain-of-bundles~ 

test length [m]: | 0 .5 

m e a n s t rength [MPa]: | 1586 .Q 

identif ied pa ramete rs 

bundle length (Gauss) [m]: 0.2326 

left strength asymptote [MPa]: 2246.6 

0 0 4 

io-3 

©0 ® 

strength size effect 
- median Gauss 

- - asymptotes 

- - test - single bundle 

- - test - chain of bundles 

0.233,1588.9] 

IO"1 10c 

length [m] 101 

plot pa ramete rs | 

m in imum [m]:[o.QO|l | m a x i m u m [m] : |80 .0 pint po in ts : |100 

I. tes t : S asymp to tes : IV] G a u s s : W 

II. tes t : v st. deviadion: m e a n approx . 

OK 

F ig . 3.3: Example of the effective bundle length identification wi th software module 

implemented in Py thon scripting language. 

3.4 Evaluation of the effective bundle length 

Let us assume that two sets of strength data /xj;e

b

st and /xj;e

y

st are available for two 

respective gauge lengths falling into the different length ranges defined in Sec. 3.1. 

i.e. /{; e s t < and Z y

e s t > /£. Apar t from the known gauge lengths and the measured 

mean strengths, the knowledge of the Weibul l modulus m and correlation length 

lp are required. The estimation of the effective bundle length is then performed 

using the following procedure (see F ig . 3.3 for the user interface of the implemented 

identification module). 

1. The mean strength /xj^ s t estimated as the average strength for the length /^ e s t is 

substituted into Eqs. (3.8) and (3.10) in order to obtain the scaling parameter 

Sb of the Weibul l distribution for the tested length 

Sb = ß. rn 
-l/m c + n -2/3 

rn 
- ( l /m+l /3) exp 3m 

A (3.15) 

2. W i t h the scaling parameter Sb at hand, the corresponding standard deviation 

7CTb is evaluated using Equation (3.9). It is important to emphasize, that we use 

the theoretical scatter of the bundle strength to identify the slope of the mean 

size effect curve in the range of lengths / G (/p; /£) instead of the measured 
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value of scatter. Note that in a typical yarn the number of filaments rif is 

very large and thus the theoretical scatter of the bundle strength is very small 
1/2 

(proportional to n f ). 

The choice of the theoretical scatter of the bundle strength is justified by 

the fact that the experimentally obtained standard deviation is increased by 

the sources of randomness other than the scatter of local strength along the 

filaments. Obviously, this was also the case in the performed tests, as the 

measured variability d id not correspond to the slopes of the means ize effect 

curve for the two tested types of yarns. This discrepancy was ascribed to the 

manual production of the specimens and clamps [9, 50]. Note that even if a 

realistic measurement of the scatter of the yarn strength due to the random 

filament strength was possible, much larger sample size would be required 

for a statistically significant estimate of the second moment compared to the 

estimate of the mean yarn strength. 

3. The obtained bundle characteristics are scaled to the unknown length Z£ using 

Equation (3.7) and exploiting the fact that the standard deviation (as well as 

every quantile) scales identically wi th the mean value: 

* = test . / (jb) d * = test . / (jb 
V b AVb j (jtest) I ab l<n> J ä t e s t , 

'-b 

4. The chaining effect involved in the experimental data is now expressed using 

Equation (3.13) for the unknown bundle length Z£ as 

test = < ( / £ ) - 7 : b ( -0 .007wjJ (® + 0.1025u;X) - 0 . 8 6 8 4 * ( ® ) (3.16) 

where oo* represents the logarithm of the number of bundles in series oo* = 

l n ( ^ e s t / / £ ) . The non-linear implicit E q . (3.16) is then solved for Z£ using 

standard root finding algorithms. 

In order to demonstrate the identification procedure on real data, two test series 

wi th different yarn types (carbon and AR-glass) have been conducted. The input 

data and the results of the evaluation are summarized in Tab. 3.1. The resulting 

effective bundle length for AR-glass yarns is one third larger than that of the carbon 

yarn detecting a higher amount of frictional interaction within the carbon yarn. This 
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property unit symbol carbon AR-glass 

fineness [tex] - 1600 2400 

No. of filaments H m 24000 1600 

Weibull modulus H m 5.00 4.52 

correlation length [mm] lP 
1.0 1.0 

gauge length I [mm] /test 
lh 50.0 100.0 

measured strength I [MPa] . .test ^crb 
1955.8 1038.0 

gauge length II [mm] /test 500.0 500.0 

measured strength II [MPa] . .test 1586.9 882.8 

identified bundle length [mm] /* 142.1 201.8 

Tab. 3.1: Summary of experimental data and the evaluated effective bundle lengths 

for carbon and AR-glass yarns. 

trend is in agreement wi th experimental observation. O n one hand, in the post-peak 

behavior of a tensile test, the level of stress transmitted by friction is significantly 

higher for carbon yarns than for AR-glass yarns. O n the other hand, the mean size 

effect curve tends to flatten at smaller gauge lengths for carbon than for AR-glass 

yarns. 

3.5 Remarks to the identification method 

Due to the limitations of the experimental setup, the described procedure can be 

considered valid only in a certain range of gauge lengths. The following l imiting 

cases must be considered when designing the test series with the goal of identifying 

the effective stress transfer length. 

• The identification procedure is valid only if the effective bundle length to be 

identified (the intersection point of the single bundle and a the chain-of-bundles 

size effect curves) is between the two test lengths /{; e s t and /y 6 S t , i.e. if the sought 

length 11 e (/^est;/*est). 

• If the correlation length is of the same order as the test length (/^es t pa lp) the 
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estimation of Z£ becomes sensitive to slight changes in lp. In particular, for the 

identification summarized in Tab. 3.1, the correlation length lp = 1.0 m m <^ 

t̂est _ 5Q m m w a s assumed leading to = 142.1mm for the carbon yarns. 

When assuming the autocorrelation length in the same length range as the 

short test length, e.g. lp = l^st = 50 mm, the estimated bundle length is 

Q = 226.0 mm. A possible remedy would be to add further test(s) in the 

range between the /{; e s t and /y 6 S t and to make the correlation length a part of 

the regression procedure. 

• The identification procedure does not account for the case that the measured 

strength for /{; e s t is distorted by the nonuniform loading of filaments due to 

the irregularities in the yarn clamping. These effects lead to the reduction 

of the strength for short specimens as described in [67, 55]. This case can 

be handled by simply ignoring the short gauge length tests wi th a decay in 

mean strength. For the tested AR-glass yarns, the strength reduction could 

be observed experimentally for test lengths /{; e s t < 40 mm. 

