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Abstrakt 
Letecká te rmální hyperspektrá lní data přinášejí řadu informací o teplotě a emisivitě 
zemského povrchu. Př i odhadování těchto pa rame t rů z dálkového snímání tepelného 
záření je t ř eba řešit nedourčený systém rovnic. Bylo navrhnuto několik př ís tupů jak tento 
problém vyřešit, přičemž nej rozšířenější je algoritmus označovaný jako Temperature and 
Emissivity Separation (TES). Tato práce m á dva hlavní cíle: 1) zlepšení algoritmu T E S a 
2) jeho implementaci do procesingového řetězce pro zpracování obrazových dat získaných 
senzorem TASI . Zlepšení algoritmu T E S je možné dosáhnout nahrazením používaného 
modulu normalizování emisivity (tzv. Normalized Emissivity Module) částí, k te rá je 
založena na vyhlazení spektrálních charakteristik nasnímané radiance. Nový modul je 
pak označen jako Optimized Smoothing fbr Temperature Emissivity Separation (OSTES). 
Algoritmus O S T E S je připojen k procesingovému řetězci pro zpracování obrazových dat 
ze senzoru TASI . Testování na simulovaných datech ukázalo, že použit í algoritmu O S T E S 
vede k přesnějším o d h a d ů m teploty a emisivity. O S T E S byl dále tes tován na datech 
získaných ze senzorů A S T E R a TASI . V těchto případech však není možné pozorovat 
výrazné zlepšení z důvodu nedokonalých atmosférických korekcí. Nicméně hodnoty emi­
sivity získané algoritmem O S T E S vykazují více homogenní vlastnosti než hodnoty ze 
s tandardního produktu senzoru A S T E R . 

Abstract 
Airborne thermal hyperspectral data delivers valuable information about the temperature 
and emissivity of the Earth's surface. However, attempting to derive temperature and 
emissivity from remotely sensed thermal radiation results in an underdetermined system 
of equations. Several approaches have been suggested to overcome this problem, but the 
most widespread one is called the Temperature and Emissivity Separation (TES) algo­
rithm. This work focuses on two major topics: 1) improving the T E S algorithm and 2) 
implementing it in a processing chain of image data acquired from the T A S I sensor. The 
improvement of the T E S algorithm is achieved by replacing the Normalized Emissivity 
Module with a new module, which is based on smoothing of spectral radiance signatures. 
The improved T E S algorithm is called Optimized Smoothing for Temperature Emissivity 
Separation (OSTES) . The O S T E S algorithm is appended to a pre-processing chain of 
image data acquired from the TASI sensor. The testing of O S T E S with simulated data 
shows that O S T E S produces more accurate and precise temperature and emissivity re­
trievals. O S T E S was further applied on A S T E R standard products and on TASI image 
data. In both cases is not possible to observe significant improvement of the O S T E S 
algorithm due to imperfect atmospheric corrections. However, the O S T E S emissivitites 
are smoother than emissivities delivered as A S T E R standard product over homogeneous 
surfaces. 
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Introduction 

Remote sensing refers to acquisition of information without making physical contact. The 
term, as used nowadays, is mostly used in the context of data acquired from airborne and 
satellite platforms. Acquired information is electromagnetic (EM) radiation emitted or 
reflected from the Earth. It is a powerful tool for observing the land surface, atmosphere 
and oceans, which results in many applications in different fields including meteorology, 
ecology, global change studies, agriculture, sociology, urban studies and many others [71]. 

Remote sensing activities can be divided into the groups according to the different 
regions of E M spectrum which is used. The boundaries between E M regions are not 
sharply defined. According to the [77], the E M spectrum can be divided into visible 
(0.4 - 0.72 pm), near infrared (0.72 - 1.3pm), short-wave infrared (1.3 - 3pm), mid-wave 
infrared ( 3 - 8 pm), long-wave infrared (8 - 14 pm) and microwave (1 mm - 1 m) region. In 
the first three mentioned regions E M radiation can be observed which is mainly reflected 
from the Earth's surface. The E M radiation in long-wave infrared region, also widely 
referred as the thermal infrared (TIR) region, consists mainly of the radiation emitted 
by the Earth's surface. Mid-wave infrared consists of mixture of reflected and emitted 
E M radiation. Microwave radiation is sensed by radar systems for active remote sensing. 
Data acquisition is also limited by atmosphere transmittance, which can be very weak 
between individual regions. 

The sensors used for acquisition of E M radiation are categorised into broadband, 
multispectral and hyperspectral. Broadband sensors are continuously sensitive within 
the one region of E M spectrum while multispectral sensors consist of few, rather wide, 
spectral bands within one region of E M spectrum. Hyperspectral sensors are similar to 
multispectral, but acquire data in many very narrow and consecutive spectral bands. 

The first airborne thermal multispectral sensor was developed in 1980 by N A S A Jet 
Propulsion Laboratory. This sensor consisted of five multispectral bands in the ther­
mal region. Currently operational airborne sensors are Airborne Hyperspectral Scanner 
(AHS) and Spatially Enhanced Broad Array Spectrograph System (SEBASS) . To our 
best knowledge, there are currently three commercially available airborne thermal hy­
perspectral sensors, namely Thermal Airborne Spectrographic Imager (TASI) (Itres Ltd . , 
Calgary, Canada), A I S A Owl (Specim Ltd . , Oulu, Finland) and Hyper-Cam L W (Telops 
Inc., Quebec, Canada). 

Regarding the the various types of remote sensing data, the focus of this work wil l be 
put on processing of image data obtained from multispectral and hyperspectral sensors 
in the T I R region (i.e. the data are obtained by a sensor acquiring emitted E M radiation 
in the region of 8 - 14pm in several spectral bands). This work primarily focuses on 
processing of airborne thermal hyperspectral data acquired by the T A S I sensor, however, 
other sensor types wil l be mentioned as well. 

Airborne thermal hyperspectral data offer valuable information about the observed 
objects. Image data of this kind has found application in fields focused on evapotranspi-
ration [49], vegetation [52], soil moisture [58], mineral mapping [47], urban studies [63] 
and gas plumes identification [51]. Let us emphasize that the most important quantities 
derived form airborne thermal hyperspectral data are temperature and emissivity. How­
ever, direct derivation of temperature and emissivity by observing radiance in iV bands 
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I N T R O D U C T I O N 

results in iV equations but N +1 unknowns (N emissivities plus temperature). This prob­
lem, separating the contributions of temperature and emissivity to observed radiances, 
has been the subject of a great deal of research and many methods have been developed 
to address it [44]. 

The most widely used spaceborne sensor with multispectral T I R capabilities is the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer ( A S T E R ) . It is part 
of the N A S A ' s Terra platform, which was launched in December 1999. The temperature 
and emissivity separation algorithm [25], designated T E S , that was developed for the 
A S T E R sensor has since been applied to processing of T I R image data acquired by various 
airborne and spaceborne, and various multispectral and hyperspectral sensors. 

Although the T E S algorithm is already capable of producing reasonably accurate 
results it could be made more robust, precise and widely applicable by reducing the 
number of the assumptions that it makes. In particular, for surfaces with low spectral 
contrast T E S often produces anomalous emissivity spectra [17, 59]. These spectra suffer 
from a large degree of noise, which can be explained by the use of various thresholds 
included in T E S . 

The aims of this work are: 1) enhancing the accuracy and precision of the products 
generated by the T E S algorithm and 2) incorporating a new algorithm to the processing 
chain applied on image data acquired by TASI sensor. The chapters discussing the aims of 
the work are preceded by Chapter 1 and Chapter 2, which introduce fundamental laws of 
thermal radiation and basic principles of the processing of airborne thermal hyperspectral 
data. Chapter 2 describes in detail all pre-processing steps applied to image data acquired 
by the T A S I sensor necessary for initiation of the temperature and emissivity separation 
procedure. These steps create a pre-processing chain, which wil l be followed by the 
temperature and emissivity separation procedure. 

Chapter 3 describes the problem of temperature and emissivity separation and in­
troduces currently used algorithms with emphasis on the T E S algorithm. This chapter 
also introduces the improvement of the T E S algorithm, which is referred to as Optimized 
Smoothing for Temperature and Emissivity Separation (OSTES) . The main improvement 
is accomplished by replacing one of the T E S modules with a newly designed one that 
takes advantage of a relationship between brightness temperature and emissivity. 

The results of the O S T E S performance testing are described in the Chapter 4. The 
O S T E S algorithm is firstly tested on a set of simulated data representing different natural 
materials as they would be acquired by various multispectral and hyperspectral sensors. 
Then it is applied on the A S T E R standard land-leaving and downwelling radiance product 
ASTJ39T and the results are compared with the A S T E R emissivity and surface kinetic 
temperature standard products ASTJ38 and ASTJ35, respectively. Last part of this chap­
ter includes incorporation of the O S T E S algorithm to the processing chain of image data 
acquired by the TASI sensor and then it compares the performance of the O S T E S and 
T E S algorithms on image data obtained from TASI . 
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1 
Theoretical background on thermal 

radiation 

This chapter describes fundamental principles and concepts of E M radiation called thermal 
radiation. Every object with temperature above 0 K emits thermal radiation. The amount 
of thermal radiation as a function of wavelength depends on the object's temperature and 
its surface properties. 

Black body 

The concept of black body is very well described in the work of Howell [32], where black 
body is defined as perfect absorber for all incident radiation. In addition to being a 
perfect absorber, the black body is perfect emitter as well. Thus a black body absorbs 
and reemits all energy incident upon it. Black body do not exist in nature but the concept 
is used for determination of a real object's surface property called emissivity. 

Planck's law 

Concerning black body at thermal equilibrium, the amount and spectral distribution of 
emitted energy is described by Planck's law [50]: 

B(T, A ) ^ 1 

\5 Ji£- ' 
A eXkT — 1 

where B(T, A) is spectral radiance (W m - 2 u r n - 1 s r _ 1 ) of black body at temperature T (K) 
and wavelength A (jam); k is Boltzmann constant (1.3806488 • 10~ 2 3 J K _ 1 ) , h is Planck 
constant (6.62606957- 10~ 3 4 Js) and c is speed of light (299792458 m s - 1 ) . A n example of 
the black body radiation at three different temperatures, as described by Planck's law, is 
depicted in Figure 1.1a. 

Emissivity 

Emissivity is defined as the ratio of radiance of a real surface to that of a black body at 
the same temperature: 

£ ( T ' A ) = 5 ( T ^ ) ' 

where e(T, A) is spectral emissivity and L ( T , A) is real surface spectral radiance. The 
emissivity can be understood as real surface emission effectiveness in comparison with 
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1.0. 

radiation emitted by a black body of the same temperature in the same wavelength. 
Let us note that emissivity depends on the viewing angle apart from temperature and 
wavelength, as is defined in Hollow [32]. In remote sensing observed objects are of the 
temperature between 270 - 330 K and the observation angle is close to nadir (usually 
maximum off-nadir angle is less than 30°), which causes negligible changes in spectral 
emissivity of most of natural surfaces. Thus, it can be further assumed that emissivity 
depends just on wavelength. 

Quartz was chosen to demonstrate the principles of radiation of a real object's surfaces. 
Its spectral emissivity was taken from the A S T E R spectral library [6] and it is shown 
in Figure 1.1b. Quartz heated to the temperature T has spectral radiance L(T, A) = 
e(X)B(T,X) as is illustrated in Figure 1.1c. 

^ Planck's law 
r i 4 . 