Another point to mention is that the bundle length has been identified as a deter

ministic value. It might be argued that it exhibits some scatter along the yarn, 

i.e. that the bundles in a yarn have variable lengths [42]. The justification for the 

assumption of the constant bundle length can be constructed by realizing that the 

actual bundle length is related to the stress transfer length which in turn depends 

on the spatially variable filament-filament friction. In particular, two directions of 

spatial scatter of friction can be distinguished: along and across the yarn. 

• A long the yarn: A s the level of filament friction is relatively low, the stress 

transfer length needed to recover the breaking stress is large, at the order 

of centimeters. O n the other hand, the length-scale of spatial variation of 

the filament-filament friction due to irregular packing of the yarn is at the 

order of micrometers. Realizing that the stress transfer length represents the 

sum of many local frictional links along the filament we can expect that the 

local scatter of friction gets homogenized at the scale of the stress transfer 

length. Therefore, the scatter of stress transfer length can be regarded as very 

small. More precisely, the fluctuating friction intensity along a single filament 
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can be idealized as n c number of frictional cells wi th constant level of friction, 

each represented by independent, identically distributed (IID) random variable 

given by the mean /_tc and variance a\ > 0. The coefficient of variation of the 

cell friction is cov c = a c / /x c . A s stated above, the number of frictional cells 

nc along a filament within the mean stress transfer length having a significant 

difference in friction level is very high. Therefore, the mean value /Xf of the 

sum of these frictional contributions along the yarn defining the stress transfer 

length converges to n c • /xc and, according to the central limit theorem ( C L T ) , 

the variance is equal to of = nc • of.. A s a consequence, the coefficient of 

variation covf = ocj{^fn~c • /xc) = covc/\fn c rapidly decreases at a length-scale 

of the stress transfer length wi th large n c 

• Across the yarn: The scatter of friction due to variable filament surface rough

ness or lateral pressure wi thin the yarn cross section diminishes as the number 

of filaments 7if grows large. Formally, the bundle length can be idealized as the 

average of filament stress transfer lengths within the cross section. A l l stress 

transfer lengths of individual filaments can be viewed as I ID random variables 

characterized by mean /Xf and variance of > 0. The C L T then states that as 

the sample size nt increases, the distribution of the sample average approaches 

the Gaussian normal distribution wi th mean fj,\ = /if and variance of = of/r if 

irrespective of the shape of the distribution of the random variable. The co

efficient of variation of the stress transfer length covi = cov c /^n crif . Thus, 

in the case of applied yarns the scatter of the filament transfer length can be 

assumed very small. 

Based on these considerations the variance of the effective bundle length should 

become insignificant and, therefore, the assumption of a constant Z£ along the yarn 

seems to be justified in the context of the experimental identification. It should be 

noted that the redistribution pattern included in the applied chain-of-bundles model 

is based on the global load sharing rule (see Sec. 2.1.3). A s the chaining of bundles 

for lengths / > Z£ is caused by the frictional stress along the filaments, it should also 

result in a more local redistribution of stresses upon a filament break. This issue 

is not included in the applied chain-of-bundles approximation of the corresponding 
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part of the mean size effect curve. 

3.6 Conclusions 

The known aspect of length dependency of the tensile strength of fibrous yarns has 

been investigated and a model has been developed wi th two distinguished modes of 

mechanical behavior. These two modes represent the asymptotic behavior for short 

and long yarns. For short yarns, the statistical fiber-bundle model due to Daniels 

applies with reasonable accuracy. A modification to this model for very short lengths 

has been proposed by Vofechovsky for the Daniels' model predicts infinite strengths 

as the gauge length approaches zero. 

The right asymptote of the mean size effect curve (length dependency of tensile 

strength) describes the chain-of-bundles behavior characteristic to fibrous compos

ites and twisted yarns. However, even dry yarns with no twist behave like a chain-of-

bundles if the gauge length is sufficiently long. Filaments can rupture multiple times 

and the mean tensile strength decreases wi th a much lower slope than during the 

fiber-bundle mode. This behavior is closely related to the in situ filament friction, 

which is a material property and marks the transition between the fiber-bundle and 

the chain-of-bundles behavior. 

Upon this idea, a method based on the size effect curve has been proposed to 

identify the transition length marking the 'effective bundle length'. W i t h the use 

of a set of standard yarn tensile tests at different gauge lengths and an analytical 

model of the mean size effect curve, the inter-filament frictional interaction can be 

indirectly identified with a moderate effort. The identification method was applied 

to AR-glass and carbon yarns and with the help of the implemented software module, 

the effective bundle lengths have been identified for these materials. 
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4 TENSILE TESTING OF YARNS 

A s stated in the state of the art Sec. 2.2, the growing market of technical textiles 

requires robust methods for quality management. One of the key properties of high-

modulus yarns for structural applications is their tensile strength. However, the 

brittle fibers are prematurely damaged in the clamping systems of existing tensile 

test machines, see Sec. 2.2. Therefore, the measured tensile strength is underesti

mated making the design wi th the tested material overly safe and not economic. 

This leads to larger structural dimensions and thus wasting of both the textile and 

the matrix material. 

To avoid stress concentrations in yarns at the clamps during the tensile test, 

a new clamp adapter has been developed, which separates the functions of yarn 

fixation and of stress homogenization (Fig. 4.1b). This novel clamp adapter for the 

Statimat 4 U yarn tensile test machine produced by Textechno G m b H was developed 

in order to meet the special requirements on precise tensile testing of high-modulus 

multifilament yarns. W i t h the new clamp adapter, higher strengths close to the 

theoretical values (perfectly clamped filaments at a unique length and with no init ial 

F ig . 4.1: Development of the clamp adapter: (a) first simple realization of the mech

anism; (b) Prototype of the adapter produced by Textechno G m b H . 
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damage) can be measured. A test series comparing yarns strengths tested wi th the 

novel clamp adapter and wi th standard test methods has been performed and the 

results are discussed in this thesis. Furthermore, they are compared wi th theoretical 

values using the Daniels' fiber-bundle model. 

4.1 New tensile test device 

The newly developed tensile test device - a clamp adapter for the tensile test machine 

Statimat 4 U (referred to as 'Statimat 4 U adapter' further in the text) - significantly 

reduces the problem of stress concentration in the clamps. O n the other hand, 

compared to the current tensile test methods, it enables the testing of yarns wi th 

precisely defined lengths so that the device can be used to measure the effect of 

yarn length on its strength, see Chapter 3. U p to this point, the resin porters were 

the only option for direct testing of the tensile strength of dry high-modulus yarns 

made of glass fibers. Otherwise, indirect strength measurements have been used in 

the industry. A common method is to test the fibers directly in the polymer matrix, 

i.e. to test the glass fiber reinforced composite. Such a tensile test is reasonable 

from the practical point of view but it tells little about the strength of the raw yarn 

and, therefore, can neither be used for extrapolation to other composite materials 

nor does it characterize the material for purposes of e.g. quality management. 

The basic concept of the test set up is the separation of the clamping function 

from the stress homogenization function at the ends of the test length into two 

pairs of separate clamps controlled by separate pressure air circuits. Thanks to 

the introduction of the homogenizing clamp into the semi-automated Statimat 4U 

machine, several test series wi th a large number of samples for varied test lengths 

and yarn materials can be performed. 

Tensile tests performed with the Statimat 4 U adapter proceed in the following 

steps: 

1. ) The outer 'fixation clamps' (FCs) clamp the yarn wi th the pressure P F C and 

introduce a fraction of the axial prestress force F0 (see F ig . 4.2a). 

2. ) The yarn is laterally compressed by the inner 'homogenization clamps' (HCs) 
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with soft polyurethane contact layers with the pressure J>HC which increases 

the inter-filament interaction wi thin the yarn cross-section. 

3.) A n additional axial force -FHC is introduced by the homogenization clamp. 

In general F H c is much smaller (e.g. 1/10) than the corresponding FFC (see 

F ig . 4.2b). 

3.) The axial load Fpc is increased while keeping the difference between Fpc and 

F H C constant, i.e. the additional axial force F H C is constant (see F ig . 4.2c). 

This way the yarn is not damaged by the H C s defining the gauge length since the 

majority of the tensile force is introduced by the outer F C s . The H C s combine lateral 

pressure v ia a soft contact layer wi th a moderate axial force. The lateral pressure 

p-ftc homogenizes the stress in filaments by intensifying the inter-filament friction, 

see the stress profiles at both sides of the homogenization clamp in F ig . 4.3b. A t the 

same time, the additional axial force F H C increases the probability of filament breaks 

wi thin the gauge length and thus defines the gauge length. Note that the gauge 

length is, contrary to the deflection-friction tests, defined as the distance between 

the HCs . The deflection of the yarn around the bollards of the standard Statimat 

4 U machine (placed between the H C s and F C s in the adapter clamp version) has a 

similar function as the H C s — it takes up a part of the load due to friction and can 

be used in addition to the H C to diminish damage in the F C s . 

In contrast to the standard clamping with bollards, the control parameters (e.g. 

the additional axial force F H c introduced by the H C s , lateral pressure J?FC a n d PHC 

of the respective F C s and HCs) of the adapter clamps can be freely adjusted to 

achieve optimal test setup for a given material. If, for example, a yarn consists of 

brittle filaments wi th rather large cross-sections, they wi l l be more prone to rupture 

due to the lateral pressure of the homogenizing clamp which, in this case, should be 

kept low in order to best balance the trade-off between homogenization of stresses 

within the yarn cross-section and the ini t ial filament damage. 
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Fig . 4.2: Statimat 4 U adapter with the newly developed clamp (detail): (a)-(c) 

phases of the tensile test with stress plotted along the tested yarn. 

4.2 Comparative experiments 

In order to assess the quality of the Statimat 4 U adapter, tensile tests have been 

performed using both the adapter and standard methods for reference. Yarns of 

three different materials were tested. 

4.2.1 Mater ial 

1.) AR-glass 

Material: AR-glass yarns 1200 tex (Saint-Gobain Vetrotex Deutschland GmbH) 

Reference method 1: embedding the porters in resin 

Reference method 2: capstan grips 

Gauge lengths adapter: 50, 70, 110, 160, 230, 340 and 500 m m 

Gauge lengths reference 1: 50, 70, 110, 160, 230, 340 and 500 mm 

Gauge lengths reference 2: 400, 550 and 800 mm 

2.) E-glass 

Material: E-glass yarns 1200 tex ( P P G Industries, Inc.) 

Reference method: embedding the porters in resin 
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Fig . 4.3: Comparison of Statimat 4 U and Statimat 4 U adapter: (a) yarn stress 

state in the standard clamp of Statimat 4U; yarn stress state in double clamp of the 

Statimat 4 U adapter. 

Gauge lengths adapter: 50, 70, 110, 160, 230, 340 and 500 m m 

Gauge lengths reference: 50, 110, 160, 230, and 500 m m 

3.) carbon 

Material: carbon 400 tex (Toho Tenax Co. , Ltd.) 

Reference method: Statimat 4 U big bollard clamps 

Gauge lengths adapter: 35, 70, 130, 250 and 500 mm 

Gauge lengths reference: 35, 70, 130, 250 and 500 m m 

4.2.2 Design of experiment 

The gauge lengths were chosen, if possible, in a way that they appear equidistant in 

logarithmic scale. For the AR-glass tests, a randomized experiment was performed. 
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Initial material biases caused by fluctuations in strength due to the position of the 

test sample within the spool were eliminated by a random specimen choice. That 

means, specimens taken from the spool in an ordered manner were assigned the 

parameters length and test method randomly. Using the design of experiments 

wording [37], a block randomized comparison experiment wi th one factor of two 

levels (test method) was performed. The measured response variable was the tensile 

strength and the overall sample size was 280 specimens (2 levels of the factor test 

method, 7 blocks - gauge lengths, 20 replicates per block). The remaining two 

comparative experiments (E-glass and carbon) were not randomized. 

Opt imum parameters for testing wi th the Statimat 4 U adapter - lateral pressure 

of both the H C s and the F C s and the additional axial force - were found by applying 

an iterative full factorial experiment design with 10 replicates for each parameter 

combination. 

4.2.3 Discussion of the comparative experiment 

The results of the comparative experiment in terms of mean strength and C O V 

(coefficient of variation) are summarized in F ig . 4.4 and Tab. 4.1. The table sum

marizes the measured values and statistical significance of the hypothesis testing 

( H 0 : <tua > ct ur) as well as the 95% confidence intervals (CI) for the difference of 

the compared methods, where <tua and <tur stand for the tensile strength measured 

wi th the Statimat 4 U adapter and the reference method, respectively. 