8 9 10 11 12 13 

Wavelength (urn) 

Quartz emissivity 
1.00 

8 9 10 11 12 13 

Wavelength (urn) 

Quartz radiance 
T 14 

••B 7 
8 9 10 11 12 13 

Wavelength (um) 

(a) Radiation of black body (b) Quartz spectral emissiv- (c) Radiance of quartz 
described by Planck's law ity 

Figure 1.1: Principles of radiation of real surfaces. 

Wien's displacement law 

The peak of black body radiation at wavelength Xmax is described by Wien's displacement 
law [32]: 

\ _ A 

where b is Wien's displacement constant (2.8977721 x 10~ 3 m K ) . As was mentioned before, 
the temperature of most of natural and artificial surfaces observed by airborne remote 
sensing ranges in 270 - 330 K . According to the Wien's displacement law, the peak of 
emitted radiation varies roughly from 8.8 pm to 10.7 pm. This range is in coincidence with 
the atmospheric window situated between 8 pm to 13 pm. The atmospheric transmittance 
in this atmospheric window is very high and thus it is relevant for acquisition of remotely 
sensed thermal data. 

Kirchhoff's law of thermal radiation 

Emit t ing and absorbing properties of an object at local thermodynamic equilibrium sur­
rounded by an isothermal environment are related through by Kirchhoff's law of thermal 
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radiation [42]. It states that an object's surface absorptivity a(X) at a given wavelength 
is equal to the object's surface emissivity e(X) at the same wavelength: 

a(\) = e(X). 

Energy conservation implies that energy incident to the object's surface can be reflected, 
transmitted or absorbed. Considering the fractions of incident energy the following equa­
tion holds: 

1 = p(X) + r(X) + a(X), 

where p(A) is the object's surface spectral reflectivity, r ( A ) is the object's surface spectral 
transmissivity and a (A) is the object's surface spectral absorptivity. Applying Kirchhoff's 
law to opaque material ( T ( A ) = 0) results in following equation: 

l=p(X)+e(X) p(X) = l-e(X). (1.1) 

A l l mentioned principles in this section wil l be further used in explanation of properties 
of airborne thermal hyperspectral data and its processing. 
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2 
Airborne thermal hyperspectral data 

properties 

This chapter provides insights into technical parameters of the TASI and processing chain 
of image data acquired by this sensor. Knowledge of the instrument parameters and pro­
cessing chain gives important overview of the image data properties and their components. 
The result of the processing chain described in this chapter is a georeferenced image data 
containing land-leaving radiance. Such an image data form an input for further processing. 
Let us note that this chapter omits naming physical quantities dependent on wavelength 
as "spectral" for the sake of clarity. However, all quantities remain wavelength dependent. 

2.1. Instrument technical specifications 
The TASI sensor is developed by Itres L t d . (Calgary, Canada) and is one of the very few 
commercially available pushbroom hyperspectral T I R sensors equipped with a mercury 
cadmium telluride array. Each of its 600 across-track imaging pixels contains 32 bands all 
of which are in the T I R region. Bands are situated in the 8 to 11.5 um region and have 
a Ful l W i d t h at Half Maximum F W H M « 0.11 um with Noise Equivalent Temperature 
difference N E A T « 0 .1K. The response functions of the T A S I sensor are described by 
the Gaussian functions as depicted in Figure 2.1a. 

The shape of the response functions implies that any quantity observed by T A S I 
sensor is of finite spectral-bandwidth. Quantities need to be transformed to band-effective 
quantities in order to relate them with certain wavelengths. The band-effective quantities 
are obtained by using the weighted average: 

1 £ 2 n ( A ) d A ' 

where r^(A) is the response function of band i, A i and A2 are the lower and upper bound­
aries of band i and X can be substituted by any quantity. Figure 2.1b illustrate the 
radiance of quartz (solid line) and band-effective values of radiance measured by the 
T A S I sensor (red dots). A sensor of this type is available at the Global Change Research 
Institute C A S (Brno, Czech Republic) and it is a part of the Flying Laboratory of Imaging 
Systems (FLIS) [28]. 
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2 . 2 . I M A G E D A T A P R E - P R O C E S S I N G 

TASI Response Functions ^ Quartz radiance by TASI 

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 & " " 8 9 10 11 12 13 

Wavelength (um) Wavelength (um) 

(a) Response functions of T A S I sensor. (b) Radiance of quartz at 300 K mea­
sured by T A S I sensor 

Figure 2.1: T A S I response functions. 

2.2. Image data pre-processing 
The main objective of image data pre-processing is transformation of acquired raw image 
data into georeferenced radiance at surface level. It is accomplished by three major steps: 
radiometric calibration, atmospheric corrections and geometric pre-processing. Radio­
metric calibration converts digital numbers (DN) into values of radiance at sensor level. 
Atmospheric corrections compensates the influence of the intervening atmosphere and 
produces land-leaving radiance. Finally, the geometric pre-processing compensates for 
image data distortions caused by aircraft movement and registers the image data into a 
coordinate system. 

Supportive field measurements of thermal radiance, surface temperature, emissivity 
and atmospheric parameters offers valuable data for calibration and validation purposes. 
Especially in cases of airborne image data for scientific purposes the high quality is 
strongly demanding. Thus it is necessary to perform supportive measurements in or­
der to achieve precise results and determine the data quality. 

It is important to emphasize that currently there does not exist any definitive standard 
pre-processing chain. This is caused mainly by a small number of sensors with various 
technical parameters and their different applications. Sensors usually have tailored pre­
processing chains, which is the case of TASI sensor as well. Certain parts of processing 
chain are maintained by commercial tools. However, there are still parts of processing 
chain that need to be done by in-house tools. In Figure 2.2 is illustrated the processing 
chain used at the Global Change Research Institute C A S (Brno, Czech Republic) to pre-
process image data acquired by T A S I sensor. Individual parts of the diagram wil l be 
discussed in the following text. The radiometric calibration and atmospheric corrections 
are demonstrated with an example of quartz radiance at 300 K as depicted in Figure 2.3. 

Radiometr ic cal ibration 

Thermal radiation incident upon the sensor array originates from many additive com­
ponents (e.g. observed scene, instrument enclosure, intervening atmosphere and others). 
Incident thermal radiation produces an electrical signal, which is proportional to radiant 
intensity. This electrical signal is then amplified and converted into voltage and subse-
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2.2. I M A G E D A T A P R E - P R O C E S S I N G 
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Figure 2.2: Processing chain applied to image data acquired by T A S I sensor. 
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2.2. I M A G E D A T A P R E - P R O C E S S I N G 

Raw data ^ At-sensor radiance ^ Land-leaving radiance 

8.0 9.0 10.0 11.0 « 8.0 9.0 10.0 11.0 tó 8.0 9.0 10.0 11.0 

Wavelength (um) Wavelength (um) Wavelength ((im) 

(a) (b) (c) 

Figure 2.3: Example of data at various processing stages. Data simulates quartz at 300K as 
would be acquired by TASI sensor at altitude of 2000 m under summer mid-latitude atmosphere: 
(a) shows raw data, (b) shows data after radiometric calibration (in red) and (c) shows data 
after corrections of atmospheric transmissivity and upwelling atmospheric radiance (in red). In 
cases (b) and (c) pure quartz radiance are shown in gray. 

quently into D N values (as depicted in Figure 2.3a). Radiometric calibration consists 
of separating signal from the viewed scene and converting it into physical units of radi­
ance. Atmosphere influence is not accounted in this process and thus after radiometric 
calibration one gets radiance at sensor level (as depicted in Figure 2.3b). 

The relationship between D N and at-sensor radiance L m is the following: 

D N = a + bLm, 

where a and b are calibration coefficients. The calibration coefficient a, also known as 
offset, represents radiation originating from instrument enclosure, sensor dark current and 
electronic offset. The calibration coefficient 6, also called gain, determines sensor radiant 
sensitivity. Calibration coefficients are determined by imaging a set of reference black 
bodies of known temperature and emissivity. In this context, the term black body is 
meant to be a surface with emissivity very close to unity. These coefficients are usually 
determined applying one of two methods: 1) imaging two black bodies at different tem­
perature directly before imaging, or 2) combining black body image data from laboratory 
and black body image data acquired before imaging. 

In the first case are usually used two black bodies of different temperatures. Temper­
atures of these black bodies enclose temperatures expected to occur in the scene. Let us 
consider the radiance of cold black body L{TQ) and the radiance of hot blackbody L ( T H ) . 
The calibration coefficients can be obtained from: 

D N H L ( T C ) - D N c L ( r H ) 
L(TC) - L(TK) 

D N C - D N H 

L(TC)-L(TKy 

where D N c and D N H are digital numbers measured by sensor viewing cold black body 
and hot black body, respectively. This procedure is commonly used in case of other 
instruments for measuring thermal radiation, such as yuFTIR [30]. 
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2.2. I M A G E D A T A P R E - P R O C E S S I N G 

The determination of calibration coefficients in the second case assumes that gain 
calibration coefficient b does not change under different conditions. Thus, it is sufficient to 
perform series of black body measurements at different temperatures in order to determine 
gain calibration coefficient b. These measurements can be performed in the laboratory 
once per season. However, offset calibration coefficient a does not remain stable and 
changes under different conditions. Hence, it is necessary to image a black body at known 
temperature directly before acquisition to account for variability of this coefficient. 

Again, it is important to emphasize that all quantities and both calibration coefficients 
are wavelength dependent. Spectral calibrations are part of the radiometric calibrations. 
To determine spectral calibrations, band centers of every pixel using laser beam at different 
wavelengths are determined in the laboratory. Determined positions do not change over 
time significantly. However, the spectral shift occurs under different conditions and thus 
it needs to be determined for every scene. Spectral shift estimation is usually based on 
the spectral features of the atmosphere or certain materials. 

In case of TASI sensor, commercial software for radiometric calibration delivered by 
Itres company (Calgary, Canada) is used. SparCal software [35] is used to determine all 
parameters necessary for radiometric calibrations from laboratory measurements. R C X 
software [36] is used for additional estimation of calibration parameters and for processing 
raw image data. The resulting radiometrically calibrated image data are radiance at sensor 
level Lm. 

Atmospher ic corrections 

Radiometric calibrations deliver image data containing radiation from the surface, atten­
uated by atmosphere, plus radiation from the atmosphere along the line of sight. Thus 
the measured radiance at sensor level (Lm) consists mainly of radiance emitted from the 
land surface, downwelling atmospheric radiance (i^itm) reflected by the surface and the 
atmospheric upwelling radiance ( L ^ t m ) . The sum of all these components is expressed by 
a radiative transfer equation (RTE) as follows: 

L m = reB(Ts) + r ( l - e)L{tra + L ^ , (2.2) 

where B(TS) is radiance of the surface at temperature T s according to the Planck's law, e is 
the surface's emissivity and r is atmospheric transmittance. It is important to emphasize 
that all elements in the equation are wavelength dependent but notation for this is omitted 
for the sake of clarity. Since sensors are of finite bandwidth, quantities in eq. (2.2) 
are replaced by band-effective equivalents according to the eq. (2.1). Moreover, R T E 
can be used under the assumption of cloud-free atmosphere under local thermodynamic 
equilibrium. The meaning of the R T E is illustrated in the Figure 2.4, where p is reflectivity. 
Kirchhoff's law of thermal radiation implies that reflectivity p can be rewritten as (1 — e) 
for opaque materials, as shown in eq. (1.1). 