F ig . 4.4 shows that the mean tensile strengths measured wi th Statimat 4U 

adapter were for all three materials and all gauge lengths higher than the refer

ence values. A lower level of significance for the H 0 : <tua > (JUR hypothesis was 

calculated only for the 500 m m carbon yarn tests. Carbon yarns were observed to 

have a much smaller scatter in strengths than glass yarns. Therefore a high level of 

significance of H 0 : <tua > ct ur is given for carbon even though the mean strength 

differences were not as pronounced as for AR-glass and E-glass. A t the gauge length 

500 mm, however, the significance of H 0 : <tua > ct u r was only 65% for carbon 

yarns. This actually suggests that an unambiguous statement on which strengths 

are higher cannot be given at this gauge length (the usual level of significance for 
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adapter reference 

c o v C O V significance 95 % conf. interval 

[MPa] [%] [MPa] [%] Ho '• CTUA > 0"uR c t u A - c t u R [MPa][%] 

A R - g L ass 1200 tex 

50 1220 4.9 1090 10.0 « 1.0 (72.8, 187.0)(6.0, 15.3) 

70 1224 7.3 1012 12.9 « 1.0 (138.9, 283.5)(11.4, 23.1) 

110 1237 4.1 946 12.0 « 1.0 (233.6, 347.9)(18.9, 28.1) 

160 1216 7.0 877 18.0 « 1.0 (257.3, 421.3)(21.1, 34.6) 

230 1168 9.1 866 23.3 « 1.0 (196.8, 405.6)(16.9, 34.7) 

340 1151 9.1 871 11.5 « 1.0 (214.2, 345.2)(18.6, 30.0) 

500 1087 6.4 809 19.2 « 1.0 (199.3, 356.2)(18.3, 32.8) 

E-glass 1200 tex 

50 1520 6.1 12405 9.7 « 1.0 (203.8, 357.5)(13.4, 23.5) 

70 1533 5.3 1141 11.3 « 1.0 (247.7, 423.3)(16.8, 28.7) 

110 1476 8.2 1160 12.9 « 1.0 (133.7, 355.1)(9.5, 25.3) 

160 1405 12.2 - - - -

230 1382 14.2 1066 16.2 « 1.0 (188.6, 443.7)(13.6, 32.1) 

340 1290 13.5 - - - -

500 1150 15.9 1010 20.9 0.976 (1.2, 280.3)(1.0, 24.4) 

carbon 400 tex 

35 2165 3.7 1952 3.7 « 1.0 (159.1, 265.2)(7.3, 12.3) 

70 2093 3.2 1933 3.0 « 1.0 (116.9, 203.1)(5.6, 9.7) 

130 1936 3.6 1787 2.4 « 1.0 (110.2, 188.2)(5.7, 9.7) 

250 1837 5.2 1694 4.2 « 1.0 (86.0, 201.6)(4.7, 11.0) 

500 1578 6.3 1566 6.1 0.654 (-55.7, 80.8)(-3.5, 5.1) 

Tab. 4.1: Results of the comparative experiments for AR-glass 1200 tex, E-glass 

1200 tex, carbon 400 tex. 
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decision making is taken as 5%). 

It seems that the differences in mean strengths for E-glass and carbon become 

smaller for longer gauge lengths in general. This effect is probably due to the 

increased influence of the statistical size effect which predicts lower strengths for 

yarns at longer gauge lengths because of the higher probability of severe flaws [67. 

69, 16, 56]. Since the effect of stress concentrations in the clamps is constant and 

independent on gauge length, the failure of yarns at very long lengths is rather given 

by the weakest flaw in the material structure which, at some point, wi l l exceed the 

strength given by the stress concentrations in the clamps. Thus the positive effect 

of the adapter clamps diminishes wi th growing length. 

4.3 Comparison with theoretical strength 

The fact that the new testing device could measure generally higher values of 

strength compared to the current techniques raised the question, whether or not 

the measured strength is close to the level theoretically achievable for the measured 

material. Using the theoretical framework of fiber-bundle models and the related 

statistical size effect, an analysis of the correspondence between the filament and 

yarn strength is performed for carbon and AR-glass. 

4.3.1 Theoretical yarn strength 

Let us recall the theoretical mean filament strength (Eq. 2.3) as a function of gauge 

length,L, given the shape m and scale (63.2% percentile) <To parameters of its Weibull 

strength distribution (note that the scale parameter is related to the reference length 

< ( L ) = ( L / L 0 ) - 1 / m a 0 r ( l + l / m ) . (4.1) 

This relation holds if the only source of randomness is the filament strength. See 

Sec. 2.1 for detailed derivation. Further, let us recall the mean strength of a fiber 

bundle consisting of a large number of identically and independently distributed 
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filaments as given by Eq . 2.6 

mL 

) 
l/m 

L0 

exp(—l/m). (4.2) 

A s stated in Chapter 3, this mean size effect curve only applies for a given range 

of gauge lengths. In this form, it includes neither the horizontal asymptote due to 

local strength correlation, nor the right asymptote describing the chain-of-bundles 

model applying for longer yarns experiencing filament fragmentation. Since both 

the correlation length and the effective bundle length are a priori unknown, we use 

E q . (4.2) for the prediction of the yarn strength while keeping in mind the above 

statements on its accuracy for very short and very long gauge lengths. 

4.3.2 Inference on the fiber strength distribution 

Inference on the two unknown parameters of the filament strength distribution 

(shape m and scale a0) is drawn based on single filament tests. Tests wi th A R -

glass and carbon filaments each at two gauge lengths were available so that the 

analysis is performed wi th these two materials only. The filament strength distribu

tion is recalled from Sec. 2.1, E q . 2.2 wi th explicit notation of the two parameters 

I. Statistical model A number of statistical models can be formulated for the 

available experimental data. One possibility is the filament strength distribution of 

the Weibul l form at a fixed gauge length as given by E q . (4.3). Parameters can be 

inferred for each gauge length separately and their (weighted) average then taken 

as the representative vector of parameters. 

Another statistical model involves both sets of experiments directly via their 

sample means at different gauge lengths. It is prescribed by E q . (4.1) and the model 

parameters are evaluated by regression. 

(4.3) 

II. Inference If the statistical model is given by E q . (4.3), various inference meth

ods can be used for parameter identification. Many researchers have addressed this 
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issue using the a) method of statistical moments; b) maximum likelihood method 

and c) Bayesian method [39, 28, 72, 71, 68, 61, 43, 4]. 

When E q . (4.1) defines the statistical model of the data, the sought parameters 

have a neat interpretation in the log-log plot of the mean filament strength vs. its 

gauge length. The model is linear wi th slope —1/m and its vertical position ln(jla) 

at a log-length ln(L) is related to the logarithm of the scale parameter ln(o"o) by 

resulting from E q . (2.6). 