The goal of the atmospheric corrections is to determine atmospheric transmittance, 
downwelling and upwelling atmospheric radiance and compensate for them. The quantifi­
cation of these quantities is usually based on radiative transfer models of the atmosphere. 
For this purpose MODerate resolution atmospheric TRANsmiss ion ( M O D T R A N ) model 
[8] is usually used. M O D T R A N simulates atmospheric parameters such as atmospheric 
transmittance, downwelling and upwelling atmospheric radiance based on input parame­
ters such as vertical profiles of water vapour content and temperature, CO2 concentration, 
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2 . 2 . I M A G E D A T A P R E - P R O C E S S I N G 

r{l-e)Litmk LL\tm i reB(Ts) 

Figure 2.4: The radiance incident to the sensor in the thermal region originates mainly from 
three sources: 1) radiance TSB(TS) emitted by an object; 2) reflected downwelling atmospheric 
radiance r ( l — e)L^ t m ; 3) upwelling atmospheric radiance L \ T M emitted by the atmosphere itself. 

the choice of model atmosphere (if measured profiles are not available) and many others. 
In general, input parameters can be obtained in two ways: 1) by in-situ measurements; 
2) by satellite-based products. 

The most common in-situ measurement is radio sounding. A radiosonde is launched 
during the overflight and it is used to measure vertical temperature and water vapour 
profile of the atmosphere. Other in-situ instruments can be used as well, for example 
sunphotometer for obtaining water vapor content or different radiometers for measur­
ing sky or surface radiance. Another source of water vapour and temperature profiles is 
satellite-based products acquired close to the time of aircraft overflight. The most common 
is M O D 0 7 . L 2 product [9] generated by Moderate Resolution Imaging Spectroradiometer 
(MODIS) instrument. Illustration of the transmittance, downwelling and upwelling at­
mospheric radiance generated by M O D T R A N using MOD07_L2 products as input are 
depicted in Figure 2.5. 

In case of thermal hyperspectral images, various algorithms for estimating atmospheric 
effects based just on the image data itself were developed. Usually it is applied to one of 
the following: In-Scene Atmospheric Corrections (ISAC) introduced by Young et al. [76] 
and Autonomous Atmospheric Compensation ( A A C ) introduced by G u et al. [26]. The 
advantage of using one of these algorithms is that no supporting data are necessary. The 
drawback of these methods remains in estimation of just atmospheric transmittance and 
upwelling atmospheric radiance. 
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Transmittance ^ Upwelling radiance ^ Downwelling radiance 

8.0 9.0 10.0 11.0 « 8.0 9.0 10.0 11.0 « 8.0 9.0 10.0 11.0 

Wavelength (nm) Wavelength (^m) Wavelength (jim) 

(a) (b) (c) 

Figure 2.5: Example of atmospheric parameters used for atmospheric correction of T A S I image 
data acquired at altitude of 2000 m above surface during summer season. 

Once all the atmospheric parameters are determined, it remains to compensate for 
them. Compensating for atmospheric transmittance and upwelling atmospheric radiance 
leads to land-leaving radiance ( X L L ) : 

L L L = eB(Ts) + (1 - e)L{tm. (2.3) 

The example of land-leaving radiance is shown in Figure 2.3c. The contribution fro down-
welling atmospheric radiance is not possible to separate without knowledge of emissivity. 
Hence, image data after atmospheric corrections are made of land-leaving radiance L L L -
Compensation for downwelling atmospheric radiance is part of the temperature and emis­
sivity separation described in Chapter 3. 

Atmospheric corrections for the T A S I sensor, as part of processing chain, are not 
performed by commercial products. However, there exists commercial tools that allow 
complex solution for atmospheric corrections. A n example of such a tool is A T C O R [53] 
which is based on look-up tables generated by M O D T R A N and takes into account terrain 
topography and sensor parameters. It offers basic temperature and emissivity separation 
algorithms as well. Apart from the mentioned solution, atmospheric corrections rely on 
extracting data from in-situ measurements or satellite products, running radiative trans­
fer models and applying derived atmospheric parameter on image data. Alternatively, 
algorithms for atmospheric parameters estimation from image data can be implemented. 
In both cases, atmospheric corrections involve creating in-house tools. 

Geometr ic pre-processing 

Acquired image data are distorted during their acquisition and geometric pre-processing 
accounts for all factors causing these distortions. During geometric pre-processing aircraft 
motion, terrain variations and geometric sensor model are taken into account in order to 
register image data into reference frame. 

Ancillary data about aircraft position and movement, terrain structure and geometric 
sensor model are necessary. The aircraft needs to be equipped with I M U / G N S S systems 
for recording aircraft position (longitude, latitude and altitude) and aircraft orientation 
(roll, pitch and heading angles). Terrain structure is obtained from Digital Surface Model 
(DSM) or Digital Elevation Model ( D E M ) . These data are derived from aerial laser scan­
ning or from stereo images. Aerial laser scanning can be performed either simultaneously 
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2.2. I M A G E D A T A P R E - P R O C E S S I N G 

with image data acquisition or separately. Other sources of D E M / D S M are national 
services or satellite products (e.g. A S T E R product A S T 1 4 D E M ) . The geometric sensor 
model is usually delivered by the sensor manufacturer. 

The process applied on image data during geometric pre-processing is called geo-
orthoreferencing. It consists of two successive steps: direct image data geocoding and 
resampling. Direct image data geocoding consists of geometric corrections and orthog-
onalization of the image data. These are further resampled into a regular grid of the 
reference frame with the desired coordinate system (e.g. Universal Transverse Mercator 
coordinate system). Image data are resampled into desired spatial resolution applying 
nearest neighbor, bilinear or cubic interpolation. For scientific purposes nearest neigh­
bor interpolation is commonly used since it preserves spectral information and does not 
combine spectra from surrounding pixels. 

Geometric pre-processing of image data acquired by TASI sensor are performed by 
GeoCor software [37] delivered by Itres company (Calgary, Canada). The difference be­
tween distorted image data and georeferenced image data is illustrated in Figure 2.6. 

(a) Distorted raw geometry image (b) Georeferenced image data, 
data. 

Figure 2.6: Illustration of land-leaving radiance image data before and after geometric pre­
processing. 
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3 
Temperature and emissivity separation 

Pre-processed thermal image data provide valuable information about the properties of 
the observed surfaces, most importantly their temperature and emissivity. But in or­
der to determine temperature and emissivity from observed radiance one must solve a 
system of RTEs . Data from multispectral and hyperspectral T I R sensors offer the op­
portunity to derive both the temperature as well as emissivity spectrum, which can be 
used to characterize the material composition of surfaces. However, observing radiance in 
./V bands yields N radiative transfer equations but N + 1 unknowns (N emissivities plus 
temperature), which results in the under determined system of equations. The estimation 
of temperature and emissivity from such a system of equations is usually addressed as 
temperature-emissivity separation. This chapter describes several approaches for sepa­
rating temperature and emissivity. It firstly introduces a few commonly used methods 
and then focuses on the most popular approach called the Temperature and Emissiv­
ity Separation algorithm (TES) . The last part of this chapter focuses on enhancing the 
accuracy and precision of the products generated by the T E S algorithm. The main im­
provement is accomplished by replacing one of the T E S modules with a newly designed one 
that takes advantage of a relationship between brightness temperature (i.e. temperature 
obtained from land-leaving radiance under the assumption of emissivity e = 1) and emis­
sivity. The improved T E S algorithm is called Optimized Smoothing for Temperature 
Emissivity Separation (OSTES) and is introduced in [1]. 

3.1. Available approaches 
Many approaches have been developed to overcome the problem of having an underdeter-
mined system of R T E s [44]. Methods used to overcome the problem of underdetermined 
system of R T E s are usually based on adding empirical or semiempricial constraints. 

Algorithms for temperature and emissivity estimation depend on sensor architecture 
and acquisition context. Some algorithms require knowledge of Normalized Difference 
Vegetation Index (NDVI) [64], surface type [57] or even emissivity [38]. Others are based 
on multitemporal [73] or multiangle [65] acquisition. Only a few algorithms can retrieve 
temperature and emissivity from a single scene without ancillary surface information, 
whether using multispectral or hyperspectral data. The most common are: the grey body 
emissivity method [7], the linear emissivity constraint temperature emissivity separation 
method [74], spectral smoothing [11] and the T E S algorithm [25]. Principles of the last 
four mentioned methods are described in the following text. The most attention is paid 
to the T E S algorithm, as it is the most popular and it is widely applied to many data. 
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3.2. A V A I L A B L E A P P R O A C H E S 

G r a y b o d y emissivity method 

Barducci and Pippi [7] proposed an algorithm that is based on an assumption of flat 
spectral emissivity beyond 10 um. To solve the system of R T E s it is enough to find at 
least two spectral bands with the same emissivity. This can be achieved in case of airborne 
thermal hyperspectral data. The drawback of this method is its sensitivity to instrument 
noise. 

Linear emissivity constraint temperature emissivity separation 
method 

As Wang et al. [74] describe, this method is based on the idea of substituting spectral 
emissivity with a piecewise linear function. The emissivity spectrum is divided into seg­
ments, in which spectral emissivities are assumed to be linearly dependent on wavelength. 
Thus, it is necessary for every segment to estimate gain and offset. It implies that the 
number of spectral bands has to be equal to, or greater than number of unknowns resulting 
from segmentation to piecewise linear functions. 

Spectral smoothing 

The spectral smoothing algorithm, also known as A R T E M I S S (Automatic Retrieval of 
Temperature and EMIssivity using Spectral Smoothness), was reported by Borel at [10] 
and [11]. The algorithm is based on the assumption that spectra of solids are much 
more smooth than spectra of gases. Thus by smoothing spectra one removes spectral 
features introduced by atmosphere and obtains spectral emissivity. Moreover, current 
implementation described in [11] includes modified I S A C algorithm called A R T I S A C , 
which estimates atmospheric transmissivity for further choice of the correct atmospheric 
model. Atmospheric models contain so called T U D (atmospheric Transmissivity, Up-
welling and Downwelling atmospheric radiance) and are stored in look-up tables ( L U T ) . 
Then temperature is varied until the spectral emissivity is the smoothest possible, where 
the smoothness criterion is the standard deviation of measured radiance minus simulated 
radiance. The spectral smoothness method can be described briefly by following steps: 

1. Estimation of atmospheric transmissivity using A R T I S A C algorithm 

2. Determination of few the closest atmosphere models from T U D - L U T according to 
the estimated atmospheric transmissivity 

3. Use of these atmosphere models as input to spectral smoothness algorithm for a few 
pixels chosen from the image and the atmosphere model, which results in smoothest 
emissivity in most of the cases, is chosen as the correct one 

4. Use chosen atmosphere model for the whole image and estimate temperature and emis­
sivity by applying the spectral smoothing procedure 
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3.2. Temperature and emissivity separation algorithm 
(TES) 

The T E S algorithm was originally developed for the A S T E R sensor [25]. A S T E R was 
launched in December 1 9 9 9 onboard N A S A ' s Terra platform. T E S has since then found 
widespread use with other multispectral and hyperspectral sensors. Several studies have 
discussed the implementation of T E S with A H S data [61, 39] . Application of T E S to data 
acquired by the T A S I sensor is mentioned in a few studies as well [75, 49] . Apart from the 
mentioned sensors, the T E S algorithm has been modified for the Digital Airborne Imaging 
Spectrometer (DAIS) sensor [60]. Concerning spaceborne sensors, the T E S algorithm has 
also been suggested for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
[40], the M O D I S [33] and the Multispectral Thermal Imager (MTI) [46] data processing. 
Moreover, the T E S algorithm is being suggested for the future HyspIRI mission [34]. 

The T E S algorithm is based on a semi-empirical relationship between spectral contrast 
(i.e. difference between the highest and lowest values in the emissivity spectrum) and the 
minimum emissivity. The algorithm consists of three modules, namely the Normalization 
Emissivity Module ( N E M ) [22], the Ratio module and the Maximum-Minimum Differ­
ence ( M M D ) module [45]. The inputs to the algorithm are land-leaving radiance L L L 
and downwelling radiance L^tm. Let us remind the reader that land-leaving radiance is 
obtained from eq. (2 .2 ) by compensating for atmospheric transmissivity r and atmo­
spheric upwelling radiance L\tlD: 

L L L = eB(Ts) + (1 - e)L{tm. (3 .1 ) 

The N E M module performs an iterative process for estimating temperature and emis­
sivity, and compensating for the downwelling radiance. The output of the N E M module 
is an initial estimation of temperature and emissivity. Then the ratio module normalizes 
the emissivities obtained by the N E M module using their arithmetic mean. Thus one 
obtains the so called (3 spectrum, which is less sensitive to sensor noise. Finally, the 
maximum and minimum of the /3 spectrum are found and their difference ( M M D ) is used 
in following semi-empirical relationship: 

£min = 0 . 9 9 4 - 0 . 6 8 7 x M M D 0 ' 7 3 7 . (3 .2) 

Derivation of eq. (3 .2 ) is explained in following paragraph. Ratioing the j3 spectrum back 
to an emissivity spectrum with knowledge of minimum emissivity increases the precision 
of the emissivity spectrum estimates. The band with the highest emissivity is then used 
for temperature estimation. 

The relationship between spectral contrast and minimum emissivity, shown in eq. 
(3 .2 ) , is a regression based on 8 6 laboratory spectra of rocks, soils, vegetation, snow 
and water chosen from the A S T E R spectral library [6]. This relationship is depicted 
in the Figure 3 .1 . It is important to note that eq. (3 .2 ) is tailored for the A S T E R sensor. 
To apply T E S to a different sensor, the regression of £ m m on M M D must be refined by 
using sensor specific response functions. 

After A S T E R was launched, [27] and [54] suggested to replace the power regression 
shown in eq. (3 .2 ) with linear regression. The replacement is connected with modification 
of the threshold for separating materials with low spectral contrast. The main advantage 
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3.3. T E S A L G O R I T H M I M P R O V E M E N T 

M M D 0 . 7 4 

Figure 3.1: Semi-empirical relationship between emissivity contrast and minimum spectral 
emissivity as shown in study reported by Sabol et al. [54]. 

is elimination of artefacts in retrievals. However, the drawback is loss of accuracy in cases 
of materials with low spectral contrast [54]. The T E S algorithm used for generation 
A S T E R standard products [5], as well as its modifications for other sensors [61, 39, 75, 
60, 40, 33, 46, 34], is based on the power law regression. Thus, in this work the T E S 
algorithm is considered to be that using the power regression. 

3.3. TES algorithm improvement 
The algorithm described below brings a new approach for separating temperature and emis­
sivity by replacing the N E M module in the T E S algorithm with a completely new mod­
ule. The new module is based on the similarity between brightness temperature spectral 
features and emissivity spectral features. Brightness temperature is obtained from land-
leaving radiance under the assumption of emissivity e = 1 for every wavelength. Although 
land-leaving radiance includes some portion of reflected downwelling radiance, it stil l re­
tains the spectral features arising from the emissivity of the surface materials, which is 
0.6 or higher for natural materials [25]. Since the magnitude of downwelling radiance 
is usually much lower than the surface radiance the features contained in the brightness 
temperature spectra may be distorted but wi l l not be completely hidden. The new module 
approximates this relation between brightness temperature and emissivity. 

In order to demonstrate the relationship, three emissivity samples with different spec­
tral contrasts were chosen from the A S T E R spectral library [6], namely green grass, fine 
sandy loam and altered volcanic tuff. These emissivities are depicted in Figure 3.2 (solid 
lines) together with corresponding band-effective values for TASI sensor (empty sym­
bols). These emissivities were applied to Plank's law at temperature 300 K and combined 
with downwelling radiance from standard mid-latitude summer atmosphere generated by 
M O D T R A N [8]. The resulting radiances, were transformed to band-effective quantities 
with respect to TASI response functions. Brightness temperatures for every band of each 
sensor were obtained by applying inverse Planck's law on a sample of land-leaving radi­
ances under the assumption of £ = 1. Figure 3.2 also includes brightness temperatures 
(full symbols) in order to demonstrate spectral similarity with emissivity. Figure 3.3 
plots emissivity against brightness temperature for the chosen samples (empty symbols). 
These quantities clearly exhibit relationship with linear trend regardless of spectral con-
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Green Grass Fine Sandy Loam Altered Volcanic Tuff 
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Figure 3.2: Emissivity spectra (black solid line) of three samples chosen from A S T E R spectral 
library [6]. Symbols represent band-effective values of emissivity (empty symbols) and brightness 
temperature (full symbols) for TASI sensor. 

trast. Also displayed in Figure 3.3 are lines that approximate this relationship, derived 
in the manner described later in the next. 

The only factor that can jeopardize the linear relationship between brightness temper­
ature and emissivity is the high magnitude of downwelling radiance in comparison with 
surface radiance. This wi l l occur rarely, if at all, as described in the first paragraph of 
this section. Let us emphasise that the brightness temperature and emissivity relation­
ship can be approximated by the linear relationship at any surface temperature since we 
are interested in the brightness temperature features rather than in absolute values. The 
algorithm description below uses band-effective values of quantities linked to i-th band 
by subscript index i. 

The dependence of emissivity Si on brightness temperature T\Di wi l l be approximated 
by following equation: 

Si = pTht + q, (3.3) 

where p and q are empirical coefficients. These coefficients are determined by solving 
the system of two equations using two points, namely maximum brightness temperature 
coupled with emissivity equal to 1 and minimum brightness temperature coupled with 
lowest emissivity £ m i n : 

1 = p m a x ( T b J + q, 
e m i n = p m i n ( T b J + q. 

(3.4) 

The next step is estimation of the the lowest emissivity £ m m . 
This is done by varying £ m i n over the range of possible emissivities for natural mate­

rials [0.6,1], determining corresponding coefficients p and q by solving eq. (3.4) and then 
approximating emissivity by eq. (3.3) using brightness temperature for all spectral bands. 
The estimated emissivity is then used together with land-leaving radiance L L L and down-
welling radiance (subscript A T M is omitted for clarity reasons) in a computation that 
yields spectral radiance: 

L L L , - (1 - e < ) i j ( 3 5 ) L' 

The temperature in every spectral band is derived from spectral radiance V applying 
inverse Plank's law. The highest one is chosen as the reference temperature T m a x . Finally, 
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Figure 3.3: Symbols represent examples of the relationship between brightness temperature Tb 
and emissivity as would be observed by the TASI sensor. Lines illustrate the approximations 
of the relationship between brightness temperature and emissivity. The procedure used for 
estimation of the brightness temperature and emissivity relationship is described in the text. 

the estimated spectral radiance V and Planck's law at the reference temperature T m a x 

are normalized and compared against each other as follows: 

-Bj(2max) L[ 
E \\B{T«_ w 

The value of £ m i n is considered final if its corresponding spectral radiance V is the best 
fit to Plank's law. 

The whole process of determining £ m m can be understood as smoothing the spectrum 
by finding the optimal value of £ m m . Pseudocode depicted in Figure 3.4 summarizes the 
above described procedure as a function S M O O T H l N G E R R ( £ m m , L L L , L^) evaluating the 
error between Planck's law and estimated spectral radiance. This function is minimized 
with respect to the variable £ m i n as follows: 

argmin S M O O T H l N G E R R ( £ m m , L L L , l}). 
e m i n e [0.6,1] 

Continuous curves in Figure 3.3 show the optimal brightness temperature and emissiv­
ity relationship approximation. Let us emphasize that by applying emissivities obtained 
from the approximated relationship between brightness temperature and emissivity to eq. 
(3.5), one gets U as the best fit to Planck's law. This means that -B _ 1 (Z4) produces a 
temperature value for each band. These temperatures have minimum variability since 
they are derived from the best fit to Planck's law. Let us also remind the reader that 
maximum brightness temperature is coupled with emissivity equal to 1, which implies that 
it is a part of the set of temperatures with smallest variability. It is important to note 
that maximum brightness temperature Tb computed from land-leaving radiance is usu­
ally smaller than surface temperature T computed from surface radiance. Land-leaving 
radiance is smaller than surface radiance since natural materials are of emissivity higher 
than 0.6 and the contribution from reflected downwelling radiance is usually much lower 
than surface radiance. B y reason of maximum brightness temperature Tb being smaller 
than surface temperature T and by being part of the set of temperatures with smallest 
variability, it can be concluded that maximum temperature from the set of temperatures 
tends to be the closest to the surface temperature T and is therefore taken as the reference 
one. 
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F u n c t i o n S M O O T H i N G E R R ( e m i n , L L L , Ll) 

1. Thi =B-1(LLLi) 
2. Find p and q by solving 

1 = p max(Tb;) + q 
£min = P min(T bJ + q 

3. Estimate emissivity 
Si = p r b i + q 

1. Estimate spectrum 
Ti - L L L i - ( l - e j ) L t 

5. T m a j t = max(S- 1 (iO) 
6. r e t u r n 

^ | 113(^)11! IIL'IU 

Figure 3.4: Pseudocode of the function that is being minimized in order to estimate the value 
of S-min* 

Before passing emissivity to the Ratio and M M D modules, it is recomputed according 
to the following equation: 

* > - m ^ r ( 3 - 6 ) 

where T is the maximum temperature associated with optimal £ m i n - Equation (3.6) is 
derived from eq. (3.1) and it is important for relating temperature and emissivity. This 
recomputation keeps temperature and emissivity consistent with each other (i.e. the same 
temperature can be derived from any emissivity band). The emissivity is then further 
processed with the Ratio and M M D modules, with minor changes to the original version 
of the T E S algorithm as it is described in [24] and [25]. These changes include: 1) there is 
no refinement of £ m a x according to the emissivity spectral contrast, 2) the threshold T i for 
separation emissivities with small spectral contrast is not applied, and 3) the number of 
M M D iterations is set to one. Let us emphasize that before reporting algorithm outputs, 
emissivity is recomputed by eq. (3.6) using the final value of temperature. 
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4 
OSTES validation 

The O S T E S algorithm was tested on both synthetic and real data. Synthetic data were 
generated from spectral and climatological libraries such that they cover many possible 
scenes and conditions. These data were simulated as would be acquired with A S T E R , 
A H S and TASI sensors. The O S T E S was further tested on a real data. For this purpose 
image data acquired by A S T E R and TASI sensors were chosen. The A S T E R image data 
include water bodies of the Caspian Sea and Lake Baikal. The TASI image data contain 
urban of city of Brno. 

4.1. Synthetic data 

Imaging systems 

Synthetic data are intended to cover many possible situations of acquiring thermal data. 
Therefore three different sensor architectures were chosen to test the O S T E S algorithm 
and compare the results with the T E S algorithm. 

From the wide range of airborne sensors operating in the T I R region two are chosen as 
examples: the A H S operated by Spanish Institute of Aeronauics (INTA) and developed 
by ArgonST (Fairfax, U S A ) , and the TASI sensor. These sensors offer data of great 
importance in applications. Notable studies include areas of mineral mapping [47], soil 
moisture estimation [58], urban studies [63], soil organic carbon estimation [48] and crop 
water stress characterization [49], among others. 