When the parameters of the distribution of the filament strength are estimated, 

E q . (4.2) can be utilized to evaluate the theoretical bundle strength at any gauge 

length. This computation can also be performed inversely so that the filament 

strength distribution at any gauge length can be evaluated when the mean bundle 

strengths at different gauge lengths are given. 

Let us remark, that the reduction of strength for bundles compared to single 

filaments is in this model caused only by the scatter in filament strength. The 

difference between model prediction for bundle strength and measured values (in 

the range of gauge lengths corresponding to the bundle behavior [11]) can be related 

to imperfections of the test method. 

A prediction of the theoretical bundle strength (Fig. 4.5, dashed lines) based on 

the mean filament strength (Fig. 4.5 triangles, measured wi th F A V I M A T Textechno 

GmbH) was evaluated and compared with bundle measurements described in Sec. 4.2 

(Fig. 4.5, filled circles) for AR-glass and carbon. Filament tests for E-glass were not 

available to the author at the time this thesis was written. 

If the filament tests can be assumed to be unbiased, the predicted bundle strength 

(Fig. 4.5, dashed lines) fits the measured values of the yarn strength (Fig. 4.5, filled 

circles) fairly well in the fiber-bundle range of the yarn behavior. Even though the 

theoretical strength is very close to the measured strength for larger gauge lengths, 

ln(cr0) = ln(/}CT) + ln(L) + l n ( m / L 0 ) - 1 m - l (4.4) 

4.3.3 Results 
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Fig . 4.5: Scaling of filament strength (solid line) and bundle strength (dashed line) 

based on filament tests (triangles) compared wi th measured bundle strengths (Sta-

timat 4 U adapter and reference method). 

it has to be recalled that this rage of lengths most probably belongs to the chain-

of-bundles rage of behavior while the theoretical strength is predicted for a fiber 

bundle wi th non-interacting fibers. 

Compared to the the reference method (Fig. 4.5, gray squares) it is obvious that 

the Statimat 4 U adapter delivers strengths much closer to the theoretical bundle 

strength, which assumes a perfect clamping and thus the damage due to clamping 
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of the Statimat 4 U adapter can be considered very low. 

The discrepancy between model and experiments for shorter gauge length (< 

100 mm) is due to filament waviness and differences in filament lengths. A t short 

yarn lengths, these minor geometrical imperfections become more pronounced and 

cause non-uniform strain distribution across the yarn. More detailed explanations 

are given in [67]. 

4.4 Homogeneous vs. inhomogeneous yarn stress 

So far, it has been assumed that a homogeneous stress state in the yarn cross-

section increases its overall tensile strength when compared to the counterpart of 

non-uniformly distributed stress. In this section, we provide a mathematical proof 

of this intuitive statement. 

Let us assume that a bundle of non-interacting parallel brittle fibers is subjected 

to a global strain e y , which in the case of the tensile test device equals the clamp 

displacement u divided by the ini t ial gauge length L: 

Provided that all fibers are perfectly clamped at the gauge length L , the fiber stress 

<jf equals Efey wi th Ef being the modulus of elasticity of the fibers. During real 

tensile tests, however, the fibers are not perfectly clamped. Variations in fiber 

slip in the clamps, ini t ial fiber length and other sources of inhomogeneities can be 

summarized into an effective modulus of elasticity,£f, eff, which equals 

where e is an error term - in general a function of the global yarn strain e y . Thus, 

the fiber stress equals 

a 
(4.5) 

(4.6) 

(4.7) 

The stress of a yarn subjected to ey is 
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where cr^Sy) are stresses in individual fibers corresponding to the global yarn strain. 

According to [16, 44], the expected fiber stress at any given ey equals 

E K i ( % ) ] = ey • {Ek + • [1 - F(ey • (Ef + e,))], (4.9) 

where F(<7f) is the failure probability of a fiber subjected to the stress <7f. If F(crf) 

is a Weibul l distribution wi th shape m and scale s, the maxima of these expected 

fibers stresses E[crf ji(ey)] are given by 

E[<7f>i]* = s • m~1/m • e x p ( - l / m ) (4.10) 

and are attained at the strain 

el, - (4.11) 

which is different for each fiber, see Chapter 2 for derivation of the formulas. 

W i t h the substitution of E q . (4.9), the yarn stress given by E q . (4.8) becomes 

(for a large number of fibers) 

^y(%) = - £ E K i ( % ) ] - (4-12) 
n f i=i 

The maximum of the yarns stress a* i.e. the yarn strength, is attained at the strain 

1 " f 

= max[cr y(e y)] = - ^ E[t7 f i I(eJ)]. (4.13) 
n f i=i 

Clearly, E q . (4.13) is maximized when the global yarn strain equals the fiber strain 

corresponding to the mean strength of individual filaments, in mathematical form: 

e* = £f j , V£f 4 . This is only possible if the error term e« in £f j eff becomes zero, which 

results in a uniform stress state wi thin the yarn. This gives the proof that uniform 

stress state results in the maximum possible yarn strength compared to any form of 

non-uniform stress state. 

4.5 Conclusions 

The newly developed tensile test device Statimat 4 U adapter largely diminishes 

stress concentrations in high-modulus yarns wi th brittle filaments and thus measures 
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higher strengths than other tensile test methods. Bo th a comparative experiment 

and theoretical models based on single filament tests confirm the better performance 

of the new device wi th a high statistical significance. A combination of the improved 

testing method for bundles, tests on single filaments and of the fiber bundle model 

describing the statistical size-effect provides an efficient means for thorough strength 

characterization of high-modulus multifilament yarns. 

Concerning other materials, the positive effect of the adapter clamp could not be 

observed for aramid, U H M P E and basalt yarns, which have been tested in smaller 

sample sizes. However, significant differences compared to reference methods were 

measured for a small sample size of coated carbon yarns (9% polymer matrix). The 

positive effect of the Statimat 4 U adapter on the yarn strength can thus be expected 

mostly for yarns with very brittle fibers, or generally, fibrous structures prone to local 

stress concentrations. 
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5 GLASS FIBER REINFORCED C O N C R E T E 

In this chapter, the behavior of fibrous yarns in composites is demonstrated. In 

particular, the analyzed composite consists of a cement-based matrix and chopped 

AR-glass strands which serve as reinforcement for the quasi-brittle matrix. Two ap

proaches to the simulation of the crack bridging effects of chopped AR-glass strands 

are introduced and compared: a semi-analytical probabilistic model and a discrete 

rigid body spring network model wi th semi-discrete representation of the chopped 

strands. Whi le the probabilistic model has been developed by the author, the latter 

discrete model has been developed by prof. John E . Bolander from U C Davis and 

serves merely for reference purposes. 