The above-mentioned airborne sensors were chosen together with the A S T E R sensor 
to analyze the performance of the O S T E S algorithm. A S T E R consists of 15 bands of 
which 5 are situated in T I R region with ( N E A T ) « 0.3 K . The spatial resolution of the 
T I R bands is 90 m. The A H S sensor has been fully operational from 2005 [18]. Its sensor 
operates in 80 spectral bands where the last 10 bands cover atmospheric window from 8 
to 13 pm [61]. The A H S T I R bands have a ( F W H M ) « 0.5 pm with N E A T « 0.5 K . The 
third sensor we wil l consider is the TASI sensor. It contains 32 bands all of which are in the 
T I R region. Bands are situated in the 8 to 11.5 pm region and have a F W H M « 0.11 pm 
with N E A T « 0 .1K. The response functions of these sensors are depicted in Figure 4.1. 

D a t a set 

A data set of 6588 samples was artificially created to compare the performance of the 
T E S and O S T E S algorithms. Samples include 108 different natural surfaces chosen from 
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4.1. S Y N T H E T I C DATA 

A S T E R Response Functions 
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Figure 4.1: Response functions for A S T E R , AHS and TASI sensors. The A S T E R Band Numbers 
are shown above the A S T E R response functions. 

A S T E R spectral library [6] at different temperatures coupled with 61 different atmospheric 
conditions taken from T I G R (TOVS Initial Guess Retrieval) database [14, 13]. Sample 
temperatures range from 244 K to 310 K . In order to simulate real conditions, every 
sample at a certain temperature is coupled with a certain type of atmosphere. The 
chosen atmospheres represent a variety of possible conditions within polar, mid-latitude 
and tropical airmasses. These samples were processed to land-leaving and downwelling 
radiance, as standard T E S algorithm input, and they were transformed to band-effective 
quantities with respect to the A S T E R , A H S and TASI response functions. Samples were 
passed to the algorithms individually. 
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4.2. S Y N T H E T I C DATA 

Sensor a b c 

ASTER 0.994 -0.687 0.737 0.983 
AHS 1.000 -0.782 0.817 0.994 

TASI 1.001 -0.737 0.760 0.997 

Table 4.1: Regression coefficients of e m i n = a + b M M D C and coefficients of determination r2. 

Simulated data for the A S T E R sensor were processed with the current implementation 
of T E S , as it is used for generation of A S T E R standard products AST_05 and AST_08 
[5]. The version of the original T E S algorithm in cases of A H S and TASI sensors was 
implemented in a manner similar to that described in [39]. In addition, the implementation 
omits the £ m a x refinement for emissivities with low spectral contrast. The O S T E S was 
applied to all sensors as it is described in section 3.2. 

Let us remind the reader that the regression coefficients in the eq. (3.2) need to be 
refined for each sensor with respect to its response functions. The regression coefficients 
in eq. (3.2) were recomputed for A H S and TASI sensors using their respective response 
functions. In both cases the regression was performed on a set of 108 spectra chosen from 
same categories and library as in the A S T E R case. The coefficients for different sensors 
are shown in the Table 4.1. 

Val idat ion 

Samples were passed to the T E S and O S T E S algorithms and the temperature and emis-
sivity results were compared with true values. We divide the results into two groups 
according to the emissivity spectral contrast. For each sensor type we determined a 
threshold for Maximum-Minimum emissivity Difference ( M M D ) in order to separate the 
samples with small spectral contrast such as water, vegetation, snow or samples with small 
particle sizes from other samples with higher spectral contrast. The threshold was de­
termined for each sensor separately since different response functions and spectral ranges 
result in different M M D values for the same sample. The performance of both T E S ver­
sions was determined by subtracting retrieved temperature from true temperature value. 
The temperature error and chosen M M D values for A S T E R , A H S and TASI are shown 
in Figure 4.2. 

Note that the temperature retrievals using O S T E S are both more accurate and more 
precise than T E S in the case of samples with low spectral contrast. It is also important to 
note that no significant improvement is evident for samples with higher spectral contrast. 

Let us remind the reader that every sample is processed under several different at­
mospheric conditions coupled with different sample temperatures. Thus the standard 
deviation of temperature and emissivity error is indicative of the algorithm's sensitivity 
to seasonal fluctuations. A comparison of standard deviations of temperature errors in­
troduced by both T E S approaches reveals that the O S T E S is less sensitive to changes in 
atmosphere and sample temperature for samples with low M M D . However, the standard 
deviations of temperature errors of samples with higher M M D are similar. Standard devi­
ations of temperature errors obtained by the O S T E S and T E S algorithms are summarized 
in the Table 4.2. 
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Sensor MMD OSTES TES 

ASTER < 0.021 0.25 0.50 
> 0.021 0.36 0.43 

AHS < 0.052 0.13 0.20 
> 0.052 0.20 0.19 

TASI < 0.026 0.16 0.32 

> 0.026 0.32 0.30 

Table 4.2: Standard deviations of temperature errors obtained by applying OSTES and TES 
algorithm on simulated data as seen by A S T E R , AHS and TASI grouped according to the sample 
Maximum-Minimum emissivity Difference (MMD). 

4.2. Comparison with A S T E R standard products 
The O S T E S temperature and emissivity were compared with A S T E R standard products 
ASTJ38 (kinetic temperature) and ASTJ35 (surface emissivity). For this purpose scenes 
containing water bodies were chosen. Water emissivity is well-known and does not vary 
significantly which offers a unique opportunity for testing various algorithm features. 
Water bodies are commonly used for calibration [69, 66] and validation [68, 67] purposes. 

Testing was focused on: 1) investigating the impact of various atmospheric conditions 
on emissivity retrievals of the same material, and 2) emissivity smoothness over homoge­
neous areas. Both tests were performed on A S T E R scenes containing large water bodies, 
since water emissivity is well-known. For the first test we chose five scenes of the Caspian 
Sea acquired in various seasons of the year. For the second test we chose Lake Baikal. 
The list of all scenes used, together with their acquisition and processing dates, is given in 
Table 4.3. For every scene we downloaded A S T E R standard products AST_09T, AST_08 
and AST_05 delivering land-leaving and downwelling radianace, surface kinetic temper­
ature and surface emissivity, respectively. Product AST_09T was used as input to the 
O S T E S algorithm. The resulting temperatures and emissivities were then compared with 

ASTER AHS TASI 

< 0.021 > 0.021 < 0.052 > 0.052 < 0.026 > 0.026 

MMD MMD MMD 

(a) (b) (c) 

Figure 4.2: Box plots representing temperature error produced by OSTES and TES algorithms 
for A S T E R , AHS and TASI sensors. Results are divided in two groups based on the Maximum-
Minimum emissivity Difference (MMD) in order to demonstrate the improvement of the OSTES 
algorithm. Whiskers represent minimum and maximum of temperature error. 
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Precipitable 
Location Acq date (UTC) Processing date water 

[kgm - 3] 

Caspian Sea 11.02.2001 - 07:35:55 19.11.2015 9 
Caspian Sea 29.06.2002 - 07:31:47 19.11.2015 30 
Caspian Sea 21.08.2004 - 07:29:35 19.11.2015 21 
Caspian Sea 30.09.2001 - 07:35:57 19.11.2015 28 
Caspian Sea 13.11.2008 - 07:24:21 19.11.2015 10 
Lake Baikal 22.07.2002 - 04:17:29 27.08.2015 18 

Table 4.3: A S T E R scenes used for algorithm testing 

the AST_08 and AST_05 standard products. The emissivity variability over large and 
homogeneous water bodies was chosen to be the quality indicator, since we are interested 
in the retrieval of material properties, which should be essentially constant over time and 
space. 

Casp ian Sea 

From the Caspian Sea scenes we chose samples of size 40 x 40 pixels over uniform, cloudless 
waterbody. These subsets were processed by the O S T E S algorithm and the emissivity 
results were averaged for every scene. The results are plotted in Figure 4.3 along with the 
emissivities that were delivered in the AST_05 product and averaged over the same spatial 
subset. In most cases the AST_05 emissivity spectra appear to be closer to the sea water 
emissivity spectra taken from A S T E R spectral library [6]. However, the temperature 
retrievals of extracted samples obtained by O S T E S and T E S are very close (not shown). 
The average temperature difference of ASTJ38 and O S T E S results computed from all 
Caspian Sea samples is 0.2 K (s.d. 0.2 K ) . The fact that the temperatures obtained with 
the two algorithms are very close, but the emissivities are not implies that the emissivity 
spectra from AST_05 product are not consistent with temperature from ASTJ38 product. 
We verified this inconsistency by taking the temperatures delivered in AST_08 and the 
downwellig and land-leaving radiances delivered in AST_09T and putting these into eq. 
(3.6) to obtain emissivities that are different from what is in the ASTJ35 product. These 
emissivity spectra derived from ASTJ38 and ASTJ39T, which we refer to as "recomputed 
emissivities", are depicted on Figure 4.3 as well. 

Comparison of recomputed emissivity spectra with O S T E S emissivity retrievals shows 
that the spectra are nearly identical in scenes acquired on 29.6.2002 and 30.9.2001. Agree­
ment between these emissivity spectra are the consequence of similar ASTJ38 and O S T E S 
temperatures; the average difference is —0.04 K (s.d. 0.15 K ) . It may be important to note 
that these scenes contain clouds in areas adjacent to the processed sample. On the other 
hand O S T E S results perform slightly better in scenes acquired on 11.2.2001, 21.8.2004 
and 13.11.2008. The average temperature difference between AST_08 and O S T E S in these 
scenes is 0.28 K (s.d. 0.13 K ) . Nevertheless, none of the emissivity spectra agrees with 
expected values. 
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11.2.2001 29.6.2002 21.8.2004 

10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 

A S T E R Band Number A S T E R Band Number A S T E R Band Number 

30.9.2001 13.11.2008 

10 11 12 13 14 

A S T E R Band Number 

10 11 12 13 14 

A S T E R Band Number 

Sea Water 

AST_05 

OSTES 

Recomputed 

Figure 4.3: Emissivity of Caspian Sea in different seasons obtained from the A S T E R standard 
product AST_05, OSTES retrieval, and emissivity recomputation according to the temperature 
from AST_08 and land-leaving and downwelling radiance from AST_09T. Emissivities were ex­
tracted from an area of size 40 x 40 pixels over pure and cloudless waterbody. Error bars display 
standard deviation. 

Lake Baikal 

The difference in emissivity obtained by the two versions of T E S is further illustrated in the 
scene over Lake Baikal shown in Figure 4.4. In this figure the white squares on the images 
define a water body sample of size 90 x 90 pixels that was used to produce the values in the 
histograms below the images. The expected values of sea water emissivity (red vertical 
line) are included in the Figure 4.4. The histograms show the O S T E S emissivity retrievals 
compared against the ASTJ35 standard product, as well as the emissivity recomputed 
with respect to the temperature delivered by AST_08 and land-leaving and downwelling 
radiance delivered by ASTJ39T, as described in the previous paragraph. Inspection of the 
A S T E R standard product AST_05 shows that emissivity values in bands 10, 11 and 12 
over the homogeneous study sample are clustered around two distinct values. This creates 
step discontinuities which are reflected in the bimodal distributions in the histograms and 
in the noisy patterns in the top image. This wil l be discussed further below. In contrast 
to AST_05 emissivities, O S T E S emissivity results are smoother and the histograms do 
not show any significant bimodality. The recomputed and O S T E S emissivity retrievals 
are similar. However, the O S T E S emissivities tend to be closer to the expected values. 
In addition to the noise, striping is also visible in the images. Striping is caused by 
electronic noise and can distort emissivity spectra by triggering thresholds included in 
the original T E S algorithm. This can cause step discontinuities. Temperature retrievals 
are not significantly affected. Striping is more thoroughly discussed in [23]. Even though 
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Figure 4.4: A S T E R band 10 emissivity images of Lake Baikal obtained from A S T E R standard 
product AST_05 (top) and OSTES emissivity retrieval (middle). In both images the same con­
trast stretching is used. The white square represents the area from which emissivity histrograms 
were created (bottom panel). Histograms show distributions of AST_05 emissivity, OSTES emis­
sivity and recomputed emissivity according to the temperature from AST_08 and land-leaving 
and downwelling radiance from AST_09T. The vertical line depicted in histograms indicates the 
expected value of water emissivity retrieved from A S T E R spectral library [6]. 
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the AST_05 and O S T E S emissivities differ significantly in some bands, the temperature 
retrievals are very similar. The average difference is 0.25 K (s.d. 0.18 K ) . Similar to the 
discussion regarding Caspian Sea emissivity retrievals, it can also be concluded in this 
case that none of the emissivity spectra have satisfying values. 

The discrepancies in shape and magnitude of emissivity spectra can be the result 
of various sources of error but the main error source has been attributed to imperfect 
atmospheric corrections [67, 68]. Table 4.3 indicates the amount of precipitable water 
in the atmosphere for each of the investigated scenes. These values were obtained from 
N O A A ' s Climate Forecast System Reanalysis. It can be observed that discrepancies in 
emissivity spectra are related to amount of precipitable water in the atmosphere. Notable 
works discussing emissivity retrievals over agricultural areas and water bodies are [17, 59]. 
One suggested improvement is the water vapour scaling method [66, 23]. 

The step discontinuities in emissivity values over homogeneous areas can occur due to 
various thresholds deciding how to treat the sample during processing. The original T E S 
algorithm starts in the N E M module assuming a maximum emissivity spectra £ m a x = 0.99. 
The N E M module is then restarted with refined £ m a x according to the emissivity retrieved 
from the first N E M pass. When the N E M iterations do not converge, then the correction 
for downwelling radiance is not possible, and obtained values of temperature and emis­
sivity are reported as final. The original version of T E S processes samples according to 
the M M D of emissivity spectra obtained from the N E M module either by incorporating 
eq. (3.2) or by presetting emissivity to e = 0.983. Some authors [27], [54] have suggested 
that the value of the threshold used for classifying observations into groups with either 
low or high spectral contrast should be changed or completely removed. Observations 
with wrongly determined spectral contrast or observations with spectral contrast close 
to any threshold result in step discontinuities. B y comparison, the O S T E S does not set 
any thresholds for materials with low spectral contrast and so it is expected to generate 
smoother results on homogeneous areas with low spectral contrast. 

4.3. Application to TASI image data 
The O S T E S algorithm was applied on image data acquired by T A S I sensor and the 
results were compared with emissivities obtained from in-situ mesaurements and the T E S 
algorithm esmissivity estiamtions. 

Exper iment setup 

The study was performed using data acquired over the city of Brno, Czech Republic (lat: 
49.2, Ion: 16.6). The examined data are subset of a flight line crossing the city from 
south-west to north-east. The acquisition was performed on 4.7.2015 at 14:03 ( U T C ) . 
The FLIS operated by Global Change Research Institute C A S (Brno, Czech Republic) 
[28] was used for this acquisition. FLIS consists of Compact Airborne Spectrographic 
Imager (CASI) , Shortwave infrared Airborne Spectrographic Imager (SASI) and T A S I 
sensor. A l l sensors are developed by Itres L t d . (Calgary, Canada). 

In-situ measurements of urban materials were performed with Fourier transform in­
frared (FTIR) Spectrometer Model 102 developed by D & P Instruments (Simsbury, U S A ) . 
The emissivity of measured surfaces was estimated by a spectral smoothing algorithm, 
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16.586 16.588 16.589 16.591 16.592 

Longitude (°) 

Figure 4.5: Part of flight line over the city of Brno. Image data were acquired on 4.7.2015 at 
14:03 (UTC). The top image displays true color image of the studied area. The middle image 
is a temperature map obtained from the OSTES algorithm applied on image data from the 
TASI sensor. The bottom image is false color emissivity map obtained from OSTES algorithm 
(red - band 10, green - band 15, blue - band 20). On the top and middle images locations and 
labels of in-situ measurements are shown. Labels refers to following surface types: 1 - asphalt 
hotel parking, 2 - concrete blocks, 3 - vegetation, 4 - Svratka river, 5 - asphalt parking lots and 
6 - asphalt rooftop. 
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which is different than spectral smoothing algorithm described in Section 3.1. Principles 
of these algorithms are similar but the one applied on F T I R data depends on high spectral 
resolution and neglects atmosphere along the line of sight. This algorithm is discussed 
in detail in [31]. Emissivity spectra of water and deciduous trees were not measured but 
instead they were extracted from A S T E R spectral library [6]. A l l emissivity spectra were 
resampled with respect to TASI response functions. The study area and locations of the 
in-situ measurements are shown in the upper part of the Figure 4.5. 

Spectral emissivity libraries are very useful for calibration and validation purposes. 
Let us emphasize that there are many other spectral emissivity libraries available apart 
from A S T E R spectral library. Notable libraries are Johns Hopkins University Spectral 
Library [55], Arizona State University Spectral Library [15], United States Geological 
Survey Spectral Library [16] and the Spectral Library of Urban Materials ( S L U M ) [43]. 
In the Appendix A is described a spectral emissivity library which is specifically focused 
on spoil substrates. 

T h e O S T E S implementat ion in the T A S I processing chain 

Image data acquired by the TASI sensor were radiometrically, atmospherically and ge-
metrically pre-processed as described the Chapter 2. The result of the pre-processing is 
land-leaving radiance, which is the first input parameter for the O S T E S and the T E S 
algorithm. The second input parameter to both algorithms is downwelling atmospheric 
radiance. This quantity was obtained from the radiative transfer model M O D T R A N [8]. 
M O D T R A N requires temperature and water vapour profiles, which were extracted from 
MOD07_L2 product [9] generated from M O D I S image data. 

The described procedure of temperature and emissivity estimation from pre-processed 
T A S I image data is the continuation of the processing chain introduced in Chapter 2. The 
schematic illustration of the O S T E S implementation into the processing chain of the T A S I 
image data is depicted in the Figure 4.6, which is the continuation of the processing chain 
depicted in the Figure 2.2. The whole processing chain of T A S I image data described in 
this work is operational at Global Change Research Institute C A S (Brno, Czech Republic). 

The processing of the TASI image data acquired during this experiment was limited 
to 22 spectral bands. First five and last five spectral bands were not considered since they 
were most affected by imperfect atmospheric corrections. 

The TASI image data were processed by the T E S and O S T E S algorithms in order 
to compare the temperature and emissivity retrievals. The TASI image data were pro­
cessed with the T E S algorithm by substituting O S T E S algorithm in the processing chain 
of TASI image data. The implementation of the T E S algorithm is based on the imple­
mentation described in [39] without the £ m a x refinement for emissivities with low spectral 
contrast. 

C o m p a r i s o n 

Temperature and emissivity results of the O S T E S algorithm are depicted in the mid­
dle and lower part of Figure 4.5 in the form of temperature and emissivity maps. The 
temperature map shows high temperature differences between vegetated and built areas. 
Emissivity map is a false color composition (red - band 10, green - band 15, blue - band 
20) showing variability of surface materials in the image data. 
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Figure 4.6: Continuation of the processing chain of the TASI image data introduced in the 
Chapter 2 and depicted in the Figure 2.2. This part illustrates temperature and emissivity 
separation processing chain applied to the pre-processed TASI image data. 

The in-situ measurements were not performed during the overflight. Therefore tem­
perature could not be used for the comparison and the validation of the T E S and O S T E S 
algorithms. The comparison of the T E S and the O S T E S algorithms' performance was 
tested against six emissivities obtained from in-situ measurements. Results are shown in 
the Figure 4.7, where error bars display standard deviation. Both T E S and O S T E S emis­
sivity retrievals are very similar. The O S T E S performs slightly better than T E S in cases 
of deciduous trees and the river of Svratka. However, neither of these two spectra agrees 
with the shape and magnitude of the expected emissivity spectra. These discrepancies 
can be caused by various sources of errors but the main error source has been attributed 
to the imperfect atmospheric corrections. Emissivities of the spot 5, asphalt parking lots, 
retrieved by the T E S and O S T E S significantly differ from in-situ measurement. This shift 
in magnitude is introduced by the insufficient compensation of the downwelling radiance. 
This spot is surrounded by buildings, which increase the amount of downwelling radi­
ance. This additional radiance is not included in the atmospheric parameters retrieved 
from M O D T R A N . The rest of the emissivity retrievals are considered to follow in-situ 
measurements well. Let us emphasize the reader that O S T E S offers only moderate im­
provements in emissivity retrievals. These are not possible to observe in this comparison 
due to the magnitude of the error introduced by the imperfect atmospheric corrections. 

These data were acquired within a campaign focused on detecting urban heat island of 
the city of Brno. The main goal was determination of parameters affecting temperatures 
in the city. Preliminary observations are introduced in the Appendix B . 
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Figure 4.7: Comparison of TES and OSTES emissivity retrievals with emissivities obtained 
from in-situ measurements. Error bars display standard deviation. 
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5 
Conclusion 

Thermal hyperspectral data delivers unique information about temperature and emissivity 
of the Earth surface which is used in many application in both scientific and commercial 
fields. However, derivation of these quantities leads to the underdetermined system of 
equations, as was discussed in the Chapter 3. Many approaches have been developed to 
overcome this problem among which the T E S algorithm is the most widely known and 
used. 

The T E S algorithm is well established and popular for several reasons: it retrieves tem­
perature and emissivity of natural surfaces simultaneously without any previous knowl­
edge of surface type and it is widely applicable to range of multispectral and hyperspec­
tral sensors. This suggests that the algorithm is a good benchmark for temperature and 
emissivity separation. A n y improvement to the T E S algorithm can benefit processing of 
thermal data from many sources. 

Chapter 3 introduced a module that estimates temperature and emissivity from an 
approximation of the relationship between brightness temperature and emissivity. The 
new module replaces the N E M module in the original T E S to create an algorithm that we 
call O S T E S . The O S T E S algorithm was chosen for processing image data acquired from 
T A S I sensors operated by Global Change Research Institute C A S (Brno, Czech Republic). 
The pre-processing chain is applied to the image data before passing them to the O S T E S 
algorithm. The individual pre-processing steps were described in the Chapter 2 and the 
attachment of the O S T E S to the pre-processing chain is discussed in the Chapter 4. 

The performance of O S T E S was firstly tested on a set of simulated data recomputed 
with respect to A S T E R , A H S and TASI response functions. Results show that tempera­
ture estimations using O S T E S are more accurate and precise than T E S for samples with 
low spectral contrast. It should be noted that this improvement is of modest size when 
compared to the already accurate results that can be obtained with T E S . O S T E S and 
T E S perform similarly for samples with a high spectral contrast. The results also reveal 
that O S T E S is less sensitive to variations in atmospheric conditions. 