The chopped AR-glass strands exhibit random features at various scales. Fiber 

strength and interface stress are considered as random variables at the scale of a 

single fiber bundle while the orientation and position of individual bundles wi th 

respect to a crack plane are considered as random variables at the crack bridge 

scale. A t the scale of the whole composite domain, the distribution of fibers and the 

resulting number of crack-bridging fibers is considered. A l l these effects contribute to 

the variability of the crack bridge performance and result in size-dependent behavior 

of the composite. 

The structure of this chapter is as follows: Sec. 5.1 provides an introduction and 

state of the art report. In Sec. 5.2, a probabilistic approach that predicts statistical 

moments of the bridging force is described. In Sec. 5.3, a discrete model wi th semi-

discrete representation of the fiber bundles is presented. Bo th models are compared 

and their possibilities and limitations are discussed in Sec. 5.5 

5.1 Introduction 

Glass fibers as reinforcement in cement-based matrix were first utilized in the 1960s 

in Russia [7]. A further major step towards glass fiber reinforced concrete ( G F R C or 

G R C ) is due to the company Owens Corning which developed alkali-resistant (AR) 

glass by increasing the content (>16%) of zirconia [70, 35] in the material. This 
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enhancement allowed for the production of a durable high-performance cement-

based composite, which has been used in various modifications in structural and 

mili tary engineering since [5, 52]. 

Each of the AR-glass fibers is a bundle of (typically 50 to 400) monofilaments 

which are bonded together by a sizing material. When bridging a crack, these 

filaments debond and rupture or are being pulled out and thus increase the toughness 

of the cement-based composite [36]. Moreover, the short dispersed fibers increase 

the first cracking stress and, above a critical volume fraction threshold, the ultimate 

tensile strength. These features together wi th the enhanced durability make the 

use of G F R C an alternative to traditional steel fiber reinforced concrete ( F R C ) . 

However, the bridging mechanism is far more complex than in F R C . 

Once a crack forms in the matrix, the glass fibers bridging the crack act against 

further crack opening by stretching and pullout. During this process, some filaments 

are completely pulled out while others rupture. The mechanism exhibits random 

features that can be divided into three scales: 

1) A t the micro scale, individual filaments within a bundle experience random 

interface shear flow depending on their position wi thin the bundle and thus 

on the penetration of the matrix into the bundle core. A second source of 

randomness at the micro scale is the fiber strength that is determined by the 

weakest flaw in the material structure. 

2) A t the meso scale, individual bridging fibers are randomly oriented and po

sitioned within the composite domain. This randomness causes variability in 

the bridging force due to snubbing and non-uniform pullout lengths [34] 

3) A t the macro scale, the overall number of fibers bridging a crack is a random 

variable that depends on the specimen geometry, fiber geometry and fiber 

volume fraction. 

A model that considers these sources of random effects and reflects the complexity 

and unique bridging mechanism of the short glass fiber bundles does not exist to 

date. 
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]Pc }Pb }Pf 

Fig . 5.1: Multiscale approach to the modeling of G F R C : (a) composite crack bridge 

wi th multiple filament bundles; (b) filament bundle; (c) single filament considered 

independently from the bundle. 

5.2 Probabilistic model 

The semi-analytical probabilistic model is l imited to uniaxial tensile loading of a 

composite wi th discrete, planar matrix cracks and mechanically independent fibers. 

The mechanical independence of fibers is provided if matrix deformations are much 

lower than the fiber deformations i.e. the matrix stiffness Em{l — Vf) 3> EfVf is 

much higher than that of the fibers. Here, Em and Ef are the matrix and fiber 

elastic moduli , respectively, and Vf is the fiber volume fraction. 

5.2.1 Single filament 

Let us assume that the bridging action of a single filament wi th embedded length 

£ e and inclination angle tpc (with respect to the crack plane normal) is provided in 

the form 

Pi = f(w,ee,<pc,dM, (5.i) 

where Pf is the bridging force, w is the crack opening, is a vector of deterministic 

parameters and 6r a vector of random variables defined over the sampling space flr 

with the corresponding joint distribution function Gnr. The mean force transmitted 
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by a filament within a bundle bridging a matrix crack is 

^ ( w , 4 , ¥ > c ) = En r[Pf] (5.2) 

wi th [X] being the expectation operator applied to the random variable X defined 

over the sampling space Q wi th the joint probability distribution function G n ( X ) , 

i.e. 

E n [ X ] = / X d G n ( X ) . (5.3) 
Jn 

The variance of the filament bridging force is given by 

o%(w,te,<pc) = Dni[Pf\, (5.4) 

wi th Dn[X] being the variance operator applied to the random variable X defined 

over the sampling space Q wi th the joint probability distribution function G n ( X ) , 

i.e. 

DnpC] = E n [ X 2 ] - E n [ X ] 2 = / X2dGn(X) - EQ[X}2. (5.5) 
Jn 

5.2.2 Filament bundle 

Given the number of filaments in a bundle, rif, the force transmitted by the whole 

bundle reads 

ft, = 'Z,Pf(w,ee,<pc,0Iii,Od), (5.6) 
i=l 

where 0r j is the vector of parameters obtained as the i t h sample from the sampling 

space Qv of the random variables 9r. Since the inclinations and embedded lengths 

of the bridging bundles wi l l be random, the tpc and £ e parameters are to be treated 

as random variables. Their sampling space wi l l be referred to as Q^. The mean 

bridging force transmitted by a bundle has the form 

fiPb(w) = E ^ n r [ P b ] = n f E ^ r [ P f ] . (5.7) 

For the variance of the bundle bridging force, we have to use the law of total variance, 

which states 

D[Y] = E[D(Y\X)} + D [ E ( Y | X ) ] . (5.8) 
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When this law is applied to the present case, is substituted by Pb(w, £e, ipc,0d\0T). 

We can alternatively express the conditional probability by explicitly writ ing the in

tegration domain for individual statistical operators in the equation. W i t h this 

notation, the variability of the randomly oriented filament bundle wi th random em

bedded length reads: 

alb(w) = En^ [ D n r ( P b ) ] + Dn^ [EQr(Ph)] 

= n f

2 ( E ^ [ D n r ( P f ) ] + D n j E n r ( P f ) ] ) . 

where we do not explicitly write out the dependencies of Pf on its parameters. 