The O S T E S was also compared against the A S T E R standard product AST_09T over 
the Caspian Sea and Lake Baikal. B y comparing the O S T E S results to A S T E R standard 
products AST_08 (temperature) and AST_05 (emissivity) we found that temperature re­
trievals of both algorithms are very similar. However, it was also found that temperatures 
included in the AST_08 product are not consistent with emissivities delivered by AST_05 
product in the sense of eq. (3.6). Thus emissivities were recomputed based on downwelling 
and land-leaving radiance from ASTJ39T and temperature from ASTJ38. 

Comparing all three emissivity retrievals over the Caspian Sea in different seasons 
shows that emissivity from ASTJ35 to be closest and recomputed emissivity to be the fur-
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thest from expected sea water emissivity values extracted from A S T E R Spectral Library, 
except of those in the June and September scenes, which are expected to have the largest 
water vapour burden in the atmosphere. It is also observed that the AST_05 emissivities 
over Lake Baikal exhibit step discontinuities. In the same region O S T E S and recom­
puted emissivities tend to be smoother with O S T E S emissivities being closer to expected 
value of water emissivity. A l l emissivity retrievals are probably affected by inaccurate 
atmospheric corrections since none of the obtained spectra had emissivity values close to 
expected values. 

The performance of the O S T E S and T E S was tested on image data acquired by T A S I 
sensor and validated against in-situ measurements. The emissivity retrievals from both 
algorithms follow in-situ measurements well in most of the cases. 

We conclude that improvements in atmospheric compensation wil l be crucial for fur­
ther improvements in emissivity results. Thus, further work should be focused on this 
topic. Addit ional improvements in O S T E S wil l consider modifications of cost function 
represented in eq. (3.3) and illustrated in Figure 3.4. Better approximations of the 
relationship between brightness temperature and emissivity should result in better tem­
perature and emissvity retrievals. 

The O S T E S algorithm is preferred mainly because of higher precision and accuracy 
under conditions of low spectral contrast, and because of the consistency between retrieved 
temperature and emissivity. We believe that implementing O S T E S to processing chain 
of TASI image data wil l benefit application for landscape assessment. We also hope that 
improvements introduced by O S T E S wil l help to enhance the quality of temperature and 
emissivity results in general. 
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A 
Spectral emissivity library of spoil 

substrates 

Spectral emissivity libraries contains valuable information about Earth surface materials, 
which can be utilised for validation and calibration purposes of airborne or satellite image 
data. Several libraries are currently available among which is also a spectral emissivity 
library of spoil substrates [2]. This appendix introduces mentioned library in detail. 

A . l . Introduction 
Post-mining sites represent areas of large-scale and intensive disturbance. They can have 
significant impacts on the surrounding landscape in many countries of the world. Original 
ecosystems can be damaged or destroyed, and the restoration of ecosystem functions and 
services is necessary [12]. Afforestation is widely used reclamation method. Many studies 
demonstrate that post-mining sites have a large potential for carbon sequestration if 
afforestation has been applied [72, 20, 56, 70]. This can contribute to mitigate the current 
increase in atmospheric CO2 concentrations. 

During opencast mining a large amount of substrate above the coal layer is removed 
and relocated in heaps covering extensive areas. These heaps consist of material often 
excavated from depths of several hundred meters. This material is called spoil substrate 
and it can vary in its physical and chemical properties. The heterogeneity is largely 
affected by geology and the method of mining and heaping. For this reason the substrates 
differ substantially from recent soils. They often have extreme p H and may contain 
high concentrations of heavy metals, polyphenols (i.e., products of coal decomposition) 
and salt content. Such properties can significantly impact a success and/or speed of 
vegetation development at post mining sites. Therefore a proper knowledge on spoil 
substrate properties and distribution is necessary in land rehabilitation. 

Thermal infrared remote sensing can provide beneficial tools for monitoring of post-
mining areas. Particularly, land surface emissivity (LSE) can be used for spoil substrates 
classification. In addition, physical and chemical properties can be estimated by spectral 
analysis of L S E . Land surface temperature (LST) is closely connected to soil moisture 
which is important for establishment of new ecosystems. A l l of this information is re­
quired when proper land reclamation should be applied. This can include mainly sub­
strate mechanical treatment, such as trenching in order to regulate water regime, chemical 
treatment (e.g., liming), and selection of appropriate tree species. 

42 



A . S P E C T R A L EMISSIVITY L I B R A R Y O F SPOIL S U B S T R A T E S 

Figure A . l : Locations of brown coal mining sites from which spoil substrate samples were 
extracted. 

L S T is coupled with L S E and thus one quantity cannot be derived without knowledge 
of the second. These quantities cannot be explicitly derived from radiance measurement. 
The reason is that by observing radiance in N bands one gets N unknown emissivities 
plus one unknown temperature. Such a system of equations is underdetermined (i.e., 
more unknown than known variables). Several algorithms have been suggested to solve 
this problem [44]. These algorithms either require knowledge of L S E in advance, or an 
estimate L S E as a part of their output. A library of spectral emissivities can be utilized 
for: 1) determination of L S T , 2) material classification, and 3) L S E validation of airborne 
and satellite thermal remote sensing data. 

This work describes a spectral library of spoil substrate emissivities from brown coal 
mining sites in the Czech Republic near towns of Sokolov, Chodov, Bflina and Ust i nad 
Labem (Figure A . l ) . The spectral library contains emissivities, soil p H in water and in 
KC1, soil conductivity, content of water soluble Na and K , A l and Fe in KC1, loss on 
ignition and content of polyphenols. In addition to all measured physical and chemical 
parameters, sample's latitude and longitude are listed. The dataset consists of 24 spoil 
substrate samples, which were homogenized by mixing and sieving before any sample 
analysis. The toxicity test and measurement of chemical properties are discussed at 
length in [19]. Data collection for emissivity retrievals was performed outdoors in Petri 
dishes using a F T I R spectrometer Model 102 ( D & P Instruments, United States). The 
emissivity of each sample was estimated by a spectral smoothing algorithm [31]. 

Datasets containing L S E are rare in comparison with datasets containing L S T mea­
surements. The most well-known spectral libraries containing emissivities are the A S T E R 
Spectral Library [6], Johns Hopkins University Spectral Library [55], Arizona State Uni ­
versity Spectral Library [15], United States Geological Survey Spectral Library [16] and 
the Spectral Library of Urban Materials [43]. However, these spectral libraries do not in­
clude neither geographical coordinates of samples nor representatives of spoil substrates. 
One example of a spectral library of emissivities from calibration/validation sites contain­
ing coordinates for each sample is described in [62]. The dataset described in this paper 
is exceptional in its nature and location. 

The data presented in this paper were used in a study focused on mapping of spoil sub­
strates for site re-cultivation [77] as well as in a study discussing spoil substrates toxicity 
[19]. The mining site was also mapped with the A H S in visible, near infrared, shortwave 
infrared and longwave infrared regions for mineral classification purposes [47]. Exam-
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Figure A.2: Examples of corresponding emissivity spectra retrieved from A H S and from spectral 
library of spoil substrates'. Emissivity spectra from the library were measured by FTIR and 
they were resampled with respect to A H S response functions. 

pies of emissivity spectra retrieved from A H S and their corresponding samples spectra 
extracted from the library are depicted in Figure A.2 . Samples spectra from the library 
were spectrally resampled with respect to A H S response functions using weighted averages 
[44]. Comparison of retrieved spectra in case of samples 11 and 19 shows good agreement 
in shape. Sample 12 exhibits deviations mainly between bands 3 and 4 (9.24 and 9.68 um). 
This can be explained by the fact that A H S pixel has 5x5 m pixel size and these pixels 
were not pure thus had more complex mineral composition than the collected samples. 
Discrepancies in magnitude can be addressed to imperfect atmospheric corrections or to 
different soil state during overflight. 

Any activity involving remote sensing over these mining sites can benefit from publicly 
releasing the spectral library of spoil substrates emissivity. Apart from remote sensing 
application, data in spectral library can be further analyzed for identifying relationships 
between a sample's spectral emissivity and its chemical properties. 

A.2. Methods 
The study area is situated around two post mining districts: 1) Sokolov - coal-mining 
district near towns of Sokolov and Chodov (North-West Czech Republic) and 2) North 
Czech coal mining district near towns of Bílina and Ustí nad Labem (North Czech Re­
public). Open-pit mines produce large areas of tailings where spoil material was sampled. 
Claylike tertiary sediments dominate in these districts. 

Spoil substrates were sampled from bare soil without vegetation. Samples contained 
negligible amounts of organic matter. Extracted samples were further homogenized by 
mixing and sieving trough a 2 mm screen. Homogenized samples were divided into two 
groups, from which the first one was used for chemical analysis and the second one for tox­
icity testing. Samples set for chemical analysis were air dried and stored in a dark place 
at room temperature. Soil p H in water and in I N KC1 (which is 74.56 g of potassium 
chloride diluted in 1000 m L of water [41]) was measured using a p H meter with glass elec­
trode in suspension. The suspension was prepared in 1:5 spoil to water ratio and 1:5 spoil 
to KC1 ratio. Conductivity was measured in filtrated suspension using a conductometer. 
The suspension was prepared in 1:5 spoil to water ratio. Content of water soluble N a and 
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K was also measured in filtrated water suspension (1:5 spoil to water ratio) using an ion 
selective electrode. Both suspensions were left to stay overnight. A l and Fe contents in 
I N KC1 eluate, (1:5 spoil to water ratio), were determined by spectrophotometer Spectra 
A A 640 (Varian, Australia). Loss on ignition was measured by burning spoil samples at 
600 °C for 5 h h. This process is called ashing. To determine the amount of polyphenols, 
samples were kept in 80 % ethanol (1:5 spoil to ethanol ratio) and stayed for 24 h. Samples 
were then filtrated and the polyphenol content was determined spectrophotometrically by 
Folin-Ciocalteau reagent at a wavelength of 765 nm [29]. Gall ic acid was used clS cl st c l i l - 

dard for calibration. The polyphenol content was expressed as mg/100g of soil. Toxicity 
was determined by enchytraeid toxicity test. The test is based on the population growth 
of pot worms in substrates. The details of the measurement are discussed in [19]. 

Spoil substrate emissivity measurements were collected with Designs and Prototypes 
Model 102 (United States) portable F T I R spectrometer. The measurements were per­
formed outdoors under clear sky conditions during two consecutive days in the summer 
season. The spectroradiometer was pre-heated to maximum expected ambient day tem­
perature during the nights before both measurement days. The samples were positioned 
on the south side of the spectrometer to avoid shadows. The fore-optic field-of-view was 
4.8° and it was 60 cm from the sample. Such a configuration resulted in a spot size of 
approximately 5 cm. Samples were put in a 14 cm diameter Petri dish and were allowed 
to be heated up naturally in the sunlight. Sample temperatures ranged from 40 °C to 
50 °C. Every sample was measured at three different spots. The measurement of one spot 
consisted of ten measurements, which were averaged. The resulting emissivity of each 
sample is the average of all three measurements. Sample temperature and emissivity were 
determined by a spectral smoothing algorithm, as described in [31]. 

During the measurements the instrument was calibrated using two blackbodies at dif­
ferent temperatures. A cold blackbody was set to the ambient temperature (30 °C) and 
warm blackbody was set just above the sample temperature (40 - 50 °C). The calibration 
procedure during the first four spoil samples was done between the changing of each sam­
ple. The calibration procedure during the rest of the measurements was done between 
every fourth sample. Before every sample a measurement was made of a diffuse gold re­
flectance plate (Infragold from Labsphere Inc.), to compensate for downwelling radiance, 
as suggested in [21]. The measurement of one sample along with instrument calibration 
and measurement of the diffuse gold reflectance plate took around 15 minutes. A descrip­
tion of the procedures for converting instrument response to radiance and compensating 
for downwelling radiance can be found in [31] and [30]. 

Some of the spoil substrate emissivity spectra are greater than one at certain wave­
lengths. This inaccuracy occurs at both ends of provided wavelengths interval (i.e. near 
8 pm and near 14 pm). Data at these wavelengths are on the edge of atmospheric window 
and thus the cause of the inaccuracy is imperfect compensation for downwelling radiance. 
Samples with numbers 33, 34 and 38 are missing header information of latitude and longi­
tude. Absent values are indicated by ' N A ' string. In these cases the origin of the sample 
is specified with respect to closest town (either Bílina or Sokolov). We still find these 
data meaningful, since they can be used as spectral endmembers. 
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Figure A.3: Spectra of three samples taken from the spectral emissivity library of spoil sub­
strates: (a) sample 02 representing clay rich for kaolinite; (b) sample 06 representing coal com­
bined with sand and clay; (c) sample 33 representing bentonite. Kaolinite and montmorillonite 
spectra were extracted from Arizona State University Spectral Libary [15] and quartz spectra 
was extracted from A S T E R Spectral Library [6]. Kaolinite spectrum is scaled for clarity reasons. 

A.3 . Data properties 
A l l of the samples contain varying amounts and types of clay minerals, as evidenced by 
their spectral emissivity features. Figure A .3 depicts three examples of spoil samples 
taken from the spectral library. These spectra can be compared with spectra of simi­
lar materials extracted from Arizona State University Spectral Library [15] and A S T E R 
Spectral Library [6], which are illustrated in the Figure A.3 as well. Sample 02 (Figure 
A.3a) is clay consisting mostly of kaolinite with significant dips at 8.90, 9.44, 9.90, and 
11.00 pm. Sample 06 (Figure A.3b) is coal combined with sand and clay. The emissiv­
ity spectrum of this sample contains kaolinite features mixed with a quartz feature at 
8.47 and 8.83 pm. The sample 33 (Figure A.3c) is bentonite rich for montmorillonite. 
Montmorillonite has typical dip in spectral emissivity at 9.43 pm. The spectral emissivity 
library of spoil substrates includes also image providing a preview of all samples in library 
similar to images shown in Figure A .3 . 

Thermal infrared remote sensing can be used for classification of spoil substrates and 
for determination of their physical and chemical properties. The spectral library presented 
in this paper can ease and enhance all these activities. Obtaining this information together 
with L S T is valuable for selection and monitoring of restoration process at post-mining 
sites. 

A.4. Data description 
The spectral library consists of 24 A S C I I files. Each file describes one spoil substrate. 
Individual files are named according to the sample number. Files consist of a file header 
and spectral emissivities. Both file parts are described in the subsections below. 

A . 4 . 1 . Header 

The format of the header is similar to the format of the A S T E R Spectral Library header 
[6]. Each file contains 26 lines of header, which includes available sample information. 
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The header is divided into four sections separated by empty lines. First part contains 
9 lines discussing sample classification, particle size and sample origin. Sample origin is 
expressed by latitude and longitude on the reference ellipsoid WGS84. This information 
is summarized in the following fields: 

1. Name 

2. Type 

3. Class 

4. Particle size 

5. Sample No 

6. Owner 

7. Origin 

8. Latitude 

9. Longitude 

A second section contains information about sample toxicity and chemical properties. 
The unit of each quantity is indicated in square brackets after quantity name. This header 
section contains following fields: 

1. toxicity 

2. pH in H20 

3. pH in KC1 

4. conductivity 

5. water soluble Na 

6. water soluble K 

7. A l in KC1 

8. Fe in KC1 

9. loss on ignition 

10. polyphenol content 

A third section contains reference to [19], which discusses toxicity measurement and 
chemical analysis. Finally, the fourth header section contains the names of two columns, 
in which the following spectral emissivity data are aligned. Metadata in each header line 
contains an attribute name followed by a colon (ASCII Character 3A) and tab (ASCII 
Character 09) and then the corresponding value. 

47 



A . S P E C T R A L EMISSIVITY L I B R A R Y O F SPOIL S U B S T R A T E S 

A.4 .2 . Spectral emissivity 

After the header part, the file continues on lines 27 - 213 with spectral emissivity data 
aligned in two columns. As header file indicates, the first column contains wavelength in 
micrometers and the second column contains corresponding emissivity value. Values in 
each row are separated by tab. The emissivity of each sample is provided in wavelengths 
interval from 8 um to 14 um. Sampling in this interval is nondinear. Spectral emissivities 
contained in the spectral library are depicted in Figures A.4 and A . 5 . Spectral emissivity 
library is part of the supplementary materials to the manuscript [2]. 
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Figure A.4: Depiction of samples' emissivity spectra included in the library of spoil substrates. 
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Figure A.5: Depiction of samples' emissivity spectra included in the library of spoil substrates. 
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B 
Dependencies between city structure 

and thermal behaviour in Brno 

Long lasting heat waves bring about more severe living conditions in large urban envi­
ronments. The phenomenon has been addressed mainly as urban heat islands (UHI). 
Determination of factors affecting U H I and good understanding of dependencies between 
city structure and thermal behaviour can significantly help municipalities in long-term 
strategic decision-making. A complex research effort using remote sensing techniques has 
been performed in the 2015. This appendix summarizes the preliminary results of the re­
search, which is discussed in depth in [3]. Let us note that TASI image data used for the 
O S T E S testing in the Chapter 4 were acquired within the scope of this research activity. 

B . l . Methods 
The set of hyperspectral airborne data was collected in visible, near infrared, shortwave 
infrared and thermal infrared spectral regions using C A S I , SASI and TASI sensors (Itres 
L td . , Calgary, Canada), respectively. In addition to hyperspectral data, lidar mapping 
was performed using a Riegl 680i instrument ( R I E G L , Austria). Taken together, these 
data have a high potential for providing valuable information relevant for modelling city 
thermal properties. 

Data were acquired in both winter and summer days over the city of Brno, Czech 
Republic, both of which were climatologically extreme events. Winter acquisition was 
performed on 7th February 2015 at 21:53 ( U T C ) . Summer acquisition was performed 
on 4th July 2015 at 14:03 (UTC) and at 20:59 ( U T C ) . Complementary airborne laser 
scanning dataset was acquired on 22nd September 2015. The detailed description of data 
processing and study area is included in [3]. 

The Figures B . l and B.2 present the dependencies between city structure and city 
thermal regime. A l l displayed quantities are self explanatory except absorbed energy. 
This quantity relates surface absorptivity and solar irradiation accumulated during the 
daylight hours of 4th July 2015. Surface absorptivity was computed by subtracting surface 
reflectance from one. Then the surface absorptivity was multiplied by the direct plus 
diffuse solar irradiation, which was computed by S A G A Lighting and Visibi l i ty module 
( S A G A , 2013). The resulting quantity is absorbed energy by the surface. 
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B.2. Results 
Results of visualisation are presented in the Figure B . l and the Figure B.2. Both figures 
have the following structure. The distance along the transect is represented by meters 
displayed on a horizontal axis. A true-colour composition from the C A S I data is shown 
in the topmost panel. It contains yellow line indicating the transect along which were 
observed various quantities displayed in the following panels. Surface temperatures of a 
summer day and a summer night are shown in the second panel. Surface temperature of 
a winter night is shown in the third panel. A depiction of city structure is contained in 
the fourth panel. Digital terrain model ( D T M ) is shown in brown, while buildings are 
distinguished from high vegetation with grey and green colours, respectively. The N D V I 
is shown in the fifth panel and absorbed energy is shown in the last panel. 

Several common observations can be made in both figures. The N D V I , as a measure 
of "greenness", follows a classification of high vegetation and also allows distinguishing 
between streets and a surfaces covered by grass. Local minima in absorbed energy follow 
shaded regions at the edges of buildings. Temperature over the areas covered by vegeta­
tion tends to be more stable and lower in average, while the temperature of streets and 
parking lots is significantly higher during summer day. We would like to point out several 
interesting features in the individual transects. These wil l be indicated by the distance 
in meters on the horizontal axis. 

In Figure B . l between 80 and 90 can be seen the stabilising role of vegetation -
the temperature profile has a low variability as well as a lower average despite a higher 
amount of absorbed energy. In Figure B . l at 305 and 390, two different roof surfaces 
can be observed - the rightmost one is dark, has a high absorptivity, while the leftmost 
one has a high reflectivity and reflects a cold sky in both summer and winter night. The 
region from 400 to 550 contains green areas which surrounds Spilberk castle. Summer 
day temperature is significantly lower in this region compared to other built up areas. 
The only notable temperature extreme is visible between 460 and 470 where the transect 
crosses a path walk. 

The Figure B.2 shows interesting features as well. Roofs with high reflectivity can 
be observed at 160 - 170 and 530 - 540. The coldest places during a summer day are 
the river between 260 and 280 (which is on the other hand the warmest place in winter) 
and hard shadows next to high buildings, e.g. at 545. There is a notable shaded hillside 
between 40 and 50 causing temperature decrease in both summer day and night. There is 
an interesting dip in the summer night temperature profile between 360 and 370, which is 
presumably caused by a parked car in the parking lot. A dip in the summer temperature 
around 445 is caused by a roof window included in the transect. 

B.3. Conclusion 
The presented results show that hyperspectral image data with a high spatial resolution 
offers valuable information about the dependencies between the city structure and its 
thermal regime. Therefore the further analysis of these data should include quantification 
and modelling of various relations. 
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Figure B.l: Visualisation of various characteristics through the transect, which reveal various 
dependencies between city structure and thermal regime of the Brno city. Detailed description 
of the quantities and image data can be found in the text. 
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Figure B.2: Visualisation of various characteristics through the transect which reveal various 
dependencies between city structure and thermal regime of the Brno city. Detailed description 
of the quantities and image data can be found in the text. 
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List of used symbols and abbreviations 

A A C Autonomous atmospheric compensation 

A H S Airborne hyperspectral scanner 

A R T E M I S S Automatic retrieval of temperature and emissivity using spectral smoothness 

A S T E R Advanced spaceborne thermal emission and reflection radiometer 

DAIS Digital airborne imaging spectrometer 

D E M / D T M Digital elevation/terrain model 

D N Digital numbers 

D S M Digital surface model 

E M Electromagnetic 

F T I R Fourier transform infrared 

F W H M Full width at half maximum 

ISAC In-scene atmospheric corrections 

L S T Land surface temperature 

L S E Land surface emissivity 

L U T Look-up tables 

M M D Maximum-minimum difference 

M O D I S Moderate resolution imaging spectroradiometer 

M O D T R A N MODerate resolution atmospheric TRANsmiss ion model 

M T I Multispectral thermal imager 

N D V I Normalized difference vegetation index 

N E A T Noise equivalent temperature difference 

N E M Normalization emissivity module 

O S T E S Optimized smoothing for temperature emissivity separation 

R T E Radiative transfer equation 

S E V I R I Spinning enhanced visible and infrared imager 

S L U M Spectral library of urban materials 

TASI Thermal airborne spectrographic imager 

T E S Temperature and emissivity separation algorithm 

T I R Thermal infrared 

T I G R T O V S initial guess retrieval 

T U D Atmospheric transmissivity, upwelling and downwelling atmospheric radiance 
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