5.2.3 Mult ip le bundles 

Let us now introduce the variable n^, which stands for the number of bundles 

(chopped strands) bridging a matrix crack. In a composite wi th randomly dis

persed fiber bundles, n b wi l l be a random variable wi th sampling space f2 b. The 

total force transmitted by all n b bundles can be written as 

j=li=l j=l 
(5.10) 

where £ej and <pcj are the j samples from the Q,^ sampling space, the vector QTiij 

is the ijth sample from the sampling space QT and P b j - can be expressed as 

— Pf (w, 4.7, <Pc,i,0rdi,0d) (5.11) 

The mean force resulting from the bridging action of randomly dispersed short fiber 

bundles has the form 

(5.12) 
liPc(w) = E n b n ^ A [ P c ] = En b [n b ] /xp b (w) 

= EQb[nh] n f E ^ r [ P f ] . 

App ly ing the law of total variance according to E q . (5.8) wi th Pc(w, £e, ipc, 9T, #d|^b) 

substituted for ( F | X ) , the variance of the crack bridging force P c is obtained as 

03

p(w) = Dilbnill[Pc] = D: 

y / Tib V 

J. J. 

(5.13) 
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Exploi t ing the independence of P b and n b , E q . (5.13) can be simplified to 

<Tp (W + D ü b n b • E n n r ( P b 

(5.14) 
E n b [n b • D n „ n r (Pb) 

= Eüb[nh] • DavaT [Pb] + D n > b ] • ( E n „ n r [Pb] 

In order to evaluate the statistical moments of the bridging response, the distribution 

functions of the random variables need to be known. The derivation of distribution 

functions for individual random variables is out of the scope of the present publica

tion so that we refer to [56] for the distribution of the strength of a brittle fiber in 

composite and the bond strength distribution. The distribution of the number of 

dispersed short fibers bridging a planar matrix crack is in detail dealt wi th in [65]. 

5.3 Discrete model 

The discrete model developed by John E . Bolander at U C Davis [8] is introduced and 

used as reference for the probabilistic model described above. In the discrete model, 

fiber and matrix phase models are both based on a lattice model. The matrix phase 

is represented by a set of randomly distributed nodes which are interconnected 

by springs and kinematic constraints. This nodal set for the matrix phase has 

lattice topology and material properties by the Delaunay/Voronoi tessellations which 

enable the discretized matrix phase to behave in an elastically homogeneous fashion 

(Fig. 5.2a). A s shown F ig . 5.2b, the matrix element is defined according to the 

rigid-body-spring concept [8]. The linear and rotational zero-size springs are formed 

at the centroid C of the area of the Voronoi facet common to nodes % and j. 

The spring set is constrained to nodes % and j v ia rigid arm constraints. 

The fiber phase can be discretized within the computational domain irrespective 

of the background lattice representing the matrix [31]. A fiber element is defined 

wherever a fiber passes through the Voronoi facet associated wi th a matrix 

element (Fig. 5.2c). In the semi-discrete fiber model, a linear zero-size spring for 

the fiber reinforcement is positioned at the intersection point I and aligned wi th 

the fiber path. The spring is linked to the associated two nodes % and j through 

rigid-arm constraints similar to the rigid-body-spring construction of the matrix 

elements. The semi-discrete modeling of fibers is computationally efficient, contrary 
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to the fully-discrete fiber modeling in which a fiber is discretized as a series of the 

frame elements wi th additional nodal degrees of freedom and its elements are linked 

to the associated nodes via an ordinary bond link. This feature of the semi-discrete 

fiber model enables simulations wi th large numbers of fibers. 

F ig . 5.2: Lattice discretization of fiber reinforced concrete: (a) Delaunay/Voronoi 

tessellations of material domain; (b) matrix element ij defined by facet centroid C; 

and (c) fiber element associated wi th intersection point / . 

5.4 Computational example 

Having formulated the modeling framework for G F R C in two alternatives, we can 

proceed to a computational example, which compares the two approaches. Bo th 

models require an independent micromechanical model of a fiber bridging action. 

For this purpose, we apply the analytical form due to [38] wi th snubbing and spalling 

effects according to [33]. For reasons of brevity and readability, we simplify the 

general expressions by assuming a perfectly plastic (frictional) bond wi th infinite 

ini t ial stiffness and constant bond strength. W i t h these assumptions, the resulting 

form for a filament bridging action in the debonding phase reads 

wi th Ef, Af and r being the filament modulus of elasticity, cross-sectional area and 

radius, respectively, r denoting the bond strength, / the snubbing coefficient and s 

(5.15) 
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pullout 

Ef = 70 GPa 
£ e = 9 mm 
r — 3.5 |ím 

<pc = 0 rad 
T = 0.2 MPa 

c u = °° 

pulled out fiber 
broken fiber 

0.1̂ 0 0.2 0.3 0.4 0.5 

Fig . 5.3: Analy t ica l model of a single fiber bridging action due to Naaman et al . 

[38]. 

the spalling coefficient. When the fiber is fully debonded along the embedded length 

£ e , the pullout stage starts. Again , for reasons of brevity, we ignore any hardening 

or softening during the pullout stage and write the bridging force during the pullout 

stage simply as 

P f , P u i i O , au = oo) = 27rrr(4 + w0 - w) • exp (fipc) • (cos cpc 
(5.16) 

wi th WQ being the crack opening at the transition between the debonding and pullout 

stage. It can be obtained by formulating the continuity condition 

^f,deb(Wo) = -Pf,pull(w0) ->• W0 rEf 

(5.17) 

In both E q . (5.15) and E q . (5.16), the assumption was that fibers have an infinite 

strength <ru = oo. If we now include the possibility of fiber rupture, we have to 

multiply the fiber force in the debonding phase by H(an — <7f), where <7f denotes the 

fiber stress and H(-) the Heaviside step function defined as 

H(x) 
0 : x < 0 

1 : x > 0. 

The filament force in the debonding stage then becomes 

Fi,deb(w) = A { \ j E i T W • exp (fipc) • (cos(pc)s • H(au - af) (5.19) 
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crack opening w [mm] crack opening w [mm] 

Fig . 5.4: Computational example performed wi th the present modeling framework: 

(a) single filament bridging responses (gray curves) sampled from the sampling space 

of random variables (r ~ uniform distribution between 0.01 and 0.4 M P a and an ~ 

Weibull distribution with shape m = 5 and scale s = 1.75 GPa) and mean filament 

response (black curve); (b) filament bundle responses sampled from the sampling 

space of random variables (tpc ~ sin(2x) distribution and £ e ~ uniform distribution 

between 0 and 9 mm) and mean bundle response (black curve). 

wi th 
deb (W, (Til = OO) o n x 

at = . (5.20) 

In a similar manner, the pullout force has to be multiplied by a Heaviside function 

which ensures that fibers have not ruptured at their peak stress during the debonding 

so that 

Ff,paa{w) = 27rrr(4 + w0 - w) • exp (ftpc) • (cos<^c)s • H(au - <7 f > m a x), (5.21) 

where 
2irrr£e 

at,max = — ~ . — • (5.22) 
At 

The complete filament bridging action (see F ig . 5.3) can be written as 

Pt(w) = FiAeh(w) • H(w0 -w) + F f , p u l l • H(w - w0). (5.23) 

A n example of the filament bridging action is depicted in F ig . 5.4a for material 

parameters that correspond to AR-glass fibers wi th random r distributed uniformly 
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between 0.01 and 0.4 M P a and random fiber strength an wi th Weibul l distribution 

wi th shape parameter k = 5 and scale parameter A = 1.75 G P a . The filaments 

are embedded perpendicular to the crack plane in this example. The figure shows 

samples from the distributions given by E q . (5.23) and the mean filament response 

given by E q . (5.2), which, multiplied by the number of filaments in a bundle, is the 

prediction of the response of a perpendicularly embedded filament bundle. The red 

curve is a single simulation of a bundle consisting of 100 filaments performed by the 

discrete model. 

Fig.5.4b depicts the bridging force of a bundle consisting of rif = 100 filaments 

wi th random bond strength and fiber strength as in F ig . 5.4a but, additionally, the 

orientation angle and embedded length are considered as random variables. Random 

samples of such filament bundles and the mean bundle bridging force predicted by 

the probabilistic model wi th E q . (5.7) are depicted. The red curve is the bridging 

force of nb = 100 bundles that are randomly oriented and positioned within the 

crack predicted by the discrete model. 

5.5 Conclusions 

Both the probabilistic and the discrete model are capable of simulating the crack 

bridging action of chopped AR-glass strands in a cement-based matrix. The prob

abilistic model is computationally very efficient and able to evaluate statistical mo

ments of the response. However, the model formulation includes a number of as

sumption that make the model of use only for uniaxial tension in its current form. 

The discrete model evaluates the response of the composite as a single sample. 

Therefore, repeated calculations would have to be performed when the variability 

was of interest. The discrete model, even though more computationally demand

ing, is much more robust than the probabilistic model. It is not l imited to uniaxial 

tension and is therefore suitable for general purposes. Its comparison wi th the 

probabilistic model serves as a verification of the semi-discrete fiber bundle imple

mentation. 
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SUMMARY 

The present thesis proposes probabilistic models of the tensile strength of high-

modulus multifilament yarns and glass fiber reinforced concrete. Novel approaches to 

modeling of the tensile strength of both multifilament yarns and glass fiber reinforced 

concrete have been derived and described. Regarding the tensile testing of high-

modulus multifilament yarns, issues with stress concentrations in clamps of the 

currently used tensile test machines have been identified. A new clamp device that 

addresses this issue was developed and validated in comparative experiments wi th 

commonly used tensile test machines. 

Suggestions for further research 

I. multifilament yarns Al though the presented work shed light on a variety of 

aspects of the tensile behavior of high-modulus multifilament yarns, some issues 

have remained unanswered or have not been answered completely. The following 

suggestions summarize the open questions and should encourage further research in 

the field. 

In the long run, the approach motivates further work in two directions: First , the 

industrial testing devices should be enhanced in order to deliver automatic testing 

of high-modulus multifilament yarns wi th varied lengths. Second, a more advanced 

modeling of the mean size effect curve transition between the bundle range and 

chain-of-bundles range would enable further theoretical conclusions about the re

distribution mechanisms between the filaments wi thin the yarn. In particular, a 

random-field simulation accounting for effects like position of filaments within the 

bundle cross-section and the transition from the global to the local load sharing wi th 

possibly variable bundle length would provide more insight into the transition from 

the fiber-bundle to the chain-of-bundles behavior of fibrous yarns. 

A s the author points out in the corresponding chapter, the transition between 

the two modes of tensile strength behavior is rather fluent. Especially in the length 

range between one and two effective bundle lengths, the prediction of the yarn 

behavior is rather complex. Since this is the length scale of macroscopic structural 
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elements, the issue surely deserves further attention. 

Due to the double-clamp mechanism of the Statimat 4 U adapter, it is difficult 

to measure yarn strain during the tensile test - the reference length changes during 

the test. This is a severe l imitat ion which has to be addressed if the clamp device is 

to be released for serial production and used industrially. One possibility is external 

optical measurement but the device wi l l require a robust buil t- in solution for strain 

measurement, eventually. 

In course of the validation of the novel clamp device, five materials have been 

tested. For each material, the parameters of the clamps have to be set in a time 

consuming procedure. W i t h the design of experiments framework and a software 

module for the tensile test machine, the optimization of the clamping parameters 

should be performed automatically wi th a series of tensile test of the studied mate

rial . 

A problem that has only been addressed marginally is the tensile testing of coated 

yarns. Currently used methods are very time consuming and the adapter clamps 

have proved to yield very good results wi th this k ind of material. In particular, the 

tensile strengths wi th coated carbon and basalt yarns were about 9% higher than 

wi th standard methods. Taking into account the uprise of coated yarn material, 

further research in this direction seems to be highly desirable. 

II. glass fiber reinforced concrete The probabilistic model derived in Chap

ter 5 provides a homogenized material model for the tensile response of glass fiber 

reinforced concrete ( G F R C ) . Its output is a constitutive law, which can be used 

in the vectorial formulation of microplane responses within the framework of a mi-

croplane damage model [58, 59, 57]. W i t h this link to macroscale computation, 

the probabilistic model is a very useful and computationally convenient means for 

designing and optimizing G F R C structures. 

In order to increase the durability and serviceability of textile reinforced concrete 

structures, chopped glass fiber bundles are usually added into the cement-based ma

trix. However, the fiber volume fraction, fiber length and fiber type are parameters 

that can be easily controlled and modified in order to achieve an optimized struc-
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tural behavior under both service loads and in ultimate limit state. A n algorithm 

performing this task requires the model of interaction effects between the bearing 

textile reinforcement and the toughening chopped fiber reinforcement. This direction 

should be further investigated if the model is to be applied in structural computation 

and design. 
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